1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2014, 2019 by Delphix. All rights reserved. 18 * Copyright 2019 Joyent, Inc. 19 */ 20 21 #include <sys/zfs_context.h> 22 #include <sys/spa.h> 23 #include <sys/spa_impl.h> 24 #include <sys/vdev_impl.h> 25 #include <sys/fs/zfs.h> 26 #include <sys/zio.h> 27 #include <sys/zio_checksum.h> 28 #include <sys/metaslab.h> 29 #include <sys/refcount.h> 30 #include <sys/dmu.h> 31 #include <sys/vdev_indirect_mapping.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/zap.h> 35 #include <sys/abd.h> 36 #include <sys/zthr.h> 37 38 /* 39 * An indirect vdev corresponds to a vdev that has been removed. Since 40 * we cannot rewrite block pointers of snapshots, etc., we keep a 41 * mapping from old location on the removed device to the new location 42 * on another device in the pool and use this mapping whenever we need 43 * to access the DVA. Unfortunately, this mapping did not respect 44 * logical block boundaries when it was first created, and so a DVA on 45 * this indirect vdev may be "split" into multiple sections that each 46 * map to a different location. As a consequence, not all DVAs can be 47 * translated to an equivalent new DVA. Instead we must provide a 48 * "vdev_remap" operation that executes a callback on each contiguous 49 * segment of the new location. This function is used in multiple ways: 50 * 51 * - i/os to this vdev use the callback to determine where the 52 * data is now located, and issue child i/os for each segment's new 53 * location. 54 * 55 * - frees and claims to this vdev use the callback to free or claim 56 * each mapped segment. (Note that we don't actually need to claim 57 * log blocks on indirect vdevs, because we don't allocate to 58 * removing vdevs. However, zdb uses zio_claim() for its leak 59 * detection.) 60 */ 61 62 /* 63 * "Big theory statement" for how we mark blocks obsolete. 64 * 65 * When a block on an indirect vdev is freed or remapped, a section of 66 * that vdev's mapping may no longer be referenced (aka "obsolete"). We 67 * keep track of how much of each mapping entry is obsolete. When 68 * an entry becomes completely obsolete, we can remove it, thus reducing 69 * the memory used by the mapping. The complete picture of obsolescence 70 * is given by the following data structures, described below: 71 * - the entry-specific obsolete count 72 * - the vdev-specific obsolete spacemap 73 * - the pool-specific obsolete bpobj 74 * 75 * == On disk data structures used == 76 * 77 * We track the obsolete space for the pool using several objects. Each 78 * of these objects is created on demand and freed when no longer 79 * needed, and is assumed to be empty if it does not exist. 80 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects. 81 * 82 * - Each vic_mapping_object (associated with an indirect vdev) can 83 * have a vimp_counts_object. This is an array of uint32_t's 84 * with the same number of entries as the vic_mapping_object. When 85 * the mapping is condensed, entries from the vic_obsolete_sm_object 86 * (see below) are folded into the counts. Therefore, each 87 * obsolete_counts entry tells us the number of bytes in the 88 * corresponding mapping entry that were not referenced when the 89 * mapping was last condensed. 90 * 91 * - Each indirect or removing vdev can have a vic_obsolete_sm_object. 92 * This is a space map containing an alloc entry for every DVA that 93 * has been obsoleted since the last time this indirect vdev was 94 * condensed. We use this object in order to improve performance 95 * when marking a DVA as obsolete. Instead of modifying an arbitrary 96 * offset of the vimp_counts_object, we only need to append an entry 97 * to the end of this object. When a DVA becomes obsolete, it is 98 * added to the obsolete space map. This happens when the DVA is 99 * freed, remapped and not referenced by a snapshot, or the last 100 * snapshot referencing it is destroyed. 101 * 102 * - Each dataset can have a ds_remap_deadlist object. This is a 103 * deadlist object containing all blocks that were remapped in this 104 * dataset but referenced in a previous snapshot. Blocks can *only* 105 * appear on this list if they were remapped (dsl_dataset_block_remapped); 106 * blocks that were killed in a head dataset are put on the normal 107 * ds_deadlist and marked obsolete when they are freed. 108 * 109 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks 110 * in the pool that need to be marked obsolete. When a snapshot is 111 * destroyed, we move some of the ds_remap_deadlist to the obsolete 112 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then 113 * asynchronously process the obsolete bpobj, moving its entries to 114 * the specific vdevs' obsolete space maps. 115 * 116 * == Summary of how we mark blocks as obsolete == 117 * 118 * - When freeing a block: if any DVA is on an indirect vdev, append to 119 * vic_obsolete_sm_object. 120 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap 121 * references; otherwise append to vic_obsolete_sm_object). 122 * - When freeing a snapshot: move parts of ds_remap_deadlist to 123 * dp_obsolete_bpobj (same algorithm as ds_deadlist). 124 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to 125 * individual vdev's vic_obsolete_sm_object. 126 */ 127 128 /* 129 * "Big theory statement" for how we condense indirect vdevs. 130 * 131 * Condensing an indirect vdev's mapping is the process of determining 132 * the precise counts of obsolete space for each mapping entry (by 133 * integrating the obsolete spacemap into the obsolete counts) and 134 * writing out a new mapping that contains only referenced entries. 135 * 136 * We condense a vdev when we expect the mapping to shrink (see 137 * vdev_indirect_should_condense()), but only perform one condense at a 138 * time to limit the memory usage. In addition, we use a separate 139 * open-context thread (spa_condense_indirect_thread) to incrementally 140 * create the new mapping object in a way that minimizes the impact on 141 * the rest of the system. 142 * 143 * == Generating a new mapping == 144 * 145 * To generate a new mapping, we follow these steps: 146 * 147 * 1. Save the old obsolete space map and create a new mapping object 148 * (see spa_condense_indirect_start_sync()). This initializes the 149 * spa_condensing_indirect_phys with the "previous obsolete space map", 150 * which is now read only. Newly obsolete DVAs will be added to a 151 * new (initially empty) obsolete space map, and will not be 152 * considered as part of this condense operation. 153 * 154 * 2. Construct in memory the precise counts of obsolete space for each 155 * mapping entry, by incorporating the obsolete space map into the 156 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().) 157 * 158 * 3. Iterate through each mapping entry, writing to the new mapping any 159 * entries that are not completely obsolete (i.e. which don't have 160 * obsolete count == mapping length). (See 161 * spa_condense_indirect_generate_new_mapping().) 162 * 163 * 4. Destroy the old mapping object and switch over to the new one 164 * (spa_condense_indirect_complete_sync). 165 * 166 * == Restarting from failure == 167 * 168 * To restart the condense when we import/open the pool, we must start 169 * at the 2nd step above: reconstruct the precise counts in memory, 170 * based on the space map + counts. Then in the 3rd step, we start 171 * iterating where we left off: at vimp_max_offset of the new mapping 172 * object. 173 */ 174 175 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE; 176 177 /* 178 * Condense if at least this percent of the bytes in the mapping is 179 * obsolete. With the default of 25%, the amount of space mapped 180 * will be reduced to 1% of its original size after at most 16 181 * condenses. Higher values will condense less often (causing less 182 * i/o); lower values will reduce the mapping size more quickly. 183 */ 184 int zfs_indirect_condense_obsolete_pct = 25; 185 186 /* 187 * Condense if the obsolete space map takes up more than this amount of 188 * space on disk (logically). This limits the amount of disk space 189 * consumed by the obsolete space map; the default of 1GB is small enough 190 * that we typically don't mind "wasting" it. 191 */ 192 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024; 193 194 /* 195 * Don't bother condensing if the mapping uses less than this amount of 196 * memory. The default of 128KB is considered a "trivial" amount of 197 * memory and not worth reducing. 198 */ 199 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024; 200 201 /* 202 * This is used by the test suite so that it can ensure that certain 203 * actions happen while in the middle of a condense (which might otherwise 204 * complete too quickly). If used to reduce the performance impact of 205 * condensing in production, a maximum value of 1 should be sufficient. 206 */ 207 int zfs_condense_indirect_commit_entry_delay_ticks = 0; 208 209 /* 210 * If an indirect split block contains more than this many possible unique 211 * combinations when being reconstructed, consider it too computationally 212 * expensive to check them all. Instead, try at most 100 randomly-selected 213 * combinations each time the block is accessed. This allows all segment 214 * copies to participate fairly in the reconstruction when all combinations 215 * cannot be checked and prevents repeated use of one bad copy. 216 */ 217 int zfs_reconstruct_indirect_combinations_max = 256; 218 219 220 /* 221 * Enable to simulate damaged segments and validate reconstruction. 222 * Used by ztest 223 */ 224 unsigned long zfs_reconstruct_indirect_damage_fraction = 0; 225 226 /* 227 * The indirect_child_t represents the vdev that we will read from, when we 228 * need to read all copies of the data (e.g. for scrub or reconstruction). 229 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 230 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 231 * ic_vdev is a child of the mirror. 232 */ 233 typedef struct indirect_child { 234 abd_t *ic_data; 235 vdev_t *ic_vdev; 236 237 /* 238 * ic_duplicate is NULL when the ic_data contents are unique, when it 239 * is determined to be a duplicate it references the primary child. 240 */ 241 struct indirect_child *ic_duplicate; 242 list_node_t ic_node; /* node on is_unique_child */ 243 } indirect_child_t; 244 245 /* 246 * The indirect_split_t represents one mapped segment of an i/o to the 247 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 248 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 249 * For split blocks, there will be several of these. 250 */ 251 typedef struct indirect_split { 252 list_node_t is_node; /* link on iv_splits */ 253 254 /* 255 * is_split_offset is the offset into the i/o. 256 * This is the sum of the previous splits' is_size's. 257 */ 258 uint64_t is_split_offset; 259 260 vdev_t *is_vdev; /* top-level vdev */ 261 uint64_t is_target_offset; /* offset on is_vdev */ 262 uint64_t is_size; 263 int is_children; /* number of entries in is_child[] */ 264 int is_unique_children; /* number of entries in is_unique_child */ 265 list_t is_unique_child; 266 267 /* 268 * is_good_child is the child that we are currently using to 269 * attempt reconstruction. 270 */ 271 indirect_child_t *is_good_child; 272 273 indirect_child_t is_child[1]; /* variable-length */ 274 } indirect_split_t; 275 276 /* 277 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 278 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 279 */ 280 typedef struct indirect_vsd { 281 boolean_t iv_split_block; 282 boolean_t iv_reconstruct; 283 uint64_t iv_unique_combinations; 284 uint64_t iv_attempts; 285 uint64_t iv_attempts_max; 286 287 list_t iv_splits; /* list of indirect_split_t's */ 288 } indirect_vsd_t; 289 290 static void 291 vdev_indirect_map_free(zio_t *zio) 292 { 293 indirect_vsd_t *iv = zio->io_vsd; 294 295 indirect_split_t *is; 296 while ((is = list_head(&iv->iv_splits)) != NULL) { 297 for (int c = 0; c < is->is_children; c++) { 298 indirect_child_t *ic = &is->is_child[c]; 299 if (ic->ic_data != NULL) 300 abd_free(ic->ic_data); 301 } 302 list_remove(&iv->iv_splits, is); 303 304 indirect_child_t *ic; 305 while ((ic = list_head(&is->is_unique_child)) != NULL) 306 list_remove(&is->is_unique_child, ic); 307 308 list_destroy(&is->is_unique_child); 309 310 kmem_free(is, 311 offsetof(indirect_split_t, is_child[is->is_children])); 312 } 313 kmem_free(iv, sizeof (*iv)); 314 } 315 316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = { 317 vdev_indirect_map_free, 318 zio_vsd_default_cksum_report 319 }; 320 /* 321 * Mark the given offset and size as being obsolete. 322 */ 323 void 324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size) 325 { 326 spa_t *spa = vd->vdev_spa; 327 328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0); 329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); 330 ASSERT(size > 0); 331 VERIFY(vdev_indirect_mapping_entry_for_offset( 332 vd->vdev_indirect_mapping, offset) != NULL); 333 334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 335 mutex_enter(&vd->vdev_obsolete_lock); 336 range_tree_add(vd->vdev_obsolete_segments, offset, size); 337 mutex_exit(&vd->vdev_obsolete_lock); 338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa)); 339 } 340 } 341 342 /* 343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This 344 * wrapper is provided because the DMU does not know about vdev_t's and 345 * cannot directly call vdev_indirect_mark_obsolete. 346 */ 347 void 348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset, 349 uint64_t size, dmu_tx_t *tx) 350 { 351 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 352 ASSERT(dmu_tx_is_syncing(tx)); 353 354 /* The DMU can only remap indirect vdevs. */ 355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 356 vdev_indirect_mark_obsolete(vd, offset, size); 357 } 358 359 static spa_condensing_indirect_t * 360 spa_condensing_indirect_create(spa_t *spa) 361 { 362 spa_condensing_indirect_phys_t *scip = 363 &spa->spa_condensing_indirect_phys; 364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP); 365 objset_t *mos = spa->spa_meta_objset; 366 367 for (int i = 0; i < TXG_SIZE; i++) { 368 list_create(&sci->sci_new_mapping_entries[i], 369 sizeof (vdev_indirect_mapping_entry_t), 370 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 371 } 372 373 sci->sci_new_mapping = 374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object); 375 376 return (sci); 377 } 378 379 static void 380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci) 381 { 382 for (int i = 0; i < TXG_SIZE; i++) 383 list_destroy(&sci->sci_new_mapping_entries[i]); 384 385 if (sci->sci_new_mapping != NULL) 386 vdev_indirect_mapping_close(sci->sci_new_mapping); 387 388 kmem_free(sci, sizeof (*sci)); 389 } 390 391 boolean_t 392 vdev_indirect_should_condense(vdev_t *vd) 393 { 394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 395 spa_t *spa = vd->vdev_spa; 396 397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool)); 398 399 if (!zfs_condense_indirect_vdevs_enable) 400 return (B_FALSE); 401 402 /* 403 * We can only condense one indirect vdev at a time. 404 */ 405 if (spa->spa_condensing_indirect != NULL) 406 return (B_FALSE); 407 408 if (spa_shutting_down(spa)) 409 return (B_FALSE); 410 411 /* 412 * The mapping object size must not change while we are 413 * condensing, so we can only condense indirect vdevs 414 * (not vdevs that are still in the middle of being removed). 415 */ 416 if (vd->vdev_ops != &vdev_indirect_ops) 417 return (B_FALSE); 418 419 /* 420 * If nothing new has been marked obsolete, there is no 421 * point in condensing. 422 */ 423 if (vd->vdev_obsolete_sm == NULL) { 424 ASSERT0(vdev_obsolete_sm_object(vd)); 425 return (B_FALSE); 426 } 427 428 ASSERT(vd->vdev_obsolete_sm != NULL); 429 430 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 431 space_map_object(vd->vdev_obsolete_sm)); 432 433 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim); 434 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm); 435 uint64_t mapping_size = vdev_indirect_mapping_size(vim); 436 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm); 437 438 ASSERT3U(bytes_obsolete, <=, bytes_mapped); 439 440 /* 441 * If a high percentage of the bytes that are mapped have become 442 * obsolete, condense (unless the mapping is already small enough). 443 * This has a good chance of reducing the amount of memory used 444 * by the mapping. 445 */ 446 if (bytes_obsolete * 100 / bytes_mapped >= 447 zfs_indirect_condense_obsolete_pct && 448 mapping_size > zfs_condense_min_mapping_bytes) { 449 zfs_dbgmsg("should condense vdev %llu because obsolete " 450 "spacemap covers %d%% of %lluMB mapping", 451 (u_longlong_t)vd->vdev_id, 452 (int)(bytes_obsolete * 100 / bytes_mapped), 453 (u_longlong_t)bytes_mapped / 1024 / 1024); 454 return (B_TRUE); 455 } 456 457 /* 458 * If the obsolete space map takes up too much space on disk, 459 * condense in order to free up this disk space. 460 */ 461 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) { 462 zfs_dbgmsg("should condense vdev %llu because obsolete sm " 463 "length %lluMB >= max size %lluMB", 464 (u_longlong_t)vd->vdev_id, 465 (u_longlong_t)obsolete_sm_size / 1024 / 1024, 466 (u_longlong_t)zfs_condense_max_obsolete_bytes / 467 1024 / 1024); 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * This sync task completes (finishes) a condense, deleting the old 476 * mapping and replacing it with the new one. 477 */ 478 static void 479 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx) 480 { 481 spa_condensing_indirect_t *sci = arg; 482 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 483 spa_condensing_indirect_phys_t *scip = 484 &spa->spa_condensing_indirect_phys; 485 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev); 486 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 487 objset_t *mos = spa->spa_meta_objset; 488 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 489 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping); 490 uint64_t new_count = 491 vdev_indirect_mapping_num_entries(sci->sci_new_mapping); 492 493 ASSERT(dmu_tx_is_syncing(tx)); 494 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 495 ASSERT3P(sci, ==, spa->spa_condensing_indirect); 496 for (int i = 0; i < TXG_SIZE; i++) { 497 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i])); 498 } 499 ASSERT(vic->vic_mapping_object != 0); 500 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev); 501 ASSERT(scip->scip_next_mapping_object != 0); 502 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 503 504 /* 505 * Reset vdev_indirect_mapping to refer to the new object. 506 */ 507 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER); 508 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 509 vd->vdev_indirect_mapping = sci->sci_new_mapping; 510 rw_exit(&vd->vdev_indirect_rwlock); 511 512 sci->sci_new_mapping = NULL; 513 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 514 vic->vic_mapping_object = scip->scip_next_mapping_object; 515 scip->scip_next_mapping_object = 0; 516 517 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx); 518 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 519 scip->scip_prev_obsolete_sm_object = 0; 520 521 scip->scip_vdev = 0; 522 523 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 524 DMU_POOL_CONDENSING_INDIRECT, tx)); 525 spa_condensing_indirect_destroy(spa->spa_condensing_indirect); 526 spa->spa_condensing_indirect = NULL; 527 528 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: " 529 "new mapping object %llu has %llu entries " 530 "(was %llu entries)", 531 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object, 532 new_count, old_count); 533 534 vdev_config_dirty(spa->spa_root_vdev); 535 } 536 537 /* 538 * This sync task appends entries to the new mapping object. 539 */ 540 static void 541 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx) 542 { 543 spa_condensing_indirect_t *sci = arg; 544 uint64_t txg = dmu_tx_get_txg(tx); 545 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 546 547 ASSERT(dmu_tx_is_syncing(tx)); 548 ASSERT3P(sci, ==, spa->spa_condensing_indirect); 549 550 vdev_indirect_mapping_add_entries(sci->sci_new_mapping, 551 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx); 552 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK])); 553 } 554 555 /* 556 * Open-context function to add one entry to the new mapping. The new 557 * entry will be remembered and written from syncing context. 558 */ 559 static void 560 spa_condense_indirect_commit_entry(spa_t *spa, 561 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count) 562 { 563 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect; 564 565 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst)); 566 567 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 568 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count)); 569 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 570 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 571 572 /* 573 * If we are the first entry committed this txg, kick off the sync 574 * task to write to the MOS on our behalf. 575 */ 576 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) { 577 dsl_sync_task_nowait(dmu_tx_pool(tx), 578 spa_condense_indirect_commit_sync, sci, 579 0, ZFS_SPACE_CHECK_NONE, tx); 580 } 581 582 vdev_indirect_mapping_entry_t *vime = 583 kmem_alloc(sizeof (*vime), KM_SLEEP); 584 vime->vime_mapping = *vimep; 585 vime->vime_obsolete_count = count; 586 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime); 587 588 dmu_tx_commit(tx); 589 } 590 591 static void 592 spa_condense_indirect_generate_new_mapping(vdev_t *vd, 593 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr) 594 { 595 spa_t *spa = vd->vdev_spa; 596 uint64_t mapi = start_index; 597 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 598 uint64_t old_num_entries = 599 vdev_indirect_mapping_num_entries(old_mapping); 600 601 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 602 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev); 603 604 zfs_dbgmsg("starting condense of vdev %llu from index %llu", 605 (u_longlong_t)vd->vdev_id, 606 (u_longlong_t)mapi); 607 608 while (mapi < old_num_entries) { 609 610 if (zthr_iscancelled(zthr)) { 611 zfs_dbgmsg("pausing condense of vdev %llu " 612 "at index %llu", (u_longlong_t)vd->vdev_id, 613 (u_longlong_t)mapi); 614 break; 615 } 616 617 vdev_indirect_mapping_entry_phys_t *entry = 618 &old_mapping->vim_entries[mapi]; 619 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst); 620 ASSERT3U(obsolete_counts[mapi], <=, entry_size); 621 if (obsolete_counts[mapi] < entry_size) { 622 spa_condense_indirect_commit_entry(spa, entry, 623 obsolete_counts[mapi]); 624 625 /* 626 * This delay may be requested for testing, debugging, 627 * or performance reasons. 628 */ 629 delay(zfs_condense_indirect_commit_entry_delay_ticks); 630 } 631 632 mapi++; 633 } 634 } 635 636 /* ARGSUSED */ 637 static boolean_t 638 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr) 639 { 640 spa_t *spa = arg; 641 642 return (spa->spa_condensing_indirect != NULL); 643 } 644 645 /* ARGSUSED */ 646 static void 647 spa_condense_indirect_thread(void *arg, zthr_t *zthr) 648 { 649 spa_t *spa = arg; 650 vdev_t *vd; 651 652 ASSERT3P(spa->spa_condensing_indirect, !=, NULL); 653 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 654 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev); 655 ASSERT3P(vd, !=, NULL); 656 spa_config_exit(spa, SCL_VDEV, FTAG); 657 658 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect; 659 spa_condensing_indirect_phys_t *scip = 660 &spa->spa_condensing_indirect_phys; 661 uint32_t *counts; 662 uint64_t start_index; 663 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 664 space_map_t *prev_obsolete_sm = NULL; 665 666 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev); 667 ASSERT(scip->scip_next_mapping_object != 0); 668 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 669 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 670 671 for (int i = 0; i < TXG_SIZE; i++) { 672 /* 673 * The list must start out empty in order for the 674 * _commit_sync() sync task to be properly registered 675 * on the first call to _commit_entry(); so it's wise 676 * to double check and ensure we actually are starting 677 * with empty lists. 678 */ 679 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i])); 680 } 681 682 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 683 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 684 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping); 685 if (prev_obsolete_sm != NULL) { 686 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping, 687 counts, prev_obsolete_sm); 688 } 689 space_map_close(prev_obsolete_sm); 690 691 /* 692 * Generate new mapping. Determine what index to continue from 693 * based on the max offset that we've already written in the 694 * new mapping. 695 */ 696 uint64_t max_offset = 697 vdev_indirect_mapping_max_offset(sci->sci_new_mapping); 698 if (max_offset == 0) { 699 /* We haven't written anything to the new mapping yet. */ 700 start_index = 0; 701 } else { 702 /* 703 * Pick up from where we left off. _entry_for_offset() 704 * returns a pointer into the vim_entries array. If 705 * max_offset is greater than any of the mappings 706 * contained in the table NULL will be returned and 707 * that indicates we've exhausted our iteration of the 708 * old_mapping. 709 */ 710 711 vdev_indirect_mapping_entry_phys_t *entry = 712 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping, 713 max_offset); 714 715 if (entry == NULL) { 716 /* 717 * We've already written the whole new mapping. 718 * This special value will cause us to skip the 719 * generate_new_mapping step and just do the sync 720 * task to complete the condense. 721 */ 722 start_index = UINT64_MAX; 723 } else { 724 start_index = entry - old_mapping->vim_entries; 725 ASSERT3U(start_index, <, 726 vdev_indirect_mapping_num_entries(old_mapping)); 727 } 728 } 729 730 spa_condense_indirect_generate_new_mapping(vd, counts, 731 start_index, zthr); 732 733 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts); 734 735 /* 736 * If the zthr has received a cancellation signal while running 737 * in generate_new_mapping() or at any point after that, then bail 738 * early. We don't want to complete the condense if the spa is 739 * shutting down. 740 */ 741 if (zthr_iscancelled(zthr)) 742 return; 743 744 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 745 spa_condense_indirect_complete_sync, sci, 0, 746 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 747 } 748 749 /* 750 * Sync task to begin the condensing process. 751 */ 752 void 753 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx) 754 { 755 spa_t *spa = vd->vdev_spa; 756 spa_condensing_indirect_phys_t *scip = 757 &spa->spa_condensing_indirect_phys; 758 759 ASSERT0(scip->scip_next_mapping_object); 760 ASSERT0(scip->scip_prev_obsolete_sm_object); 761 ASSERT0(scip->scip_vdev); 762 ASSERT(dmu_tx_is_syncing(tx)); 763 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 764 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS)); 765 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping)); 766 767 uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd); 768 ASSERT(obsolete_sm_obj != 0); 769 770 scip->scip_vdev = vd->vdev_id; 771 scip->scip_next_mapping_object = 772 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx); 773 774 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj; 775 776 /* 777 * We don't need to allocate a new space map object, since 778 * vdev_indirect_sync_obsolete will allocate one when needed. 779 */ 780 space_map_close(vd->vdev_obsolete_sm); 781 vd->vdev_obsolete_sm = NULL; 782 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 783 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 784 785 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset, 786 DMU_POOL_DIRECTORY_OBJECT, 787 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t), 788 sizeof (*scip) / sizeof (uint64_t), scip, tx)); 789 790 ASSERT3P(spa->spa_condensing_indirect, ==, NULL); 791 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa); 792 793 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: " 794 "posm=%llu nm=%llu", 795 vd->vdev_id, dmu_tx_get_txg(tx), 796 (u_longlong_t)scip->scip_prev_obsolete_sm_object, 797 (u_longlong_t)scip->scip_next_mapping_object); 798 799 zthr_wakeup(spa->spa_condense_zthr); 800 } 801 802 /* 803 * Sync to the given vdev's obsolete space map any segments that are no longer 804 * referenced as of the given txg. 805 * 806 * If the obsolete space map doesn't exist yet, create and open it. 807 */ 808 void 809 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx) 810 { 811 spa_t *spa = vd->vdev_spa; 812 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 813 814 ASSERT3U(vic->vic_mapping_object, !=, 0); 815 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0); 816 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); 817 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)); 818 819 if (vdev_obsolete_sm_object(vd) == 0) { 820 uint64_t obsolete_sm_object = 821 space_map_alloc(spa->spa_meta_objset, 822 zfs_vdev_standard_sm_blksz, tx); 823 824 ASSERT(vd->vdev_top_zap != 0); 825 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 826 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, 827 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx)); 828 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0); 829 830 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 831 VERIFY0(space_map_open(&vd->vdev_obsolete_sm, 832 spa->spa_meta_objset, obsolete_sm_object, 833 0, vd->vdev_asize, 0)); 834 } 835 836 ASSERT(vd->vdev_obsolete_sm != NULL); 837 ASSERT3U(vdev_obsolete_sm_object(vd), ==, 838 space_map_object(vd->vdev_obsolete_sm)); 839 840 space_map_write(vd->vdev_obsolete_sm, 841 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx); 842 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 843 } 844 845 int 846 spa_condense_init(spa_t *spa) 847 { 848 int error = zap_lookup(spa->spa_meta_objset, 849 DMU_POOL_DIRECTORY_OBJECT, 850 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t), 851 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t), 852 &spa->spa_condensing_indirect_phys); 853 if (error == 0) { 854 if (spa_writeable(spa)) { 855 spa->spa_condensing_indirect = 856 spa_condensing_indirect_create(spa); 857 } 858 return (0); 859 } else if (error == ENOENT) { 860 return (0); 861 } else { 862 return (error); 863 } 864 } 865 866 void 867 spa_condense_fini(spa_t *spa) 868 { 869 if (spa->spa_condensing_indirect != NULL) { 870 spa_condensing_indirect_destroy(spa->spa_condensing_indirect); 871 spa->spa_condensing_indirect = NULL; 872 } 873 } 874 875 void 876 spa_start_indirect_condensing_thread(spa_t *spa) 877 { 878 ASSERT3P(spa->spa_condense_zthr, ==, NULL); 879 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check, 880 spa_condense_indirect_thread, spa); 881 } 882 883 /* 884 * Gets the obsolete spacemap object from the vdev's ZAP. 885 * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't 886 * exist yet. 887 */ 888 int 889 vdev_obsolete_sm_object(vdev_t *vd) 890 { 891 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 892 if (vd->vdev_top_zap == 0) { 893 return (0); 894 } 895 896 uint64_t sm_obj = 0; 897 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 898 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj); 899 900 ASSERT(err == 0 || err == ENOENT); 901 902 return (sm_obj); 903 } 904 905 boolean_t 906 vdev_obsolete_counts_are_precise(vdev_t *vd) 907 { 908 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 909 if (vd->vdev_top_zap == 0) { 910 return (B_FALSE); 911 } 912 913 uint64_t val = 0; 914 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 915 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val); 916 917 ASSERT(err == 0 || err == ENOENT); 918 919 return (val != 0); 920 } 921 922 /* ARGSUSED */ 923 static void 924 vdev_indirect_close(vdev_t *vd) 925 { 926 } 927 928 /* ARGSUSED */ 929 static int 930 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 931 uint64_t *ashift) 932 { 933 *psize = *max_psize = vd->vdev_asize + 934 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 935 *ashift = vd->vdev_ashift; 936 return (0); 937 } 938 939 typedef struct remap_segment { 940 vdev_t *rs_vd; 941 uint64_t rs_offset; 942 uint64_t rs_asize; 943 uint64_t rs_split_offset; 944 list_node_t rs_node; 945 } remap_segment_t; 946 947 remap_segment_t * 948 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 949 { 950 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP); 951 rs->rs_vd = vd; 952 rs->rs_offset = offset; 953 rs->rs_asize = asize; 954 rs->rs_split_offset = split_offset; 955 return (rs); 956 } 957 958 /* 959 * Given an indirect vdev and an extent on that vdev, it duplicates the 960 * physical entries of the indirect mapping that correspond to the extent 961 * to a new array and returns a pointer to it. In addition, copied_entries 962 * is populated with the number of mapping entries that were duplicated. 963 * 964 * Note that the function assumes that the caller holds vdev_indirect_rwlock. 965 * This ensures that the mapping won't change due to condensing as we 966 * copy over its contents. 967 * 968 * Finally, since we are doing an allocation, it is up to the caller to 969 * free the array allocated in this function. 970 */ 971 vdev_indirect_mapping_entry_phys_t * 972 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 973 uint64_t asize, uint64_t *copied_entries) 974 { 975 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 976 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 977 uint64_t entries = 0; 978 979 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock)); 980 981 vdev_indirect_mapping_entry_phys_t *first_mapping = 982 vdev_indirect_mapping_entry_for_offset(vim, offset); 983 ASSERT3P(first_mapping, !=, NULL); 984 985 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 986 while (asize > 0) { 987 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 988 989 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m)); 990 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size); 991 992 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 993 uint64_t inner_size = MIN(asize, size - inner_offset); 994 995 offset += inner_size; 996 asize -= inner_size; 997 entries++; 998 m++; 999 } 1000 1001 size_t copy_length = entries * sizeof (*first_mapping); 1002 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP); 1003 bcopy(first_mapping, duplicate_mappings, copy_length); 1004 *copied_entries = entries; 1005 1006 return (duplicate_mappings); 1007 } 1008 1009 /* 1010 * Goes through the relevant indirect mappings until it hits a concrete vdev 1011 * and issues the callback. On the way to the concrete vdev, if any other 1012 * indirect vdevs are encountered, then the callback will also be called on 1013 * each of those indirect vdevs. For example, if the segment is mapped to 1014 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is 1015 * mapped to segment B on concrete vdev 2, then the callback will be called on 1016 * both vdev 1 and vdev 2. 1017 * 1018 * While the callback passed to vdev_indirect_remap() is called on every vdev 1019 * the function encounters, certain callbacks only care about concrete vdevs. 1020 * These types of callbacks should return immediately and explicitly when they 1021 * are called on an indirect vdev. 1022 * 1023 * Because there is a possibility that a DVA section in the indirect device 1024 * has been split into multiple sections in our mapping, we keep track 1025 * of the relevant contiguous segments of the new location (remap_segment_t) 1026 * in a stack. This way we can call the callback for each of the new sections 1027 * created by a single section of the indirect device. Note though, that in 1028 * this scenario the callbacks in each split block won't occur in-order in 1029 * terms of offset, so callers should not make any assumptions about that. 1030 * 1031 * For callbacks that don't handle split blocks and immediately return when 1032 * they encounter them (as is the case for remap_blkptr_cb), the caller can 1033 * assume that its callback will be applied from the first indirect vdev 1034 * encountered to the last one and then the concrete vdev, in that order. 1035 */ 1036 static void 1037 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, 1038 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg) 1039 { 1040 list_t stack; 1041 spa_t *spa = vd->vdev_spa; 1042 1043 list_create(&stack, sizeof (remap_segment_t), 1044 offsetof(remap_segment_t, rs_node)); 1045 1046 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0); 1047 rs != NULL; rs = list_remove_head(&stack)) { 1048 vdev_t *v = rs->rs_vd; 1049 uint64_t num_entries = 0; 1050 1051 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1052 ASSERT(rs->rs_asize > 0); 1053 1054 /* 1055 * Note: As this function can be called from open context 1056 * (e.g. zio_read()), we need the following rwlock to 1057 * prevent the mapping from being changed by condensing. 1058 * 1059 * So we grab the lock and we make a copy of the entries 1060 * that are relevant to the extent that we are working on. 1061 * Once that is done, we drop the lock and iterate over 1062 * our copy of the mapping. Once we are done with the with 1063 * the remap segment and we free it, we also free our copy 1064 * of the indirect mapping entries that are relevant to it. 1065 * 1066 * This way we don't need to wait until the function is 1067 * finished with a segment, to condense it. In addition, we 1068 * don't need a recursive rwlock for the case that a call to 1069 * vdev_indirect_remap() needs to call itself (through the 1070 * codepath of its callback) for the same vdev in the middle 1071 * of its execution. 1072 */ 1073 rw_enter(&v->vdev_indirect_rwlock, RW_READER); 1074 vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping; 1075 ASSERT3P(vim, !=, NULL); 1076 1077 vdev_indirect_mapping_entry_phys_t *mapping = 1078 vdev_indirect_mapping_duplicate_adjacent_entries(v, 1079 rs->rs_offset, rs->rs_asize, &num_entries); 1080 ASSERT3P(mapping, !=, NULL); 1081 ASSERT3U(num_entries, >, 0); 1082 rw_exit(&v->vdev_indirect_rwlock); 1083 1084 for (uint64_t i = 0; i < num_entries; i++) { 1085 /* 1086 * Note: the vdev_indirect_mapping can not change 1087 * while we are running. It only changes while the 1088 * removal is in progress, and then only from syncing 1089 * context. While a removal is in progress, this 1090 * function is only called for frees, which also only 1091 * happen from syncing context. 1092 */ 1093 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 1094 1095 ASSERT3P(m, !=, NULL); 1096 ASSERT3U(rs->rs_asize, >, 0); 1097 1098 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 1099 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 1100 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 1101 1102 ASSERT3U(rs->rs_offset, >=, 1103 DVA_MAPPING_GET_SRC_OFFSET(m)); 1104 ASSERT3U(rs->rs_offset, <, 1105 DVA_MAPPING_GET_SRC_OFFSET(m) + size); 1106 ASSERT3U(dst_vdev, !=, v->vdev_id); 1107 1108 uint64_t inner_offset = rs->rs_offset - 1109 DVA_MAPPING_GET_SRC_OFFSET(m); 1110 uint64_t inner_size = 1111 MIN(rs->rs_asize, size - inner_offset); 1112 1113 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 1114 ASSERT3P(dst_v, !=, NULL); 1115 1116 if (dst_v->vdev_ops == &vdev_indirect_ops) { 1117 list_insert_head(&stack, 1118 rs_alloc(dst_v, dst_offset + inner_offset, 1119 inner_size, rs->rs_split_offset)); 1120 1121 } 1122 1123 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) && 1124 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) { 1125 /* 1126 * Note: This clause exists only solely for 1127 * testing purposes. We use it to ensure that 1128 * split blocks work and that the callbacks 1129 * using them yield the same result if issued 1130 * in reverse order. 1131 */ 1132 uint64_t inner_half = inner_size / 2; 1133 1134 func(rs->rs_split_offset + inner_half, dst_v, 1135 dst_offset + inner_offset + inner_half, 1136 inner_half, arg); 1137 1138 func(rs->rs_split_offset, dst_v, 1139 dst_offset + inner_offset, 1140 inner_half, arg); 1141 } else { 1142 func(rs->rs_split_offset, dst_v, 1143 dst_offset + inner_offset, 1144 inner_size, arg); 1145 } 1146 1147 rs->rs_offset += inner_size; 1148 rs->rs_asize -= inner_size; 1149 rs->rs_split_offset += inner_size; 1150 } 1151 VERIFY0(rs->rs_asize); 1152 1153 kmem_free(mapping, num_entries * sizeof (*mapping)); 1154 kmem_free(rs, sizeof (remap_segment_t)); 1155 } 1156 list_destroy(&stack); 1157 } 1158 1159 static void 1160 vdev_indirect_child_io_done(zio_t *zio) 1161 { 1162 zio_t *pio = zio->io_private; 1163 1164 mutex_enter(&pio->io_lock); 1165 pio->io_error = zio_worst_error(pio->io_error, zio->io_error); 1166 mutex_exit(&pio->io_lock); 1167 1168 abd_put(zio->io_abd); 1169 } 1170 1171 /* 1172 * This is a callback for vdev_indirect_remap() which allocates an 1173 * indirect_split_t for each split segment and adds it to iv_splits. 1174 */ 1175 static void 1176 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 1177 uint64_t size, void *arg) 1178 { 1179 zio_t *zio = arg; 1180 indirect_vsd_t *iv = zio->io_vsd; 1181 1182 ASSERT3P(vd, !=, NULL); 1183 1184 if (vd->vdev_ops == &vdev_indirect_ops) 1185 return; 1186 1187 int n = 1; 1188 if (vd->vdev_ops == &vdev_mirror_ops) 1189 n = vd->vdev_children; 1190 1191 indirect_split_t *is = 1192 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP); 1193 1194 is->is_children = n; 1195 is->is_size = size; 1196 is->is_split_offset = split_offset; 1197 is->is_target_offset = offset; 1198 is->is_vdev = vd; 1199 list_create(&is->is_unique_child, sizeof (indirect_child_t), 1200 offsetof(indirect_child_t, ic_node)); 1201 1202 /* 1203 * Note that we only consider multiple copies of the data for 1204 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 1205 * though they use the same ops as mirror, because there's only one 1206 * "good" copy under the replacing/spare. 1207 */ 1208 if (vd->vdev_ops == &vdev_mirror_ops) { 1209 for (int i = 0; i < n; i++) { 1210 is->is_child[i].ic_vdev = vd->vdev_child[i]; 1211 list_link_init(&is->is_child[i].ic_node); 1212 } 1213 } else { 1214 is->is_child[0].ic_vdev = vd; 1215 } 1216 1217 list_insert_tail(&iv->iv_splits, is); 1218 } 1219 1220 static void 1221 vdev_indirect_read_split_done(zio_t *zio) 1222 { 1223 indirect_child_t *ic = zio->io_private; 1224 1225 if (zio->io_error != 0) { 1226 /* 1227 * Clear ic_data to indicate that we do not have data for this 1228 * child. 1229 */ 1230 abd_free(ic->ic_data); 1231 ic->ic_data = NULL; 1232 } 1233 } 1234 1235 /* 1236 * Issue reads for all copies (mirror children) of all splits. 1237 */ 1238 static void 1239 vdev_indirect_read_all(zio_t *zio) 1240 { 1241 indirect_vsd_t *iv = zio->io_vsd; 1242 1243 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1244 1245 for (indirect_split_t *is = list_head(&iv->iv_splits); 1246 is != NULL; is = list_next(&iv->iv_splits, is)) { 1247 for (int i = 0; i < is->is_children; i++) { 1248 indirect_child_t *ic = &is->is_child[i]; 1249 1250 if (!vdev_readable(ic->ic_vdev)) 1251 continue; 1252 1253 /* 1254 * Note, we may read from a child whose DTL 1255 * indicates that the data may not be present here. 1256 * While this might result in a few i/os that will 1257 * likely return incorrect data, it simplifies the 1258 * code since we can treat scrub and resilver 1259 * identically. (The incorrect data will be 1260 * detected and ignored when we verify the 1261 * checksum.) 1262 */ 1263 1264 ic->ic_data = abd_alloc_sametype(zio->io_abd, 1265 is->is_size); 1266 ic->ic_duplicate = NULL; 1267 1268 zio_nowait(zio_vdev_child_io(zio, NULL, 1269 ic->ic_vdev, is->is_target_offset, ic->ic_data, 1270 is->is_size, zio->io_type, zio->io_priority, 0, 1271 vdev_indirect_read_split_done, ic)); 1272 } 1273 } 1274 iv->iv_reconstruct = B_TRUE; 1275 } 1276 1277 static void 1278 vdev_indirect_io_start(zio_t *zio) 1279 { 1280 spa_t *spa = zio->io_spa; 1281 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP); 1282 list_create(&iv->iv_splits, 1283 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 1284 1285 zio->io_vsd = iv; 1286 zio->io_vsd_ops = &vdev_indirect_vsd_ops; 1287 1288 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1289 if (zio->io_type != ZIO_TYPE_READ) { 1290 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 1291 /* 1292 * Note: this code can handle other kinds of writes, 1293 * but we don't expect them. 1294 */ 1295 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL | 1296 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0); 1297 } 1298 1299 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size, 1300 vdev_indirect_gather_splits, zio); 1301 1302 indirect_split_t *first = list_head(&iv->iv_splits); 1303 if (first->is_size == zio->io_size) { 1304 /* 1305 * This is not a split block; we are pointing to the entire 1306 * data, which will checksum the same as the original data. 1307 * Pass the BP down so that the child i/o can verify the 1308 * checksum, and try a different location if available 1309 * (e.g. on a mirror). 1310 * 1311 * While this special case could be handled the same as the 1312 * general (split block) case, doing it this way ensures 1313 * that the vast majority of blocks on indirect vdevs 1314 * (which are not split) are handled identically to blocks 1315 * on non-indirect vdevs. This allows us to be less strict 1316 * about performance in the general (but rare) case. 1317 */ 1318 ASSERT0(first->is_split_offset); 1319 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL); 1320 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 1321 first->is_vdev, first->is_target_offset, 1322 abd_get_offset(zio->io_abd, 0), 1323 zio->io_size, zio->io_type, zio->io_priority, 0, 1324 vdev_indirect_child_io_done, zio)); 1325 } else { 1326 iv->iv_split_block = B_TRUE; 1327 if (zio->io_type == ZIO_TYPE_READ && 1328 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) { 1329 /* 1330 * Read all copies. Note that for simplicity, 1331 * we don't bother consulting the DTL in the 1332 * resilver case. 1333 */ 1334 vdev_indirect_read_all(zio); 1335 } else { 1336 /* 1337 * If this is a read zio, we read one copy of each 1338 * split segment, from the top-level vdev. Since 1339 * we don't know the checksum of each split 1340 * individually, the child zio can't ensure that 1341 * we get the right data. E.g. if it's a mirror, 1342 * it will just read from a random (healthy) leaf 1343 * vdev. We have to verify the checksum in 1344 * vdev_indirect_io_done(). 1345 * 1346 * For write zios, the vdev code will ensure we write 1347 * to all children. 1348 */ 1349 for (indirect_split_t *is = list_head(&iv->iv_splits); 1350 is != NULL; is = list_next(&iv->iv_splits, is)) { 1351 zio_nowait(zio_vdev_child_io(zio, NULL, 1352 is->is_vdev, is->is_target_offset, 1353 abd_get_offset(zio->io_abd, 1354 is->is_split_offset), 1355 is->is_size, zio->io_type, 1356 zio->io_priority, 0, 1357 vdev_indirect_child_io_done, zio)); 1358 } 1359 } 1360 } 1361 1362 zio_execute(zio); 1363 } 1364 1365 /* 1366 * Report a checksum error for a child. 1367 */ 1368 static void 1369 vdev_indirect_checksum_error(zio_t *zio, 1370 indirect_split_t *is, indirect_child_t *ic) 1371 { 1372 vdev_t *vd = ic->ic_vdev; 1373 1374 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 1375 return; 1376 1377 mutex_enter(&vd->vdev_stat_lock); 1378 vd->vdev_stat.vs_checksum_errors++; 1379 mutex_exit(&vd->vdev_stat_lock); 1380 1381 zio_bad_cksum_t zbc = { 0 }; 1382 void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size); 1383 abd_t *good_abd = is->is_good_child->ic_data; 1384 void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size); 1385 (void) zfs_ereport_post_checksum(zio->io_spa, vd, &zio->io_bookmark, 1386 zio, is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc); 1387 abd_return_buf(ic->ic_data, bad_buf, is->is_size); 1388 abd_return_buf(good_abd, good_buf, is->is_size); 1389 } 1390 1391 /* 1392 * Issue repair i/os for any incorrect copies. We do this by comparing 1393 * each split segment's correct data (is_good_child's ic_data) with each 1394 * other copy of the data. If they differ, then we overwrite the bad data 1395 * with the good copy. Note that we do this without regard for the DTL's, 1396 * which simplifies this code and also issues the optimal number of writes 1397 * (based on which copies actually read bad data, as opposed to which we 1398 * think might be wrong). For the same reason, we always use 1399 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start(). 1400 */ 1401 static void 1402 vdev_indirect_repair(zio_t *zio) 1403 { 1404 indirect_vsd_t *iv = zio->io_vsd; 1405 1406 enum zio_flag flags = ZIO_FLAG_IO_REPAIR; 1407 1408 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) 1409 flags |= ZIO_FLAG_SELF_HEAL; 1410 1411 if (!spa_writeable(zio->io_spa)) 1412 return; 1413 1414 for (indirect_split_t *is = list_head(&iv->iv_splits); 1415 is != NULL; is = list_next(&iv->iv_splits, is)) { 1416 for (int c = 0; c < is->is_children; c++) { 1417 indirect_child_t *ic = &is->is_child[c]; 1418 if (ic == is->is_good_child) 1419 continue; 1420 if (ic->ic_data == NULL) 1421 continue; 1422 if (ic->ic_duplicate == is->is_good_child) 1423 continue; 1424 1425 zio_nowait(zio_vdev_child_io(zio, NULL, 1426 ic->ic_vdev, is->is_target_offset, 1427 is->is_good_child->ic_data, is->is_size, 1428 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 1429 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL, 1430 NULL, NULL)); 1431 1432 vdev_indirect_checksum_error(zio, is, ic); 1433 } 1434 } 1435 } 1436 1437 /* 1438 * Report checksum errors on all children that we read from. 1439 */ 1440 static void 1441 vdev_indirect_all_checksum_errors(zio_t *zio) 1442 { 1443 indirect_vsd_t *iv = zio->io_vsd; 1444 1445 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 1446 return; 1447 1448 for (indirect_split_t *is = list_head(&iv->iv_splits); 1449 is != NULL; is = list_next(&iv->iv_splits, is)) { 1450 for (int c = 0; c < is->is_children; c++) { 1451 indirect_child_t *ic = &is->is_child[c]; 1452 1453 if (ic->ic_data == NULL) 1454 continue; 1455 1456 vdev_t *vd = ic->ic_vdev; 1457 1458 mutex_enter(&vd->vdev_stat_lock); 1459 vd->vdev_stat.vs_checksum_errors++; 1460 mutex_exit(&vd->vdev_stat_lock); 1461 1462 (void) zfs_ereport_post_checksum(zio->io_spa, vd, 1463 &zio->io_bookmark, zio, is->is_target_offset, 1464 is->is_size, NULL, NULL, NULL); 1465 } 1466 } 1467 } 1468 1469 /* 1470 * Copy data from all the splits to a main zio then validate the checksum. 1471 * If then checksum is successfully validated return success. 1472 */ 1473 static int 1474 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio) 1475 { 1476 zio_bad_cksum_t zbc; 1477 1478 for (indirect_split_t *is = list_head(&iv->iv_splits); 1479 is != NULL; is = list_next(&iv->iv_splits, is)) { 1480 1481 ASSERT3P(is->is_good_child->ic_data, !=, NULL); 1482 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL); 1483 1484 abd_copy_off(zio->io_abd, is->is_good_child->ic_data, 1485 is->is_split_offset, 0, is->is_size); 1486 } 1487 1488 return (zio_checksum_error(zio, &zbc)); 1489 } 1490 1491 /* 1492 * There are relatively few possible combinations making it feasible to 1493 * deterministically check them all. We do this by setting the good_child 1494 * to the next unique split version. If we reach the end of the list then 1495 * "carry over" to the next unique split version (like counting in base 1496 * is_unique_children, but each digit can have a different base). 1497 */ 1498 static int 1499 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio) 1500 { 1501 boolean_t more = B_TRUE; 1502 1503 iv->iv_attempts = 0; 1504 1505 for (indirect_split_t *is = list_head(&iv->iv_splits); 1506 is != NULL; is = list_next(&iv->iv_splits, is)) 1507 is->is_good_child = list_head(&is->is_unique_child); 1508 1509 while (more == B_TRUE) { 1510 iv->iv_attempts++; 1511 more = B_FALSE; 1512 1513 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0) 1514 return (0); 1515 1516 for (indirect_split_t *is = list_head(&iv->iv_splits); 1517 is != NULL; is = list_next(&iv->iv_splits, is)) { 1518 is->is_good_child = list_next(&is->is_unique_child, 1519 is->is_good_child); 1520 if (is->is_good_child != NULL) { 1521 more = B_TRUE; 1522 break; 1523 } 1524 1525 is->is_good_child = list_head(&is->is_unique_child); 1526 } 1527 } 1528 1529 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations); 1530 1531 return (SET_ERROR(ECKSUM)); 1532 } 1533 1534 /* 1535 * There are too many combinations to try all of them in a reasonable amount 1536 * of time. So try a fixed number of random combinations from the unique 1537 * split versions, after which we'll consider the block unrecoverable. 1538 */ 1539 static int 1540 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio) 1541 { 1542 iv->iv_attempts = 0; 1543 1544 while (iv->iv_attempts < iv->iv_attempts_max) { 1545 iv->iv_attempts++; 1546 1547 for (indirect_split_t *is = list_head(&iv->iv_splits); 1548 is != NULL; is = list_next(&iv->iv_splits, is)) { 1549 indirect_child_t *ic = list_head(&is->is_unique_child); 1550 int children = is->is_unique_children; 1551 1552 for (int i = spa_get_random(children); i > 0; i--) 1553 ic = list_next(&is->is_unique_child, ic); 1554 1555 ASSERT3P(ic, !=, NULL); 1556 is->is_good_child = ic; 1557 } 1558 1559 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0) 1560 return (0); 1561 } 1562 1563 return (SET_ERROR(ECKSUM)); 1564 } 1565 1566 /* 1567 * This is a validation function for reconstruction. It randomly selects 1568 * a good combination, if one can be found, and then it intentionally 1569 * damages all other segment copes by zeroing them. This forces the 1570 * reconstruction algorithm to locate the one remaining known good copy. 1571 */ 1572 static int 1573 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio) 1574 { 1575 /* Presume all the copies are unique for initial selection. */ 1576 for (indirect_split_t *is = list_head(&iv->iv_splits); 1577 is != NULL; is = list_next(&iv->iv_splits, is)) { 1578 is->is_unique_children = 0; 1579 1580 for (int i = 0; i < is->is_children; i++) { 1581 indirect_child_t *ic = &is->is_child[i]; 1582 if (ic->ic_data != NULL) { 1583 is->is_unique_children++; 1584 list_insert_tail(&is->is_unique_child, ic); 1585 } 1586 } 1587 } 1588 1589 /* 1590 * Set each is_good_child to a randomly-selected child which 1591 * is known to contain validated data. 1592 */ 1593 int error = vdev_indirect_splits_enumerate_randomly(iv, zio); 1594 if (error) 1595 goto out; 1596 1597 /* 1598 * Damage all but the known good copy by zeroing it. This will 1599 * result in two or less unique copies per indirect_child_t. 1600 * Both may need to be checked in order to reconstruct the block. 1601 * Set iv->iv_attempts_max such that all unique combinations will 1602 * enumerated, but limit the damage to at most 16 indirect splits. 1603 */ 1604 iv->iv_attempts_max = 1; 1605 1606 for (indirect_split_t *is = list_head(&iv->iv_splits); 1607 is != NULL; is = list_next(&iv->iv_splits, is)) { 1608 for (int c = 0; c < is->is_children; c++) { 1609 indirect_child_t *ic = &is->is_child[c]; 1610 1611 if (ic == is->is_good_child) 1612 continue; 1613 if (ic->ic_data == NULL) 1614 continue; 1615 1616 abd_zero(ic->ic_data, ic->ic_data->abd_size); 1617 } 1618 1619 iv->iv_attempts_max *= 2; 1620 if (iv->iv_attempts_max > (1ULL << 16)) { 1621 iv->iv_attempts_max = UINT64_MAX; 1622 break; 1623 } 1624 } 1625 1626 out: 1627 /* Empty the unique children lists so they can be reconstructed. */ 1628 for (indirect_split_t *is = list_head(&iv->iv_splits); 1629 is != NULL; is = list_next(&iv->iv_splits, is)) { 1630 indirect_child_t *ic; 1631 while ((ic = list_head(&is->is_unique_child)) != NULL) 1632 list_remove(&is->is_unique_child, ic); 1633 1634 is->is_unique_children = 0; 1635 } 1636 1637 return (error); 1638 } 1639 1640 /* 1641 * This function is called when we have read all copies of the data and need 1642 * to try to find a combination of copies that gives us the right checksum. 1643 * 1644 * If we pointed to any mirror vdevs, this effectively does the job of the 1645 * mirror. The mirror vdev code can't do its own job because we don't know 1646 * the checksum of each split segment individually. 1647 * 1648 * We have to try every unique combination of copies of split segments, until 1649 * we find one that checksums correctly. Duplicate segment copies are first 1650 * identified and latter skipped during reconstruction. This optimization 1651 * reduces the search space and ensures that of the remaining combinations 1652 * at most one is correct. 1653 * 1654 * When the total number of combinations is small they can all be checked. 1655 * For example, if we have 3 segments in the split, and each points to a 1656 * 2-way mirror with unique copies, we will have the following pieces of data: 1657 * 1658 * | mirror child 1659 * split | [0] [1] 1660 * ======|===================== 1661 * A | data_A_0 data_A_1 1662 * B | data_B_0 data_B_1 1663 * C | data_C_0 data_C_1 1664 * 1665 * We will try the following (mirror children)^(number of splits) (2^3=8) 1666 * combinations, which is similar to bitwise-little-endian counting in 1667 * binary. In general each "digit" corresponds to a split segment, and the 1668 * base of each digit is is_children, which can be different for each 1669 * digit. 1670 * 1671 * "low bit" "high bit" 1672 * v v 1673 * data_A_0 data_B_0 data_C_0 1674 * data_A_1 data_B_0 data_C_0 1675 * data_A_0 data_B_1 data_C_0 1676 * data_A_1 data_B_1 data_C_0 1677 * data_A_0 data_B_0 data_C_1 1678 * data_A_1 data_B_0 data_C_1 1679 * data_A_0 data_B_1 data_C_1 1680 * data_A_1 data_B_1 data_C_1 1681 * 1682 * Note that the split segments may be on the same or different top-level 1683 * vdevs. In either case, we may need to try lots of combinations (see 1684 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror 1685 * has small silent errors on all of its children, we can still reconstruct 1686 * the correct data, as long as those errors are at sufficiently-separated 1687 * offsets (specifically, separated by the largest block size - default of 1688 * 128KB, but up to 16MB). 1689 */ 1690 static void 1691 vdev_indirect_reconstruct_io_done(zio_t *zio) 1692 { 1693 indirect_vsd_t *iv = zio->io_vsd; 1694 boolean_t known_good = B_FALSE; 1695 int error; 1696 1697 iv->iv_unique_combinations = 1; 1698 iv->iv_attempts_max = UINT64_MAX; 1699 1700 if (zfs_reconstruct_indirect_combinations_max > 0) 1701 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max; 1702 1703 /* 1704 * If nonzero, every 1/x blocks will be damaged, in order to validate 1705 * reconstruction when there are split segments with damaged copies. 1706 * Known_good will TRUE when reconstruction is known to be possible. 1707 */ 1708 if (zfs_reconstruct_indirect_damage_fraction != 0 && 1709 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0) 1710 known_good = (vdev_indirect_splits_damage(iv, zio) == 0); 1711 1712 /* 1713 * Determine the unique children for a split segment and add them 1714 * to the is_unique_child list. By restricting reconstruction 1715 * to these children, only unique combinations will be considered. 1716 * This can vastly reduce the search space when there are a large 1717 * number of indirect splits. 1718 */ 1719 for (indirect_split_t *is = list_head(&iv->iv_splits); 1720 is != NULL; is = list_next(&iv->iv_splits, is)) { 1721 is->is_unique_children = 0; 1722 1723 for (int i = 0; i < is->is_children; i++) { 1724 indirect_child_t *ic_i = &is->is_child[i]; 1725 1726 if (ic_i->ic_data == NULL || 1727 ic_i->ic_duplicate != NULL) 1728 continue; 1729 1730 for (int j = i + 1; j < is->is_children; j++) { 1731 indirect_child_t *ic_j = &is->is_child[j]; 1732 1733 if (ic_j->ic_data == NULL || 1734 ic_j->ic_duplicate != NULL) 1735 continue; 1736 1737 if (abd_cmp(ic_i->ic_data, ic_j->ic_data, 1738 is->is_size) == 0) { 1739 ic_j->ic_duplicate = ic_i; 1740 } 1741 } 1742 1743 is->is_unique_children++; 1744 list_insert_tail(&is->is_unique_child, ic_i); 1745 } 1746 1747 /* Reconstruction is impossible, no valid children */ 1748 EQUIV(list_is_empty(&is->is_unique_child), 1749 is->is_unique_children == 0); 1750 if (list_is_empty(&is->is_unique_child)) { 1751 zio->io_error = EIO; 1752 vdev_indirect_all_checksum_errors(zio); 1753 zio_checksum_verified(zio); 1754 return; 1755 } 1756 1757 iv->iv_unique_combinations *= is->is_unique_children; 1758 } 1759 1760 if (iv->iv_unique_combinations <= iv->iv_attempts_max) 1761 error = vdev_indirect_splits_enumerate_all(iv, zio); 1762 else 1763 error = vdev_indirect_splits_enumerate_randomly(iv, zio); 1764 1765 if (error != 0) { 1766 /* All attempted combinations failed. */ 1767 ASSERT3B(known_good, ==, B_FALSE); 1768 zio->io_error = error; 1769 vdev_indirect_all_checksum_errors(zio); 1770 } else { 1771 /* 1772 * The checksum has been successfully validated. Issue 1773 * repair I/Os to any copies of splits which don't match 1774 * the validated version. 1775 */ 1776 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio)); 1777 vdev_indirect_repair(zio); 1778 zio_checksum_verified(zio); 1779 } 1780 } 1781 1782 static void 1783 vdev_indirect_io_done(zio_t *zio) 1784 { 1785 indirect_vsd_t *iv = zio->io_vsd; 1786 1787 if (iv->iv_reconstruct) { 1788 /* 1789 * We have read all copies of the data (e.g. from mirrors), 1790 * either because this was a scrub/resilver, or because the 1791 * one-copy read didn't checksum correctly. 1792 */ 1793 vdev_indirect_reconstruct_io_done(zio); 1794 return; 1795 } 1796 1797 if (!iv->iv_split_block) { 1798 /* 1799 * This was not a split block, so we passed the BP down, 1800 * and the checksum was handled by the (one) child zio. 1801 */ 1802 return; 1803 } 1804 1805 zio_bad_cksum_t zbc; 1806 int ret = zio_checksum_error(zio, &zbc); 1807 if (ret == 0) { 1808 zio_checksum_verified(zio); 1809 return; 1810 } 1811 1812 /* 1813 * The checksum didn't match. Read all copies of all splits, and 1814 * then we will try to reconstruct. The next time 1815 * vdev_indirect_io_done() is called, iv_reconstruct will be set. 1816 */ 1817 vdev_indirect_read_all(zio); 1818 1819 zio_vdev_io_redone(zio); 1820 } 1821 1822 vdev_ops_t vdev_indirect_ops = { 1823 .vdev_op_open = vdev_indirect_open, 1824 .vdev_op_close = vdev_indirect_close, 1825 .vdev_op_asize = vdev_default_asize, 1826 .vdev_op_io_start = vdev_indirect_io_start, 1827 .vdev_op_io_done = vdev_indirect_io_done, 1828 .vdev_op_state_change = NULL, 1829 .vdev_op_need_resilver = NULL, 1830 .vdev_op_hold = NULL, 1831 .vdev_op_rele = NULL, 1832 .vdev_op_remap = vdev_indirect_remap, 1833 .vdev_op_xlate = NULL, 1834 .vdev_op_dumpio = NULL, 1835 .vdev_op_type = VDEV_TYPE_INDIRECT, /* name of this vdev type */ 1836 .vdev_op_leaf = B_FALSE /* leaf vdev */ 1837 }; 1838