1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 211 if (cvd->vdev_ops->vdev_op_leaf) 212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 248 if (cvd->vdev_ops->vdev_op_leaf) 249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 250 } 251 252 /* 253 * Remove any holes in the child array. 254 */ 255 void 256 vdev_compact_children(vdev_t *pvd) 257 { 258 vdev_t **newchild, *cvd; 259 int oldc = pvd->vdev_children; 260 int newc; 261 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 263 264 for (int c = newc = 0; c < oldc; c++) 265 if (pvd->vdev_child[c]) 266 newc++; 267 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 269 270 for (int c = newc = 0; c < oldc; c++) { 271 if ((cvd = pvd->vdev_child[c]) != NULL) { 272 newchild[newc] = cvd; 273 cvd->vdev_id = newc++; 274 } 275 } 276 277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 278 pvd->vdev_child = newchild; 279 pvd->vdev_children = newc; 280 } 281 282 /* 283 * Allocate and minimally initialize a vdev_t. 284 */ 285 vdev_t * 286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 287 { 288 vdev_t *vd; 289 290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 291 292 if (spa->spa_root_vdev == NULL) { 293 ASSERT(ops == &vdev_root_ops); 294 spa->spa_root_vdev = vd; 295 } 296 297 if (guid == 0 && ops != &vdev_hole_ops) { 298 if (spa->spa_root_vdev == vd) { 299 /* 300 * The root vdev's guid will also be the pool guid, 301 * which must be unique among all pools. 302 */ 303 while (guid == 0 || spa_guid_exists(guid, 0)) 304 guid = spa_get_random(-1ULL); 305 } else { 306 /* 307 * Any other vdev's guid must be unique within the pool. 308 */ 309 while (guid == 0 || 310 spa_guid_exists(spa_guid(spa), guid)) 311 guid = spa_get_random(-1ULL); 312 } 313 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 314 } 315 316 vd->vdev_spa = spa; 317 vd->vdev_id = id; 318 vd->vdev_guid = guid; 319 vd->vdev_guid_sum = guid; 320 vd->vdev_ops = ops; 321 vd->vdev_state = VDEV_STATE_CLOSED; 322 vd->vdev_ishole = (ops == &vdev_hole_ops); 323 324 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 325 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 327 for (int t = 0; t < DTL_TYPES; t++) { 328 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 329 &vd->vdev_dtl_lock); 330 } 331 txg_list_create(&vd->vdev_ms_list, 332 offsetof(struct metaslab, ms_txg_node)); 333 txg_list_create(&vd->vdev_dtl_list, 334 offsetof(struct vdev, vdev_dtl_node)); 335 vd->vdev_stat.vs_timestamp = gethrtime(); 336 vdev_queue_init(vd); 337 vdev_cache_init(vd); 338 339 return (vd); 340 } 341 342 /* 343 * Allocate a new vdev. The 'alloctype' is used to control whether we are 344 * creating a new vdev or loading an existing one - the behavior is slightly 345 * different for each case. 346 */ 347 int 348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 349 int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0, islog, nparity; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (EINVAL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (EINVAL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (EINVAL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_SPARE) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385 return (EINVAL); 386 } 387 388 /* 389 * The first allocated vdev must be of type 'root'. 390 */ 391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392 return (EINVAL); 393 394 /* 395 * Determine whether we're a log vdev. 396 */ 397 islog = 0; 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 399 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 400 return (ENOTSUP); 401 402 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 403 return (ENOTSUP); 404 405 /* 406 * Set the nparity property for RAID-Z vdevs. 407 */ 408 nparity = -1ULL; 409 if (ops == &vdev_raidz_ops) { 410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 411 &nparity) == 0) { 412 /* 413 * Currently, we can only support 3 parity devices. 414 */ 415 if (nparity == 0 || nparity > 3) 416 return (EINVAL); 417 /* 418 * Previous versions could only support 1 or 2 parity 419 * device. 420 */ 421 if (nparity > 1 && 422 spa_version(spa) < SPA_VERSION_RAIDZ2) 423 return (ENOTSUP); 424 if (nparity > 2 && 425 spa_version(spa) < SPA_VERSION_RAIDZ3) 426 return (ENOTSUP); 427 } else { 428 /* 429 * We require the parity to be specified for SPAs that 430 * support multiple parity levels. 431 */ 432 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 433 return (EINVAL); 434 /* 435 * Otherwise, we default to 1 parity device for RAID-Z. 436 */ 437 nparity = 1; 438 } 439 } else { 440 nparity = 0; 441 } 442 ASSERT(nparity != -1ULL); 443 444 vd = vdev_alloc_common(spa, id, guid, ops); 445 446 vd->vdev_islog = islog; 447 vd->vdev_nparity = nparity; 448 449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 450 vd->vdev_path = spa_strdup(vd->vdev_path); 451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 452 vd->vdev_devid = spa_strdup(vd->vdev_devid); 453 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 454 &vd->vdev_physpath) == 0) 455 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 456 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 457 vd->vdev_fru = spa_strdup(vd->vdev_fru); 458 459 /* 460 * Set the whole_disk property. If it's not specified, leave the value 461 * as -1. 462 */ 463 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 464 &vd->vdev_wholedisk) != 0) 465 vd->vdev_wholedisk = -1ULL; 466 467 /* 468 * Look for the 'not present' flag. This will only be set if the device 469 * was not present at the time of import. 470 */ 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 472 &vd->vdev_not_present); 473 474 /* 475 * Get the alignment requirement. 476 */ 477 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 478 479 /* 480 * Retrieve the vdev creation time. 481 */ 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 483 &vd->vdev_crtxg); 484 485 /* 486 * If we're a top-level vdev, try to load the allocation parameters. 487 */ 488 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 490 &vd->vdev_ms_array); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 492 &vd->vdev_ms_shift); 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 494 &vd->vdev_asize); 495 } 496 497 /* 498 * If we're a leaf vdev, try to load the DTL object and other state. 499 */ 500 if (vd->vdev_ops->vdev_op_leaf && 501 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 502 alloctype == VDEV_ALLOC_ROOTPOOL)) { 503 if (alloctype == VDEV_ALLOC_LOAD) { 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 505 &vd->vdev_dtl_smo.smo_object); 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 507 &vd->vdev_unspare); 508 } 509 510 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 511 uint64_t spare = 0; 512 513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 514 &spare) == 0 && spare) 515 spa_spare_add(vd); 516 } 517 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 519 &vd->vdev_offline); 520 521 /* 522 * When importing a pool, we want to ignore the persistent fault 523 * state, as the diagnosis made on another system may not be 524 * valid in the current context. 525 */ 526 if (spa->spa_load_state == SPA_LOAD_OPEN) { 527 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 528 &vd->vdev_faulted); 529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 530 &vd->vdev_degraded); 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 532 &vd->vdev_removed); 533 } 534 } 535 536 /* 537 * Add ourselves to the parent's list of children. 538 */ 539 vdev_add_child(parent, vd); 540 541 *vdp = vd; 542 543 return (0); 544 } 545 546 void 547 vdev_free(vdev_t *vd) 548 { 549 spa_t *spa = vd->vdev_spa; 550 551 /* 552 * vdev_free() implies closing the vdev first. This is simpler than 553 * trying to ensure complicated semantics for all callers. 554 */ 555 vdev_close(vd); 556 557 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 558 559 /* 560 * Free all children. 561 */ 562 for (int c = 0; c < vd->vdev_children; c++) 563 vdev_free(vd->vdev_child[c]); 564 565 ASSERT(vd->vdev_child == NULL); 566 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 567 568 /* 569 * Discard allocation state. 570 */ 571 if (vd == vd->vdev_top) 572 vdev_metaslab_fini(vd); 573 574 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 575 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 576 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 577 578 /* 579 * Remove this vdev from its parent's child list. 580 */ 581 vdev_remove_child(vd->vdev_parent, vd); 582 583 ASSERT(vd->vdev_parent == NULL); 584 585 /* 586 * Clean up vdev structure. 587 */ 588 vdev_queue_fini(vd); 589 vdev_cache_fini(vd); 590 591 if (vd->vdev_path) 592 spa_strfree(vd->vdev_path); 593 if (vd->vdev_devid) 594 spa_strfree(vd->vdev_devid); 595 if (vd->vdev_physpath) 596 spa_strfree(vd->vdev_physpath); 597 if (vd->vdev_fru) 598 spa_strfree(vd->vdev_fru); 599 600 if (vd->vdev_isspare) 601 spa_spare_remove(vd); 602 if (vd->vdev_isl2cache) 603 spa_l2cache_remove(vd); 604 605 txg_list_destroy(&vd->vdev_ms_list); 606 txg_list_destroy(&vd->vdev_dtl_list); 607 608 mutex_enter(&vd->vdev_dtl_lock); 609 for (int t = 0; t < DTL_TYPES; t++) { 610 space_map_unload(&vd->vdev_dtl[t]); 611 space_map_destroy(&vd->vdev_dtl[t]); 612 } 613 mutex_exit(&vd->vdev_dtl_lock); 614 615 mutex_destroy(&vd->vdev_dtl_lock); 616 mutex_destroy(&vd->vdev_stat_lock); 617 mutex_destroy(&vd->vdev_probe_lock); 618 619 if (vd == spa->spa_root_vdev) 620 spa->spa_root_vdev = NULL; 621 622 kmem_free(vd, sizeof (vdev_t)); 623 } 624 625 /* 626 * Transfer top-level vdev state from svd to tvd. 627 */ 628 static void 629 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 630 { 631 spa_t *spa = svd->vdev_spa; 632 metaslab_t *msp; 633 vdev_t *vd; 634 int t; 635 636 ASSERT(tvd == tvd->vdev_top); 637 638 tvd->vdev_ms_array = svd->vdev_ms_array; 639 tvd->vdev_ms_shift = svd->vdev_ms_shift; 640 tvd->vdev_ms_count = svd->vdev_ms_count; 641 642 svd->vdev_ms_array = 0; 643 svd->vdev_ms_shift = 0; 644 svd->vdev_ms_count = 0; 645 646 tvd->vdev_mg = svd->vdev_mg; 647 tvd->vdev_ms = svd->vdev_ms; 648 649 svd->vdev_mg = NULL; 650 svd->vdev_ms = NULL; 651 652 if (tvd->vdev_mg != NULL) 653 tvd->vdev_mg->mg_vd = tvd; 654 655 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 656 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 657 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 658 659 svd->vdev_stat.vs_alloc = 0; 660 svd->vdev_stat.vs_space = 0; 661 svd->vdev_stat.vs_dspace = 0; 662 663 for (t = 0; t < TXG_SIZE; t++) { 664 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 665 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 666 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 667 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 668 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 669 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 670 } 671 672 if (list_link_active(&svd->vdev_config_dirty_node)) { 673 vdev_config_clean(svd); 674 vdev_config_dirty(tvd); 675 } 676 677 if (list_link_active(&svd->vdev_state_dirty_node)) { 678 vdev_state_clean(svd); 679 vdev_state_dirty(tvd); 680 } 681 682 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 683 svd->vdev_deflate_ratio = 0; 684 685 tvd->vdev_islog = svd->vdev_islog; 686 svd->vdev_islog = 0; 687 } 688 689 static void 690 vdev_top_update(vdev_t *tvd, vdev_t *vd) 691 { 692 if (vd == NULL) 693 return; 694 695 vd->vdev_top = tvd; 696 697 for (int c = 0; c < vd->vdev_children; c++) 698 vdev_top_update(tvd, vd->vdev_child[c]); 699 } 700 701 /* 702 * Add a mirror/replacing vdev above an existing vdev. 703 */ 704 vdev_t * 705 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 706 { 707 spa_t *spa = cvd->vdev_spa; 708 vdev_t *pvd = cvd->vdev_parent; 709 vdev_t *mvd; 710 711 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 712 713 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 714 715 mvd->vdev_asize = cvd->vdev_asize; 716 mvd->vdev_min_asize = cvd->vdev_min_asize; 717 mvd->vdev_ashift = cvd->vdev_ashift; 718 mvd->vdev_state = cvd->vdev_state; 719 mvd->vdev_crtxg = cvd->vdev_crtxg; 720 721 vdev_remove_child(pvd, cvd); 722 vdev_add_child(pvd, mvd); 723 cvd->vdev_id = mvd->vdev_children; 724 vdev_add_child(mvd, cvd); 725 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 726 727 if (mvd == mvd->vdev_top) 728 vdev_top_transfer(cvd, mvd); 729 730 return (mvd); 731 } 732 733 /* 734 * Remove a 1-way mirror/replacing vdev from the tree. 735 */ 736 void 737 vdev_remove_parent(vdev_t *cvd) 738 { 739 vdev_t *mvd = cvd->vdev_parent; 740 vdev_t *pvd = mvd->vdev_parent; 741 742 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 ASSERT(mvd->vdev_children == 1); 745 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 746 mvd->vdev_ops == &vdev_replacing_ops || 747 mvd->vdev_ops == &vdev_spare_ops); 748 cvd->vdev_ashift = mvd->vdev_ashift; 749 750 vdev_remove_child(mvd, cvd); 751 vdev_remove_child(pvd, mvd); 752 753 /* 754 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 755 * Otherwise, we could have detached an offline device, and when we 756 * go to import the pool we'll think we have two top-level vdevs, 757 * instead of a different version of the same top-level vdev. 758 */ 759 if (mvd->vdev_top == mvd) { 760 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 761 cvd->vdev_guid += guid_delta; 762 cvd->vdev_guid_sum += guid_delta; 763 } 764 cvd->vdev_id = mvd->vdev_id; 765 vdev_add_child(pvd, cvd); 766 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 767 768 if (cvd == cvd->vdev_top) 769 vdev_top_transfer(mvd, cvd); 770 771 ASSERT(mvd->vdev_children == 0); 772 vdev_free(mvd); 773 } 774 775 int 776 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 777 { 778 spa_t *spa = vd->vdev_spa; 779 objset_t *mos = spa->spa_meta_objset; 780 metaslab_class_t *mc; 781 uint64_t m; 782 uint64_t oldc = vd->vdev_ms_count; 783 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 784 metaslab_t **mspp; 785 int error; 786 787 /* 788 * This vdev is not being allocated from yet or is a hole. 789 */ 790 if (vd->vdev_ms_shift == 0) 791 return (0); 792 793 ASSERT(!vd->vdev_ishole); 794 795 /* 796 * Compute the raidz-deflation ratio. Note, we hard-code 797 * in 128k (1 << 17) because it is the current "typical" blocksize. 798 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 799 * or we will inconsistently account for existing bp's. 800 */ 801 vd->vdev_deflate_ratio = (1 << 17) / 802 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 803 804 ASSERT(oldc <= newc); 805 806 if (vd->vdev_islog) 807 mc = spa->spa_log_class; 808 else 809 mc = spa->spa_normal_class; 810 811 if (vd->vdev_mg == NULL) 812 vd->vdev_mg = metaslab_group_create(mc, vd); 813 814 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 815 816 if (oldc != 0) { 817 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 818 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 819 } 820 821 vd->vdev_ms = mspp; 822 vd->vdev_ms_count = newc; 823 824 for (m = oldc; m < newc; m++) { 825 space_map_obj_t smo = { 0, 0, 0 }; 826 if (txg == 0) { 827 uint64_t object = 0; 828 error = dmu_read(mos, vd->vdev_ms_array, 829 m * sizeof (uint64_t), sizeof (uint64_t), &object, 830 DMU_READ_PREFETCH); 831 if (error) 832 return (error); 833 if (object != 0) { 834 dmu_buf_t *db; 835 error = dmu_bonus_hold(mos, object, FTAG, &db); 836 if (error) 837 return (error); 838 ASSERT3U(db->db_size, >=, sizeof (smo)); 839 bcopy(db->db_data, &smo, sizeof (smo)); 840 ASSERT3U(smo.smo_object, ==, object); 841 dmu_buf_rele(db, FTAG); 842 } 843 } 844 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 845 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 846 } 847 848 return (0); 849 } 850 851 void 852 vdev_metaslab_fini(vdev_t *vd) 853 { 854 uint64_t m; 855 uint64_t count = vd->vdev_ms_count; 856 857 if (vd->vdev_ms != NULL) { 858 for (m = 0; m < count; m++) 859 if (vd->vdev_ms[m] != NULL) 860 metaslab_fini(vd->vdev_ms[m]); 861 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 862 vd->vdev_ms = NULL; 863 } 864 } 865 866 typedef struct vdev_probe_stats { 867 boolean_t vps_readable; 868 boolean_t vps_writeable; 869 int vps_flags; 870 } vdev_probe_stats_t; 871 872 static void 873 vdev_probe_done(zio_t *zio) 874 { 875 spa_t *spa = zio->io_spa; 876 vdev_t *vd = zio->io_vd; 877 vdev_probe_stats_t *vps = zio->io_private; 878 879 ASSERT(vd->vdev_probe_zio != NULL); 880 881 if (zio->io_type == ZIO_TYPE_READ) { 882 if (zio->io_error == 0) 883 vps->vps_readable = 1; 884 if (zio->io_error == 0 && spa_writeable(spa)) { 885 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 886 zio->io_offset, zio->io_size, zio->io_data, 887 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 888 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 889 } else { 890 zio_buf_free(zio->io_data, zio->io_size); 891 } 892 } else if (zio->io_type == ZIO_TYPE_WRITE) { 893 if (zio->io_error == 0) 894 vps->vps_writeable = 1; 895 zio_buf_free(zio->io_data, zio->io_size); 896 } else if (zio->io_type == ZIO_TYPE_NULL) { 897 zio_t *pio; 898 899 vd->vdev_cant_read |= !vps->vps_readable; 900 vd->vdev_cant_write |= !vps->vps_writeable; 901 902 if (vdev_readable(vd) && 903 (vdev_writeable(vd) || !spa_writeable(spa))) { 904 zio->io_error = 0; 905 } else { 906 ASSERT(zio->io_error != 0); 907 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 908 spa, vd, NULL, 0, 0); 909 zio->io_error = ENXIO; 910 } 911 912 mutex_enter(&vd->vdev_probe_lock); 913 ASSERT(vd->vdev_probe_zio == zio); 914 vd->vdev_probe_zio = NULL; 915 mutex_exit(&vd->vdev_probe_lock); 916 917 while ((pio = zio_walk_parents(zio)) != NULL) 918 if (!vdev_accessible(vd, pio)) 919 pio->io_error = ENXIO; 920 921 kmem_free(vps, sizeof (*vps)); 922 } 923 } 924 925 /* 926 * Determine whether this device is accessible by reading and writing 927 * to several known locations: the pad regions of each vdev label 928 * but the first (which we leave alone in case it contains a VTOC). 929 */ 930 zio_t * 931 vdev_probe(vdev_t *vd, zio_t *zio) 932 { 933 spa_t *spa = vd->vdev_spa; 934 vdev_probe_stats_t *vps = NULL; 935 zio_t *pio; 936 937 ASSERT(vd->vdev_ops->vdev_op_leaf); 938 939 /* 940 * Don't probe the probe. 941 */ 942 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 943 return (NULL); 944 945 /* 946 * To prevent 'probe storms' when a device fails, we create 947 * just one probe i/o at a time. All zios that want to probe 948 * this vdev will become parents of the probe io. 949 */ 950 mutex_enter(&vd->vdev_probe_lock); 951 952 if ((pio = vd->vdev_probe_zio) == NULL) { 953 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 954 955 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 956 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 957 ZIO_FLAG_TRYHARD; 958 959 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 960 /* 961 * vdev_cant_read and vdev_cant_write can only 962 * transition from TRUE to FALSE when we have the 963 * SCL_ZIO lock as writer; otherwise they can only 964 * transition from FALSE to TRUE. This ensures that 965 * any zio looking at these values can assume that 966 * failures persist for the life of the I/O. That's 967 * important because when a device has intermittent 968 * connectivity problems, we want to ensure that 969 * they're ascribed to the device (ENXIO) and not 970 * the zio (EIO). 971 * 972 * Since we hold SCL_ZIO as writer here, clear both 973 * values so the probe can reevaluate from first 974 * principles. 975 */ 976 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 977 vd->vdev_cant_read = B_FALSE; 978 vd->vdev_cant_write = B_FALSE; 979 } 980 981 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 982 vdev_probe_done, vps, 983 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 984 985 if (zio != NULL) { 986 vd->vdev_probe_wanted = B_TRUE; 987 spa_async_request(spa, SPA_ASYNC_PROBE); 988 } 989 } 990 991 if (zio != NULL) 992 zio_add_child(zio, pio); 993 994 mutex_exit(&vd->vdev_probe_lock); 995 996 if (vps == NULL) { 997 ASSERT(zio != NULL); 998 return (NULL); 999 } 1000 1001 for (int l = 1; l < VDEV_LABELS; l++) { 1002 zio_nowait(zio_read_phys(pio, vd, 1003 vdev_label_offset(vd->vdev_psize, l, 1004 offsetof(vdev_label_t, vl_pad2)), 1005 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1006 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1007 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1008 } 1009 1010 if (zio == NULL) 1011 return (pio); 1012 1013 zio_nowait(pio); 1014 return (NULL); 1015 } 1016 1017 static void 1018 vdev_open_child(void *arg) 1019 { 1020 vdev_t *vd = arg; 1021 1022 vd->vdev_open_thread = curthread; 1023 vd->vdev_open_error = vdev_open(vd); 1024 vd->vdev_open_thread = NULL; 1025 } 1026 1027 boolean_t 1028 vdev_uses_zvols(vdev_t *vd) 1029 { 1030 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1031 strlen(ZVOL_DIR)) == 0) 1032 return (B_TRUE); 1033 for (int c = 0; c < vd->vdev_children; c++) 1034 if (vdev_uses_zvols(vd->vdev_child[c])) 1035 return (B_TRUE); 1036 return (B_FALSE); 1037 } 1038 1039 void 1040 vdev_open_children(vdev_t *vd) 1041 { 1042 taskq_t *tq; 1043 int children = vd->vdev_children; 1044 1045 /* 1046 * in order to handle pools on top of zvols, do the opens 1047 * in a single thread so that the same thread holds the 1048 * spa_namespace_lock 1049 */ 1050 if (vdev_uses_zvols(vd)) { 1051 for (int c = 0; c < children; c++) 1052 vd->vdev_child[c]->vdev_open_error = 1053 vdev_open(vd->vdev_child[c]); 1054 return; 1055 } 1056 tq = taskq_create("vdev_open", children, minclsyspri, 1057 children, children, TASKQ_PREPOPULATE); 1058 1059 for (int c = 0; c < children; c++) 1060 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1061 TQ_SLEEP) != NULL); 1062 1063 taskq_destroy(tq); 1064 } 1065 1066 /* 1067 * Prepare a virtual device for access. 1068 */ 1069 int 1070 vdev_open(vdev_t *vd) 1071 { 1072 spa_t *spa = vd->vdev_spa; 1073 int error; 1074 uint64_t osize = 0; 1075 uint64_t asize, psize; 1076 uint64_t ashift = 0; 1077 1078 ASSERT(vd->vdev_open_thread == curthread || 1079 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1080 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1081 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1082 vd->vdev_state == VDEV_STATE_OFFLINE); 1083 1084 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1085 vd->vdev_cant_read = B_FALSE; 1086 vd->vdev_cant_write = B_FALSE; 1087 vd->vdev_min_asize = vdev_get_min_asize(vd); 1088 1089 if (!vd->vdev_removed && vd->vdev_faulted) { 1090 ASSERT(vd->vdev_children == 0); 1091 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1092 VDEV_AUX_ERR_EXCEEDED); 1093 return (ENXIO); 1094 } else if (vd->vdev_offline) { 1095 ASSERT(vd->vdev_children == 0); 1096 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1097 return (ENXIO); 1098 } 1099 1100 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1101 1102 if (zio_injection_enabled && error == 0) 1103 error = zio_handle_device_injection(vd, NULL, ENXIO); 1104 1105 if (error) { 1106 if (vd->vdev_removed && 1107 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1108 vd->vdev_removed = B_FALSE; 1109 1110 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1111 vd->vdev_stat.vs_aux); 1112 return (error); 1113 } 1114 1115 vd->vdev_removed = B_FALSE; 1116 1117 if (vd->vdev_degraded) { 1118 ASSERT(vd->vdev_children == 0); 1119 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1120 VDEV_AUX_ERR_EXCEEDED); 1121 } else { 1122 vd->vdev_state = VDEV_STATE_HEALTHY; 1123 } 1124 1125 /* 1126 * For hole or missing vdevs we just return success. 1127 */ 1128 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1129 return (0); 1130 1131 for (int c = 0; c < vd->vdev_children; c++) { 1132 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1134 VDEV_AUX_NONE); 1135 break; 1136 } 1137 } 1138 1139 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1140 1141 if (vd->vdev_children == 0) { 1142 if (osize < SPA_MINDEVSIZE) { 1143 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1144 VDEV_AUX_TOO_SMALL); 1145 return (EOVERFLOW); 1146 } 1147 psize = osize; 1148 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1149 } else { 1150 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1151 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1152 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1153 VDEV_AUX_TOO_SMALL); 1154 return (EOVERFLOW); 1155 } 1156 psize = 0; 1157 asize = osize; 1158 } 1159 1160 vd->vdev_psize = psize; 1161 1162 /* 1163 * Make sure the allocatable size hasn't shrunk. 1164 */ 1165 if (asize < vd->vdev_min_asize) { 1166 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1167 VDEV_AUX_BAD_LABEL); 1168 return (EINVAL); 1169 } 1170 1171 if (vd->vdev_asize == 0) { 1172 /* 1173 * This is the first-ever open, so use the computed values. 1174 * For testing purposes, a higher ashift can be requested. 1175 */ 1176 vd->vdev_asize = asize; 1177 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1178 } else { 1179 /* 1180 * Make sure the alignment requirement hasn't increased. 1181 */ 1182 if (ashift > vd->vdev_top->vdev_ashift) { 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1184 VDEV_AUX_BAD_LABEL); 1185 return (EINVAL); 1186 } 1187 } 1188 1189 /* 1190 * If all children are healthy and the asize has increased, 1191 * then we've experienced dynamic LUN growth. If automatic 1192 * expansion is enabled then use the additional space. 1193 */ 1194 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1195 (vd->vdev_expanding || spa->spa_autoexpand)) 1196 vd->vdev_asize = asize; 1197 1198 vdev_set_min_asize(vd); 1199 1200 /* 1201 * Ensure we can issue some IO before declaring the 1202 * vdev open for business. 1203 */ 1204 if (vd->vdev_ops->vdev_op_leaf && 1205 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1207 VDEV_AUX_IO_FAILURE); 1208 return (error); 1209 } 1210 1211 /* 1212 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1213 * resilver. But don't do this if we are doing a reopen for a scrub, 1214 * since this would just restart the scrub we are already doing. 1215 */ 1216 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1217 vdev_resilver_needed(vd, NULL, NULL)) 1218 spa_async_request(spa, SPA_ASYNC_RESILVER); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * Called once the vdevs are all opened, this routine validates the label 1225 * contents. This needs to be done before vdev_load() so that we don't 1226 * inadvertently do repair I/Os to the wrong device. 1227 * 1228 * This function will only return failure if one of the vdevs indicates that it 1229 * has since been destroyed or exported. This is only possible if 1230 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1231 * will be updated but the function will return 0. 1232 */ 1233 int 1234 vdev_validate(vdev_t *vd) 1235 { 1236 spa_t *spa = vd->vdev_spa; 1237 nvlist_t *label; 1238 uint64_t guid, top_guid; 1239 uint64_t state; 1240 1241 for (int c = 0; c < vd->vdev_children; c++) 1242 if (vdev_validate(vd->vdev_child[c]) != 0) 1243 return (EBADF); 1244 1245 /* 1246 * If the device has already failed, or was marked offline, don't do 1247 * any further validation. Otherwise, label I/O will fail and we will 1248 * overwrite the previous state. 1249 */ 1250 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1251 1252 if ((label = vdev_label_read_config(vd)) == NULL) { 1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1254 VDEV_AUX_BAD_LABEL); 1255 return (0); 1256 } 1257 1258 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1259 &guid) != 0 || guid != spa_guid(spa)) { 1260 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1261 VDEV_AUX_CORRUPT_DATA); 1262 nvlist_free(label); 1263 return (0); 1264 } 1265 1266 /* 1267 * If this vdev just became a top-level vdev because its 1268 * sibling was detached, it will have adopted the parent's 1269 * vdev guid -- but the label may or may not be on disk yet. 1270 * Fortunately, either version of the label will have the 1271 * same top guid, so if we're a top-level vdev, we can 1272 * safely compare to that instead. 1273 */ 1274 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1275 &guid) != 0 || 1276 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1277 &top_guid) != 0 || 1278 (vd->vdev_guid != guid && 1279 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1280 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1281 VDEV_AUX_CORRUPT_DATA); 1282 nvlist_free(label); 1283 return (0); 1284 } 1285 1286 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1287 &state) != 0) { 1288 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1289 VDEV_AUX_CORRUPT_DATA); 1290 nvlist_free(label); 1291 return (0); 1292 } 1293 1294 nvlist_free(label); 1295 1296 /* 1297 * If spa->spa_load_verbatim is true, no need to check the 1298 * state of the pool. 1299 */ 1300 if (!spa->spa_load_verbatim && 1301 spa->spa_load_state == SPA_LOAD_OPEN && 1302 state != POOL_STATE_ACTIVE) 1303 return (EBADF); 1304 1305 /* 1306 * If we were able to open and validate a vdev that was 1307 * previously marked permanently unavailable, clear that state 1308 * now. 1309 */ 1310 if (vd->vdev_not_present) 1311 vd->vdev_not_present = 0; 1312 } 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * Close a virtual device. 1319 */ 1320 void 1321 vdev_close(vdev_t *vd) 1322 { 1323 spa_t *spa = vd->vdev_spa; 1324 1325 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1326 1327 vd->vdev_ops->vdev_op_close(vd); 1328 1329 vdev_cache_purge(vd); 1330 1331 /* 1332 * We record the previous state before we close it, so that if we are 1333 * doing a reopen(), we don't generate FMA ereports if we notice that 1334 * it's still faulted. 1335 */ 1336 vd->vdev_prevstate = vd->vdev_state; 1337 1338 if (vd->vdev_offline) 1339 vd->vdev_state = VDEV_STATE_OFFLINE; 1340 else 1341 vd->vdev_state = VDEV_STATE_CLOSED; 1342 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1343 } 1344 1345 void 1346 vdev_reopen(vdev_t *vd) 1347 { 1348 spa_t *spa = vd->vdev_spa; 1349 1350 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1351 1352 vdev_close(vd); 1353 (void) vdev_open(vd); 1354 1355 /* 1356 * Call vdev_validate() here to make sure we have the same device. 1357 * Otherwise, a device with an invalid label could be successfully 1358 * opened in response to vdev_reopen(). 1359 */ 1360 if (vd->vdev_aux) { 1361 (void) vdev_validate_aux(vd); 1362 if (vdev_readable(vd) && vdev_writeable(vd) && 1363 vd->vdev_aux == &spa->spa_l2cache && 1364 !l2arc_vdev_present(vd)) 1365 l2arc_add_vdev(spa, vd); 1366 } else { 1367 (void) vdev_validate(vd); 1368 } 1369 1370 /* 1371 * Reassess parent vdev's health. 1372 */ 1373 vdev_propagate_state(vd); 1374 } 1375 1376 int 1377 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1378 { 1379 int error; 1380 1381 /* 1382 * Normally, partial opens (e.g. of a mirror) are allowed. 1383 * For a create, however, we want to fail the request if 1384 * there are any components we can't open. 1385 */ 1386 error = vdev_open(vd); 1387 1388 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1389 vdev_close(vd); 1390 return (error ? error : ENXIO); 1391 } 1392 1393 /* 1394 * Recursively initialize all labels. 1395 */ 1396 if ((error = vdev_label_init(vd, txg, isreplacing ? 1397 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1398 vdev_close(vd); 1399 return (error); 1400 } 1401 1402 return (0); 1403 } 1404 1405 void 1406 vdev_metaslab_set_size(vdev_t *vd) 1407 { 1408 /* 1409 * Aim for roughly 200 metaslabs per vdev. 1410 */ 1411 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1412 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1413 } 1414 1415 void 1416 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1417 { 1418 ASSERT(vd == vd->vdev_top); 1419 ASSERT(!vd->vdev_ishole); 1420 ASSERT(ISP2(flags)); 1421 1422 if (flags & VDD_METASLAB) 1423 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1424 1425 if (flags & VDD_DTL) 1426 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1427 1428 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1429 } 1430 1431 /* 1432 * DTLs. 1433 * 1434 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1435 * the vdev has less than perfect replication. There are three kinds of DTL: 1436 * 1437 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1438 * 1439 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1440 * 1441 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1442 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1443 * txgs that was scrubbed. 1444 * 1445 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1446 * persistent errors or just some device being offline. 1447 * Unlike the other three, the DTL_OUTAGE map is not generally 1448 * maintained; it's only computed when needed, typically to 1449 * determine whether a device can be detached. 1450 * 1451 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1452 * either has the data or it doesn't. 1453 * 1454 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1455 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1456 * if any child is less than fully replicated, then so is its parent. 1457 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1458 * comprising only those txgs which appear in 'maxfaults' or more children; 1459 * those are the txgs we don't have enough replication to read. For example, 1460 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1461 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1462 * two child DTL_MISSING maps. 1463 * 1464 * It should be clear from the above that to compute the DTLs and outage maps 1465 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1466 * Therefore, that is all we keep on disk. When loading the pool, or after 1467 * a configuration change, we generate all other DTLs from first principles. 1468 */ 1469 void 1470 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1471 { 1472 space_map_t *sm = &vd->vdev_dtl[t]; 1473 1474 ASSERT(t < DTL_TYPES); 1475 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1476 1477 mutex_enter(sm->sm_lock); 1478 if (!space_map_contains(sm, txg, size)) 1479 space_map_add(sm, txg, size); 1480 mutex_exit(sm->sm_lock); 1481 } 1482 1483 boolean_t 1484 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1485 { 1486 space_map_t *sm = &vd->vdev_dtl[t]; 1487 boolean_t dirty = B_FALSE; 1488 1489 ASSERT(t < DTL_TYPES); 1490 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1491 1492 mutex_enter(sm->sm_lock); 1493 if (sm->sm_space != 0) 1494 dirty = space_map_contains(sm, txg, size); 1495 mutex_exit(sm->sm_lock); 1496 1497 return (dirty); 1498 } 1499 1500 boolean_t 1501 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1502 { 1503 space_map_t *sm = &vd->vdev_dtl[t]; 1504 boolean_t empty; 1505 1506 mutex_enter(sm->sm_lock); 1507 empty = (sm->sm_space == 0); 1508 mutex_exit(sm->sm_lock); 1509 1510 return (empty); 1511 } 1512 1513 /* 1514 * Reassess DTLs after a config change or scrub completion. 1515 */ 1516 void 1517 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1518 { 1519 spa_t *spa = vd->vdev_spa; 1520 avl_tree_t reftree; 1521 int minref; 1522 1523 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1524 1525 for (int c = 0; c < vd->vdev_children; c++) 1526 vdev_dtl_reassess(vd->vdev_child[c], txg, 1527 scrub_txg, scrub_done); 1528 1529 if (vd == spa->spa_root_vdev || vd->vdev_ishole) 1530 return; 1531 1532 if (vd->vdev_ops->vdev_op_leaf) { 1533 mutex_enter(&vd->vdev_dtl_lock); 1534 if (scrub_txg != 0 && 1535 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1536 /* XXX should check scrub_done? */ 1537 /* 1538 * We completed a scrub up to scrub_txg. If we 1539 * did it without rebooting, then the scrub dtl 1540 * will be valid, so excise the old region and 1541 * fold in the scrub dtl. Otherwise, leave the 1542 * dtl as-is if there was an error. 1543 * 1544 * There's little trick here: to excise the beginning 1545 * of the DTL_MISSING map, we put it into a reference 1546 * tree and then add a segment with refcnt -1 that 1547 * covers the range [0, scrub_txg). This means 1548 * that each txg in that range has refcnt -1 or 0. 1549 * We then add DTL_SCRUB with a refcnt of 2, so that 1550 * entries in the range [0, scrub_txg) will have a 1551 * positive refcnt -- either 1 or 2. We then convert 1552 * the reference tree into the new DTL_MISSING map. 1553 */ 1554 space_map_ref_create(&reftree); 1555 space_map_ref_add_map(&reftree, 1556 &vd->vdev_dtl[DTL_MISSING], 1); 1557 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1558 space_map_ref_add_map(&reftree, 1559 &vd->vdev_dtl[DTL_SCRUB], 2); 1560 space_map_ref_generate_map(&reftree, 1561 &vd->vdev_dtl[DTL_MISSING], 1); 1562 space_map_ref_destroy(&reftree); 1563 } 1564 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1565 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1566 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1567 if (scrub_done) 1568 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1569 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1570 if (!vdev_readable(vd)) 1571 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1572 else 1573 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1574 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1575 mutex_exit(&vd->vdev_dtl_lock); 1576 1577 if (txg != 0) 1578 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1579 return; 1580 } 1581 1582 mutex_enter(&vd->vdev_dtl_lock); 1583 for (int t = 0; t < DTL_TYPES; t++) { 1584 if (t == DTL_SCRUB) 1585 continue; /* leaf vdevs only */ 1586 if (t == DTL_PARTIAL) 1587 minref = 1; /* i.e. non-zero */ 1588 else if (vd->vdev_nparity != 0) 1589 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1590 else 1591 minref = vd->vdev_children; /* any kind of mirror */ 1592 space_map_ref_create(&reftree); 1593 for (int c = 0; c < vd->vdev_children; c++) { 1594 vdev_t *cvd = vd->vdev_child[c]; 1595 mutex_enter(&cvd->vdev_dtl_lock); 1596 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1597 mutex_exit(&cvd->vdev_dtl_lock); 1598 } 1599 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1600 space_map_ref_destroy(&reftree); 1601 } 1602 mutex_exit(&vd->vdev_dtl_lock); 1603 } 1604 1605 static int 1606 vdev_dtl_load(vdev_t *vd) 1607 { 1608 spa_t *spa = vd->vdev_spa; 1609 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1610 objset_t *mos = spa->spa_meta_objset; 1611 dmu_buf_t *db; 1612 int error; 1613 1614 ASSERT(vd->vdev_children == 0); 1615 1616 if (smo->smo_object == 0) 1617 return (0); 1618 1619 ASSERT(!vd->vdev_ishole); 1620 1621 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1622 return (error); 1623 1624 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1625 bcopy(db->db_data, smo, sizeof (*smo)); 1626 dmu_buf_rele(db, FTAG); 1627 1628 mutex_enter(&vd->vdev_dtl_lock); 1629 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1630 NULL, SM_ALLOC, smo, mos); 1631 mutex_exit(&vd->vdev_dtl_lock); 1632 1633 return (error); 1634 } 1635 1636 void 1637 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1638 { 1639 spa_t *spa = vd->vdev_spa; 1640 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1641 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1642 objset_t *mos = spa->spa_meta_objset; 1643 space_map_t smsync; 1644 kmutex_t smlock; 1645 dmu_buf_t *db; 1646 dmu_tx_t *tx; 1647 1648 ASSERT(!vd->vdev_ishole); 1649 1650 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1651 1652 if (vd->vdev_detached) { 1653 if (smo->smo_object != 0) { 1654 int err = dmu_object_free(mos, smo->smo_object, tx); 1655 ASSERT3U(err, ==, 0); 1656 smo->smo_object = 0; 1657 } 1658 dmu_tx_commit(tx); 1659 return; 1660 } 1661 1662 if (smo->smo_object == 0) { 1663 ASSERT(smo->smo_objsize == 0); 1664 ASSERT(smo->smo_alloc == 0); 1665 smo->smo_object = dmu_object_alloc(mos, 1666 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1667 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1668 ASSERT(smo->smo_object != 0); 1669 vdev_config_dirty(vd->vdev_top); 1670 } 1671 1672 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1673 1674 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1675 &smlock); 1676 1677 mutex_enter(&smlock); 1678 1679 mutex_enter(&vd->vdev_dtl_lock); 1680 space_map_walk(sm, space_map_add, &smsync); 1681 mutex_exit(&vd->vdev_dtl_lock); 1682 1683 space_map_truncate(smo, mos, tx); 1684 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1685 1686 space_map_destroy(&smsync); 1687 1688 mutex_exit(&smlock); 1689 mutex_destroy(&smlock); 1690 1691 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1692 dmu_buf_will_dirty(db, tx); 1693 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1694 bcopy(smo, db->db_data, sizeof (*smo)); 1695 dmu_buf_rele(db, FTAG); 1696 1697 dmu_tx_commit(tx); 1698 } 1699 1700 /* 1701 * Determine whether the specified vdev can be offlined/detached/removed 1702 * without losing data. 1703 */ 1704 boolean_t 1705 vdev_dtl_required(vdev_t *vd) 1706 { 1707 spa_t *spa = vd->vdev_spa; 1708 vdev_t *tvd = vd->vdev_top; 1709 uint8_t cant_read = vd->vdev_cant_read; 1710 boolean_t required; 1711 1712 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1713 1714 if (vd == spa->spa_root_vdev || vd == tvd) 1715 return (B_TRUE); 1716 1717 /* 1718 * Temporarily mark the device as unreadable, and then determine 1719 * whether this results in any DTL outages in the top-level vdev. 1720 * If not, we can safely offline/detach/remove the device. 1721 */ 1722 vd->vdev_cant_read = B_TRUE; 1723 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1724 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1725 vd->vdev_cant_read = cant_read; 1726 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1727 1728 return (required); 1729 } 1730 1731 /* 1732 * Determine if resilver is needed, and if so the txg range. 1733 */ 1734 boolean_t 1735 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1736 { 1737 boolean_t needed = B_FALSE; 1738 uint64_t thismin = UINT64_MAX; 1739 uint64_t thismax = 0; 1740 1741 if (vd->vdev_children == 0) { 1742 mutex_enter(&vd->vdev_dtl_lock); 1743 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1744 vdev_writeable(vd)) { 1745 space_seg_t *ss; 1746 1747 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1748 thismin = ss->ss_start - 1; 1749 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1750 thismax = ss->ss_end; 1751 needed = B_TRUE; 1752 } 1753 mutex_exit(&vd->vdev_dtl_lock); 1754 } else { 1755 for (int c = 0; c < vd->vdev_children; c++) { 1756 vdev_t *cvd = vd->vdev_child[c]; 1757 uint64_t cmin, cmax; 1758 1759 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1760 thismin = MIN(thismin, cmin); 1761 thismax = MAX(thismax, cmax); 1762 needed = B_TRUE; 1763 } 1764 } 1765 } 1766 1767 if (needed && minp) { 1768 *minp = thismin; 1769 *maxp = thismax; 1770 } 1771 return (needed); 1772 } 1773 1774 void 1775 vdev_load(vdev_t *vd) 1776 { 1777 /* 1778 * Recursively load all children. 1779 */ 1780 for (int c = 0; c < vd->vdev_children; c++) 1781 vdev_load(vd->vdev_child[c]); 1782 1783 /* 1784 * If this is a top-level vdev, initialize its metaslabs. 1785 */ 1786 if (vd == vd->vdev_top && !vd->vdev_ishole && 1787 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1788 vdev_metaslab_init(vd, 0) != 0)) 1789 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1790 VDEV_AUX_CORRUPT_DATA); 1791 1792 /* 1793 * If this is a leaf vdev, load its DTL. 1794 */ 1795 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1796 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1797 VDEV_AUX_CORRUPT_DATA); 1798 } 1799 1800 /* 1801 * The special vdev case is used for hot spares and l2cache devices. Its 1802 * sole purpose it to set the vdev state for the associated vdev. To do this, 1803 * we make sure that we can open the underlying device, then try to read the 1804 * label, and make sure that the label is sane and that it hasn't been 1805 * repurposed to another pool. 1806 */ 1807 int 1808 vdev_validate_aux(vdev_t *vd) 1809 { 1810 nvlist_t *label; 1811 uint64_t guid, version; 1812 uint64_t state; 1813 1814 if (!vdev_readable(vd)) 1815 return (0); 1816 1817 if ((label = vdev_label_read_config(vd)) == NULL) { 1818 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1819 VDEV_AUX_CORRUPT_DATA); 1820 return (-1); 1821 } 1822 1823 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1824 version > SPA_VERSION || 1825 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1826 guid != vd->vdev_guid || 1827 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1828 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1829 VDEV_AUX_CORRUPT_DATA); 1830 nvlist_free(label); 1831 return (-1); 1832 } 1833 1834 /* 1835 * We don't actually check the pool state here. If it's in fact in 1836 * use by another pool, we update this fact on the fly when requested. 1837 */ 1838 nvlist_free(label); 1839 return (0); 1840 } 1841 1842 void 1843 vdev_remove(vdev_t *vd, uint64_t txg) 1844 { 1845 spa_t *spa = vd->vdev_spa; 1846 objset_t *mos = spa->spa_meta_objset; 1847 dmu_tx_t *tx; 1848 1849 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1850 1851 if (vd->vdev_dtl_smo.smo_object) { 1852 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1853 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1854 vd->vdev_dtl_smo.smo_object = 0; 1855 } 1856 1857 if (vd->vdev_ms != NULL) { 1858 for (int m = 0; m < vd->vdev_ms_count; m++) { 1859 metaslab_t *msp = vd->vdev_ms[m]; 1860 1861 if (msp == NULL || msp->ms_smo.smo_object == 0) 1862 continue; 1863 1864 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1865 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1866 msp->ms_smo.smo_object = 0; 1867 } 1868 } 1869 1870 if (vd->vdev_ms_array) { 1871 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1872 vd->vdev_ms_array = 0; 1873 vd->vdev_ms_shift = 0; 1874 } 1875 dmu_tx_commit(tx); 1876 } 1877 1878 void 1879 vdev_sync_done(vdev_t *vd, uint64_t txg) 1880 { 1881 metaslab_t *msp; 1882 1883 ASSERT(!vd->vdev_ishole); 1884 1885 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1886 metaslab_sync_done(msp, txg); 1887 } 1888 1889 void 1890 vdev_sync(vdev_t *vd, uint64_t txg) 1891 { 1892 spa_t *spa = vd->vdev_spa; 1893 vdev_t *lvd; 1894 metaslab_t *msp; 1895 dmu_tx_t *tx; 1896 1897 ASSERT(!vd->vdev_ishole); 1898 1899 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1900 ASSERT(vd == vd->vdev_top); 1901 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1902 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1903 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1904 ASSERT(vd->vdev_ms_array != 0); 1905 vdev_config_dirty(vd); 1906 dmu_tx_commit(tx); 1907 } 1908 1909 if (vd->vdev_removing) 1910 vdev_remove(vd, txg); 1911 1912 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1913 metaslab_sync(msp, txg); 1914 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1915 } 1916 1917 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1918 vdev_dtl_sync(lvd, txg); 1919 1920 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1921 } 1922 1923 uint64_t 1924 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1925 { 1926 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1927 } 1928 1929 /* 1930 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1931 * not be opened, and no I/O is attempted. 1932 */ 1933 int 1934 vdev_fault(spa_t *spa, uint64_t guid) 1935 { 1936 vdev_t *vd; 1937 1938 spa_vdev_state_enter(spa, SCL_NONE); 1939 1940 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1941 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1942 1943 if (!vd->vdev_ops->vdev_op_leaf) 1944 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1945 1946 /* 1947 * Faulted state takes precedence over degraded. 1948 */ 1949 vd->vdev_faulted = 1ULL; 1950 vd->vdev_degraded = 0ULL; 1951 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1952 1953 /* 1954 * If marking the vdev as faulted cause the top-level vdev to become 1955 * unavailable, then back off and simply mark the vdev as degraded 1956 * instead. 1957 */ 1958 if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog && 1959 vd->vdev_aux == NULL) { 1960 vd->vdev_degraded = 1ULL; 1961 vd->vdev_faulted = 0ULL; 1962 1963 /* 1964 * If we reopen the device and it's not dead, only then do we 1965 * mark it degraded. 1966 */ 1967 vdev_reopen(vd); 1968 1969 if (vdev_readable(vd)) { 1970 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1971 VDEV_AUX_ERR_EXCEEDED); 1972 } 1973 } 1974 1975 return (spa_vdev_state_exit(spa, vd, 0)); 1976 } 1977 1978 /* 1979 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1980 * user that something is wrong. The vdev continues to operate as normal as far 1981 * as I/O is concerned. 1982 */ 1983 int 1984 vdev_degrade(spa_t *spa, uint64_t guid) 1985 { 1986 vdev_t *vd; 1987 1988 spa_vdev_state_enter(spa, SCL_NONE); 1989 1990 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1991 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1992 1993 if (!vd->vdev_ops->vdev_op_leaf) 1994 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1995 1996 /* 1997 * If the vdev is already faulted, then don't do anything. 1998 */ 1999 if (vd->vdev_faulted || vd->vdev_degraded) 2000 return (spa_vdev_state_exit(spa, NULL, 0)); 2001 2002 vd->vdev_degraded = 1ULL; 2003 if (!vdev_is_dead(vd)) 2004 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2005 VDEV_AUX_ERR_EXCEEDED); 2006 2007 return (spa_vdev_state_exit(spa, vd, 0)); 2008 } 2009 2010 /* 2011 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2012 * any attached spare device should be detached when the device finishes 2013 * resilvering. Second, the online should be treated like a 'test' online case, 2014 * so no FMA events are generated if the device fails to open. 2015 */ 2016 int 2017 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2018 { 2019 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2020 2021 spa_vdev_state_enter(spa, SCL_NONE); 2022 2023 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2024 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2025 2026 if (!vd->vdev_ops->vdev_op_leaf) 2027 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2028 2029 tvd = vd->vdev_top; 2030 vd->vdev_offline = B_FALSE; 2031 vd->vdev_tmpoffline = B_FALSE; 2032 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2033 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2034 2035 /* XXX - L2ARC 1.0 does not support expansion */ 2036 if (!vd->vdev_aux) { 2037 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2038 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2039 } 2040 2041 vdev_reopen(tvd); 2042 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2043 2044 if (!vd->vdev_aux) { 2045 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2046 pvd->vdev_expanding = B_FALSE; 2047 } 2048 2049 if (newstate) 2050 *newstate = vd->vdev_state; 2051 if ((flags & ZFS_ONLINE_UNSPARE) && 2052 !vdev_is_dead(vd) && vd->vdev_parent && 2053 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2054 vd->vdev_parent->vdev_child[0] == vd) 2055 vd->vdev_unspare = B_TRUE; 2056 2057 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2058 2059 /* XXX - L2ARC 1.0 does not support expansion */ 2060 if (vd->vdev_aux) 2061 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2062 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2063 } 2064 return (spa_vdev_state_exit(spa, vd, 0)); 2065 } 2066 2067 int 2068 vdev_offline_log(spa_t *spa) 2069 { 2070 int error = 0; 2071 2072 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2073 NULL, DS_FIND_CHILDREN)) == 0) { 2074 2075 /* 2076 * We successfully offlined the log device, sync out the 2077 * current txg so that the "stubby" block can be removed 2078 * by zil_sync(). 2079 */ 2080 txg_wait_synced(spa->spa_dsl_pool, 0); 2081 } 2082 return (error); 2083 } 2084 2085 int 2086 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2087 { 2088 vdev_t *vd, *tvd; 2089 int error = 0; 2090 uint64_t generation; 2091 metaslab_group_t *mg; 2092 2093 top: 2094 spa_vdev_state_enter(spa, SCL_ALLOC); 2095 2096 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2097 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2098 2099 if (!vd->vdev_ops->vdev_op_leaf) 2100 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2101 2102 tvd = vd->vdev_top; 2103 mg = tvd->vdev_mg; 2104 generation = spa->spa_config_generation + 1; 2105 2106 /* 2107 * If the device isn't already offline, try to offline it. 2108 */ 2109 if (!vd->vdev_offline) { 2110 /* 2111 * If this device has the only valid copy of some data, 2112 * don't allow it to be offlined. Log devices are always 2113 * expendable. 2114 */ 2115 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2116 vdev_dtl_required(vd)) 2117 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2118 2119 /* 2120 * If the top-level is a slog and it's had allocations 2121 * then proceed. We check that the vdev's metaslab 2122 * grop is not NULL since it's possible that we may 2123 * have just added this vdev and have not yet initialized 2124 * it's metaslabs. 2125 */ 2126 if (tvd->vdev_islog && mg != NULL) { 2127 /* 2128 * Prevent any future allocations. 2129 */ 2130 metaslab_class_remove(spa->spa_log_class, mg); 2131 (void) spa_vdev_state_exit(spa, vd, 0); 2132 2133 error = vdev_offline_log(spa); 2134 2135 spa_vdev_state_enter(spa, SCL_ALLOC); 2136 2137 /* 2138 * Check to see if the config has changed. 2139 */ 2140 if (error || generation != spa->spa_config_generation) { 2141 metaslab_class_add(spa->spa_log_class, mg); 2142 if (error) 2143 return (spa_vdev_state_exit(spa, 2144 vd, error)); 2145 (void) spa_vdev_state_exit(spa, vd, 0); 2146 goto top; 2147 } 2148 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2149 } 2150 2151 /* 2152 * Offline this device and reopen its top-level vdev. 2153 * If the top-level vdev is a log device then just offline 2154 * it. Otherwise, if this action results in the top-level 2155 * vdev becoming unusable, undo it and fail the request. 2156 */ 2157 vd->vdev_offline = B_TRUE; 2158 vdev_reopen(tvd); 2159 2160 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2161 vdev_is_dead(tvd)) { 2162 vd->vdev_offline = B_FALSE; 2163 vdev_reopen(tvd); 2164 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2165 } 2166 2167 /* 2168 * Add the device back into the metaslab rotor so that 2169 * once we online the device it's open for business. 2170 */ 2171 if (tvd->vdev_islog && mg != NULL) 2172 metaslab_class_add(spa->spa_log_class, mg); 2173 } 2174 2175 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2176 2177 return (spa_vdev_state_exit(spa, vd, 0)); 2178 } 2179 2180 /* 2181 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2182 * vdev_offline(), we assume the spa config is locked. We also clear all 2183 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2184 */ 2185 void 2186 vdev_clear(spa_t *spa, vdev_t *vd) 2187 { 2188 vdev_t *rvd = spa->spa_root_vdev; 2189 2190 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2191 2192 if (vd == NULL) 2193 vd = rvd; 2194 2195 vd->vdev_stat.vs_read_errors = 0; 2196 vd->vdev_stat.vs_write_errors = 0; 2197 vd->vdev_stat.vs_checksum_errors = 0; 2198 2199 for (int c = 0; c < vd->vdev_children; c++) 2200 vdev_clear(spa, vd->vdev_child[c]); 2201 2202 /* 2203 * If we're in the FAULTED state or have experienced failed I/O, then 2204 * clear the persistent state and attempt to reopen the device. We 2205 * also mark the vdev config dirty, so that the new faulted state is 2206 * written out to disk. 2207 */ 2208 if (vd->vdev_faulted || vd->vdev_degraded || 2209 !vdev_readable(vd) || !vdev_writeable(vd)) { 2210 2211 vd->vdev_faulted = vd->vdev_degraded = 0; 2212 vd->vdev_cant_read = B_FALSE; 2213 vd->vdev_cant_write = B_FALSE; 2214 2215 vdev_reopen(vd); 2216 2217 if (vd != rvd) 2218 vdev_state_dirty(vd->vdev_top); 2219 2220 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2221 spa_async_request(spa, SPA_ASYNC_RESILVER); 2222 2223 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2224 } 2225 } 2226 2227 boolean_t 2228 vdev_is_dead(vdev_t *vd) 2229 { 2230 /* 2231 * Holes and missing devices are always considered "dead". 2232 * This simplifies the code since we don't have to check for 2233 * these types of devices in the various code paths. 2234 * Instead we rely on the fact that we skip over dead devices 2235 * before issuing I/O to them. 2236 */ 2237 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2238 vd->vdev_ops == &vdev_missing_ops); 2239 } 2240 2241 boolean_t 2242 vdev_readable(vdev_t *vd) 2243 { 2244 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2245 } 2246 2247 boolean_t 2248 vdev_writeable(vdev_t *vd) 2249 { 2250 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2251 } 2252 2253 boolean_t 2254 vdev_allocatable(vdev_t *vd) 2255 { 2256 uint64_t state = vd->vdev_state; 2257 2258 /* 2259 * We currently allow allocations from vdevs which may be in the 2260 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2261 * fails to reopen then we'll catch it later when we're holding 2262 * the proper locks. Note that we have to get the vdev state 2263 * in a local variable because although it changes atomically, 2264 * we're asking two separate questions about it. 2265 */ 2266 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2267 !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing); 2268 } 2269 2270 boolean_t 2271 vdev_accessible(vdev_t *vd, zio_t *zio) 2272 { 2273 ASSERT(zio->io_vd == vd); 2274 2275 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2276 return (B_FALSE); 2277 2278 if (zio->io_type == ZIO_TYPE_READ) 2279 return (!vd->vdev_cant_read); 2280 2281 if (zio->io_type == ZIO_TYPE_WRITE) 2282 return (!vd->vdev_cant_write); 2283 2284 return (B_TRUE); 2285 } 2286 2287 /* 2288 * Get statistics for the given vdev. 2289 */ 2290 void 2291 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2292 { 2293 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2294 2295 mutex_enter(&vd->vdev_stat_lock); 2296 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2297 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2298 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2299 vs->vs_state = vd->vdev_state; 2300 vs->vs_rsize = vdev_get_min_asize(vd); 2301 if (vd->vdev_ops->vdev_op_leaf) 2302 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2303 mutex_exit(&vd->vdev_stat_lock); 2304 2305 /* 2306 * If we're getting stats on the root vdev, aggregate the I/O counts 2307 * over all top-level vdevs (i.e. the direct children of the root). 2308 */ 2309 if (vd == rvd) { 2310 for (int c = 0; c < rvd->vdev_children; c++) { 2311 vdev_t *cvd = rvd->vdev_child[c]; 2312 vdev_stat_t *cvs = &cvd->vdev_stat; 2313 2314 mutex_enter(&vd->vdev_stat_lock); 2315 for (int t = 0; t < ZIO_TYPES; t++) { 2316 vs->vs_ops[t] += cvs->vs_ops[t]; 2317 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2318 } 2319 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2320 mutex_exit(&vd->vdev_stat_lock); 2321 } 2322 } 2323 } 2324 2325 void 2326 vdev_clear_stats(vdev_t *vd) 2327 { 2328 mutex_enter(&vd->vdev_stat_lock); 2329 vd->vdev_stat.vs_space = 0; 2330 vd->vdev_stat.vs_dspace = 0; 2331 vd->vdev_stat.vs_alloc = 0; 2332 mutex_exit(&vd->vdev_stat_lock); 2333 } 2334 2335 void 2336 vdev_stat_update(zio_t *zio, uint64_t psize) 2337 { 2338 spa_t *spa = zio->io_spa; 2339 vdev_t *rvd = spa->spa_root_vdev; 2340 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2341 vdev_t *pvd; 2342 uint64_t txg = zio->io_txg; 2343 vdev_stat_t *vs = &vd->vdev_stat; 2344 zio_type_t type = zio->io_type; 2345 int flags = zio->io_flags; 2346 2347 /* 2348 * If this i/o is a gang leader, it didn't do any actual work. 2349 */ 2350 if (zio->io_gang_tree) 2351 return; 2352 2353 if (zio->io_error == 0) { 2354 /* 2355 * If this is a root i/o, don't count it -- we've already 2356 * counted the top-level vdevs, and vdev_get_stats() will 2357 * aggregate them when asked. This reduces contention on 2358 * the root vdev_stat_lock and implicitly handles blocks 2359 * that compress away to holes, for which there is no i/o. 2360 * (Holes never create vdev children, so all the counters 2361 * remain zero, which is what we want.) 2362 * 2363 * Note: this only applies to successful i/o (io_error == 0) 2364 * because unlike i/o counts, errors are not additive. 2365 * When reading a ditto block, for example, failure of 2366 * one top-level vdev does not imply a root-level error. 2367 */ 2368 if (vd == rvd) 2369 return; 2370 2371 ASSERT(vd == zio->io_vd); 2372 2373 if (flags & ZIO_FLAG_IO_BYPASS) 2374 return; 2375 2376 mutex_enter(&vd->vdev_stat_lock); 2377 2378 if (flags & ZIO_FLAG_IO_REPAIR) { 2379 if (flags & ZIO_FLAG_SCRUB_THREAD) 2380 vs->vs_scrub_repaired += psize; 2381 if (flags & ZIO_FLAG_SELF_HEAL) 2382 vs->vs_self_healed += psize; 2383 } 2384 2385 vs->vs_ops[type]++; 2386 vs->vs_bytes[type] += psize; 2387 2388 mutex_exit(&vd->vdev_stat_lock); 2389 return; 2390 } 2391 2392 if (flags & ZIO_FLAG_SPECULATIVE) 2393 return; 2394 2395 /* 2396 * If this is an I/O error that is going to be retried, then ignore the 2397 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2398 * hard errors, when in reality they can happen for any number of 2399 * innocuous reasons (bus resets, MPxIO link failure, etc). 2400 */ 2401 if (zio->io_error == EIO && 2402 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2403 return; 2404 2405 /* 2406 * Intent logs writes won't propagate their error to the root 2407 * I/O so don't mark these types of failures as pool-level 2408 * errors. 2409 */ 2410 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2411 return; 2412 2413 mutex_enter(&vd->vdev_stat_lock); 2414 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2415 if (zio->io_error == ECKSUM) 2416 vs->vs_checksum_errors++; 2417 else 2418 vs->vs_read_errors++; 2419 } 2420 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2421 vs->vs_write_errors++; 2422 mutex_exit(&vd->vdev_stat_lock); 2423 2424 if (type == ZIO_TYPE_WRITE && txg != 0 && 2425 (!(flags & ZIO_FLAG_IO_REPAIR) || 2426 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2427 /* 2428 * This is either a normal write (not a repair), or it's a 2429 * repair induced by the scrub thread. In the normal case, 2430 * we commit the DTL change in the same txg as the block 2431 * was born. In the scrub-induced repair case, we know that 2432 * scrubs run in first-pass syncing context, so we commit 2433 * the DTL change in spa->spa_syncing_txg. 2434 * 2435 * We currently do not make DTL entries for failed spontaneous 2436 * self-healing writes triggered by normal (non-scrubbing) 2437 * reads, because we have no transactional context in which to 2438 * do so -- and it's not clear that it'd be desirable anyway. 2439 */ 2440 if (vd->vdev_ops->vdev_op_leaf) { 2441 uint64_t commit_txg = txg; 2442 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2443 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2444 ASSERT(spa_sync_pass(spa) == 1); 2445 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2446 commit_txg = spa->spa_syncing_txg; 2447 } 2448 ASSERT(commit_txg >= spa->spa_syncing_txg); 2449 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2450 return; 2451 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2452 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2453 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2454 } 2455 if (vd != rvd) 2456 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2457 } 2458 } 2459 2460 void 2461 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2462 { 2463 vdev_stat_t *vs = &vd->vdev_stat; 2464 2465 for (int c = 0; c < vd->vdev_children; c++) 2466 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2467 2468 mutex_enter(&vd->vdev_stat_lock); 2469 2470 if (type == POOL_SCRUB_NONE) { 2471 /* 2472 * Update completion and end time. Leave everything else alone 2473 * so we can report what happened during the previous scrub. 2474 */ 2475 vs->vs_scrub_complete = complete; 2476 vs->vs_scrub_end = gethrestime_sec(); 2477 } else { 2478 vs->vs_scrub_type = type; 2479 vs->vs_scrub_complete = 0; 2480 vs->vs_scrub_examined = 0; 2481 vs->vs_scrub_repaired = 0; 2482 vs->vs_scrub_start = gethrestime_sec(); 2483 vs->vs_scrub_end = 0; 2484 } 2485 2486 mutex_exit(&vd->vdev_stat_lock); 2487 } 2488 2489 /* 2490 * Update the in-core space usage stats for this vdev and the root vdev. 2491 */ 2492 void 2493 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2494 boolean_t update_root) 2495 { 2496 int64_t dspace_delta = space_delta; 2497 spa_t *spa = vd->vdev_spa; 2498 vdev_t *rvd = spa->spa_root_vdev; 2499 2500 ASSERT(vd == vd->vdev_top); 2501 2502 /* 2503 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2504 * factor. We must calculate this here and not at the root vdev 2505 * because the root vdev's psize-to-asize is simply the max of its 2506 * childrens', thus not accurate enough for us. 2507 */ 2508 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2509 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2510 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2511 vd->vdev_deflate_ratio; 2512 2513 mutex_enter(&vd->vdev_stat_lock); 2514 vd->vdev_stat.vs_space += space_delta; 2515 vd->vdev_stat.vs_alloc += alloc_delta; 2516 vd->vdev_stat.vs_dspace += dspace_delta; 2517 mutex_exit(&vd->vdev_stat_lock); 2518 2519 if (update_root) { 2520 ASSERT(rvd == vd->vdev_parent); 2521 ASSERT(vd->vdev_ms_count != 0); 2522 2523 /* 2524 * Don't count non-normal (e.g. intent log) space as part of 2525 * the pool's capacity. 2526 */ 2527 if (vd->vdev_islog) 2528 return; 2529 2530 mutex_enter(&rvd->vdev_stat_lock); 2531 rvd->vdev_stat.vs_space += space_delta; 2532 rvd->vdev_stat.vs_alloc += alloc_delta; 2533 rvd->vdev_stat.vs_dspace += dspace_delta; 2534 mutex_exit(&rvd->vdev_stat_lock); 2535 } 2536 } 2537 2538 /* 2539 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2540 * so that it will be written out next time the vdev configuration is synced. 2541 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2542 */ 2543 void 2544 vdev_config_dirty(vdev_t *vd) 2545 { 2546 spa_t *spa = vd->vdev_spa; 2547 vdev_t *rvd = spa->spa_root_vdev; 2548 int c; 2549 2550 /* 2551 * If this is an aux vdev (as with l2cache and spare devices), then we 2552 * update the vdev config manually and set the sync flag. 2553 */ 2554 if (vd->vdev_aux != NULL) { 2555 spa_aux_vdev_t *sav = vd->vdev_aux; 2556 nvlist_t **aux; 2557 uint_t naux; 2558 2559 for (c = 0; c < sav->sav_count; c++) { 2560 if (sav->sav_vdevs[c] == vd) 2561 break; 2562 } 2563 2564 if (c == sav->sav_count) { 2565 /* 2566 * We're being removed. There's nothing more to do. 2567 */ 2568 ASSERT(sav->sav_sync == B_TRUE); 2569 return; 2570 } 2571 2572 sav->sav_sync = B_TRUE; 2573 2574 if (nvlist_lookup_nvlist_array(sav->sav_config, 2575 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2576 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2577 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2578 } 2579 2580 ASSERT(c < naux); 2581 2582 /* 2583 * Setting the nvlist in the middle if the array is a little 2584 * sketchy, but it will work. 2585 */ 2586 nvlist_free(aux[c]); 2587 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2588 2589 return; 2590 } 2591 2592 /* 2593 * The dirty list is protected by the SCL_CONFIG lock. The caller 2594 * must either hold SCL_CONFIG as writer, or must be the sync thread 2595 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2596 * so this is sufficient to ensure mutual exclusion. 2597 */ 2598 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2599 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2600 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2601 2602 if (vd == rvd) { 2603 for (c = 0; c < rvd->vdev_children; c++) 2604 vdev_config_dirty(rvd->vdev_child[c]); 2605 } else { 2606 ASSERT(vd == vd->vdev_top); 2607 2608 if (!list_link_active(&vd->vdev_config_dirty_node) && 2609 !vd->vdev_ishole) 2610 list_insert_head(&spa->spa_config_dirty_list, vd); 2611 } 2612 } 2613 2614 void 2615 vdev_config_clean(vdev_t *vd) 2616 { 2617 spa_t *spa = vd->vdev_spa; 2618 2619 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2620 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2621 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2622 2623 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2624 list_remove(&spa->spa_config_dirty_list, vd); 2625 } 2626 2627 /* 2628 * Mark a top-level vdev's state as dirty, so that the next pass of 2629 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2630 * the state changes from larger config changes because they require 2631 * much less locking, and are often needed for administrative actions. 2632 */ 2633 void 2634 vdev_state_dirty(vdev_t *vd) 2635 { 2636 spa_t *spa = vd->vdev_spa; 2637 2638 ASSERT(vd == vd->vdev_top); 2639 2640 /* 2641 * The state list is protected by the SCL_STATE lock. The caller 2642 * must either hold SCL_STATE as writer, or must be the sync thread 2643 * (which holds SCL_STATE as reader). There's only one sync thread, 2644 * so this is sufficient to ensure mutual exclusion. 2645 */ 2646 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2647 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2648 spa_config_held(spa, SCL_STATE, RW_READER))); 2649 2650 if (!list_link_active(&vd->vdev_state_dirty_node)) 2651 list_insert_head(&spa->spa_state_dirty_list, vd); 2652 } 2653 2654 void 2655 vdev_state_clean(vdev_t *vd) 2656 { 2657 spa_t *spa = vd->vdev_spa; 2658 2659 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2660 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2661 spa_config_held(spa, SCL_STATE, RW_READER))); 2662 2663 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2664 list_remove(&spa->spa_state_dirty_list, vd); 2665 } 2666 2667 /* 2668 * Propagate vdev state up from children to parent. 2669 */ 2670 void 2671 vdev_propagate_state(vdev_t *vd) 2672 { 2673 spa_t *spa = vd->vdev_spa; 2674 vdev_t *rvd = spa->spa_root_vdev; 2675 int degraded = 0, faulted = 0; 2676 int corrupted = 0; 2677 vdev_t *child; 2678 2679 if (vd->vdev_children > 0) { 2680 for (int c = 0; c < vd->vdev_children; c++) { 2681 child = vd->vdev_child[c]; 2682 2683 /* 2684 * Don't factor holes into the decision. 2685 */ 2686 if (child->vdev_ishole) 2687 continue; 2688 2689 if (!vdev_readable(child) || 2690 (!vdev_writeable(child) && spa_writeable(spa))) { 2691 /* 2692 * Root special: if there is a top-level log 2693 * device, treat the root vdev as if it were 2694 * degraded. 2695 */ 2696 if (child->vdev_islog && vd == rvd) 2697 degraded++; 2698 else 2699 faulted++; 2700 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2701 degraded++; 2702 } 2703 2704 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2705 corrupted++; 2706 } 2707 2708 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2709 2710 /* 2711 * Root special: if there is a top-level vdev that cannot be 2712 * opened due to corrupted metadata, then propagate the root 2713 * vdev's aux state as 'corrupt' rather than 'insufficient 2714 * replicas'. 2715 */ 2716 if (corrupted && vd == rvd && 2717 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2718 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2719 VDEV_AUX_CORRUPT_DATA); 2720 } 2721 2722 if (vd->vdev_parent) 2723 vdev_propagate_state(vd->vdev_parent); 2724 } 2725 2726 /* 2727 * Set a vdev's state. If this is during an open, we don't update the parent 2728 * state, because we're in the process of opening children depth-first. 2729 * Otherwise, we propagate the change to the parent. 2730 * 2731 * If this routine places a device in a faulted state, an appropriate ereport is 2732 * generated. 2733 */ 2734 void 2735 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2736 { 2737 uint64_t save_state; 2738 spa_t *spa = vd->vdev_spa; 2739 2740 if (state == vd->vdev_state) { 2741 vd->vdev_stat.vs_aux = aux; 2742 return; 2743 } 2744 2745 save_state = vd->vdev_state; 2746 2747 vd->vdev_state = state; 2748 vd->vdev_stat.vs_aux = aux; 2749 2750 /* 2751 * If we are setting the vdev state to anything but an open state, then 2752 * always close the underlying device. Otherwise, we keep accessible 2753 * but invalid devices open forever. We don't call vdev_close() itself, 2754 * because that implies some extra checks (offline, etc) that we don't 2755 * want here. This is limited to leaf devices, because otherwise 2756 * closing the device will affect other children. 2757 */ 2758 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2759 vd->vdev_ops->vdev_op_close(vd); 2760 2761 if (vd->vdev_removed && 2762 state == VDEV_STATE_CANT_OPEN && 2763 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2764 /* 2765 * If the previous state is set to VDEV_STATE_REMOVED, then this 2766 * device was previously marked removed and someone attempted to 2767 * reopen it. If this failed due to a nonexistent device, then 2768 * keep the device in the REMOVED state. We also let this be if 2769 * it is one of our special test online cases, which is only 2770 * attempting to online the device and shouldn't generate an FMA 2771 * fault. 2772 */ 2773 vd->vdev_state = VDEV_STATE_REMOVED; 2774 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2775 } else if (state == VDEV_STATE_REMOVED) { 2776 /* 2777 * Indicate to the ZFS DE that this device has been removed, and 2778 * any recent errors should be ignored. 2779 */ 2780 zfs_post_remove(spa, vd); 2781 vd->vdev_removed = B_TRUE; 2782 } else if (state == VDEV_STATE_CANT_OPEN) { 2783 /* 2784 * If we fail to open a vdev during an import, we mark it as 2785 * "not available", which signifies that it was never there to 2786 * begin with. Failure to open such a device is not considered 2787 * an error. 2788 */ 2789 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2790 vd->vdev_ops->vdev_op_leaf) 2791 vd->vdev_not_present = 1; 2792 2793 /* 2794 * Post the appropriate ereport. If the 'prevstate' field is 2795 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2796 * that this is part of a vdev_reopen(). In this case, we don't 2797 * want to post the ereport if the device was already in the 2798 * CANT_OPEN state beforehand. 2799 * 2800 * If the 'checkremove' flag is set, then this is an attempt to 2801 * online the device in response to an insertion event. If we 2802 * hit this case, then we have detected an insertion event for a 2803 * faulted or offline device that wasn't in the removed state. 2804 * In this scenario, we don't post an ereport because we are 2805 * about to replace the device, or attempt an online with 2806 * vdev_forcefault, which will generate the fault for us. 2807 */ 2808 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2809 !vd->vdev_not_present && !vd->vdev_checkremove && 2810 vd != spa->spa_root_vdev) { 2811 const char *class; 2812 2813 switch (aux) { 2814 case VDEV_AUX_OPEN_FAILED: 2815 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2816 break; 2817 case VDEV_AUX_CORRUPT_DATA: 2818 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2819 break; 2820 case VDEV_AUX_NO_REPLICAS: 2821 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2822 break; 2823 case VDEV_AUX_BAD_GUID_SUM: 2824 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2825 break; 2826 case VDEV_AUX_TOO_SMALL: 2827 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2828 break; 2829 case VDEV_AUX_BAD_LABEL: 2830 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2831 break; 2832 case VDEV_AUX_IO_FAILURE: 2833 class = FM_EREPORT_ZFS_IO_FAILURE; 2834 break; 2835 default: 2836 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2837 } 2838 2839 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2840 } 2841 2842 /* Erase any notion of persistent removed state */ 2843 vd->vdev_removed = B_FALSE; 2844 } else { 2845 vd->vdev_removed = B_FALSE; 2846 } 2847 2848 if (!isopen && vd->vdev_parent) 2849 vdev_propagate_state(vd->vdev_parent); 2850 } 2851 2852 /* 2853 * Check the vdev configuration to ensure that it's capable of supporting 2854 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2855 * In addition, only a single top-level vdev is allowed and none of the leaves 2856 * can be wholedisks. 2857 */ 2858 boolean_t 2859 vdev_is_bootable(vdev_t *vd) 2860 { 2861 if (!vd->vdev_ops->vdev_op_leaf) { 2862 char *vdev_type = vd->vdev_ops->vdev_op_type; 2863 2864 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2865 vd->vdev_children > 1) { 2866 return (B_FALSE); 2867 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2868 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2869 return (B_FALSE); 2870 } 2871 } else if (vd->vdev_wholedisk == 1) { 2872 return (B_FALSE); 2873 } 2874 2875 for (int c = 0; c < vd->vdev_children; c++) { 2876 if (!vdev_is_bootable(vd->vdev_child[c])) 2877 return (B_FALSE); 2878 } 2879 return (B_TRUE); 2880 } 2881 2882 /* 2883 * Load the state from the original vdev tree (ovd) which 2884 * we've retrieved from the MOS config object. If the original 2885 * vdev was offline then we transfer that state to the device 2886 * in the current vdev tree (nvd). 2887 */ 2888 void 2889 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 2890 { 2891 spa_t *spa = nvd->vdev_spa; 2892 2893 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2894 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 2895 2896 for (int c = 0; c < nvd->vdev_children; c++) 2897 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 2898 2899 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 2900 /* 2901 * It would be nice to call vdev_offline() 2902 * directly but the pool isn't fully loaded and 2903 * the txg threads have not been started yet. 2904 */ 2905 nvd->vdev_offline = ovd->vdev_offline; 2906 vdev_reopen(nvd->vdev_top); 2907 } 2908 } 2909 2910 /* 2911 * Expand a vdev if possible. 2912 */ 2913 void 2914 vdev_expand(vdev_t *vd, uint64_t txg) 2915 { 2916 ASSERT(vd->vdev_top == vd); 2917 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2918 2919 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2920 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2921 vdev_config_dirty(vd); 2922 } 2923 } 2924