1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright 2020 Joyent, Inc. 27 */ 28 29 /* 30 * Virtual Device Labels 31 * --------------------- 32 * 33 * The vdev label serves several distinct purposes: 34 * 35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 36 * identity within the pool. 37 * 38 * 2. Verify that all the devices given in a configuration are present 39 * within the pool. 40 * 41 * 3. Determine the uberblock for the pool. 42 * 43 * 4. In case of an import operation, determine the configuration of the 44 * toplevel vdev of which it is a part. 45 * 46 * 5. If an import operation cannot find all the devices in the pool, 47 * provide enough information to the administrator to determine which 48 * devices are missing. 49 * 50 * It is important to note that while the kernel is responsible for writing the 51 * label, it only consumes the information in the first three cases. The 52 * latter information is only consumed in userland when determining the 53 * configuration to import a pool. 54 * 55 * 56 * Label Organization 57 * ------------------ 58 * 59 * Before describing the contents of the label, it's important to understand how 60 * the labels are written and updated with respect to the uberblock. 61 * 62 * When the pool configuration is altered, either because it was newly created 63 * or a device was added, we want to update all the labels such that we can deal 64 * with fatal failure at any point. To this end, each disk has two labels which 65 * are updated before and after the uberblock is synced. Assuming we have 66 * labels and an uberblock with the following transaction groups: 67 * 68 * L1 UB L2 69 * +------+ +------+ +------+ 70 * | | | | | | 71 * | t10 | | t10 | | t10 | 72 * | | | | | | 73 * +------+ +------+ +------+ 74 * 75 * In this stable state, the labels and the uberblock were all updated within 76 * the same transaction group (10). Each label is mirrored and checksummed, so 77 * that we can detect when we fail partway through writing the label. 78 * 79 * In order to identify which labels are valid, the labels are written in the 80 * following manner: 81 * 82 * 1. For each vdev, update 'L1' to the new label 83 * 2. Update the uberblock 84 * 3. For each vdev, update 'L2' to the new label 85 * 86 * Given arbitrary failure, we can determine the correct label to use based on 87 * the transaction group. If we fail after updating L1 but before updating the 88 * UB, we will notice that L1's transaction group is greater than the uberblock, 89 * so L2 must be valid. If we fail after writing the uberblock but before 90 * writing L2, we will notice that L2's transaction group is less than L1, and 91 * therefore L1 is valid. 92 * 93 * Another added complexity is that not every label is updated when the config 94 * is synced. If we add a single device, we do not want to have to re-write 95 * every label for every device in the pool. This means that both L1 and L2 may 96 * be older than the pool uberblock, because the necessary information is stored 97 * on another vdev. 98 * 99 * 100 * On-disk Format 101 * -------------- 102 * 103 * The vdev label consists of two distinct parts, and is wrapped within the 104 * vdev_label_t structure. The label includes 8k of padding to permit legacy 105 * VTOC disk labels, but is otherwise ignored. 106 * 107 * The first half of the label is a packed nvlist which contains pool wide 108 * properties, per-vdev properties, and configuration information. It is 109 * described in more detail below. 110 * 111 * The latter half of the label consists of a redundant array of uberblocks. 112 * These uberblocks are updated whenever a transaction group is committed, 113 * or when the configuration is updated. When a pool is loaded, we scan each 114 * vdev for the 'best' uberblock. 115 * 116 * 117 * Configuration Information 118 * ------------------------- 119 * 120 * The nvlist describing the pool and vdev contains the following elements: 121 * 122 * version ZFS on-disk version 123 * name Pool name 124 * state Pool state 125 * txg Transaction group in which this label was written 126 * pool_guid Unique identifier for this pool 127 * vdev_tree An nvlist describing vdev tree. 128 * features_for_read 129 * An nvlist of the features necessary for reading the MOS. 130 * 131 * Each leaf device label also contains the following: 132 * 133 * top_guid Unique ID for top-level vdev in which this is contained 134 * guid Unique ID for the leaf vdev 135 * 136 * The 'vs' configuration follows the format described in 'spa_config.c'. 137 */ 138 139 #include <sys/zfs_context.h> 140 #include <sys/spa.h> 141 #include <sys/spa_impl.h> 142 #include <sys/dmu.h> 143 #include <sys/zap.h> 144 #include <sys/vdev.h> 145 #include <sys/vdev_impl.h> 146 #include <sys/uberblock_impl.h> 147 #include <sys/metaslab.h> 148 #include <sys/metaslab_impl.h> 149 #include <sys/zio.h> 150 #include <sys/dsl_scan.h> 151 #include <sys/abd.h> 152 #include <sys/fs/zfs.h> 153 #include <sys/byteorder.h> 154 #include <sys/zfs_bootenv.h> 155 156 /* 157 * Basic routines to read and write from a vdev label. 158 * Used throughout the rest of this file. 159 */ 160 uint64_t 161 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 162 { 163 ASSERT(offset < sizeof (vdev_label_t)); 164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 165 166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 168 } 169 170 /* 171 * Returns back the vdev label associated with the passed in offset. 172 */ 173 int 174 vdev_label_number(uint64_t psize, uint64_t offset) 175 { 176 int l; 177 178 if (offset >= psize - VDEV_LABEL_END_SIZE) { 179 offset -= psize - VDEV_LABEL_END_SIZE; 180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 181 } 182 l = offset / sizeof (vdev_label_t); 183 return (l < VDEV_LABELS ? l : -1); 184 } 185 186 static void 187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 188 uint64_t size, zio_done_func_t *done, void *private, int flags) 189 { 190 ASSERT( 191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 194 195 zio_nowait(zio_read_phys(zio, vd, 196 vdev_label_offset(vd->vdev_psize, l, offset), 197 size, buf, ZIO_CHECKSUM_LABEL, done, private, 198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 199 } 200 201 void 202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 203 uint64_t size, zio_done_func_t *done, void *private, int flags) 204 { 205 ASSERT( 206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 209 210 zio_nowait(zio_write_phys(zio, vd, 211 vdev_label_offset(vd->vdev_psize, l, offset), 212 size, buf, ZIO_CHECKSUM_LABEL, done, private, 213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 214 } 215 216 /* 217 * Generate the nvlist representing this vdev's stats 218 */ 219 void 220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 221 { 222 nvlist_t *nvx; 223 vdev_stat_t *vs; 224 vdev_stat_ex_t *vsx; 225 226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 228 229 vdev_get_stats_ex(vd, vs, vsx); 230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 232 233 /* 234 * Add extended stats into a special extended stats nvlist. This keeps 235 * all the extended stats nicely grouped together. The extended stats 236 * nvlist is then added to the main nvlist. 237 */ 238 nvx = fnvlist_alloc(); 239 240 /* ZIOs in flight to disk */ 241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 243 244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 246 247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 249 250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 252 253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 255 256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 258 259 /* ZIOs pending */ 260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 262 263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 265 266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 268 269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 271 272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 273 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 274 275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 276 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 277 278 /* Histograms */ 279 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 280 vsx->vsx_total_histo[ZIO_TYPE_READ], 281 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 282 283 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 284 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 285 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 286 287 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 288 vsx->vsx_disk_histo[ZIO_TYPE_READ], 289 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 290 291 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 292 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 293 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 294 295 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 296 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 297 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 298 299 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 300 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 301 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 302 303 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 304 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 305 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 306 307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 308 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 309 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 310 311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 312 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 313 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 314 315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 316 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 317 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 318 319 /* Request sizes */ 320 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 321 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 322 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 323 324 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 325 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 326 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 327 328 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 329 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 330 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 331 332 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 333 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 334 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 335 336 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 337 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 338 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 339 340 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 341 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 342 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 343 344 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 345 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 346 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 347 348 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 349 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 350 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 351 352 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 353 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 354 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 355 356 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 357 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 358 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 359 360 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 361 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 362 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 363 364 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 365 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 366 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 367 368 /* IO delays */ 369 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 370 371 /* Add extended stats nvlist to main nvlist */ 372 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 373 374 nvlist_free(nvx); 375 kmem_free(vs, sizeof (*vs)); 376 kmem_free(vsx, sizeof (*vsx)); 377 } 378 379 static void 380 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 381 { 382 spa_t *spa = vd->vdev_spa; 383 384 if (vd != spa->spa_root_vdev) 385 return; 386 387 /* provide either current or previous scan information */ 388 pool_scan_stat_t ps; 389 if (spa_scan_get_stats(spa, &ps) == 0) { 390 fnvlist_add_uint64_array(nvl, 391 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 392 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 393 } 394 395 pool_removal_stat_t prs; 396 if (spa_removal_get_stats(spa, &prs) == 0) { 397 fnvlist_add_uint64_array(nvl, 398 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 399 sizeof (prs) / sizeof (uint64_t)); 400 } 401 402 pool_checkpoint_stat_t pcs; 403 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 404 fnvlist_add_uint64_array(nvl, 405 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 406 sizeof (pcs) / sizeof (uint64_t)); 407 } 408 } 409 410 /* 411 * Generate the nvlist representing this vdev's config. 412 */ 413 nvlist_t * 414 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 415 vdev_config_flag_t flags) 416 { 417 nvlist_t *nv = NULL; 418 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 419 420 nv = fnvlist_alloc(); 421 422 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 423 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 424 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 425 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 426 427 if (vd->vdev_path != NULL) 428 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 429 430 if (vd->vdev_devid != NULL) 431 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 432 433 if (vd->vdev_physpath != NULL) 434 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 435 vd->vdev_physpath); 436 437 if (vd->vdev_fru != NULL) 438 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 439 440 if (vd->vdev_nparity != 0) { 441 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 442 VDEV_TYPE_RAIDZ) == 0); 443 444 /* 445 * Make sure someone hasn't managed to sneak a fancy new vdev 446 * into a crufty old storage pool. 447 */ 448 ASSERT(vd->vdev_nparity == 1 || 449 (vd->vdev_nparity <= 2 && 450 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 451 (vd->vdev_nparity <= 3 && 452 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 453 454 /* 455 * Note that we'll add the nparity tag even on storage pools 456 * that only support a single parity device -- older software 457 * will just ignore it. 458 */ 459 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 460 } 461 462 if (vd->vdev_wholedisk != -1ULL) 463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 464 vd->vdev_wholedisk); 465 466 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 467 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 468 469 if (vd->vdev_isspare) 470 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 471 472 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 473 vd == vd->vdev_top) { 474 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 475 vd->vdev_ms_array); 476 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 477 vd->vdev_ms_shift); 478 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 480 vd->vdev_asize); 481 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 482 if (vd->vdev_removing) { 483 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 484 vd->vdev_removing); 485 } 486 487 /* zpool command expects alloc class data */ 488 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 489 const char *bias = NULL; 490 491 switch (vd->vdev_alloc_bias) { 492 case VDEV_BIAS_LOG: 493 bias = VDEV_ALLOC_BIAS_LOG; 494 break; 495 case VDEV_BIAS_SPECIAL: 496 bias = VDEV_ALLOC_BIAS_SPECIAL; 497 break; 498 case VDEV_BIAS_DEDUP: 499 bias = VDEV_ALLOC_BIAS_DEDUP; 500 break; 501 default: 502 ASSERT3U(vd->vdev_alloc_bias, ==, 503 VDEV_BIAS_NONE); 504 } 505 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 506 bias); 507 } 508 } 509 510 if (vd->vdev_dtl_sm != NULL) { 511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 512 space_map_object(vd->vdev_dtl_sm)); 513 } 514 515 if (vic->vic_mapping_object != 0) { 516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 517 vic->vic_mapping_object); 518 } 519 520 if (vic->vic_births_object != 0) { 521 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 522 vic->vic_births_object); 523 } 524 525 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 526 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 527 vic->vic_prev_indirect_vdev); 528 } 529 530 if (vd->vdev_crtxg) 531 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 532 533 if (flags & VDEV_CONFIG_MOS) { 534 if (vd->vdev_leaf_zap != 0) { 535 ASSERT(vd->vdev_ops->vdev_op_leaf); 536 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 537 vd->vdev_leaf_zap); 538 } 539 540 if (vd->vdev_top_zap != 0) { 541 ASSERT(vd == vd->vdev_top); 542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 543 vd->vdev_top_zap); 544 } 545 546 if (vd->vdev_resilver_deferred) { 547 ASSERT(vd->vdev_ops->vdev_op_leaf); 548 ASSERT(spa->spa_resilver_deferred); 549 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 550 } 551 } 552 553 if (getstats) { 554 vdev_config_generate_stats(vd, nv); 555 556 root_vdev_actions_getprogress(vd, nv); 557 558 /* 559 * Note: this can be called from open context 560 * (spa_get_stats()), so we need the rwlock to prevent 561 * the mapping from being changed by condensing. 562 */ 563 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 564 if (vd->vdev_indirect_mapping != NULL) { 565 ASSERT(vd->vdev_indirect_births != NULL); 566 vdev_indirect_mapping_t *vim = 567 vd->vdev_indirect_mapping; 568 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 569 vdev_indirect_mapping_size(vim)); 570 } 571 rw_exit(&vd->vdev_indirect_rwlock); 572 if (vd->vdev_mg != NULL && 573 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 574 /* 575 * Compute approximately how much memory would be used 576 * for the indirect mapping if this device were to 577 * be removed. 578 * 579 * Note: If the frag metric is invalid, then not 580 * enough metaslabs have been converted to have 581 * histograms. 582 */ 583 uint64_t seg_count = 0; 584 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 585 586 /* 587 * There are the same number of allocated segments 588 * as free segments, so we will have at least one 589 * entry per free segment. However, small free 590 * segments (smaller than vdev_removal_max_span) 591 * will be combined with adjacent allocated segments 592 * as a single mapping. 593 */ 594 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 595 if (1ULL << (i + 1) < vdev_removal_max_span) { 596 to_alloc += 597 vd->vdev_mg->mg_histogram[i] << 598 i + 1; 599 } else { 600 seg_count += 601 vd->vdev_mg->mg_histogram[i]; 602 } 603 } 604 605 /* 606 * The maximum length of a mapping is 607 * zfs_remove_max_segment, so we need at least one entry 608 * per zfs_remove_max_segment of allocated data. 609 */ 610 seg_count += to_alloc / zfs_remove_max_segment; 611 612 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 613 seg_count * 614 sizeof (vdev_indirect_mapping_entry_phys_t)); 615 } 616 } 617 618 if (!vd->vdev_ops->vdev_op_leaf) { 619 nvlist_t **child; 620 int c, idx; 621 622 ASSERT(!vd->vdev_ishole); 623 624 /* 625 * Indirect vdevs store the remnants of a removed vdev; 626 * they have no direct children, but are not leaf devices. 627 * The content of an indirect device is stored elsewhere 628 * in the pool. We can avoid a pointless zero-length alloc 629 * and return early here. 630 */ 631 if (vd->vdev_children == 0) 632 return (nv); 633 634 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 635 KM_SLEEP); 636 637 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 638 vdev_t *cvd = vd->vdev_child[c]; 639 640 /* 641 * If we're generating an nvlist of removing 642 * vdevs then skip over any device which is 643 * not being removed. 644 */ 645 if ((flags & VDEV_CONFIG_REMOVING) && 646 !cvd->vdev_removing) 647 continue; 648 649 child[idx++] = vdev_config_generate(spa, cvd, 650 getstats, flags); 651 } 652 653 if (idx) { 654 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 655 child, idx); 656 } 657 658 for (c = 0; c < idx; c++) 659 nvlist_free(child[c]); 660 661 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 662 663 } else { 664 const char *aux = NULL; 665 666 if (vd->vdev_offline && !vd->vdev_tmpoffline) 667 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 668 if (vd->vdev_resilver_txg != 0) 669 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 670 vd->vdev_resilver_txg); 671 if (vd->vdev_faulted) 672 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 673 if (vd->vdev_degraded) 674 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 675 if (vd->vdev_removed) 676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 677 if (vd->vdev_unspare) 678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 679 if (vd->vdev_ishole) 680 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 681 682 switch (vd->vdev_stat.vs_aux) { 683 case VDEV_AUX_ERR_EXCEEDED: 684 aux = "err_exceeded"; 685 break; 686 687 case VDEV_AUX_EXTERNAL: 688 aux = "external"; 689 break; 690 } 691 692 if (aux != NULL) 693 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 694 695 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 696 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 697 vd->vdev_orig_guid); 698 } 699 } 700 701 return (nv); 702 } 703 704 /* 705 * Generate a view of the top-level vdevs. If we currently have holes 706 * in the namespace, then generate an array which contains a list of holey 707 * vdevs. Additionally, add the number of top-level children that currently 708 * exist. 709 */ 710 void 711 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 712 { 713 vdev_t *rvd = spa->spa_root_vdev; 714 uint64_t *array; 715 uint_t c, idx; 716 717 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 718 719 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 720 vdev_t *tvd = rvd->vdev_child[c]; 721 722 if (tvd->vdev_ishole) { 723 array[idx++] = c; 724 } 725 } 726 727 if (idx) { 728 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 729 array, idx) == 0); 730 } 731 732 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 733 rvd->vdev_children) == 0); 734 735 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 736 } 737 738 /* 739 * Returns the configuration from the label of the given vdev. For vdevs 740 * which don't have a txg value stored on their label (i.e. spares/cache) 741 * or have not been completely initialized (txg = 0) just return 742 * the configuration from the first valid label we find. Otherwise, 743 * find the most up-to-date label that does not exceed the specified 744 * 'txg' value. 745 */ 746 nvlist_t * 747 vdev_label_read_config(vdev_t *vd, uint64_t txg) 748 { 749 spa_t *spa = vd->vdev_spa; 750 nvlist_t *config = NULL; 751 vdev_phys_t *vp; 752 abd_t *vp_abd; 753 zio_t *zio; 754 uint64_t best_txg = 0; 755 uint64_t label_txg = 0; 756 int error = 0; 757 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 758 ZIO_FLAG_SPECULATIVE; 759 760 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 761 762 if (!vdev_readable(vd)) 763 return (NULL); 764 765 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 766 vp = abd_to_buf(vp_abd); 767 768 retry: 769 for (int l = 0; l < VDEV_LABELS; l++) { 770 nvlist_t *label = NULL; 771 772 zio = zio_root(spa, NULL, NULL, flags); 773 774 vdev_label_read(zio, vd, l, vp_abd, 775 offsetof(vdev_label_t, vl_vdev_phys), 776 sizeof (vdev_phys_t), NULL, NULL, flags); 777 778 if (zio_wait(zio) == 0 && 779 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 780 &label, 0) == 0) { 781 /* 782 * Auxiliary vdevs won't have txg values in their 783 * labels and newly added vdevs may not have been 784 * completely initialized so just return the 785 * configuration from the first valid label we 786 * encounter. 787 */ 788 error = nvlist_lookup_uint64(label, 789 ZPOOL_CONFIG_POOL_TXG, &label_txg); 790 if ((error || label_txg == 0) && !config) { 791 config = label; 792 break; 793 } else if (label_txg <= txg && label_txg > best_txg) { 794 best_txg = label_txg; 795 nvlist_free(config); 796 config = fnvlist_dup(label); 797 } 798 } 799 800 if (label != NULL) { 801 nvlist_free(label); 802 label = NULL; 803 } 804 } 805 806 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 807 flags |= ZIO_FLAG_TRYHARD; 808 goto retry; 809 } 810 811 /* 812 * We found a valid label but it didn't pass txg restrictions. 813 */ 814 if (config == NULL && label_txg != 0) { 815 vdev_dbgmsg(vd, "label discarded as txg is too large " 816 "(%llu > %llu)", (u_longlong_t)label_txg, 817 (u_longlong_t)txg); 818 } 819 820 abd_free(vp_abd); 821 822 return (config); 823 } 824 825 /* 826 * Determine if a device is in use. The 'spare_guid' parameter will be filled 827 * in with the device guid if this spare is active elsewhere on the system. 828 */ 829 static boolean_t 830 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 831 uint64_t *spare_guid, uint64_t *l2cache_guid) 832 { 833 spa_t *spa = vd->vdev_spa; 834 uint64_t state, pool_guid, device_guid, txg, spare_pool; 835 uint64_t vdtxg = 0; 836 nvlist_t *label; 837 838 if (spare_guid) 839 *spare_guid = 0ULL; 840 if (l2cache_guid) 841 *l2cache_guid = 0ULL; 842 843 /* 844 * Read the label, if any, and perform some basic sanity checks. 845 */ 846 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 847 return (B_FALSE); 848 849 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 850 &vdtxg); 851 852 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 853 &state) != 0 || 854 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 855 &device_guid) != 0) { 856 nvlist_free(label); 857 return (B_FALSE); 858 } 859 860 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 861 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 862 &pool_guid) != 0 || 863 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 864 &txg) != 0)) { 865 nvlist_free(label); 866 return (B_FALSE); 867 } 868 869 nvlist_free(label); 870 871 /* 872 * Check to see if this device indeed belongs to the pool it claims to 873 * be a part of. The only way this is allowed is if the device is a hot 874 * spare (which we check for later on). 875 */ 876 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 877 !spa_guid_exists(pool_guid, device_guid) && 878 !spa_spare_exists(device_guid, NULL, NULL) && 879 !spa_l2cache_exists(device_guid, NULL)) 880 return (B_FALSE); 881 882 /* 883 * If the transaction group is zero, then this an initialized (but 884 * unused) label. This is only an error if the create transaction 885 * on-disk is the same as the one we're using now, in which case the 886 * user has attempted to add the same vdev multiple times in the same 887 * transaction. 888 */ 889 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 890 txg == 0 && vdtxg == crtxg) 891 return (B_TRUE); 892 893 /* 894 * Check to see if this is a spare device. We do an explicit check for 895 * spa_has_spare() here because it may be on our pending list of spares 896 * to add. We also check if it is an l2cache device. 897 */ 898 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 899 spa_has_spare(spa, device_guid)) { 900 if (spare_guid) 901 *spare_guid = device_guid; 902 903 switch (reason) { 904 case VDEV_LABEL_CREATE: 905 case VDEV_LABEL_L2CACHE: 906 return (B_TRUE); 907 908 case VDEV_LABEL_REPLACE: 909 return (!spa_has_spare(spa, device_guid) || 910 spare_pool != 0ULL); 911 912 case VDEV_LABEL_SPARE: 913 return (spa_has_spare(spa, device_guid)); 914 } 915 } 916 917 /* 918 * Check to see if this is an l2cache device. 919 */ 920 if (spa_l2cache_exists(device_guid, NULL)) 921 return (B_TRUE); 922 923 /* 924 * We can't rely on a pool's state if it's been imported 925 * read-only. Instead we look to see if the pools is marked 926 * read-only in the namespace and set the state to active. 927 */ 928 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 929 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 930 spa_mode(spa) == FREAD) 931 state = POOL_STATE_ACTIVE; 932 933 /* 934 * If the device is marked ACTIVE, then this device is in use by another 935 * pool on the system. 936 */ 937 return (state == POOL_STATE_ACTIVE); 938 } 939 940 /* 941 * Initialize a vdev label. We check to make sure each leaf device is not in 942 * use, and writable. We put down an initial label which we will later 943 * overwrite with a complete label. Note that it's important to do this 944 * sequentially, not in parallel, so that we catch cases of multiple use of the 945 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 946 * itself. 947 */ 948 int 949 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 950 { 951 spa_t *spa = vd->vdev_spa; 952 nvlist_t *label; 953 vdev_phys_t *vp; 954 abd_t *vp_abd; 955 abd_t *bootenv; 956 uberblock_t *ub; 957 abd_t *ub_abd; 958 zio_t *zio; 959 char *buf; 960 size_t buflen; 961 int error; 962 uint64_t spare_guid = 0, l2cache_guid; 963 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 964 965 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 966 967 for (int c = 0; c < vd->vdev_children; c++) 968 if ((error = vdev_label_init(vd->vdev_child[c], 969 crtxg, reason)) != 0) 970 return (error); 971 972 /* Track the creation time for this vdev */ 973 vd->vdev_crtxg = crtxg; 974 975 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 976 return (0); 977 978 /* 979 * Dead vdevs cannot be initialized. 980 */ 981 if (vdev_is_dead(vd)) 982 return (SET_ERROR(EIO)); 983 984 /* 985 * Determine if the vdev is in use. 986 */ 987 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 988 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 989 return (SET_ERROR(EBUSY)); 990 991 /* 992 * If this is a request to add or replace a spare or l2cache device 993 * that is in use elsewhere on the system, then we must update the 994 * guid (which was initialized to a random value) to reflect the 995 * actual GUID (which is shared between multiple pools). 996 */ 997 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 998 spare_guid != 0ULL) { 999 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1000 1001 vd->vdev_guid += guid_delta; 1002 1003 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1004 pvd->vdev_guid_sum += guid_delta; 1005 1006 /* 1007 * If this is a replacement, then we want to fallthrough to the 1008 * rest of the code. If we're adding a spare, then it's already 1009 * labeled appropriately and we can just return. 1010 */ 1011 if (reason == VDEV_LABEL_SPARE) 1012 return (0); 1013 ASSERT(reason == VDEV_LABEL_REPLACE || 1014 reason == VDEV_LABEL_SPLIT); 1015 } 1016 1017 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1018 l2cache_guid != 0ULL) { 1019 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1020 1021 vd->vdev_guid += guid_delta; 1022 1023 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1024 pvd->vdev_guid_sum += guid_delta; 1025 1026 /* 1027 * If this is a replacement, then we want to fallthrough to the 1028 * rest of the code. If we're adding an l2cache, then it's 1029 * already labeled appropriately and we can just return. 1030 */ 1031 if (reason == VDEV_LABEL_L2CACHE) 1032 return (0); 1033 ASSERT(reason == VDEV_LABEL_REPLACE); 1034 } 1035 1036 /* 1037 * Initialize its label. 1038 */ 1039 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1040 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1041 vp = abd_to_buf(vp_abd); 1042 1043 /* 1044 * Generate a label describing the pool and our top-level vdev. 1045 * We mark it as being from txg 0 to indicate that it's not 1046 * really part of an active pool just yet. The labels will 1047 * be written again with a meaningful txg by spa_sync(). 1048 */ 1049 if (reason == VDEV_LABEL_SPARE || 1050 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1051 /* 1052 * For inactive hot spares, we generate a special label that 1053 * identifies as a mutually shared hot spare. We write the 1054 * label if we are adding a hot spare, or if we are removing an 1055 * active hot spare (in which case we want to revert the 1056 * labels). 1057 */ 1058 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1059 1060 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1061 spa_version(spa)) == 0); 1062 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1063 POOL_STATE_SPARE) == 0); 1064 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1065 vd->vdev_guid) == 0); 1066 } else if (reason == VDEV_LABEL_L2CACHE || 1067 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1068 /* 1069 * For level 2 ARC devices, add a special label. 1070 */ 1071 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1072 1073 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1074 spa_version(spa)) == 0); 1075 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1076 POOL_STATE_L2CACHE) == 0); 1077 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1078 vd->vdev_guid) == 0); 1079 } else { 1080 uint64_t txg = 0ULL; 1081 1082 if (reason == VDEV_LABEL_SPLIT) 1083 txg = spa->spa_uberblock.ub_txg; 1084 label = spa_config_generate(spa, vd, txg, B_FALSE); 1085 1086 /* 1087 * Add our creation time. This allows us to detect multiple 1088 * vdev uses as described above, and automatically expires if we 1089 * fail. 1090 */ 1091 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1092 crtxg) == 0); 1093 } 1094 1095 buf = vp->vp_nvlist; 1096 buflen = sizeof (vp->vp_nvlist); 1097 1098 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1099 if (error != 0) { 1100 nvlist_free(label); 1101 abd_free(vp_abd); 1102 /* EFAULT means nvlist_pack ran out of room */ 1103 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 1104 } 1105 1106 /* 1107 * Initialize uberblock template. 1108 */ 1109 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1110 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1111 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1112 ub = abd_to_buf(ub_abd); 1113 ub->ub_txg = 0; 1114 1115 /* Initialize the 2nd padding area. */ 1116 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1117 abd_zero(bootenv, VDEV_PAD_SIZE); 1118 1119 /* 1120 * Write everything in parallel. 1121 */ 1122 retry: 1123 zio = zio_root(spa, NULL, NULL, flags); 1124 1125 for (int l = 0; l < VDEV_LABELS; l++) { 1126 1127 vdev_label_write(zio, vd, l, vp_abd, 1128 offsetof(vdev_label_t, vl_vdev_phys), 1129 sizeof (vdev_phys_t), NULL, NULL, flags); 1130 1131 /* 1132 * Skip the 1st padding area. 1133 * Zero out the 2nd padding area where it might have 1134 * left over data from previous filesystem format. 1135 */ 1136 vdev_label_write(zio, vd, l, bootenv, 1137 offsetof(vdev_label_t, vl_be), 1138 VDEV_PAD_SIZE, NULL, NULL, flags); 1139 1140 vdev_label_write(zio, vd, l, ub_abd, 1141 offsetof(vdev_label_t, vl_uberblock), 1142 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1143 } 1144 1145 error = zio_wait(zio); 1146 1147 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1148 flags |= ZIO_FLAG_TRYHARD; 1149 goto retry; 1150 } 1151 1152 nvlist_free(label); 1153 abd_free(bootenv); 1154 abd_free(ub_abd); 1155 abd_free(vp_abd); 1156 1157 /* 1158 * If this vdev hasn't been previously identified as a spare, then we 1159 * mark it as such only if a) we are labeling it as a spare, or b) it 1160 * exists as a spare elsewhere in the system. Do the same for 1161 * level 2 ARC devices. 1162 */ 1163 if (error == 0 && !vd->vdev_isspare && 1164 (reason == VDEV_LABEL_SPARE || 1165 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1166 spa_spare_add(vd); 1167 1168 if (error == 0 && !vd->vdev_isl2cache && 1169 (reason == VDEV_LABEL_L2CACHE || 1170 spa_l2cache_exists(vd->vdev_guid, NULL))) 1171 spa_l2cache_add(vd); 1172 1173 return (error); 1174 } 1175 1176 /* 1177 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1178 * callback to finish, store our abd in the callback pointer. Otherwise, we 1179 * just free our abd and return. 1180 */ 1181 static void 1182 vdev_label_read_bootenv_done(zio_t *zio) 1183 { 1184 zio_t *rio = zio->io_private; 1185 abd_t **cbp = rio->io_private; 1186 1187 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1188 1189 if (zio->io_error == 0) { 1190 mutex_enter(&rio->io_lock); 1191 if (*cbp == NULL) { 1192 /* Will free this buffer in vdev_label_read_bootenv. */ 1193 *cbp = zio->io_abd; 1194 } else { 1195 abd_free(zio->io_abd); 1196 } 1197 mutex_exit(&rio->io_lock); 1198 } else { 1199 abd_free(zio->io_abd); 1200 } 1201 } 1202 1203 static void 1204 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1205 { 1206 for (int c = 0; c < vd->vdev_children; c++) 1207 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1208 1209 /* 1210 * We just use the first label that has a correct checksum; the 1211 * bootloader should have rewritten them all to be the same on boot, 1212 * and any changes we made since boot have been the same across all 1213 * labels. 1214 */ 1215 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1216 for (int l = 0; l < VDEV_LABELS; l++) { 1217 vdev_label_read(zio, vd, l, 1218 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1219 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1220 vdev_label_read_bootenv_done, zio, flags); 1221 } 1222 } 1223 } 1224 1225 int 1226 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1227 { 1228 nvlist_t *config; 1229 spa_t *spa = rvd->vdev_spa; 1230 abd_t *abd = NULL; 1231 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1232 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1233 1234 ASSERT(bootenv); 1235 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1236 1237 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1238 vdev_label_read_bootenv_impl(zio, rvd, flags); 1239 int err = zio_wait(zio); 1240 1241 if (abd != NULL) { 1242 char *buf; 1243 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1244 1245 vbe->vbe_version = ntohll(vbe->vbe_version); 1246 switch (vbe->vbe_version) { 1247 case VB_RAW: 1248 /* 1249 * if we have textual data in vbe_bootenv, create nvlist 1250 * with key "envmap". 1251 */ 1252 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1253 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1254 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1255 vbe->vbe_bootenv); 1256 break; 1257 1258 case VB_NVLIST: 1259 err = nvlist_unpack(vbe->vbe_bootenv, 1260 sizeof (vbe->vbe_bootenv), &config, 0); 1261 if (err == 0) { 1262 fnvlist_merge(bootenv, config); 1263 nvlist_free(config); 1264 break; 1265 } 1266 /* FALLTHROUGH */ 1267 default: 1268 /* Check for FreeBSD zfs bootonce command string */ 1269 buf = abd_to_buf(abd); 1270 if (*buf == '\0') { 1271 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1272 VB_NVLIST); 1273 break; 1274 } 1275 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1276 } 1277 1278 /* 1279 * abd was allocated in vdev_label_read_bootenv_impl() 1280 */ 1281 abd_free(abd); 1282 /* 1283 * If we managed to read any successfully, 1284 * return success. 1285 */ 1286 return (0); 1287 } 1288 return (err); 1289 } 1290 1291 int 1292 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1293 { 1294 zio_t *zio; 1295 spa_t *spa = vd->vdev_spa; 1296 vdev_boot_envblock_t *bootenv; 1297 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1298 int error; 1299 size_t nvsize; 1300 char *nvbuf; 1301 1302 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1303 if (error != 0) 1304 return (SET_ERROR(error)); 1305 1306 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1307 return (SET_ERROR(E2BIG)); 1308 } 1309 1310 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1311 1312 error = ENXIO; 1313 for (int c = 0; c < vd->vdev_children; c++) { 1314 int child_err; 1315 1316 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1317 /* 1318 * As long as any of the disks managed to write all of their 1319 * labels successfully, return success. 1320 */ 1321 if (child_err == 0) 1322 error = child_err; 1323 } 1324 1325 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1326 !vdev_writeable(vd)) { 1327 return (error); 1328 } 1329 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1330 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1331 abd_zero(abd, VDEV_PAD_SIZE); 1332 1333 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1334 nvbuf = bootenv->vbe_bootenv; 1335 nvsize = sizeof (bootenv->vbe_bootenv); 1336 1337 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1338 switch (bootenv->vbe_version) { 1339 case VB_RAW: 1340 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) { 1341 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize); 1342 } 1343 error = 0; 1344 break; 1345 1346 case VB_NVLIST: 1347 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1348 KM_SLEEP); 1349 break; 1350 1351 default: 1352 error = EINVAL; 1353 break; 1354 } 1355 1356 if (error == 0) { 1357 bootenv->vbe_version = htonll(bootenv->vbe_version); 1358 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1359 } else { 1360 abd_free(abd); 1361 return (SET_ERROR(error)); 1362 } 1363 1364 retry: 1365 zio = zio_root(spa, NULL, NULL, flags); 1366 for (int l = 0; l < VDEV_LABELS; l++) { 1367 vdev_label_write(zio, vd, l, abd, 1368 offsetof(vdev_label_t, vl_be), 1369 VDEV_PAD_SIZE, NULL, NULL, flags); 1370 } 1371 1372 error = zio_wait(zio); 1373 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1374 flags |= ZIO_FLAG_TRYHARD; 1375 goto retry; 1376 } 1377 1378 abd_free(abd); 1379 return (error); 1380 } 1381 1382 /* 1383 * ========================================================================== 1384 * uberblock load/sync 1385 * ========================================================================== 1386 */ 1387 1388 /* 1389 * Consider the following situation: txg is safely synced to disk. We've 1390 * written the first uberblock for txg + 1, and then we lose power. When we 1391 * come back up, we fail to see the uberblock for txg + 1 because, say, 1392 * it was on a mirrored device and the replica to which we wrote txg + 1 1393 * is now offline. If we then make some changes and sync txg + 1, and then 1394 * the missing replica comes back, then for a few seconds we'll have two 1395 * conflicting uberblocks on disk with the same txg. The solution is simple: 1396 * among uberblocks with equal txg, choose the one with the latest timestamp. 1397 */ 1398 static int 1399 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1400 { 1401 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1402 1403 if (likely(cmp)) 1404 return (cmp); 1405 1406 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1407 if (likely(cmp)) 1408 return (cmp); 1409 1410 /* 1411 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1412 * ZFS, e.g. zfsonlinux >= 0.7. 1413 * 1414 * If one ub has MMP and the other does not, they were written by 1415 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1416 * a 0 value. 1417 * 1418 * Since timestamp and txg are the same if we get this far, either is 1419 * acceptable for importing the pool. 1420 */ 1421 unsigned int seq1 = 0; 1422 unsigned int seq2 = 0; 1423 1424 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1425 seq1 = MMP_SEQ(ub1); 1426 1427 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1428 seq2 = MMP_SEQ(ub2); 1429 1430 return (TREE_CMP(seq1, seq2)); 1431 } 1432 1433 struct ubl_cbdata { 1434 uberblock_t *ubl_ubbest; /* Best uberblock */ 1435 vdev_t *ubl_vd; /* vdev associated with the above */ 1436 }; 1437 1438 static void 1439 vdev_uberblock_load_done(zio_t *zio) 1440 { 1441 vdev_t *vd = zio->io_vd; 1442 spa_t *spa = zio->io_spa; 1443 zio_t *rio = zio->io_private; 1444 uberblock_t *ub = abd_to_buf(zio->io_abd); 1445 struct ubl_cbdata *cbp = rio->io_private; 1446 1447 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1448 1449 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1450 mutex_enter(&rio->io_lock); 1451 if (ub->ub_txg <= spa->spa_load_max_txg && 1452 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1453 /* 1454 * Keep track of the vdev in which this uberblock 1455 * was found. We will use this information later 1456 * to obtain the config nvlist associated with 1457 * this uberblock. 1458 */ 1459 *cbp->ubl_ubbest = *ub; 1460 cbp->ubl_vd = vd; 1461 } 1462 mutex_exit(&rio->io_lock); 1463 } 1464 1465 abd_free(zio->io_abd); 1466 } 1467 1468 static void 1469 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1470 struct ubl_cbdata *cbp) 1471 { 1472 for (int c = 0; c < vd->vdev_children; c++) 1473 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1474 1475 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1476 for (int l = 0; l < VDEV_LABELS; l++) { 1477 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1478 vdev_label_read(zio, vd, l, 1479 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1480 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1481 VDEV_UBERBLOCK_SIZE(vd), 1482 vdev_uberblock_load_done, zio, flags); 1483 } 1484 } 1485 } 1486 } 1487 1488 /* 1489 * Reads the 'best' uberblock from disk along with its associated 1490 * configuration. First, we read the uberblock array of each label of each 1491 * vdev, keeping track of the uberblock with the highest txg in each array. 1492 * Then, we read the configuration from the same vdev as the best uberblock. 1493 */ 1494 void 1495 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1496 { 1497 zio_t *zio; 1498 spa_t *spa = rvd->vdev_spa; 1499 struct ubl_cbdata cb; 1500 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1501 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1502 1503 ASSERT(ub); 1504 ASSERT(config); 1505 1506 bzero(ub, sizeof (uberblock_t)); 1507 *config = NULL; 1508 1509 cb.ubl_ubbest = ub; 1510 cb.ubl_vd = NULL; 1511 1512 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1513 zio = zio_root(spa, NULL, &cb, flags); 1514 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1515 (void) zio_wait(zio); 1516 1517 /* 1518 * It's possible that the best uberblock was discovered on a label 1519 * that has a configuration which was written in a future txg. 1520 * Search all labels on this vdev to find the configuration that 1521 * matches the txg for our uberblock. 1522 */ 1523 if (cb.ubl_vd != NULL) { 1524 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1525 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1526 1527 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1528 if (*config == NULL && spa->spa_extreme_rewind) { 1529 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1530 "Trying again without txg restrictions."); 1531 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1532 } 1533 if (*config == NULL) { 1534 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1535 } 1536 } 1537 spa_config_exit(spa, SCL_ALL, FTAG); 1538 } 1539 1540 /* 1541 * On success, increment root zio's count of good writes. 1542 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1543 */ 1544 static void 1545 vdev_uberblock_sync_done(zio_t *zio) 1546 { 1547 uint64_t *good_writes = zio->io_private; 1548 1549 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1550 atomic_inc_64(good_writes); 1551 } 1552 1553 /* 1554 * Write the uberblock to all labels of all leaves of the specified vdev. 1555 */ 1556 static void 1557 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1558 uberblock_t *ub, vdev_t *vd, int flags) 1559 { 1560 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1561 vdev_uberblock_sync(zio, good_writes, 1562 ub, vd->vdev_child[c], flags); 1563 } 1564 1565 if (!vd->vdev_ops->vdev_op_leaf) 1566 return; 1567 1568 if (!vdev_writeable(vd)) 1569 return; 1570 1571 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1572 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1573 1574 /* Copy the uberblock_t into the ABD */ 1575 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1576 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1577 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1578 1579 for (int l = 0; l < VDEV_LABELS; l++) 1580 vdev_label_write(zio, vd, l, ub_abd, 1581 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1582 vdev_uberblock_sync_done, good_writes, 1583 flags | ZIO_FLAG_DONT_PROPAGATE); 1584 1585 abd_free(ub_abd); 1586 } 1587 1588 /* Sync the uberblocks to all vdevs in svd[] */ 1589 int 1590 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1591 { 1592 spa_t *spa = svd[0]->vdev_spa; 1593 zio_t *zio; 1594 uint64_t good_writes = 0; 1595 1596 zio = zio_root(spa, NULL, NULL, flags); 1597 1598 for (int v = 0; v < svdcount; v++) 1599 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1600 1601 (void) zio_wait(zio); 1602 1603 /* 1604 * Flush the uberblocks to disk. This ensures that the odd labels 1605 * are no longer needed (because the new uberblocks and the even 1606 * labels are safely on disk), so it is safe to overwrite them. 1607 */ 1608 zio = zio_root(spa, NULL, NULL, flags); 1609 1610 for (int v = 0; v < svdcount; v++) { 1611 if (vdev_writeable(svd[v])) { 1612 zio_flush(zio, svd[v]); 1613 } 1614 } 1615 1616 (void) zio_wait(zio); 1617 1618 return (good_writes >= 1 ? 0 : EIO); 1619 } 1620 1621 /* 1622 * On success, increment the count of good writes for our top-level vdev. 1623 */ 1624 static void 1625 vdev_label_sync_done(zio_t *zio) 1626 { 1627 uint64_t *good_writes = zio->io_private; 1628 1629 if (zio->io_error == 0) 1630 atomic_inc_64(good_writes); 1631 } 1632 1633 /* 1634 * If there weren't enough good writes, indicate failure to the parent. 1635 */ 1636 static void 1637 vdev_label_sync_top_done(zio_t *zio) 1638 { 1639 uint64_t *good_writes = zio->io_private; 1640 1641 if (*good_writes == 0) 1642 zio->io_error = SET_ERROR(EIO); 1643 1644 kmem_free(good_writes, sizeof (uint64_t)); 1645 } 1646 1647 /* 1648 * We ignore errors for log and cache devices, simply free the private data. 1649 */ 1650 static void 1651 vdev_label_sync_ignore_done(zio_t *zio) 1652 { 1653 kmem_free(zio->io_private, sizeof (uint64_t)); 1654 } 1655 1656 /* 1657 * Write all even or odd labels to all leaves of the specified vdev. 1658 */ 1659 static void 1660 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1661 vdev_t *vd, int l, uint64_t txg, int flags) 1662 { 1663 nvlist_t *label; 1664 vdev_phys_t *vp; 1665 abd_t *vp_abd; 1666 char *buf; 1667 size_t buflen; 1668 1669 for (int c = 0; c < vd->vdev_children; c++) { 1670 vdev_label_sync(zio, good_writes, 1671 vd->vdev_child[c], l, txg, flags); 1672 } 1673 1674 if (!vd->vdev_ops->vdev_op_leaf) 1675 return; 1676 1677 if (!vdev_writeable(vd)) 1678 return; 1679 1680 /* 1681 * Generate a label describing the top-level config to which we belong. 1682 */ 1683 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1684 1685 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1686 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1687 vp = abd_to_buf(vp_abd); 1688 1689 buf = vp->vp_nvlist; 1690 buflen = sizeof (vp->vp_nvlist); 1691 1692 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1693 for (; l < VDEV_LABELS; l += 2) { 1694 vdev_label_write(zio, vd, l, vp_abd, 1695 offsetof(vdev_label_t, vl_vdev_phys), 1696 sizeof (vdev_phys_t), 1697 vdev_label_sync_done, good_writes, 1698 flags | ZIO_FLAG_DONT_PROPAGATE); 1699 } 1700 } 1701 1702 abd_free(vp_abd); 1703 nvlist_free(label); 1704 } 1705 1706 int 1707 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1708 { 1709 list_t *dl = &spa->spa_config_dirty_list; 1710 vdev_t *vd; 1711 zio_t *zio; 1712 int error; 1713 1714 /* 1715 * Write the new labels to disk. 1716 */ 1717 zio = zio_root(spa, NULL, NULL, flags); 1718 1719 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1720 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1721 KM_SLEEP); 1722 1723 ASSERT(!vd->vdev_ishole); 1724 1725 zio_t *vio = zio_null(zio, spa, NULL, 1726 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1727 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1728 good_writes, flags); 1729 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1730 zio_nowait(vio); 1731 } 1732 1733 error = zio_wait(zio); 1734 1735 /* 1736 * Flush the new labels to disk. 1737 */ 1738 zio = zio_root(spa, NULL, NULL, flags); 1739 1740 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1741 zio_flush(zio, vd); 1742 1743 (void) zio_wait(zio); 1744 1745 return (error); 1746 } 1747 1748 /* 1749 * Sync the uberblock and any changes to the vdev configuration. 1750 * 1751 * The order of operations is carefully crafted to ensure that 1752 * if the system panics or loses power at any time, the state on disk 1753 * is still transactionally consistent. The in-line comments below 1754 * describe the failure semantics at each stage. 1755 * 1756 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1757 * at any time, you can just call it again, and it will resume its work. 1758 */ 1759 int 1760 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1761 { 1762 spa_t *spa = svd[0]->vdev_spa; 1763 uberblock_t *ub = &spa->spa_uberblock; 1764 int error = 0; 1765 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1766 1767 ASSERT(svdcount != 0); 1768 retry: 1769 /* 1770 * Normally, we don't want to try too hard to write every label and 1771 * uberblock. If there is a flaky disk, we don't want the rest of the 1772 * sync process to block while we retry. But if we can't write a 1773 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1774 * bailing out and declaring the pool faulted. 1775 */ 1776 if (error != 0) { 1777 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1778 return (error); 1779 flags |= ZIO_FLAG_TRYHARD; 1780 } 1781 1782 ASSERT(ub->ub_txg <= txg); 1783 1784 /* 1785 * If this isn't a resync due to I/O errors, 1786 * and nothing changed in this transaction group, 1787 * and the vdev configuration hasn't changed, 1788 * then there's nothing to do. 1789 */ 1790 if (ub->ub_txg < txg) { 1791 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1792 txg, spa->spa_mmp.mmp_delay); 1793 1794 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1795 return (0); 1796 } 1797 1798 if (txg > spa_freeze_txg(spa)) 1799 return (0); 1800 1801 ASSERT(txg <= spa->spa_final_txg); 1802 1803 /* 1804 * Flush the write cache of every disk that's been written to 1805 * in this transaction group. This ensures that all blocks 1806 * written in this txg will be committed to stable storage 1807 * before any uberblock that references them. 1808 */ 1809 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1810 1811 for (vdev_t *vd = 1812 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1813 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1814 zio_flush(zio, vd); 1815 1816 (void) zio_wait(zio); 1817 1818 /* 1819 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1820 * system dies in the middle of this process, that's OK: all of the 1821 * even labels that made it to disk will be newer than any uberblock, 1822 * and will therefore be considered invalid. The odd labels (L1, L3), 1823 * which have not yet been touched, will still be valid. We flush 1824 * the new labels to disk to ensure that all even-label updates 1825 * are committed to stable storage before the uberblock update. 1826 */ 1827 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1828 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1829 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1830 "for pool '%s' when syncing out the even labels " 1831 "of dirty vdevs", error, spa_name(spa)); 1832 } 1833 goto retry; 1834 } 1835 1836 /* 1837 * Sync the uberblocks to all vdevs in svd[]. 1838 * If the system dies in the middle of this step, there are two cases 1839 * to consider, and the on-disk state is consistent either way: 1840 * 1841 * (1) If none of the new uberblocks made it to disk, then the 1842 * previous uberblock will be the newest, and the odd labels 1843 * (which had not yet been touched) will be valid with respect 1844 * to that uberblock. 1845 * 1846 * (2) If one or more new uberblocks made it to disk, then they 1847 * will be the newest, and the even labels (which had all 1848 * been successfully committed) will be valid with respect 1849 * to the new uberblocks. 1850 */ 1851 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1852 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1853 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1854 "%d for pool '%s'", error, spa_name(spa)); 1855 } 1856 goto retry; 1857 } 1858 1859 if (spa_multihost(spa)) 1860 mmp_update_uberblock(spa, ub); 1861 1862 /* 1863 * Sync out odd labels for every dirty vdev. If the system dies 1864 * in the middle of this process, the even labels and the new 1865 * uberblocks will suffice to open the pool. The next time 1866 * the pool is opened, the first thing we'll do -- before any 1867 * user data is modified -- is mark every vdev dirty so that 1868 * all labels will be brought up to date. We flush the new labels 1869 * to disk to ensure that all odd-label updates are committed to 1870 * stable storage before the next transaction group begins. 1871 */ 1872 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1873 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1874 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1875 "for pool '%s' when syncing out the odd labels of " 1876 "dirty vdevs", error, spa_name(spa)); 1877 } 1878 goto retry; 1879 } 1880 1881 return (0); 1882 } 1883