xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_indirect.c (revision 6f459ff5b49a8482416f3eab8866c784121ecae3)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
18  */
19 
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/metaslab.h>
27 #include <sys/refcount.h>
28 #include <sys/dmu.h>
29 #include <sys/vdev_indirect_mapping.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 
34 /*
35  * An indirect vdev corresponds to a vdev that has been removed.  Since
36  * we cannot rewrite block pointers of snapshots, etc., we keep a
37  * mapping from old location on the removed device to the new location
38  * on another device in the pool and use this mapping whenever we need
39  * to access the DVA.  Unfortunately, this mapping did not respect
40  * logical block boundaries when it was first created, and so a DVA on
41  * this indirect vdev may be "split" into multiple sections that each
42  * map to a different location.  As a consequence, not all DVAs can be
43  * translated to an equivalent new DVA.  Instead we must provide a
44  * "vdev_remap" operation that executes a callback on each contiguous
45  * segment of the new location.  This function is used in multiple ways:
46  *
47  *  - reads and repair writes to this device use the callback to create
48  *    a child io for each mapped segment.
49  *
50  *  - frees and claims to this device use the callback to free or claim
51  *    each mapped segment.  (Note that we don't actually need to claim
52  *    log blocks on indirect vdevs, because we don't allocate to
53  *    removing vdevs.  However, zdb uses zio_claim() for its leak
54  *    detection.)
55  */
56 
57 /*
58  * "Big theory statement" for how we mark blocks obsolete.
59  *
60  * When a block on an indirect vdev is freed or remapped, a section of
61  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
62  * keep track of how much of each mapping entry is obsolete.  When
63  * an entry becomes completely obsolete, we can remove it, thus reducing
64  * the memory used by the mapping.  The complete picture of obsolescence
65  * is given by the following data structures, described below:
66  *  - the entry-specific obsolete count
67  *  - the vdev-specific obsolete spacemap
68  *  - the pool-specific obsolete bpobj
69  *
70  * == On disk data structures used ==
71  *
72  * We track the obsolete space for the pool using several objects.  Each
73  * of these objects is created on demand and freed when no longer
74  * needed, and is assumed to be empty if it does not exist.
75  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
76  *
77  *  - Each vic_mapping_object (associated with an indirect vdev) can
78  *    have a vimp_counts_object.  This is an array of uint32_t's
79  *    with the same number of entries as the vic_mapping_object.  When
80  *    the mapping is condensed, entries from the vic_obsolete_sm_object
81  *    (see below) are folded into the counts.  Therefore, each
82  *    obsolete_counts entry tells us the number of bytes in the
83  *    corresponding mapping entry that were not referenced when the
84  *    mapping was last condensed.
85  *
86  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
87  *    This is a space map containing an alloc entry for every DVA that
88  *    has been obsoleted since the last time this indirect vdev was
89  *    condensed.  We use this object in order to improve performance
90  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
91  *    offset of the vimp_counts_object, we only need to append an entry
92  *    to the end of this object.  When a DVA becomes obsolete, it is
93  *    added to the obsolete space map.  This happens when the DVA is
94  *    freed, remapped and not referenced by a snapshot, or the last
95  *    snapshot referencing it is destroyed.
96  *
97  *  - Each dataset can have a ds_remap_deadlist object.  This is a
98  *    deadlist object containing all blocks that were remapped in this
99  *    dataset but referenced in a previous snapshot.  Blocks can *only*
100  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
101  *    blocks that were killed in a head dataset are put on the normal
102  *    ds_deadlist and marked obsolete when they are freed.
103  *
104  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
105  *    in the pool that need to be marked obsolete.  When a snapshot is
106  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
107  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
108  *    asynchronously process the obsolete bpobj, moving its entries to
109  *    the specific vdevs' obsolete space maps.
110  *
111  * == Summary of how we mark blocks as obsolete ==
112  *
113  * - When freeing a block: if any DVA is on an indirect vdev, append to
114  *   vic_obsolete_sm_object.
115  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
116  *   references; otherwise append to vic_obsolete_sm_object).
117  * - When freeing a snapshot: move parts of ds_remap_deadlist to
118  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
119  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
120  *   individual vdev's vic_obsolete_sm_object.
121  */
122 
123 /*
124  * "Big theory statement" for how we condense indirect vdevs.
125  *
126  * Condensing an indirect vdev's mapping is the process of determining
127  * the precise counts of obsolete space for each mapping entry (by
128  * integrating the obsolete spacemap into the obsolete counts) and
129  * writing out a new mapping that contains only referenced entries.
130  *
131  * We condense a vdev when we expect the mapping to shrink (see
132  * vdev_indirect_should_condense()), but only perform one condense at a
133  * time to limit the memory usage.  In addition, we use a separate
134  * open-context thread (spa_condense_indirect_thread) to incrementally
135  * create the new mapping object in a way that minimizes the impact on
136  * the rest of the system.
137  *
138  * == Generating a new mapping ==
139  *
140  * To generate a new mapping, we follow these steps:
141  *
142  * 1. Save the old obsolete space map and create a new mapping object
143  *    (see spa_condense_indirect_start_sync()).  This initializes the
144  *    spa_condensing_indirect_phys with the "previous obsolete space map",
145  *    which is now read only.  Newly obsolete DVAs will be added to a
146  *    new (initially empty) obsolete space map, and will not be
147  *    considered as part of this condense operation.
148  *
149  * 2. Construct in memory the precise counts of obsolete space for each
150  *    mapping entry, by incorporating the obsolete space map into the
151  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
152  *
153  * 3. Iterate through each mapping entry, writing to the new mapping any
154  *    entries that are not completely obsolete (i.e. which don't have
155  *    obsolete count == mapping length).  (See
156  *    spa_condense_indirect_generate_new_mapping().)
157  *
158  * 4. Destroy the old mapping object and switch over to the new one
159  *    (spa_condense_indirect_complete_sync).
160  *
161  * == Restarting from failure ==
162  *
163  * To restart the condense when we import/open the pool, we must start
164  * at the 2nd step above: reconstruct the precise counts in memory,
165  * based on the space map + counts.  Then in the 3rd step, we start
166  * iterating where we left off: at vimp_max_offset of the new mapping
167  * object.
168  */
169 
170 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
171 
172 /*
173  * Condense if at least this percent of the bytes in the mapping is
174  * obsolete.  With the default of 25%, the amount of space mapped
175  * will be reduced to 1% of its original size after at most 16
176  * condenses.  Higher values will condense less often (causing less
177  * i/o); lower values will reduce the mapping size more quickly.
178  */
179 int zfs_indirect_condense_obsolete_pct = 25;
180 
181 /*
182  * Condense if the obsolete space map takes up more than this amount of
183  * space on disk (logically).  This limits the amount of disk space
184  * consumed by the obsolete space map; the default of 1GB is small enough
185  * that we typically don't mind "wasting" it.
186  */
187 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
188 
189 /*
190  * Don't bother condensing if the mapping uses less than this amount of
191  * memory.  The default of 128KB is considered a "trivial" amount of
192  * memory and not worth reducing.
193  */
194 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
195 
196 /*
197  * This is used by the test suite so that it can ensure that certain
198  * actions happen while in the middle of a condense (which might otherwise
199  * complete too quickly).  If used to reduce the performance impact of
200  * condensing in production, a maximum value of 1 should be sufficient.
201  */
202 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
203 
204 /*
205  * Mark the given offset and size as being obsolete in the given txg.
206  */
207 void
208 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size,
209     uint64_t txg)
210 {
211 	spa_t *spa = vd->vdev_spa;
212 	ASSERT3U(spa_syncing_txg(spa), ==, txg);
213 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
214 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
215 	ASSERT(size > 0);
216 	VERIFY(vdev_indirect_mapping_entry_for_offset(
217 	    vd->vdev_indirect_mapping, offset) != NULL);
218 
219 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
220 		mutex_enter(&vd->vdev_obsolete_lock);
221 		range_tree_add(vd->vdev_obsolete_segments, offset, size);
222 		mutex_exit(&vd->vdev_obsolete_lock);
223 		vdev_dirty(vd, 0, NULL, txg);
224 	}
225 }
226 
227 /*
228  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
229  * wrapper is provided because the DMU does not know about vdev_t's and
230  * cannot directly call vdev_indirect_mark_obsolete.
231  */
232 void
233 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
234     uint64_t size, dmu_tx_t *tx)
235 {
236 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237 	ASSERT(dmu_tx_is_syncing(tx));
238 
239 	/* The DMU can only remap indirect vdevs. */
240 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
241 	vdev_indirect_mark_obsolete(vd, offset, size, dmu_tx_get_txg(tx));
242 }
243 
244 static spa_condensing_indirect_t *
245 spa_condensing_indirect_create(spa_t *spa)
246 {
247 	spa_condensing_indirect_phys_t *scip =
248 	    &spa->spa_condensing_indirect_phys;
249 	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
250 	objset_t *mos = spa->spa_meta_objset;
251 
252 	for (int i = 0; i < TXG_SIZE; i++) {
253 		list_create(&sci->sci_new_mapping_entries[i],
254 		    sizeof (vdev_indirect_mapping_entry_t),
255 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
256 	}
257 
258 	sci->sci_new_mapping =
259 	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
260 
261 	return (sci);
262 }
263 
264 static void
265 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
266 {
267 	for (int i = 0; i < TXG_SIZE; i++)
268 		list_destroy(&sci->sci_new_mapping_entries[i]);
269 
270 	if (sci->sci_new_mapping != NULL)
271 		vdev_indirect_mapping_close(sci->sci_new_mapping);
272 
273 	kmem_free(sci, sizeof (*sci));
274 }
275 
276 boolean_t
277 vdev_indirect_should_condense(vdev_t *vd)
278 {
279 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
280 	spa_t *spa = vd->vdev_spa;
281 
282 	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
283 
284 	if (!zfs_condense_indirect_vdevs_enable)
285 		return (B_FALSE);
286 
287 	/*
288 	 * We can only condense one indirect vdev at a time.
289 	 */
290 	if (spa->spa_condensing_indirect != NULL)
291 		return (B_FALSE);
292 
293 	if (spa_shutting_down(spa))
294 		return (B_FALSE);
295 
296 	/*
297 	 * The mapping object size must not change while we are
298 	 * condensing, so we can only condense indirect vdevs
299 	 * (not vdevs that are still in the middle of being removed).
300 	 */
301 	if (vd->vdev_ops != &vdev_indirect_ops)
302 		return (B_FALSE);
303 
304 	/*
305 	 * If nothing new has been marked obsolete, there is no
306 	 * point in condensing.
307 	 */
308 	if (vd->vdev_obsolete_sm == NULL) {
309 		ASSERT0(vdev_obsolete_sm_object(vd));
310 		return (B_FALSE);
311 	}
312 
313 	ASSERT(vd->vdev_obsolete_sm != NULL);
314 
315 	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
316 	    space_map_object(vd->vdev_obsolete_sm));
317 
318 	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
319 	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
320 	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
321 	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
322 
323 	ASSERT3U(bytes_obsolete, <=, bytes_mapped);
324 
325 	/*
326 	 * If a high percentage of the bytes that are mapped have become
327 	 * obsolete, condense (unless the mapping is already small enough).
328 	 * This has a good chance of reducing the amount of memory used
329 	 * by the mapping.
330 	 */
331 	if (bytes_obsolete * 100 / bytes_mapped >=
332 	    zfs_indirect_condense_obsolete_pct &&
333 	    mapping_size > zfs_condense_min_mapping_bytes) {
334 		zfs_dbgmsg("should condense vdev %llu because obsolete "
335 		    "spacemap covers %d%% of %lluMB mapping",
336 		    (u_longlong_t)vd->vdev_id,
337 		    (int)(bytes_obsolete * 100 / bytes_mapped),
338 		    (u_longlong_t)bytes_mapped / 1024 / 1024);
339 		return (B_TRUE);
340 	}
341 
342 	/*
343 	 * If the obsolete space map takes up too much space on disk,
344 	 * condense in order to free up this disk space.
345 	 */
346 	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
347 		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
348 		    "length %lluMB >= max size %lluMB",
349 		    (u_longlong_t)vd->vdev_id,
350 		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
351 		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
352 		    1024 / 1024);
353 		return (B_TRUE);
354 	}
355 
356 	return (B_FALSE);
357 }
358 
359 /*
360  * This sync task completes (finishes) a condense, deleting the old
361  * mapping and replacing it with the new one.
362  */
363 static void
364 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
365 {
366 	spa_condensing_indirect_t *sci = arg;
367 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
368 	spa_condensing_indirect_phys_t *scip =
369 	    &spa->spa_condensing_indirect_phys;
370 	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
371 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
372 	objset_t *mos = spa->spa_meta_objset;
373 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
374 	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
375 	uint64_t new_count =
376 	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
377 
378 	ASSERT(dmu_tx_is_syncing(tx));
379 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
380 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
381 	for (int i = 0; i < TXG_SIZE; i++) {
382 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
383 	}
384 	ASSERT(vic->vic_mapping_object != 0);
385 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
386 	ASSERT(scip->scip_next_mapping_object != 0);
387 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
388 
389 	/*
390 	 * Reset vdev_indirect_mapping to refer to the new object.
391 	 */
392 	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
393 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
394 	vd->vdev_indirect_mapping = sci->sci_new_mapping;
395 	rw_exit(&vd->vdev_indirect_rwlock);
396 
397 	sci->sci_new_mapping = NULL;
398 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
399 	vic->vic_mapping_object = scip->scip_next_mapping_object;
400 	scip->scip_next_mapping_object = 0;
401 
402 	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
403 	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
404 	scip->scip_prev_obsolete_sm_object = 0;
405 
406 	scip->scip_vdev = 0;
407 
408 	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
409 	    DMU_POOL_CONDENSING_INDIRECT, tx));
410 	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
411 	spa->spa_condensing_indirect = NULL;
412 
413 	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
414 	    "new mapping object %llu has %llu entries "
415 	    "(was %llu entries)",
416 	    vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
417 	    new_count, old_count);
418 
419 	vdev_config_dirty(spa->spa_root_vdev);
420 }
421 
422 /*
423  * This sync task appends entries to the new mapping object.
424  */
425 static void
426 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
427 {
428 	spa_condensing_indirect_t *sci = arg;
429 	uint64_t txg = dmu_tx_get_txg(tx);
430 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
431 
432 	ASSERT(dmu_tx_is_syncing(tx));
433 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
434 
435 	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
436 	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
437 	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
438 }
439 
440 /*
441  * Open-context function to add one entry to the new mapping.  The new
442  * entry will be remembered and written from syncing context.
443  */
444 static void
445 spa_condense_indirect_commit_entry(spa_t *spa,
446     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
447 {
448 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
449 
450 	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
451 
452 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
453 	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
454 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
455 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
456 
457 	/*
458 	 * If we are the first entry committed this txg, kick off the sync
459 	 * task to write to the MOS on our behalf.
460 	 */
461 	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
462 		dsl_sync_task_nowait(dmu_tx_pool(tx),
463 		    spa_condense_indirect_commit_sync, sci,
464 		    0, ZFS_SPACE_CHECK_NONE, tx);
465 	}
466 
467 	vdev_indirect_mapping_entry_t *vime =
468 	    kmem_alloc(sizeof (*vime), KM_SLEEP);
469 	vime->vime_mapping = *vimep;
470 	vime->vime_obsolete_count = count;
471 	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
472 
473 	dmu_tx_commit(tx);
474 }
475 
476 static void
477 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
478     uint32_t *obsolete_counts, uint64_t start_index)
479 {
480 	spa_t *spa = vd->vdev_spa;
481 	uint64_t mapi = start_index;
482 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
483 	uint64_t old_num_entries =
484 	    vdev_indirect_mapping_num_entries(old_mapping);
485 
486 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
487 	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
488 
489 	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
490 	    (u_longlong_t)vd->vdev_id,
491 	    (u_longlong_t)mapi);
492 
493 	while (mapi < old_num_entries && !spa_shutting_down(spa)) {
494 		vdev_indirect_mapping_entry_phys_t *entry =
495 		    &old_mapping->vim_entries[mapi];
496 		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
497 		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
498 		if (obsolete_counts[mapi] < entry_size) {
499 			spa_condense_indirect_commit_entry(spa, entry,
500 			    obsolete_counts[mapi]);
501 
502 			/*
503 			 * This delay may be requested for testing, debugging,
504 			 * or performance reasons.
505 			 */
506 			delay(zfs_condense_indirect_commit_entry_delay_ticks);
507 		}
508 
509 		mapi++;
510 	}
511 	if (spa_shutting_down(spa)) {
512 		zfs_dbgmsg("pausing condense of vdev %llu at index %llu",
513 		    (u_longlong_t)vd->vdev_id,
514 		    (u_longlong_t)mapi);
515 	}
516 }
517 
518 static void
519 spa_condense_indirect_thread(void *arg)
520 {
521 	vdev_t *vd = arg;
522 	spa_t *spa = vd->vdev_spa;
523 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
524 	spa_condensing_indirect_phys_t *scip =
525 	    &spa->spa_condensing_indirect_phys;
526 	uint32_t *counts;
527 	uint64_t start_index;
528 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
529 	space_map_t *prev_obsolete_sm = NULL;
530 
531 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
532 	ASSERT(scip->scip_next_mapping_object != 0);
533 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
534 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
535 
536 	for (int i = 0; i < TXG_SIZE; i++) {
537 		/*
538 		 * The list must start out empty in order for the
539 		 * _commit_sync() sync task to be properly registered
540 		 * on the first call to _commit_entry(); so it's wise
541 		 * to double check and ensure we actually are starting
542 		 * with empty lists.
543 		 */
544 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
545 	}
546 
547 	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
548 	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
549 	space_map_update(prev_obsolete_sm);
550 	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
551 	if (prev_obsolete_sm != NULL) {
552 		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
553 		    counts, prev_obsolete_sm);
554 	}
555 	space_map_close(prev_obsolete_sm);
556 
557 	/*
558 	 * Generate new mapping.  Determine what index to continue from
559 	 * based on the max offset that we've already written in the
560 	 * new mapping.
561 	 */
562 	uint64_t max_offset =
563 	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
564 	if (max_offset == 0) {
565 		/* We haven't written anything to the new mapping yet. */
566 		start_index = 0;
567 	} else {
568 		/*
569 		 * Pick up from where we left off. _entry_for_offset()
570 		 * returns a pointer into the vim_entries array. If
571 		 * max_offset is greater than any of the mappings
572 		 * contained in the table  NULL will be returned and
573 		 * that indicates we've exhausted our iteration of the
574 		 * old_mapping.
575 		 */
576 
577 		vdev_indirect_mapping_entry_phys_t *entry =
578 		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
579 		    max_offset);
580 
581 		if (entry == NULL) {
582 			/*
583 			 * We've already written the whole new mapping.
584 			 * This special value will cause us to skip the
585 			 * generate_new_mapping step and just do the sync
586 			 * task to complete the condense.
587 			 */
588 			start_index = UINT64_MAX;
589 		} else {
590 			start_index = entry - old_mapping->vim_entries;
591 			ASSERT3U(start_index, <,
592 			    vdev_indirect_mapping_num_entries(old_mapping));
593 		}
594 	}
595 
596 	spa_condense_indirect_generate_new_mapping(vd, counts, start_index);
597 
598 	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
599 
600 	/*
601 	 * We may have bailed early from generate_new_mapping(), if
602 	 * the spa is shutting down.  In this case, do not complete
603 	 * the condense.
604 	 */
605 	if (!spa_shutting_down(spa)) {
606 		VERIFY0(dsl_sync_task(spa_name(spa), NULL,
607 		    spa_condense_indirect_complete_sync, sci, 0,
608 		    ZFS_SPACE_CHECK_NONE));
609 	}
610 
611 	mutex_enter(&spa->spa_async_lock);
612 	spa->spa_condense_thread = NULL;
613 	cv_broadcast(&spa->spa_async_cv);
614 	mutex_exit(&spa->spa_async_lock);
615 }
616 
617 /*
618  * Sync task to begin the condensing process.
619  */
620 void
621 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
622 {
623 	spa_t *spa = vd->vdev_spa;
624 	spa_condensing_indirect_phys_t *scip =
625 	    &spa->spa_condensing_indirect_phys;
626 
627 	ASSERT0(scip->scip_next_mapping_object);
628 	ASSERT0(scip->scip_prev_obsolete_sm_object);
629 	ASSERT0(scip->scip_vdev);
630 	ASSERT(dmu_tx_is_syncing(tx));
631 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
632 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
633 	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
634 
635 	uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
636 	ASSERT(obsolete_sm_obj != 0);
637 
638 	scip->scip_vdev = vd->vdev_id;
639 	scip->scip_next_mapping_object =
640 	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
641 
642 	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
643 
644 	/*
645 	 * We don't need to allocate a new space map object, since
646 	 * vdev_indirect_sync_obsolete will allocate one when needed.
647 	 */
648 	space_map_close(vd->vdev_obsolete_sm);
649 	vd->vdev_obsolete_sm = NULL;
650 	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
651 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
652 
653 	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
654 	    DMU_POOL_DIRECTORY_OBJECT,
655 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
656 	    sizeof (*scip) / sizeof (uint64_t), scip, tx));
657 
658 	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
659 	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
660 
661 	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
662 	    "posm=%llu nm=%llu",
663 	    vd->vdev_id, dmu_tx_get_txg(tx),
664 	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
665 	    (u_longlong_t)scip->scip_next_mapping_object);
666 
667 	ASSERT3P(spa->spa_condense_thread, ==, NULL);
668 	spa->spa_condense_thread = thread_create(NULL, 0,
669 	    spa_condense_indirect_thread, vd, 0, &p0, TS_RUN, minclsyspri);
670 }
671 
672 /*
673  * Sync to the given vdev's obsolete space map any segments that are no longer
674  * referenced as of the given txg.
675  *
676  * If the obsolete space map doesn't exist yet, create and open it.
677  */
678 void
679 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
680 {
681 	spa_t *spa = vd->vdev_spa;
682 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
683 
684 	ASSERT3U(vic->vic_mapping_object, !=, 0);
685 	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
686 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
687 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
688 
689 	if (vdev_obsolete_sm_object(vd) == 0) {
690 		uint64_t obsolete_sm_object =
691 		    space_map_alloc(spa->spa_meta_objset, tx);
692 
693 		ASSERT(vd->vdev_top_zap != 0);
694 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
695 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
696 		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
697 		ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
698 
699 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
700 		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
701 		    spa->spa_meta_objset, obsolete_sm_object,
702 		    0, vd->vdev_asize, 0));
703 		space_map_update(vd->vdev_obsolete_sm);
704 	}
705 
706 	ASSERT(vd->vdev_obsolete_sm != NULL);
707 	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
708 	    space_map_object(vd->vdev_obsolete_sm));
709 
710 	space_map_write(vd->vdev_obsolete_sm,
711 	    vd->vdev_obsolete_segments, SM_ALLOC, tx);
712 	space_map_update(vd->vdev_obsolete_sm);
713 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
714 }
715 
716 int
717 spa_condense_init(spa_t *spa)
718 {
719 	int error = zap_lookup(spa->spa_meta_objset,
720 	    DMU_POOL_DIRECTORY_OBJECT,
721 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
722 	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
723 	    &spa->spa_condensing_indirect_phys);
724 	if (error == 0) {
725 		if (spa_writeable(spa)) {
726 			spa->spa_condensing_indirect =
727 			    spa_condensing_indirect_create(spa);
728 		}
729 		return (0);
730 	} else if (error == ENOENT) {
731 		return (0);
732 	} else {
733 		return (error);
734 	}
735 }
736 
737 void
738 spa_condense_fini(spa_t *spa)
739 {
740 	if (spa->spa_condensing_indirect != NULL) {
741 		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
742 		spa->spa_condensing_indirect = NULL;
743 	}
744 }
745 
746 /*
747  * Restart the condense - called when the pool is opened.
748  */
749 void
750 spa_condense_indirect_restart(spa_t *spa)
751 {
752 	vdev_t *vd;
753 	ASSERT(spa->spa_condensing_indirect != NULL);
754 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
755 	vd = vdev_lookup_top(spa,
756 	    spa->spa_condensing_indirect_phys.scip_vdev);
757 	ASSERT(vd != NULL);
758 	spa_config_exit(spa, SCL_VDEV, FTAG);
759 
760 	ASSERT3P(spa->spa_condense_thread, ==, NULL);
761 	spa->spa_condense_thread = thread_create(NULL, 0,
762 	    spa_condense_indirect_thread, vd, 0, &p0, TS_RUN,
763 	    minclsyspri);
764 }
765 
766 /*
767  * Gets the obsolete spacemap object from the vdev's ZAP.
768  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
769  * exist yet.
770  */
771 int
772 vdev_obsolete_sm_object(vdev_t *vd)
773 {
774 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
775 	if (vd->vdev_top_zap == 0) {
776 		return (0);
777 	}
778 
779 	uint64_t sm_obj = 0;
780 	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
781 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
782 
783 	ASSERT(err == 0 || err == ENOENT);
784 
785 	return (sm_obj);
786 }
787 
788 boolean_t
789 vdev_obsolete_counts_are_precise(vdev_t *vd)
790 {
791 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
792 	if (vd->vdev_top_zap == 0) {
793 		return (B_FALSE);
794 	}
795 
796 	uint64_t val = 0;
797 	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
798 	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
799 
800 	ASSERT(err == 0 || err == ENOENT);
801 
802 	return (val != 0);
803 }
804 
805 /* ARGSUSED */
806 static void
807 vdev_indirect_close(vdev_t *vd)
808 {
809 }
810 
811 /* ARGSUSED */
812 static void
813 vdev_indirect_io_done(zio_t *zio)
814 {
815 }
816 
817 /* ARGSUSED */
818 static int
819 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
820     uint64_t *ashift)
821 {
822 	*psize = *max_psize = vd->vdev_asize +
823 	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
824 	*ashift = vd->vdev_ashift;
825 	return (0);
826 }
827 
828 typedef struct remap_segment {
829 	vdev_t *rs_vd;
830 	uint64_t rs_offset;
831 	uint64_t rs_asize;
832 	uint64_t rs_split_offset;
833 	list_node_t rs_node;
834 } remap_segment_t;
835 
836 remap_segment_t *
837 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
838 {
839 	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
840 	rs->rs_vd = vd;
841 	rs->rs_offset = offset;
842 	rs->rs_asize = asize;
843 	rs->rs_split_offset = split_offset;
844 	return (rs);
845 }
846 
847 /*
848  * Goes through the relevant indirect mappings until it hits a concrete vdev
849  * and issues the callback. On the way to the concrete vdev, if any other
850  * indirect vdevs are encountered, then the callback will also be called on
851  * each of those indirect vdevs. For example, if the segment is mapped to
852  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
853  * mapped to segment B on concrete vdev 2, then the callback will be called on
854  * both vdev 1 and vdev 2.
855  *
856  * While the callback passed to vdev_indirect_remap() is called on every vdev
857  * the function encounters, certain callbacks only care about concrete vdevs.
858  * These types of callbacks should return immediately and explicitly when they
859  * are called on an indirect vdev.
860  *
861  * Because there is a possibility that a DVA section in the indirect device
862  * has been split into multiple sections in our mapping, we keep track
863  * of the relevant contiguous segments of the new location (remap_segment_t)
864  * in a stack. This way we can call the callback for each of the new sections
865  * created by a single section of the indirect device. Note though, that in
866  * this scenario the callbacks in each split block won't occur in-order in
867  * terms of offset, so callers should not make any assumptions about that.
868  *
869  * For callbacks that don't handle split blocks and immediately return when
870  * they encounter them (as is the case for remap_blkptr_cb), the caller can
871  * assume that its callback will be applied from the first indirect vdev
872  * encountered to the last one and then the concrete vdev, in that order.
873  */
874 static void
875 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
876     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
877 {
878 	list_t stack;
879 	spa_t *spa = vd->vdev_spa;
880 
881 	list_create(&stack, sizeof (remap_segment_t),
882 	    offsetof(remap_segment_t, rs_node));
883 
884 	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
885 	    rs != NULL; rs = list_remove_head(&stack)) {
886 		vdev_t *v = rs->rs_vd;
887 
888 		/*
889 		 * Note: this can be called from open context
890 		 * (eg. zio_read()), so we need the rwlock to prevent
891 		 * the mapping from being changed by condensing.
892 		 */
893 		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
894 		vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
895 		ASSERT3P(vim, !=, NULL);
896 
897 		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
898 		ASSERT(rs->rs_asize > 0);
899 
900 		vdev_indirect_mapping_entry_phys_t *mapping =
901 		    vdev_indirect_mapping_entry_for_offset(vim, rs->rs_offset);
902 		ASSERT3P(mapping, !=, NULL);
903 
904 		while (rs->rs_asize > 0) {
905 			/*
906 			 * Note: the vdev_indirect_mapping can not change
907 			 * while we are running.  It only changes while the
908 			 * removal is in progress, and then only from syncing
909 			 * context. While a removal is in progress, this
910 			 * function is only called for frees, which also only
911 			 * happen from syncing context.
912 			 */
913 
914 			uint64_t size = DVA_GET_ASIZE(&mapping->vimep_dst);
915 			uint64_t dst_offset =
916 			    DVA_GET_OFFSET(&mapping->vimep_dst);
917 			uint64_t dst_vdev = DVA_GET_VDEV(&mapping->vimep_dst);
918 
919 			ASSERT3U(rs->rs_offset, >=,
920 			    DVA_MAPPING_GET_SRC_OFFSET(mapping));
921 			ASSERT3U(rs->rs_offset, <,
922 			    DVA_MAPPING_GET_SRC_OFFSET(mapping) + size);
923 			ASSERT3U(dst_vdev, !=, v->vdev_id);
924 
925 			uint64_t inner_offset = rs->rs_offset -
926 			    DVA_MAPPING_GET_SRC_OFFSET(mapping);
927 			uint64_t inner_size =
928 			    MIN(rs->rs_asize, size - inner_offset);
929 
930 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
931 			ASSERT3P(dst_v, !=, NULL);
932 
933 			if (dst_v->vdev_ops == &vdev_indirect_ops) {
934 				list_insert_head(&stack,
935 				    rs_alloc(dst_v, dst_offset + inner_offset,
936 				    inner_size, rs->rs_split_offset));
937 
938 			}
939 
940 			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
941 			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
942 				/*
943 				 * Note: This clause exists only solely for
944 				 * testing purposes. We use it to ensure that
945 				 * split blocks work and that the callbacks
946 				 * using them yield the same result if issued
947 				 * in reverse order.
948 				 */
949 				uint64_t inner_half = inner_size / 2;
950 
951 				func(rs->rs_split_offset + inner_half, dst_v,
952 				    dst_offset + inner_offset + inner_half,
953 				    inner_half, arg);
954 
955 				func(rs->rs_split_offset, dst_v,
956 				    dst_offset + inner_offset,
957 				    inner_half, arg);
958 			} else {
959 				func(rs->rs_split_offset, dst_v,
960 				    dst_offset + inner_offset,
961 				    inner_size, arg);
962 			}
963 
964 			rs->rs_offset += inner_size;
965 			rs->rs_asize -= inner_size;
966 			rs->rs_split_offset += inner_size;
967 			mapping++;
968 		}
969 
970 		rw_exit(&v->vdev_indirect_rwlock);
971 		kmem_free(rs, sizeof (remap_segment_t));
972 	}
973 	list_destroy(&stack);
974 }
975 
976 static void
977 vdev_indirect_child_io_done(zio_t *zio)
978 {
979 	zio_t *pio = zio->io_private;
980 
981 	mutex_enter(&pio->io_lock);
982 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
983 	mutex_exit(&pio->io_lock);
984 
985 	abd_put(zio->io_abd);
986 }
987 
988 static void
989 vdev_indirect_io_start_cb(uint64_t split_offset, vdev_t *vd, uint64_t offset,
990     uint64_t size, void *arg)
991 {
992 	zio_t *zio = arg;
993 
994 	ASSERT3P(vd, !=, NULL);
995 
996 	if (vd->vdev_ops == &vdev_indirect_ops)
997 		return;
998 
999 	zio_nowait(zio_vdev_child_io(zio, NULL, vd, offset,
1000 	    abd_get_offset(zio->io_abd, split_offset),
1001 	    size, zio->io_type, zio->io_priority,
1002 	    0, vdev_indirect_child_io_done, zio));
1003 }
1004 
1005 static void
1006 vdev_indirect_io_start(zio_t *zio)
1007 {
1008 	spa_t *spa = zio->io_spa;
1009 
1010 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1011 	if (zio->io_type != ZIO_TYPE_READ) {
1012 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1013 		ASSERT((zio->io_flags &
1014 		    (ZIO_FLAG_SELF_HEAL | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1015 	}
1016 
1017 	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1018 	    vdev_indirect_io_start_cb, zio);
1019 
1020 	zio_execute(zio);
1021 }
1022 
1023 vdev_ops_t vdev_indirect_ops = {
1024 	vdev_indirect_open,
1025 	vdev_indirect_close,
1026 	vdev_default_asize,
1027 	vdev_indirect_io_start,
1028 	vdev_indirect_io_done,
1029 	NULL,
1030 	NULL,
1031 	NULL,
1032 	vdev_indirect_remap,
1033 	VDEV_TYPE_INDIRECT,	/* name of this vdev type */
1034 	B_FALSE			/* leaf vdev */
1035 };
1036