xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev_disk.c (revision f6f4cb8ada400367a1921f6b93fb9e02f53ac5e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/refcount.h>
29 #include <sys/vdev_disk.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/fs/zfs.h>
32 #include <sys/zio.h>
33 #include <sys/sunldi.h>
34 #include <sys/fm/fs/zfs.h>
35 
36 /*
37  * Virtual device vector for disks.
38  */
39 
40 extern ldi_ident_t zfs_li;
41 
42 typedef struct vdev_disk_buf {
43 	buf_t	vdb_buf;
44 	zio_t	*vdb_io;
45 } vdev_disk_buf_t;
46 
47 static int
48 vdev_disk_open_common(vdev_t *vd)
49 {
50 	vdev_disk_t *dvd;
51 	dev_t dev;
52 	int error;
53 
54 	/*
55 	 * We must have a pathname, and it must be absolute.
56 	 */
57 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
58 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
59 		return (EINVAL);
60 	}
61 
62 	dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
63 
64 	/*
65 	 * When opening a disk device, we want to preserve the user's original
66 	 * intent.  We always want to open the device by the path the user gave
67 	 * us, even if it is one of multiple paths to the save device.  But we
68 	 * also want to be able to survive disks being removed/recabled.
69 	 * Therefore the sequence of opening devices is:
70 	 *
71 	 * 1. Try opening the device by path.  For legacy pools without the
72 	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
73 	 *
74 	 * 2. If the devid of the device matches the stored value, return
75 	 *    success.
76 	 *
77 	 * 3. Otherwise, the device may have moved.  Try opening the device
78 	 *    by the devid instead.
79 	 *
80 	 * If the vdev is part of the root pool, we avoid opening it by path.
81 	 * We do this because there is no /dev path available early in boot,
82 	 * and if we try to open the device by path at a later point, we can
83 	 * deadlock when devfsadm attempts to open the underlying backing store
84 	 * file.
85 	 */
86 	if (vd->vdev_devid != NULL) {
87 		if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
88 		    &dvd->vd_minor) != 0) {
89 			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
90 			return (EINVAL);
91 		}
92 	}
93 
94 	error = EINVAL;		/* presume failure */
95 
96 	if (vd->vdev_path != NULL && !spa_is_root(vd->vdev_spa)) {
97 		ddi_devid_t devid;
98 
99 		if (vd->vdev_wholedisk == -1ULL) {
100 			size_t len = strlen(vd->vdev_path) + 3;
101 			char *buf = kmem_alloc(len, KM_SLEEP);
102 			ldi_handle_t lh;
103 
104 			(void) snprintf(buf, len, "%ss0", vd->vdev_path);
105 
106 			if (ldi_open_by_name(buf, spa_mode, kcred,
107 			    &lh, zfs_li) == 0) {
108 				spa_strfree(vd->vdev_path);
109 				vd->vdev_path = buf;
110 				vd->vdev_wholedisk = 1ULL;
111 				(void) ldi_close(lh, spa_mode, kcred);
112 			} else {
113 				kmem_free(buf, len);
114 			}
115 		}
116 
117 		error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
118 		    &dvd->vd_lh, zfs_li);
119 
120 		/*
121 		 * Compare the devid to the stored value.
122 		 */
123 		if (error == 0 && vd->vdev_devid != NULL &&
124 		    ldi_get_devid(dvd->vd_lh, &devid) == 0) {
125 			if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
126 				error = EINVAL;
127 				(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
128 				dvd->vd_lh = NULL;
129 			}
130 			ddi_devid_free(devid);
131 		}
132 
133 		/*
134 		 * If we succeeded in opening the device, but 'vdev_wholedisk'
135 		 * is not yet set, then this must be a slice.
136 		 */
137 		if (error == 0 && vd->vdev_wholedisk == -1ULL)
138 			vd->vdev_wholedisk = 0;
139 	}
140 
141 	/*
142 	 * If we were unable to open by path, or the devid check fails, open by
143 	 * devid instead.
144 	 */
145 	if (error != 0 && vd->vdev_devid != NULL)
146 		error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
147 		    spa_mode, kcred, &dvd->vd_lh, zfs_li);
148 
149 	/*
150 	 * If all else fails, then try opening by physical path (if available)
151 	 * or the logical path (if we failed due to the devid check).  While not
152 	 * as reliable as the devid, this will give us something, and the higher
153 	 * level vdev validation will prevent us from opening the wrong device.
154 	 */
155 	if (error) {
156 		if (vd->vdev_physpath != NULL &&
157 		    (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV)
158 			error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode,
159 			    kcred, &dvd->vd_lh, zfs_li);
160 
161 		/*
162 		 * Note that we don't support the legacy auto-wholedisk support
163 		 * as above.  This hasn't been used in a very long time and we
164 		 * don't need to propagate its oddities to this edge condition.
165 		 */
166 		if (error && vd->vdev_path != NULL &&
167 		    !spa_is_root(vd->vdev_spa))
168 			error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
169 			    &dvd->vd_lh, zfs_li);
170 	}
171 
172 	if (error)
173 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
174 
175 	return (error);
176 }
177 
178 static int
179 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
180 {
181 	vdev_disk_t *dvd;
182 	struct dk_minfo dkm;
183 	int error;
184 	dev_t dev;
185 	int otyp;
186 
187 	error = vdev_disk_open_common(vd);
188 	if (error)
189 		return (error);
190 
191 	dvd = vd->vdev_tsd;
192 	/*
193 	 * Once a device is opened, verify that the physical device path (if
194 	 * available) is up to date.
195 	 */
196 	if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
197 	    ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
198 		char *physpath, *minorname;
199 
200 		physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
201 		minorname = NULL;
202 		if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
203 		    ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
204 		    (vd->vdev_physpath == NULL ||
205 		    strcmp(vd->vdev_physpath, physpath) != 0)) {
206 			if (vd->vdev_physpath)
207 				spa_strfree(vd->vdev_physpath);
208 			(void) strlcat(physpath, ":", MAXPATHLEN);
209 			(void) strlcat(physpath, minorname, MAXPATHLEN);
210 			vd->vdev_physpath = spa_strdup(physpath);
211 		}
212 		if (minorname)
213 			kmem_free(minorname, strlen(minorname) + 1);
214 		kmem_free(physpath, MAXPATHLEN);
215 	}
216 
217 	/*
218 	 * Determine the actual size of the device.
219 	 */
220 	if (ldi_get_size(dvd->vd_lh, psize) != 0) {
221 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
222 		return (EINVAL);
223 	}
224 
225 	/*
226 	 * If we own the whole disk, try to enable disk write caching.
227 	 * We ignore errors because it's OK if we can't do it.
228 	 */
229 	if (vd->vdev_wholedisk == 1) {
230 		int wce = 1;
231 		(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
232 		    FKIOCTL, kcred, NULL);
233 	}
234 
235 	/*
236 	 * Determine the device's minimum transfer size.
237 	 * If the ioctl isn't supported, assume DEV_BSIZE.
238 	 */
239 	if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm,
240 	    FKIOCTL, kcred, NULL) != 0)
241 		dkm.dki_lbsize = DEV_BSIZE;
242 
243 	*ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1;
244 
245 	/*
246 	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
247 	 * try again.
248 	 */
249 	vd->vdev_nowritecache = B_FALSE;
250 
251 	return (0);
252 }
253 
254 static void
255 vdev_disk_close(vdev_t *vd)
256 {
257 	vdev_disk_t *dvd = vd->vdev_tsd;
258 
259 	if (dvd == NULL)
260 		return;
261 
262 	if (dvd->vd_minor != NULL)
263 		ddi_devid_str_free(dvd->vd_minor);
264 
265 	if (dvd->vd_devid != NULL)
266 		ddi_devid_free(dvd->vd_devid);
267 
268 	if (dvd->vd_lh != NULL)
269 		(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
270 
271 	kmem_free(dvd, sizeof (vdev_disk_t));
272 	vd->vdev_tsd = NULL;
273 }
274 
275 int
276 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size,
277     uint64_t offset, int flags)
278 {
279 	buf_t *bp;
280 	int error = 0;
281 
282 	if (vd_lh == NULL)
283 		return (EINVAL);
284 
285 	ASSERT(flags & B_READ || flags & B_WRITE);
286 
287 	bp = getrbuf(KM_SLEEP);
288 	bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
289 	bp->b_bcount = size;
290 	bp->b_un.b_addr = (void *)data;
291 	bp->b_lblkno = lbtodb(offset);
292 	bp->b_bufsize = size;
293 
294 	error = ldi_strategy(vd_lh, bp);
295 	ASSERT(error == 0);
296 	if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
297 		error = EIO;
298 	freerbuf(bp);
299 
300 	return (error);
301 }
302 
303 static int
304 vdev_disk_probe_io(vdev_t *vd, caddr_t data, size_t size, uint64_t offset,
305     int flags)
306 {
307 	int error = 0;
308 	vdev_disk_t *dvd = vd ? vd->vdev_tsd : NULL;
309 
310 	if (vd == NULL || dvd == NULL || dvd->vd_lh == NULL)
311 		return (EINVAL);
312 
313 	error = vdev_disk_physio(dvd->vd_lh, data, size, offset, flags);
314 
315 	if (zio_injection_enabled && error == 0)
316 		error = zio_handle_device_injection(vd, EIO);
317 
318 	return (error);
319 }
320 
321 /*
322  * Determine if the underlying device is accessible by reading and writing
323  * to a known location. We must be able to do this during syncing context
324  * and thus we cannot set the vdev state directly.
325  */
326 static int
327 vdev_disk_probe(vdev_t *vd)
328 {
329 	uint64_t offset;
330 	vdev_t *nvd;
331 	int l, error = 0, retries = 0;
332 	char *vl_pad;
333 
334 	if (vd == NULL)
335 		return (EINVAL);
336 
337 	/* Hijack the current vdev */
338 	nvd = vd;
339 
340 	/*
341 	 * Pick a random label to rewrite.
342 	 */
343 	l = spa_get_random(VDEV_LABELS);
344 	ASSERT(l < VDEV_LABELS);
345 
346 	offset = vdev_label_offset(vd->vdev_psize, l,
347 	    offsetof(vdev_label_t, vl_pad));
348 
349 	vl_pad = kmem_alloc(VDEV_SKIP_SIZE, KM_SLEEP);
350 
351 	/*
352 	 * Try to read and write to a special location on the
353 	 * label. We use the existing vdev initially and only
354 	 * try to create and reopen it if we encounter a failure.
355 	 */
356 	while ((error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
357 	    offset, B_READ)) != 0 && retries == 0) {
358 
359 		nvd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
360 		if (vd->vdev_path)
361 			nvd->vdev_path = spa_strdup(vd->vdev_path);
362 		if (vd->vdev_physpath)
363 			nvd->vdev_physpath = spa_strdup(vd->vdev_physpath);
364 		if (vd->vdev_devid)
365 			nvd->vdev_devid = spa_strdup(vd->vdev_devid);
366 		nvd->vdev_wholedisk = vd->vdev_wholedisk;
367 		nvd->vdev_guid = vd->vdev_guid;
368 		nvd->vdev_spa = vd->vdev_spa;
369 		retries++;
370 
371 		error = vdev_disk_open_common(nvd);
372 		if (error)
373 			break;
374 	}
375 
376 	if (!error) {
377 		error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
378 		    offset, B_WRITE);
379 	}
380 
381 	/* Clean up if we allocated a new vdev */
382 	if (retries) {
383 		vdev_disk_close(nvd);
384 		if (nvd->vdev_path)
385 			spa_strfree(nvd->vdev_path);
386 		if (nvd->vdev_physpath)
387 			spa_strfree(nvd->vdev_physpath);
388 		if (nvd->vdev_devid)
389 			spa_strfree(nvd->vdev_devid);
390 		kmem_free(nvd, sizeof (vdev_t));
391 	}
392 	kmem_free(vl_pad, VDEV_SKIP_SIZE);
393 
394 	/* Reset the failing flag */
395 	if (!error)
396 		vd->vdev_is_failing = B_FALSE;
397 
398 	return (error);
399 }
400 
401 static void
402 vdev_disk_io_intr(buf_t *bp)
403 {
404 	vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp;
405 	zio_t *zio = vdb->vdb_io;
406 
407 	/*
408 	 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO.
409 	 * Rather than teach the rest of the stack about other error
410 	 * possibilities (EFAULT, etc), we normalize the error value here.
411 	 */
412 	zio->io_error = (geterror(bp) != 0 ? EIO : 0);
413 
414 	if (zio->io_error == 0 && bp->b_resid != 0)
415 		zio->io_error = EIO;
416 
417 	kmem_free(vdb, sizeof (vdev_disk_buf_t));
418 
419 	zio_interrupt(zio);
420 }
421 
422 static void
423 vdev_disk_ioctl_done(void *zio_arg, int error)
424 {
425 	zio_t *zio = zio_arg;
426 
427 	zio->io_error = error;
428 
429 	zio_interrupt(zio);
430 }
431 
432 static int
433 vdev_disk_io_start(zio_t *zio)
434 {
435 	vdev_t *vd = zio->io_vd;
436 	vdev_disk_t *dvd = vd->vdev_tsd;
437 	vdev_disk_buf_t *vdb;
438 	buf_t *bp;
439 	int flags, error;
440 
441 	if (zio->io_type == ZIO_TYPE_IOCTL) {
442 		zio_vdev_io_bypass(zio);
443 
444 		/* XXPOLICY */
445 		if (!vdev_readable(vd)) {
446 			zio->io_error = ENXIO;
447 			return (ZIO_PIPELINE_CONTINUE);
448 		}
449 
450 		switch (zio->io_cmd) {
451 
452 		case DKIOCFLUSHWRITECACHE:
453 
454 			if (zfs_nocacheflush)
455 				break;
456 
457 			if (vd->vdev_nowritecache) {
458 				zio->io_error = ENOTSUP;
459 				break;
460 			}
461 
462 			zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done;
463 			zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE;
464 			zio->io_dk_callback.dkc_cookie = zio;
465 
466 			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
467 			    (uintptr_t)&zio->io_dk_callback,
468 			    FKIOCTL, kcred, NULL);
469 
470 			if (error == 0) {
471 				/*
472 				 * The ioctl will be done asychronously,
473 				 * and will call vdev_disk_ioctl_done()
474 				 * upon completion.
475 				 */
476 				return (ZIO_PIPELINE_STOP);
477 			}
478 
479 			if (error == ENOTSUP || error == ENOTTY) {
480 				/*
481 				 * If we get ENOTSUP or ENOTTY, we know that
482 				 * no future attempts will ever succeed.
483 				 * In this case we set a persistent bit so
484 				 * that we don't bother with the ioctl in the
485 				 * future.
486 				 */
487 				vd->vdev_nowritecache = B_TRUE;
488 			}
489 			zio->io_error = error;
490 
491 			break;
492 
493 		default:
494 			zio->io_error = ENOTSUP;
495 		}
496 
497 		return (ZIO_PIPELINE_CONTINUE);
498 	}
499 
500 	if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
501 		return (ZIO_PIPELINE_STOP);
502 
503 	if ((zio = vdev_queue_io(zio)) == NULL)
504 		return (ZIO_PIPELINE_STOP);
505 
506 	if (zio->io_type == ZIO_TYPE_WRITE)
507 		error = vdev_writeable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
508 	else
509 		error = vdev_readable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
510 	error = (vd->vdev_remove_wanted || vd->vdev_is_failing) ? ENXIO : error;
511 
512 	if (error) {
513 		zio->io_error = error;
514 		zio_interrupt(zio);
515 		return (ZIO_PIPELINE_STOP);
516 	}
517 
518 	flags = (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
519 	flags |= B_BUSY | B_NOCACHE;
520 	if (zio->io_flags & ZIO_FLAG_FAILFAST)
521 		flags |= B_FAILFAST;
522 
523 	vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP);
524 
525 	vdb->vdb_io = zio;
526 	bp = &vdb->vdb_buf;
527 
528 	bioinit(bp);
529 	bp->b_flags = flags;
530 	bp->b_bcount = zio->io_size;
531 	bp->b_un.b_addr = zio->io_data;
532 	bp->b_lblkno = lbtodb(zio->io_offset);
533 	bp->b_bufsize = zio->io_size;
534 	bp->b_iodone = (int (*)())vdev_disk_io_intr;
535 
536 	error = ldi_strategy(dvd->vd_lh, bp);
537 	/* ldi_strategy() will return non-zero only on programming errors */
538 	ASSERT(error == 0);
539 
540 	return (ZIO_PIPELINE_STOP);
541 }
542 
543 static int
544 vdev_disk_io_done(zio_t *zio)
545 {
546 	vdev_queue_io_done(zio);
547 
548 	if (zio->io_type == ZIO_TYPE_WRITE)
549 		vdev_cache_write(zio);
550 
551 	if (zio_injection_enabled && zio->io_error == 0)
552 		zio->io_error = zio_handle_device_injection(zio->io_vd, EIO);
553 
554 	/*
555 	 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
556 	 * the device has been removed.  If this is the case, then we trigger an
557 	 * asynchronous removal of the device. Otherwise, probe the device and
558 	 * make sure it's still accessible.
559 	 */
560 	if (zio->io_error == EIO) {
561 		vdev_t *vd = zio->io_vd;
562 		vdev_disk_t *dvd = vd->vdev_tsd;
563 		int state;
564 
565 		state = DKIO_NONE;
566 		if (dvd && ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
567 		    FKIOCTL, kcred, NULL) == 0 &&
568 		    state != DKIO_INSERTED) {
569 			vd->vdev_remove_wanted = B_TRUE;
570 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
571 		} else if (vdev_probe(vd) != 0) {
572 			ASSERT(vd->vdev_ops->vdev_op_leaf);
573 			if (!vd->vdev_is_failing) {
574 				vd->vdev_is_failing = B_TRUE;
575 				zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
576 				    vd->vdev_spa, vd, zio, 0, 0);
577 			}
578 		}
579 	}
580 
581 	if (zio_injection_enabled && zio->io_error == 0)
582 		zio->io_error = zio_handle_label_injection(zio, EIO);
583 
584 	return (ZIO_PIPELINE_CONTINUE);
585 }
586 
587 vdev_ops_t vdev_disk_ops = {
588 	vdev_disk_open,
589 	vdev_disk_close,
590 	vdev_disk_probe,
591 	vdev_default_asize,
592 	vdev_disk_io_start,
593 	vdev_disk_io_done,
594 	NULL,
595 	VDEV_TYPE_DISK,		/* name of this vdev type */
596 	B_TRUE			/* leaf vdev */
597 };
598 
599 /*
600  * Given the root disk device devid or pathname, read the label from
601  * the device, and construct a configuration nvlist.
602  */
603 int
604 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
605 {
606 	ldi_handle_t vd_lh;
607 	vdev_label_t *label;
608 	uint64_t s, size;
609 	int l;
610 	ddi_devid_t tmpdevid;
611 	int error = 0;
612 	char *minor_name;
613 
614 	/*
615 	 * Read the device label and build the nvlist.
616 	 */
617 	if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid,
618 	    &minor_name) == 0) {
619 		error = ldi_open_by_devid(tmpdevid, minor_name,
620 		    spa_mode, kcred, &vd_lh, zfs_li);
621 		ddi_devid_free(tmpdevid);
622 		ddi_devid_str_free(minor_name);
623 	}
624 
625 	if (error && (error = ldi_open_by_name(devpath, FREAD, kcred,
626 	    &vd_lh, zfs_li)) != 0)
627 		return (error);
628 
629 	if (ldi_get_size(vd_lh, &s)) {
630 		(void) ldi_close(vd_lh, FREAD, kcred);
631 		return (EIO);
632 	}
633 
634 	size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
635 	label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
636 
637 	for (l = 0; l < VDEV_LABELS; l++) {
638 		uint64_t offset, state, txg = 0;
639 
640 		/* read vdev label */
641 		offset = vdev_label_offset(size, l, 0);
642 		if (vdev_disk_physio(vd_lh, (caddr_t)label,
643 		    VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE +
644 		    VDEV_PHYS_SIZE, offset, B_READ) != 0)
645 			continue;
646 
647 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
648 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
649 			*config = NULL;
650 			continue;
651 		}
652 
653 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
654 		    &state) != 0 || state >= POOL_STATE_DESTROYED) {
655 			nvlist_free(*config);
656 			*config = NULL;
657 			continue;
658 		}
659 
660 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
661 		    &txg) != 0 || txg == 0) {
662 			nvlist_free(*config);
663 			*config = NULL;
664 			continue;
665 		}
666 
667 		break;
668 	}
669 
670 	kmem_free(label, sizeof (vdev_label_t));
671 	(void) ldi_close(vd_lh, FREAD, kcred);
672 
673 	return (error);
674 }
675