1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/abd.h> 49 50 /* 51 * Virtual device management. 52 */ 53 54 static vdev_ops_t *vdev_ops_table[] = { 55 &vdev_root_ops, 56 &vdev_raidz_ops, 57 &vdev_mirror_ops, 58 &vdev_replacing_ops, 59 &vdev_spare_ops, 60 &vdev_disk_ops, 61 &vdev_file_ops, 62 &vdev_missing_ops, 63 &vdev_hole_ops, 64 NULL 65 }; 66 67 /* maximum scrub/resilver I/O queue per leaf vdev */ 68 int zfs_scrub_limit = 10; 69 70 /* 71 * When a vdev is added, it will be divided into approximately (but no 72 * more than) this number of metaslabs. 73 */ 74 int metaslabs_per_vdev = 200; 75 76 /* 77 * Given a vdev type, return the appropriate ops vector. 78 */ 79 static vdev_ops_t * 80 vdev_getops(const char *type) 81 { 82 vdev_ops_t *ops, **opspp; 83 84 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 85 if (strcmp(ops->vdev_op_type, type) == 0) 86 break; 87 88 return (ops); 89 } 90 91 /* 92 * Default asize function: return the MAX of psize with the asize of 93 * all children. This is what's used by anything other than RAID-Z. 94 */ 95 uint64_t 96 vdev_default_asize(vdev_t *vd, uint64_t psize) 97 { 98 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 99 uint64_t csize; 100 101 for (int c = 0; c < vd->vdev_children; c++) { 102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 103 asize = MAX(asize, csize); 104 } 105 106 return (asize); 107 } 108 109 /* 110 * Get the minimum allocatable size. We define the allocatable size as 111 * the vdev's asize rounded to the nearest metaslab. This allows us to 112 * replace or attach devices which don't have the same physical size but 113 * can still satisfy the same number of allocations. 114 */ 115 uint64_t 116 vdev_get_min_asize(vdev_t *vd) 117 { 118 vdev_t *pvd = vd->vdev_parent; 119 120 /* 121 * If our parent is NULL (inactive spare or cache) or is the root, 122 * just return our own asize. 123 */ 124 if (pvd == NULL) 125 return (vd->vdev_asize); 126 127 /* 128 * The top-level vdev just returns the allocatable size rounded 129 * to the nearest metaslab. 130 */ 131 if (vd == vd->vdev_top) 132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 133 134 /* 135 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 136 * so each child must provide at least 1/Nth of its asize. 137 */ 138 if (pvd->vdev_ops == &vdev_raidz_ops) 139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 140 pvd->vdev_children); 141 142 return (pvd->vdev_min_asize); 143 } 144 145 void 146 vdev_set_min_asize(vdev_t *vd) 147 { 148 vd->vdev_min_asize = vdev_get_min_asize(vd); 149 150 for (int c = 0; c < vd->vdev_children; c++) 151 vdev_set_min_asize(vd->vdev_child[c]); 152 } 153 154 vdev_t * 155 vdev_lookup_top(spa_t *spa, uint64_t vdev) 156 { 157 vdev_t *rvd = spa->spa_root_vdev; 158 159 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 160 161 if (vdev < rvd->vdev_children) { 162 ASSERT(rvd->vdev_child[vdev] != NULL); 163 return (rvd->vdev_child[vdev]); 164 } 165 166 return (NULL); 167 } 168 169 vdev_t * 170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 171 { 172 vdev_t *mvd; 173 174 if (vd->vdev_guid == guid) 175 return (vd); 176 177 for (int c = 0; c < vd->vdev_children; c++) 178 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 179 NULL) 180 return (mvd); 181 182 return (NULL); 183 } 184 185 static int 186 vdev_count_leaves_impl(vdev_t *vd) 187 { 188 int n = 0; 189 190 if (vd->vdev_ops->vdev_op_leaf) 191 return (1); 192 193 for (int c = 0; c < vd->vdev_children; c++) 194 n += vdev_count_leaves_impl(vd->vdev_child[c]); 195 196 return (n); 197 } 198 199 int 200 vdev_count_leaves(spa_t *spa) 201 { 202 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 203 } 204 205 void 206 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 207 { 208 size_t oldsize, newsize; 209 uint64_t id = cvd->vdev_id; 210 vdev_t **newchild; 211 spa_t *spa = cvd->vdev_spa; 212 213 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 214 ASSERT(cvd->vdev_parent == NULL); 215 216 cvd->vdev_parent = pvd; 217 218 if (pvd == NULL) 219 return; 220 221 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 222 223 oldsize = pvd->vdev_children * sizeof (vdev_t *); 224 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 225 newsize = pvd->vdev_children * sizeof (vdev_t *); 226 227 newchild = kmem_zalloc(newsize, KM_SLEEP); 228 if (pvd->vdev_child != NULL) { 229 bcopy(pvd->vdev_child, newchild, oldsize); 230 kmem_free(pvd->vdev_child, oldsize); 231 } 232 233 pvd->vdev_child = newchild; 234 pvd->vdev_child[id] = cvd; 235 236 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 237 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 238 239 /* 240 * Walk up all ancestors to update guid sum. 241 */ 242 for (; pvd != NULL; pvd = pvd->vdev_parent) 243 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 244 } 245 246 void 247 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 248 { 249 int c; 250 uint_t id = cvd->vdev_id; 251 252 ASSERT(cvd->vdev_parent == pvd); 253 254 if (pvd == NULL) 255 return; 256 257 ASSERT(id < pvd->vdev_children); 258 ASSERT(pvd->vdev_child[id] == cvd); 259 260 pvd->vdev_child[id] = NULL; 261 cvd->vdev_parent = NULL; 262 263 for (c = 0; c < pvd->vdev_children; c++) 264 if (pvd->vdev_child[c]) 265 break; 266 267 if (c == pvd->vdev_children) { 268 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 269 pvd->vdev_child = NULL; 270 pvd->vdev_children = 0; 271 } 272 273 /* 274 * Walk up all ancestors to update guid sum. 275 */ 276 for (; pvd != NULL; pvd = pvd->vdev_parent) 277 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 278 } 279 280 /* 281 * Remove any holes in the child array. 282 */ 283 void 284 vdev_compact_children(vdev_t *pvd) 285 { 286 vdev_t **newchild, *cvd; 287 int oldc = pvd->vdev_children; 288 int newc; 289 290 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 291 292 for (int c = newc = 0; c < oldc; c++) 293 if (pvd->vdev_child[c]) 294 newc++; 295 296 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 297 298 for (int c = newc = 0; c < oldc; c++) { 299 if ((cvd = pvd->vdev_child[c]) != NULL) { 300 newchild[newc] = cvd; 301 cvd->vdev_id = newc++; 302 } 303 } 304 305 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 306 pvd->vdev_child = newchild; 307 pvd->vdev_children = newc; 308 } 309 310 /* 311 * Allocate and minimally initialize a vdev_t. 312 */ 313 vdev_t * 314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 315 { 316 vdev_t *vd; 317 318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 319 320 if (spa->spa_root_vdev == NULL) { 321 ASSERT(ops == &vdev_root_ops); 322 spa->spa_root_vdev = vd; 323 spa->spa_load_guid = spa_generate_guid(NULL); 324 } 325 326 if (guid == 0 && ops != &vdev_hole_ops) { 327 if (spa->spa_root_vdev == vd) { 328 /* 329 * The root vdev's guid will also be the pool guid, 330 * which must be unique among all pools. 331 */ 332 guid = spa_generate_guid(NULL); 333 } else { 334 /* 335 * Any other vdev's guid must be unique within the pool. 336 */ 337 guid = spa_generate_guid(spa); 338 } 339 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 340 } 341 342 vd->vdev_spa = spa; 343 vd->vdev_id = id; 344 vd->vdev_guid = guid; 345 vd->vdev_guid_sum = guid; 346 vd->vdev_ops = ops; 347 vd->vdev_state = VDEV_STATE_CLOSED; 348 vd->vdev_ishole = (ops == &vdev_hole_ops); 349 350 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 351 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 352 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 353 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 354 for (int t = 0; t < DTL_TYPES; t++) { 355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 356 &vd->vdev_dtl_lock); 357 } 358 txg_list_create(&vd->vdev_ms_list, 359 offsetof(struct metaslab, ms_txg_node)); 360 txg_list_create(&vd->vdev_dtl_list, 361 offsetof(struct vdev, vdev_dtl_node)); 362 vd->vdev_stat.vs_timestamp = gethrtime(); 363 vdev_queue_init(vd); 364 vdev_cache_init(vd); 365 366 return (vd); 367 } 368 369 /* 370 * Allocate a new vdev. The 'alloctype' is used to control whether we are 371 * creating a new vdev or loading an existing one - the behavior is slightly 372 * different for each case. 373 */ 374 int 375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 376 int alloctype) 377 { 378 vdev_ops_t *ops; 379 char *type; 380 uint64_t guid = 0, islog, nparity; 381 vdev_t *vd; 382 383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 384 385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 386 return (SET_ERROR(EINVAL)); 387 388 if ((ops = vdev_getops(type)) == NULL) 389 return (SET_ERROR(EINVAL)); 390 391 /* 392 * If this is a load, get the vdev guid from the nvlist. 393 * Otherwise, vdev_alloc_common() will generate one for us. 394 */ 395 if (alloctype == VDEV_ALLOC_LOAD) { 396 uint64_t label_id; 397 398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 399 label_id != id) 400 return (SET_ERROR(EINVAL)); 401 402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 403 return (SET_ERROR(EINVAL)); 404 } else if (alloctype == VDEV_ALLOC_SPARE) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 406 return (SET_ERROR(EINVAL)); 407 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 409 return (SET_ERROR(EINVAL)); 410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 412 return (SET_ERROR(EINVAL)); 413 } 414 415 /* 416 * The first allocated vdev must be of type 'root'. 417 */ 418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 419 return (SET_ERROR(EINVAL)); 420 421 /* 422 * Determine whether we're a log vdev. 423 */ 424 islog = 0; 425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 427 return (SET_ERROR(ENOTSUP)); 428 429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 430 return (SET_ERROR(ENOTSUP)); 431 432 /* 433 * Set the nparity property for RAID-Z vdevs. 434 */ 435 nparity = -1ULL; 436 if (ops == &vdev_raidz_ops) { 437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 438 &nparity) == 0) { 439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 440 return (SET_ERROR(EINVAL)); 441 /* 442 * Previous versions could only support 1 or 2 parity 443 * device. 444 */ 445 if (nparity > 1 && 446 spa_version(spa) < SPA_VERSION_RAIDZ2) 447 return (SET_ERROR(ENOTSUP)); 448 if (nparity > 2 && 449 spa_version(spa) < SPA_VERSION_RAIDZ3) 450 return (SET_ERROR(ENOTSUP)); 451 } else { 452 /* 453 * We require the parity to be specified for SPAs that 454 * support multiple parity levels. 455 */ 456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 457 return (SET_ERROR(EINVAL)); 458 /* 459 * Otherwise, we default to 1 parity device for RAID-Z. 460 */ 461 nparity = 1; 462 } 463 } else { 464 nparity = 0; 465 } 466 ASSERT(nparity != -1ULL); 467 468 vd = vdev_alloc_common(spa, id, guid, ops); 469 470 vd->vdev_islog = islog; 471 vd->vdev_nparity = nparity; 472 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 474 vd->vdev_path = spa_strdup(vd->vdev_path); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 476 vd->vdev_devid = spa_strdup(vd->vdev_devid); 477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 478 &vd->vdev_physpath) == 0) 479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 481 vd->vdev_fru = spa_strdup(vd->vdev_fru); 482 483 /* 484 * Set the whole_disk property. If it's not specified, leave the value 485 * as -1. 486 */ 487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 488 &vd->vdev_wholedisk) != 0) 489 vd->vdev_wholedisk = -1ULL; 490 491 /* 492 * Look for the 'not present' flag. This will only be set if the device 493 * was not present at the time of import. 494 */ 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 496 &vd->vdev_not_present); 497 498 /* 499 * Get the alignment requirement. 500 */ 501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 502 503 /* 504 * Retrieve the vdev creation time. 505 */ 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 507 &vd->vdev_crtxg); 508 509 /* 510 * If we're a top-level vdev, try to load the allocation parameters. 511 */ 512 if (parent && !parent->vdev_parent && 513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 515 &vd->vdev_ms_array); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 517 &vd->vdev_ms_shift); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 519 &vd->vdev_asize); 520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 521 &vd->vdev_removing); 522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 523 &vd->vdev_top_zap); 524 } else { 525 ASSERT0(vd->vdev_top_zap); 526 } 527 528 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 529 ASSERT(alloctype == VDEV_ALLOC_LOAD || 530 alloctype == VDEV_ALLOC_ADD || 531 alloctype == VDEV_ALLOC_SPLIT || 532 alloctype == VDEV_ALLOC_ROOTPOOL); 533 vd->vdev_mg = metaslab_group_create(islog ? 534 spa_log_class(spa) : spa_normal_class(spa), vd); 535 } 536 537 if (vd->vdev_ops->vdev_op_leaf && 538 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 539 (void) nvlist_lookup_uint64(nv, 540 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 541 } else { 542 ASSERT0(vd->vdev_leaf_zap); 543 } 544 545 /* 546 * If we're a leaf vdev, try to load the DTL object and other state. 547 */ 548 549 if (vd->vdev_ops->vdev_op_leaf && 550 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 551 alloctype == VDEV_ALLOC_ROOTPOOL)) { 552 if (alloctype == VDEV_ALLOC_LOAD) { 553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 554 &vd->vdev_dtl_object); 555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 556 &vd->vdev_unspare); 557 } 558 559 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 560 uint64_t spare = 0; 561 562 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 563 &spare) == 0 && spare) 564 spa_spare_add(vd); 565 } 566 567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 568 &vd->vdev_offline); 569 570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 571 &vd->vdev_resilver_txg); 572 573 /* 574 * When importing a pool, we want to ignore the persistent fault 575 * state, as the diagnosis made on another system may not be 576 * valid in the current context. Local vdevs will 577 * remain in the faulted state. 578 */ 579 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 581 &vd->vdev_faulted); 582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 583 &vd->vdev_degraded); 584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 585 &vd->vdev_removed); 586 587 if (vd->vdev_faulted || vd->vdev_degraded) { 588 char *aux; 589 590 vd->vdev_label_aux = 591 VDEV_AUX_ERR_EXCEEDED; 592 if (nvlist_lookup_string(nv, 593 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 594 strcmp(aux, "external") == 0) 595 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 596 } 597 } 598 } 599 600 /* 601 * Add ourselves to the parent's list of children. 602 */ 603 vdev_add_child(parent, vd); 604 605 *vdp = vd; 606 607 return (0); 608 } 609 610 void 611 vdev_free(vdev_t *vd) 612 { 613 spa_t *spa = vd->vdev_spa; 614 615 /* 616 * vdev_free() implies closing the vdev first. This is simpler than 617 * trying to ensure complicated semantics for all callers. 618 */ 619 vdev_close(vd); 620 621 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 622 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 623 624 /* 625 * Free all children. 626 */ 627 for (int c = 0; c < vd->vdev_children; c++) 628 vdev_free(vd->vdev_child[c]); 629 630 ASSERT(vd->vdev_child == NULL); 631 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 632 633 /* 634 * Discard allocation state. 635 */ 636 if (vd->vdev_mg != NULL) { 637 vdev_metaslab_fini(vd); 638 metaslab_group_destroy(vd->vdev_mg); 639 } 640 641 ASSERT0(vd->vdev_stat.vs_space); 642 ASSERT0(vd->vdev_stat.vs_dspace); 643 ASSERT0(vd->vdev_stat.vs_alloc); 644 645 /* 646 * Remove this vdev from its parent's child list. 647 */ 648 vdev_remove_child(vd->vdev_parent, vd); 649 650 ASSERT(vd->vdev_parent == NULL); 651 652 /* 653 * Clean up vdev structure. 654 */ 655 vdev_queue_fini(vd); 656 vdev_cache_fini(vd); 657 658 if (vd->vdev_path) 659 spa_strfree(vd->vdev_path); 660 if (vd->vdev_devid) 661 spa_strfree(vd->vdev_devid); 662 if (vd->vdev_physpath) 663 spa_strfree(vd->vdev_physpath); 664 if (vd->vdev_fru) 665 spa_strfree(vd->vdev_fru); 666 667 if (vd->vdev_isspare) 668 spa_spare_remove(vd); 669 if (vd->vdev_isl2cache) 670 spa_l2cache_remove(vd); 671 672 txg_list_destroy(&vd->vdev_ms_list); 673 txg_list_destroy(&vd->vdev_dtl_list); 674 675 mutex_enter(&vd->vdev_dtl_lock); 676 space_map_close(vd->vdev_dtl_sm); 677 for (int t = 0; t < DTL_TYPES; t++) { 678 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 679 range_tree_destroy(vd->vdev_dtl[t]); 680 } 681 mutex_exit(&vd->vdev_dtl_lock); 682 683 mutex_destroy(&vd->vdev_queue_lock); 684 mutex_destroy(&vd->vdev_dtl_lock); 685 mutex_destroy(&vd->vdev_stat_lock); 686 mutex_destroy(&vd->vdev_probe_lock); 687 688 if (vd == spa->spa_root_vdev) 689 spa->spa_root_vdev = NULL; 690 691 kmem_free(vd, sizeof (vdev_t)); 692 } 693 694 /* 695 * Transfer top-level vdev state from svd to tvd. 696 */ 697 static void 698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 699 { 700 spa_t *spa = svd->vdev_spa; 701 metaslab_t *msp; 702 vdev_t *vd; 703 int t; 704 705 ASSERT(tvd == tvd->vdev_top); 706 707 tvd->vdev_ms_array = svd->vdev_ms_array; 708 tvd->vdev_ms_shift = svd->vdev_ms_shift; 709 tvd->vdev_ms_count = svd->vdev_ms_count; 710 tvd->vdev_top_zap = svd->vdev_top_zap; 711 712 svd->vdev_ms_array = 0; 713 svd->vdev_ms_shift = 0; 714 svd->vdev_ms_count = 0; 715 svd->vdev_top_zap = 0; 716 717 if (tvd->vdev_mg) 718 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 719 tvd->vdev_mg = svd->vdev_mg; 720 tvd->vdev_ms = svd->vdev_ms; 721 722 svd->vdev_mg = NULL; 723 svd->vdev_ms = NULL; 724 725 if (tvd->vdev_mg != NULL) 726 tvd->vdev_mg->mg_vd = tvd; 727 728 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 729 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 730 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 731 732 svd->vdev_stat.vs_alloc = 0; 733 svd->vdev_stat.vs_space = 0; 734 svd->vdev_stat.vs_dspace = 0; 735 736 for (t = 0; t < TXG_SIZE; t++) { 737 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 738 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 739 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 740 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 741 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 742 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 743 } 744 745 if (list_link_active(&svd->vdev_config_dirty_node)) { 746 vdev_config_clean(svd); 747 vdev_config_dirty(tvd); 748 } 749 750 if (list_link_active(&svd->vdev_state_dirty_node)) { 751 vdev_state_clean(svd); 752 vdev_state_dirty(tvd); 753 } 754 755 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 756 svd->vdev_deflate_ratio = 0; 757 758 tvd->vdev_islog = svd->vdev_islog; 759 svd->vdev_islog = 0; 760 } 761 762 static void 763 vdev_top_update(vdev_t *tvd, vdev_t *vd) 764 { 765 if (vd == NULL) 766 return; 767 768 vd->vdev_top = tvd; 769 770 for (int c = 0; c < vd->vdev_children; c++) 771 vdev_top_update(tvd, vd->vdev_child[c]); 772 } 773 774 /* 775 * Add a mirror/replacing vdev above an existing vdev. 776 */ 777 vdev_t * 778 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 779 { 780 spa_t *spa = cvd->vdev_spa; 781 vdev_t *pvd = cvd->vdev_parent; 782 vdev_t *mvd; 783 784 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 785 786 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 787 788 mvd->vdev_asize = cvd->vdev_asize; 789 mvd->vdev_min_asize = cvd->vdev_min_asize; 790 mvd->vdev_max_asize = cvd->vdev_max_asize; 791 mvd->vdev_ashift = cvd->vdev_ashift; 792 mvd->vdev_state = cvd->vdev_state; 793 mvd->vdev_crtxg = cvd->vdev_crtxg; 794 795 vdev_remove_child(pvd, cvd); 796 vdev_add_child(pvd, mvd); 797 cvd->vdev_id = mvd->vdev_children; 798 vdev_add_child(mvd, cvd); 799 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 800 801 if (mvd == mvd->vdev_top) 802 vdev_top_transfer(cvd, mvd); 803 804 return (mvd); 805 } 806 807 /* 808 * Remove a 1-way mirror/replacing vdev from the tree. 809 */ 810 void 811 vdev_remove_parent(vdev_t *cvd) 812 { 813 vdev_t *mvd = cvd->vdev_parent; 814 vdev_t *pvd = mvd->vdev_parent; 815 816 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 817 818 ASSERT(mvd->vdev_children == 1); 819 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 820 mvd->vdev_ops == &vdev_replacing_ops || 821 mvd->vdev_ops == &vdev_spare_ops); 822 cvd->vdev_ashift = mvd->vdev_ashift; 823 824 vdev_remove_child(mvd, cvd); 825 vdev_remove_child(pvd, mvd); 826 827 /* 828 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 829 * Otherwise, we could have detached an offline device, and when we 830 * go to import the pool we'll think we have two top-level vdevs, 831 * instead of a different version of the same top-level vdev. 832 */ 833 if (mvd->vdev_top == mvd) { 834 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 835 cvd->vdev_orig_guid = cvd->vdev_guid; 836 cvd->vdev_guid += guid_delta; 837 cvd->vdev_guid_sum += guid_delta; 838 } 839 cvd->vdev_id = mvd->vdev_id; 840 vdev_add_child(pvd, cvd); 841 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 842 843 if (cvd == cvd->vdev_top) 844 vdev_top_transfer(mvd, cvd); 845 846 ASSERT(mvd->vdev_children == 0); 847 vdev_free(mvd); 848 } 849 850 int 851 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 852 { 853 spa_t *spa = vd->vdev_spa; 854 objset_t *mos = spa->spa_meta_objset; 855 uint64_t m; 856 uint64_t oldc = vd->vdev_ms_count; 857 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 858 metaslab_t **mspp; 859 int error; 860 861 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 862 863 /* 864 * This vdev is not being allocated from yet or is a hole. 865 */ 866 if (vd->vdev_ms_shift == 0) 867 return (0); 868 869 ASSERT(!vd->vdev_ishole); 870 871 /* 872 * Compute the raidz-deflation ratio. Note, we hard-code 873 * in 128k (1 << 17) because it is the "typical" blocksize. 874 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 875 * otherwise it would inconsistently account for existing bp's. 876 */ 877 vd->vdev_deflate_ratio = (1 << 17) / 878 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 879 880 ASSERT(oldc <= newc); 881 882 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 883 884 if (oldc != 0) { 885 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 886 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 887 } 888 889 vd->vdev_ms = mspp; 890 vd->vdev_ms_count = newc; 891 892 for (m = oldc; m < newc; m++) { 893 uint64_t object = 0; 894 895 if (txg == 0) { 896 error = dmu_read(mos, vd->vdev_ms_array, 897 m * sizeof (uint64_t), sizeof (uint64_t), &object, 898 DMU_READ_PREFETCH); 899 if (error) 900 return (error); 901 } 902 903 error = metaslab_init(vd->vdev_mg, m, object, txg, 904 &(vd->vdev_ms[m])); 905 if (error) 906 return (error); 907 } 908 909 if (txg == 0) 910 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 911 912 /* 913 * If the vdev is being removed we don't activate 914 * the metaslabs since we want to ensure that no new 915 * allocations are performed on this device. 916 */ 917 if (oldc == 0 && !vd->vdev_removing) 918 metaslab_group_activate(vd->vdev_mg); 919 920 if (txg == 0) 921 spa_config_exit(spa, SCL_ALLOC, FTAG); 922 923 return (0); 924 } 925 926 void 927 vdev_metaslab_fini(vdev_t *vd) 928 { 929 uint64_t m; 930 uint64_t count = vd->vdev_ms_count; 931 932 if (vd->vdev_ms != NULL) { 933 metaslab_group_passivate(vd->vdev_mg); 934 for (m = 0; m < count; m++) { 935 metaslab_t *msp = vd->vdev_ms[m]; 936 937 if (msp != NULL) 938 metaslab_fini(msp); 939 } 940 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 941 vd->vdev_ms = NULL; 942 } 943 } 944 945 typedef struct vdev_probe_stats { 946 boolean_t vps_readable; 947 boolean_t vps_writeable; 948 int vps_flags; 949 } vdev_probe_stats_t; 950 951 static void 952 vdev_probe_done(zio_t *zio) 953 { 954 spa_t *spa = zio->io_spa; 955 vdev_t *vd = zio->io_vd; 956 vdev_probe_stats_t *vps = zio->io_private; 957 958 ASSERT(vd->vdev_probe_zio != NULL); 959 960 if (zio->io_type == ZIO_TYPE_READ) { 961 if (zio->io_error == 0) 962 vps->vps_readable = 1; 963 if (zio->io_error == 0 && spa_writeable(spa)) { 964 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 965 zio->io_offset, zio->io_size, zio->io_abd, 966 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 967 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 968 } else { 969 abd_free(zio->io_abd); 970 } 971 } else if (zio->io_type == ZIO_TYPE_WRITE) { 972 if (zio->io_error == 0) 973 vps->vps_writeable = 1; 974 abd_free(zio->io_abd); 975 } else if (zio->io_type == ZIO_TYPE_NULL) { 976 zio_t *pio; 977 978 vd->vdev_cant_read |= !vps->vps_readable; 979 vd->vdev_cant_write |= !vps->vps_writeable; 980 981 if (vdev_readable(vd) && 982 (vdev_writeable(vd) || !spa_writeable(spa))) { 983 zio->io_error = 0; 984 } else { 985 ASSERT(zio->io_error != 0); 986 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 987 spa, vd, NULL, 0, 0); 988 zio->io_error = SET_ERROR(ENXIO); 989 } 990 991 mutex_enter(&vd->vdev_probe_lock); 992 ASSERT(vd->vdev_probe_zio == zio); 993 vd->vdev_probe_zio = NULL; 994 mutex_exit(&vd->vdev_probe_lock); 995 996 zio_link_t *zl = NULL; 997 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 998 if (!vdev_accessible(vd, pio)) 999 pio->io_error = SET_ERROR(ENXIO); 1000 1001 kmem_free(vps, sizeof (*vps)); 1002 } 1003 } 1004 1005 /* 1006 * Determine whether this device is accessible. 1007 * 1008 * Read and write to several known locations: the pad regions of each 1009 * vdev label but the first, which we leave alone in case it contains 1010 * a VTOC. 1011 */ 1012 zio_t * 1013 vdev_probe(vdev_t *vd, zio_t *zio) 1014 { 1015 spa_t *spa = vd->vdev_spa; 1016 vdev_probe_stats_t *vps = NULL; 1017 zio_t *pio; 1018 1019 ASSERT(vd->vdev_ops->vdev_op_leaf); 1020 1021 /* 1022 * Don't probe the probe. 1023 */ 1024 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1025 return (NULL); 1026 1027 /* 1028 * To prevent 'probe storms' when a device fails, we create 1029 * just one probe i/o at a time. All zios that want to probe 1030 * this vdev will become parents of the probe io. 1031 */ 1032 mutex_enter(&vd->vdev_probe_lock); 1033 1034 if ((pio = vd->vdev_probe_zio) == NULL) { 1035 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1036 1037 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1038 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1039 ZIO_FLAG_TRYHARD; 1040 1041 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1042 /* 1043 * vdev_cant_read and vdev_cant_write can only 1044 * transition from TRUE to FALSE when we have the 1045 * SCL_ZIO lock as writer; otherwise they can only 1046 * transition from FALSE to TRUE. This ensures that 1047 * any zio looking at these values can assume that 1048 * failures persist for the life of the I/O. That's 1049 * important because when a device has intermittent 1050 * connectivity problems, we want to ensure that 1051 * they're ascribed to the device (ENXIO) and not 1052 * the zio (EIO). 1053 * 1054 * Since we hold SCL_ZIO as writer here, clear both 1055 * values so the probe can reevaluate from first 1056 * principles. 1057 */ 1058 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1059 vd->vdev_cant_read = B_FALSE; 1060 vd->vdev_cant_write = B_FALSE; 1061 } 1062 1063 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1064 vdev_probe_done, vps, 1065 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1066 1067 /* 1068 * We can't change the vdev state in this context, so we 1069 * kick off an async task to do it on our behalf. 1070 */ 1071 if (zio != NULL) { 1072 vd->vdev_probe_wanted = B_TRUE; 1073 spa_async_request(spa, SPA_ASYNC_PROBE); 1074 } 1075 } 1076 1077 if (zio != NULL) 1078 zio_add_child(zio, pio); 1079 1080 mutex_exit(&vd->vdev_probe_lock); 1081 1082 if (vps == NULL) { 1083 ASSERT(zio != NULL); 1084 return (NULL); 1085 } 1086 1087 for (int l = 1; l < VDEV_LABELS; l++) { 1088 zio_nowait(zio_read_phys(pio, vd, 1089 vdev_label_offset(vd->vdev_psize, l, 1090 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1091 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1092 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1093 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1094 } 1095 1096 if (zio == NULL) 1097 return (pio); 1098 1099 zio_nowait(pio); 1100 return (NULL); 1101 } 1102 1103 static void 1104 vdev_open_child(void *arg) 1105 { 1106 vdev_t *vd = arg; 1107 1108 vd->vdev_open_thread = curthread; 1109 vd->vdev_open_error = vdev_open(vd); 1110 vd->vdev_open_thread = NULL; 1111 } 1112 1113 boolean_t 1114 vdev_uses_zvols(vdev_t *vd) 1115 { 1116 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1117 strlen(ZVOL_DIR)) == 0) 1118 return (B_TRUE); 1119 for (int c = 0; c < vd->vdev_children; c++) 1120 if (vdev_uses_zvols(vd->vdev_child[c])) 1121 return (B_TRUE); 1122 return (B_FALSE); 1123 } 1124 1125 void 1126 vdev_open_children(vdev_t *vd) 1127 { 1128 taskq_t *tq; 1129 int children = vd->vdev_children; 1130 1131 /* 1132 * in order to handle pools on top of zvols, do the opens 1133 * in a single thread so that the same thread holds the 1134 * spa_namespace_lock 1135 */ 1136 if (vdev_uses_zvols(vd)) { 1137 for (int c = 0; c < children; c++) 1138 vd->vdev_child[c]->vdev_open_error = 1139 vdev_open(vd->vdev_child[c]); 1140 return; 1141 } 1142 tq = taskq_create("vdev_open", children, minclsyspri, 1143 children, children, TASKQ_PREPOPULATE); 1144 1145 for (int c = 0; c < children; c++) 1146 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1147 TQ_SLEEP) != NULL); 1148 1149 taskq_destroy(tq); 1150 } 1151 1152 /* 1153 * Prepare a virtual device for access. 1154 */ 1155 int 1156 vdev_open(vdev_t *vd) 1157 { 1158 spa_t *spa = vd->vdev_spa; 1159 int error; 1160 uint64_t osize = 0; 1161 uint64_t max_osize = 0; 1162 uint64_t asize, max_asize, psize; 1163 uint64_t ashift = 0; 1164 1165 ASSERT(vd->vdev_open_thread == curthread || 1166 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1167 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1168 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1169 vd->vdev_state == VDEV_STATE_OFFLINE); 1170 1171 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1172 vd->vdev_cant_read = B_FALSE; 1173 vd->vdev_cant_write = B_FALSE; 1174 vd->vdev_min_asize = vdev_get_min_asize(vd); 1175 1176 /* 1177 * If this vdev is not removed, check its fault status. If it's 1178 * faulted, bail out of the open. 1179 */ 1180 if (!vd->vdev_removed && vd->vdev_faulted) { 1181 ASSERT(vd->vdev_children == 0); 1182 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1183 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1185 vd->vdev_label_aux); 1186 return (SET_ERROR(ENXIO)); 1187 } else if (vd->vdev_offline) { 1188 ASSERT(vd->vdev_children == 0); 1189 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1190 return (SET_ERROR(ENXIO)); 1191 } 1192 1193 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1194 1195 /* 1196 * Reset the vdev_reopening flag so that we actually close 1197 * the vdev on error. 1198 */ 1199 vd->vdev_reopening = B_FALSE; 1200 if (zio_injection_enabled && error == 0) 1201 error = zio_handle_device_injection(vd, NULL, ENXIO); 1202 1203 if (error) { 1204 if (vd->vdev_removed && 1205 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1206 vd->vdev_removed = B_FALSE; 1207 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1209 vd->vdev_stat.vs_aux); 1210 return (error); 1211 } 1212 1213 vd->vdev_removed = B_FALSE; 1214 1215 /* 1216 * Recheck the faulted flag now that we have confirmed that 1217 * the vdev is accessible. If we're faulted, bail. 1218 */ 1219 if (vd->vdev_faulted) { 1220 ASSERT(vd->vdev_children == 0); 1221 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1222 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1224 vd->vdev_label_aux); 1225 return (SET_ERROR(ENXIO)); 1226 } 1227 1228 if (vd->vdev_degraded) { 1229 ASSERT(vd->vdev_children == 0); 1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1231 VDEV_AUX_ERR_EXCEEDED); 1232 } else { 1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1234 } 1235 1236 /* 1237 * For hole or missing vdevs we just return success. 1238 */ 1239 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1240 return (0); 1241 1242 for (int c = 0; c < vd->vdev_children; c++) { 1243 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1245 VDEV_AUX_NONE); 1246 break; 1247 } 1248 } 1249 1250 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1251 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1252 1253 if (vd->vdev_children == 0) { 1254 if (osize < SPA_MINDEVSIZE) { 1255 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1256 VDEV_AUX_TOO_SMALL); 1257 return (SET_ERROR(EOVERFLOW)); 1258 } 1259 psize = osize; 1260 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1261 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1262 VDEV_LABEL_END_SIZE); 1263 } else { 1264 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1265 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1267 VDEV_AUX_TOO_SMALL); 1268 return (SET_ERROR(EOVERFLOW)); 1269 } 1270 psize = 0; 1271 asize = osize; 1272 max_asize = max_osize; 1273 } 1274 1275 vd->vdev_psize = psize; 1276 1277 /* 1278 * Make sure the allocatable size hasn't shrunk too much. 1279 */ 1280 if (asize < vd->vdev_min_asize) { 1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1282 VDEV_AUX_BAD_LABEL); 1283 return (SET_ERROR(EINVAL)); 1284 } 1285 1286 if (vd->vdev_asize == 0) { 1287 /* 1288 * This is the first-ever open, so use the computed values. 1289 * For testing purposes, a higher ashift can be requested. 1290 */ 1291 vd->vdev_asize = asize; 1292 vd->vdev_max_asize = max_asize; 1293 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1294 } else { 1295 /* 1296 * Detect if the alignment requirement has increased. 1297 * We don't want to make the pool unavailable, just 1298 * issue a warning instead. 1299 */ 1300 if (ashift > vd->vdev_top->vdev_ashift && 1301 vd->vdev_ops->vdev_op_leaf) { 1302 cmn_err(CE_WARN, 1303 "Disk, '%s', has a block alignment that is " 1304 "larger than the pool's alignment\n", 1305 vd->vdev_path); 1306 } 1307 vd->vdev_max_asize = max_asize; 1308 } 1309 1310 /* 1311 * If all children are healthy we update asize if either: 1312 * The asize has increased, due to a device expansion caused by dynamic 1313 * LUN growth or vdev replacement, and automatic expansion is enabled; 1314 * making the additional space available. 1315 * 1316 * The asize has decreased, due to a device shrink usually caused by a 1317 * vdev replace with a smaller device. This ensures that calculations 1318 * based of max_asize and asize e.g. esize are always valid. It's safe 1319 * to do this as we've already validated that asize is greater than 1320 * vdev_min_asize. 1321 */ 1322 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1323 ((asize > vd->vdev_asize && 1324 (vd->vdev_expanding || spa->spa_autoexpand)) || 1325 (asize < vd->vdev_asize))) 1326 vd->vdev_asize = asize; 1327 1328 vdev_set_min_asize(vd); 1329 1330 /* 1331 * Ensure we can issue some IO before declaring the 1332 * vdev open for business. 1333 */ 1334 if (vd->vdev_ops->vdev_op_leaf && 1335 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1337 VDEV_AUX_ERR_EXCEEDED); 1338 return (error); 1339 } 1340 1341 /* 1342 * Track the min and max ashift values for normal data devices. 1343 */ 1344 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1345 !vd->vdev_islog && vd->vdev_aux == NULL) { 1346 if (vd->vdev_ashift > spa->spa_max_ashift) 1347 spa->spa_max_ashift = vd->vdev_ashift; 1348 if (vd->vdev_ashift < spa->spa_min_ashift) 1349 spa->spa_min_ashift = vd->vdev_ashift; 1350 } 1351 1352 /* 1353 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1354 * resilver. But don't do this if we are doing a reopen for a scrub, 1355 * since this would just restart the scrub we are already doing. 1356 */ 1357 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1358 vdev_resilver_needed(vd, NULL, NULL)) 1359 spa_async_request(spa, SPA_ASYNC_RESILVER); 1360 1361 return (0); 1362 } 1363 1364 /* 1365 * Called once the vdevs are all opened, this routine validates the label 1366 * contents. This needs to be done before vdev_load() so that we don't 1367 * inadvertently do repair I/Os to the wrong device. 1368 * 1369 * If 'strict' is false ignore the spa guid check. This is necessary because 1370 * if the machine crashed during a re-guid the new guid might have been written 1371 * to all of the vdev labels, but not the cached config. The strict check 1372 * will be performed when the pool is opened again using the mos config. 1373 * 1374 * This function will only return failure if one of the vdevs indicates that it 1375 * has since been destroyed or exported. This is only possible if 1376 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1377 * will be updated but the function will return 0. 1378 */ 1379 int 1380 vdev_validate(vdev_t *vd, boolean_t strict) 1381 { 1382 spa_t *spa = vd->vdev_spa; 1383 nvlist_t *label; 1384 uint64_t guid = 0, top_guid; 1385 uint64_t state; 1386 1387 for (int c = 0; c < vd->vdev_children; c++) 1388 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1389 return (SET_ERROR(EBADF)); 1390 1391 /* 1392 * If the device has already failed, or was marked offline, don't do 1393 * any further validation. Otherwise, label I/O will fail and we will 1394 * overwrite the previous state. 1395 */ 1396 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1397 uint64_t aux_guid = 0; 1398 nvlist_t *nvl; 1399 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1400 spa_last_synced_txg(spa) : -1ULL; 1401 1402 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1403 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1404 VDEV_AUX_BAD_LABEL); 1405 return (0); 1406 } 1407 1408 /* 1409 * Determine if this vdev has been split off into another 1410 * pool. If so, then refuse to open it. 1411 */ 1412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1413 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1415 VDEV_AUX_SPLIT_POOL); 1416 nvlist_free(label); 1417 return (0); 1418 } 1419 1420 if (strict && (nvlist_lookup_uint64(label, 1421 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1422 guid != spa_guid(spa))) { 1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1424 VDEV_AUX_CORRUPT_DATA); 1425 nvlist_free(label); 1426 return (0); 1427 } 1428 1429 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1430 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1431 &aux_guid) != 0) 1432 aux_guid = 0; 1433 1434 /* 1435 * If this vdev just became a top-level vdev because its 1436 * sibling was detached, it will have adopted the parent's 1437 * vdev guid -- but the label may or may not be on disk yet. 1438 * Fortunately, either version of the label will have the 1439 * same top guid, so if we're a top-level vdev, we can 1440 * safely compare to that instead. 1441 * 1442 * If we split this vdev off instead, then we also check the 1443 * original pool's guid. We don't want to consider the vdev 1444 * corrupt if it is partway through a split operation. 1445 */ 1446 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1447 &guid) != 0 || 1448 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1449 &top_guid) != 0 || 1450 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1451 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1452 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1453 VDEV_AUX_CORRUPT_DATA); 1454 nvlist_free(label); 1455 return (0); 1456 } 1457 1458 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1459 &state) != 0) { 1460 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1461 VDEV_AUX_CORRUPT_DATA); 1462 nvlist_free(label); 1463 return (0); 1464 } 1465 1466 nvlist_free(label); 1467 1468 /* 1469 * If this is a verbatim import, no need to check the 1470 * state of the pool. 1471 */ 1472 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1473 spa_load_state(spa) == SPA_LOAD_OPEN && 1474 state != POOL_STATE_ACTIVE) 1475 return (SET_ERROR(EBADF)); 1476 1477 /* 1478 * If we were able to open and validate a vdev that was 1479 * previously marked permanently unavailable, clear that state 1480 * now. 1481 */ 1482 if (vd->vdev_not_present) 1483 vd->vdev_not_present = 0; 1484 } 1485 1486 return (0); 1487 } 1488 1489 /* 1490 * Close a virtual device. 1491 */ 1492 void 1493 vdev_close(vdev_t *vd) 1494 { 1495 spa_t *spa = vd->vdev_spa; 1496 vdev_t *pvd = vd->vdev_parent; 1497 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1499 1500 /* 1501 * If our parent is reopening, then we are as well, unless we are 1502 * going offline. 1503 */ 1504 if (pvd != NULL && pvd->vdev_reopening) 1505 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1506 1507 vd->vdev_ops->vdev_op_close(vd); 1508 1509 vdev_cache_purge(vd); 1510 1511 /* 1512 * We record the previous state before we close it, so that if we are 1513 * doing a reopen(), we don't generate FMA ereports if we notice that 1514 * it's still faulted. 1515 */ 1516 vd->vdev_prevstate = vd->vdev_state; 1517 1518 if (vd->vdev_offline) 1519 vd->vdev_state = VDEV_STATE_OFFLINE; 1520 else 1521 vd->vdev_state = VDEV_STATE_CLOSED; 1522 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1523 } 1524 1525 void 1526 vdev_hold(vdev_t *vd) 1527 { 1528 spa_t *spa = vd->vdev_spa; 1529 1530 ASSERT(spa_is_root(spa)); 1531 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1532 return; 1533 1534 for (int c = 0; c < vd->vdev_children; c++) 1535 vdev_hold(vd->vdev_child[c]); 1536 1537 if (vd->vdev_ops->vdev_op_leaf) 1538 vd->vdev_ops->vdev_op_hold(vd); 1539 } 1540 1541 void 1542 vdev_rele(vdev_t *vd) 1543 { 1544 spa_t *spa = vd->vdev_spa; 1545 1546 ASSERT(spa_is_root(spa)); 1547 for (int c = 0; c < vd->vdev_children; c++) 1548 vdev_rele(vd->vdev_child[c]); 1549 1550 if (vd->vdev_ops->vdev_op_leaf) 1551 vd->vdev_ops->vdev_op_rele(vd); 1552 } 1553 1554 /* 1555 * Reopen all interior vdevs and any unopened leaves. We don't actually 1556 * reopen leaf vdevs which had previously been opened as they might deadlock 1557 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1558 * If the leaf has never been opened then open it, as usual. 1559 */ 1560 void 1561 vdev_reopen(vdev_t *vd) 1562 { 1563 spa_t *spa = vd->vdev_spa; 1564 1565 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1566 1567 /* set the reopening flag unless we're taking the vdev offline */ 1568 vd->vdev_reopening = !vd->vdev_offline; 1569 vdev_close(vd); 1570 (void) vdev_open(vd); 1571 1572 /* 1573 * Call vdev_validate() here to make sure we have the same device. 1574 * Otherwise, a device with an invalid label could be successfully 1575 * opened in response to vdev_reopen(). 1576 */ 1577 if (vd->vdev_aux) { 1578 (void) vdev_validate_aux(vd); 1579 if (vdev_readable(vd) && vdev_writeable(vd) && 1580 vd->vdev_aux == &spa->spa_l2cache && 1581 !l2arc_vdev_present(vd)) 1582 l2arc_add_vdev(spa, vd); 1583 } else { 1584 (void) vdev_validate(vd, B_TRUE); 1585 } 1586 1587 /* 1588 * Reassess parent vdev's health. 1589 */ 1590 vdev_propagate_state(vd); 1591 } 1592 1593 int 1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1595 { 1596 int error; 1597 1598 /* 1599 * Normally, partial opens (e.g. of a mirror) are allowed. 1600 * For a create, however, we want to fail the request if 1601 * there are any components we can't open. 1602 */ 1603 error = vdev_open(vd); 1604 1605 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1606 vdev_close(vd); 1607 return (error ? error : ENXIO); 1608 } 1609 1610 /* 1611 * Recursively load DTLs and initialize all labels. 1612 */ 1613 if ((error = vdev_dtl_load(vd)) != 0 || 1614 (error = vdev_label_init(vd, txg, isreplacing ? 1615 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1616 vdev_close(vd); 1617 return (error); 1618 } 1619 1620 return (0); 1621 } 1622 1623 void 1624 vdev_metaslab_set_size(vdev_t *vd) 1625 { 1626 /* 1627 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1628 */ 1629 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1630 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1631 } 1632 1633 void 1634 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1635 { 1636 ASSERT(vd == vd->vdev_top); 1637 ASSERT(!vd->vdev_ishole); 1638 ASSERT(ISP2(flags)); 1639 ASSERT(spa_writeable(vd->vdev_spa)); 1640 1641 if (flags & VDD_METASLAB) 1642 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1643 1644 if (flags & VDD_DTL) 1645 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1646 1647 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1648 } 1649 1650 void 1651 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1652 { 1653 for (int c = 0; c < vd->vdev_children; c++) 1654 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1655 1656 if (vd->vdev_ops->vdev_op_leaf) 1657 vdev_dirty(vd->vdev_top, flags, vd, txg); 1658 } 1659 1660 /* 1661 * DTLs. 1662 * 1663 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1664 * the vdev has less than perfect replication. There are four kinds of DTL: 1665 * 1666 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1667 * 1668 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1669 * 1670 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1671 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1672 * txgs that was scrubbed. 1673 * 1674 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1675 * persistent errors or just some device being offline. 1676 * Unlike the other three, the DTL_OUTAGE map is not generally 1677 * maintained; it's only computed when needed, typically to 1678 * determine whether a device can be detached. 1679 * 1680 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1681 * either has the data or it doesn't. 1682 * 1683 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1684 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1685 * if any child is less than fully replicated, then so is its parent. 1686 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1687 * comprising only those txgs which appear in 'maxfaults' or more children; 1688 * those are the txgs we don't have enough replication to read. For example, 1689 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1690 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1691 * two child DTL_MISSING maps. 1692 * 1693 * It should be clear from the above that to compute the DTLs and outage maps 1694 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1695 * Therefore, that is all we keep on disk. When loading the pool, or after 1696 * a configuration change, we generate all other DTLs from first principles. 1697 */ 1698 void 1699 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1700 { 1701 range_tree_t *rt = vd->vdev_dtl[t]; 1702 1703 ASSERT(t < DTL_TYPES); 1704 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1705 ASSERT(spa_writeable(vd->vdev_spa)); 1706 1707 mutex_enter(rt->rt_lock); 1708 if (!range_tree_contains(rt, txg, size)) 1709 range_tree_add(rt, txg, size); 1710 mutex_exit(rt->rt_lock); 1711 } 1712 1713 boolean_t 1714 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1715 { 1716 range_tree_t *rt = vd->vdev_dtl[t]; 1717 boolean_t dirty = B_FALSE; 1718 1719 ASSERT(t < DTL_TYPES); 1720 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1721 1722 mutex_enter(rt->rt_lock); 1723 if (range_tree_space(rt) != 0) 1724 dirty = range_tree_contains(rt, txg, size); 1725 mutex_exit(rt->rt_lock); 1726 1727 return (dirty); 1728 } 1729 1730 boolean_t 1731 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1732 { 1733 range_tree_t *rt = vd->vdev_dtl[t]; 1734 boolean_t empty; 1735 1736 mutex_enter(rt->rt_lock); 1737 empty = (range_tree_space(rt) == 0); 1738 mutex_exit(rt->rt_lock); 1739 1740 return (empty); 1741 } 1742 1743 /* 1744 * Returns the lowest txg in the DTL range. 1745 */ 1746 static uint64_t 1747 vdev_dtl_min(vdev_t *vd) 1748 { 1749 range_seg_t *rs; 1750 1751 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1752 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1753 ASSERT0(vd->vdev_children); 1754 1755 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1756 return (rs->rs_start - 1); 1757 } 1758 1759 /* 1760 * Returns the highest txg in the DTL. 1761 */ 1762 static uint64_t 1763 vdev_dtl_max(vdev_t *vd) 1764 { 1765 range_seg_t *rs; 1766 1767 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1768 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1769 ASSERT0(vd->vdev_children); 1770 1771 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1772 return (rs->rs_end); 1773 } 1774 1775 /* 1776 * Determine if a resilvering vdev should remove any DTL entries from 1777 * its range. If the vdev was resilvering for the entire duration of the 1778 * scan then it should excise that range from its DTLs. Otherwise, this 1779 * vdev is considered partially resilvered and should leave its DTL 1780 * entries intact. The comment in vdev_dtl_reassess() describes how we 1781 * excise the DTLs. 1782 */ 1783 static boolean_t 1784 vdev_dtl_should_excise(vdev_t *vd) 1785 { 1786 spa_t *spa = vd->vdev_spa; 1787 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1788 1789 ASSERT0(scn->scn_phys.scn_errors); 1790 ASSERT0(vd->vdev_children); 1791 1792 if (vd->vdev_resilver_txg == 0 || 1793 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1794 return (B_TRUE); 1795 1796 /* 1797 * When a resilver is initiated the scan will assign the scn_max_txg 1798 * value to the highest txg value that exists in all DTLs. If this 1799 * device's max DTL is not part of this scan (i.e. it is not in 1800 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1801 * for excision. 1802 */ 1803 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1804 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1805 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1806 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1807 return (B_TRUE); 1808 } 1809 return (B_FALSE); 1810 } 1811 1812 /* 1813 * Reassess DTLs after a config change or scrub completion. 1814 */ 1815 void 1816 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1817 { 1818 spa_t *spa = vd->vdev_spa; 1819 avl_tree_t reftree; 1820 int minref; 1821 1822 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1823 1824 for (int c = 0; c < vd->vdev_children; c++) 1825 vdev_dtl_reassess(vd->vdev_child[c], txg, 1826 scrub_txg, scrub_done); 1827 1828 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1829 return; 1830 1831 if (vd->vdev_ops->vdev_op_leaf) { 1832 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1833 1834 mutex_enter(&vd->vdev_dtl_lock); 1835 1836 /* 1837 * If we've completed a scan cleanly then determine 1838 * if this vdev should remove any DTLs. We only want to 1839 * excise regions on vdevs that were available during 1840 * the entire duration of this scan. 1841 */ 1842 if (scrub_txg != 0 && 1843 (spa->spa_scrub_started || 1844 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1845 vdev_dtl_should_excise(vd)) { 1846 /* 1847 * We completed a scrub up to scrub_txg. If we 1848 * did it without rebooting, then the scrub dtl 1849 * will be valid, so excise the old region and 1850 * fold in the scrub dtl. Otherwise, leave the 1851 * dtl as-is if there was an error. 1852 * 1853 * There's little trick here: to excise the beginning 1854 * of the DTL_MISSING map, we put it into a reference 1855 * tree and then add a segment with refcnt -1 that 1856 * covers the range [0, scrub_txg). This means 1857 * that each txg in that range has refcnt -1 or 0. 1858 * We then add DTL_SCRUB with a refcnt of 2, so that 1859 * entries in the range [0, scrub_txg) will have a 1860 * positive refcnt -- either 1 or 2. We then convert 1861 * the reference tree into the new DTL_MISSING map. 1862 */ 1863 space_reftree_create(&reftree); 1864 space_reftree_add_map(&reftree, 1865 vd->vdev_dtl[DTL_MISSING], 1); 1866 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1867 space_reftree_add_map(&reftree, 1868 vd->vdev_dtl[DTL_SCRUB], 2); 1869 space_reftree_generate_map(&reftree, 1870 vd->vdev_dtl[DTL_MISSING], 1); 1871 space_reftree_destroy(&reftree); 1872 } 1873 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1874 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1875 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1876 if (scrub_done) 1877 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1878 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1879 if (!vdev_readable(vd)) 1880 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1881 else 1882 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1883 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1884 1885 /* 1886 * If the vdev was resilvering and no longer has any 1887 * DTLs then reset its resilvering flag. 1888 */ 1889 if (vd->vdev_resilver_txg != 0 && 1890 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1891 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1892 vd->vdev_resilver_txg = 0; 1893 1894 mutex_exit(&vd->vdev_dtl_lock); 1895 1896 if (txg != 0) 1897 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1898 return; 1899 } 1900 1901 mutex_enter(&vd->vdev_dtl_lock); 1902 for (int t = 0; t < DTL_TYPES; t++) { 1903 /* account for child's outage in parent's missing map */ 1904 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1905 if (t == DTL_SCRUB) 1906 continue; /* leaf vdevs only */ 1907 if (t == DTL_PARTIAL) 1908 minref = 1; /* i.e. non-zero */ 1909 else if (vd->vdev_nparity != 0) 1910 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1911 else 1912 minref = vd->vdev_children; /* any kind of mirror */ 1913 space_reftree_create(&reftree); 1914 for (int c = 0; c < vd->vdev_children; c++) { 1915 vdev_t *cvd = vd->vdev_child[c]; 1916 mutex_enter(&cvd->vdev_dtl_lock); 1917 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1918 mutex_exit(&cvd->vdev_dtl_lock); 1919 } 1920 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1921 space_reftree_destroy(&reftree); 1922 } 1923 mutex_exit(&vd->vdev_dtl_lock); 1924 } 1925 1926 int 1927 vdev_dtl_load(vdev_t *vd) 1928 { 1929 spa_t *spa = vd->vdev_spa; 1930 objset_t *mos = spa->spa_meta_objset; 1931 int error = 0; 1932 1933 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1934 ASSERT(!vd->vdev_ishole); 1935 1936 error = space_map_open(&vd->vdev_dtl_sm, mos, 1937 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1938 if (error) 1939 return (error); 1940 ASSERT(vd->vdev_dtl_sm != NULL); 1941 1942 mutex_enter(&vd->vdev_dtl_lock); 1943 1944 /* 1945 * Now that we've opened the space_map we need to update 1946 * the in-core DTL. 1947 */ 1948 space_map_update(vd->vdev_dtl_sm); 1949 1950 error = space_map_load(vd->vdev_dtl_sm, 1951 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1952 mutex_exit(&vd->vdev_dtl_lock); 1953 1954 return (error); 1955 } 1956 1957 for (int c = 0; c < vd->vdev_children; c++) { 1958 error = vdev_dtl_load(vd->vdev_child[c]); 1959 if (error != 0) 1960 break; 1961 } 1962 1963 return (error); 1964 } 1965 1966 void 1967 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1968 { 1969 spa_t *spa = vd->vdev_spa; 1970 1971 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1972 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1973 zapobj, tx)); 1974 } 1975 1976 uint64_t 1977 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1978 { 1979 spa_t *spa = vd->vdev_spa; 1980 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1981 DMU_OT_NONE, 0, tx); 1982 1983 ASSERT(zap != 0); 1984 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1985 zap, tx)); 1986 1987 return (zap); 1988 } 1989 1990 void 1991 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1992 { 1993 if (vd->vdev_ops != &vdev_hole_ops && 1994 vd->vdev_ops != &vdev_missing_ops && 1995 vd->vdev_ops != &vdev_root_ops && 1996 !vd->vdev_top->vdev_removing) { 1997 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 1998 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 1999 } 2000 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2001 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2002 } 2003 } 2004 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2005 vdev_construct_zaps(vd->vdev_child[i], tx); 2006 } 2007 } 2008 2009 void 2010 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2011 { 2012 spa_t *spa = vd->vdev_spa; 2013 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2014 objset_t *mos = spa->spa_meta_objset; 2015 range_tree_t *rtsync; 2016 kmutex_t rtlock; 2017 dmu_tx_t *tx; 2018 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2019 2020 ASSERT(!vd->vdev_ishole); 2021 ASSERT(vd->vdev_ops->vdev_op_leaf); 2022 2023 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2024 2025 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2026 mutex_enter(&vd->vdev_dtl_lock); 2027 space_map_free(vd->vdev_dtl_sm, tx); 2028 space_map_close(vd->vdev_dtl_sm); 2029 vd->vdev_dtl_sm = NULL; 2030 mutex_exit(&vd->vdev_dtl_lock); 2031 2032 /* 2033 * We only destroy the leaf ZAP for detached leaves or for 2034 * removed log devices. Removed data devices handle leaf ZAP 2035 * cleanup later, once cancellation is no longer possible. 2036 */ 2037 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2038 vd->vdev_top->vdev_islog)) { 2039 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2040 vd->vdev_leaf_zap = 0; 2041 } 2042 2043 dmu_tx_commit(tx); 2044 return; 2045 } 2046 2047 if (vd->vdev_dtl_sm == NULL) { 2048 uint64_t new_object; 2049 2050 new_object = space_map_alloc(mos, tx); 2051 VERIFY3U(new_object, !=, 0); 2052 2053 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2054 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2055 ASSERT(vd->vdev_dtl_sm != NULL); 2056 } 2057 2058 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2059 2060 rtsync = range_tree_create(NULL, NULL, &rtlock); 2061 2062 mutex_enter(&rtlock); 2063 2064 mutex_enter(&vd->vdev_dtl_lock); 2065 range_tree_walk(rt, range_tree_add, rtsync); 2066 mutex_exit(&vd->vdev_dtl_lock); 2067 2068 space_map_truncate(vd->vdev_dtl_sm, tx); 2069 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2070 range_tree_vacate(rtsync, NULL, NULL); 2071 2072 range_tree_destroy(rtsync); 2073 2074 mutex_exit(&rtlock); 2075 mutex_destroy(&rtlock); 2076 2077 /* 2078 * If the object for the space map has changed then dirty 2079 * the top level so that we update the config. 2080 */ 2081 if (object != space_map_object(vd->vdev_dtl_sm)) { 2082 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2083 "new object %llu", txg, spa_name(spa), object, 2084 space_map_object(vd->vdev_dtl_sm)); 2085 vdev_config_dirty(vd->vdev_top); 2086 } 2087 2088 dmu_tx_commit(tx); 2089 2090 mutex_enter(&vd->vdev_dtl_lock); 2091 space_map_update(vd->vdev_dtl_sm); 2092 mutex_exit(&vd->vdev_dtl_lock); 2093 } 2094 2095 /* 2096 * Determine whether the specified vdev can be offlined/detached/removed 2097 * without losing data. 2098 */ 2099 boolean_t 2100 vdev_dtl_required(vdev_t *vd) 2101 { 2102 spa_t *spa = vd->vdev_spa; 2103 vdev_t *tvd = vd->vdev_top; 2104 uint8_t cant_read = vd->vdev_cant_read; 2105 boolean_t required; 2106 2107 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2108 2109 if (vd == spa->spa_root_vdev || vd == tvd) 2110 return (B_TRUE); 2111 2112 /* 2113 * Temporarily mark the device as unreadable, and then determine 2114 * whether this results in any DTL outages in the top-level vdev. 2115 * If not, we can safely offline/detach/remove the device. 2116 */ 2117 vd->vdev_cant_read = B_TRUE; 2118 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2119 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2120 vd->vdev_cant_read = cant_read; 2121 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2122 2123 if (!required && zio_injection_enabled) 2124 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2125 2126 return (required); 2127 } 2128 2129 /* 2130 * Determine if resilver is needed, and if so the txg range. 2131 */ 2132 boolean_t 2133 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2134 { 2135 boolean_t needed = B_FALSE; 2136 uint64_t thismin = UINT64_MAX; 2137 uint64_t thismax = 0; 2138 2139 if (vd->vdev_children == 0) { 2140 mutex_enter(&vd->vdev_dtl_lock); 2141 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2142 vdev_writeable(vd)) { 2143 2144 thismin = vdev_dtl_min(vd); 2145 thismax = vdev_dtl_max(vd); 2146 needed = B_TRUE; 2147 } 2148 mutex_exit(&vd->vdev_dtl_lock); 2149 } else { 2150 for (int c = 0; c < vd->vdev_children; c++) { 2151 vdev_t *cvd = vd->vdev_child[c]; 2152 uint64_t cmin, cmax; 2153 2154 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2155 thismin = MIN(thismin, cmin); 2156 thismax = MAX(thismax, cmax); 2157 needed = B_TRUE; 2158 } 2159 } 2160 } 2161 2162 if (needed && minp) { 2163 *minp = thismin; 2164 *maxp = thismax; 2165 } 2166 return (needed); 2167 } 2168 2169 void 2170 vdev_load(vdev_t *vd) 2171 { 2172 /* 2173 * Recursively load all children. 2174 */ 2175 for (int c = 0; c < vd->vdev_children; c++) 2176 vdev_load(vd->vdev_child[c]); 2177 2178 /* 2179 * If this is a top-level vdev, initialize its metaslabs. 2180 */ 2181 if (vd == vd->vdev_top && !vd->vdev_ishole && 2182 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2183 vdev_metaslab_init(vd, 0) != 0)) 2184 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2185 VDEV_AUX_CORRUPT_DATA); 2186 2187 /* 2188 * If this is a leaf vdev, load its DTL. 2189 */ 2190 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2191 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2192 VDEV_AUX_CORRUPT_DATA); 2193 } 2194 2195 /* 2196 * The special vdev case is used for hot spares and l2cache devices. Its 2197 * sole purpose it to set the vdev state for the associated vdev. To do this, 2198 * we make sure that we can open the underlying device, then try to read the 2199 * label, and make sure that the label is sane and that it hasn't been 2200 * repurposed to another pool. 2201 */ 2202 int 2203 vdev_validate_aux(vdev_t *vd) 2204 { 2205 nvlist_t *label; 2206 uint64_t guid, version; 2207 uint64_t state; 2208 2209 if (!vdev_readable(vd)) 2210 return (0); 2211 2212 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2214 VDEV_AUX_CORRUPT_DATA); 2215 return (-1); 2216 } 2217 2218 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2219 !SPA_VERSION_IS_SUPPORTED(version) || 2220 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2221 guid != vd->vdev_guid || 2222 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2223 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2224 VDEV_AUX_CORRUPT_DATA); 2225 nvlist_free(label); 2226 return (-1); 2227 } 2228 2229 /* 2230 * We don't actually check the pool state here. If it's in fact in 2231 * use by another pool, we update this fact on the fly when requested. 2232 */ 2233 nvlist_free(label); 2234 return (0); 2235 } 2236 2237 void 2238 vdev_remove(vdev_t *vd, uint64_t txg) 2239 { 2240 spa_t *spa = vd->vdev_spa; 2241 objset_t *mos = spa->spa_meta_objset; 2242 dmu_tx_t *tx; 2243 2244 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2245 ASSERT(vd == vd->vdev_top); 2246 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2247 2248 if (vd->vdev_ms != NULL) { 2249 metaslab_group_t *mg = vd->vdev_mg; 2250 2251 metaslab_group_histogram_verify(mg); 2252 metaslab_class_histogram_verify(mg->mg_class); 2253 2254 for (int m = 0; m < vd->vdev_ms_count; m++) { 2255 metaslab_t *msp = vd->vdev_ms[m]; 2256 2257 if (msp == NULL || msp->ms_sm == NULL) 2258 continue; 2259 2260 mutex_enter(&msp->ms_lock); 2261 /* 2262 * If the metaslab was not loaded when the vdev 2263 * was removed then the histogram accounting may 2264 * not be accurate. Update the histogram information 2265 * here so that we ensure that the metaslab group 2266 * and metaslab class are up-to-date. 2267 */ 2268 metaslab_group_histogram_remove(mg, msp); 2269 2270 VERIFY0(space_map_allocated(msp->ms_sm)); 2271 space_map_free(msp->ms_sm, tx); 2272 space_map_close(msp->ms_sm); 2273 msp->ms_sm = NULL; 2274 mutex_exit(&msp->ms_lock); 2275 } 2276 2277 metaslab_group_histogram_verify(mg); 2278 metaslab_class_histogram_verify(mg->mg_class); 2279 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2280 ASSERT0(mg->mg_histogram[i]); 2281 2282 } 2283 2284 if (vd->vdev_ms_array) { 2285 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2286 vd->vdev_ms_array = 0; 2287 } 2288 2289 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2290 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2291 vd->vdev_top_zap = 0; 2292 } 2293 dmu_tx_commit(tx); 2294 } 2295 2296 void 2297 vdev_sync_done(vdev_t *vd, uint64_t txg) 2298 { 2299 metaslab_t *msp; 2300 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2301 2302 ASSERT(!vd->vdev_ishole); 2303 2304 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2305 metaslab_sync_done(msp, txg); 2306 2307 if (reassess) 2308 metaslab_sync_reassess(vd->vdev_mg); 2309 } 2310 2311 void 2312 vdev_sync(vdev_t *vd, uint64_t txg) 2313 { 2314 spa_t *spa = vd->vdev_spa; 2315 vdev_t *lvd; 2316 metaslab_t *msp; 2317 dmu_tx_t *tx; 2318 2319 ASSERT(!vd->vdev_ishole); 2320 2321 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2322 ASSERT(vd == vd->vdev_top); 2323 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2324 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2325 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2326 ASSERT(vd->vdev_ms_array != 0); 2327 vdev_config_dirty(vd); 2328 dmu_tx_commit(tx); 2329 } 2330 2331 /* 2332 * Remove the metadata associated with this vdev once it's empty. 2333 */ 2334 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2335 vdev_remove(vd, txg); 2336 2337 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2338 metaslab_sync(msp, txg); 2339 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2340 } 2341 2342 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2343 vdev_dtl_sync(lvd, txg); 2344 2345 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2346 } 2347 2348 uint64_t 2349 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2350 { 2351 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2352 } 2353 2354 /* 2355 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2356 * not be opened, and no I/O is attempted. 2357 */ 2358 int 2359 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2360 { 2361 vdev_t *vd, *tvd; 2362 2363 spa_vdev_state_enter(spa, SCL_NONE); 2364 2365 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2366 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2367 2368 if (!vd->vdev_ops->vdev_op_leaf) 2369 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2370 2371 tvd = vd->vdev_top; 2372 2373 /* 2374 * We don't directly use the aux state here, but if we do a 2375 * vdev_reopen(), we need this value to be present to remember why we 2376 * were faulted. 2377 */ 2378 vd->vdev_label_aux = aux; 2379 2380 /* 2381 * Faulted state takes precedence over degraded. 2382 */ 2383 vd->vdev_delayed_close = B_FALSE; 2384 vd->vdev_faulted = 1ULL; 2385 vd->vdev_degraded = 0ULL; 2386 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2387 2388 /* 2389 * If this device has the only valid copy of the data, then 2390 * back off and simply mark the vdev as degraded instead. 2391 */ 2392 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2393 vd->vdev_degraded = 1ULL; 2394 vd->vdev_faulted = 0ULL; 2395 2396 /* 2397 * If we reopen the device and it's not dead, only then do we 2398 * mark it degraded. 2399 */ 2400 vdev_reopen(tvd); 2401 2402 if (vdev_readable(vd)) 2403 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2404 } 2405 2406 return (spa_vdev_state_exit(spa, vd, 0)); 2407 } 2408 2409 /* 2410 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2411 * user that something is wrong. The vdev continues to operate as normal as far 2412 * as I/O is concerned. 2413 */ 2414 int 2415 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2416 { 2417 vdev_t *vd; 2418 2419 spa_vdev_state_enter(spa, SCL_NONE); 2420 2421 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2422 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2423 2424 if (!vd->vdev_ops->vdev_op_leaf) 2425 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2426 2427 /* 2428 * If the vdev is already faulted, then don't do anything. 2429 */ 2430 if (vd->vdev_faulted || vd->vdev_degraded) 2431 return (spa_vdev_state_exit(spa, NULL, 0)); 2432 2433 vd->vdev_degraded = 1ULL; 2434 if (!vdev_is_dead(vd)) 2435 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2436 aux); 2437 2438 return (spa_vdev_state_exit(spa, vd, 0)); 2439 } 2440 2441 /* 2442 * Online the given vdev. 2443 * 2444 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2445 * spare device should be detached when the device finishes resilvering. 2446 * Second, the online should be treated like a 'test' online case, so no FMA 2447 * events are generated if the device fails to open. 2448 */ 2449 int 2450 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2451 { 2452 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2453 boolean_t postevent = B_FALSE; 2454 2455 spa_vdev_state_enter(spa, SCL_NONE); 2456 2457 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2458 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2459 2460 if (!vd->vdev_ops->vdev_op_leaf) 2461 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2462 2463 postevent = 2464 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2465 B_TRUE : B_FALSE; 2466 2467 tvd = vd->vdev_top; 2468 vd->vdev_offline = B_FALSE; 2469 vd->vdev_tmpoffline = B_FALSE; 2470 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2471 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2472 2473 /* XXX - L2ARC 1.0 does not support expansion */ 2474 if (!vd->vdev_aux) { 2475 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2476 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2477 } 2478 2479 vdev_reopen(tvd); 2480 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2481 2482 if (!vd->vdev_aux) { 2483 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2484 pvd->vdev_expanding = B_FALSE; 2485 } 2486 2487 if (newstate) 2488 *newstate = vd->vdev_state; 2489 if ((flags & ZFS_ONLINE_UNSPARE) && 2490 !vdev_is_dead(vd) && vd->vdev_parent && 2491 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2492 vd->vdev_parent->vdev_child[0] == vd) 2493 vd->vdev_unspare = B_TRUE; 2494 2495 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2496 2497 /* XXX - L2ARC 1.0 does not support expansion */ 2498 if (vd->vdev_aux) 2499 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2500 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2501 } 2502 2503 if (postevent) 2504 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2505 2506 return (spa_vdev_state_exit(spa, vd, 0)); 2507 } 2508 2509 static int 2510 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2511 { 2512 vdev_t *vd, *tvd; 2513 int error = 0; 2514 uint64_t generation; 2515 metaslab_group_t *mg; 2516 2517 top: 2518 spa_vdev_state_enter(spa, SCL_ALLOC); 2519 2520 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2521 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2522 2523 if (!vd->vdev_ops->vdev_op_leaf) 2524 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2525 2526 tvd = vd->vdev_top; 2527 mg = tvd->vdev_mg; 2528 generation = spa->spa_config_generation + 1; 2529 2530 /* 2531 * If the device isn't already offline, try to offline it. 2532 */ 2533 if (!vd->vdev_offline) { 2534 /* 2535 * If this device has the only valid copy of some data, 2536 * don't allow it to be offlined. Log devices are always 2537 * expendable. 2538 */ 2539 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2540 vdev_dtl_required(vd)) 2541 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2542 2543 /* 2544 * If the top-level is a slog and it has had allocations 2545 * then proceed. We check that the vdev's metaslab group 2546 * is not NULL since it's possible that we may have just 2547 * added this vdev but not yet initialized its metaslabs. 2548 */ 2549 if (tvd->vdev_islog && mg != NULL) { 2550 /* 2551 * Prevent any future allocations. 2552 */ 2553 metaslab_group_passivate(mg); 2554 (void) spa_vdev_state_exit(spa, vd, 0); 2555 2556 error = spa_offline_log(spa); 2557 2558 spa_vdev_state_enter(spa, SCL_ALLOC); 2559 2560 /* 2561 * Check to see if the config has changed. 2562 */ 2563 if (error || generation != spa->spa_config_generation) { 2564 metaslab_group_activate(mg); 2565 if (error) 2566 return (spa_vdev_state_exit(spa, 2567 vd, error)); 2568 (void) spa_vdev_state_exit(spa, vd, 0); 2569 goto top; 2570 } 2571 ASSERT0(tvd->vdev_stat.vs_alloc); 2572 } 2573 2574 /* 2575 * Offline this device and reopen its top-level vdev. 2576 * If the top-level vdev is a log device then just offline 2577 * it. Otherwise, if this action results in the top-level 2578 * vdev becoming unusable, undo it and fail the request. 2579 */ 2580 vd->vdev_offline = B_TRUE; 2581 vdev_reopen(tvd); 2582 2583 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2584 vdev_is_dead(tvd)) { 2585 vd->vdev_offline = B_FALSE; 2586 vdev_reopen(tvd); 2587 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2588 } 2589 2590 /* 2591 * Add the device back into the metaslab rotor so that 2592 * once we online the device it's open for business. 2593 */ 2594 if (tvd->vdev_islog && mg != NULL) 2595 metaslab_group_activate(mg); 2596 } 2597 2598 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2599 2600 return (spa_vdev_state_exit(spa, vd, 0)); 2601 } 2602 2603 int 2604 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2605 { 2606 int error; 2607 2608 mutex_enter(&spa->spa_vdev_top_lock); 2609 error = vdev_offline_locked(spa, guid, flags); 2610 mutex_exit(&spa->spa_vdev_top_lock); 2611 2612 return (error); 2613 } 2614 2615 /* 2616 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2617 * vdev_offline(), we assume the spa config is locked. We also clear all 2618 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2619 */ 2620 void 2621 vdev_clear(spa_t *spa, vdev_t *vd) 2622 { 2623 vdev_t *rvd = spa->spa_root_vdev; 2624 2625 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2626 2627 if (vd == NULL) 2628 vd = rvd; 2629 2630 vd->vdev_stat.vs_read_errors = 0; 2631 vd->vdev_stat.vs_write_errors = 0; 2632 vd->vdev_stat.vs_checksum_errors = 0; 2633 2634 for (int c = 0; c < vd->vdev_children; c++) 2635 vdev_clear(spa, vd->vdev_child[c]); 2636 2637 /* 2638 * If we're in the FAULTED state or have experienced failed I/O, then 2639 * clear the persistent state and attempt to reopen the device. We 2640 * also mark the vdev config dirty, so that the new faulted state is 2641 * written out to disk. 2642 */ 2643 if (vd->vdev_faulted || vd->vdev_degraded || 2644 !vdev_readable(vd) || !vdev_writeable(vd)) { 2645 2646 /* 2647 * When reopening in reponse to a clear event, it may be due to 2648 * a fmadm repair request. In this case, if the device is 2649 * still broken, we want to still post the ereport again. 2650 */ 2651 vd->vdev_forcefault = B_TRUE; 2652 2653 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2654 vd->vdev_cant_read = B_FALSE; 2655 vd->vdev_cant_write = B_FALSE; 2656 2657 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2658 2659 vd->vdev_forcefault = B_FALSE; 2660 2661 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2662 vdev_state_dirty(vd->vdev_top); 2663 2664 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2665 spa_async_request(spa, SPA_ASYNC_RESILVER); 2666 2667 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2668 } 2669 2670 /* 2671 * When clearing a FMA-diagnosed fault, we always want to 2672 * unspare the device, as we assume that the original spare was 2673 * done in response to the FMA fault. 2674 */ 2675 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2676 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2677 vd->vdev_parent->vdev_child[0] == vd) 2678 vd->vdev_unspare = B_TRUE; 2679 } 2680 2681 boolean_t 2682 vdev_is_dead(vdev_t *vd) 2683 { 2684 /* 2685 * Holes and missing devices are always considered "dead". 2686 * This simplifies the code since we don't have to check for 2687 * these types of devices in the various code paths. 2688 * Instead we rely on the fact that we skip over dead devices 2689 * before issuing I/O to them. 2690 */ 2691 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2692 vd->vdev_ops == &vdev_missing_ops); 2693 } 2694 2695 boolean_t 2696 vdev_readable(vdev_t *vd) 2697 { 2698 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2699 } 2700 2701 boolean_t 2702 vdev_writeable(vdev_t *vd) 2703 { 2704 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2705 } 2706 2707 boolean_t 2708 vdev_allocatable(vdev_t *vd) 2709 { 2710 uint64_t state = vd->vdev_state; 2711 2712 /* 2713 * We currently allow allocations from vdevs which may be in the 2714 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2715 * fails to reopen then we'll catch it later when we're holding 2716 * the proper locks. Note that we have to get the vdev state 2717 * in a local variable because although it changes atomically, 2718 * we're asking two separate questions about it. 2719 */ 2720 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2721 !vd->vdev_cant_write && !vd->vdev_ishole && 2722 vd->vdev_mg->mg_initialized); 2723 } 2724 2725 boolean_t 2726 vdev_accessible(vdev_t *vd, zio_t *zio) 2727 { 2728 ASSERT(zio->io_vd == vd); 2729 2730 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2731 return (B_FALSE); 2732 2733 if (zio->io_type == ZIO_TYPE_READ) 2734 return (!vd->vdev_cant_read); 2735 2736 if (zio->io_type == ZIO_TYPE_WRITE) 2737 return (!vd->vdev_cant_write); 2738 2739 return (B_TRUE); 2740 } 2741 2742 /* 2743 * Get statistics for the given vdev. 2744 */ 2745 void 2746 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2747 { 2748 spa_t *spa = vd->vdev_spa; 2749 vdev_t *rvd = spa->spa_root_vdev; 2750 vdev_t *tvd = vd->vdev_top; 2751 2752 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2753 2754 mutex_enter(&vd->vdev_stat_lock); 2755 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2756 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2757 vs->vs_state = vd->vdev_state; 2758 vs->vs_rsize = vdev_get_min_asize(vd); 2759 if (vd->vdev_ops->vdev_op_leaf) 2760 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2761 /* 2762 * Report expandable space on top-level, non-auxillary devices only. 2763 * The expandable space is reported in terms of metaslab sized units 2764 * since that determines how much space the pool can expand. 2765 */ 2766 if (vd->vdev_aux == NULL && tvd != NULL) { 2767 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize, 2768 1ULL << tvd->vdev_ms_shift); 2769 } 2770 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2771 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2772 } 2773 2774 /* 2775 * If we're getting stats on the root vdev, aggregate the I/O counts 2776 * over all top-level vdevs (i.e. the direct children of the root). 2777 */ 2778 if (vd == rvd) { 2779 for (int c = 0; c < rvd->vdev_children; c++) { 2780 vdev_t *cvd = rvd->vdev_child[c]; 2781 vdev_stat_t *cvs = &cvd->vdev_stat; 2782 2783 for (int t = 0; t < ZIO_TYPES; t++) { 2784 vs->vs_ops[t] += cvs->vs_ops[t]; 2785 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2786 } 2787 cvs->vs_scan_removing = cvd->vdev_removing; 2788 } 2789 } 2790 mutex_exit(&vd->vdev_stat_lock); 2791 } 2792 2793 void 2794 vdev_clear_stats(vdev_t *vd) 2795 { 2796 mutex_enter(&vd->vdev_stat_lock); 2797 vd->vdev_stat.vs_space = 0; 2798 vd->vdev_stat.vs_dspace = 0; 2799 vd->vdev_stat.vs_alloc = 0; 2800 mutex_exit(&vd->vdev_stat_lock); 2801 } 2802 2803 void 2804 vdev_scan_stat_init(vdev_t *vd) 2805 { 2806 vdev_stat_t *vs = &vd->vdev_stat; 2807 2808 for (int c = 0; c < vd->vdev_children; c++) 2809 vdev_scan_stat_init(vd->vdev_child[c]); 2810 2811 mutex_enter(&vd->vdev_stat_lock); 2812 vs->vs_scan_processed = 0; 2813 mutex_exit(&vd->vdev_stat_lock); 2814 } 2815 2816 void 2817 vdev_stat_update(zio_t *zio, uint64_t psize) 2818 { 2819 spa_t *spa = zio->io_spa; 2820 vdev_t *rvd = spa->spa_root_vdev; 2821 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2822 vdev_t *pvd; 2823 uint64_t txg = zio->io_txg; 2824 vdev_stat_t *vs = &vd->vdev_stat; 2825 zio_type_t type = zio->io_type; 2826 int flags = zio->io_flags; 2827 2828 /* 2829 * If this i/o is a gang leader, it didn't do any actual work. 2830 */ 2831 if (zio->io_gang_tree) 2832 return; 2833 2834 if (zio->io_error == 0) { 2835 /* 2836 * If this is a root i/o, don't count it -- we've already 2837 * counted the top-level vdevs, and vdev_get_stats() will 2838 * aggregate them when asked. This reduces contention on 2839 * the root vdev_stat_lock and implicitly handles blocks 2840 * that compress away to holes, for which there is no i/o. 2841 * (Holes never create vdev children, so all the counters 2842 * remain zero, which is what we want.) 2843 * 2844 * Note: this only applies to successful i/o (io_error == 0) 2845 * because unlike i/o counts, errors are not additive. 2846 * When reading a ditto block, for example, failure of 2847 * one top-level vdev does not imply a root-level error. 2848 */ 2849 if (vd == rvd) 2850 return; 2851 2852 ASSERT(vd == zio->io_vd); 2853 2854 if (flags & ZIO_FLAG_IO_BYPASS) 2855 return; 2856 2857 mutex_enter(&vd->vdev_stat_lock); 2858 2859 if (flags & ZIO_FLAG_IO_REPAIR) { 2860 if (flags & ZIO_FLAG_SCAN_THREAD) { 2861 dsl_scan_phys_t *scn_phys = 2862 &spa->spa_dsl_pool->dp_scan->scn_phys; 2863 uint64_t *processed = &scn_phys->scn_processed; 2864 2865 /* XXX cleanup? */ 2866 if (vd->vdev_ops->vdev_op_leaf) 2867 atomic_add_64(processed, psize); 2868 vs->vs_scan_processed += psize; 2869 } 2870 2871 if (flags & ZIO_FLAG_SELF_HEAL) 2872 vs->vs_self_healed += psize; 2873 } 2874 2875 vs->vs_ops[type]++; 2876 vs->vs_bytes[type] += psize; 2877 2878 mutex_exit(&vd->vdev_stat_lock); 2879 return; 2880 } 2881 2882 if (flags & ZIO_FLAG_SPECULATIVE) 2883 return; 2884 2885 /* 2886 * If this is an I/O error that is going to be retried, then ignore the 2887 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2888 * hard errors, when in reality they can happen for any number of 2889 * innocuous reasons (bus resets, MPxIO link failure, etc). 2890 */ 2891 if (zio->io_error == EIO && 2892 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2893 return; 2894 2895 /* 2896 * Intent logs writes won't propagate their error to the root 2897 * I/O so don't mark these types of failures as pool-level 2898 * errors. 2899 */ 2900 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2901 return; 2902 2903 mutex_enter(&vd->vdev_stat_lock); 2904 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2905 if (zio->io_error == ECKSUM) 2906 vs->vs_checksum_errors++; 2907 else 2908 vs->vs_read_errors++; 2909 } 2910 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2911 vs->vs_write_errors++; 2912 mutex_exit(&vd->vdev_stat_lock); 2913 2914 if (type == ZIO_TYPE_WRITE && txg != 0 && 2915 (!(flags & ZIO_FLAG_IO_REPAIR) || 2916 (flags & ZIO_FLAG_SCAN_THREAD) || 2917 spa->spa_claiming)) { 2918 /* 2919 * This is either a normal write (not a repair), or it's 2920 * a repair induced by the scrub thread, or it's a repair 2921 * made by zil_claim() during spa_load() in the first txg. 2922 * In the normal case, we commit the DTL change in the same 2923 * txg as the block was born. In the scrub-induced repair 2924 * case, we know that scrubs run in first-pass syncing context, 2925 * so we commit the DTL change in spa_syncing_txg(spa). 2926 * In the zil_claim() case, we commit in spa_first_txg(spa). 2927 * 2928 * We currently do not make DTL entries for failed spontaneous 2929 * self-healing writes triggered by normal (non-scrubbing) 2930 * reads, because we have no transactional context in which to 2931 * do so -- and it's not clear that it'd be desirable anyway. 2932 */ 2933 if (vd->vdev_ops->vdev_op_leaf) { 2934 uint64_t commit_txg = txg; 2935 if (flags & ZIO_FLAG_SCAN_THREAD) { 2936 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2937 ASSERT(spa_sync_pass(spa) == 1); 2938 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2939 commit_txg = spa_syncing_txg(spa); 2940 } else if (spa->spa_claiming) { 2941 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2942 commit_txg = spa_first_txg(spa); 2943 } 2944 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2945 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2946 return; 2947 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2948 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2949 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2950 } 2951 if (vd != rvd) 2952 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2953 } 2954 } 2955 2956 /* 2957 * Update the in-core space usage stats for this vdev, its metaslab class, 2958 * and the root vdev. 2959 */ 2960 void 2961 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2962 int64_t space_delta) 2963 { 2964 int64_t dspace_delta = space_delta; 2965 spa_t *spa = vd->vdev_spa; 2966 vdev_t *rvd = spa->spa_root_vdev; 2967 metaslab_group_t *mg = vd->vdev_mg; 2968 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2969 2970 ASSERT(vd == vd->vdev_top); 2971 2972 /* 2973 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2974 * factor. We must calculate this here and not at the root vdev 2975 * because the root vdev's psize-to-asize is simply the max of its 2976 * childrens', thus not accurate enough for us. 2977 */ 2978 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2979 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2980 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2981 vd->vdev_deflate_ratio; 2982 2983 mutex_enter(&vd->vdev_stat_lock); 2984 vd->vdev_stat.vs_alloc += alloc_delta; 2985 vd->vdev_stat.vs_space += space_delta; 2986 vd->vdev_stat.vs_dspace += dspace_delta; 2987 mutex_exit(&vd->vdev_stat_lock); 2988 2989 if (mc == spa_normal_class(spa)) { 2990 mutex_enter(&rvd->vdev_stat_lock); 2991 rvd->vdev_stat.vs_alloc += alloc_delta; 2992 rvd->vdev_stat.vs_space += space_delta; 2993 rvd->vdev_stat.vs_dspace += dspace_delta; 2994 mutex_exit(&rvd->vdev_stat_lock); 2995 } 2996 2997 if (mc != NULL) { 2998 ASSERT(rvd == vd->vdev_parent); 2999 ASSERT(vd->vdev_ms_count != 0); 3000 3001 metaslab_class_space_update(mc, 3002 alloc_delta, defer_delta, space_delta, dspace_delta); 3003 } 3004 } 3005 3006 /* 3007 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3008 * so that it will be written out next time the vdev configuration is synced. 3009 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3010 */ 3011 void 3012 vdev_config_dirty(vdev_t *vd) 3013 { 3014 spa_t *spa = vd->vdev_spa; 3015 vdev_t *rvd = spa->spa_root_vdev; 3016 int c; 3017 3018 ASSERT(spa_writeable(spa)); 3019 3020 /* 3021 * If this is an aux vdev (as with l2cache and spare devices), then we 3022 * update the vdev config manually and set the sync flag. 3023 */ 3024 if (vd->vdev_aux != NULL) { 3025 spa_aux_vdev_t *sav = vd->vdev_aux; 3026 nvlist_t **aux; 3027 uint_t naux; 3028 3029 for (c = 0; c < sav->sav_count; c++) { 3030 if (sav->sav_vdevs[c] == vd) 3031 break; 3032 } 3033 3034 if (c == sav->sav_count) { 3035 /* 3036 * We're being removed. There's nothing more to do. 3037 */ 3038 ASSERT(sav->sav_sync == B_TRUE); 3039 return; 3040 } 3041 3042 sav->sav_sync = B_TRUE; 3043 3044 if (nvlist_lookup_nvlist_array(sav->sav_config, 3045 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3046 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3047 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3048 } 3049 3050 ASSERT(c < naux); 3051 3052 /* 3053 * Setting the nvlist in the middle if the array is a little 3054 * sketchy, but it will work. 3055 */ 3056 nvlist_free(aux[c]); 3057 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3058 3059 return; 3060 } 3061 3062 /* 3063 * The dirty list is protected by the SCL_CONFIG lock. The caller 3064 * must either hold SCL_CONFIG as writer, or must be the sync thread 3065 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3066 * so this is sufficient to ensure mutual exclusion. 3067 */ 3068 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3069 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3070 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3071 3072 if (vd == rvd) { 3073 for (c = 0; c < rvd->vdev_children; c++) 3074 vdev_config_dirty(rvd->vdev_child[c]); 3075 } else { 3076 ASSERT(vd == vd->vdev_top); 3077 3078 if (!list_link_active(&vd->vdev_config_dirty_node) && 3079 !vd->vdev_ishole) 3080 list_insert_head(&spa->spa_config_dirty_list, vd); 3081 } 3082 } 3083 3084 void 3085 vdev_config_clean(vdev_t *vd) 3086 { 3087 spa_t *spa = vd->vdev_spa; 3088 3089 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3090 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3091 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3092 3093 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3094 list_remove(&spa->spa_config_dirty_list, vd); 3095 } 3096 3097 /* 3098 * Mark a top-level vdev's state as dirty, so that the next pass of 3099 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3100 * the state changes from larger config changes because they require 3101 * much less locking, and are often needed for administrative actions. 3102 */ 3103 void 3104 vdev_state_dirty(vdev_t *vd) 3105 { 3106 spa_t *spa = vd->vdev_spa; 3107 3108 ASSERT(spa_writeable(spa)); 3109 ASSERT(vd == vd->vdev_top); 3110 3111 /* 3112 * The state list is protected by the SCL_STATE lock. The caller 3113 * must either hold SCL_STATE as writer, or must be the sync thread 3114 * (which holds SCL_STATE as reader). There's only one sync thread, 3115 * so this is sufficient to ensure mutual exclusion. 3116 */ 3117 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3118 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3119 spa_config_held(spa, SCL_STATE, RW_READER))); 3120 3121 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3122 list_insert_head(&spa->spa_state_dirty_list, vd); 3123 } 3124 3125 void 3126 vdev_state_clean(vdev_t *vd) 3127 { 3128 spa_t *spa = vd->vdev_spa; 3129 3130 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3131 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3132 spa_config_held(spa, SCL_STATE, RW_READER))); 3133 3134 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3135 list_remove(&spa->spa_state_dirty_list, vd); 3136 } 3137 3138 /* 3139 * Propagate vdev state up from children to parent. 3140 */ 3141 void 3142 vdev_propagate_state(vdev_t *vd) 3143 { 3144 spa_t *spa = vd->vdev_spa; 3145 vdev_t *rvd = spa->spa_root_vdev; 3146 int degraded = 0, faulted = 0; 3147 int corrupted = 0; 3148 vdev_t *child; 3149 3150 if (vd->vdev_children > 0) { 3151 for (int c = 0; c < vd->vdev_children; c++) { 3152 child = vd->vdev_child[c]; 3153 3154 /* 3155 * Don't factor holes into the decision. 3156 */ 3157 if (child->vdev_ishole) 3158 continue; 3159 3160 if (!vdev_readable(child) || 3161 (!vdev_writeable(child) && spa_writeable(spa))) { 3162 /* 3163 * Root special: if there is a top-level log 3164 * device, treat the root vdev as if it were 3165 * degraded. 3166 */ 3167 if (child->vdev_islog && vd == rvd) 3168 degraded++; 3169 else 3170 faulted++; 3171 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3172 degraded++; 3173 } 3174 3175 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3176 corrupted++; 3177 } 3178 3179 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3180 3181 /* 3182 * Root special: if there is a top-level vdev that cannot be 3183 * opened due to corrupted metadata, then propagate the root 3184 * vdev's aux state as 'corrupt' rather than 'insufficient 3185 * replicas'. 3186 */ 3187 if (corrupted && vd == rvd && 3188 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3189 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3190 VDEV_AUX_CORRUPT_DATA); 3191 } 3192 3193 if (vd->vdev_parent) 3194 vdev_propagate_state(vd->vdev_parent); 3195 } 3196 3197 /* 3198 * Set a vdev's state. If this is during an open, we don't update the parent 3199 * state, because we're in the process of opening children depth-first. 3200 * Otherwise, we propagate the change to the parent. 3201 * 3202 * If this routine places a device in a faulted state, an appropriate ereport is 3203 * generated. 3204 */ 3205 void 3206 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3207 { 3208 uint64_t save_state; 3209 spa_t *spa = vd->vdev_spa; 3210 3211 if (state == vd->vdev_state) { 3212 vd->vdev_stat.vs_aux = aux; 3213 return; 3214 } 3215 3216 save_state = vd->vdev_state; 3217 3218 vd->vdev_state = state; 3219 vd->vdev_stat.vs_aux = aux; 3220 3221 /* 3222 * If we are setting the vdev state to anything but an open state, then 3223 * always close the underlying device unless the device has requested 3224 * a delayed close (i.e. we're about to remove or fault the device). 3225 * Otherwise, we keep accessible but invalid devices open forever. 3226 * We don't call vdev_close() itself, because that implies some extra 3227 * checks (offline, etc) that we don't want here. This is limited to 3228 * leaf devices, because otherwise closing the device will affect other 3229 * children. 3230 */ 3231 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3232 vd->vdev_ops->vdev_op_leaf) 3233 vd->vdev_ops->vdev_op_close(vd); 3234 3235 /* 3236 * If we have brought this vdev back into service, we need 3237 * to notify fmd so that it can gracefully repair any outstanding 3238 * cases due to a missing device. We do this in all cases, even those 3239 * that probably don't correlate to a repaired fault. This is sure to 3240 * catch all cases, and we let the zfs-retire agent sort it out. If 3241 * this is a transient state it's OK, as the retire agent will 3242 * double-check the state of the vdev before repairing it. 3243 */ 3244 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3245 vd->vdev_prevstate != state) 3246 zfs_post_state_change(spa, vd); 3247 3248 if (vd->vdev_removed && 3249 state == VDEV_STATE_CANT_OPEN && 3250 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3251 /* 3252 * If the previous state is set to VDEV_STATE_REMOVED, then this 3253 * device was previously marked removed and someone attempted to 3254 * reopen it. If this failed due to a nonexistent device, then 3255 * keep the device in the REMOVED state. We also let this be if 3256 * it is one of our special test online cases, which is only 3257 * attempting to online the device and shouldn't generate an FMA 3258 * fault. 3259 */ 3260 vd->vdev_state = VDEV_STATE_REMOVED; 3261 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3262 } else if (state == VDEV_STATE_REMOVED) { 3263 vd->vdev_removed = B_TRUE; 3264 } else if (state == VDEV_STATE_CANT_OPEN) { 3265 /* 3266 * If we fail to open a vdev during an import or recovery, we 3267 * mark it as "not available", which signifies that it was 3268 * never there to begin with. Failure to open such a device 3269 * is not considered an error. 3270 */ 3271 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3272 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3273 vd->vdev_ops->vdev_op_leaf) 3274 vd->vdev_not_present = 1; 3275 3276 /* 3277 * Post the appropriate ereport. If the 'prevstate' field is 3278 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3279 * that this is part of a vdev_reopen(). In this case, we don't 3280 * want to post the ereport if the device was already in the 3281 * CANT_OPEN state beforehand. 3282 * 3283 * If the 'checkremove' flag is set, then this is an attempt to 3284 * online the device in response to an insertion event. If we 3285 * hit this case, then we have detected an insertion event for a 3286 * faulted or offline device that wasn't in the removed state. 3287 * In this scenario, we don't post an ereport because we are 3288 * about to replace the device, or attempt an online with 3289 * vdev_forcefault, which will generate the fault for us. 3290 */ 3291 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3292 !vd->vdev_not_present && !vd->vdev_checkremove && 3293 vd != spa->spa_root_vdev) { 3294 const char *class; 3295 3296 switch (aux) { 3297 case VDEV_AUX_OPEN_FAILED: 3298 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3299 break; 3300 case VDEV_AUX_CORRUPT_DATA: 3301 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3302 break; 3303 case VDEV_AUX_NO_REPLICAS: 3304 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3305 break; 3306 case VDEV_AUX_BAD_GUID_SUM: 3307 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3308 break; 3309 case VDEV_AUX_TOO_SMALL: 3310 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3311 break; 3312 case VDEV_AUX_BAD_LABEL: 3313 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3314 break; 3315 default: 3316 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3317 } 3318 3319 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3320 } 3321 3322 /* Erase any notion of persistent removed state */ 3323 vd->vdev_removed = B_FALSE; 3324 } else { 3325 vd->vdev_removed = B_FALSE; 3326 } 3327 3328 if (!isopen && vd->vdev_parent) 3329 vdev_propagate_state(vd->vdev_parent); 3330 } 3331 3332 /* 3333 * Check the vdev configuration to ensure that it's capable of supporting 3334 * a root pool. We do not support partial configuration. 3335 * In addition, only a single top-level vdev is allowed. 3336 */ 3337 boolean_t 3338 vdev_is_bootable(vdev_t *vd) 3339 { 3340 if (!vd->vdev_ops->vdev_op_leaf) { 3341 char *vdev_type = vd->vdev_ops->vdev_op_type; 3342 3343 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3344 vd->vdev_children > 1) { 3345 return (B_FALSE); 3346 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3347 return (B_FALSE); 3348 } 3349 } 3350 3351 for (int c = 0; c < vd->vdev_children; c++) { 3352 if (!vdev_is_bootable(vd->vdev_child[c])) 3353 return (B_FALSE); 3354 } 3355 return (B_TRUE); 3356 } 3357 3358 /* 3359 * Load the state from the original vdev tree (ovd) which 3360 * we've retrieved from the MOS config object. If the original 3361 * vdev was offline or faulted then we transfer that state to the 3362 * device in the current vdev tree (nvd). 3363 */ 3364 void 3365 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3366 { 3367 spa_t *spa = nvd->vdev_spa; 3368 3369 ASSERT(nvd->vdev_top->vdev_islog); 3370 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3371 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3372 3373 for (int c = 0; c < nvd->vdev_children; c++) 3374 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3375 3376 if (nvd->vdev_ops->vdev_op_leaf) { 3377 /* 3378 * Restore the persistent vdev state 3379 */ 3380 nvd->vdev_offline = ovd->vdev_offline; 3381 nvd->vdev_faulted = ovd->vdev_faulted; 3382 nvd->vdev_degraded = ovd->vdev_degraded; 3383 nvd->vdev_removed = ovd->vdev_removed; 3384 } 3385 } 3386 3387 /* 3388 * Determine if a log device has valid content. If the vdev was 3389 * removed or faulted in the MOS config then we know that 3390 * the content on the log device has already been written to the pool. 3391 */ 3392 boolean_t 3393 vdev_log_state_valid(vdev_t *vd) 3394 { 3395 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3396 !vd->vdev_removed) 3397 return (B_TRUE); 3398 3399 for (int c = 0; c < vd->vdev_children; c++) 3400 if (vdev_log_state_valid(vd->vdev_child[c])) 3401 return (B_TRUE); 3402 3403 return (B_FALSE); 3404 } 3405 3406 /* 3407 * Expand a vdev if possible. 3408 */ 3409 void 3410 vdev_expand(vdev_t *vd, uint64_t txg) 3411 { 3412 ASSERT(vd->vdev_top == vd); 3413 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3414 3415 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3416 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3417 vdev_config_dirty(vd); 3418 } 3419 } 3420 3421 /* 3422 * Split a vdev. 3423 */ 3424 void 3425 vdev_split(vdev_t *vd) 3426 { 3427 vdev_t *cvd, *pvd = vd->vdev_parent; 3428 3429 vdev_remove_child(pvd, vd); 3430 vdev_compact_children(pvd); 3431 3432 cvd = pvd->vdev_child[0]; 3433 if (pvd->vdev_children == 1) { 3434 vdev_remove_parent(cvd); 3435 cvd->vdev_splitting = B_TRUE; 3436 } 3437 vdev_propagate_state(cvd); 3438 } 3439 3440 void 3441 vdev_deadman(vdev_t *vd) 3442 { 3443 for (int c = 0; c < vd->vdev_children; c++) { 3444 vdev_t *cvd = vd->vdev_child[c]; 3445 3446 vdev_deadman(cvd); 3447 } 3448 3449 if (vd->vdev_ops->vdev_op_leaf) { 3450 vdev_queue_t *vq = &vd->vdev_queue; 3451 3452 mutex_enter(&vq->vq_lock); 3453 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3454 spa_t *spa = vd->vdev_spa; 3455 zio_t *fio; 3456 uint64_t delta; 3457 3458 /* 3459 * Look at the head of all the pending queues, 3460 * if any I/O has been outstanding for longer than 3461 * the spa_deadman_synctime we panic the system. 3462 */ 3463 fio = avl_first(&vq->vq_active_tree); 3464 delta = gethrtime() - fio->io_timestamp; 3465 if (delta > spa_deadman_synctime(spa)) { 3466 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3467 "delta %lluns, last io %lluns", 3468 fio->io_timestamp, delta, 3469 vq->vq_io_complete_ts); 3470 fm_panic("I/O to pool '%s' appears to be " 3471 "hung.", spa_name(spa)); 3472 } 3473 } 3474 mutex_exit(&vq->vq_lock); 3475 } 3476 } 3477