xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision f22cbd2db87ae3945ed6a9166f8b9d61b65c6ab9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 
53 /*
54  * Virtual device management.
55  */
56 
57 static vdev_ops_t *vdev_ops_table[] = {
58 	&vdev_root_ops,
59 	&vdev_raidz_ops,
60 	&vdev_mirror_ops,
61 	&vdev_replacing_ops,
62 	&vdev_spare_ops,
63 	&vdev_disk_ops,
64 	&vdev_file_ops,
65 	&vdev_missing_ops,
66 	&vdev_hole_ops,
67 	&vdev_indirect_ops,
68 	NULL
69 };
70 
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
73 
74 /* maximum number of metaslabs per top-level vdev */
75 int vdev_max_ms_count = 200;
76 
77 /* minimum amount of metaslabs per top-level vdev */
78 int vdev_min_ms_count = 16;
79 
80 /* see comment in vdev_metaslab_set_size() */
81 int vdev_default_ms_shift = 29;
82 
83 boolean_t vdev_validate_skip = B_FALSE;
84 
85 /*
86  * Since the DTL space map of a vdev is not expected to have a lot of
87  * entries, we default its block size to 4K.
88  */
89 int vdev_dtl_sm_blksz = (1 << 12);
90 
91 /*
92  * vdev-wide space maps that have lots of entries written to them at
93  * the end of each transaction can benefit from a higher I/O bandwidth
94  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
95  */
96 int vdev_standard_sm_blksz = (1 << 17);
97 
98 /*PRINTFLIKE2*/
99 void
100 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
101 {
102 	va_list adx;
103 	char buf[256];
104 
105 	va_start(adx, fmt);
106 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
107 	va_end(adx);
108 
109 	if (vd->vdev_path != NULL) {
110 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
111 		    vd->vdev_path, buf);
112 	} else {
113 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
114 		    vd->vdev_ops->vdev_op_type,
115 		    (u_longlong_t)vd->vdev_id,
116 		    (u_longlong_t)vd->vdev_guid, buf);
117 	}
118 }
119 
120 void
121 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
122 {
123 	char state[20];
124 
125 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
126 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
127 		    vd->vdev_ops->vdev_op_type);
128 		return;
129 	}
130 
131 	switch (vd->vdev_state) {
132 	case VDEV_STATE_UNKNOWN:
133 		(void) snprintf(state, sizeof (state), "unknown");
134 		break;
135 	case VDEV_STATE_CLOSED:
136 		(void) snprintf(state, sizeof (state), "closed");
137 		break;
138 	case VDEV_STATE_OFFLINE:
139 		(void) snprintf(state, sizeof (state), "offline");
140 		break;
141 	case VDEV_STATE_REMOVED:
142 		(void) snprintf(state, sizeof (state), "removed");
143 		break;
144 	case VDEV_STATE_CANT_OPEN:
145 		(void) snprintf(state, sizeof (state), "can't open");
146 		break;
147 	case VDEV_STATE_FAULTED:
148 		(void) snprintf(state, sizeof (state), "faulted");
149 		break;
150 	case VDEV_STATE_DEGRADED:
151 		(void) snprintf(state, sizeof (state), "degraded");
152 		break;
153 	case VDEV_STATE_HEALTHY:
154 		(void) snprintf(state, sizeof (state), "healthy");
155 		break;
156 	default:
157 		(void) snprintf(state, sizeof (state), "<state %u>",
158 		    (uint_t)vd->vdev_state);
159 	}
160 
161 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
162 	    "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
163 	    vd->vdev_islog ? " (log)" : "",
164 	    (u_longlong_t)vd->vdev_guid,
165 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
166 
167 	for (uint64_t i = 0; i < vd->vdev_children; i++)
168 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
169 }
170 
171 /*
172  * Given a vdev type, return the appropriate ops vector.
173  */
174 static vdev_ops_t *
175 vdev_getops(const char *type)
176 {
177 	vdev_ops_t *ops, **opspp;
178 
179 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
180 		if (strcmp(ops->vdev_op_type, type) == 0)
181 			break;
182 
183 	return (ops);
184 }
185 
186 /*
187  * Default asize function: return the MAX of psize with the asize of
188  * all children.  This is what's used by anything other than RAID-Z.
189  */
190 uint64_t
191 vdev_default_asize(vdev_t *vd, uint64_t psize)
192 {
193 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
194 	uint64_t csize;
195 
196 	for (int c = 0; c < vd->vdev_children; c++) {
197 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
198 		asize = MAX(asize, csize);
199 	}
200 
201 	return (asize);
202 }
203 
204 /*
205  * Get the minimum allocatable size. We define the allocatable size as
206  * the vdev's asize rounded to the nearest metaslab. This allows us to
207  * replace or attach devices which don't have the same physical size but
208  * can still satisfy the same number of allocations.
209  */
210 uint64_t
211 vdev_get_min_asize(vdev_t *vd)
212 {
213 	vdev_t *pvd = vd->vdev_parent;
214 
215 	/*
216 	 * If our parent is NULL (inactive spare or cache) or is the root,
217 	 * just return our own asize.
218 	 */
219 	if (pvd == NULL)
220 		return (vd->vdev_asize);
221 
222 	/*
223 	 * The top-level vdev just returns the allocatable size rounded
224 	 * to the nearest metaslab.
225 	 */
226 	if (vd == vd->vdev_top)
227 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
228 
229 	/*
230 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
231 	 * so each child must provide at least 1/Nth of its asize.
232 	 */
233 	if (pvd->vdev_ops == &vdev_raidz_ops)
234 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
235 		    pvd->vdev_children);
236 
237 	return (pvd->vdev_min_asize);
238 }
239 
240 void
241 vdev_set_min_asize(vdev_t *vd)
242 {
243 	vd->vdev_min_asize = vdev_get_min_asize(vd);
244 
245 	for (int c = 0; c < vd->vdev_children; c++)
246 		vdev_set_min_asize(vd->vdev_child[c]);
247 }
248 
249 vdev_t *
250 vdev_lookup_top(spa_t *spa, uint64_t vdev)
251 {
252 	vdev_t *rvd = spa->spa_root_vdev;
253 
254 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
255 
256 	if (vdev < rvd->vdev_children) {
257 		ASSERT(rvd->vdev_child[vdev] != NULL);
258 		return (rvd->vdev_child[vdev]);
259 	}
260 
261 	return (NULL);
262 }
263 
264 vdev_t *
265 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
266 {
267 	vdev_t *mvd;
268 
269 	if (vd->vdev_guid == guid)
270 		return (vd);
271 
272 	for (int c = 0; c < vd->vdev_children; c++)
273 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
274 		    NULL)
275 			return (mvd);
276 
277 	return (NULL);
278 }
279 
280 static int
281 vdev_count_leaves_impl(vdev_t *vd)
282 {
283 	int n = 0;
284 
285 	if (vd->vdev_ops->vdev_op_leaf)
286 		return (1);
287 
288 	for (int c = 0; c < vd->vdev_children; c++)
289 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
290 
291 	return (n);
292 }
293 
294 int
295 vdev_count_leaves(spa_t *spa)
296 {
297 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
298 }
299 
300 void
301 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
302 {
303 	size_t oldsize, newsize;
304 	uint64_t id = cvd->vdev_id;
305 	vdev_t **newchild;
306 	spa_t *spa = cvd->vdev_spa;
307 
308 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
309 	ASSERT(cvd->vdev_parent == NULL);
310 
311 	cvd->vdev_parent = pvd;
312 
313 	if (pvd == NULL)
314 		return;
315 
316 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
317 
318 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
319 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
320 	newsize = pvd->vdev_children * sizeof (vdev_t *);
321 
322 	newchild = kmem_zalloc(newsize, KM_SLEEP);
323 	if (pvd->vdev_child != NULL) {
324 		bcopy(pvd->vdev_child, newchild, oldsize);
325 		kmem_free(pvd->vdev_child, oldsize);
326 	}
327 
328 	pvd->vdev_child = newchild;
329 	pvd->vdev_child[id] = cvd;
330 
331 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
332 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
333 
334 	/*
335 	 * Walk up all ancestors to update guid sum.
336 	 */
337 	for (; pvd != NULL; pvd = pvd->vdev_parent)
338 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
339 }
340 
341 void
342 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
343 {
344 	int c;
345 	uint_t id = cvd->vdev_id;
346 
347 	ASSERT(cvd->vdev_parent == pvd);
348 
349 	if (pvd == NULL)
350 		return;
351 
352 	ASSERT(id < pvd->vdev_children);
353 	ASSERT(pvd->vdev_child[id] == cvd);
354 
355 	pvd->vdev_child[id] = NULL;
356 	cvd->vdev_parent = NULL;
357 
358 	for (c = 0; c < pvd->vdev_children; c++)
359 		if (pvd->vdev_child[c])
360 			break;
361 
362 	if (c == pvd->vdev_children) {
363 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
364 		pvd->vdev_child = NULL;
365 		pvd->vdev_children = 0;
366 	}
367 
368 	/*
369 	 * Walk up all ancestors to update guid sum.
370 	 */
371 	for (; pvd != NULL; pvd = pvd->vdev_parent)
372 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
373 }
374 
375 /*
376  * Remove any holes in the child array.
377  */
378 void
379 vdev_compact_children(vdev_t *pvd)
380 {
381 	vdev_t **newchild, *cvd;
382 	int oldc = pvd->vdev_children;
383 	int newc;
384 
385 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
386 
387 	for (int c = newc = 0; c < oldc; c++)
388 		if (pvd->vdev_child[c])
389 			newc++;
390 
391 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
392 
393 	for (int c = newc = 0; c < oldc; c++) {
394 		if ((cvd = pvd->vdev_child[c]) != NULL) {
395 			newchild[newc] = cvd;
396 			cvd->vdev_id = newc++;
397 		}
398 	}
399 
400 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
401 	pvd->vdev_child = newchild;
402 	pvd->vdev_children = newc;
403 }
404 
405 /*
406  * Allocate and minimally initialize a vdev_t.
407  */
408 vdev_t *
409 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
410 {
411 	vdev_t *vd;
412 	vdev_indirect_config_t *vic;
413 
414 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
415 	vic = &vd->vdev_indirect_config;
416 
417 	if (spa->spa_root_vdev == NULL) {
418 		ASSERT(ops == &vdev_root_ops);
419 		spa->spa_root_vdev = vd;
420 		spa->spa_load_guid = spa_generate_guid(NULL);
421 	}
422 
423 	if (guid == 0 && ops != &vdev_hole_ops) {
424 		if (spa->spa_root_vdev == vd) {
425 			/*
426 			 * The root vdev's guid will also be the pool guid,
427 			 * which must be unique among all pools.
428 			 */
429 			guid = spa_generate_guid(NULL);
430 		} else {
431 			/*
432 			 * Any other vdev's guid must be unique within the pool.
433 			 */
434 			guid = spa_generate_guid(spa);
435 		}
436 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
437 	}
438 
439 	vd->vdev_spa = spa;
440 	vd->vdev_id = id;
441 	vd->vdev_guid = guid;
442 	vd->vdev_guid_sum = guid;
443 	vd->vdev_ops = ops;
444 	vd->vdev_state = VDEV_STATE_CLOSED;
445 	vd->vdev_ishole = (ops == &vdev_hole_ops);
446 	vic->vic_prev_indirect_vdev = UINT64_MAX;
447 
448 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
449 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
450 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
451 
452 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
453 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
454 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
455 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
456 	for (int t = 0; t < DTL_TYPES; t++) {
457 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
458 	}
459 	txg_list_create(&vd->vdev_ms_list, spa,
460 	    offsetof(struct metaslab, ms_txg_node));
461 	txg_list_create(&vd->vdev_dtl_list, spa,
462 	    offsetof(struct vdev, vdev_dtl_node));
463 	vd->vdev_stat.vs_timestamp = gethrtime();
464 	vdev_queue_init(vd);
465 	vdev_cache_init(vd);
466 
467 	return (vd);
468 }
469 
470 /*
471  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
472  * creating a new vdev or loading an existing one - the behavior is slightly
473  * different for each case.
474  */
475 int
476 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
477     int alloctype)
478 {
479 	vdev_ops_t *ops;
480 	char *type;
481 	uint64_t guid = 0, islog, nparity;
482 	vdev_t *vd;
483 	vdev_indirect_config_t *vic;
484 
485 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
486 
487 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
488 		return (SET_ERROR(EINVAL));
489 
490 	if ((ops = vdev_getops(type)) == NULL)
491 		return (SET_ERROR(EINVAL));
492 
493 	/*
494 	 * If this is a load, get the vdev guid from the nvlist.
495 	 * Otherwise, vdev_alloc_common() will generate one for us.
496 	 */
497 	if (alloctype == VDEV_ALLOC_LOAD) {
498 		uint64_t label_id;
499 
500 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
501 		    label_id != id)
502 			return (SET_ERROR(EINVAL));
503 
504 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
505 			return (SET_ERROR(EINVAL));
506 	} else if (alloctype == VDEV_ALLOC_SPARE) {
507 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
508 			return (SET_ERROR(EINVAL));
509 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
510 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
511 			return (SET_ERROR(EINVAL));
512 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
513 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
514 			return (SET_ERROR(EINVAL));
515 	}
516 
517 	/*
518 	 * The first allocated vdev must be of type 'root'.
519 	 */
520 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
521 		return (SET_ERROR(EINVAL));
522 
523 	/*
524 	 * Determine whether we're a log vdev.
525 	 */
526 	islog = 0;
527 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
528 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
529 		return (SET_ERROR(ENOTSUP));
530 
531 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
532 		return (SET_ERROR(ENOTSUP));
533 
534 	/*
535 	 * Set the nparity property for RAID-Z vdevs.
536 	 */
537 	nparity = -1ULL;
538 	if (ops == &vdev_raidz_ops) {
539 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
540 		    &nparity) == 0) {
541 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
542 				return (SET_ERROR(EINVAL));
543 			/*
544 			 * Previous versions could only support 1 or 2 parity
545 			 * device.
546 			 */
547 			if (nparity > 1 &&
548 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
549 				return (SET_ERROR(ENOTSUP));
550 			if (nparity > 2 &&
551 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
552 				return (SET_ERROR(ENOTSUP));
553 		} else {
554 			/*
555 			 * We require the parity to be specified for SPAs that
556 			 * support multiple parity levels.
557 			 */
558 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
559 				return (SET_ERROR(EINVAL));
560 			/*
561 			 * Otherwise, we default to 1 parity device for RAID-Z.
562 			 */
563 			nparity = 1;
564 		}
565 	} else {
566 		nparity = 0;
567 	}
568 	ASSERT(nparity != -1ULL);
569 
570 	vd = vdev_alloc_common(spa, id, guid, ops);
571 	vic = &vd->vdev_indirect_config;
572 
573 	vd->vdev_islog = islog;
574 	vd->vdev_nparity = nparity;
575 
576 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
577 		vd->vdev_path = spa_strdup(vd->vdev_path);
578 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
579 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
580 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
581 	    &vd->vdev_physpath) == 0)
582 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
583 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
584 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
585 
586 	/*
587 	 * Set the whole_disk property.  If it's not specified, leave the value
588 	 * as -1.
589 	 */
590 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
591 	    &vd->vdev_wholedisk) != 0)
592 		vd->vdev_wholedisk = -1ULL;
593 
594 	ASSERT0(vic->vic_mapping_object);
595 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
596 	    &vic->vic_mapping_object);
597 	ASSERT0(vic->vic_births_object);
598 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
599 	    &vic->vic_births_object);
600 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
601 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
602 	    &vic->vic_prev_indirect_vdev);
603 
604 	/*
605 	 * Look for the 'not present' flag.  This will only be set if the device
606 	 * was not present at the time of import.
607 	 */
608 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
609 	    &vd->vdev_not_present);
610 
611 	/*
612 	 * Get the alignment requirement.
613 	 */
614 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
615 
616 	/*
617 	 * Retrieve the vdev creation time.
618 	 */
619 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
620 	    &vd->vdev_crtxg);
621 
622 	/*
623 	 * If we're a top-level vdev, try to load the allocation parameters.
624 	 */
625 	if (parent && !parent->vdev_parent &&
626 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
627 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
628 		    &vd->vdev_ms_array);
629 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
630 		    &vd->vdev_ms_shift);
631 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
632 		    &vd->vdev_asize);
633 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
634 		    &vd->vdev_removing);
635 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
636 		    &vd->vdev_top_zap);
637 	} else {
638 		ASSERT0(vd->vdev_top_zap);
639 	}
640 
641 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
642 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
643 		    alloctype == VDEV_ALLOC_ADD ||
644 		    alloctype == VDEV_ALLOC_SPLIT ||
645 		    alloctype == VDEV_ALLOC_ROOTPOOL);
646 		vd->vdev_mg = metaslab_group_create(islog ?
647 		    spa_log_class(spa) : spa_normal_class(spa), vd);
648 	}
649 
650 	if (vd->vdev_ops->vdev_op_leaf &&
651 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
652 		(void) nvlist_lookup_uint64(nv,
653 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
654 	} else {
655 		ASSERT0(vd->vdev_leaf_zap);
656 	}
657 
658 	/*
659 	 * If we're a leaf vdev, try to load the DTL object and other state.
660 	 */
661 
662 	if (vd->vdev_ops->vdev_op_leaf &&
663 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
664 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
665 		if (alloctype == VDEV_ALLOC_LOAD) {
666 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
667 			    &vd->vdev_dtl_object);
668 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
669 			    &vd->vdev_unspare);
670 		}
671 
672 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
673 			uint64_t spare = 0;
674 
675 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
676 			    &spare) == 0 && spare)
677 				spa_spare_add(vd);
678 		}
679 
680 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
681 		    &vd->vdev_offline);
682 
683 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
684 		    &vd->vdev_resilver_txg);
685 
686 		/*
687 		 * When importing a pool, we want to ignore the persistent fault
688 		 * state, as the diagnosis made on another system may not be
689 		 * valid in the current context.  Local vdevs will
690 		 * remain in the faulted state.
691 		 */
692 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
693 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
694 			    &vd->vdev_faulted);
695 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
696 			    &vd->vdev_degraded);
697 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
698 			    &vd->vdev_removed);
699 
700 			if (vd->vdev_faulted || vd->vdev_degraded) {
701 				char *aux;
702 
703 				vd->vdev_label_aux =
704 				    VDEV_AUX_ERR_EXCEEDED;
705 				if (nvlist_lookup_string(nv,
706 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
707 				    strcmp(aux, "external") == 0)
708 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
709 			}
710 		}
711 	}
712 
713 	/*
714 	 * Add ourselves to the parent's list of children.
715 	 */
716 	vdev_add_child(parent, vd);
717 
718 	*vdp = vd;
719 
720 	return (0);
721 }
722 
723 void
724 vdev_free(vdev_t *vd)
725 {
726 	spa_t *spa = vd->vdev_spa;
727 
728 	/*
729 	 * vdev_free() implies closing the vdev first.  This is simpler than
730 	 * trying to ensure complicated semantics for all callers.
731 	 */
732 	vdev_close(vd);
733 
734 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
735 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
736 
737 	/*
738 	 * Free all children.
739 	 */
740 	for (int c = 0; c < vd->vdev_children; c++)
741 		vdev_free(vd->vdev_child[c]);
742 
743 	ASSERT(vd->vdev_child == NULL);
744 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
745 
746 	/*
747 	 * Discard allocation state.
748 	 */
749 	if (vd->vdev_mg != NULL) {
750 		vdev_metaslab_fini(vd);
751 		metaslab_group_destroy(vd->vdev_mg);
752 	}
753 
754 	ASSERT0(vd->vdev_stat.vs_space);
755 	ASSERT0(vd->vdev_stat.vs_dspace);
756 	ASSERT0(vd->vdev_stat.vs_alloc);
757 
758 	/*
759 	 * Remove this vdev from its parent's child list.
760 	 */
761 	vdev_remove_child(vd->vdev_parent, vd);
762 
763 	ASSERT(vd->vdev_parent == NULL);
764 
765 	/*
766 	 * Clean up vdev structure.
767 	 */
768 	vdev_queue_fini(vd);
769 	vdev_cache_fini(vd);
770 
771 	if (vd->vdev_path)
772 		spa_strfree(vd->vdev_path);
773 	if (vd->vdev_devid)
774 		spa_strfree(vd->vdev_devid);
775 	if (vd->vdev_physpath)
776 		spa_strfree(vd->vdev_physpath);
777 	if (vd->vdev_fru)
778 		spa_strfree(vd->vdev_fru);
779 
780 	if (vd->vdev_isspare)
781 		spa_spare_remove(vd);
782 	if (vd->vdev_isl2cache)
783 		spa_l2cache_remove(vd);
784 
785 	txg_list_destroy(&vd->vdev_ms_list);
786 	txg_list_destroy(&vd->vdev_dtl_list);
787 
788 	mutex_enter(&vd->vdev_dtl_lock);
789 	space_map_close(vd->vdev_dtl_sm);
790 	for (int t = 0; t < DTL_TYPES; t++) {
791 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
792 		range_tree_destroy(vd->vdev_dtl[t]);
793 	}
794 	mutex_exit(&vd->vdev_dtl_lock);
795 
796 	EQUIV(vd->vdev_indirect_births != NULL,
797 	    vd->vdev_indirect_mapping != NULL);
798 	if (vd->vdev_indirect_births != NULL) {
799 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
800 		vdev_indirect_births_close(vd->vdev_indirect_births);
801 	}
802 
803 	if (vd->vdev_obsolete_sm != NULL) {
804 		ASSERT(vd->vdev_removing ||
805 		    vd->vdev_ops == &vdev_indirect_ops);
806 		space_map_close(vd->vdev_obsolete_sm);
807 		vd->vdev_obsolete_sm = NULL;
808 	}
809 	range_tree_destroy(vd->vdev_obsolete_segments);
810 	rw_destroy(&vd->vdev_indirect_rwlock);
811 	mutex_destroy(&vd->vdev_obsolete_lock);
812 
813 	mutex_destroy(&vd->vdev_queue_lock);
814 	mutex_destroy(&vd->vdev_dtl_lock);
815 	mutex_destroy(&vd->vdev_stat_lock);
816 	mutex_destroy(&vd->vdev_probe_lock);
817 
818 	if (vd == spa->spa_root_vdev)
819 		spa->spa_root_vdev = NULL;
820 
821 	kmem_free(vd, sizeof (vdev_t));
822 }
823 
824 /*
825  * Transfer top-level vdev state from svd to tvd.
826  */
827 static void
828 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
829 {
830 	spa_t *spa = svd->vdev_spa;
831 	metaslab_t *msp;
832 	vdev_t *vd;
833 	int t;
834 
835 	ASSERT(tvd == tvd->vdev_top);
836 
837 	tvd->vdev_ms_array = svd->vdev_ms_array;
838 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
839 	tvd->vdev_ms_count = svd->vdev_ms_count;
840 	tvd->vdev_top_zap = svd->vdev_top_zap;
841 
842 	svd->vdev_ms_array = 0;
843 	svd->vdev_ms_shift = 0;
844 	svd->vdev_ms_count = 0;
845 	svd->vdev_top_zap = 0;
846 
847 	if (tvd->vdev_mg)
848 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
849 	tvd->vdev_mg = svd->vdev_mg;
850 	tvd->vdev_ms = svd->vdev_ms;
851 
852 	svd->vdev_mg = NULL;
853 	svd->vdev_ms = NULL;
854 
855 	if (tvd->vdev_mg != NULL)
856 		tvd->vdev_mg->mg_vd = tvd;
857 
858 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
859 	svd->vdev_checkpoint_sm = NULL;
860 
861 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
862 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
863 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
864 
865 	svd->vdev_stat.vs_alloc = 0;
866 	svd->vdev_stat.vs_space = 0;
867 	svd->vdev_stat.vs_dspace = 0;
868 
869 	for (t = 0; t < TXG_SIZE; t++) {
870 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
871 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
872 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
873 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
874 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
875 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
876 	}
877 
878 	if (list_link_active(&svd->vdev_config_dirty_node)) {
879 		vdev_config_clean(svd);
880 		vdev_config_dirty(tvd);
881 	}
882 
883 	if (list_link_active(&svd->vdev_state_dirty_node)) {
884 		vdev_state_clean(svd);
885 		vdev_state_dirty(tvd);
886 	}
887 
888 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
889 	svd->vdev_deflate_ratio = 0;
890 
891 	tvd->vdev_islog = svd->vdev_islog;
892 	svd->vdev_islog = 0;
893 }
894 
895 static void
896 vdev_top_update(vdev_t *tvd, vdev_t *vd)
897 {
898 	if (vd == NULL)
899 		return;
900 
901 	vd->vdev_top = tvd;
902 
903 	for (int c = 0; c < vd->vdev_children; c++)
904 		vdev_top_update(tvd, vd->vdev_child[c]);
905 }
906 
907 /*
908  * Add a mirror/replacing vdev above an existing vdev.
909  */
910 vdev_t *
911 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
912 {
913 	spa_t *spa = cvd->vdev_spa;
914 	vdev_t *pvd = cvd->vdev_parent;
915 	vdev_t *mvd;
916 
917 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
918 
919 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
920 
921 	mvd->vdev_asize = cvd->vdev_asize;
922 	mvd->vdev_min_asize = cvd->vdev_min_asize;
923 	mvd->vdev_max_asize = cvd->vdev_max_asize;
924 	mvd->vdev_psize = cvd->vdev_psize;
925 	mvd->vdev_ashift = cvd->vdev_ashift;
926 	mvd->vdev_state = cvd->vdev_state;
927 	mvd->vdev_crtxg = cvd->vdev_crtxg;
928 
929 	vdev_remove_child(pvd, cvd);
930 	vdev_add_child(pvd, mvd);
931 	cvd->vdev_id = mvd->vdev_children;
932 	vdev_add_child(mvd, cvd);
933 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
934 
935 	if (mvd == mvd->vdev_top)
936 		vdev_top_transfer(cvd, mvd);
937 
938 	return (mvd);
939 }
940 
941 /*
942  * Remove a 1-way mirror/replacing vdev from the tree.
943  */
944 void
945 vdev_remove_parent(vdev_t *cvd)
946 {
947 	vdev_t *mvd = cvd->vdev_parent;
948 	vdev_t *pvd = mvd->vdev_parent;
949 
950 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
951 
952 	ASSERT(mvd->vdev_children == 1);
953 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
954 	    mvd->vdev_ops == &vdev_replacing_ops ||
955 	    mvd->vdev_ops == &vdev_spare_ops);
956 	cvd->vdev_ashift = mvd->vdev_ashift;
957 
958 	vdev_remove_child(mvd, cvd);
959 	vdev_remove_child(pvd, mvd);
960 
961 	/*
962 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
963 	 * Otherwise, we could have detached an offline device, and when we
964 	 * go to import the pool we'll think we have two top-level vdevs,
965 	 * instead of a different version of the same top-level vdev.
966 	 */
967 	if (mvd->vdev_top == mvd) {
968 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
969 		cvd->vdev_orig_guid = cvd->vdev_guid;
970 		cvd->vdev_guid += guid_delta;
971 		cvd->vdev_guid_sum += guid_delta;
972 	}
973 	cvd->vdev_id = mvd->vdev_id;
974 	vdev_add_child(pvd, cvd);
975 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
976 
977 	if (cvd == cvd->vdev_top)
978 		vdev_top_transfer(mvd, cvd);
979 
980 	ASSERT(mvd->vdev_children == 0);
981 	vdev_free(mvd);
982 }
983 
984 int
985 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
986 {
987 	spa_t *spa = vd->vdev_spa;
988 	objset_t *mos = spa->spa_meta_objset;
989 	uint64_t m;
990 	uint64_t oldc = vd->vdev_ms_count;
991 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
992 	metaslab_t **mspp;
993 	int error;
994 
995 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
996 
997 	/*
998 	 * This vdev is not being allocated from yet or is a hole.
999 	 */
1000 	if (vd->vdev_ms_shift == 0)
1001 		return (0);
1002 
1003 	ASSERT(!vd->vdev_ishole);
1004 
1005 	ASSERT(oldc <= newc);
1006 
1007 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1008 
1009 	if (oldc != 0) {
1010 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1011 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1012 	}
1013 
1014 	vd->vdev_ms = mspp;
1015 	vd->vdev_ms_count = newc;
1016 
1017 	for (m = oldc; m < newc; m++) {
1018 		uint64_t object = 0;
1019 
1020 		/*
1021 		 * vdev_ms_array may be 0 if we are creating the "fake"
1022 		 * metaslabs for an indirect vdev for zdb's leak detection.
1023 		 * See zdb_leak_init().
1024 		 */
1025 		if (txg == 0 && vd->vdev_ms_array != 0) {
1026 			error = dmu_read(mos, vd->vdev_ms_array,
1027 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1028 			    DMU_READ_PREFETCH);
1029 			if (error != 0) {
1030 				vdev_dbgmsg(vd, "unable to read the metaslab "
1031 				    "array [error=%d]", error);
1032 				return (error);
1033 			}
1034 		}
1035 
1036 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1037 		    &(vd->vdev_ms[m]));
1038 		if (error != 0) {
1039 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1040 			    error);
1041 			return (error);
1042 		}
1043 	}
1044 
1045 	if (txg == 0)
1046 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1047 
1048 	/*
1049 	 * If the vdev is being removed we don't activate
1050 	 * the metaslabs since we want to ensure that no new
1051 	 * allocations are performed on this device.
1052 	 */
1053 	if (oldc == 0 && !vd->vdev_removing)
1054 		metaslab_group_activate(vd->vdev_mg);
1055 
1056 	if (txg == 0)
1057 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1058 
1059 	return (0);
1060 }
1061 
1062 void
1063 vdev_metaslab_fini(vdev_t *vd)
1064 {
1065 	if (vd->vdev_checkpoint_sm != NULL) {
1066 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1067 		    SPA_FEATURE_POOL_CHECKPOINT));
1068 		space_map_close(vd->vdev_checkpoint_sm);
1069 		/*
1070 		 * Even though we close the space map, we need to set its
1071 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1072 		 * may be called multiple times for certain operations
1073 		 * (i.e. when destroying a pool) so we need to ensure that
1074 		 * this clause never executes twice. This logic is similar
1075 		 * to the one used for the vdev_ms clause below.
1076 		 */
1077 		vd->vdev_checkpoint_sm = NULL;
1078 	}
1079 
1080 	if (vd->vdev_ms != NULL) {
1081 		uint64_t count = vd->vdev_ms_count;
1082 
1083 		metaslab_group_passivate(vd->vdev_mg);
1084 		for (uint64_t m = 0; m < count; m++) {
1085 			metaslab_t *msp = vd->vdev_ms[m];
1086 
1087 			if (msp != NULL)
1088 				metaslab_fini(msp);
1089 		}
1090 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1091 		vd->vdev_ms = NULL;
1092 
1093 		vd->vdev_ms_count = 0;
1094 	}
1095 	ASSERT0(vd->vdev_ms_count);
1096 }
1097 
1098 typedef struct vdev_probe_stats {
1099 	boolean_t	vps_readable;
1100 	boolean_t	vps_writeable;
1101 	int		vps_flags;
1102 } vdev_probe_stats_t;
1103 
1104 static void
1105 vdev_probe_done(zio_t *zio)
1106 {
1107 	spa_t *spa = zio->io_spa;
1108 	vdev_t *vd = zio->io_vd;
1109 	vdev_probe_stats_t *vps = zio->io_private;
1110 
1111 	ASSERT(vd->vdev_probe_zio != NULL);
1112 
1113 	if (zio->io_type == ZIO_TYPE_READ) {
1114 		if (zio->io_error == 0)
1115 			vps->vps_readable = 1;
1116 		if (zio->io_error == 0 && spa_writeable(spa)) {
1117 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1118 			    zio->io_offset, zio->io_size, zio->io_abd,
1119 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1120 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1121 		} else {
1122 			abd_free(zio->io_abd);
1123 		}
1124 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1125 		if (zio->io_error == 0)
1126 			vps->vps_writeable = 1;
1127 		abd_free(zio->io_abd);
1128 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1129 		zio_t *pio;
1130 
1131 		vd->vdev_cant_read |= !vps->vps_readable;
1132 		vd->vdev_cant_write |= !vps->vps_writeable;
1133 
1134 		if (vdev_readable(vd) &&
1135 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1136 			zio->io_error = 0;
1137 		} else {
1138 			ASSERT(zio->io_error != 0);
1139 			vdev_dbgmsg(vd, "failed probe");
1140 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1141 			    spa, vd, NULL, 0, 0);
1142 			zio->io_error = SET_ERROR(ENXIO);
1143 		}
1144 
1145 		mutex_enter(&vd->vdev_probe_lock);
1146 		ASSERT(vd->vdev_probe_zio == zio);
1147 		vd->vdev_probe_zio = NULL;
1148 		mutex_exit(&vd->vdev_probe_lock);
1149 
1150 		zio_link_t *zl = NULL;
1151 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1152 			if (!vdev_accessible(vd, pio))
1153 				pio->io_error = SET_ERROR(ENXIO);
1154 
1155 		kmem_free(vps, sizeof (*vps));
1156 	}
1157 }
1158 
1159 /*
1160  * Determine whether this device is accessible.
1161  *
1162  * Read and write to several known locations: the pad regions of each
1163  * vdev label but the first, which we leave alone in case it contains
1164  * a VTOC.
1165  */
1166 zio_t *
1167 vdev_probe(vdev_t *vd, zio_t *zio)
1168 {
1169 	spa_t *spa = vd->vdev_spa;
1170 	vdev_probe_stats_t *vps = NULL;
1171 	zio_t *pio;
1172 
1173 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1174 
1175 	/*
1176 	 * Don't probe the probe.
1177 	 */
1178 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1179 		return (NULL);
1180 
1181 	/*
1182 	 * To prevent 'probe storms' when a device fails, we create
1183 	 * just one probe i/o at a time.  All zios that want to probe
1184 	 * this vdev will become parents of the probe io.
1185 	 */
1186 	mutex_enter(&vd->vdev_probe_lock);
1187 
1188 	if ((pio = vd->vdev_probe_zio) == NULL) {
1189 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1190 
1191 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1192 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1193 		    ZIO_FLAG_TRYHARD;
1194 
1195 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1196 			/*
1197 			 * vdev_cant_read and vdev_cant_write can only
1198 			 * transition from TRUE to FALSE when we have the
1199 			 * SCL_ZIO lock as writer; otherwise they can only
1200 			 * transition from FALSE to TRUE.  This ensures that
1201 			 * any zio looking at these values can assume that
1202 			 * failures persist for the life of the I/O.  That's
1203 			 * important because when a device has intermittent
1204 			 * connectivity problems, we want to ensure that
1205 			 * they're ascribed to the device (ENXIO) and not
1206 			 * the zio (EIO).
1207 			 *
1208 			 * Since we hold SCL_ZIO as writer here, clear both
1209 			 * values so the probe can reevaluate from first
1210 			 * principles.
1211 			 */
1212 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1213 			vd->vdev_cant_read = B_FALSE;
1214 			vd->vdev_cant_write = B_FALSE;
1215 		}
1216 
1217 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1218 		    vdev_probe_done, vps,
1219 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1220 
1221 		/*
1222 		 * We can't change the vdev state in this context, so we
1223 		 * kick off an async task to do it on our behalf.
1224 		 */
1225 		if (zio != NULL) {
1226 			vd->vdev_probe_wanted = B_TRUE;
1227 			spa_async_request(spa, SPA_ASYNC_PROBE);
1228 		}
1229 	}
1230 
1231 	if (zio != NULL)
1232 		zio_add_child(zio, pio);
1233 
1234 	mutex_exit(&vd->vdev_probe_lock);
1235 
1236 	if (vps == NULL) {
1237 		ASSERT(zio != NULL);
1238 		return (NULL);
1239 	}
1240 
1241 	for (int l = 1; l < VDEV_LABELS; l++) {
1242 		zio_nowait(zio_read_phys(pio, vd,
1243 		    vdev_label_offset(vd->vdev_psize, l,
1244 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1245 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1246 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1247 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1248 	}
1249 
1250 	if (zio == NULL)
1251 		return (pio);
1252 
1253 	zio_nowait(pio);
1254 	return (NULL);
1255 }
1256 
1257 static void
1258 vdev_open_child(void *arg)
1259 {
1260 	vdev_t *vd = arg;
1261 
1262 	vd->vdev_open_thread = curthread;
1263 	vd->vdev_open_error = vdev_open(vd);
1264 	vd->vdev_open_thread = NULL;
1265 }
1266 
1267 boolean_t
1268 vdev_uses_zvols(vdev_t *vd)
1269 {
1270 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1271 	    strlen(ZVOL_DIR)) == 0)
1272 		return (B_TRUE);
1273 	for (int c = 0; c < vd->vdev_children; c++)
1274 		if (vdev_uses_zvols(vd->vdev_child[c]))
1275 			return (B_TRUE);
1276 	return (B_FALSE);
1277 }
1278 
1279 void
1280 vdev_open_children(vdev_t *vd)
1281 {
1282 	taskq_t *tq;
1283 	int children = vd->vdev_children;
1284 
1285 	/*
1286 	 * in order to handle pools on top of zvols, do the opens
1287 	 * in a single thread so that the same thread holds the
1288 	 * spa_namespace_lock
1289 	 */
1290 	if (vdev_uses_zvols(vd)) {
1291 		for (int c = 0; c < children; c++)
1292 			vd->vdev_child[c]->vdev_open_error =
1293 			    vdev_open(vd->vdev_child[c]);
1294 		return;
1295 	}
1296 	tq = taskq_create("vdev_open", children, minclsyspri,
1297 	    children, children, TASKQ_PREPOPULATE);
1298 
1299 	for (int c = 0; c < children; c++)
1300 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1301 		    TQ_SLEEP) != NULL);
1302 
1303 	taskq_destroy(tq);
1304 }
1305 
1306 /*
1307  * Compute the raidz-deflation ratio.  Note, we hard-code
1308  * in 128k (1 << 17) because it is the "typical" blocksize.
1309  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1310  * otherwise it would inconsistently account for existing bp's.
1311  */
1312 static void
1313 vdev_set_deflate_ratio(vdev_t *vd)
1314 {
1315 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1316 		vd->vdev_deflate_ratio = (1 << 17) /
1317 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1318 	}
1319 }
1320 
1321 /*
1322  * Prepare a virtual device for access.
1323  */
1324 int
1325 vdev_open(vdev_t *vd)
1326 {
1327 	spa_t *spa = vd->vdev_spa;
1328 	int error;
1329 	uint64_t osize = 0;
1330 	uint64_t max_osize = 0;
1331 	uint64_t asize, max_asize, psize;
1332 	uint64_t ashift = 0;
1333 
1334 	ASSERT(vd->vdev_open_thread == curthread ||
1335 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1336 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1337 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1338 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1339 
1340 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1341 	vd->vdev_cant_read = B_FALSE;
1342 	vd->vdev_cant_write = B_FALSE;
1343 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1344 
1345 	/*
1346 	 * If this vdev is not removed, check its fault status.  If it's
1347 	 * faulted, bail out of the open.
1348 	 */
1349 	if (!vd->vdev_removed && vd->vdev_faulted) {
1350 		ASSERT(vd->vdev_children == 0);
1351 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1352 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1353 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1354 		    vd->vdev_label_aux);
1355 		return (SET_ERROR(ENXIO));
1356 	} else if (vd->vdev_offline) {
1357 		ASSERT(vd->vdev_children == 0);
1358 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1359 		return (SET_ERROR(ENXIO));
1360 	}
1361 
1362 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1363 
1364 	/*
1365 	 * Reset the vdev_reopening flag so that we actually close
1366 	 * the vdev on error.
1367 	 */
1368 	vd->vdev_reopening = B_FALSE;
1369 	if (zio_injection_enabled && error == 0)
1370 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1371 
1372 	if (error) {
1373 		if (vd->vdev_removed &&
1374 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1375 			vd->vdev_removed = B_FALSE;
1376 
1377 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1378 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1379 			    vd->vdev_stat.vs_aux);
1380 		} else {
1381 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1382 			    vd->vdev_stat.vs_aux);
1383 		}
1384 		return (error);
1385 	}
1386 
1387 	vd->vdev_removed = B_FALSE;
1388 
1389 	/*
1390 	 * Recheck the faulted flag now that we have confirmed that
1391 	 * the vdev is accessible.  If we're faulted, bail.
1392 	 */
1393 	if (vd->vdev_faulted) {
1394 		ASSERT(vd->vdev_children == 0);
1395 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1396 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1397 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1398 		    vd->vdev_label_aux);
1399 		return (SET_ERROR(ENXIO));
1400 	}
1401 
1402 	if (vd->vdev_degraded) {
1403 		ASSERT(vd->vdev_children == 0);
1404 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1405 		    VDEV_AUX_ERR_EXCEEDED);
1406 	} else {
1407 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1408 	}
1409 
1410 	/*
1411 	 * For hole or missing vdevs we just return success.
1412 	 */
1413 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1414 		return (0);
1415 
1416 	for (int c = 0; c < vd->vdev_children; c++) {
1417 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1418 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1419 			    VDEV_AUX_NONE);
1420 			break;
1421 		}
1422 	}
1423 
1424 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1425 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1426 
1427 	if (vd->vdev_children == 0) {
1428 		if (osize < SPA_MINDEVSIZE) {
1429 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1430 			    VDEV_AUX_TOO_SMALL);
1431 			return (SET_ERROR(EOVERFLOW));
1432 		}
1433 		psize = osize;
1434 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1435 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1436 		    VDEV_LABEL_END_SIZE);
1437 	} else {
1438 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1439 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1440 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1441 			    VDEV_AUX_TOO_SMALL);
1442 			return (SET_ERROR(EOVERFLOW));
1443 		}
1444 		psize = 0;
1445 		asize = osize;
1446 		max_asize = max_osize;
1447 	}
1448 
1449 	vd->vdev_psize = psize;
1450 
1451 	/*
1452 	 * Make sure the allocatable size hasn't shrunk too much.
1453 	 */
1454 	if (asize < vd->vdev_min_asize) {
1455 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1456 		    VDEV_AUX_BAD_LABEL);
1457 		return (SET_ERROR(EINVAL));
1458 	}
1459 
1460 	if (vd->vdev_asize == 0) {
1461 		/*
1462 		 * This is the first-ever open, so use the computed values.
1463 		 * For testing purposes, a higher ashift can be requested.
1464 		 */
1465 		vd->vdev_asize = asize;
1466 		vd->vdev_max_asize = max_asize;
1467 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1468 	} else {
1469 		/*
1470 		 * Detect if the alignment requirement has increased.
1471 		 * We don't want to make the pool unavailable, just
1472 		 * issue a warning instead.
1473 		 */
1474 		if (ashift > vd->vdev_top->vdev_ashift &&
1475 		    vd->vdev_ops->vdev_op_leaf) {
1476 			cmn_err(CE_WARN,
1477 			    "Disk, '%s', has a block alignment that is "
1478 			    "larger than the pool's alignment\n",
1479 			    vd->vdev_path);
1480 		}
1481 		vd->vdev_max_asize = max_asize;
1482 	}
1483 
1484 	/*
1485 	 * If all children are healthy we update asize if either:
1486 	 * The asize has increased, due to a device expansion caused by dynamic
1487 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1488 	 * making the additional space available.
1489 	 *
1490 	 * The asize has decreased, due to a device shrink usually caused by a
1491 	 * vdev replace with a smaller device. This ensures that calculations
1492 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1493 	 * to do this as we've already validated that asize is greater than
1494 	 * vdev_min_asize.
1495 	 */
1496 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1497 	    ((asize > vd->vdev_asize &&
1498 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1499 	    (asize < vd->vdev_asize)))
1500 		vd->vdev_asize = asize;
1501 
1502 	vdev_set_min_asize(vd);
1503 
1504 	/*
1505 	 * Ensure we can issue some IO before declaring the
1506 	 * vdev open for business.
1507 	 */
1508 	if (vd->vdev_ops->vdev_op_leaf &&
1509 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1510 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1511 		    VDEV_AUX_ERR_EXCEEDED);
1512 		return (error);
1513 	}
1514 
1515 	/*
1516 	 * Track the min and max ashift values for normal data devices.
1517 	 */
1518 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1520 		if (vd->vdev_ashift > spa->spa_max_ashift)
1521 			spa->spa_max_ashift = vd->vdev_ashift;
1522 		if (vd->vdev_ashift < spa->spa_min_ashift)
1523 			spa->spa_min_ashift = vd->vdev_ashift;
1524 	}
1525 
1526 	/*
1527 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1528 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1529 	 * since this would just restart the scrub we are already doing.
1530 	 */
1531 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1532 	    vdev_resilver_needed(vd, NULL, NULL))
1533 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1534 
1535 	return (0);
1536 }
1537 
1538 /*
1539  * Called once the vdevs are all opened, this routine validates the label
1540  * contents. This needs to be done before vdev_load() so that we don't
1541  * inadvertently do repair I/Os to the wrong device.
1542  *
1543  * This function will only return failure if one of the vdevs indicates that it
1544  * has since been destroyed or exported.  This is only possible if
1545  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1546  * will be updated but the function will return 0.
1547  */
1548 int
1549 vdev_validate(vdev_t *vd)
1550 {
1551 	spa_t *spa = vd->vdev_spa;
1552 	nvlist_t *label;
1553 	uint64_t guid = 0, aux_guid = 0, top_guid;
1554 	uint64_t state;
1555 	nvlist_t *nvl;
1556 	uint64_t txg;
1557 
1558 	if (vdev_validate_skip)
1559 		return (0);
1560 
1561 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1562 		if (vdev_validate(vd->vdev_child[c]) != 0)
1563 			return (SET_ERROR(EBADF));
1564 
1565 	/*
1566 	 * If the device has already failed, or was marked offline, don't do
1567 	 * any further validation.  Otherwise, label I/O will fail and we will
1568 	 * overwrite the previous state.
1569 	 */
1570 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1571 		return (0);
1572 
1573 	/*
1574 	 * If we are performing an extreme rewind, we allow for a label that
1575 	 * was modified at a point after the current txg.
1576 	 * If config lock is not held do not check for the txg. spa_sync could
1577 	 * be updating the vdev's label before updating spa_last_synced_txg.
1578 	 */
1579 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1580 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1581 		txg = UINT64_MAX;
1582 	else
1583 		txg = spa_last_synced_txg(spa);
1584 
1585 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1586 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1587 		    VDEV_AUX_BAD_LABEL);
1588 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1589 		    "txg %llu", (u_longlong_t)txg);
1590 		return (0);
1591 	}
1592 
1593 	/*
1594 	 * Determine if this vdev has been split off into another
1595 	 * pool.  If so, then refuse to open it.
1596 	 */
1597 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1598 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1599 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1600 		    VDEV_AUX_SPLIT_POOL);
1601 		nvlist_free(label);
1602 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1603 		return (0);
1604 	}
1605 
1606 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1607 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1608 		    VDEV_AUX_CORRUPT_DATA);
1609 		nvlist_free(label);
1610 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1611 		    ZPOOL_CONFIG_POOL_GUID);
1612 		return (0);
1613 	}
1614 
1615 	/*
1616 	 * If config is not trusted then ignore the spa guid check. This is
1617 	 * necessary because if the machine crashed during a re-guid the new
1618 	 * guid might have been written to all of the vdev labels, but not the
1619 	 * cached config. The check will be performed again once we have the
1620 	 * trusted config from the MOS.
1621 	 */
1622 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1623 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1624 		    VDEV_AUX_CORRUPT_DATA);
1625 		nvlist_free(label);
1626 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1627 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1628 		    (u_longlong_t)spa_guid(spa));
1629 		return (0);
1630 	}
1631 
1632 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1633 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1634 	    &aux_guid) != 0)
1635 		aux_guid = 0;
1636 
1637 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1638 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1639 		    VDEV_AUX_CORRUPT_DATA);
1640 		nvlist_free(label);
1641 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1642 		    ZPOOL_CONFIG_GUID);
1643 		return (0);
1644 	}
1645 
1646 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1647 	    != 0) {
1648 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1649 		    VDEV_AUX_CORRUPT_DATA);
1650 		nvlist_free(label);
1651 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1652 		    ZPOOL_CONFIG_TOP_GUID);
1653 		return (0);
1654 	}
1655 
1656 	/*
1657 	 * If this vdev just became a top-level vdev because its sibling was
1658 	 * detached, it will have adopted the parent's vdev guid -- but the
1659 	 * label may or may not be on disk yet. Fortunately, either version
1660 	 * of the label will have the same top guid, so if we're a top-level
1661 	 * vdev, we can safely compare to that instead.
1662 	 * However, if the config comes from a cachefile that failed to update
1663 	 * after the detach, a top-level vdev will appear as a non top-level
1664 	 * vdev in the config. Also relax the constraints if we perform an
1665 	 * extreme rewind.
1666 	 *
1667 	 * If we split this vdev off instead, then we also check the
1668 	 * original pool's guid. We don't want to consider the vdev
1669 	 * corrupt if it is partway through a split operation.
1670 	 */
1671 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1672 		boolean_t mismatch = B_FALSE;
1673 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1674 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1675 				mismatch = B_TRUE;
1676 		} else {
1677 			if (vd->vdev_guid != top_guid &&
1678 			    vd->vdev_top->vdev_guid != guid)
1679 				mismatch = B_TRUE;
1680 		}
1681 
1682 		if (mismatch) {
1683 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1684 			    VDEV_AUX_CORRUPT_DATA);
1685 			nvlist_free(label);
1686 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1687 			    "doesn't match label guid");
1688 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1689 			    (u_longlong_t)vd->vdev_guid,
1690 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1691 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1692 			    "aux_guid %llu", (u_longlong_t)guid,
1693 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1694 			return (0);
1695 		}
1696 	}
1697 
1698 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1699 	    &state) != 0) {
1700 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1701 		    VDEV_AUX_CORRUPT_DATA);
1702 		nvlist_free(label);
1703 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1704 		    ZPOOL_CONFIG_POOL_STATE);
1705 		return (0);
1706 	}
1707 
1708 	nvlist_free(label);
1709 
1710 	/*
1711 	 * If this is a verbatim import, no need to check the
1712 	 * state of the pool.
1713 	 */
1714 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1715 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1716 	    state != POOL_STATE_ACTIVE) {
1717 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1718 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1719 		return (SET_ERROR(EBADF));
1720 	}
1721 
1722 	/*
1723 	 * If we were able to open and validate a vdev that was
1724 	 * previously marked permanently unavailable, clear that state
1725 	 * now.
1726 	 */
1727 	if (vd->vdev_not_present)
1728 		vd->vdev_not_present = 0;
1729 
1730 	return (0);
1731 }
1732 
1733 static void
1734 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1735 {
1736 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1737 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1738 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1739 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1740 			    dvd->vdev_path, svd->vdev_path);
1741 			spa_strfree(dvd->vdev_path);
1742 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1743 		}
1744 	} else if (svd->vdev_path != NULL) {
1745 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1746 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1747 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1748 	}
1749 }
1750 
1751 /*
1752  * Recursively copy vdev paths from one vdev to another. Source and destination
1753  * vdev trees must have same geometry otherwise return error. Intended to copy
1754  * paths from userland config into MOS config.
1755  */
1756 int
1757 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1758 {
1759 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1760 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1761 	    (dvd->vdev_ops == &vdev_indirect_ops))
1762 		return (0);
1763 
1764 	if (svd->vdev_ops != dvd->vdev_ops) {
1765 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1766 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1767 		return (SET_ERROR(EINVAL));
1768 	}
1769 
1770 	if (svd->vdev_guid != dvd->vdev_guid) {
1771 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1772 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1773 		    (u_longlong_t)dvd->vdev_guid);
1774 		return (SET_ERROR(EINVAL));
1775 	}
1776 
1777 	if (svd->vdev_children != dvd->vdev_children) {
1778 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1779 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1780 		    (u_longlong_t)dvd->vdev_children);
1781 		return (SET_ERROR(EINVAL));
1782 	}
1783 
1784 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1785 		int error = vdev_copy_path_strict(svd->vdev_child[i],
1786 		    dvd->vdev_child[i]);
1787 		if (error != 0)
1788 			return (error);
1789 	}
1790 
1791 	if (svd->vdev_ops->vdev_op_leaf)
1792 		vdev_copy_path_impl(svd, dvd);
1793 
1794 	return (0);
1795 }
1796 
1797 static void
1798 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1799 {
1800 	ASSERT(stvd->vdev_top == stvd);
1801 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1802 
1803 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1804 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1805 	}
1806 
1807 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1808 		return;
1809 
1810 	/*
1811 	 * The idea here is that while a vdev can shift positions within
1812 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1813 	 * step outside of it.
1814 	 */
1815 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1816 
1817 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1818 		return;
1819 
1820 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1821 
1822 	vdev_copy_path_impl(vd, dvd);
1823 }
1824 
1825 /*
1826  * Recursively copy vdev paths from one root vdev to another. Source and
1827  * destination vdev trees may differ in geometry. For each destination leaf
1828  * vdev, search a vdev with the same guid and top vdev id in the source.
1829  * Intended to copy paths from userland config into MOS config.
1830  */
1831 void
1832 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1833 {
1834 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1835 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
1836 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
1837 
1838 	for (uint64_t i = 0; i < children; i++) {
1839 		vdev_copy_path_search(srvd->vdev_child[i],
1840 		    drvd->vdev_child[i]);
1841 	}
1842 }
1843 
1844 /*
1845  * Close a virtual device.
1846  */
1847 void
1848 vdev_close(vdev_t *vd)
1849 {
1850 	spa_t *spa = vd->vdev_spa;
1851 	vdev_t *pvd = vd->vdev_parent;
1852 
1853 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1854 
1855 	/*
1856 	 * If our parent is reopening, then we are as well, unless we are
1857 	 * going offline.
1858 	 */
1859 	if (pvd != NULL && pvd->vdev_reopening)
1860 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1861 
1862 	vd->vdev_ops->vdev_op_close(vd);
1863 
1864 	vdev_cache_purge(vd);
1865 
1866 	/*
1867 	 * We record the previous state before we close it, so that if we are
1868 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1869 	 * it's still faulted.
1870 	 */
1871 	vd->vdev_prevstate = vd->vdev_state;
1872 
1873 	if (vd->vdev_offline)
1874 		vd->vdev_state = VDEV_STATE_OFFLINE;
1875 	else
1876 		vd->vdev_state = VDEV_STATE_CLOSED;
1877 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1878 }
1879 
1880 void
1881 vdev_hold(vdev_t *vd)
1882 {
1883 	spa_t *spa = vd->vdev_spa;
1884 
1885 	ASSERT(spa_is_root(spa));
1886 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1887 		return;
1888 
1889 	for (int c = 0; c < vd->vdev_children; c++)
1890 		vdev_hold(vd->vdev_child[c]);
1891 
1892 	if (vd->vdev_ops->vdev_op_leaf)
1893 		vd->vdev_ops->vdev_op_hold(vd);
1894 }
1895 
1896 void
1897 vdev_rele(vdev_t *vd)
1898 {
1899 	spa_t *spa = vd->vdev_spa;
1900 
1901 	ASSERT(spa_is_root(spa));
1902 	for (int c = 0; c < vd->vdev_children; c++)
1903 		vdev_rele(vd->vdev_child[c]);
1904 
1905 	if (vd->vdev_ops->vdev_op_leaf)
1906 		vd->vdev_ops->vdev_op_rele(vd);
1907 }
1908 
1909 /*
1910  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1911  * reopen leaf vdevs which had previously been opened as they might deadlock
1912  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1913  * If the leaf has never been opened then open it, as usual.
1914  */
1915 void
1916 vdev_reopen(vdev_t *vd)
1917 {
1918 	spa_t *spa = vd->vdev_spa;
1919 
1920 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1921 
1922 	/* set the reopening flag unless we're taking the vdev offline */
1923 	vd->vdev_reopening = !vd->vdev_offline;
1924 	vdev_close(vd);
1925 	(void) vdev_open(vd);
1926 
1927 	/*
1928 	 * Call vdev_validate() here to make sure we have the same device.
1929 	 * Otherwise, a device with an invalid label could be successfully
1930 	 * opened in response to vdev_reopen().
1931 	 */
1932 	if (vd->vdev_aux) {
1933 		(void) vdev_validate_aux(vd);
1934 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1935 		    vd->vdev_aux == &spa->spa_l2cache &&
1936 		    !l2arc_vdev_present(vd))
1937 			l2arc_add_vdev(spa, vd);
1938 	} else {
1939 		(void) vdev_validate(vd);
1940 	}
1941 
1942 	/*
1943 	 * Reassess parent vdev's health.
1944 	 */
1945 	vdev_propagate_state(vd);
1946 }
1947 
1948 int
1949 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1950 {
1951 	int error;
1952 
1953 	/*
1954 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1955 	 * For a create, however, we want to fail the request if
1956 	 * there are any components we can't open.
1957 	 */
1958 	error = vdev_open(vd);
1959 
1960 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1961 		vdev_close(vd);
1962 		return (error ? error : ENXIO);
1963 	}
1964 
1965 	/*
1966 	 * Recursively load DTLs and initialize all labels.
1967 	 */
1968 	if ((error = vdev_dtl_load(vd)) != 0 ||
1969 	    (error = vdev_label_init(vd, txg, isreplacing ?
1970 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1971 		vdev_close(vd);
1972 		return (error);
1973 	}
1974 
1975 	return (0);
1976 }
1977 
1978 void
1979 vdev_metaslab_set_size(vdev_t *vd)
1980 {
1981 	uint64_t asize = vd->vdev_asize;
1982 	uint64_t ms_shift = 0;
1983 
1984 	/*
1985 	 * For vdevs that are bigger than 8G the metaslab size varies in
1986 	 * a way that the number of metaslabs increases in powers of two,
1987 	 * linearly in terms of vdev_asize, starting from 16 metaslabs.
1988 	 * So for vdev_asize of 8G we get 16 metaslabs, for 16G, we get 32,
1989 	 * and so on, until we hit the maximum metaslab count limit
1990 	 * [vdev_max_ms_count] from which point the metaslab count stays
1991 	 * the same.
1992 	 */
1993 	ms_shift = vdev_default_ms_shift;
1994 
1995 	if ((asize >> ms_shift) < vdev_min_ms_count) {
1996 		/*
1997 		 * For devices that are less than 8G we want to have
1998 		 * exactly 16 metaslabs. We don't want less as integer
1999 		 * division rounds down, so less metaslabs mean more
2000 		 * wasted space. We don't want more as these vdevs are
2001 		 * small and in the likely event that we are running
2002 		 * out of space, the SPA will have a hard time finding
2003 		 * space due to fragmentation.
2004 		 */
2005 		ms_shift = highbit64(asize / vdev_min_ms_count);
2006 		ms_shift = MAX(ms_shift, SPA_MAXBLOCKSHIFT);
2007 
2008 	} else if ((asize >> ms_shift) > vdev_max_ms_count) {
2009 		ms_shift = highbit64(asize / vdev_max_ms_count);
2010 	}
2011 
2012 	vd->vdev_ms_shift = ms_shift;
2013 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2014 }
2015 
2016 void
2017 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2018 {
2019 	ASSERT(vd == vd->vdev_top);
2020 	/* indirect vdevs don't have metaslabs or dtls */
2021 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2022 	ASSERT(ISP2(flags));
2023 	ASSERT(spa_writeable(vd->vdev_spa));
2024 
2025 	if (flags & VDD_METASLAB)
2026 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2027 
2028 	if (flags & VDD_DTL)
2029 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2030 
2031 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2032 }
2033 
2034 void
2035 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2036 {
2037 	for (int c = 0; c < vd->vdev_children; c++)
2038 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2039 
2040 	if (vd->vdev_ops->vdev_op_leaf)
2041 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2042 }
2043 
2044 /*
2045  * DTLs.
2046  *
2047  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2048  * the vdev has less than perfect replication.  There are four kinds of DTL:
2049  *
2050  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2051  *
2052  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2053  *
2054  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2055  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2056  *	txgs that was scrubbed.
2057  *
2058  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2059  *	persistent errors or just some device being offline.
2060  *	Unlike the other three, the DTL_OUTAGE map is not generally
2061  *	maintained; it's only computed when needed, typically to
2062  *	determine whether a device can be detached.
2063  *
2064  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2065  * either has the data or it doesn't.
2066  *
2067  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2068  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2069  * if any child is less than fully replicated, then so is its parent.
2070  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2071  * comprising only those txgs which appear in 'maxfaults' or more children;
2072  * those are the txgs we don't have enough replication to read.  For example,
2073  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2074  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2075  * two child DTL_MISSING maps.
2076  *
2077  * It should be clear from the above that to compute the DTLs and outage maps
2078  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2079  * Therefore, that is all we keep on disk.  When loading the pool, or after
2080  * a configuration change, we generate all other DTLs from first principles.
2081  */
2082 void
2083 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2084 {
2085 	range_tree_t *rt = vd->vdev_dtl[t];
2086 
2087 	ASSERT(t < DTL_TYPES);
2088 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2089 	ASSERT(spa_writeable(vd->vdev_spa));
2090 
2091 	mutex_enter(&vd->vdev_dtl_lock);
2092 	if (!range_tree_contains(rt, txg, size))
2093 		range_tree_add(rt, txg, size);
2094 	mutex_exit(&vd->vdev_dtl_lock);
2095 }
2096 
2097 boolean_t
2098 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2099 {
2100 	range_tree_t *rt = vd->vdev_dtl[t];
2101 	boolean_t dirty = B_FALSE;
2102 
2103 	ASSERT(t < DTL_TYPES);
2104 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2105 
2106 	/*
2107 	 * While we are loading the pool, the DTLs have not been loaded yet.
2108 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2109 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2110 	 * when loading the pool (relying on the checksum to ensure that
2111 	 * we get the right data -- note that we while loading, we are
2112 	 * only reading the MOS, which is always checksummed).
2113 	 */
2114 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2115 		return (B_FALSE);
2116 
2117 	mutex_enter(&vd->vdev_dtl_lock);
2118 	if (!range_tree_is_empty(rt))
2119 		dirty = range_tree_contains(rt, txg, size);
2120 	mutex_exit(&vd->vdev_dtl_lock);
2121 
2122 	return (dirty);
2123 }
2124 
2125 boolean_t
2126 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2127 {
2128 	range_tree_t *rt = vd->vdev_dtl[t];
2129 	boolean_t empty;
2130 
2131 	mutex_enter(&vd->vdev_dtl_lock);
2132 	empty = range_tree_is_empty(rt);
2133 	mutex_exit(&vd->vdev_dtl_lock);
2134 
2135 	return (empty);
2136 }
2137 
2138 /*
2139  * Returns the lowest txg in the DTL range.
2140  */
2141 static uint64_t
2142 vdev_dtl_min(vdev_t *vd)
2143 {
2144 	range_seg_t *rs;
2145 
2146 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2147 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2148 	ASSERT0(vd->vdev_children);
2149 
2150 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2151 	return (rs->rs_start - 1);
2152 }
2153 
2154 /*
2155  * Returns the highest txg in the DTL.
2156  */
2157 static uint64_t
2158 vdev_dtl_max(vdev_t *vd)
2159 {
2160 	range_seg_t *rs;
2161 
2162 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2163 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2164 	ASSERT0(vd->vdev_children);
2165 
2166 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2167 	return (rs->rs_end);
2168 }
2169 
2170 /*
2171  * Determine if a resilvering vdev should remove any DTL entries from
2172  * its range. If the vdev was resilvering for the entire duration of the
2173  * scan then it should excise that range from its DTLs. Otherwise, this
2174  * vdev is considered partially resilvered and should leave its DTL
2175  * entries intact. The comment in vdev_dtl_reassess() describes how we
2176  * excise the DTLs.
2177  */
2178 static boolean_t
2179 vdev_dtl_should_excise(vdev_t *vd)
2180 {
2181 	spa_t *spa = vd->vdev_spa;
2182 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2183 
2184 	ASSERT0(scn->scn_phys.scn_errors);
2185 	ASSERT0(vd->vdev_children);
2186 
2187 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2188 		return (B_FALSE);
2189 
2190 	if (vd->vdev_resilver_txg == 0 ||
2191 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2192 		return (B_TRUE);
2193 
2194 	/*
2195 	 * When a resilver is initiated the scan will assign the scn_max_txg
2196 	 * value to the highest txg value that exists in all DTLs. If this
2197 	 * device's max DTL is not part of this scan (i.e. it is not in
2198 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2199 	 * for excision.
2200 	 */
2201 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2202 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2203 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2204 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2205 		return (B_TRUE);
2206 	}
2207 	return (B_FALSE);
2208 }
2209 
2210 /*
2211  * Reassess DTLs after a config change or scrub completion.
2212  */
2213 void
2214 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2215 {
2216 	spa_t *spa = vd->vdev_spa;
2217 	avl_tree_t reftree;
2218 	int minref;
2219 
2220 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2221 
2222 	for (int c = 0; c < vd->vdev_children; c++)
2223 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2224 		    scrub_txg, scrub_done);
2225 
2226 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2227 		return;
2228 
2229 	if (vd->vdev_ops->vdev_op_leaf) {
2230 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2231 
2232 		mutex_enter(&vd->vdev_dtl_lock);
2233 
2234 		/*
2235 		 * If we've completed a scan cleanly then determine
2236 		 * if this vdev should remove any DTLs. We only want to
2237 		 * excise regions on vdevs that were available during
2238 		 * the entire duration of this scan.
2239 		 */
2240 		if (scrub_txg != 0 &&
2241 		    (spa->spa_scrub_started ||
2242 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2243 		    vdev_dtl_should_excise(vd)) {
2244 			/*
2245 			 * We completed a scrub up to scrub_txg.  If we
2246 			 * did it without rebooting, then the scrub dtl
2247 			 * will be valid, so excise the old region and
2248 			 * fold in the scrub dtl.  Otherwise, leave the
2249 			 * dtl as-is if there was an error.
2250 			 *
2251 			 * There's little trick here: to excise the beginning
2252 			 * of the DTL_MISSING map, we put it into a reference
2253 			 * tree and then add a segment with refcnt -1 that
2254 			 * covers the range [0, scrub_txg).  This means
2255 			 * that each txg in that range has refcnt -1 or 0.
2256 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2257 			 * entries in the range [0, scrub_txg) will have a
2258 			 * positive refcnt -- either 1 or 2.  We then convert
2259 			 * the reference tree into the new DTL_MISSING map.
2260 			 */
2261 			space_reftree_create(&reftree);
2262 			space_reftree_add_map(&reftree,
2263 			    vd->vdev_dtl[DTL_MISSING], 1);
2264 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2265 			space_reftree_add_map(&reftree,
2266 			    vd->vdev_dtl[DTL_SCRUB], 2);
2267 			space_reftree_generate_map(&reftree,
2268 			    vd->vdev_dtl[DTL_MISSING], 1);
2269 			space_reftree_destroy(&reftree);
2270 		}
2271 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2272 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2273 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2274 		if (scrub_done)
2275 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2276 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2277 		if (!vdev_readable(vd))
2278 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2279 		else
2280 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2281 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2282 
2283 		/*
2284 		 * If the vdev was resilvering and no longer has any
2285 		 * DTLs then reset its resilvering flag.
2286 		 */
2287 		if (vd->vdev_resilver_txg != 0 &&
2288 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2289 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2290 			vd->vdev_resilver_txg = 0;
2291 
2292 		mutex_exit(&vd->vdev_dtl_lock);
2293 
2294 		if (txg != 0)
2295 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2296 		return;
2297 	}
2298 
2299 	mutex_enter(&vd->vdev_dtl_lock);
2300 	for (int t = 0; t < DTL_TYPES; t++) {
2301 		/* account for child's outage in parent's missing map */
2302 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2303 		if (t == DTL_SCRUB)
2304 			continue;			/* leaf vdevs only */
2305 		if (t == DTL_PARTIAL)
2306 			minref = 1;			/* i.e. non-zero */
2307 		else if (vd->vdev_nparity != 0)
2308 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2309 		else
2310 			minref = vd->vdev_children;	/* any kind of mirror */
2311 		space_reftree_create(&reftree);
2312 		for (int c = 0; c < vd->vdev_children; c++) {
2313 			vdev_t *cvd = vd->vdev_child[c];
2314 			mutex_enter(&cvd->vdev_dtl_lock);
2315 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2316 			mutex_exit(&cvd->vdev_dtl_lock);
2317 		}
2318 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2319 		space_reftree_destroy(&reftree);
2320 	}
2321 	mutex_exit(&vd->vdev_dtl_lock);
2322 }
2323 
2324 int
2325 vdev_dtl_load(vdev_t *vd)
2326 {
2327 	spa_t *spa = vd->vdev_spa;
2328 	objset_t *mos = spa->spa_meta_objset;
2329 	int error = 0;
2330 
2331 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2332 		ASSERT(vdev_is_concrete(vd));
2333 
2334 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2335 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2336 		if (error)
2337 			return (error);
2338 		ASSERT(vd->vdev_dtl_sm != NULL);
2339 
2340 		mutex_enter(&vd->vdev_dtl_lock);
2341 
2342 		/*
2343 		 * Now that we've opened the space_map we need to update
2344 		 * the in-core DTL.
2345 		 */
2346 		space_map_update(vd->vdev_dtl_sm);
2347 
2348 		error = space_map_load(vd->vdev_dtl_sm,
2349 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2350 		mutex_exit(&vd->vdev_dtl_lock);
2351 
2352 		return (error);
2353 	}
2354 
2355 	for (int c = 0; c < vd->vdev_children; c++) {
2356 		error = vdev_dtl_load(vd->vdev_child[c]);
2357 		if (error != 0)
2358 			break;
2359 	}
2360 
2361 	return (error);
2362 }
2363 
2364 void
2365 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2366 {
2367 	spa_t *spa = vd->vdev_spa;
2368 
2369 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2370 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2371 	    zapobj, tx));
2372 }
2373 
2374 uint64_t
2375 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2376 {
2377 	spa_t *spa = vd->vdev_spa;
2378 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2379 	    DMU_OT_NONE, 0, tx);
2380 
2381 	ASSERT(zap != 0);
2382 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2383 	    zap, tx));
2384 
2385 	return (zap);
2386 }
2387 
2388 void
2389 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2390 {
2391 	if (vd->vdev_ops != &vdev_hole_ops &&
2392 	    vd->vdev_ops != &vdev_missing_ops &&
2393 	    vd->vdev_ops != &vdev_root_ops &&
2394 	    !vd->vdev_top->vdev_removing) {
2395 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2396 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2397 		}
2398 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2399 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2400 		}
2401 	}
2402 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2403 		vdev_construct_zaps(vd->vdev_child[i], tx);
2404 	}
2405 }
2406 
2407 void
2408 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2409 {
2410 	spa_t *spa = vd->vdev_spa;
2411 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2412 	objset_t *mos = spa->spa_meta_objset;
2413 	range_tree_t *rtsync;
2414 	dmu_tx_t *tx;
2415 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2416 
2417 	ASSERT(vdev_is_concrete(vd));
2418 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2419 
2420 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2421 
2422 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2423 		mutex_enter(&vd->vdev_dtl_lock);
2424 		space_map_free(vd->vdev_dtl_sm, tx);
2425 		space_map_close(vd->vdev_dtl_sm);
2426 		vd->vdev_dtl_sm = NULL;
2427 		mutex_exit(&vd->vdev_dtl_lock);
2428 
2429 		/*
2430 		 * We only destroy the leaf ZAP for detached leaves or for
2431 		 * removed log devices. Removed data devices handle leaf ZAP
2432 		 * cleanup later, once cancellation is no longer possible.
2433 		 */
2434 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2435 		    vd->vdev_top->vdev_islog)) {
2436 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2437 			vd->vdev_leaf_zap = 0;
2438 		}
2439 
2440 		dmu_tx_commit(tx);
2441 		return;
2442 	}
2443 
2444 	if (vd->vdev_dtl_sm == NULL) {
2445 		uint64_t new_object;
2446 
2447 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2448 		VERIFY3U(new_object, !=, 0);
2449 
2450 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2451 		    0, -1ULL, 0));
2452 		ASSERT(vd->vdev_dtl_sm != NULL);
2453 	}
2454 
2455 	rtsync = range_tree_create(NULL, NULL);
2456 
2457 	mutex_enter(&vd->vdev_dtl_lock);
2458 	range_tree_walk(rt, range_tree_add, rtsync);
2459 	mutex_exit(&vd->vdev_dtl_lock);
2460 
2461 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2462 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2463 	range_tree_vacate(rtsync, NULL, NULL);
2464 
2465 	range_tree_destroy(rtsync);
2466 
2467 	/*
2468 	 * If the object for the space map has changed then dirty
2469 	 * the top level so that we update the config.
2470 	 */
2471 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2472 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2473 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2474 		    (u_longlong_t)object,
2475 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2476 		vdev_config_dirty(vd->vdev_top);
2477 	}
2478 
2479 	dmu_tx_commit(tx);
2480 
2481 	mutex_enter(&vd->vdev_dtl_lock);
2482 	space_map_update(vd->vdev_dtl_sm);
2483 	mutex_exit(&vd->vdev_dtl_lock);
2484 }
2485 
2486 /*
2487  * Determine whether the specified vdev can be offlined/detached/removed
2488  * without losing data.
2489  */
2490 boolean_t
2491 vdev_dtl_required(vdev_t *vd)
2492 {
2493 	spa_t *spa = vd->vdev_spa;
2494 	vdev_t *tvd = vd->vdev_top;
2495 	uint8_t cant_read = vd->vdev_cant_read;
2496 	boolean_t required;
2497 
2498 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2499 
2500 	if (vd == spa->spa_root_vdev || vd == tvd)
2501 		return (B_TRUE);
2502 
2503 	/*
2504 	 * Temporarily mark the device as unreadable, and then determine
2505 	 * whether this results in any DTL outages in the top-level vdev.
2506 	 * If not, we can safely offline/detach/remove the device.
2507 	 */
2508 	vd->vdev_cant_read = B_TRUE;
2509 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2510 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2511 	vd->vdev_cant_read = cant_read;
2512 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2513 
2514 	if (!required && zio_injection_enabled)
2515 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2516 
2517 	return (required);
2518 }
2519 
2520 /*
2521  * Determine if resilver is needed, and if so the txg range.
2522  */
2523 boolean_t
2524 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2525 {
2526 	boolean_t needed = B_FALSE;
2527 	uint64_t thismin = UINT64_MAX;
2528 	uint64_t thismax = 0;
2529 
2530 	if (vd->vdev_children == 0) {
2531 		mutex_enter(&vd->vdev_dtl_lock);
2532 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2533 		    vdev_writeable(vd)) {
2534 
2535 			thismin = vdev_dtl_min(vd);
2536 			thismax = vdev_dtl_max(vd);
2537 			needed = B_TRUE;
2538 		}
2539 		mutex_exit(&vd->vdev_dtl_lock);
2540 	} else {
2541 		for (int c = 0; c < vd->vdev_children; c++) {
2542 			vdev_t *cvd = vd->vdev_child[c];
2543 			uint64_t cmin, cmax;
2544 
2545 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2546 				thismin = MIN(thismin, cmin);
2547 				thismax = MAX(thismax, cmax);
2548 				needed = B_TRUE;
2549 			}
2550 		}
2551 	}
2552 
2553 	if (needed && minp) {
2554 		*minp = thismin;
2555 		*maxp = thismax;
2556 	}
2557 	return (needed);
2558 }
2559 
2560 /*
2561  * Gets the checkpoint space map object from the vdev's ZAP.
2562  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2563  * or the ZAP doesn't exist yet.
2564  */
2565 int
2566 vdev_checkpoint_sm_object(vdev_t *vd)
2567 {
2568 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2569 	if (vd->vdev_top_zap == 0) {
2570 		return (0);
2571 	}
2572 
2573 	uint64_t sm_obj = 0;
2574 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2575 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2576 
2577 	ASSERT(err == 0 || err == ENOENT);
2578 
2579 	return (sm_obj);
2580 }
2581 
2582 int
2583 vdev_load(vdev_t *vd)
2584 {
2585 	int error = 0;
2586 	/*
2587 	 * Recursively load all children.
2588 	 */
2589 	for (int c = 0; c < vd->vdev_children; c++) {
2590 		error = vdev_load(vd->vdev_child[c]);
2591 		if (error != 0) {
2592 			return (error);
2593 		}
2594 	}
2595 
2596 	vdev_set_deflate_ratio(vd);
2597 
2598 	/*
2599 	 * If this is a top-level vdev, initialize its metaslabs.
2600 	 */
2601 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2602 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2603 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2604 			    VDEV_AUX_CORRUPT_DATA);
2605 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2606 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2607 			    (u_longlong_t)vd->vdev_asize);
2608 			return (SET_ERROR(ENXIO));
2609 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2610 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2611 			    "[error=%d]", error);
2612 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2613 			    VDEV_AUX_CORRUPT_DATA);
2614 			return (error);
2615 		}
2616 
2617 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2618 		if (checkpoint_sm_obj != 0) {
2619 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2620 			ASSERT(vd->vdev_asize != 0);
2621 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2622 
2623 			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2624 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2625 			    vd->vdev_ashift))) {
2626 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2627 				    "failed for checkpoint spacemap (obj %llu) "
2628 				    "[error=%d]",
2629 				    (u_longlong_t)checkpoint_sm_obj, error);
2630 				return (error);
2631 			}
2632 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2633 			space_map_update(vd->vdev_checkpoint_sm);
2634 
2635 			/*
2636 			 * Since the checkpoint_sm contains free entries
2637 			 * exclusively we can use sm_alloc to indicate the
2638 			 * culmulative checkpointed space that has been freed.
2639 			 */
2640 			vd->vdev_stat.vs_checkpoint_space =
2641 			    -vd->vdev_checkpoint_sm->sm_alloc;
2642 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2643 			    vd->vdev_stat.vs_checkpoint_space;
2644 		}
2645 	}
2646 
2647 	/*
2648 	 * If this is a leaf vdev, load its DTL.
2649 	 */
2650 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2651 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2652 		    VDEV_AUX_CORRUPT_DATA);
2653 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2654 		    "[error=%d]", error);
2655 		return (error);
2656 	}
2657 
2658 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2659 	if (obsolete_sm_object != 0) {
2660 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2661 		ASSERT(vd->vdev_asize != 0);
2662 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2663 
2664 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2665 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2666 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2667 			    VDEV_AUX_CORRUPT_DATA);
2668 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2669 			    "obsolete spacemap (obj %llu) [error=%d]",
2670 			    (u_longlong_t)obsolete_sm_object, error);
2671 			return (error);
2672 		}
2673 		space_map_update(vd->vdev_obsolete_sm);
2674 	}
2675 
2676 	return (0);
2677 }
2678 
2679 /*
2680  * The special vdev case is used for hot spares and l2cache devices.  Its
2681  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2682  * we make sure that we can open the underlying device, then try to read the
2683  * label, and make sure that the label is sane and that it hasn't been
2684  * repurposed to another pool.
2685  */
2686 int
2687 vdev_validate_aux(vdev_t *vd)
2688 {
2689 	nvlist_t *label;
2690 	uint64_t guid, version;
2691 	uint64_t state;
2692 
2693 	if (!vdev_readable(vd))
2694 		return (0);
2695 
2696 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2697 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2698 		    VDEV_AUX_CORRUPT_DATA);
2699 		return (-1);
2700 	}
2701 
2702 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2703 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2704 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2705 	    guid != vd->vdev_guid ||
2706 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2707 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2708 		    VDEV_AUX_CORRUPT_DATA);
2709 		nvlist_free(label);
2710 		return (-1);
2711 	}
2712 
2713 	/*
2714 	 * We don't actually check the pool state here.  If it's in fact in
2715 	 * use by another pool, we update this fact on the fly when requested.
2716 	 */
2717 	nvlist_free(label);
2718 	return (0);
2719 }
2720 
2721 /*
2722  * Free the objects used to store this vdev's spacemaps, and the array
2723  * that points to them.
2724  */
2725 void
2726 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2727 {
2728 	if (vd->vdev_ms_array == 0)
2729 		return;
2730 
2731 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2732 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2733 	size_t array_bytes = array_count * sizeof (uint64_t);
2734 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2735 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2736 	    array_bytes, smobj_array, 0));
2737 
2738 	for (uint64_t i = 0; i < array_count; i++) {
2739 		uint64_t smobj = smobj_array[i];
2740 		if (smobj == 0)
2741 			continue;
2742 
2743 		space_map_free_obj(mos, smobj, tx);
2744 	}
2745 
2746 	kmem_free(smobj_array, array_bytes);
2747 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2748 	vd->vdev_ms_array = 0;
2749 }
2750 
2751 static void
2752 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2753 {
2754 	spa_t *spa = vd->vdev_spa;
2755 	dmu_tx_t *tx;
2756 
2757 	ASSERT(vd == vd->vdev_top);
2758 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2759 
2760 	if (vd->vdev_ms != NULL) {
2761 		metaslab_group_t *mg = vd->vdev_mg;
2762 
2763 		metaslab_group_histogram_verify(mg);
2764 		metaslab_class_histogram_verify(mg->mg_class);
2765 
2766 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2767 			metaslab_t *msp = vd->vdev_ms[m];
2768 
2769 			if (msp == NULL || msp->ms_sm == NULL)
2770 				continue;
2771 
2772 			mutex_enter(&msp->ms_lock);
2773 			/*
2774 			 * If the metaslab was not loaded when the vdev
2775 			 * was removed then the histogram accounting may
2776 			 * not be accurate. Update the histogram information
2777 			 * here so that we ensure that the metaslab group
2778 			 * and metaslab class are up-to-date.
2779 			 */
2780 			metaslab_group_histogram_remove(mg, msp);
2781 
2782 			VERIFY0(space_map_allocated(msp->ms_sm));
2783 			space_map_close(msp->ms_sm);
2784 			msp->ms_sm = NULL;
2785 			mutex_exit(&msp->ms_lock);
2786 		}
2787 
2788 		if (vd->vdev_checkpoint_sm != NULL) {
2789 			ASSERT(spa_has_checkpoint(spa));
2790 			space_map_close(vd->vdev_checkpoint_sm);
2791 			vd->vdev_checkpoint_sm = NULL;
2792 		}
2793 
2794 		metaslab_group_histogram_verify(mg);
2795 		metaslab_class_histogram_verify(mg->mg_class);
2796 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2797 			ASSERT0(mg->mg_histogram[i]);
2798 	}
2799 
2800 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2801 	vdev_destroy_spacemaps(vd, tx);
2802 
2803 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2804 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2805 		vd->vdev_top_zap = 0;
2806 	}
2807 	dmu_tx_commit(tx);
2808 }
2809 
2810 void
2811 vdev_sync_done(vdev_t *vd, uint64_t txg)
2812 {
2813 	metaslab_t *msp;
2814 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2815 
2816 	ASSERT(vdev_is_concrete(vd));
2817 
2818 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2819 		metaslab_sync_done(msp, txg);
2820 
2821 	if (reassess)
2822 		metaslab_sync_reassess(vd->vdev_mg);
2823 }
2824 
2825 void
2826 vdev_sync(vdev_t *vd, uint64_t txg)
2827 {
2828 	spa_t *spa = vd->vdev_spa;
2829 	vdev_t *lvd;
2830 	metaslab_t *msp;
2831 	dmu_tx_t *tx;
2832 
2833 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2834 		dmu_tx_t *tx;
2835 
2836 		ASSERT(vd->vdev_removing ||
2837 		    vd->vdev_ops == &vdev_indirect_ops);
2838 
2839 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2840 		vdev_indirect_sync_obsolete(vd, tx);
2841 		dmu_tx_commit(tx);
2842 
2843 		/*
2844 		 * If the vdev is indirect, it can't have dirty
2845 		 * metaslabs or DTLs.
2846 		 */
2847 		if (vd->vdev_ops == &vdev_indirect_ops) {
2848 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2849 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2850 			return;
2851 		}
2852 	}
2853 
2854 	ASSERT(vdev_is_concrete(vd));
2855 
2856 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2857 	    !vd->vdev_removing) {
2858 		ASSERT(vd == vd->vdev_top);
2859 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2860 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2861 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2862 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2863 		ASSERT(vd->vdev_ms_array != 0);
2864 		vdev_config_dirty(vd);
2865 		dmu_tx_commit(tx);
2866 	}
2867 
2868 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2869 		metaslab_sync(msp, txg);
2870 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2871 	}
2872 
2873 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2874 		vdev_dtl_sync(lvd, txg);
2875 
2876 	/*
2877 	 * Remove the metadata associated with this vdev once it's empty.
2878 	 * Note that this is typically used for log/cache device removal;
2879 	 * we don't empty toplevel vdevs when removing them.  But if
2880 	 * a toplevel happens to be emptied, this is not harmful.
2881 	 */
2882 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2883 		vdev_remove_empty(vd, txg);
2884 	}
2885 
2886 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2887 }
2888 
2889 uint64_t
2890 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2891 {
2892 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2893 }
2894 
2895 /*
2896  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2897  * not be opened, and no I/O is attempted.
2898  */
2899 int
2900 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2901 {
2902 	vdev_t *vd, *tvd;
2903 
2904 	spa_vdev_state_enter(spa, SCL_NONE);
2905 
2906 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2907 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2908 
2909 	if (!vd->vdev_ops->vdev_op_leaf)
2910 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2911 
2912 	tvd = vd->vdev_top;
2913 
2914 	/*
2915 	 * We don't directly use the aux state here, but if we do a
2916 	 * vdev_reopen(), we need this value to be present to remember why we
2917 	 * were faulted.
2918 	 */
2919 	vd->vdev_label_aux = aux;
2920 
2921 	/*
2922 	 * Faulted state takes precedence over degraded.
2923 	 */
2924 	vd->vdev_delayed_close = B_FALSE;
2925 	vd->vdev_faulted = 1ULL;
2926 	vd->vdev_degraded = 0ULL;
2927 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2928 
2929 	/*
2930 	 * If this device has the only valid copy of the data, then
2931 	 * back off and simply mark the vdev as degraded instead.
2932 	 */
2933 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2934 		vd->vdev_degraded = 1ULL;
2935 		vd->vdev_faulted = 0ULL;
2936 
2937 		/*
2938 		 * If we reopen the device and it's not dead, only then do we
2939 		 * mark it degraded.
2940 		 */
2941 		vdev_reopen(tvd);
2942 
2943 		if (vdev_readable(vd))
2944 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2945 	}
2946 
2947 	return (spa_vdev_state_exit(spa, vd, 0));
2948 }
2949 
2950 /*
2951  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2952  * user that something is wrong.  The vdev continues to operate as normal as far
2953  * as I/O is concerned.
2954  */
2955 int
2956 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2957 {
2958 	vdev_t *vd;
2959 
2960 	spa_vdev_state_enter(spa, SCL_NONE);
2961 
2962 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2963 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2964 
2965 	if (!vd->vdev_ops->vdev_op_leaf)
2966 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2967 
2968 	/*
2969 	 * If the vdev is already faulted, then don't do anything.
2970 	 */
2971 	if (vd->vdev_faulted || vd->vdev_degraded)
2972 		return (spa_vdev_state_exit(spa, NULL, 0));
2973 
2974 	vd->vdev_degraded = 1ULL;
2975 	if (!vdev_is_dead(vd))
2976 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2977 		    aux);
2978 
2979 	return (spa_vdev_state_exit(spa, vd, 0));
2980 }
2981 
2982 /*
2983  * Online the given vdev.
2984  *
2985  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2986  * spare device should be detached when the device finishes resilvering.
2987  * Second, the online should be treated like a 'test' online case, so no FMA
2988  * events are generated if the device fails to open.
2989  */
2990 int
2991 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2992 {
2993 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2994 	boolean_t wasoffline;
2995 	vdev_state_t oldstate;
2996 
2997 	spa_vdev_state_enter(spa, SCL_NONE);
2998 
2999 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3000 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3001 
3002 	if (!vd->vdev_ops->vdev_op_leaf)
3003 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3004 
3005 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3006 	oldstate = vd->vdev_state;
3007 
3008 	tvd = vd->vdev_top;
3009 	vd->vdev_offline = B_FALSE;
3010 	vd->vdev_tmpoffline = B_FALSE;
3011 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3012 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3013 
3014 	/* XXX - L2ARC 1.0 does not support expansion */
3015 	if (!vd->vdev_aux) {
3016 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3017 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3018 	}
3019 
3020 	vdev_reopen(tvd);
3021 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3022 
3023 	if (!vd->vdev_aux) {
3024 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3025 			pvd->vdev_expanding = B_FALSE;
3026 	}
3027 
3028 	if (newstate)
3029 		*newstate = vd->vdev_state;
3030 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3031 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3032 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3033 	    vd->vdev_parent->vdev_child[0] == vd)
3034 		vd->vdev_unspare = B_TRUE;
3035 
3036 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3037 
3038 		/* XXX - L2ARC 1.0 does not support expansion */
3039 		if (vd->vdev_aux)
3040 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3041 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3042 	}
3043 
3044 	if (wasoffline ||
3045 	    (oldstate < VDEV_STATE_DEGRADED &&
3046 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3047 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3048 
3049 	return (spa_vdev_state_exit(spa, vd, 0));
3050 }
3051 
3052 static int
3053 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3054 {
3055 	vdev_t *vd, *tvd;
3056 	int error = 0;
3057 	uint64_t generation;
3058 	metaslab_group_t *mg;
3059 
3060 top:
3061 	spa_vdev_state_enter(spa, SCL_ALLOC);
3062 
3063 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3064 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3065 
3066 	if (!vd->vdev_ops->vdev_op_leaf)
3067 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3068 
3069 	tvd = vd->vdev_top;
3070 	mg = tvd->vdev_mg;
3071 	generation = spa->spa_config_generation + 1;
3072 
3073 	/*
3074 	 * If the device isn't already offline, try to offline it.
3075 	 */
3076 	if (!vd->vdev_offline) {
3077 		/*
3078 		 * If this device has the only valid copy of some data,
3079 		 * don't allow it to be offlined. Log devices are always
3080 		 * expendable.
3081 		 */
3082 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3083 		    vdev_dtl_required(vd))
3084 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3085 
3086 		/*
3087 		 * If the top-level is a slog and it has had allocations
3088 		 * then proceed.  We check that the vdev's metaslab group
3089 		 * is not NULL since it's possible that we may have just
3090 		 * added this vdev but not yet initialized its metaslabs.
3091 		 */
3092 		if (tvd->vdev_islog && mg != NULL) {
3093 			/*
3094 			 * Prevent any future allocations.
3095 			 */
3096 			metaslab_group_passivate(mg);
3097 			(void) spa_vdev_state_exit(spa, vd, 0);
3098 
3099 			error = spa_reset_logs(spa);
3100 
3101 			/*
3102 			 * If the log device was successfully reset but has
3103 			 * checkpointed data, do not offline it.
3104 			 */
3105 			if (error == 0 &&
3106 			    tvd->vdev_checkpoint_sm != NULL) {
3107 				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3108 				    !=, 0);
3109 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3110 			}
3111 
3112 			spa_vdev_state_enter(spa, SCL_ALLOC);
3113 
3114 			/*
3115 			 * Check to see if the config has changed.
3116 			 */
3117 			if (error || generation != spa->spa_config_generation) {
3118 				metaslab_group_activate(mg);
3119 				if (error)
3120 					return (spa_vdev_state_exit(spa,
3121 					    vd, error));
3122 				(void) spa_vdev_state_exit(spa, vd, 0);
3123 				goto top;
3124 			}
3125 			ASSERT0(tvd->vdev_stat.vs_alloc);
3126 		}
3127 
3128 		/*
3129 		 * Offline this device and reopen its top-level vdev.
3130 		 * If the top-level vdev is a log device then just offline
3131 		 * it. Otherwise, if this action results in the top-level
3132 		 * vdev becoming unusable, undo it and fail the request.
3133 		 */
3134 		vd->vdev_offline = B_TRUE;
3135 		vdev_reopen(tvd);
3136 
3137 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3138 		    vdev_is_dead(tvd)) {
3139 			vd->vdev_offline = B_FALSE;
3140 			vdev_reopen(tvd);
3141 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3142 		}
3143 
3144 		/*
3145 		 * Add the device back into the metaslab rotor so that
3146 		 * once we online the device it's open for business.
3147 		 */
3148 		if (tvd->vdev_islog && mg != NULL)
3149 			metaslab_group_activate(mg);
3150 	}
3151 
3152 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3153 
3154 	return (spa_vdev_state_exit(spa, vd, 0));
3155 }
3156 
3157 int
3158 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3159 {
3160 	int error;
3161 
3162 	mutex_enter(&spa->spa_vdev_top_lock);
3163 	error = vdev_offline_locked(spa, guid, flags);
3164 	mutex_exit(&spa->spa_vdev_top_lock);
3165 
3166 	return (error);
3167 }
3168 
3169 /*
3170  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3171  * vdev_offline(), we assume the spa config is locked.  We also clear all
3172  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3173  */
3174 void
3175 vdev_clear(spa_t *spa, vdev_t *vd)
3176 {
3177 	vdev_t *rvd = spa->spa_root_vdev;
3178 
3179 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3180 
3181 	if (vd == NULL)
3182 		vd = rvd;
3183 
3184 	vd->vdev_stat.vs_read_errors = 0;
3185 	vd->vdev_stat.vs_write_errors = 0;
3186 	vd->vdev_stat.vs_checksum_errors = 0;
3187 
3188 	for (int c = 0; c < vd->vdev_children; c++)
3189 		vdev_clear(spa, vd->vdev_child[c]);
3190 
3191 	/*
3192 	 * It makes no sense to "clear" an indirect vdev.
3193 	 */
3194 	if (!vdev_is_concrete(vd))
3195 		return;
3196 
3197 	/*
3198 	 * If we're in the FAULTED state or have experienced failed I/O, then
3199 	 * clear the persistent state and attempt to reopen the device.  We
3200 	 * also mark the vdev config dirty, so that the new faulted state is
3201 	 * written out to disk.
3202 	 */
3203 	if (vd->vdev_faulted || vd->vdev_degraded ||
3204 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3205 
3206 		/*
3207 		 * When reopening in reponse to a clear event, it may be due to
3208 		 * a fmadm repair request.  In this case, if the device is
3209 		 * still broken, we want to still post the ereport again.
3210 		 */
3211 		vd->vdev_forcefault = B_TRUE;
3212 
3213 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3214 		vd->vdev_cant_read = B_FALSE;
3215 		vd->vdev_cant_write = B_FALSE;
3216 
3217 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3218 
3219 		vd->vdev_forcefault = B_FALSE;
3220 
3221 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3222 			vdev_state_dirty(vd->vdev_top);
3223 
3224 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3225 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3226 
3227 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3228 	}
3229 
3230 	/*
3231 	 * When clearing a FMA-diagnosed fault, we always want to
3232 	 * unspare the device, as we assume that the original spare was
3233 	 * done in response to the FMA fault.
3234 	 */
3235 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3236 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3237 	    vd->vdev_parent->vdev_child[0] == vd)
3238 		vd->vdev_unspare = B_TRUE;
3239 }
3240 
3241 boolean_t
3242 vdev_is_dead(vdev_t *vd)
3243 {
3244 	/*
3245 	 * Holes and missing devices are always considered "dead".
3246 	 * This simplifies the code since we don't have to check for
3247 	 * these types of devices in the various code paths.
3248 	 * Instead we rely on the fact that we skip over dead devices
3249 	 * before issuing I/O to them.
3250 	 */
3251 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3252 	    vd->vdev_ops == &vdev_hole_ops ||
3253 	    vd->vdev_ops == &vdev_missing_ops);
3254 }
3255 
3256 boolean_t
3257 vdev_readable(vdev_t *vd)
3258 {
3259 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3260 }
3261 
3262 boolean_t
3263 vdev_writeable(vdev_t *vd)
3264 {
3265 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3266 	    vdev_is_concrete(vd));
3267 }
3268 
3269 boolean_t
3270 vdev_allocatable(vdev_t *vd)
3271 {
3272 	uint64_t state = vd->vdev_state;
3273 
3274 	/*
3275 	 * We currently allow allocations from vdevs which may be in the
3276 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3277 	 * fails to reopen then we'll catch it later when we're holding
3278 	 * the proper locks.  Note that we have to get the vdev state
3279 	 * in a local variable because although it changes atomically,
3280 	 * we're asking two separate questions about it.
3281 	 */
3282 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3283 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3284 	    vd->vdev_mg->mg_initialized);
3285 }
3286 
3287 boolean_t
3288 vdev_accessible(vdev_t *vd, zio_t *zio)
3289 {
3290 	ASSERT(zio->io_vd == vd);
3291 
3292 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3293 		return (B_FALSE);
3294 
3295 	if (zio->io_type == ZIO_TYPE_READ)
3296 		return (!vd->vdev_cant_read);
3297 
3298 	if (zio->io_type == ZIO_TYPE_WRITE)
3299 		return (!vd->vdev_cant_write);
3300 
3301 	return (B_TRUE);
3302 }
3303 
3304 boolean_t
3305 vdev_is_spacemap_addressable(vdev_t *vd)
3306 {
3307 	/*
3308 	 * Assuming 47 bits of the space map entry dedicated for the entry's
3309 	 * offset (see description in space_map.h), we calculate the maximum
3310 	 * address that can be described by a space map entry for the given
3311 	 * device.
3312 	 */
3313 	uint64_t shift = vd->vdev_ashift + 47;
3314 
3315 	if (shift >= 63) /* detect potential overflow */
3316 		return (B_TRUE);
3317 
3318 	return (vd->vdev_asize < (1ULL << shift));
3319 }
3320 
3321 /*
3322  * Get statistics for the given vdev.
3323  */
3324 void
3325 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3326 {
3327 	spa_t *spa = vd->vdev_spa;
3328 	vdev_t *rvd = spa->spa_root_vdev;
3329 	vdev_t *tvd = vd->vdev_top;
3330 
3331 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3332 
3333 	mutex_enter(&vd->vdev_stat_lock);
3334 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3335 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3336 	vs->vs_state = vd->vdev_state;
3337 	vs->vs_rsize = vdev_get_min_asize(vd);
3338 	if (vd->vdev_ops->vdev_op_leaf)
3339 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3340 	/*
3341 	 * Report expandable space on top-level, non-auxillary devices only.
3342 	 * The expandable space is reported in terms of metaslab sized units
3343 	 * since that determines how much space the pool can expand.
3344 	 */
3345 	if (vd->vdev_aux == NULL && tvd != NULL) {
3346 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3347 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3348 	}
3349 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3350 	    vdev_is_concrete(vd)) {
3351 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3352 	}
3353 
3354 	/*
3355 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3356 	 * over all top-level vdevs (i.e. the direct children of the root).
3357 	 */
3358 	if (vd == rvd) {
3359 		for (int c = 0; c < rvd->vdev_children; c++) {
3360 			vdev_t *cvd = rvd->vdev_child[c];
3361 			vdev_stat_t *cvs = &cvd->vdev_stat;
3362 
3363 			for (int t = 0; t < ZIO_TYPES; t++) {
3364 				vs->vs_ops[t] += cvs->vs_ops[t];
3365 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3366 			}
3367 			cvs->vs_scan_removing = cvd->vdev_removing;
3368 		}
3369 	}
3370 	mutex_exit(&vd->vdev_stat_lock);
3371 }
3372 
3373 void
3374 vdev_clear_stats(vdev_t *vd)
3375 {
3376 	mutex_enter(&vd->vdev_stat_lock);
3377 	vd->vdev_stat.vs_space = 0;
3378 	vd->vdev_stat.vs_dspace = 0;
3379 	vd->vdev_stat.vs_alloc = 0;
3380 	mutex_exit(&vd->vdev_stat_lock);
3381 }
3382 
3383 void
3384 vdev_scan_stat_init(vdev_t *vd)
3385 {
3386 	vdev_stat_t *vs = &vd->vdev_stat;
3387 
3388 	for (int c = 0; c < vd->vdev_children; c++)
3389 		vdev_scan_stat_init(vd->vdev_child[c]);
3390 
3391 	mutex_enter(&vd->vdev_stat_lock);
3392 	vs->vs_scan_processed = 0;
3393 	mutex_exit(&vd->vdev_stat_lock);
3394 }
3395 
3396 void
3397 vdev_stat_update(zio_t *zio, uint64_t psize)
3398 {
3399 	spa_t *spa = zio->io_spa;
3400 	vdev_t *rvd = spa->spa_root_vdev;
3401 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3402 	vdev_t *pvd;
3403 	uint64_t txg = zio->io_txg;
3404 	vdev_stat_t *vs = &vd->vdev_stat;
3405 	zio_type_t type = zio->io_type;
3406 	int flags = zio->io_flags;
3407 
3408 	/*
3409 	 * If this i/o is a gang leader, it didn't do any actual work.
3410 	 */
3411 	if (zio->io_gang_tree)
3412 		return;
3413 
3414 	if (zio->io_error == 0) {
3415 		/*
3416 		 * If this is a root i/o, don't count it -- we've already
3417 		 * counted the top-level vdevs, and vdev_get_stats() will
3418 		 * aggregate them when asked.  This reduces contention on
3419 		 * the root vdev_stat_lock and implicitly handles blocks
3420 		 * that compress away to holes, for which there is no i/o.
3421 		 * (Holes never create vdev children, so all the counters
3422 		 * remain zero, which is what we want.)
3423 		 *
3424 		 * Note: this only applies to successful i/o (io_error == 0)
3425 		 * because unlike i/o counts, errors are not additive.
3426 		 * When reading a ditto block, for example, failure of
3427 		 * one top-level vdev does not imply a root-level error.
3428 		 */
3429 		if (vd == rvd)
3430 			return;
3431 
3432 		ASSERT(vd == zio->io_vd);
3433 
3434 		if (flags & ZIO_FLAG_IO_BYPASS)
3435 			return;
3436 
3437 		mutex_enter(&vd->vdev_stat_lock);
3438 
3439 		if (flags & ZIO_FLAG_IO_REPAIR) {
3440 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3441 				dsl_scan_phys_t *scn_phys =
3442 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3443 				uint64_t *processed = &scn_phys->scn_processed;
3444 
3445 				/* XXX cleanup? */
3446 				if (vd->vdev_ops->vdev_op_leaf)
3447 					atomic_add_64(processed, psize);
3448 				vs->vs_scan_processed += psize;
3449 			}
3450 
3451 			if (flags & ZIO_FLAG_SELF_HEAL)
3452 				vs->vs_self_healed += psize;
3453 		}
3454 
3455 		vs->vs_ops[type]++;
3456 		vs->vs_bytes[type] += psize;
3457 
3458 		mutex_exit(&vd->vdev_stat_lock);
3459 		return;
3460 	}
3461 
3462 	if (flags & ZIO_FLAG_SPECULATIVE)
3463 		return;
3464 
3465 	/*
3466 	 * If this is an I/O error that is going to be retried, then ignore the
3467 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3468 	 * hard errors, when in reality they can happen for any number of
3469 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3470 	 */
3471 	if (zio->io_error == EIO &&
3472 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3473 		return;
3474 
3475 	/*
3476 	 * Intent logs writes won't propagate their error to the root
3477 	 * I/O so don't mark these types of failures as pool-level
3478 	 * errors.
3479 	 */
3480 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3481 		return;
3482 
3483 	mutex_enter(&vd->vdev_stat_lock);
3484 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3485 		if (zio->io_error == ECKSUM)
3486 			vs->vs_checksum_errors++;
3487 		else
3488 			vs->vs_read_errors++;
3489 	}
3490 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3491 		vs->vs_write_errors++;
3492 	mutex_exit(&vd->vdev_stat_lock);
3493 
3494 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3495 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3496 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3497 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3498 	    spa->spa_claiming)) {
3499 		/*
3500 		 * This is either a normal write (not a repair), or it's
3501 		 * a repair induced by the scrub thread, or it's a repair
3502 		 * made by zil_claim() during spa_load() in the first txg.
3503 		 * In the normal case, we commit the DTL change in the same
3504 		 * txg as the block was born.  In the scrub-induced repair
3505 		 * case, we know that scrubs run in first-pass syncing context,
3506 		 * so we commit the DTL change in spa_syncing_txg(spa).
3507 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3508 		 *
3509 		 * We currently do not make DTL entries for failed spontaneous
3510 		 * self-healing writes triggered by normal (non-scrubbing)
3511 		 * reads, because we have no transactional context in which to
3512 		 * do so -- and it's not clear that it'd be desirable anyway.
3513 		 */
3514 		if (vd->vdev_ops->vdev_op_leaf) {
3515 			uint64_t commit_txg = txg;
3516 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3517 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3518 				ASSERT(spa_sync_pass(spa) == 1);
3519 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3520 				commit_txg = spa_syncing_txg(spa);
3521 			} else if (spa->spa_claiming) {
3522 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3523 				commit_txg = spa_first_txg(spa);
3524 			}
3525 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3526 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3527 				return;
3528 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3529 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3530 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3531 		}
3532 		if (vd != rvd)
3533 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3534 	}
3535 }
3536 
3537 /*
3538  * Update the in-core space usage stats for this vdev, its metaslab class,
3539  * and the root vdev.
3540  */
3541 void
3542 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3543     int64_t space_delta)
3544 {
3545 	int64_t dspace_delta = space_delta;
3546 	spa_t *spa = vd->vdev_spa;
3547 	vdev_t *rvd = spa->spa_root_vdev;
3548 	metaslab_group_t *mg = vd->vdev_mg;
3549 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3550 
3551 	ASSERT(vd == vd->vdev_top);
3552 
3553 	/*
3554 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3555 	 * factor.  We must calculate this here and not at the root vdev
3556 	 * because the root vdev's psize-to-asize is simply the max of its
3557 	 * childrens', thus not accurate enough for us.
3558 	 */
3559 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3560 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3561 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3562 	    vd->vdev_deflate_ratio;
3563 
3564 	mutex_enter(&vd->vdev_stat_lock);
3565 	vd->vdev_stat.vs_alloc += alloc_delta;
3566 	vd->vdev_stat.vs_space += space_delta;
3567 	vd->vdev_stat.vs_dspace += dspace_delta;
3568 	mutex_exit(&vd->vdev_stat_lock);
3569 
3570 	if (mc == spa_normal_class(spa)) {
3571 		mutex_enter(&rvd->vdev_stat_lock);
3572 		rvd->vdev_stat.vs_alloc += alloc_delta;
3573 		rvd->vdev_stat.vs_space += space_delta;
3574 		rvd->vdev_stat.vs_dspace += dspace_delta;
3575 		mutex_exit(&rvd->vdev_stat_lock);
3576 	}
3577 
3578 	if (mc != NULL) {
3579 		ASSERT(rvd == vd->vdev_parent);
3580 		ASSERT(vd->vdev_ms_count != 0);
3581 
3582 		metaslab_class_space_update(mc,
3583 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3584 	}
3585 }
3586 
3587 /*
3588  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3589  * so that it will be written out next time the vdev configuration is synced.
3590  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3591  */
3592 void
3593 vdev_config_dirty(vdev_t *vd)
3594 {
3595 	spa_t *spa = vd->vdev_spa;
3596 	vdev_t *rvd = spa->spa_root_vdev;
3597 	int c;
3598 
3599 	ASSERT(spa_writeable(spa));
3600 
3601 	/*
3602 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3603 	 * update the vdev config manually and set the sync flag.
3604 	 */
3605 	if (vd->vdev_aux != NULL) {
3606 		spa_aux_vdev_t *sav = vd->vdev_aux;
3607 		nvlist_t **aux;
3608 		uint_t naux;
3609 
3610 		for (c = 0; c < sav->sav_count; c++) {
3611 			if (sav->sav_vdevs[c] == vd)
3612 				break;
3613 		}
3614 
3615 		if (c == sav->sav_count) {
3616 			/*
3617 			 * We're being removed.  There's nothing more to do.
3618 			 */
3619 			ASSERT(sav->sav_sync == B_TRUE);
3620 			return;
3621 		}
3622 
3623 		sav->sav_sync = B_TRUE;
3624 
3625 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3626 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3627 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3628 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3629 		}
3630 
3631 		ASSERT(c < naux);
3632 
3633 		/*
3634 		 * Setting the nvlist in the middle if the array is a little
3635 		 * sketchy, but it will work.
3636 		 */
3637 		nvlist_free(aux[c]);
3638 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3639 
3640 		return;
3641 	}
3642 
3643 	/*
3644 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3645 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3646 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3647 	 * so this is sufficient to ensure mutual exclusion.
3648 	 */
3649 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3650 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3651 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3652 
3653 	if (vd == rvd) {
3654 		for (c = 0; c < rvd->vdev_children; c++)
3655 			vdev_config_dirty(rvd->vdev_child[c]);
3656 	} else {
3657 		ASSERT(vd == vd->vdev_top);
3658 
3659 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3660 		    vdev_is_concrete(vd)) {
3661 			list_insert_head(&spa->spa_config_dirty_list, vd);
3662 		}
3663 	}
3664 }
3665 
3666 void
3667 vdev_config_clean(vdev_t *vd)
3668 {
3669 	spa_t *spa = vd->vdev_spa;
3670 
3671 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3672 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3673 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3674 
3675 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3676 	list_remove(&spa->spa_config_dirty_list, vd);
3677 }
3678 
3679 /*
3680  * Mark a top-level vdev's state as dirty, so that the next pass of
3681  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3682  * the state changes from larger config changes because they require
3683  * much less locking, and are often needed for administrative actions.
3684  */
3685 void
3686 vdev_state_dirty(vdev_t *vd)
3687 {
3688 	spa_t *spa = vd->vdev_spa;
3689 
3690 	ASSERT(spa_writeable(spa));
3691 	ASSERT(vd == vd->vdev_top);
3692 
3693 	/*
3694 	 * The state list is protected by the SCL_STATE lock.  The caller
3695 	 * must either hold SCL_STATE as writer, or must be the sync thread
3696 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3697 	 * so this is sufficient to ensure mutual exclusion.
3698 	 */
3699 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3700 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3701 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3702 
3703 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3704 	    vdev_is_concrete(vd))
3705 		list_insert_head(&spa->spa_state_dirty_list, vd);
3706 }
3707 
3708 void
3709 vdev_state_clean(vdev_t *vd)
3710 {
3711 	spa_t *spa = vd->vdev_spa;
3712 
3713 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3714 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3715 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3716 
3717 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3718 	list_remove(&spa->spa_state_dirty_list, vd);
3719 }
3720 
3721 /*
3722  * Propagate vdev state up from children to parent.
3723  */
3724 void
3725 vdev_propagate_state(vdev_t *vd)
3726 {
3727 	spa_t *spa = vd->vdev_spa;
3728 	vdev_t *rvd = spa->spa_root_vdev;
3729 	int degraded = 0, faulted = 0;
3730 	int corrupted = 0;
3731 	vdev_t *child;
3732 
3733 	if (vd->vdev_children > 0) {
3734 		for (int c = 0; c < vd->vdev_children; c++) {
3735 			child = vd->vdev_child[c];
3736 
3737 			/*
3738 			 * Don't factor holes or indirect vdevs into the
3739 			 * decision.
3740 			 */
3741 			if (!vdev_is_concrete(child))
3742 				continue;
3743 
3744 			if (!vdev_readable(child) ||
3745 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3746 				/*
3747 				 * Root special: if there is a top-level log
3748 				 * device, treat the root vdev as if it were
3749 				 * degraded.
3750 				 */
3751 				if (child->vdev_islog && vd == rvd)
3752 					degraded++;
3753 				else
3754 					faulted++;
3755 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3756 				degraded++;
3757 			}
3758 
3759 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3760 				corrupted++;
3761 		}
3762 
3763 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3764 
3765 		/*
3766 		 * Root special: if there is a top-level vdev that cannot be
3767 		 * opened due to corrupted metadata, then propagate the root
3768 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3769 		 * replicas'.
3770 		 */
3771 		if (corrupted && vd == rvd &&
3772 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3773 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3774 			    VDEV_AUX_CORRUPT_DATA);
3775 	}
3776 
3777 	if (vd->vdev_parent)
3778 		vdev_propagate_state(vd->vdev_parent);
3779 }
3780 
3781 /*
3782  * Set a vdev's state.  If this is during an open, we don't update the parent
3783  * state, because we're in the process of opening children depth-first.
3784  * Otherwise, we propagate the change to the parent.
3785  *
3786  * If this routine places a device in a faulted state, an appropriate ereport is
3787  * generated.
3788  */
3789 void
3790 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3791 {
3792 	uint64_t save_state;
3793 	spa_t *spa = vd->vdev_spa;
3794 
3795 	if (state == vd->vdev_state) {
3796 		vd->vdev_stat.vs_aux = aux;
3797 		return;
3798 	}
3799 
3800 	save_state = vd->vdev_state;
3801 
3802 	vd->vdev_state = state;
3803 	vd->vdev_stat.vs_aux = aux;
3804 
3805 	/*
3806 	 * If we are setting the vdev state to anything but an open state, then
3807 	 * always close the underlying device unless the device has requested
3808 	 * a delayed close (i.e. we're about to remove or fault the device).
3809 	 * Otherwise, we keep accessible but invalid devices open forever.
3810 	 * We don't call vdev_close() itself, because that implies some extra
3811 	 * checks (offline, etc) that we don't want here.  This is limited to
3812 	 * leaf devices, because otherwise closing the device will affect other
3813 	 * children.
3814 	 */
3815 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3816 	    vd->vdev_ops->vdev_op_leaf)
3817 		vd->vdev_ops->vdev_op_close(vd);
3818 
3819 	/*
3820 	 * If we have brought this vdev back into service, we need
3821 	 * to notify fmd so that it can gracefully repair any outstanding
3822 	 * cases due to a missing device.  We do this in all cases, even those
3823 	 * that probably don't correlate to a repaired fault.  This is sure to
3824 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3825 	 * this is a transient state it's OK, as the retire agent will
3826 	 * double-check the state of the vdev before repairing it.
3827 	 */
3828 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3829 	    vd->vdev_prevstate != state)
3830 		zfs_post_state_change(spa, vd);
3831 
3832 	if (vd->vdev_removed &&
3833 	    state == VDEV_STATE_CANT_OPEN &&
3834 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3835 		/*
3836 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3837 		 * device was previously marked removed and someone attempted to
3838 		 * reopen it.  If this failed due to a nonexistent device, then
3839 		 * keep the device in the REMOVED state.  We also let this be if
3840 		 * it is one of our special test online cases, which is only
3841 		 * attempting to online the device and shouldn't generate an FMA
3842 		 * fault.
3843 		 */
3844 		vd->vdev_state = VDEV_STATE_REMOVED;
3845 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3846 	} else if (state == VDEV_STATE_REMOVED) {
3847 		vd->vdev_removed = B_TRUE;
3848 	} else if (state == VDEV_STATE_CANT_OPEN) {
3849 		/*
3850 		 * If we fail to open a vdev during an import or recovery, we
3851 		 * mark it as "not available", which signifies that it was
3852 		 * never there to begin with.  Failure to open such a device
3853 		 * is not considered an error.
3854 		 */
3855 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3856 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3857 		    vd->vdev_ops->vdev_op_leaf)
3858 			vd->vdev_not_present = 1;
3859 
3860 		/*
3861 		 * Post the appropriate ereport.  If the 'prevstate' field is
3862 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3863 		 * that this is part of a vdev_reopen().  In this case, we don't
3864 		 * want to post the ereport if the device was already in the
3865 		 * CANT_OPEN state beforehand.
3866 		 *
3867 		 * If the 'checkremove' flag is set, then this is an attempt to
3868 		 * online the device in response to an insertion event.  If we
3869 		 * hit this case, then we have detected an insertion event for a
3870 		 * faulted or offline device that wasn't in the removed state.
3871 		 * In this scenario, we don't post an ereport because we are
3872 		 * about to replace the device, or attempt an online with
3873 		 * vdev_forcefault, which will generate the fault for us.
3874 		 */
3875 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3876 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3877 		    vd != spa->spa_root_vdev) {
3878 			const char *class;
3879 
3880 			switch (aux) {
3881 			case VDEV_AUX_OPEN_FAILED:
3882 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3883 				break;
3884 			case VDEV_AUX_CORRUPT_DATA:
3885 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3886 				break;
3887 			case VDEV_AUX_NO_REPLICAS:
3888 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3889 				break;
3890 			case VDEV_AUX_BAD_GUID_SUM:
3891 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3892 				break;
3893 			case VDEV_AUX_TOO_SMALL:
3894 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3895 				break;
3896 			case VDEV_AUX_BAD_LABEL:
3897 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3898 				break;
3899 			default:
3900 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3901 			}
3902 
3903 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3904 		}
3905 
3906 		/* Erase any notion of persistent removed state */
3907 		vd->vdev_removed = B_FALSE;
3908 	} else {
3909 		vd->vdev_removed = B_FALSE;
3910 	}
3911 
3912 	if (!isopen && vd->vdev_parent)
3913 		vdev_propagate_state(vd->vdev_parent);
3914 }
3915 
3916 boolean_t
3917 vdev_children_are_offline(vdev_t *vd)
3918 {
3919 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
3920 
3921 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3922 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3923 			return (B_FALSE);
3924 	}
3925 
3926 	return (B_TRUE);
3927 }
3928 
3929 /*
3930  * Check the vdev configuration to ensure that it's capable of supporting
3931  * a root pool. We do not support partial configuration.
3932  * In addition, only a single top-level vdev is allowed.
3933  */
3934 boolean_t
3935 vdev_is_bootable(vdev_t *vd)
3936 {
3937 	if (!vd->vdev_ops->vdev_op_leaf) {
3938 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3939 
3940 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3941 		    vd->vdev_children > 1) {
3942 			return (B_FALSE);
3943 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3944 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3945 			return (B_FALSE);
3946 		}
3947 	}
3948 
3949 	for (int c = 0; c < vd->vdev_children; c++) {
3950 		if (!vdev_is_bootable(vd->vdev_child[c]))
3951 			return (B_FALSE);
3952 	}
3953 	return (B_TRUE);
3954 }
3955 
3956 boolean_t
3957 vdev_is_concrete(vdev_t *vd)
3958 {
3959 	vdev_ops_t *ops = vd->vdev_ops;
3960 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3961 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3962 		return (B_FALSE);
3963 	} else {
3964 		return (B_TRUE);
3965 	}
3966 }
3967 
3968 /*
3969  * Determine if a log device has valid content.  If the vdev was
3970  * removed or faulted in the MOS config then we know that
3971  * the content on the log device has already been written to the pool.
3972  */
3973 boolean_t
3974 vdev_log_state_valid(vdev_t *vd)
3975 {
3976 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3977 	    !vd->vdev_removed)
3978 		return (B_TRUE);
3979 
3980 	for (int c = 0; c < vd->vdev_children; c++)
3981 		if (vdev_log_state_valid(vd->vdev_child[c]))
3982 			return (B_TRUE);
3983 
3984 	return (B_FALSE);
3985 }
3986 
3987 /*
3988  * Expand a vdev if possible.
3989  */
3990 void
3991 vdev_expand(vdev_t *vd, uint64_t txg)
3992 {
3993 	ASSERT(vd->vdev_top == vd);
3994 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3995 
3996 	vdev_set_deflate_ratio(vd);
3997 
3998 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3999 	    vdev_is_concrete(vd)) {
4000 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4001 		vdev_config_dirty(vd);
4002 	}
4003 }
4004 
4005 /*
4006  * Split a vdev.
4007  */
4008 void
4009 vdev_split(vdev_t *vd)
4010 {
4011 	vdev_t *cvd, *pvd = vd->vdev_parent;
4012 
4013 	vdev_remove_child(pvd, vd);
4014 	vdev_compact_children(pvd);
4015 
4016 	cvd = pvd->vdev_child[0];
4017 	if (pvd->vdev_children == 1) {
4018 		vdev_remove_parent(cvd);
4019 		cvd->vdev_splitting = B_TRUE;
4020 	}
4021 	vdev_propagate_state(cvd);
4022 }
4023 
4024 void
4025 vdev_deadman(vdev_t *vd)
4026 {
4027 	for (int c = 0; c < vd->vdev_children; c++) {
4028 		vdev_t *cvd = vd->vdev_child[c];
4029 
4030 		vdev_deadman(cvd);
4031 	}
4032 
4033 	if (vd->vdev_ops->vdev_op_leaf) {
4034 		vdev_queue_t *vq = &vd->vdev_queue;
4035 
4036 		mutex_enter(&vq->vq_lock);
4037 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4038 			spa_t *spa = vd->vdev_spa;
4039 			zio_t *fio;
4040 			uint64_t delta;
4041 
4042 			/*
4043 			 * Look at the head of all the pending queues,
4044 			 * if any I/O has been outstanding for longer than
4045 			 * the spa_deadman_synctime we panic the system.
4046 			 */
4047 			fio = avl_first(&vq->vq_active_tree);
4048 			delta = gethrtime() - fio->io_timestamp;
4049 			if (delta > spa_deadman_synctime(spa)) {
4050 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4051 				    "%lluns, delta %lluns, last io %lluns",
4052 				    fio->io_timestamp, (u_longlong_t)delta,
4053 				    vq->vq_io_complete_ts);
4054 				fm_panic("I/O to pool '%s' appears to be "
4055 				    "hung.", spa_name(spa));
4056 			}
4057 		}
4058 		mutex_exit(&vq->vq_lock);
4059 	}
4060 }
4061