xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision e9a5ec5aa8a1a14de1b019c6bd73e0a33f920e49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 
46 /*
47  * Virtual device management.
48  */
49 
50 static vdev_ops_t *vdev_ops_table[] = {
51 	&vdev_root_ops,
52 	&vdev_raidz_ops,
53 	&vdev_mirror_ops,
54 	&vdev_replacing_ops,
55 	&vdev_spare_ops,
56 	&vdev_disk_ops,
57 	&vdev_file_ops,
58 	&vdev_missing_ops,
59 	&vdev_hole_ops,
60 	NULL
61 };
62 
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65 
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72 	vdev_ops_t *ops, **opspp;
73 
74 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 		if (strcmp(ops->vdev_op_type, type) == 0)
76 			break;
77 
78 	return (ops);
79 }
80 
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 	uint64_t csize;
90 
91 	for (int c = 0; c < vd->vdev_children; c++) {
92 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 		asize = MAX(asize, csize);
94 	}
95 
96 	return (asize);
97 }
98 
99 /*
100  * Get the minimum allocatable size. We define the allocatable size as
101  * the vdev's asize rounded to the nearest metaslab. This allows us to
102  * replace or attach devices which don't have the same physical size but
103  * can still satisfy the same number of allocations.
104  */
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
107 {
108 	vdev_t *pvd = vd->vdev_parent;
109 
110 	/*
111 	 * If our parent is NULL (inactive spare or cache) or is the root,
112 	 * just return our own asize.
113 	 */
114 	if (pvd == NULL)
115 		return (vd->vdev_asize);
116 
117 	/*
118 	 * The top-level vdev just returns the allocatable size rounded
119 	 * to the nearest metaslab.
120 	 */
121 	if (vd == vd->vdev_top)
122 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123 
124 	/*
125 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 	 * so each child must provide at least 1/Nth of its asize.
127 	 */
128 	if (pvd->vdev_ops == &vdev_raidz_ops)
129 		return (pvd->vdev_min_asize / pvd->vdev_children);
130 
131 	return (pvd->vdev_min_asize);
132 }
133 
134 void
135 vdev_set_min_asize(vdev_t *vd)
136 {
137 	vd->vdev_min_asize = vdev_get_min_asize(vd);
138 
139 	for (int c = 0; c < vd->vdev_children; c++)
140 		vdev_set_min_asize(vd->vdev_child[c]);
141 }
142 
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 	vdev_t *rvd = spa->spa_root_vdev;
147 
148 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149 
150 	if (vdev < rvd->vdev_children) {
151 		ASSERT(rvd->vdev_child[vdev] != NULL);
152 		return (rvd->vdev_child[vdev]);
153 	}
154 
155 	return (NULL);
156 }
157 
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 	vdev_t *mvd;
162 
163 	if (vd->vdev_guid == guid)
164 		return (vd);
165 
166 	for (int c = 0; c < vd->vdev_children; c++)
167 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 		    NULL)
169 			return (mvd);
170 
171 	return (NULL);
172 }
173 
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
176 {
177 	size_t oldsize, newsize;
178 	uint64_t id = cvd->vdev_id;
179 	vdev_t **newchild;
180 
181 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 	ASSERT(cvd->vdev_parent == NULL);
183 
184 	cvd->vdev_parent = pvd;
185 
186 	if (pvd == NULL)
187 		return;
188 
189 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
190 
191 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 	newsize = pvd->vdev_children * sizeof (vdev_t *);
194 
195 	newchild = kmem_zalloc(newsize, KM_SLEEP);
196 	if (pvd->vdev_child != NULL) {
197 		bcopy(pvd->vdev_child, newchild, oldsize);
198 		kmem_free(pvd->vdev_child, oldsize);
199 	}
200 
201 	pvd->vdev_child = newchild;
202 	pvd->vdev_child[id] = cvd;
203 
204 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
206 
207 	/*
208 	 * Walk up all ancestors to update guid sum.
209 	 */
210 	for (; pvd != NULL; pvd = pvd->vdev_parent)
211 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
212 }
213 
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 	int c;
218 	uint_t id = cvd->vdev_id;
219 
220 	ASSERT(cvd->vdev_parent == pvd);
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id < pvd->vdev_children);
226 	ASSERT(pvd->vdev_child[id] == cvd);
227 
228 	pvd->vdev_child[id] = NULL;
229 	cvd->vdev_parent = NULL;
230 
231 	for (c = 0; c < pvd->vdev_children; c++)
232 		if (pvd->vdev_child[c])
233 			break;
234 
235 	if (c == pvd->vdev_children) {
236 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 		pvd->vdev_child = NULL;
238 		pvd->vdev_children = 0;
239 	}
240 
241 	/*
242 	 * Walk up all ancestors to update guid sum.
243 	 */
244 	for (; pvd != NULL; pvd = pvd->vdev_parent)
245 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 }
247 
248 /*
249  * Remove any holes in the child array.
250  */
251 void
252 vdev_compact_children(vdev_t *pvd)
253 {
254 	vdev_t **newchild, *cvd;
255 	int oldc = pvd->vdev_children;
256 	int newc;
257 
258 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
259 
260 	for (int c = newc = 0; c < oldc; c++)
261 		if (pvd->vdev_child[c])
262 			newc++;
263 
264 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
265 
266 	for (int c = newc = 0; c < oldc; c++) {
267 		if ((cvd = pvd->vdev_child[c]) != NULL) {
268 			newchild[newc] = cvd;
269 			cvd->vdev_id = newc++;
270 		}
271 	}
272 
273 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 	pvd->vdev_child = newchild;
275 	pvd->vdev_children = newc;
276 }
277 
278 /*
279  * Allocate and minimally initialize a vdev_t.
280  */
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
283 {
284 	vdev_t *vd;
285 
286 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
287 
288 	if (spa->spa_root_vdev == NULL) {
289 		ASSERT(ops == &vdev_root_ops);
290 		spa->spa_root_vdev = vd;
291 		spa->spa_load_guid = spa_generate_guid(NULL);
292 	}
293 
294 	if (guid == 0 && ops != &vdev_hole_ops) {
295 		if (spa->spa_root_vdev == vd) {
296 			/*
297 			 * The root vdev's guid will also be the pool guid,
298 			 * which must be unique among all pools.
299 			 */
300 			guid = spa_generate_guid(NULL);
301 		} else {
302 			/*
303 			 * Any other vdev's guid must be unique within the pool.
304 			 */
305 			guid = spa_generate_guid(spa);
306 		}
307 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 	}
309 
310 	vd->vdev_spa = spa;
311 	vd->vdev_id = id;
312 	vd->vdev_guid = guid;
313 	vd->vdev_guid_sum = guid;
314 	vd->vdev_ops = ops;
315 	vd->vdev_state = VDEV_STATE_CLOSED;
316 	vd->vdev_ishole = (ops == &vdev_hole_ops);
317 
318 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 	for (int t = 0; t < DTL_TYPES; t++) {
322 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 		    &vd->vdev_dtl_lock);
324 	}
325 	txg_list_create(&vd->vdev_ms_list,
326 	    offsetof(struct metaslab, ms_txg_node));
327 	txg_list_create(&vd->vdev_dtl_list,
328 	    offsetof(struct vdev, vdev_dtl_node));
329 	vd->vdev_stat.vs_timestamp = gethrtime();
330 	vdev_queue_init(vd);
331 	vdev_cache_init(vd);
332 
333 	return (vd);
334 }
335 
336 /*
337  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
338  * creating a new vdev or loading an existing one - the behavior is slightly
339  * different for each case.
340  */
341 int
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343     int alloctype)
344 {
345 	vdev_ops_t *ops;
346 	char *type;
347 	uint64_t guid = 0, islog, nparity;
348 	vdev_t *vd;
349 
350 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351 
352 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 		return (SET_ERROR(EINVAL));
354 
355 	if ((ops = vdev_getops(type)) == NULL)
356 		return (SET_ERROR(EINVAL));
357 
358 	/*
359 	 * If this is a load, get the vdev guid from the nvlist.
360 	 * Otherwise, vdev_alloc_common() will generate one for us.
361 	 */
362 	if (alloctype == VDEV_ALLOC_LOAD) {
363 		uint64_t label_id;
364 
365 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 		    label_id != id)
367 			return (SET_ERROR(EINVAL));
368 
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 			return (SET_ERROR(EINVAL));
371 	} else if (alloctype == VDEV_ALLOC_SPARE) {
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (SET_ERROR(EINVAL));
374 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (SET_ERROR(EINVAL));
377 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (SET_ERROR(EINVAL));
380 	}
381 
382 	/*
383 	 * The first allocated vdev must be of type 'root'.
384 	 */
385 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 		return (SET_ERROR(EINVAL));
387 
388 	/*
389 	 * Determine whether we're a log vdev.
390 	 */
391 	islog = 0;
392 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 		return (SET_ERROR(ENOTSUP));
395 
396 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 		return (SET_ERROR(ENOTSUP));
398 
399 	/*
400 	 * Set the nparity property for RAID-Z vdevs.
401 	 */
402 	nparity = -1ULL;
403 	if (ops == &vdev_raidz_ops) {
404 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 		    &nparity) == 0) {
406 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 				return (SET_ERROR(EINVAL));
408 			/*
409 			 * Previous versions could only support 1 or 2 parity
410 			 * device.
411 			 */
412 			if (nparity > 1 &&
413 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
414 				return (SET_ERROR(ENOTSUP));
415 			if (nparity > 2 &&
416 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
417 				return (SET_ERROR(ENOTSUP));
418 		} else {
419 			/*
420 			 * We require the parity to be specified for SPAs that
421 			 * support multiple parity levels.
422 			 */
423 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 				return (SET_ERROR(EINVAL));
425 			/*
426 			 * Otherwise, we default to 1 parity device for RAID-Z.
427 			 */
428 			nparity = 1;
429 		}
430 	} else {
431 		nparity = 0;
432 	}
433 	ASSERT(nparity != -1ULL);
434 
435 	vd = vdev_alloc_common(spa, id, guid, ops);
436 
437 	vd->vdev_islog = islog;
438 	vd->vdev_nparity = nparity;
439 
440 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 		vd->vdev_path = spa_strdup(vd->vdev_path);
442 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 	    &vd->vdev_physpath) == 0)
446 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
449 
450 	/*
451 	 * Set the whole_disk property.  If it's not specified, leave the value
452 	 * as -1.
453 	 */
454 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 	    &vd->vdev_wholedisk) != 0)
456 		vd->vdev_wholedisk = -1ULL;
457 
458 	/*
459 	 * Look for the 'not present' flag.  This will only be set if the device
460 	 * was not present at the time of import.
461 	 */
462 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 	    &vd->vdev_not_present);
464 
465 	/*
466 	 * Get the alignment requirement.
467 	 */
468 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469 
470 	/*
471 	 * Retrieve the vdev creation time.
472 	 */
473 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 	    &vd->vdev_crtxg);
475 
476 	/*
477 	 * If we're a top-level vdev, try to load the allocation parameters.
478 	 */
479 	if (parent && !parent->vdev_parent &&
480 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 		    &vd->vdev_ms_array);
483 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 		    &vd->vdev_ms_shift);
485 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 		    &vd->vdev_asize);
487 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 		    &vd->vdev_removing);
489 	}
490 
491 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 		    alloctype == VDEV_ALLOC_ADD ||
494 		    alloctype == VDEV_ALLOC_SPLIT ||
495 		    alloctype == VDEV_ALLOC_ROOTPOOL);
496 		vd->vdev_mg = metaslab_group_create(islog ?
497 		    spa_log_class(spa) : spa_normal_class(spa), vd);
498 	}
499 
500 	/*
501 	 * If we're a leaf vdev, try to load the DTL object and other state.
502 	 */
503 	if (vd->vdev_ops->vdev_op_leaf &&
504 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 		if (alloctype == VDEV_ALLOC_LOAD) {
507 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 			    &vd->vdev_dtl_smo.smo_object);
509 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 			    &vd->vdev_unspare);
511 		}
512 
513 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 			uint64_t spare = 0;
515 
516 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 			    &spare) == 0 && spare)
518 				spa_spare_add(vd);
519 		}
520 
521 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 		    &vd->vdev_offline);
523 
524 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
525 		    &vd->vdev_resilver_txg);
526 
527 		/*
528 		 * When importing a pool, we want to ignore the persistent fault
529 		 * state, as the diagnosis made on another system may not be
530 		 * valid in the current context.  Local vdevs will
531 		 * remain in the faulted state.
532 		 */
533 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 			    &vd->vdev_faulted);
536 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 			    &vd->vdev_degraded);
538 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 			    &vd->vdev_removed);
540 
541 			if (vd->vdev_faulted || vd->vdev_degraded) {
542 				char *aux;
543 
544 				vd->vdev_label_aux =
545 				    VDEV_AUX_ERR_EXCEEDED;
546 				if (nvlist_lookup_string(nv,
547 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 				    strcmp(aux, "external") == 0)
549 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 			}
551 		}
552 	}
553 
554 	/*
555 	 * Add ourselves to the parent's list of children.
556 	 */
557 	vdev_add_child(parent, vd);
558 
559 	*vdp = vd;
560 
561 	return (0);
562 }
563 
564 void
565 vdev_free(vdev_t *vd)
566 {
567 	spa_t *spa = vd->vdev_spa;
568 
569 	/*
570 	 * vdev_free() implies closing the vdev first.  This is simpler than
571 	 * trying to ensure complicated semantics for all callers.
572 	 */
573 	vdev_close(vd);
574 
575 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577 
578 	/*
579 	 * Free all children.
580 	 */
581 	for (int c = 0; c < vd->vdev_children; c++)
582 		vdev_free(vd->vdev_child[c]);
583 
584 	ASSERT(vd->vdev_child == NULL);
585 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586 
587 	/*
588 	 * Discard allocation state.
589 	 */
590 	if (vd->vdev_mg != NULL) {
591 		vdev_metaslab_fini(vd);
592 		metaslab_group_destroy(vd->vdev_mg);
593 	}
594 
595 	ASSERT0(vd->vdev_stat.vs_space);
596 	ASSERT0(vd->vdev_stat.vs_dspace);
597 	ASSERT0(vd->vdev_stat.vs_alloc);
598 
599 	/*
600 	 * Remove this vdev from its parent's child list.
601 	 */
602 	vdev_remove_child(vd->vdev_parent, vd);
603 
604 	ASSERT(vd->vdev_parent == NULL);
605 
606 	/*
607 	 * Clean up vdev structure.
608 	 */
609 	vdev_queue_fini(vd);
610 	vdev_cache_fini(vd);
611 
612 	if (vd->vdev_path)
613 		spa_strfree(vd->vdev_path);
614 	if (vd->vdev_devid)
615 		spa_strfree(vd->vdev_devid);
616 	if (vd->vdev_physpath)
617 		spa_strfree(vd->vdev_physpath);
618 	if (vd->vdev_fru)
619 		spa_strfree(vd->vdev_fru);
620 
621 	if (vd->vdev_isspare)
622 		spa_spare_remove(vd);
623 	if (vd->vdev_isl2cache)
624 		spa_l2cache_remove(vd);
625 
626 	txg_list_destroy(&vd->vdev_ms_list);
627 	txg_list_destroy(&vd->vdev_dtl_list);
628 
629 	mutex_enter(&vd->vdev_dtl_lock);
630 	for (int t = 0; t < DTL_TYPES; t++) {
631 		space_map_unload(&vd->vdev_dtl[t]);
632 		space_map_destroy(&vd->vdev_dtl[t]);
633 	}
634 	mutex_exit(&vd->vdev_dtl_lock);
635 
636 	mutex_destroy(&vd->vdev_dtl_lock);
637 	mutex_destroy(&vd->vdev_stat_lock);
638 	mutex_destroy(&vd->vdev_probe_lock);
639 
640 	if (vd == spa->spa_root_vdev)
641 		spa->spa_root_vdev = NULL;
642 
643 	kmem_free(vd, sizeof (vdev_t));
644 }
645 
646 /*
647  * Transfer top-level vdev state from svd to tvd.
648  */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652 	spa_t *spa = svd->vdev_spa;
653 	metaslab_t *msp;
654 	vdev_t *vd;
655 	int t;
656 
657 	ASSERT(tvd == tvd->vdev_top);
658 
659 	tvd->vdev_ms_array = svd->vdev_ms_array;
660 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 	tvd->vdev_ms_count = svd->vdev_ms_count;
662 
663 	svd->vdev_ms_array = 0;
664 	svd->vdev_ms_shift = 0;
665 	svd->vdev_ms_count = 0;
666 
667 	if (tvd->vdev_mg)
668 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 	tvd->vdev_mg = svd->vdev_mg;
670 	tvd->vdev_ms = svd->vdev_ms;
671 
672 	svd->vdev_mg = NULL;
673 	svd->vdev_ms = NULL;
674 
675 	if (tvd->vdev_mg != NULL)
676 		tvd->vdev_mg->mg_vd = tvd;
677 
678 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
681 
682 	svd->vdev_stat.vs_alloc = 0;
683 	svd->vdev_stat.vs_space = 0;
684 	svd->vdev_stat.vs_dspace = 0;
685 
686 	for (t = 0; t < TXG_SIZE; t++) {
687 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 	}
694 
695 	if (list_link_active(&svd->vdev_config_dirty_node)) {
696 		vdev_config_clean(svd);
697 		vdev_config_dirty(tvd);
698 	}
699 
700 	if (list_link_active(&svd->vdev_state_dirty_node)) {
701 		vdev_state_clean(svd);
702 		vdev_state_dirty(tvd);
703 	}
704 
705 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 	svd->vdev_deflate_ratio = 0;
707 
708 	tvd->vdev_islog = svd->vdev_islog;
709 	svd->vdev_islog = 0;
710 }
711 
712 static void
713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
714 {
715 	if (vd == NULL)
716 		return;
717 
718 	vd->vdev_top = tvd;
719 
720 	for (int c = 0; c < vd->vdev_children; c++)
721 		vdev_top_update(tvd, vd->vdev_child[c]);
722 }
723 
724 /*
725  * Add a mirror/replacing vdev above an existing vdev.
726  */
727 vdev_t *
728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
729 {
730 	spa_t *spa = cvd->vdev_spa;
731 	vdev_t *pvd = cvd->vdev_parent;
732 	vdev_t *mvd;
733 
734 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
735 
736 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
737 
738 	mvd->vdev_asize = cvd->vdev_asize;
739 	mvd->vdev_min_asize = cvd->vdev_min_asize;
740 	mvd->vdev_max_asize = cvd->vdev_max_asize;
741 	mvd->vdev_ashift = cvd->vdev_ashift;
742 	mvd->vdev_state = cvd->vdev_state;
743 	mvd->vdev_crtxg = cvd->vdev_crtxg;
744 
745 	vdev_remove_child(pvd, cvd);
746 	vdev_add_child(pvd, mvd);
747 	cvd->vdev_id = mvd->vdev_children;
748 	vdev_add_child(mvd, cvd);
749 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
750 
751 	if (mvd == mvd->vdev_top)
752 		vdev_top_transfer(cvd, mvd);
753 
754 	return (mvd);
755 }
756 
757 /*
758  * Remove a 1-way mirror/replacing vdev from the tree.
759  */
760 void
761 vdev_remove_parent(vdev_t *cvd)
762 {
763 	vdev_t *mvd = cvd->vdev_parent;
764 	vdev_t *pvd = mvd->vdev_parent;
765 
766 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
767 
768 	ASSERT(mvd->vdev_children == 1);
769 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 	    mvd->vdev_ops == &vdev_replacing_ops ||
771 	    mvd->vdev_ops == &vdev_spare_ops);
772 	cvd->vdev_ashift = mvd->vdev_ashift;
773 
774 	vdev_remove_child(mvd, cvd);
775 	vdev_remove_child(pvd, mvd);
776 
777 	/*
778 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 	 * Otherwise, we could have detached an offline device, and when we
780 	 * go to import the pool we'll think we have two top-level vdevs,
781 	 * instead of a different version of the same top-level vdev.
782 	 */
783 	if (mvd->vdev_top == mvd) {
784 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 		cvd->vdev_orig_guid = cvd->vdev_guid;
786 		cvd->vdev_guid += guid_delta;
787 		cvd->vdev_guid_sum += guid_delta;
788 	}
789 	cvd->vdev_id = mvd->vdev_id;
790 	vdev_add_child(pvd, cvd);
791 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
792 
793 	if (cvd == cvd->vdev_top)
794 		vdev_top_transfer(mvd, cvd);
795 
796 	ASSERT(mvd->vdev_children == 0);
797 	vdev_free(mvd);
798 }
799 
800 int
801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
802 {
803 	spa_t *spa = vd->vdev_spa;
804 	objset_t *mos = spa->spa_meta_objset;
805 	uint64_t m;
806 	uint64_t oldc = vd->vdev_ms_count;
807 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 	metaslab_t **mspp;
809 	int error;
810 
811 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812 
813 	/*
814 	 * This vdev is not being allocated from yet or is a hole.
815 	 */
816 	if (vd->vdev_ms_shift == 0)
817 		return (0);
818 
819 	ASSERT(!vd->vdev_ishole);
820 
821 	/*
822 	 * Compute the raidz-deflation ratio.  Note, we hard-code
823 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 	 * or we will inconsistently account for existing bp's.
826 	 */
827 	vd->vdev_deflate_ratio = (1 << 17) /
828 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
829 
830 	ASSERT(oldc <= newc);
831 
832 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
833 
834 	if (oldc != 0) {
835 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 	}
838 
839 	vd->vdev_ms = mspp;
840 	vd->vdev_ms_count = newc;
841 
842 	for (m = oldc; m < newc; m++) {
843 		space_map_obj_t smo = { 0, 0, 0 };
844 		if (txg == 0) {
845 			uint64_t object = 0;
846 			error = dmu_read(mos, vd->vdev_ms_array,
847 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 			    DMU_READ_PREFETCH);
849 			if (error)
850 				return (error);
851 			if (object != 0) {
852 				dmu_buf_t *db;
853 				error = dmu_bonus_hold(mos, object, FTAG, &db);
854 				if (error)
855 					return (error);
856 				ASSERT3U(db->db_size, >=, sizeof (smo));
857 				bcopy(db->db_data, &smo, sizeof (smo));
858 				ASSERT3U(smo.smo_object, ==, object);
859 				dmu_buf_rele(db, FTAG);
860 			}
861 		}
862 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 	}
865 
866 	if (txg == 0)
867 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868 
869 	/*
870 	 * If the vdev is being removed we don't activate
871 	 * the metaslabs since we want to ensure that no new
872 	 * allocations are performed on this device.
873 	 */
874 	if (oldc == 0 && !vd->vdev_removing)
875 		metaslab_group_activate(vd->vdev_mg);
876 
877 	if (txg == 0)
878 		spa_config_exit(spa, SCL_ALLOC, FTAG);
879 
880 	return (0);
881 }
882 
883 void
884 vdev_metaslab_fini(vdev_t *vd)
885 {
886 	uint64_t m;
887 	uint64_t count = vd->vdev_ms_count;
888 
889 	if (vd->vdev_ms != NULL) {
890 		metaslab_group_passivate(vd->vdev_mg);
891 		for (m = 0; m < count; m++)
892 			if (vd->vdev_ms[m] != NULL)
893 				metaslab_fini(vd->vdev_ms[m]);
894 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 		vd->vdev_ms = NULL;
896 	}
897 }
898 
899 typedef struct vdev_probe_stats {
900 	boolean_t	vps_readable;
901 	boolean_t	vps_writeable;
902 	int		vps_flags;
903 } vdev_probe_stats_t;
904 
905 static void
906 vdev_probe_done(zio_t *zio)
907 {
908 	spa_t *spa = zio->io_spa;
909 	vdev_t *vd = zio->io_vd;
910 	vdev_probe_stats_t *vps = zio->io_private;
911 
912 	ASSERT(vd->vdev_probe_zio != NULL);
913 
914 	if (zio->io_type == ZIO_TYPE_READ) {
915 		if (zio->io_error == 0)
916 			vps->vps_readable = 1;
917 		if (zio->io_error == 0 && spa_writeable(spa)) {
918 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 			    zio->io_offset, zio->io_size, zio->io_data,
920 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 		} else {
923 			zio_buf_free(zio->io_data, zio->io_size);
924 		}
925 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
926 		if (zio->io_error == 0)
927 			vps->vps_writeable = 1;
928 		zio_buf_free(zio->io_data, zio->io_size);
929 	} else if (zio->io_type == ZIO_TYPE_NULL) {
930 		zio_t *pio;
931 
932 		vd->vdev_cant_read |= !vps->vps_readable;
933 		vd->vdev_cant_write |= !vps->vps_writeable;
934 
935 		if (vdev_readable(vd) &&
936 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
937 			zio->io_error = 0;
938 		} else {
939 			ASSERT(zio->io_error != 0);
940 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 			    spa, vd, NULL, 0, 0);
942 			zio->io_error = SET_ERROR(ENXIO);
943 		}
944 
945 		mutex_enter(&vd->vdev_probe_lock);
946 		ASSERT(vd->vdev_probe_zio == zio);
947 		vd->vdev_probe_zio = NULL;
948 		mutex_exit(&vd->vdev_probe_lock);
949 
950 		while ((pio = zio_walk_parents(zio)) != NULL)
951 			if (!vdev_accessible(vd, pio))
952 				pio->io_error = SET_ERROR(ENXIO);
953 
954 		kmem_free(vps, sizeof (*vps));
955 	}
956 }
957 
958 /*
959  * Determine whether this device is accessible.
960  *
961  * Read and write to several known locations: the pad regions of each
962  * vdev label but the first, which we leave alone in case it contains
963  * a VTOC.
964  */
965 zio_t *
966 vdev_probe(vdev_t *vd, zio_t *zio)
967 {
968 	spa_t *spa = vd->vdev_spa;
969 	vdev_probe_stats_t *vps = NULL;
970 	zio_t *pio;
971 
972 	ASSERT(vd->vdev_ops->vdev_op_leaf);
973 
974 	/*
975 	 * Don't probe the probe.
976 	 */
977 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
978 		return (NULL);
979 
980 	/*
981 	 * To prevent 'probe storms' when a device fails, we create
982 	 * just one probe i/o at a time.  All zios that want to probe
983 	 * this vdev will become parents of the probe io.
984 	 */
985 	mutex_enter(&vd->vdev_probe_lock);
986 
987 	if ((pio = vd->vdev_probe_zio) == NULL) {
988 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
989 
990 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
991 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
992 		    ZIO_FLAG_TRYHARD;
993 
994 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
995 			/*
996 			 * vdev_cant_read and vdev_cant_write can only
997 			 * transition from TRUE to FALSE when we have the
998 			 * SCL_ZIO lock as writer; otherwise they can only
999 			 * transition from FALSE to TRUE.  This ensures that
1000 			 * any zio looking at these values can assume that
1001 			 * failures persist for the life of the I/O.  That's
1002 			 * important because when a device has intermittent
1003 			 * connectivity problems, we want to ensure that
1004 			 * they're ascribed to the device (ENXIO) and not
1005 			 * the zio (EIO).
1006 			 *
1007 			 * Since we hold SCL_ZIO as writer here, clear both
1008 			 * values so the probe can reevaluate from first
1009 			 * principles.
1010 			 */
1011 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1012 			vd->vdev_cant_read = B_FALSE;
1013 			vd->vdev_cant_write = B_FALSE;
1014 		}
1015 
1016 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1017 		    vdev_probe_done, vps,
1018 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1019 
1020 		/*
1021 		 * We can't change the vdev state in this context, so we
1022 		 * kick off an async task to do it on our behalf.
1023 		 */
1024 		if (zio != NULL) {
1025 			vd->vdev_probe_wanted = B_TRUE;
1026 			spa_async_request(spa, SPA_ASYNC_PROBE);
1027 		}
1028 	}
1029 
1030 	if (zio != NULL)
1031 		zio_add_child(zio, pio);
1032 
1033 	mutex_exit(&vd->vdev_probe_lock);
1034 
1035 	if (vps == NULL) {
1036 		ASSERT(zio != NULL);
1037 		return (NULL);
1038 	}
1039 
1040 	for (int l = 1; l < VDEV_LABELS; l++) {
1041 		zio_nowait(zio_read_phys(pio, vd,
1042 		    vdev_label_offset(vd->vdev_psize, l,
1043 		    offsetof(vdev_label_t, vl_pad2)),
1044 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1045 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1046 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1047 	}
1048 
1049 	if (zio == NULL)
1050 		return (pio);
1051 
1052 	zio_nowait(pio);
1053 	return (NULL);
1054 }
1055 
1056 static void
1057 vdev_open_child(void *arg)
1058 {
1059 	vdev_t *vd = arg;
1060 
1061 	vd->vdev_open_thread = curthread;
1062 	vd->vdev_open_error = vdev_open(vd);
1063 	vd->vdev_open_thread = NULL;
1064 }
1065 
1066 boolean_t
1067 vdev_uses_zvols(vdev_t *vd)
1068 {
1069 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1070 	    strlen(ZVOL_DIR)) == 0)
1071 		return (B_TRUE);
1072 	for (int c = 0; c < vd->vdev_children; c++)
1073 		if (vdev_uses_zvols(vd->vdev_child[c]))
1074 			return (B_TRUE);
1075 	return (B_FALSE);
1076 }
1077 
1078 void
1079 vdev_open_children(vdev_t *vd)
1080 {
1081 	taskq_t *tq;
1082 	int children = vd->vdev_children;
1083 
1084 	/*
1085 	 * in order to handle pools on top of zvols, do the opens
1086 	 * in a single thread so that the same thread holds the
1087 	 * spa_namespace_lock
1088 	 */
1089 	if (vdev_uses_zvols(vd)) {
1090 		for (int c = 0; c < children; c++)
1091 			vd->vdev_child[c]->vdev_open_error =
1092 			    vdev_open(vd->vdev_child[c]);
1093 		return;
1094 	}
1095 	tq = taskq_create("vdev_open", children, minclsyspri,
1096 	    children, children, TASKQ_PREPOPULATE);
1097 
1098 	for (int c = 0; c < children; c++)
1099 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1100 		    TQ_SLEEP) != NULL);
1101 
1102 	taskq_destroy(tq);
1103 }
1104 
1105 /*
1106  * Prepare a virtual device for access.
1107  */
1108 int
1109 vdev_open(vdev_t *vd)
1110 {
1111 	spa_t *spa = vd->vdev_spa;
1112 	int error;
1113 	uint64_t osize = 0;
1114 	uint64_t max_osize = 0;
1115 	uint64_t asize, max_asize, psize;
1116 	uint64_t ashift = 0;
1117 
1118 	ASSERT(vd->vdev_open_thread == curthread ||
1119 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1120 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1121 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1122 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1123 
1124 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1125 	vd->vdev_cant_read = B_FALSE;
1126 	vd->vdev_cant_write = B_FALSE;
1127 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1128 
1129 	/*
1130 	 * If this vdev is not removed, check its fault status.  If it's
1131 	 * faulted, bail out of the open.
1132 	 */
1133 	if (!vd->vdev_removed && vd->vdev_faulted) {
1134 		ASSERT(vd->vdev_children == 0);
1135 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1136 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1137 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1138 		    vd->vdev_label_aux);
1139 		return (SET_ERROR(ENXIO));
1140 	} else if (vd->vdev_offline) {
1141 		ASSERT(vd->vdev_children == 0);
1142 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1143 		return (SET_ERROR(ENXIO));
1144 	}
1145 
1146 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1147 
1148 	/*
1149 	 * Reset the vdev_reopening flag so that we actually close
1150 	 * the vdev on error.
1151 	 */
1152 	vd->vdev_reopening = B_FALSE;
1153 	if (zio_injection_enabled && error == 0)
1154 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1155 
1156 	if (error) {
1157 		if (vd->vdev_removed &&
1158 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1159 			vd->vdev_removed = B_FALSE;
1160 
1161 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1162 		    vd->vdev_stat.vs_aux);
1163 		return (error);
1164 	}
1165 
1166 	vd->vdev_removed = B_FALSE;
1167 
1168 	/*
1169 	 * Recheck the faulted flag now that we have confirmed that
1170 	 * the vdev is accessible.  If we're faulted, bail.
1171 	 */
1172 	if (vd->vdev_faulted) {
1173 		ASSERT(vd->vdev_children == 0);
1174 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1175 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1176 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1177 		    vd->vdev_label_aux);
1178 		return (SET_ERROR(ENXIO));
1179 	}
1180 
1181 	if (vd->vdev_degraded) {
1182 		ASSERT(vd->vdev_children == 0);
1183 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184 		    VDEV_AUX_ERR_EXCEEDED);
1185 	} else {
1186 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1187 	}
1188 
1189 	/*
1190 	 * For hole or missing vdevs we just return success.
1191 	 */
1192 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1193 		return (0);
1194 
1195 	for (int c = 0; c < vd->vdev_children; c++) {
1196 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1197 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1198 			    VDEV_AUX_NONE);
1199 			break;
1200 		}
1201 	}
1202 
1203 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1204 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1205 
1206 	if (vd->vdev_children == 0) {
1207 		if (osize < SPA_MINDEVSIZE) {
1208 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 			    VDEV_AUX_TOO_SMALL);
1210 			return (SET_ERROR(EOVERFLOW));
1211 		}
1212 		psize = osize;
1213 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1214 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1215 		    VDEV_LABEL_END_SIZE);
1216 	} else {
1217 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1218 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1219 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220 			    VDEV_AUX_TOO_SMALL);
1221 			return (SET_ERROR(EOVERFLOW));
1222 		}
1223 		psize = 0;
1224 		asize = osize;
1225 		max_asize = max_osize;
1226 	}
1227 
1228 	vd->vdev_psize = psize;
1229 
1230 	/*
1231 	 * Make sure the allocatable size hasn't shrunk.
1232 	 */
1233 	if (asize < vd->vdev_min_asize) {
1234 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1235 		    VDEV_AUX_BAD_LABEL);
1236 		return (SET_ERROR(EINVAL));
1237 	}
1238 
1239 	if (vd->vdev_asize == 0) {
1240 		/*
1241 		 * This is the first-ever open, so use the computed values.
1242 		 * For testing purposes, a higher ashift can be requested.
1243 		 */
1244 		vd->vdev_asize = asize;
1245 		vd->vdev_max_asize = max_asize;
1246 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1247 	} else {
1248 		/*
1249 		 * Detect if the alignment requirement has increased.
1250 		 * We don't want to make the pool unavailable, just
1251 		 * issue a warning instead.
1252 		 */
1253 		if (ashift > vd->vdev_top->vdev_ashift &&
1254 		    vd->vdev_ops->vdev_op_leaf) {
1255 			cmn_err(CE_WARN,
1256 			    "Disk, '%s', has a block alignment that is "
1257 			    "larger than the pool's alignment\n",
1258 			    vd->vdev_path);
1259 		}
1260 		vd->vdev_max_asize = max_asize;
1261 	}
1262 
1263 	/*
1264 	 * If all children are healthy and the asize has increased,
1265 	 * then we've experienced dynamic LUN growth.  If automatic
1266 	 * expansion is enabled then use the additional space.
1267 	 */
1268 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1269 	    (vd->vdev_expanding || spa->spa_autoexpand))
1270 		vd->vdev_asize = asize;
1271 
1272 	vdev_set_min_asize(vd);
1273 
1274 	/*
1275 	 * Ensure we can issue some IO before declaring the
1276 	 * vdev open for business.
1277 	 */
1278 	if (vd->vdev_ops->vdev_op_leaf &&
1279 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1280 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1281 		    VDEV_AUX_ERR_EXCEEDED);
1282 		return (error);
1283 	}
1284 
1285 	/*
1286 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1287 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1288 	 * since this would just restart the scrub we are already doing.
1289 	 */
1290 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1291 	    vdev_resilver_needed(vd, NULL, NULL))
1292 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * Called once the vdevs are all opened, this routine validates the label
1299  * contents.  This needs to be done before vdev_load() so that we don't
1300  * inadvertently do repair I/Os to the wrong device.
1301  *
1302  * If 'strict' is false ignore the spa guid check. This is necessary because
1303  * if the machine crashed during a re-guid the new guid might have been written
1304  * to all of the vdev labels, but not the cached config. The strict check
1305  * will be performed when the pool is opened again using the mos config.
1306  *
1307  * This function will only return failure if one of the vdevs indicates that it
1308  * has since been destroyed or exported.  This is only possible if
1309  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1310  * will be updated but the function will return 0.
1311  */
1312 int
1313 vdev_validate(vdev_t *vd, boolean_t strict)
1314 {
1315 	spa_t *spa = vd->vdev_spa;
1316 	nvlist_t *label;
1317 	uint64_t guid = 0, top_guid;
1318 	uint64_t state;
1319 
1320 	for (int c = 0; c < vd->vdev_children; c++)
1321 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1322 			return (SET_ERROR(EBADF));
1323 
1324 	/*
1325 	 * If the device has already failed, or was marked offline, don't do
1326 	 * any further validation.  Otherwise, label I/O will fail and we will
1327 	 * overwrite the previous state.
1328 	 */
1329 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1330 		uint64_t aux_guid = 0;
1331 		nvlist_t *nvl;
1332 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1333 		    spa_last_synced_txg(spa) : -1ULL;
1334 
1335 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1336 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 			    VDEV_AUX_BAD_LABEL);
1338 			return (0);
1339 		}
1340 
1341 		/*
1342 		 * Determine if this vdev has been split off into another
1343 		 * pool.  If so, then refuse to open it.
1344 		 */
1345 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1346 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1347 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1348 			    VDEV_AUX_SPLIT_POOL);
1349 			nvlist_free(label);
1350 			return (0);
1351 		}
1352 
1353 		if (strict && (nvlist_lookup_uint64(label,
1354 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1355 		    guid != spa_guid(spa))) {
1356 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1357 			    VDEV_AUX_CORRUPT_DATA);
1358 			nvlist_free(label);
1359 			return (0);
1360 		}
1361 
1362 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1363 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1364 		    &aux_guid) != 0)
1365 			aux_guid = 0;
1366 
1367 		/*
1368 		 * If this vdev just became a top-level vdev because its
1369 		 * sibling was detached, it will have adopted the parent's
1370 		 * vdev guid -- but the label may or may not be on disk yet.
1371 		 * Fortunately, either version of the label will have the
1372 		 * same top guid, so if we're a top-level vdev, we can
1373 		 * safely compare to that instead.
1374 		 *
1375 		 * If we split this vdev off instead, then we also check the
1376 		 * original pool's guid.  We don't want to consider the vdev
1377 		 * corrupt if it is partway through a split operation.
1378 		 */
1379 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1380 		    &guid) != 0 ||
1381 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1382 		    &top_guid) != 0 ||
1383 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1384 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1385 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 			    VDEV_AUX_CORRUPT_DATA);
1387 			nvlist_free(label);
1388 			return (0);
1389 		}
1390 
1391 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1392 		    &state) != 0) {
1393 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1394 			    VDEV_AUX_CORRUPT_DATA);
1395 			nvlist_free(label);
1396 			return (0);
1397 		}
1398 
1399 		nvlist_free(label);
1400 
1401 		/*
1402 		 * If this is a verbatim import, no need to check the
1403 		 * state of the pool.
1404 		 */
1405 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1406 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1407 		    state != POOL_STATE_ACTIVE)
1408 			return (SET_ERROR(EBADF));
1409 
1410 		/*
1411 		 * If we were able to open and validate a vdev that was
1412 		 * previously marked permanently unavailable, clear that state
1413 		 * now.
1414 		 */
1415 		if (vd->vdev_not_present)
1416 			vd->vdev_not_present = 0;
1417 	}
1418 
1419 	return (0);
1420 }
1421 
1422 /*
1423  * Close a virtual device.
1424  */
1425 void
1426 vdev_close(vdev_t *vd)
1427 {
1428 	spa_t *spa = vd->vdev_spa;
1429 	vdev_t *pvd = vd->vdev_parent;
1430 
1431 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1432 
1433 	/*
1434 	 * If our parent is reopening, then we are as well, unless we are
1435 	 * going offline.
1436 	 */
1437 	if (pvd != NULL && pvd->vdev_reopening)
1438 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1439 
1440 	vd->vdev_ops->vdev_op_close(vd);
1441 
1442 	vdev_cache_purge(vd);
1443 
1444 	/*
1445 	 * We record the previous state before we close it, so that if we are
1446 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1447 	 * it's still faulted.
1448 	 */
1449 	vd->vdev_prevstate = vd->vdev_state;
1450 
1451 	if (vd->vdev_offline)
1452 		vd->vdev_state = VDEV_STATE_OFFLINE;
1453 	else
1454 		vd->vdev_state = VDEV_STATE_CLOSED;
1455 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1456 }
1457 
1458 void
1459 vdev_hold(vdev_t *vd)
1460 {
1461 	spa_t *spa = vd->vdev_spa;
1462 
1463 	ASSERT(spa_is_root(spa));
1464 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1465 		return;
1466 
1467 	for (int c = 0; c < vd->vdev_children; c++)
1468 		vdev_hold(vd->vdev_child[c]);
1469 
1470 	if (vd->vdev_ops->vdev_op_leaf)
1471 		vd->vdev_ops->vdev_op_hold(vd);
1472 }
1473 
1474 void
1475 vdev_rele(vdev_t *vd)
1476 {
1477 	spa_t *spa = vd->vdev_spa;
1478 
1479 	ASSERT(spa_is_root(spa));
1480 	for (int c = 0; c < vd->vdev_children; c++)
1481 		vdev_rele(vd->vdev_child[c]);
1482 
1483 	if (vd->vdev_ops->vdev_op_leaf)
1484 		vd->vdev_ops->vdev_op_rele(vd);
1485 }
1486 
1487 /*
1488  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1489  * reopen leaf vdevs which had previously been opened as they might deadlock
1490  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1491  * If the leaf has never been opened then open it, as usual.
1492  */
1493 void
1494 vdev_reopen(vdev_t *vd)
1495 {
1496 	spa_t *spa = vd->vdev_spa;
1497 
1498 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499 
1500 	/* set the reopening flag unless we're taking the vdev offline */
1501 	vd->vdev_reopening = !vd->vdev_offline;
1502 	vdev_close(vd);
1503 	(void) vdev_open(vd);
1504 
1505 	/*
1506 	 * Call vdev_validate() here to make sure we have the same device.
1507 	 * Otherwise, a device with an invalid label could be successfully
1508 	 * opened in response to vdev_reopen().
1509 	 */
1510 	if (vd->vdev_aux) {
1511 		(void) vdev_validate_aux(vd);
1512 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1513 		    vd->vdev_aux == &spa->spa_l2cache &&
1514 		    !l2arc_vdev_present(vd))
1515 			l2arc_add_vdev(spa, vd);
1516 	} else {
1517 		(void) vdev_validate(vd, B_TRUE);
1518 	}
1519 
1520 	/*
1521 	 * Reassess parent vdev's health.
1522 	 */
1523 	vdev_propagate_state(vd);
1524 }
1525 
1526 int
1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1528 {
1529 	int error;
1530 
1531 	/*
1532 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1533 	 * For a create, however, we want to fail the request if
1534 	 * there are any components we can't open.
1535 	 */
1536 	error = vdev_open(vd);
1537 
1538 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1539 		vdev_close(vd);
1540 		return (error ? error : ENXIO);
1541 	}
1542 
1543 	/*
1544 	 * Recursively initialize all labels.
1545 	 */
1546 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1547 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1548 		vdev_close(vd);
1549 		return (error);
1550 	}
1551 
1552 	return (0);
1553 }
1554 
1555 void
1556 vdev_metaslab_set_size(vdev_t *vd)
1557 {
1558 	/*
1559 	 * Aim for roughly 200 metaslabs per vdev.
1560 	 */
1561 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1562 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1563 }
1564 
1565 void
1566 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1567 {
1568 	ASSERT(vd == vd->vdev_top);
1569 	ASSERT(!vd->vdev_ishole);
1570 	ASSERT(ISP2(flags));
1571 	ASSERT(spa_writeable(vd->vdev_spa));
1572 
1573 	if (flags & VDD_METASLAB)
1574 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1575 
1576 	if (flags & VDD_DTL)
1577 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1578 
1579 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1580 }
1581 
1582 /*
1583  * DTLs.
1584  *
1585  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1586  * the vdev has less than perfect replication.  There are four kinds of DTL:
1587  *
1588  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1589  *
1590  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1591  *
1592  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1593  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1594  *	txgs that was scrubbed.
1595  *
1596  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1597  *	persistent errors or just some device being offline.
1598  *	Unlike the other three, the DTL_OUTAGE map is not generally
1599  *	maintained; it's only computed when needed, typically to
1600  *	determine whether a device can be detached.
1601  *
1602  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1603  * either has the data or it doesn't.
1604  *
1605  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1606  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1607  * if any child is less than fully replicated, then so is its parent.
1608  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1609  * comprising only those txgs which appear in 'maxfaults' or more children;
1610  * those are the txgs we don't have enough replication to read.  For example,
1611  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1612  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1613  * two child DTL_MISSING maps.
1614  *
1615  * It should be clear from the above that to compute the DTLs and outage maps
1616  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1617  * Therefore, that is all we keep on disk.  When loading the pool, or after
1618  * a configuration change, we generate all other DTLs from first principles.
1619  */
1620 void
1621 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 {
1623 	space_map_t *sm = &vd->vdev_dtl[t];
1624 
1625 	ASSERT(t < DTL_TYPES);
1626 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1627 	ASSERT(spa_writeable(vd->vdev_spa));
1628 
1629 	mutex_enter(sm->sm_lock);
1630 	if (!space_map_contains(sm, txg, size))
1631 		space_map_add(sm, txg, size);
1632 	mutex_exit(sm->sm_lock);
1633 }
1634 
1635 boolean_t
1636 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638 	space_map_t *sm = &vd->vdev_dtl[t];
1639 	boolean_t dirty = B_FALSE;
1640 
1641 	ASSERT(t < DTL_TYPES);
1642 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1643 
1644 	mutex_enter(sm->sm_lock);
1645 	if (sm->sm_space != 0)
1646 		dirty = space_map_contains(sm, txg, size);
1647 	mutex_exit(sm->sm_lock);
1648 
1649 	return (dirty);
1650 }
1651 
1652 boolean_t
1653 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1654 {
1655 	space_map_t *sm = &vd->vdev_dtl[t];
1656 	boolean_t empty;
1657 
1658 	mutex_enter(sm->sm_lock);
1659 	empty = (sm->sm_space == 0);
1660 	mutex_exit(sm->sm_lock);
1661 
1662 	return (empty);
1663 }
1664 
1665 /*
1666  * Returns the lowest txg in the DTL range.
1667  */
1668 static uint64_t
1669 vdev_dtl_min(vdev_t *vd)
1670 {
1671 	space_seg_t *ss;
1672 
1673 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1674 	ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1675 	ASSERT0(vd->vdev_children);
1676 
1677 	ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1678 	return (ss->ss_start - 1);
1679 }
1680 
1681 /*
1682  * Returns the highest txg in the DTL.
1683  */
1684 static uint64_t
1685 vdev_dtl_max(vdev_t *vd)
1686 {
1687 	space_seg_t *ss;
1688 
1689 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1690 	ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1691 	ASSERT0(vd->vdev_children);
1692 
1693 	ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1694 	return (ss->ss_end);
1695 }
1696 
1697 /*
1698  * Determine if a resilvering vdev should remove any DTL entries from
1699  * its range. If the vdev was resilvering for the entire duration of the
1700  * scan then it should excise that range from its DTLs. Otherwise, this
1701  * vdev is considered partially resilvered and should leave its DTL
1702  * entries intact. The comment in vdev_dtl_reassess() describes how we
1703  * excise the DTLs.
1704  */
1705 static boolean_t
1706 vdev_dtl_should_excise(vdev_t *vd)
1707 {
1708 	spa_t *spa = vd->vdev_spa;
1709 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1710 
1711 	ASSERT0(scn->scn_phys.scn_errors);
1712 	ASSERT0(vd->vdev_children);
1713 
1714 	if (vd->vdev_resilver_txg == 0 ||
1715 	    vd->vdev_dtl[DTL_MISSING].sm_space == 0)
1716 		return (B_TRUE);
1717 
1718 	/*
1719 	 * When a resilver is initiated the scan will assign the scn_max_txg
1720 	 * value to the highest txg value that exists in all DTLs. If this
1721 	 * device's max DTL is not part of this scan (i.e. it is not in
1722 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1723 	 * for excision.
1724 	 */
1725 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1726 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1727 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1728 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1729 		return (B_TRUE);
1730 	}
1731 	return (B_FALSE);
1732 }
1733 
1734 /*
1735  * Reassess DTLs after a config change or scrub completion.
1736  */
1737 void
1738 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1739 {
1740 	spa_t *spa = vd->vdev_spa;
1741 	avl_tree_t reftree;
1742 	int minref;
1743 
1744 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1745 
1746 	for (int c = 0; c < vd->vdev_children; c++)
1747 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1748 		    scrub_txg, scrub_done);
1749 
1750 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1751 		return;
1752 
1753 	if (vd->vdev_ops->vdev_op_leaf) {
1754 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1755 
1756 		mutex_enter(&vd->vdev_dtl_lock);
1757 
1758 		/*
1759 		 * If we've completed a scan cleanly then determine
1760 		 * if this vdev should remove any DTLs. We only want to
1761 		 * excise regions on vdevs that were available during
1762 		 * the entire duration of this scan.
1763 		 */
1764 		if (scrub_txg != 0 &&
1765 		    (spa->spa_scrub_started ||
1766 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1767 		    vdev_dtl_should_excise(vd)) {
1768 			/*
1769 			 * We completed a scrub up to scrub_txg.  If we
1770 			 * did it without rebooting, then the scrub dtl
1771 			 * will be valid, so excise the old region and
1772 			 * fold in the scrub dtl.  Otherwise, leave the
1773 			 * dtl as-is if there was an error.
1774 			 *
1775 			 * There's little trick here: to excise the beginning
1776 			 * of the DTL_MISSING map, we put it into a reference
1777 			 * tree and then add a segment with refcnt -1 that
1778 			 * covers the range [0, scrub_txg).  This means
1779 			 * that each txg in that range has refcnt -1 or 0.
1780 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1781 			 * entries in the range [0, scrub_txg) will have a
1782 			 * positive refcnt -- either 1 or 2.  We then convert
1783 			 * the reference tree into the new DTL_MISSING map.
1784 			 */
1785 			space_map_ref_create(&reftree);
1786 			space_map_ref_add_map(&reftree,
1787 			    &vd->vdev_dtl[DTL_MISSING], 1);
1788 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1789 			space_map_ref_add_map(&reftree,
1790 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1791 			space_map_ref_generate_map(&reftree,
1792 			    &vd->vdev_dtl[DTL_MISSING], 1);
1793 			space_map_ref_destroy(&reftree);
1794 		}
1795 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1796 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1797 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1798 		if (scrub_done)
1799 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1800 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1801 		if (!vdev_readable(vd))
1802 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1803 		else
1804 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1805 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1806 
1807 		/*
1808 		 * If the vdev was resilvering and no longer has any
1809 		 * DTLs then reset its resilvering flag.
1810 		 */
1811 		if (vd->vdev_resilver_txg != 0 &&
1812 		    vd->vdev_dtl[DTL_MISSING].sm_space == 0 &&
1813 		    vd->vdev_dtl[DTL_OUTAGE].sm_space == 0)
1814 			vd->vdev_resilver_txg = 0;
1815 
1816 		mutex_exit(&vd->vdev_dtl_lock);
1817 
1818 		if (txg != 0)
1819 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1820 		return;
1821 	}
1822 
1823 	mutex_enter(&vd->vdev_dtl_lock);
1824 	for (int t = 0; t < DTL_TYPES; t++) {
1825 		/* account for child's outage in parent's missing map */
1826 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1827 		if (t == DTL_SCRUB)
1828 			continue;			/* leaf vdevs only */
1829 		if (t == DTL_PARTIAL)
1830 			minref = 1;			/* i.e. non-zero */
1831 		else if (vd->vdev_nparity != 0)
1832 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1833 		else
1834 			minref = vd->vdev_children;	/* any kind of mirror */
1835 		space_map_ref_create(&reftree);
1836 		for (int c = 0; c < vd->vdev_children; c++) {
1837 			vdev_t *cvd = vd->vdev_child[c];
1838 			mutex_enter(&cvd->vdev_dtl_lock);
1839 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1840 			mutex_exit(&cvd->vdev_dtl_lock);
1841 		}
1842 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1843 		space_map_ref_destroy(&reftree);
1844 	}
1845 	mutex_exit(&vd->vdev_dtl_lock);
1846 }
1847 
1848 static int
1849 vdev_dtl_load(vdev_t *vd)
1850 {
1851 	spa_t *spa = vd->vdev_spa;
1852 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1853 	objset_t *mos = spa->spa_meta_objset;
1854 	dmu_buf_t *db;
1855 	int error;
1856 
1857 	ASSERT(vd->vdev_children == 0);
1858 
1859 	if (smo->smo_object == 0)
1860 		return (0);
1861 
1862 	ASSERT(!vd->vdev_ishole);
1863 
1864 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1865 		return (error);
1866 
1867 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1868 	bcopy(db->db_data, smo, sizeof (*smo));
1869 	dmu_buf_rele(db, FTAG);
1870 
1871 	mutex_enter(&vd->vdev_dtl_lock);
1872 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1873 	    NULL, SM_ALLOC, smo, mos);
1874 	mutex_exit(&vd->vdev_dtl_lock);
1875 
1876 	return (error);
1877 }
1878 
1879 void
1880 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1881 {
1882 	spa_t *spa = vd->vdev_spa;
1883 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1884 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1885 	objset_t *mos = spa->spa_meta_objset;
1886 	space_map_t smsync;
1887 	kmutex_t smlock;
1888 	dmu_buf_t *db;
1889 	dmu_tx_t *tx;
1890 
1891 	ASSERT(!vd->vdev_ishole);
1892 
1893 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1894 
1895 	if (vd->vdev_detached) {
1896 		if (smo->smo_object != 0) {
1897 			int err = dmu_object_free(mos, smo->smo_object, tx);
1898 			ASSERT0(err);
1899 			smo->smo_object = 0;
1900 		}
1901 		dmu_tx_commit(tx);
1902 		return;
1903 	}
1904 
1905 	if (smo->smo_object == 0) {
1906 		ASSERT(smo->smo_objsize == 0);
1907 		ASSERT(smo->smo_alloc == 0);
1908 		smo->smo_object = dmu_object_alloc(mos,
1909 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1910 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1911 		ASSERT(smo->smo_object != 0);
1912 		vdev_config_dirty(vd->vdev_top);
1913 	}
1914 
1915 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1916 
1917 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1918 	    &smlock);
1919 
1920 	mutex_enter(&smlock);
1921 
1922 	mutex_enter(&vd->vdev_dtl_lock);
1923 	space_map_walk(sm, space_map_add, &smsync);
1924 	mutex_exit(&vd->vdev_dtl_lock);
1925 
1926 	space_map_truncate(smo, mos, tx);
1927 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1928 	space_map_vacate(&smsync, NULL, NULL);
1929 
1930 	space_map_destroy(&smsync);
1931 
1932 	mutex_exit(&smlock);
1933 	mutex_destroy(&smlock);
1934 
1935 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1936 	dmu_buf_will_dirty(db, tx);
1937 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1938 	bcopy(smo, db->db_data, sizeof (*smo));
1939 	dmu_buf_rele(db, FTAG);
1940 
1941 	dmu_tx_commit(tx);
1942 }
1943 
1944 /*
1945  * Determine whether the specified vdev can be offlined/detached/removed
1946  * without losing data.
1947  */
1948 boolean_t
1949 vdev_dtl_required(vdev_t *vd)
1950 {
1951 	spa_t *spa = vd->vdev_spa;
1952 	vdev_t *tvd = vd->vdev_top;
1953 	uint8_t cant_read = vd->vdev_cant_read;
1954 	boolean_t required;
1955 
1956 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1957 
1958 	if (vd == spa->spa_root_vdev || vd == tvd)
1959 		return (B_TRUE);
1960 
1961 	/*
1962 	 * Temporarily mark the device as unreadable, and then determine
1963 	 * whether this results in any DTL outages in the top-level vdev.
1964 	 * If not, we can safely offline/detach/remove the device.
1965 	 */
1966 	vd->vdev_cant_read = B_TRUE;
1967 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1968 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1969 	vd->vdev_cant_read = cant_read;
1970 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1971 
1972 	if (!required && zio_injection_enabled)
1973 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1974 
1975 	return (required);
1976 }
1977 
1978 /*
1979  * Determine if resilver is needed, and if so the txg range.
1980  */
1981 boolean_t
1982 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1983 {
1984 	boolean_t needed = B_FALSE;
1985 	uint64_t thismin = UINT64_MAX;
1986 	uint64_t thismax = 0;
1987 
1988 	if (vd->vdev_children == 0) {
1989 		mutex_enter(&vd->vdev_dtl_lock);
1990 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1991 		    vdev_writeable(vd)) {
1992 
1993 			thismin = vdev_dtl_min(vd);
1994 			thismax = vdev_dtl_max(vd);
1995 			needed = B_TRUE;
1996 		}
1997 		mutex_exit(&vd->vdev_dtl_lock);
1998 	} else {
1999 		for (int c = 0; c < vd->vdev_children; c++) {
2000 			vdev_t *cvd = vd->vdev_child[c];
2001 			uint64_t cmin, cmax;
2002 
2003 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2004 				thismin = MIN(thismin, cmin);
2005 				thismax = MAX(thismax, cmax);
2006 				needed = B_TRUE;
2007 			}
2008 		}
2009 	}
2010 
2011 	if (needed && minp) {
2012 		*minp = thismin;
2013 		*maxp = thismax;
2014 	}
2015 	return (needed);
2016 }
2017 
2018 void
2019 vdev_load(vdev_t *vd)
2020 {
2021 	/*
2022 	 * Recursively load all children.
2023 	 */
2024 	for (int c = 0; c < vd->vdev_children; c++)
2025 		vdev_load(vd->vdev_child[c]);
2026 
2027 	/*
2028 	 * If this is a top-level vdev, initialize its metaslabs.
2029 	 */
2030 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2031 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2032 	    vdev_metaslab_init(vd, 0) != 0))
2033 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2034 		    VDEV_AUX_CORRUPT_DATA);
2035 
2036 	/*
2037 	 * If this is a leaf vdev, load its DTL.
2038 	 */
2039 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2040 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2041 		    VDEV_AUX_CORRUPT_DATA);
2042 }
2043 
2044 /*
2045  * The special vdev case is used for hot spares and l2cache devices.  Its
2046  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2047  * we make sure that we can open the underlying device, then try to read the
2048  * label, and make sure that the label is sane and that it hasn't been
2049  * repurposed to another pool.
2050  */
2051 int
2052 vdev_validate_aux(vdev_t *vd)
2053 {
2054 	nvlist_t *label;
2055 	uint64_t guid, version;
2056 	uint64_t state;
2057 
2058 	if (!vdev_readable(vd))
2059 		return (0);
2060 
2061 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2062 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2063 		    VDEV_AUX_CORRUPT_DATA);
2064 		return (-1);
2065 	}
2066 
2067 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2068 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2069 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2070 	    guid != vd->vdev_guid ||
2071 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2072 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2073 		    VDEV_AUX_CORRUPT_DATA);
2074 		nvlist_free(label);
2075 		return (-1);
2076 	}
2077 
2078 	/*
2079 	 * We don't actually check the pool state here.  If it's in fact in
2080 	 * use by another pool, we update this fact on the fly when requested.
2081 	 */
2082 	nvlist_free(label);
2083 	return (0);
2084 }
2085 
2086 void
2087 vdev_remove(vdev_t *vd, uint64_t txg)
2088 {
2089 	spa_t *spa = vd->vdev_spa;
2090 	objset_t *mos = spa->spa_meta_objset;
2091 	dmu_tx_t *tx;
2092 
2093 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2094 
2095 	if (vd->vdev_dtl_smo.smo_object) {
2096 		ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2097 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2098 		vd->vdev_dtl_smo.smo_object = 0;
2099 	}
2100 
2101 	if (vd->vdev_ms != NULL) {
2102 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2103 			metaslab_t *msp = vd->vdev_ms[m];
2104 
2105 			if (msp == NULL || msp->ms_smo.smo_object == 0)
2106 				continue;
2107 
2108 			ASSERT0(msp->ms_smo.smo_alloc);
2109 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2110 			msp->ms_smo.smo_object = 0;
2111 		}
2112 	}
2113 
2114 	if (vd->vdev_ms_array) {
2115 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2116 		vd->vdev_ms_array = 0;
2117 		vd->vdev_ms_shift = 0;
2118 	}
2119 	dmu_tx_commit(tx);
2120 }
2121 
2122 void
2123 vdev_sync_done(vdev_t *vd, uint64_t txg)
2124 {
2125 	metaslab_t *msp;
2126 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2127 
2128 	ASSERT(!vd->vdev_ishole);
2129 
2130 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2131 		metaslab_sync_done(msp, txg);
2132 
2133 	if (reassess)
2134 		metaslab_sync_reassess(vd->vdev_mg);
2135 }
2136 
2137 void
2138 vdev_sync(vdev_t *vd, uint64_t txg)
2139 {
2140 	spa_t *spa = vd->vdev_spa;
2141 	vdev_t *lvd;
2142 	metaslab_t *msp;
2143 	dmu_tx_t *tx;
2144 
2145 	ASSERT(!vd->vdev_ishole);
2146 
2147 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2148 		ASSERT(vd == vd->vdev_top);
2149 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2150 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2151 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2152 		ASSERT(vd->vdev_ms_array != 0);
2153 		vdev_config_dirty(vd);
2154 		dmu_tx_commit(tx);
2155 	}
2156 
2157 	/*
2158 	 * Remove the metadata associated with this vdev once it's empty.
2159 	 */
2160 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2161 		vdev_remove(vd, txg);
2162 
2163 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2164 		metaslab_sync(msp, txg);
2165 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2166 	}
2167 
2168 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2169 		vdev_dtl_sync(lvd, txg);
2170 
2171 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2172 }
2173 
2174 uint64_t
2175 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2176 {
2177 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2178 }
2179 
2180 /*
2181  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2182  * not be opened, and no I/O is attempted.
2183  */
2184 int
2185 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2186 {
2187 	vdev_t *vd, *tvd;
2188 
2189 	spa_vdev_state_enter(spa, SCL_NONE);
2190 
2191 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2192 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2193 
2194 	if (!vd->vdev_ops->vdev_op_leaf)
2195 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2196 
2197 	tvd = vd->vdev_top;
2198 
2199 	/*
2200 	 * We don't directly use the aux state here, but if we do a
2201 	 * vdev_reopen(), we need this value to be present to remember why we
2202 	 * were faulted.
2203 	 */
2204 	vd->vdev_label_aux = aux;
2205 
2206 	/*
2207 	 * Faulted state takes precedence over degraded.
2208 	 */
2209 	vd->vdev_delayed_close = B_FALSE;
2210 	vd->vdev_faulted = 1ULL;
2211 	vd->vdev_degraded = 0ULL;
2212 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2213 
2214 	/*
2215 	 * If this device has the only valid copy of the data, then
2216 	 * back off and simply mark the vdev as degraded instead.
2217 	 */
2218 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2219 		vd->vdev_degraded = 1ULL;
2220 		vd->vdev_faulted = 0ULL;
2221 
2222 		/*
2223 		 * If we reopen the device and it's not dead, only then do we
2224 		 * mark it degraded.
2225 		 */
2226 		vdev_reopen(tvd);
2227 
2228 		if (vdev_readable(vd))
2229 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2230 	}
2231 
2232 	return (spa_vdev_state_exit(spa, vd, 0));
2233 }
2234 
2235 /*
2236  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2237  * user that something is wrong.  The vdev continues to operate as normal as far
2238  * as I/O is concerned.
2239  */
2240 int
2241 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2242 {
2243 	vdev_t *vd;
2244 
2245 	spa_vdev_state_enter(spa, SCL_NONE);
2246 
2247 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2248 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2249 
2250 	if (!vd->vdev_ops->vdev_op_leaf)
2251 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2252 
2253 	/*
2254 	 * If the vdev is already faulted, then don't do anything.
2255 	 */
2256 	if (vd->vdev_faulted || vd->vdev_degraded)
2257 		return (spa_vdev_state_exit(spa, NULL, 0));
2258 
2259 	vd->vdev_degraded = 1ULL;
2260 	if (!vdev_is_dead(vd))
2261 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2262 		    aux);
2263 
2264 	return (spa_vdev_state_exit(spa, vd, 0));
2265 }
2266 
2267 /*
2268  * Online the given vdev.
2269  *
2270  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2271  * spare device should be detached when the device finishes resilvering.
2272  * Second, the online should be treated like a 'test' online case, so no FMA
2273  * events are generated if the device fails to open.
2274  */
2275 int
2276 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2277 {
2278 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2279 
2280 	spa_vdev_state_enter(spa, SCL_NONE);
2281 
2282 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2283 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2284 
2285 	if (!vd->vdev_ops->vdev_op_leaf)
2286 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2287 
2288 	tvd = vd->vdev_top;
2289 	vd->vdev_offline = B_FALSE;
2290 	vd->vdev_tmpoffline = B_FALSE;
2291 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2292 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2293 
2294 	/* XXX - L2ARC 1.0 does not support expansion */
2295 	if (!vd->vdev_aux) {
2296 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2297 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2298 	}
2299 
2300 	vdev_reopen(tvd);
2301 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2302 
2303 	if (!vd->vdev_aux) {
2304 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2305 			pvd->vdev_expanding = B_FALSE;
2306 	}
2307 
2308 	if (newstate)
2309 		*newstate = vd->vdev_state;
2310 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2311 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2312 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2313 	    vd->vdev_parent->vdev_child[0] == vd)
2314 		vd->vdev_unspare = B_TRUE;
2315 
2316 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2317 
2318 		/* XXX - L2ARC 1.0 does not support expansion */
2319 		if (vd->vdev_aux)
2320 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2321 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2322 	}
2323 	return (spa_vdev_state_exit(spa, vd, 0));
2324 }
2325 
2326 static int
2327 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2328 {
2329 	vdev_t *vd, *tvd;
2330 	int error = 0;
2331 	uint64_t generation;
2332 	metaslab_group_t *mg;
2333 
2334 top:
2335 	spa_vdev_state_enter(spa, SCL_ALLOC);
2336 
2337 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2338 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2339 
2340 	if (!vd->vdev_ops->vdev_op_leaf)
2341 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2342 
2343 	tvd = vd->vdev_top;
2344 	mg = tvd->vdev_mg;
2345 	generation = spa->spa_config_generation + 1;
2346 
2347 	/*
2348 	 * If the device isn't already offline, try to offline it.
2349 	 */
2350 	if (!vd->vdev_offline) {
2351 		/*
2352 		 * If this device has the only valid copy of some data,
2353 		 * don't allow it to be offlined. Log devices are always
2354 		 * expendable.
2355 		 */
2356 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2357 		    vdev_dtl_required(vd))
2358 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2359 
2360 		/*
2361 		 * If the top-level is a slog and it has had allocations
2362 		 * then proceed.  We check that the vdev's metaslab group
2363 		 * is not NULL since it's possible that we may have just
2364 		 * added this vdev but not yet initialized its metaslabs.
2365 		 */
2366 		if (tvd->vdev_islog && mg != NULL) {
2367 			/*
2368 			 * Prevent any future allocations.
2369 			 */
2370 			metaslab_group_passivate(mg);
2371 			(void) spa_vdev_state_exit(spa, vd, 0);
2372 
2373 			error = spa_offline_log(spa);
2374 
2375 			spa_vdev_state_enter(spa, SCL_ALLOC);
2376 
2377 			/*
2378 			 * Check to see if the config has changed.
2379 			 */
2380 			if (error || generation != spa->spa_config_generation) {
2381 				metaslab_group_activate(mg);
2382 				if (error)
2383 					return (spa_vdev_state_exit(spa,
2384 					    vd, error));
2385 				(void) spa_vdev_state_exit(spa, vd, 0);
2386 				goto top;
2387 			}
2388 			ASSERT0(tvd->vdev_stat.vs_alloc);
2389 		}
2390 
2391 		/*
2392 		 * Offline this device and reopen its top-level vdev.
2393 		 * If the top-level vdev is a log device then just offline
2394 		 * it. Otherwise, if this action results in the top-level
2395 		 * vdev becoming unusable, undo it and fail the request.
2396 		 */
2397 		vd->vdev_offline = B_TRUE;
2398 		vdev_reopen(tvd);
2399 
2400 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2401 		    vdev_is_dead(tvd)) {
2402 			vd->vdev_offline = B_FALSE;
2403 			vdev_reopen(tvd);
2404 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2405 		}
2406 
2407 		/*
2408 		 * Add the device back into the metaslab rotor so that
2409 		 * once we online the device it's open for business.
2410 		 */
2411 		if (tvd->vdev_islog && mg != NULL)
2412 			metaslab_group_activate(mg);
2413 	}
2414 
2415 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2416 
2417 	return (spa_vdev_state_exit(spa, vd, 0));
2418 }
2419 
2420 int
2421 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2422 {
2423 	int error;
2424 
2425 	mutex_enter(&spa->spa_vdev_top_lock);
2426 	error = vdev_offline_locked(spa, guid, flags);
2427 	mutex_exit(&spa->spa_vdev_top_lock);
2428 
2429 	return (error);
2430 }
2431 
2432 /*
2433  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2434  * vdev_offline(), we assume the spa config is locked.  We also clear all
2435  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2436  */
2437 void
2438 vdev_clear(spa_t *spa, vdev_t *vd)
2439 {
2440 	vdev_t *rvd = spa->spa_root_vdev;
2441 
2442 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2443 
2444 	if (vd == NULL)
2445 		vd = rvd;
2446 
2447 	vd->vdev_stat.vs_read_errors = 0;
2448 	vd->vdev_stat.vs_write_errors = 0;
2449 	vd->vdev_stat.vs_checksum_errors = 0;
2450 
2451 	for (int c = 0; c < vd->vdev_children; c++)
2452 		vdev_clear(spa, vd->vdev_child[c]);
2453 
2454 	/*
2455 	 * If we're in the FAULTED state or have experienced failed I/O, then
2456 	 * clear the persistent state and attempt to reopen the device.  We
2457 	 * also mark the vdev config dirty, so that the new faulted state is
2458 	 * written out to disk.
2459 	 */
2460 	if (vd->vdev_faulted || vd->vdev_degraded ||
2461 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2462 
2463 		/*
2464 		 * When reopening in reponse to a clear event, it may be due to
2465 		 * a fmadm repair request.  In this case, if the device is
2466 		 * still broken, we want to still post the ereport again.
2467 		 */
2468 		vd->vdev_forcefault = B_TRUE;
2469 
2470 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2471 		vd->vdev_cant_read = B_FALSE;
2472 		vd->vdev_cant_write = B_FALSE;
2473 
2474 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2475 
2476 		vd->vdev_forcefault = B_FALSE;
2477 
2478 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2479 			vdev_state_dirty(vd->vdev_top);
2480 
2481 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2482 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2483 
2484 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2485 	}
2486 
2487 	/*
2488 	 * When clearing a FMA-diagnosed fault, we always want to
2489 	 * unspare the device, as we assume that the original spare was
2490 	 * done in response to the FMA fault.
2491 	 */
2492 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2493 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2494 	    vd->vdev_parent->vdev_child[0] == vd)
2495 		vd->vdev_unspare = B_TRUE;
2496 }
2497 
2498 boolean_t
2499 vdev_is_dead(vdev_t *vd)
2500 {
2501 	/*
2502 	 * Holes and missing devices are always considered "dead".
2503 	 * This simplifies the code since we don't have to check for
2504 	 * these types of devices in the various code paths.
2505 	 * Instead we rely on the fact that we skip over dead devices
2506 	 * before issuing I/O to them.
2507 	 */
2508 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2509 	    vd->vdev_ops == &vdev_missing_ops);
2510 }
2511 
2512 boolean_t
2513 vdev_readable(vdev_t *vd)
2514 {
2515 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2516 }
2517 
2518 boolean_t
2519 vdev_writeable(vdev_t *vd)
2520 {
2521 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2522 }
2523 
2524 boolean_t
2525 vdev_allocatable(vdev_t *vd)
2526 {
2527 	uint64_t state = vd->vdev_state;
2528 
2529 	/*
2530 	 * We currently allow allocations from vdevs which may be in the
2531 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2532 	 * fails to reopen then we'll catch it later when we're holding
2533 	 * the proper locks.  Note that we have to get the vdev state
2534 	 * in a local variable because although it changes atomically,
2535 	 * we're asking two separate questions about it.
2536 	 */
2537 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2538 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2539 }
2540 
2541 boolean_t
2542 vdev_accessible(vdev_t *vd, zio_t *zio)
2543 {
2544 	ASSERT(zio->io_vd == vd);
2545 
2546 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2547 		return (B_FALSE);
2548 
2549 	if (zio->io_type == ZIO_TYPE_READ)
2550 		return (!vd->vdev_cant_read);
2551 
2552 	if (zio->io_type == ZIO_TYPE_WRITE)
2553 		return (!vd->vdev_cant_write);
2554 
2555 	return (B_TRUE);
2556 }
2557 
2558 /*
2559  * Get statistics for the given vdev.
2560  */
2561 void
2562 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2563 {
2564 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2565 
2566 	mutex_enter(&vd->vdev_stat_lock);
2567 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2568 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2569 	vs->vs_state = vd->vdev_state;
2570 	vs->vs_rsize = vdev_get_min_asize(vd);
2571 	if (vd->vdev_ops->vdev_op_leaf)
2572 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2573 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2574 	mutex_exit(&vd->vdev_stat_lock);
2575 
2576 	/*
2577 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2578 	 * over all top-level vdevs (i.e. the direct children of the root).
2579 	 */
2580 	if (vd == rvd) {
2581 		for (int c = 0; c < rvd->vdev_children; c++) {
2582 			vdev_t *cvd = rvd->vdev_child[c];
2583 			vdev_stat_t *cvs = &cvd->vdev_stat;
2584 
2585 			mutex_enter(&vd->vdev_stat_lock);
2586 			for (int t = 0; t < ZIO_TYPES; t++) {
2587 				vs->vs_ops[t] += cvs->vs_ops[t];
2588 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2589 			}
2590 			cvs->vs_scan_removing = cvd->vdev_removing;
2591 			mutex_exit(&vd->vdev_stat_lock);
2592 		}
2593 	}
2594 }
2595 
2596 void
2597 vdev_clear_stats(vdev_t *vd)
2598 {
2599 	mutex_enter(&vd->vdev_stat_lock);
2600 	vd->vdev_stat.vs_space = 0;
2601 	vd->vdev_stat.vs_dspace = 0;
2602 	vd->vdev_stat.vs_alloc = 0;
2603 	mutex_exit(&vd->vdev_stat_lock);
2604 }
2605 
2606 void
2607 vdev_scan_stat_init(vdev_t *vd)
2608 {
2609 	vdev_stat_t *vs = &vd->vdev_stat;
2610 
2611 	for (int c = 0; c < vd->vdev_children; c++)
2612 		vdev_scan_stat_init(vd->vdev_child[c]);
2613 
2614 	mutex_enter(&vd->vdev_stat_lock);
2615 	vs->vs_scan_processed = 0;
2616 	mutex_exit(&vd->vdev_stat_lock);
2617 }
2618 
2619 void
2620 vdev_stat_update(zio_t *zio, uint64_t psize)
2621 {
2622 	spa_t *spa = zio->io_spa;
2623 	vdev_t *rvd = spa->spa_root_vdev;
2624 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2625 	vdev_t *pvd;
2626 	uint64_t txg = zio->io_txg;
2627 	vdev_stat_t *vs = &vd->vdev_stat;
2628 	zio_type_t type = zio->io_type;
2629 	int flags = zio->io_flags;
2630 
2631 	/*
2632 	 * If this i/o is a gang leader, it didn't do any actual work.
2633 	 */
2634 	if (zio->io_gang_tree)
2635 		return;
2636 
2637 	if (zio->io_error == 0) {
2638 		/*
2639 		 * If this is a root i/o, don't count it -- we've already
2640 		 * counted the top-level vdevs, and vdev_get_stats() will
2641 		 * aggregate them when asked.  This reduces contention on
2642 		 * the root vdev_stat_lock and implicitly handles blocks
2643 		 * that compress away to holes, for which there is no i/o.
2644 		 * (Holes never create vdev children, so all the counters
2645 		 * remain zero, which is what we want.)
2646 		 *
2647 		 * Note: this only applies to successful i/o (io_error == 0)
2648 		 * because unlike i/o counts, errors are not additive.
2649 		 * When reading a ditto block, for example, failure of
2650 		 * one top-level vdev does not imply a root-level error.
2651 		 */
2652 		if (vd == rvd)
2653 			return;
2654 
2655 		ASSERT(vd == zio->io_vd);
2656 
2657 		if (flags & ZIO_FLAG_IO_BYPASS)
2658 			return;
2659 
2660 		mutex_enter(&vd->vdev_stat_lock);
2661 
2662 		if (flags & ZIO_FLAG_IO_REPAIR) {
2663 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2664 				dsl_scan_phys_t *scn_phys =
2665 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2666 				uint64_t *processed = &scn_phys->scn_processed;
2667 
2668 				/* XXX cleanup? */
2669 				if (vd->vdev_ops->vdev_op_leaf)
2670 					atomic_add_64(processed, psize);
2671 				vs->vs_scan_processed += psize;
2672 			}
2673 
2674 			if (flags & ZIO_FLAG_SELF_HEAL)
2675 				vs->vs_self_healed += psize;
2676 		}
2677 
2678 		vs->vs_ops[type]++;
2679 		vs->vs_bytes[type] += psize;
2680 
2681 		mutex_exit(&vd->vdev_stat_lock);
2682 		return;
2683 	}
2684 
2685 	if (flags & ZIO_FLAG_SPECULATIVE)
2686 		return;
2687 
2688 	/*
2689 	 * If this is an I/O error that is going to be retried, then ignore the
2690 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2691 	 * hard errors, when in reality they can happen for any number of
2692 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2693 	 */
2694 	if (zio->io_error == EIO &&
2695 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2696 		return;
2697 
2698 	/*
2699 	 * Intent logs writes won't propagate their error to the root
2700 	 * I/O so don't mark these types of failures as pool-level
2701 	 * errors.
2702 	 */
2703 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2704 		return;
2705 
2706 	mutex_enter(&vd->vdev_stat_lock);
2707 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2708 		if (zio->io_error == ECKSUM)
2709 			vs->vs_checksum_errors++;
2710 		else
2711 			vs->vs_read_errors++;
2712 	}
2713 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2714 		vs->vs_write_errors++;
2715 	mutex_exit(&vd->vdev_stat_lock);
2716 
2717 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2718 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2719 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2720 	    spa->spa_claiming)) {
2721 		/*
2722 		 * This is either a normal write (not a repair), or it's
2723 		 * a repair induced by the scrub thread, or it's a repair
2724 		 * made by zil_claim() during spa_load() in the first txg.
2725 		 * In the normal case, we commit the DTL change in the same
2726 		 * txg as the block was born.  In the scrub-induced repair
2727 		 * case, we know that scrubs run in first-pass syncing context,
2728 		 * so we commit the DTL change in spa_syncing_txg(spa).
2729 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2730 		 *
2731 		 * We currently do not make DTL entries for failed spontaneous
2732 		 * self-healing writes triggered by normal (non-scrubbing)
2733 		 * reads, because we have no transactional context in which to
2734 		 * do so -- and it's not clear that it'd be desirable anyway.
2735 		 */
2736 		if (vd->vdev_ops->vdev_op_leaf) {
2737 			uint64_t commit_txg = txg;
2738 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2739 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2740 				ASSERT(spa_sync_pass(spa) == 1);
2741 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2742 				commit_txg = spa_syncing_txg(spa);
2743 			} else if (spa->spa_claiming) {
2744 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2745 				commit_txg = spa_first_txg(spa);
2746 			}
2747 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2748 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2749 				return;
2750 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2751 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2752 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2753 		}
2754 		if (vd != rvd)
2755 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2756 	}
2757 }
2758 
2759 /*
2760  * Update the in-core space usage stats for this vdev, its metaslab class,
2761  * and the root vdev.
2762  */
2763 void
2764 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2765     int64_t space_delta)
2766 {
2767 	int64_t dspace_delta = space_delta;
2768 	spa_t *spa = vd->vdev_spa;
2769 	vdev_t *rvd = spa->spa_root_vdev;
2770 	metaslab_group_t *mg = vd->vdev_mg;
2771 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2772 
2773 	ASSERT(vd == vd->vdev_top);
2774 
2775 	/*
2776 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2777 	 * factor.  We must calculate this here and not at the root vdev
2778 	 * because the root vdev's psize-to-asize is simply the max of its
2779 	 * childrens', thus not accurate enough for us.
2780 	 */
2781 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2782 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2783 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2784 	    vd->vdev_deflate_ratio;
2785 
2786 	mutex_enter(&vd->vdev_stat_lock);
2787 	vd->vdev_stat.vs_alloc += alloc_delta;
2788 	vd->vdev_stat.vs_space += space_delta;
2789 	vd->vdev_stat.vs_dspace += dspace_delta;
2790 	mutex_exit(&vd->vdev_stat_lock);
2791 
2792 	if (mc == spa_normal_class(spa)) {
2793 		mutex_enter(&rvd->vdev_stat_lock);
2794 		rvd->vdev_stat.vs_alloc += alloc_delta;
2795 		rvd->vdev_stat.vs_space += space_delta;
2796 		rvd->vdev_stat.vs_dspace += dspace_delta;
2797 		mutex_exit(&rvd->vdev_stat_lock);
2798 	}
2799 
2800 	if (mc != NULL) {
2801 		ASSERT(rvd == vd->vdev_parent);
2802 		ASSERT(vd->vdev_ms_count != 0);
2803 
2804 		metaslab_class_space_update(mc,
2805 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2806 	}
2807 }
2808 
2809 /*
2810  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2811  * so that it will be written out next time the vdev configuration is synced.
2812  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2813  */
2814 void
2815 vdev_config_dirty(vdev_t *vd)
2816 {
2817 	spa_t *spa = vd->vdev_spa;
2818 	vdev_t *rvd = spa->spa_root_vdev;
2819 	int c;
2820 
2821 	ASSERT(spa_writeable(spa));
2822 
2823 	/*
2824 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2825 	 * update the vdev config manually and set the sync flag.
2826 	 */
2827 	if (vd->vdev_aux != NULL) {
2828 		spa_aux_vdev_t *sav = vd->vdev_aux;
2829 		nvlist_t **aux;
2830 		uint_t naux;
2831 
2832 		for (c = 0; c < sav->sav_count; c++) {
2833 			if (sav->sav_vdevs[c] == vd)
2834 				break;
2835 		}
2836 
2837 		if (c == sav->sav_count) {
2838 			/*
2839 			 * We're being removed.  There's nothing more to do.
2840 			 */
2841 			ASSERT(sav->sav_sync == B_TRUE);
2842 			return;
2843 		}
2844 
2845 		sav->sav_sync = B_TRUE;
2846 
2847 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2848 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2849 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2850 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2851 		}
2852 
2853 		ASSERT(c < naux);
2854 
2855 		/*
2856 		 * Setting the nvlist in the middle if the array is a little
2857 		 * sketchy, but it will work.
2858 		 */
2859 		nvlist_free(aux[c]);
2860 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2861 
2862 		return;
2863 	}
2864 
2865 	/*
2866 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2867 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2868 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2869 	 * so this is sufficient to ensure mutual exclusion.
2870 	 */
2871 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2872 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2873 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2874 
2875 	if (vd == rvd) {
2876 		for (c = 0; c < rvd->vdev_children; c++)
2877 			vdev_config_dirty(rvd->vdev_child[c]);
2878 	} else {
2879 		ASSERT(vd == vd->vdev_top);
2880 
2881 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2882 		    !vd->vdev_ishole)
2883 			list_insert_head(&spa->spa_config_dirty_list, vd);
2884 	}
2885 }
2886 
2887 void
2888 vdev_config_clean(vdev_t *vd)
2889 {
2890 	spa_t *spa = vd->vdev_spa;
2891 
2892 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2893 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2894 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2895 
2896 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2897 	list_remove(&spa->spa_config_dirty_list, vd);
2898 }
2899 
2900 /*
2901  * Mark a top-level vdev's state as dirty, so that the next pass of
2902  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2903  * the state changes from larger config changes because they require
2904  * much less locking, and are often needed for administrative actions.
2905  */
2906 void
2907 vdev_state_dirty(vdev_t *vd)
2908 {
2909 	spa_t *spa = vd->vdev_spa;
2910 
2911 	ASSERT(spa_writeable(spa));
2912 	ASSERT(vd == vd->vdev_top);
2913 
2914 	/*
2915 	 * The state list is protected by the SCL_STATE lock.  The caller
2916 	 * must either hold SCL_STATE as writer, or must be the sync thread
2917 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2918 	 * so this is sufficient to ensure mutual exclusion.
2919 	 */
2920 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2921 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2922 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2923 
2924 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2925 		list_insert_head(&spa->spa_state_dirty_list, vd);
2926 }
2927 
2928 void
2929 vdev_state_clean(vdev_t *vd)
2930 {
2931 	spa_t *spa = vd->vdev_spa;
2932 
2933 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2934 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2935 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2936 
2937 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2938 	list_remove(&spa->spa_state_dirty_list, vd);
2939 }
2940 
2941 /*
2942  * Propagate vdev state up from children to parent.
2943  */
2944 void
2945 vdev_propagate_state(vdev_t *vd)
2946 {
2947 	spa_t *spa = vd->vdev_spa;
2948 	vdev_t *rvd = spa->spa_root_vdev;
2949 	int degraded = 0, faulted = 0;
2950 	int corrupted = 0;
2951 	vdev_t *child;
2952 
2953 	if (vd->vdev_children > 0) {
2954 		for (int c = 0; c < vd->vdev_children; c++) {
2955 			child = vd->vdev_child[c];
2956 
2957 			/*
2958 			 * Don't factor holes into the decision.
2959 			 */
2960 			if (child->vdev_ishole)
2961 				continue;
2962 
2963 			if (!vdev_readable(child) ||
2964 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2965 				/*
2966 				 * Root special: if there is a top-level log
2967 				 * device, treat the root vdev as if it were
2968 				 * degraded.
2969 				 */
2970 				if (child->vdev_islog && vd == rvd)
2971 					degraded++;
2972 				else
2973 					faulted++;
2974 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2975 				degraded++;
2976 			}
2977 
2978 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2979 				corrupted++;
2980 		}
2981 
2982 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2983 
2984 		/*
2985 		 * Root special: if there is a top-level vdev that cannot be
2986 		 * opened due to corrupted metadata, then propagate the root
2987 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2988 		 * replicas'.
2989 		 */
2990 		if (corrupted && vd == rvd &&
2991 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2992 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2993 			    VDEV_AUX_CORRUPT_DATA);
2994 	}
2995 
2996 	if (vd->vdev_parent)
2997 		vdev_propagate_state(vd->vdev_parent);
2998 }
2999 
3000 /*
3001  * Set a vdev's state.  If this is during an open, we don't update the parent
3002  * state, because we're in the process of opening children depth-first.
3003  * Otherwise, we propagate the change to the parent.
3004  *
3005  * If this routine places a device in a faulted state, an appropriate ereport is
3006  * generated.
3007  */
3008 void
3009 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3010 {
3011 	uint64_t save_state;
3012 	spa_t *spa = vd->vdev_spa;
3013 
3014 	if (state == vd->vdev_state) {
3015 		vd->vdev_stat.vs_aux = aux;
3016 		return;
3017 	}
3018 
3019 	save_state = vd->vdev_state;
3020 
3021 	vd->vdev_state = state;
3022 	vd->vdev_stat.vs_aux = aux;
3023 
3024 	/*
3025 	 * If we are setting the vdev state to anything but an open state, then
3026 	 * always close the underlying device unless the device has requested
3027 	 * a delayed close (i.e. we're about to remove or fault the device).
3028 	 * Otherwise, we keep accessible but invalid devices open forever.
3029 	 * We don't call vdev_close() itself, because that implies some extra
3030 	 * checks (offline, etc) that we don't want here.  This is limited to
3031 	 * leaf devices, because otherwise closing the device will affect other
3032 	 * children.
3033 	 */
3034 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3035 	    vd->vdev_ops->vdev_op_leaf)
3036 		vd->vdev_ops->vdev_op_close(vd);
3037 
3038 	/*
3039 	 * If we have brought this vdev back into service, we need
3040 	 * to notify fmd so that it can gracefully repair any outstanding
3041 	 * cases due to a missing device.  We do this in all cases, even those
3042 	 * that probably don't correlate to a repaired fault.  This is sure to
3043 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3044 	 * this is a transient state it's OK, as the retire agent will
3045 	 * double-check the state of the vdev before repairing it.
3046 	 */
3047 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3048 	    vd->vdev_prevstate != state)
3049 		zfs_post_state_change(spa, vd);
3050 
3051 	if (vd->vdev_removed &&
3052 	    state == VDEV_STATE_CANT_OPEN &&
3053 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3054 		/*
3055 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3056 		 * device was previously marked removed and someone attempted to
3057 		 * reopen it.  If this failed due to a nonexistent device, then
3058 		 * keep the device in the REMOVED state.  We also let this be if
3059 		 * it is one of our special test online cases, which is only
3060 		 * attempting to online the device and shouldn't generate an FMA
3061 		 * fault.
3062 		 */
3063 		vd->vdev_state = VDEV_STATE_REMOVED;
3064 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3065 	} else if (state == VDEV_STATE_REMOVED) {
3066 		vd->vdev_removed = B_TRUE;
3067 	} else if (state == VDEV_STATE_CANT_OPEN) {
3068 		/*
3069 		 * If we fail to open a vdev during an import or recovery, we
3070 		 * mark it as "not available", which signifies that it was
3071 		 * never there to begin with.  Failure to open such a device
3072 		 * is not considered an error.
3073 		 */
3074 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3075 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3076 		    vd->vdev_ops->vdev_op_leaf)
3077 			vd->vdev_not_present = 1;
3078 
3079 		/*
3080 		 * Post the appropriate ereport.  If the 'prevstate' field is
3081 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3082 		 * that this is part of a vdev_reopen().  In this case, we don't
3083 		 * want to post the ereport if the device was already in the
3084 		 * CANT_OPEN state beforehand.
3085 		 *
3086 		 * If the 'checkremove' flag is set, then this is an attempt to
3087 		 * online the device in response to an insertion event.  If we
3088 		 * hit this case, then we have detected an insertion event for a
3089 		 * faulted or offline device that wasn't in the removed state.
3090 		 * In this scenario, we don't post an ereport because we are
3091 		 * about to replace the device, or attempt an online with
3092 		 * vdev_forcefault, which will generate the fault for us.
3093 		 */
3094 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3095 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3096 		    vd != spa->spa_root_vdev) {
3097 			const char *class;
3098 
3099 			switch (aux) {
3100 			case VDEV_AUX_OPEN_FAILED:
3101 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3102 				break;
3103 			case VDEV_AUX_CORRUPT_DATA:
3104 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3105 				break;
3106 			case VDEV_AUX_NO_REPLICAS:
3107 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3108 				break;
3109 			case VDEV_AUX_BAD_GUID_SUM:
3110 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3111 				break;
3112 			case VDEV_AUX_TOO_SMALL:
3113 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3114 				break;
3115 			case VDEV_AUX_BAD_LABEL:
3116 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3117 				break;
3118 			default:
3119 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3120 			}
3121 
3122 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3123 		}
3124 
3125 		/* Erase any notion of persistent removed state */
3126 		vd->vdev_removed = B_FALSE;
3127 	} else {
3128 		vd->vdev_removed = B_FALSE;
3129 	}
3130 
3131 	if (!isopen && vd->vdev_parent)
3132 		vdev_propagate_state(vd->vdev_parent);
3133 }
3134 
3135 /*
3136  * Check the vdev configuration to ensure that it's capable of supporting
3137  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3138  * In addition, only a single top-level vdev is allowed and none of the leaves
3139  * can be wholedisks.
3140  */
3141 boolean_t
3142 vdev_is_bootable(vdev_t *vd)
3143 {
3144 	if (!vd->vdev_ops->vdev_op_leaf) {
3145 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3146 
3147 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3148 		    vd->vdev_children > 1) {
3149 			return (B_FALSE);
3150 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3151 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3152 			return (B_FALSE);
3153 		}
3154 	} else if (vd->vdev_wholedisk == 1) {
3155 		return (B_FALSE);
3156 	}
3157 
3158 	for (int c = 0; c < vd->vdev_children; c++) {
3159 		if (!vdev_is_bootable(vd->vdev_child[c]))
3160 			return (B_FALSE);
3161 	}
3162 	return (B_TRUE);
3163 }
3164 
3165 /*
3166  * Load the state from the original vdev tree (ovd) which
3167  * we've retrieved from the MOS config object. If the original
3168  * vdev was offline or faulted then we transfer that state to the
3169  * device in the current vdev tree (nvd).
3170  */
3171 void
3172 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3173 {
3174 	spa_t *spa = nvd->vdev_spa;
3175 
3176 	ASSERT(nvd->vdev_top->vdev_islog);
3177 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3178 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3179 
3180 	for (int c = 0; c < nvd->vdev_children; c++)
3181 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3182 
3183 	if (nvd->vdev_ops->vdev_op_leaf) {
3184 		/*
3185 		 * Restore the persistent vdev state
3186 		 */
3187 		nvd->vdev_offline = ovd->vdev_offline;
3188 		nvd->vdev_faulted = ovd->vdev_faulted;
3189 		nvd->vdev_degraded = ovd->vdev_degraded;
3190 		nvd->vdev_removed = ovd->vdev_removed;
3191 	}
3192 }
3193 
3194 /*
3195  * Determine if a log device has valid content.  If the vdev was
3196  * removed or faulted in the MOS config then we know that
3197  * the content on the log device has already been written to the pool.
3198  */
3199 boolean_t
3200 vdev_log_state_valid(vdev_t *vd)
3201 {
3202 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3203 	    !vd->vdev_removed)
3204 		return (B_TRUE);
3205 
3206 	for (int c = 0; c < vd->vdev_children; c++)
3207 		if (vdev_log_state_valid(vd->vdev_child[c]))
3208 			return (B_TRUE);
3209 
3210 	return (B_FALSE);
3211 }
3212 
3213 /*
3214  * Expand a vdev if possible.
3215  */
3216 void
3217 vdev_expand(vdev_t *vd, uint64_t txg)
3218 {
3219 	ASSERT(vd->vdev_top == vd);
3220 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3221 
3222 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3223 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3224 		vdev_config_dirty(vd);
3225 	}
3226 }
3227 
3228 /*
3229  * Split a vdev.
3230  */
3231 void
3232 vdev_split(vdev_t *vd)
3233 {
3234 	vdev_t *cvd, *pvd = vd->vdev_parent;
3235 
3236 	vdev_remove_child(pvd, vd);
3237 	vdev_compact_children(pvd);
3238 
3239 	cvd = pvd->vdev_child[0];
3240 	if (pvd->vdev_children == 1) {
3241 		vdev_remove_parent(cvd);
3242 		cvd->vdev_splitting = B_TRUE;
3243 	}
3244 	vdev_propagate_state(cvd);
3245 }
3246 
3247 void
3248 vdev_deadman(vdev_t *vd)
3249 {
3250 	for (int c = 0; c < vd->vdev_children; c++) {
3251 		vdev_t *cvd = vd->vdev_child[c];
3252 
3253 		vdev_deadman(cvd);
3254 	}
3255 
3256 	if (vd->vdev_ops->vdev_op_leaf) {
3257 		vdev_queue_t *vq = &vd->vdev_queue;
3258 
3259 		mutex_enter(&vq->vq_lock);
3260 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3261 			spa_t *spa = vd->vdev_spa;
3262 			zio_t *fio;
3263 			uint64_t delta;
3264 
3265 			/*
3266 			 * Look at the head of all the pending queues,
3267 			 * if any I/O has been outstanding for longer than
3268 			 * the spa_deadman_synctime we panic the system.
3269 			 */
3270 			fio = avl_first(&vq->vq_active_tree);
3271 			delta = gethrtime() - fio->io_timestamp;
3272 			if (delta > spa_deadman_synctime(spa)) {
3273 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3274 				    "delta %lluns, last io %lluns",
3275 				    fio->io_timestamp, delta,
3276 				    vq->vq_io_complete_ts);
3277 				fm_panic("I/O to pool '%s' appears to be "
3278 				    "hung.", spa_name(spa));
3279 			}
3280 		}
3281 		mutex_exit(&vq->vq_lock);
3282 	}
3283 }
3284