xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_indirect.c (revision 4c28a617e3922d92a58e813a5b955eb526b9c386)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19 
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36 
37 /*
38  * An indirect vdev corresponds to a vdev that has been removed.  Since
39  * we cannot rewrite block pointers of snapshots, etc., we keep a
40  * mapping from old location on the removed device to the new location
41  * on another device in the pool and use this mapping whenever we need
42  * to access the DVA.  Unfortunately, this mapping did not respect
43  * logical block boundaries when it was first created, and so a DVA on
44  * this indirect vdev may be "split" into multiple sections that each
45  * map to a different location.  As a consequence, not all DVAs can be
46  * translated to an equivalent new DVA.  Instead we must provide a
47  * "vdev_remap" operation that executes a callback on each contiguous
48  * segment of the new location.  This function is used in multiple ways:
49  *
50  *  - i/os to this vdev use the callback to determine where the
51  *    data is now located, and issue child i/os for each segment's new
52  *    location.
53  *
54  *  - frees and claims to this vdev use the callback to free or claim
55  *    each mapped segment.  (Note that we don't actually need to claim
56  *    log blocks on indirect vdevs, because we don't allocate to
57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
58  *    detection.)
59  */
60 
61 /*
62  * "Big theory statement" for how we mark blocks obsolete.
63  *
64  * When a block on an indirect vdev is freed or remapped, a section of
65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66  * keep track of how much of each mapping entry is obsolete.  When
67  * an entry becomes completely obsolete, we can remove it, thus reducing
68  * the memory used by the mapping.  The complete picture of obsolescence
69  * is given by the following data structures, described below:
70  *  - the entry-specific obsolete count
71  *  - the vdev-specific obsolete spacemap
72  *  - the pool-specific obsolete bpobj
73  *
74  * == On disk data structures used ==
75  *
76  * We track the obsolete space for the pool using several objects.  Each
77  * of these objects is created on demand and freed when no longer
78  * needed, and is assumed to be empty if it does not exist.
79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80  *
81  *  - Each vic_mapping_object (associated with an indirect vdev) can
82  *    have a vimp_counts_object.  This is an array of uint32_t's
83  *    with the same number of entries as the vic_mapping_object.  When
84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
85  *    (see below) are folded into the counts.  Therefore, each
86  *    obsolete_counts entry tells us the number of bytes in the
87  *    corresponding mapping entry that were not referenced when the
88  *    mapping was last condensed.
89  *
90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91  *    This is a space map containing an alloc entry for every DVA that
92  *    has been obsoleted since the last time this indirect vdev was
93  *    condensed.  We use this object in order to improve performance
94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95  *    offset of the vimp_counts_object, we only need to append an entry
96  *    to the end of this object.  When a DVA becomes obsolete, it is
97  *    added to the obsolete space map.  This happens when the DVA is
98  *    freed, remapped and not referenced by a snapshot, or the last
99  *    snapshot referencing it is destroyed.
100  *
101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
102  *    deadlist object containing all blocks that were remapped in this
103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105  *    blocks that were killed in a head dataset are put on the normal
106  *    ds_deadlist and marked obsolete when they are freed.
107  *
108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109  *    in the pool that need to be marked obsolete.  When a snapshot is
110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112  *    asynchronously process the obsolete bpobj, moving its entries to
113  *    the specific vdevs' obsolete space maps.
114  *
115  * == Summary of how we mark blocks as obsolete ==
116  *
117  * - When freeing a block: if any DVA is on an indirect vdev, append to
118  *   vic_obsolete_sm_object.
119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120  *   references; otherwise append to vic_obsolete_sm_object).
121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124  *   individual vdev's vic_obsolete_sm_object.
125  */
126 
127 /*
128  * "Big theory statement" for how we condense indirect vdevs.
129  *
130  * Condensing an indirect vdev's mapping is the process of determining
131  * the precise counts of obsolete space for each mapping entry (by
132  * integrating the obsolete spacemap into the obsolete counts) and
133  * writing out a new mapping that contains only referenced entries.
134  *
135  * We condense a vdev when we expect the mapping to shrink (see
136  * vdev_indirect_should_condense()), but only perform one condense at a
137  * time to limit the memory usage.  In addition, we use a separate
138  * open-context thread (spa_condense_indirect_thread) to incrementally
139  * create the new mapping object in a way that minimizes the impact on
140  * the rest of the system.
141  *
142  * == Generating a new mapping ==
143  *
144  * To generate a new mapping, we follow these steps:
145  *
146  * 1. Save the old obsolete space map and create a new mapping object
147  *    (see spa_condense_indirect_start_sync()).  This initializes the
148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
149  *    which is now read only.  Newly obsolete DVAs will be added to a
150  *    new (initially empty) obsolete space map, and will not be
151  *    considered as part of this condense operation.
152  *
153  * 2. Construct in memory the precise counts of obsolete space for each
154  *    mapping entry, by incorporating the obsolete space map into the
155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156  *
157  * 3. Iterate through each mapping entry, writing to the new mapping any
158  *    entries that are not completely obsolete (i.e. which don't have
159  *    obsolete count == mapping length).  (See
160  *    spa_condense_indirect_generate_new_mapping().)
161  *
162  * 4. Destroy the old mapping object and switch over to the new one
163  *    (spa_condense_indirect_complete_sync).
164  *
165  * == Restarting from failure ==
166  *
167  * To restart the condense when we import/open the pool, we must start
168  * at the 2nd step above: reconstruct the precise counts in memory,
169  * based on the space map + counts.  Then in the 3rd step, we start
170  * iterating where we left off: at vimp_max_offset of the new mapping
171  * object.
172  */
173 
174 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
175 
176 /*
177  * Condense if at least this percent of the bytes in the mapping is
178  * obsolete.  With the default of 25%, the amount of space mapped
179  * will be reduced to 1% of its original size after at most 16
180  * condenses.  Higher values will condense less often (causing less
181  * i/o); lower values will reduce the mapping size more quickly.
182  */
183 int zfs_indirect_condense_obsolete_pct = 25;
184 
185 /*
186  * Condense if the obsolete space map takes up more than this amount of
187  * space on disk (logically).  This limits the amount of disk space
188  * consumed by the obsolete space map; the default of 1GB is small enough
189  * that we typically don't mind "wasting" it.
190  */
191 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192 
193 /*
194  * Don't bother condensing if the mapping uses less than this amount of
195  * memory.  The default of 128KB is considered a "trivial" amount of
196  * memory and not worth reducing.
197  */
198 uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
199 
200 /*
201  * This is used by the test suite so that it can ensure that certain
202  * actions happen while in the middle of a condense (which might otherwise
203  * complete too quickly).  If used to reduce the performance impact of
204  * condensing in production, a maximum value of 1 should be sufficient.
205  */
206 int zfs_condense_indirect_commit_entry_delay_ticks = 0;
207 
208 /*
209  * If a split block contains more than this many segments, consider it too
210  * computationally expensive to check all (2^num_segments) possible
211  * combinations. Instead, try at most 2^_segments_max randomly-selected
212  * combinations.
213  *
214  * This is reasonable if only a few segment copies are damaged and the
215  * majority of segment copies are good. This allows all the segment copies to
216  * participate fairly in the reconstruction and prevents the repeated use of
217  * one bad copy.
218  */
219 int zfs_reconstruct_indirect_segments_max = 10;
220 
221 /*
222  * The indirect_child_t represents the vdev that we will read from, when we
223  * need to read all copies of the data (e.g. for scrub or reconstruction).
224  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
225  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
226  * ic_vdev is a child of the mirror.
227  */
228 typedef struct indirect_child {
229 	abd_t *ic_data;
230 	vdev_t *ic_vdev;
231 } indirect_child_t;
232 
233 /*
234  * The indirect_split_t represents one mapped segment of an i/o to the
235  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
236  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
237  * For split blocks, there will be several of these.
238  */
239 typedef struct indirect_split {
240 	list_node_t is_node; /* link on iv_splits */
241 
242 	/*
243 	 * is_split_offset is the offset into the i/o.
244 	 * This is the sum of the previous splits' is_size's.
245 	 */
246 	uint64_t is_split_offset;
247 
248 	vdev_t *is_vdev; /* top-level vdev */
249 	uint64_t is_target_offset; /* offset on is_vdev */
250 	uint64_t is_size;
251 	int is_children; /* number of entries in is_child[] */
252 
253 	/*
254 	 * is_good_child is the child that we are currently using to
255 	 * attempt reconstruction.
256 	 */
257 	int is_good_child;
258 
259 	indirect_child_t is_child[1]; /* variable-length */
260 } indirect_split_t;
261 
262 /*
263  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
264  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
265  */
266 typedef struct indirect_vsd {
267 	boolean_t iv_split_block;
268 	boolean_t iv_reconstruct;
269 
270 	list_t iv_splits; /* list of indirect_split_t's */
271 } indirect_vsd_t;
272 
273 static void
274 vdev_indirect_map_free(zio_t *zio)
275 {
276 	indirect_vsd_t *iv = zio->io_vsd;
277 
278 	indirect_split_t *is;
279 	while ((is = list_head(&iv->iv_splits)) != NULL) {
280 		for (int c = 0; c < is->is_children; c++) {
281 			indirect_child_t *ic = &is->is_child[c];
282 			if (ic->ic_data != NULL)
283 				abd_free(ic->ic_data);
284 		}
285 		list_remove(&iv->iv_splits, is);
286 		kmem_free(is,
287 		    offsetof(indirect_split_t, is_child[is->is_children]));
288 	}
289 	kmem_free(iv, sizeof (*iv));
290 }
291 
292 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
293 	vdev_indirect_map_free,
294 	zio_vsd_default_cksum_report
295 };
296 /*
297  * Mark the given offset and size as being obsolete.
298  */
299 void
300 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
301 {
302 	spa_t *spa = vd->vdev_spa;
303 
304 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
305 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
306 	ASSERT(size > 0);
307 	VERIFY(vdev_indirect_mapping_entry_for_offset(
308 	    vd->vdev_indirect_mapping, offset) != NULL);
309 
310 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
311 		mutex_enter(&vd->vdev_obsolete_lock);
312 		range_tree_add(vd->vdev_obsolete_segments, offset, size);
313 		mutex_exit(&vd->vdev_obsolete_lock);
314 		vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
315 	}
316 }
317 
318 /*
319  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
320  * wrapper is provided because the DMU does not know about vdev_t's and
321  * cannot directly call vdev_indirect_mark_obsolete.
322  */
323 void
324 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
325     uint64_t size, dmu_tx_t *tx)
326 {
327 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
328 	ASSERT(dmu_tx_is_syncing(tx));
329 
330 	/* The DMU can only remap indirect vdevs. */
331 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
332 	vdev_indirect_mark_obsolete(vd, offset, size);
333 }
334 
335 static spa_condensing_indirect_t *
336 spa_condensing_indirect_create(spa_t *spa)
337 {
338 	spa_condensing_indirect_phys_t *scip =
339 	    &spa->spa_condensing_indirect_phys;
340 	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
341 	objset_t *mos = spa->spa_meta_objset;
342 
343 	for (int i = 0; i < TXG_SIZE; i++) {
344 		list_create(&sci->sci_new_mapping_entries[i],
345 		    sizeof (vdev_indirect_mapping_entry_t),
346 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
347 	}
348 
349 	sci->sci_new_mapping =
350 	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
351 
352 	return (sci);
353 }
354 
355 static void
356 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
357 {
358 	for (int i = 0; i < TXG_SIZE; i++)
359 		list_destroy(&sci->sci_new_mapping_entries[i]);
360 
361 	if (sci->sci_new_mapping != NULL)
362 		vdev_indirect_mapping_close(sci->sci_new_mapping);
363 
364 	kmem_free(sci, sizeof (*sci));
365 }
366 
367 boolean_t
368 vdev_indirect_should_condense(vdev_t *vd)
369 {
370 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
371 	spa_t *spa = vd->vdev_spa;
372 
373 	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
374 
375 	if (!zfs_condense_indirect_vdevs_enable)
376 		return (B_FALSE);
377 
378 	/*
379 	 * We can only condense one indirect vdev at a time.
380 	 */
381 	if (spa->spa_condensing_indirect != NULL)
382 		return (B_FALSE);
383 
384 	if (spa_shutting_down(spa))
385 		return (B_FALSE);
386 
387 	/*
388 	 * The mapping object size must not change while we are
389 	 * condensing, so we can only condense indirect vdevs
390 	 * (not vdevs that are still in the middle of being removed).
391 	 */
392 	if (vd->vdev_ops != &vdev_indirect_ops)
393 		return (B_FALSE);
394 
395 	/*
396 	 * If nothing new has been marked obsolete, there is no
397 	 * point in condensing.
398 	 */
399 	if (vd->vdev_obsolete_sm == NULL) {
400 		ASSERT0(vdev_obsolete_sm_object(vd));
401 		return (B_FALSE);
402 	}
403 
404 	ASSERT(vd->vdev_obsolete_sm != NULL);
405 
406 	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
407 	    space_map_object(vd->vdev_obsolete_sm));
408 
409 	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
410 	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
411 	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
412 	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
413 
414 	ASSERT3U(bytes_obsolete, <=, bytes_mapped);
415 
416 	/*
417 	 * If a high percentage of the bytes that are mapped have become
418 	 * obsolete, condense (unless the mapping is already small enough).
419 	 * This has a good chance of reducing the amount of memory used
420 	 * by the mapping.
421 	 */
422 	if (bytes_obsolete * 100 / bytes_mapped >=
423 	    zfs_indirect_condense_obsolete_pct &&
424 	    mapping_size > zfs_condense_min_mapping_bytes) {
425 		zfs_dbgmsg("should condense vdev %llu because obsolete "
426 		    "spacemap covers %d%% of %lluMB mapping",
427 		    (u_longlong_t)vd->vdev_id,
428 		    (int)(bytes_obsolete * 100 / bytes_mapped),
429 		    (u_longlong_t)bytes_mapped / 1024 / 1024);
430 		return (B_TRUE);
431 	}
432 
433 	/*
434 	 * If the obsolete space map takes up too much space on disk,
435 	 * condense in order to free up this disk space.
436 	 */
437 	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
438 		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
439 		    "length %lluMB >= max size %lluMB",
440 		    (u_longlong_t)vd->vdev_id,
441 		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
442 		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
443 		    1024 / 1024);
444 		return (B_TRUE);
445 	}
446 
447 	return (B_FALSE);
448 }
449 
450 /*
451  * This sync task completes (finishes) a condense, deleting the old
452  * mapping and replacing it with the new one.
453  */
454 static void
455 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
456 {
457 	spa_condensing_indirect_t *sci = arg;
458 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
459 	spa_condensing_indirect_phys_t *scip =
460 	    &spa->spa_condensing_indirect_phys;
461 	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
462 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
463 	objset_t *mos = spa->spa_meta_objset;
464 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
465 	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
466 	uint64_t new_count =
467 	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
468 
469 	ASSERT(dmu_tx_is_syncing(tx));
470 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
471 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
472 	for (int i = 0; i < TXG_SIZE; i++) {
473 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
474 	}
475 	ASSERT(vic->vic_mapping_object != 0);
476 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
477 	ASSERT(scip->scip_next_mapping_object != 0);
478 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
479 
480 	/*
481 	 * Reset vdev_indirect_mapping to refer to the new object.
482 	 */
483 	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
484 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
485 	vd->vdev_indirect_mapping = sci->sci_new_mapping;
486 	rw_exit(&vd->vdev_indirect_rwlock);
487 
488 	sci->sci_new_mapping = NULL;
489 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
490 	vic->vic_mapping_object = scip->scip_next_mapping_object;
491 	scip->scip_next_mapping_object = 0;
492 
493 	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
494 	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
495 	scip->scip_prev_obsolete_sm_object = 0;
496 
497 	scip->scip_vdev = 0;
498 
499 	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
500 	    DMU_POOL_CONDENSING_INDIRECT, tx));
501 	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
502 	spa->spa_condensing_indirect = NULL;
503 
504 	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
505 	    "new mapping object %llu has %llu entries "
506 	    "(was %llu entries)",
507 	    vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
508 	    new_count, old_count);
509 
510 	vdev_config_dirty(spa->spa_root_vdev);
511 }
512 
513 /*
514  * This sync task appends entries to the new mapping object.
515  */
516 static void
517 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
518 {
519 	spa_condensing_indirect_t *sci = arg;
520 	uint64_t txg = dmu_tx_get_txg(tx);
521 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
522 
523 	ASSERT(dmu_tx_is_syncing(tx));
524 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
525 
526 	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
527 	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
528 	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
529 }
530 
531 /*
532  * Open-context function to add one entry to the new mapping.  The new
533  * entry will be remembered and written from syncing context.
534  */
535 static void
536 spa_condense_indirect_commit_entry(spa_t *spa,
537     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
538 {
539 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
540 
541 	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
542 
543 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
544 	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
545 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
546 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
547 
548 	/*
549 	 * If we are the first entry committed this txg, kick off the sync
550 	 * task to write to the MOS on our behalf.
551 	 */
552 	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
553 		dsl_sync_task_nowait(dmu_tx_pool(tx),
554 		    spa_condense_indirect_commit_sync, sci,
555 		    0, ZFS_SPACE_CHECK_NONE, tx);
556 	}
557 
558 	vdev_indirect_mapping_entry_t *vime =
559 	    kmem_alloc(sizeof (*vime), KM_SLEEP);
560 	vime->vime_mapping = *vimep;
561 	vime->vime_obsolete_count = count;
562 	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
563 
564 	dmu_tx_commit(tx);
565 }
566 
567 static void
568 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
569     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
570 {
571 	spa_t *spa = vd->vdev_spa;
572 	uint64_t mapi = start_index;
573 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
574 	uint64_t old_num_entries =
575 	    vdev_indirect_mapping_num_entries(old_mapping);
576 
577 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
578 	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
579 
580 	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
581 	    (u_longlong_t)vd->vdev_id,
582 	    (u_longlong_t)mapi);
583 
584 	while (mapi < old_num_entries) {
585 
586 		if (zthr_iscancelled(zthr)) {
587 			zfs_dbgmsg("pausing condense of vdev %llu "
588 			    "at index %llu", (u_longlong_t)vd->vdev_id,
589 			    (u_longlong_t)mapi);
590 			break;
591 		}
592 
593 		vdev_indirect_mapping_entry_phys_t *entry =
594 		    &old_mapping->vim_entries[mapi];
595 		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
596 		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
597 		if (obsolete_counts[mapi] < entry_size) {
598 			spa_condense_indirect_commit_entry(spa, entry,
599 			    obsolete_counts[mapi]);
600 
601 			/*
602 			 * This delay may be requested for testing, debugging,
603 			 * or performance reasons.
604 			 */
605 			delay(zfs_condense_indirect_commit_entry_delay_ticks);
606 		}
607 
608 		mapi++;
609 	}
610 }
611 
612 /* ARGSUSED */
613 static boolean_t
614 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
615 {
616 	spa_t *spa = arg;
617 
618 	return (spa->spa_condensing_indirect != NULL);
619 }
620 
621 /* ARGSUSED */
622 static int
623 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
624 {
625 	spa_t *spa = arg;
626 	vdev_t *vd;
627 
628 	ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
629 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
630 	vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
631 	ASSERT3P(vd, !=, NULL);
632 	spa_config_exit(spa, SCL_VDEV, FTAG);
633 
634 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
635 	spa_condensing_indirect_phys_t *scip =
636 	    &spa->spa_condensing_indirect_phys;
637 	uint32_t *counts;
638 	uint64_t start_index;
639 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
640 	space_map_t *prev_obsolete_sm = NULL;
641 
642 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
643 	ASSERT(scip->scip_next_mapping_object != 0);
644 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
645 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
646 
647 	for (int i = 0; i < TXG_SIZE; i++) {
648 		/*
649 		 * The list must start out empty in order for the
650 		 * _commit_sync() sync task to be properly registered
651 		 * on the first call to _commit_entry(); so it's wise
652 		 * to double check and ensure we actually are starting
653 		 * with empty lists.
654 		 */
655 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
656 	}
657 
658 	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
659 	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
660 	space_map_update(prev_obsolete_sm);
661 	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
662 	if (prev_obsolete_sm != NULL) {
663 		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
664 		    counts, prev_obsolete_sm);
665 	}
666 	space_map_close(prev_obsolete_sm);
667 
668 	/*
669 	 * Generate new mapping.  Determine what index to continue from
670 	 * based on the max offset that we've already written in the
671 	 * new mapping.
672 	 */
673 	uint64_t max_offset =
674 	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
675 	if (max_offset == 0) {
676 		/* We haven't written anything to the new mapping yet. */
677 		start_index = 0;
678 	} else {
679 		/*
680 		 * Pick up from where we left off. _entry_for_offset()
681 		 * returns a pointer into the vim_entries array. If
682 		 * max_offset is greater than any of the mappings
683 		 * contained in the table  NULL will be returned and
684 		 * that indicates we've exhausted our iteration of the
685 		 * old_mapping.
686 		 */
687 
688 		vdev_indirect_mapping_entry_phys_t *entry =
689 		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
690 		    max_offset);
691 
692 		if (entry == NULL) {
693 			/*
694 			 * We've already written the whole new mapping.
695 			 * This special value will cause us to skip the
696 			 * generate_new_mapping step and just do the sync
697 			 * task to complete the condense.
698 			 */
699 			start_index = UINT64_MAX;
700 		} else {
701 			start_index = entry - old_mapping->vim_entries;
702 			ASSERT3U(start_index, <,
703 			    vdev_indirect_mapping_num_entries(old_mapping));
704 		}
705 	}
706 
707 	spa_condense_indirect_generate_new_mapping(vd, counts,
708 	    start_index, zthr);
709 
710 	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
711 
712 	/*
713 	 * If the zthr has received a cancellation signal while running
714 	 * in generate_new_mapping() or at any point after that, then bail
715 	 * early. We don't want to complete the condense if the spa is
716 	 * shutting down.
717 	 */
718 	if (zthr_iscancelled(zthr))
719 		return (0);
720 
721 	VERIFY0(dsl_sync_task(spa_name(spa), NULL,
722 	    spa_condense_indirect_complete_sync, sci, 0,
723 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
724 
725 	return (0);
726 }
727 
728 /*
729  * Sync task to begin the condensing process.
730  */
731 void
732 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
733 {
734 	spa_t *spa = vd->vdev_spa;
735 	spa_condensing_indirect_phys_t *scip =
736 	    &spa->spa_condensing_indirect_phys;
737 
738 	ASSERT0(scip->scip_next_mapping_object);
739 	ASSERT0(scip->scip_prev_obsolete_sm_object);
740 	ASSERT0(scip->scip_vdev);
741 	ASSERT(dmu_tx_is_syncing(tx));
742 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
743 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
744 	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
745 
746 	uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
747 	ASSERT(obsolete_sm_obj != 0);
748 
749 	scip->scip_vdev = vd->vdev_id;
750 	scip->scip_next_mapping_object =
751 	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
752 
753 	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
754 
755 	/*
756 	 * We don't need to allocate a new space map object, since
757 	 * vdev_indirect_sync_obsolete will allocate one when needed.
758 	 */
759 	space_map_close(vd->vdev_obsolete_sm);
760 	vd->vdev_obsolete_sm = NULL;
761 	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
762 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
763 
764 	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
765 	    DMU_POOL_DIRECTORY_OBJECT,
766 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
767 	    sizeof (*scip) / sizeof (uint64_t), scip, tx));
768 
769 	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
770 	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
771 
772 	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
773 	    "posm=%llu nm=%llu",
774 	    vd->vdev_id, dmu_tx_get_txg(tx),
775 	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
776 	    (u_longlong_t)scip->scip_next_mapping_object);
777 
778 	zthr_wakeup(spa->spa_condense_zthr);
779 }
780 
781 /*
782  * Sync to the given vdev's obsolete space map any segments that are no longer
783  * referenced as of the given txg.
784  *
785  * If the obsolete space map doesn't exist yet, create and open it.
786  */
787 void
788 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
789 {
790 	spa_t *spa = vd->vdev_spa;
791 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
792 
793 	ASSERT3U(vic->vic_mapping_object, !=, 0);
794 	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
795 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
796 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
797 
798 	if (vdev_obsolete_sm_object(vd) == 0) {
799 		uint64_t obsolete_sm_object =
800 		    space_map_alloc(spa->spa_meta_objset,
801 		    vdev_standard_sm_blksz, tx);
802 
803 		ASSERT(vd->vdev_top_zap != 0);
804 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
805 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
806 		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
807 		ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
808 
809 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
810 		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
811 		    spa->spa_meta_objset, obsolete_sm_object,
812 		    0, vd->vdev_asize, 0));
813 		space_map_update(vd->vdev_obsolete_sm);
814 	}
815 
816 	ASSERT(vd->vdev_obsolete_sm != NULL);
817 	ASSERT3U(vdev_obsolete_sm_object(vd), ==,
818 	    space_map_object(vd->vdev_obsolete_sm));
819 
820 	space_map_write(vd->vdev_obsolete_sm,
821 	    vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
822 	space_map_update(vd->vdev_obsolete_sm);
823 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
824 }
825 
826 int
827 spa_condense_init(spa_t *spa)
828 {
829 	int error = zap_lookup(spa->spa_meta_objset,
830 	    DMU_POOL_DIRECTORY_OBJECT,
831 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
832 	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
833 	    &spa->spa_condensing_indirect_phys);
834 	if (error == 0) {
835 		if (spa_writeable(spa)) {
836 			spa->spa_condensing_indirect =
837 			    spa_condensing_indirect_create(spa);
838 		}
839 		return (0);
840 	} else if (error == ENOENT) {
841 		return (0);
842 	} else {
843 		return (error);
844 	}
845 }
846 
847 void
848 spa_condense_fini(spa_t *spa)
849 {
850 	if (spa->spa_condensing_indirect != NULL) {
851 		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
852 		spa->spa_condensing_indirect = NULL;
853 	}
854 }
855 
856 void
857 spa_start_indirect_condensing_thread(spa_t *spa)
858 {
859 	ASSERT3P(spa->spa_condense_zthr, ==, NULL);
860 	spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
861 	    spa_condense_indirect_thread, spa);
862 }
863 
864 /*
865  * Gets the obsolete spacemap object from the vdev's ZAP.
866  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
867  * exist yet.
868  */
869 int
870 vdev_obsolete_sm_object(vdev_t *vd)
871 {
872 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
873 	if (vd->vdev_top_zap == 0) {
874 		return (0);
875 	}
876 
877 	uint64_t sm_obj = 0;
878 	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
879 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
880 
881 	ASSERT(err == 0 || err == ENOENT);
882 
883 	return (sm_obj);
884 }
885 
886 boolean_t
887 vdev_obsolete_counts_are_precise(vdev_t *vd)
888 {
889 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
890 	if (vd->vdev_top_zap == 0) {
891 		return (B_FALSE);
892 	}
893 
894 	uint64_t val = 0;
895 	int err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
896 	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
897 
898 	ASSERT(err == 0 || err == ENOENT);
899 
900 	return (val != 0);
901 }
902 
903 /* ARGSUSED */
904 static void
905 vdev_indirect_close(vdev_t *vd)
906 {
907 }
908 
909 /* ARGSUSED */
910 static int
911 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
912     uint64_t *ashift)
913 {
914 	*psize = *max_psize = vd->vdev_asize +
915 	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
916 	*ashift = vd->vdev_ashift;
917 	return (0);
918 }
919 
920 typedef struct remap_segment {
921 	vdev_t *rs_vd;
922 	uint64_t rs_offset;
923 	uint64_t rs_asize;
924 	uint64_t rs_split_offset;
925 	list_node_t rs_node;
926 } remap_segment_t;
927 
928 remap_segment_t *
929 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
930 {
931 	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
932 	rs->rs_vd = vd;
933 	rs->rs_offset = offset;
934 	rs->rs_asize = asize;
935 	rs->rs_split_offset = split_offset;
936 	return (rs);
937 }
938 
939 /*
940  * Given an indirect vdev and an extent on that vdev, it duplicates the
941  * physical entries of the indirect mapping that correspond to the extent
942  * to a new array and returns a pointer to it. In addition, copied_entries
943  * is populated with the number of mapping entries that were duplicated.
944  *
945  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
946  * This ensures that the mapping won't change due to condensing as we
947  * copy over its contents.
948  *
949  * Finally, since we are doing an allocation, it is up to the caller to
950  * free the array allocated in this function.
951  */
952 vdev_indirect_mapping_entry_phys_t *
953 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
954     uint64_t asize, uint64_t *copied_entries)
955 {
956 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
957 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
958 	uint64_t entries = 0;
959 
960 	ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
961 
962 	vdev_indirect_mapping_entry_phys_t *first_mapping =
963 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
964 	ASSERT3P(first_mapping, !=, NULL);
965 
966 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
967 	while (asize > 0) {
968 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
969 
970 		ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
971 		ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
972 
973 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
974 		uint64_t inner_size = MIN(asize, size - inner_offset);
975 
976 		offset += inner_size;
977 		asize -= inner_size;
978 		entries++;
979 		m++;
980 	}
981 
982 	size_t copy_length = entries * sizeof (*first_mapping);
983 	duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
984 	bcopy(first_mapping, duplicate_mappings, copy_length);
985 	*copied_entries = entries;
986 
987 	return (duplicate_mappings);
988 }
989 
990 /*
991  * Goes through the relevant indirect mappings until it hits a concrete vdev
992  * and issues the callback. On the way to the concrete vdev, if any other
993  * indirect vdevs are encountered, then the callback will also be called on
994  * each of those indirect vdevs. For example, if the segment is mapped to
995  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
996  * mapped to segment B on concrete vdev 2, then the callback will be called on
997  * both vdev 1 and vdev 2.
998  *
999  * While the callback passed to vdev_indirect_remap() is called on every vdev
1000  * the function encounters, certain callbacks only care about concrete vdevs.
1001  * These types of callbacks should return immediately and explicitly when they
1002  * are called on an indirect vdev.
1003  *
1004  * Because there is a possibility that a DVA section in the indirect device
1005  * has been split into multiple sections in our mapping, we keep track
1006  * of the relevant contiguous segments of the new location (remap_segment_t)
1007  * in a stack. This way we can call the callback for each of the new sections
1008  * created by a single section of the indirect device. Note though, that in
1009  * this scenario the callbacks in each split block won't occur in-order in
1010  * terms of offset, so callers should not make any assumptions about that.
1011  *
1012  * For callbacks that don't handle split blocks and immediately return when
1013  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1014  * assume that its callback will be applied from the first indirect vdev
1015  * encountered to the last one and then the concrete vdev, in that order.
1016  */
1017 static void
1018 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1019     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1020 {
1021 	list_t stack;
1022 	spa_t *spa = vd->vdev_spa;
1023 
1024 	list_create(&stack, sizeof (remap_segment_t),
1025 	    offsetof(remap_segment_t, rs_node));
1026 
1027 	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1028 	    rs != NULL; rs = list_remove_head(&stack)) {
1029 		vdev_t *v = rs->rs_vd;
1030 		uint64_t num_entries = 0;
1031 
1032 		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1033 		ASSERT(rs->rs_asize > 0);
1034 
1035 		/*
1036 		 * Note: As this function can be called from open context
1037 		 * (e.g. zio_read()), we need the following rwlock to
1038 		 * prevent the mapping from being changed by condensing.
1039 		 *
1040 		 * So we grab the lock and we make a copy of the entries
1041 		 * that are relevant to the extent that we are working on.
1042 		 * Once that is done, we drop the lock and iterate over
1043 		 * our copy of the mapping. Once we are done with the with
1044 		 * the remap segment and we free it, we also free our copy
1045 		 * of the indirect mapping entries that are relevant to it.
1046 		 *
1047 		 * This way we don't need to wait until the function is
1048 		 * finished with a segment, to condense it. In addition, we
1049 		 * don't need a recursive rwlock for the case that a call to
1050 		 * vdev_indirect_remap() needs to call itself (through the
1051 		 * codepath of its callback) for the same vdev in the middle
1052 		 * of its execution.
1053 		 */
1054 		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1055 		vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
1056 		ASSERT3P(vim, !=, NULL);
1057 
1058 		vdev_indirect_mapping_entry_phys_t *mapping =
1059 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
1060 		    rs->rs_offset, rs->rs_asize, &num_entries);
1061 		ASSERT3P(mapping, !=, NULL);
1062 		ASSERT3U(num_entries, >, 0);
1063 		rw_exit(&v->vdev_indirect_rwlock);
1064 
1065 		for (uint64_t i = 0; i < num_entries; i++) {
1066 			/*
1067 			 * Note: the vdev_indirect_mapping can not change
1068 			 * while we are running.  It only changes while the
1069 			 * removal is in progress, and then only from syncing
1070 			 * context. While a removal is in progress, this
1071 			 * function is only called for frees, which also only
1072 			 * happen from syncing context.
1073 			 */
1074 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1075 
1076 			ASSERT3P(m, !=, NULL);
1077 			ASSERT3U(rs->rs_asize, >, 0);
1078 
1079 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1080 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1081 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1082 
1083 			ASSERT3U(rs->rs_offset, >=,
1084 			    DVA_MAPPING_GET_SRC_OFFSET(m));
1085 			ASSERT3U(rs->rs_offset, <,
1086 			    DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1087 			ASSERT3U(dst_vdev, !=, v->vdev_id);
1088 
1089 			uint64_t inner_offset = rs->rs_offset -
1090 			    DVA_MAPPING_GET_SRC_OFFSET(m);
1091 			uint64_t inner_size =
1092 			    MIN(rs->rs_asize, size - inner_offset);
1093 
1094 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1095 			ASSERT3P(dst_v, !=, NULL);
1096 
1097 			if (dst_v->vdev_ops == &vdev_indirect_ops) {
1098 				list_insert_head(&stack,
1099 				    rs_alloc(dst_v, dst_offset + inner_offset,
1100 				    inner_size, rs->rs_split_offset));
1101 
1102 			}
1103 
1104 			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1105 			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1106 				/*
1107 				 * Note: This clause exists only solely for
1108 				 * testing purposes. We use it to ensure that
1109 				 * split blocks work and that the callbacks
1110 				 * using them yield the same result if issued
1111 				 * in reverse order.
1112 				 */
1113 				uint64_t inner_half = inner_size / 2;
1114 
1115 				func(rs->rs_split_offset + inner_half, dst_v,
1116 				    dst_offset + inner_offset + inner_half,
1117 				    inner_half, arg);
1118 
1119 				func(rs->rs_split_offset, dst_v,
1120 				    dst_offset + inner_offset,
1121 				    inner_half, arg);
1122 			} else {
1123 				func(rs->rs_split_offset, dst_v,
1124 				    dst_offset + inner_offset,
1125 				    inner_size, arg);
1126 			}
1127 
1128 			rs->rs_offset += inner_size;
1129 			rs->rs_asize -= inner_size;
1130 			rs->rs_split_offset += inner_size;
1131 		}
1132 		VERIFY0(rs->rs_asize);
1133 
1134 		kmem_free(mapping, num_entries * sizeof (*mapping));
1135 		kmem_free(rs, sizeof (remap_segment_t));
1136 	}
1137 	list_destroy(&stack);
1138 }
1139 
1140 static void
1141 vdev_indirect_child_io_done(zio_t *zio)
1142 {
1143 	zio_t *pio = zio->io_private;
1144 
1145 	mutex_enter(&pio->io_lock);
1146 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1147 	mutex_exit(&pio->io_lock);
1148 
1149 	abd_put(zio->io_abd);
1150 }
1151 
1152 /*
1153  * This is a callback for vdev_indirect_remap() which allocates an
1154  * indirect_split_t for each split segment and adds it to iv_splits.
1155  */
1156 static void
1157 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1158     uint64_t size, void *arg)
1159 {
1160 	zio_t *zio = arg;
1161 	indirect_vsd_t *iv = zio->io_vsd;
1162 
1163 	ASSERT3P(vd, !=, NULL);
1164 
1165 	if (vd->vdev_ops == &vdev_indirect_ops)
1166 		return;
1167 
1168 	int n = 1;
1169 	if (vd->vdev_ops == &vdev_mirror_ops)
1170 		n = vd->vdev_children;
1171 
1172 	indirect_split_t *is =
1173 	    kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1174 
1175 	is->is_children = n;
1176 	is->is_size = size;
1177 	is->is_split_offset = split_offset;
1178 	is->is_target_offset = offset;
1179 	is->is_vdev = vd;
1180 
1181 	/*
1182 	 * Note that we only consider multiple copies of the data for
1183 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1184 	 * though they use the same ops as mirror, because there's only one
1185 	 * "good" copy under the replacing/spare.
1186 	 */
1187 	if (vd->vdev_ops == &vdev_mirror_ops) {
1188 		for (int i = 0; i < n; i++) {
1189 			is->is_child[i].ic_vdev = vd->vdev_child[i];
1190 		}
1191 	} else {
1192 		is->is_child[0].ic_vdev = vd;
1193 	}
1194 
1195 	list_insert_tail(&iv->iv_splits, is);
1196 }
1197 
1198 static void
1199 vdev_indirect_read_split_done(zio_t *zio)
1200 {
1201 	indirect_child_t *ic = zio->io_private;
1202 
1203 	if (zio->io_error != 0) {
1204 		/*
1205 		 * Clear ic_data to indicate that we do not have data for this
1206 		 * child.
1207 		 */
1208 		abd_free(ic->ic_data);
1209 		ic->ic_data = NULL;
1210 	}
1211 }
1212 
1213 /*
1214  * Issue reads for all copies (mirror children) of all splits.
1215  */
1216 static void
1217 vdev_indirect_read_all(zio_t *zio)
1218 {
1219 	indirect_vsd_t *iv = zio->io_vsd;
1220 
1221 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1222 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1223 		for (int i = 0; i < is->is_children; i++) {
1224 			indirect_child_t *ic = &is->is_child[i];
1225 
1226 			if (!vdev_readable(ic->ic_vdev))
1227 				continue;
1228 
1229 			/*
1230 			 * Note, we may read from a child whose DTL
1231 			 * indicates that the data may not be present here.
1232 			 * While this might result in a few i/os that will
1233 			 * likely return incorrect data, it simplifies the
1234 			 * code since we can treat scrub and resilver
1235 			 * identically.  (The incorrect data will be
1236 			 * detected and ignored when we verify the
1237 			 * checksum.)
1238 			 */
1239 
1240 			ic->ic_data = abd_alloc_sametype(zio->io_abd,
1241 			    is->is_size);
1242 
1243 			zio_nowait(zio_vdev_child_io(zio, NULL,
1244 			    ic->ic_vdev, is->is_target_offset, ic->ic_data,
1245 			    is->is_size, zio->io_type, zio->io_priority, 0,
1246 			    vdev_indirect_read_split_done, ic));
1247 		}
1248 	}
1249 	iv->iv_reconstruct = B_TRUE;
1250 }
1251 
1252 static void
1253 vdev_indirect_io_start(zio_t *zio)
1254 {
1255 	spa_t *spa = zio->io_spa;
1256 	indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1257 	list_create(&iv->iv_splits,
1258 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1259 
1260 	zio->io_vsd = iv;
1261 	zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1262 
1263 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1264 	if (zio->io_type != ZIO_TYPE_READ) {
1265 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1266 		/*
1267 		 * Note: this code can handle other kinds of writes,
1268 		 * but we don't expect them.
1269 		 */
1270 		ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1271 		    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1272 	}
1273 
1274 	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1275 	    vdev_indirect_gather_splits, zio);
1276 
1277 	indirect_split_t *first = list_head(&iv->iv_splits);
1278 	if (first->is_size == zio->io_size) {
1279 		/*
1280 		 * This is not a split block; we are pointing to the entire
1281 		 * data, which will checksum the same as the original data.
1282 		 * Pass the BP down so that the child i/o can verify the
1283 		 * checksum, and try a different location if available
1284 		 * (e.g. on a mirror).
1285 		 *
1286 		 * While this special case could be handled the same as the
1287 		 * general (split block) case, doing it this way ensures
1288 		 * that the vast majority of blocks on indirect vdevs
1289 		 * (which are not split) are handled identically to blocks
1290 		 * on non-indirect vdevs.  This allows us to be less strict
1291 		 * about performance in the general (but rare) case.
1292 		 */
1293 		ASSERT0(first->is_split_offset);
1294 		ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1295 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1296 		    first->is_vdev, first->is_target_offset,
1297 		    abd_get_offset(zio->io_abd, 0),
1298 		    zio->io_size, zio->io_type, zio->io_priority, 0,
1299 		    vdev_indirect_child_io_done, zio));
1300 	} else {
1301 		iv->iv_split_block = B_TRUE;
1302 		if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1303 			/*
1304 			 * Read all copies.  Note that for simplicity,
1305 			 * we don't bother consulting the DTL in the
1306 			 * resilver case.
1307 			 */
1308 			vdev_indirect_read_all(zio);
1309 		} else {
1310 			/*
1311 			 * Read one copy of each split segment, from the
1312 			 * top-level vdev.  Since we don't know the
1313 			 * checksum of each split individually, the child
1314 			 * zio can't ensure that we get the right data.
1315 			 * E.g. if it's a mirror, it will just read from a
1316 			 * random (healthy) leaf vdev.  We have to verify
1317 			 * the checksum in vdev_indirect_io_done().
1318 			 */
1319 			for (indirect_split_t *is = list_head(&iv->iv_splits);
1320 			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1321 				zio_nowait(zio_vdev_child_io(zio, NULL,
1322 				    is->is_vdev, is->is_target_offset,
1323 				    abd_get_offset(zio->io_abd,
1324 				    is->is_split_offset),
1325 				    is->is_size, zio->io_type,
1326 				    zio->io_priority, 0,
1327 				    vdev_indirect_child_io_done, zio));
1328 			}
1329 		}
1330 	}
1331 
1332 	zio_execute(zio);
1333 }
1334 
1335 /*
1336  * Report a checksum error for a child.
1337  */
1338 static void
1339 vdev_indirect_checksum_error(zio_t *zio,
1340     indirect_split_t *is, indirect_child_t *ic)
1341 {
1342 	vdev_t *vd = ic->ic_vdev;
1343 
1344 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1345 		return;
1346 
1347 	mutex_enter(&vd->vdev_stat_lock);
1348 	vd->vdev_stat.vs_checksum_errors++;
1349 	mutex_exit(&vd->vdev_stat_lock);
1350 
1351 	zio_bad_cksum_t zbc = { 0 };
1352 	void *bad_buf = abd_borrow_buf_copy(ic->ic_data, is->is_size);
1353 	abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
1354 	void *good_buf = abd_borrow_buf_copy(good_abd, is->is_size);
1355 	zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1356 	    is->is_target_offset, is->is_size, good_buf, bad_buf, &zbc);
1357 	abd_return_buf(ic->ic_data, bad_buf, is->is_size);
1358 	abd_return_buf(good_abd, good_buf, is->is_size);
1359 }
1360 
1361 /*
1362  * Issue repair i/os for any incorrect copies.  We do this by comparing
1363  * each split segment's correct data (is_good_child's ic_data) with each
1364  * other copy of the data.  If they differ, then we overwrite the bad data
1365  * with the good copy.  Note that we do this without regard for the DTL's,
1366  * which simplifies this code and also issues the optimal number of writes
1367  * (based on which copies actually read bad data, as opposed to which we
1368  * think might be wrong).  For the same reason, we always use
1369  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1370  */
1371 static void
1372 vdev_indirect_repair(zio_t *zio)
1373 {
1374 	indirect_vsd_t *iv = zio->io_vsd;
1375 
1376 	enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1377 
1378 	if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1379 		flags |= ZIO_FLAG_SELF_HEAL;
1380 
1381 	if (!spa_writeable(zio->io_spa))
1382 		return;
1383 
1384 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1385 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1386 		indirect_child_t *good_child = &is->is_child[is->is_good_child];
1387 
1388 		for (int c = 0; c < is->is_children; c++) {
1389 			indirect_child_t *ic = &is->is_child[c];
1390 			if (ic == good_child)
1391 				continue;
1392 			if (ic->ic_data == NULL)
1393 				continue;
1394 			if (abd_cmp(good_child->ic_data, ic->ic_data,
1395 			    is->is_size) == 0)
1396 				continue;
1397 
1398 			zio_nowait(zio_vdev_child_io(zio, NULL,
1399 			    ic->ic_vdev, is->is_target_offset,
1400 			    good_child->ic_data, is->is_size,
1401 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1402 			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1403 			    NULL, NULL));
1404 
1405 			vdev_indirect_checksum_error(zio, is, ic);
1406 		}
1407 	}
1408 }
1409 
1410 /*
1411  * Report checksum errors on all children that we read from.
1412  */
1413 static void
1414 vdev_indirect_all_checksum_errors(zio_t *zio)
1415 {
1416 	indirect_vsd_t *iv = zio->io_vsd;
1417 
1418 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1419 		return;
1420 
1421 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1422 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1423 		for (int c = 0; c < is->is_children; c++) {
1424 			indirect_child_t *ic = &is->is_child[c];
1425 
1426 			if (ic->ic_data == NULL)
1427 				continue;
1428 
1429 			vdev_t *vd = ic->ic_vdev;
1430 
1431 			mutex_enter(&vd->vdev_stat_lock);
1432 			vd->vdev_stat.vs_checksum_errors++;
1433 			mutex_exit(&vd->vdev_stat_lock);
1434 
1435 			zfs_ereport_post_checksum(zio->io_spa, vd, zio,
1436 			    is->is_target_offset, is->is_size,
1437 			    NULL, NULL, NULL);
1438 		}
1439 	}
1440 }
1441 
1442 /*
1443  * This function is called when we have read all copies of the data and need
1444  * to try to find a combination of copies that gives us the right checksum.
1445  *
1446  * If we pointed to any mirror vdevs, this effectively does the job of the
1447  * mirror.  The mirror vdev code can't do its own job because we don't know
1448  * the checksum of each split segment individually.  We have to try every
1449  * combination of copies of split segments, until we find one that checksums
1450  * correctly.  (Or until we have tried all combinations, or have tried
1451  * 2^zfs_reconstruct_indirect_segments_max combinations.  In these cases we
1452  * set io_error to ECKSUM to propagate the error up to the user.)
1453  *
1454  * For example, if we have 3 segments in the split,
1455  * and each points to a 2-way mirror, we will have the following pieces of
1456  * data:
1457  *
1458  *       |     mirror child
1459  * split |     [0]        [1]
1460  * ======|=====================
1461  *   A   |  data_A_0   data_A_1
1462  *   B   |  data_B_0   data_B_1
1463  *   C   |  data_C_0   data_C_1
1464  *
1465  * We will try the following (mirror children)^(number of splits) (2^3=8)
1466  * combinations, which is similar to bitwise-little-endian counting in
1467  * binary.  In general each "digit" corresponds to a split segment, and the
1468  * base of each digit is is_children, which can be different for each
1469  * digit.
1470  *
1471  * "low bit"        "high bit"
1472  *        v                 v
1473  * data_A_0 data_B_0 data_C_0
1474  * data_A_1 data_B_0 data_C_0
1475  * data_A_0 data_B_1 data_C_0
1476  * data_A_1 data_B_1 data_C_0
1477  * data_A_0 data_B_0 data_C_1
1478  * data_A_1 data_B_0 data_C_1
1479  * data_A_0 data_B_1 data_C_1
1480  * data_A_1 data_B_1 data_C_1
1481  *
1482  * Note that the split segments may be on the same or different top-level
1483  * vdevs. In either case, we try lots of combinations (see
1484  * zfs_reconstruct_indirect_segments_max).  This ensures that if a mirror has
1485  * small silent errors on all of its children, we can still reconstruct the
1486  * correct data, as long as those errors are at sufficiently-separated
1487  * offsets (specifically, separated by the largest block size - default of
1488  * 128KB, but up to 16MB).
1489  */
1490 static void
1491 vdev_indirect_reconstruct_io_done(zio_t *zio)
1492 {
1493 	indirect_vsd_t *iv = zio->io_vsd;
1494 	uint64_t attempts = 0;
1495 	uint64_t attempts_max = 1ULL << zfs_reconstruct_indirect_segments_max;
1496 	int segments = 0;
1497 
1498 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1499 	    is != NULL; is = list_next(&iv->iv_splits, is))
1500 		segments++;
1501 
1502 	for (;;) {
1503 		/* copy data from splits to main zio */
1504 		int ret;
1505 		for (indirect_split_t *is = list_head(&iv->iv_splits);
1506 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1507 
1508 			/*
1509 			 * If this child failed, its ic_data will be NULL.
1510 			 * Skip this combination.
1511 			 */
1512 			if (is->is_child[is->is_good_child].ic_data == NULL) {
1513 				ret = EIO;
1514 				goto next;
1515 			}
1516 
1517 			abd_copy_off(zio->io_abd,
1518 			    is->is_child[is->is_good_child].ic_data,
1519 			    is->is_split_offset, 0, is->is_size);
1520 		}
1521 
1522 		/* See if this checksum matches. */
1523 		zio_bad_cksum_t zbc;
1524 		ret = zio_checksum_error(zio, &zbc);
1525 		if (ret == 0) {
1526 			/* Found a matching checksum.  Issue repair i/os. */
1527 			vdev_indirect_repair(zio);
1528 			zio_checksum_verified(zio);
1529 			return;
1530 		}
1531 
1532 		/*
1533 		 * Checksum failed; try a different combination of split
1534 		 * children.
1535 		 */
1536 		boolean_t more;
1537 next:
1538 		more = B_FALSE;
1539 		if (segments <= zfs_reconstruct_indirect_segments_max) {
1540 			/*
1541 			 * There are relatively few segments, so
1542 			 * deterministically check all combinations.  We do
1543 			 * this by by adding one to the first split's
1544 			 * good_child.  If it overflows, then "carry over" to
1545 			 * the next split (like counting in base is_children,
1546 			 * but each digit can have a different base).
1547 			 */
1548 			for (indirect_split_t *is = list_head(&iv->iv_splits);
1549 			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1550 				is->is_good_child++;
1551 				if (is->is_good_child < is->is_children) {
1552 					more = B_TRUE;
1553 					break;
1554 				}
1555 				is->is_good_child = 0;
1556 			}
1557 		} else if (++attempts < attempts_max) {
1558 			/*
1559 			 * There are too many combinations to try all of them
1560 			 * in a reasonable amount of time, so try a fixed
1561 			 * number of random combinations, after which we'll
1562 			 * consider the block unrecoverable.
1563 			 */
1564 			for (indirect_split_t *is = list_head(&iv->iv_splits);
1565 			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1566 				is->is_good_child =
1567 				    spa_get_random(is->is_children);
1568 			}
1569 			more = B_TRUE;
1570 		}
1571 		if (!more) {
1572 			/* All combinations failed. */
1573 			zio->io_error = ret;
1574 			vdev_indirect_all_checksum_errors(zio);
1575 			zio_checksum_verified(zio);
1576 			return;
1577 		}
1578 	}
1579 }
1580 
1581 static void
1582 vdev_indirect_io_done(zio_t *zio)
1583 {
1584 	indirect_vsd_t *iv = zio->io_vsd;
1585 
1586 	if (iv->iv_reconstruct) {
1587 		/*
1588 		 * We have read all copies of the data (e.g. from mirrors),
1589 		 * either because this was a scrub/resilver, or because the
1590 		 * one-copy read didn't checksum correctly.
1591 		 */
1592 		vdev_indirect_reconstruct_io_done(zio);
1593 		return;
1594 	}
1595 
1596 	if (!iv->iv_split_block) {
1597 		/*
1598 		 * This was not a split block, so we passed the BP down,
1599 		 * and the checksum was handled by the (one) child zio.
1600 		 */
1601 		return;
1602 	}
1603 
1604 	zio_bad_cksum_t zbc;
1605 	int ret = zio_checksum_error(zio, &zbc);
1606 	if (ret == 0) {
1607 		zio_checksum_verified(zio);
1608 		return;
1609 	}
1610 
1611 	/*
1612 	 * The checksum didn't match.  Read all copies of all splits, and
1613 	 * then we will try to reconstruct.  The next time
1614 	 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1615 	 */
1616 	vdev_indirect_read_all(zio);
1617 
1618 	zio_vdev_io_redone(zio);
1619 }
1620 
1621 vdev_ops_t vdev_indirect_ops = {
1622 	vdev_indirect_open,
1623 	vdev_indirect_close,
1624 	vdev_default_asize,
1625 	vdev_indirect_io_start,
1626 	vdev_indirect_io_done,
1627 	NULL,
1628 	NULL,
1629 	NULL,
1630 	vdev_indirect_remap,
1631 	NULL,
1632 	VDEV_TYPE_INDIRECT,	/* name of this vdev type */
1633 	B_FALSE			/* leaf vdev */
1634 };
1635