1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/spa_impl.h> 36 #include <sys/bpobj.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/uberblock_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/space_map.h> 45 #include <sys/space_reftree.h> 46 #include <sys/zio.h> 47 #include <sys/zap.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/arc.h> 50 #include <sys/zil.h> 51 #include <sys/dsl_scan.h> 52 #include <sys/abd.h> 53 #include <sys/vdev_initialize.h> 54 55 /* 56 * Virtual device management. 57 */ 58 59 static vdev_ops_t *vdev_ops_table[] = { 60 &vdev_root_ops, 61 &vdev_raidz_ops, 62 &vdev_mirror_ops, 63 &vdev_replacing_ops, 64 &vdev_spare_ops, 65 &vdev_disk_ops, 66 &vdev_file_ops, 67 &vdev_missing_ops, 68 &vdev_hole_ops, 69 &vdev_indirect_ops, 70 NULL 71 }; 72 73 /* maximum scrub/resilver I/O queue per leaf vdev */ 74 int zfs_scrub_limit = 10; 75 76 /* default target for number of metaslabs per top-level vdev */ 77 int zfs_vdev_default_ms_count = 200; 78 79 /* minimum number of metaslabs per top-level vdev */ 80 int zfs_vdev_min_ms_count = 16; 81 82 /* practical upper limit of total metaslabs per top-level vdev */ 83 int zfs_vdev_ms_count_limit = 1ULL << 17; 84 85 /* lower limit for metaslab size (512M) */ 86 int zfs_vdev_default_ms_shift = 29; 87 88 /* upper limit for metaslab size (16G) */ 89 int zfs_vdev_max_ms_shift = 34; 90 91 boolean_t vdev_validate_skip = B_FALSE; 92 93 /* 94 * Since the DTL space map of a vdev is not expected to have a lot of 95 * entries, we default its block size to 4K. 96 */ 97 int vdev_dtl_sm_blksz = (1 << 12); 98 99 /* 100 * vdev-wide space maps that have lots of entries written to them at 101 * the end of each transaction can benefit from a higher I/O bandwidth 102 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 103 */ 104 int vdev_standard_sm_blksz = (1 << 17); 105 106 int zfs_ashift_min; 107 108 /*PRINTFLIKE2*/ 109 void 110 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 111 { 112 va_list adx; 113 char buf[256]; 114 115 va_start(adx, fmt); 116 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 117 va_end(adx); 118 119 if (vd->vdev_path != NULL) { 120 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 121 vd->vdev_path, buf); 122 } else { 123 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 124 vd->vdev_ops->vdev_op_type, 125 (u_longlong_t)vd->vdev_id, 126 (u_longlong_t)vd->vdev_guid, buf); 127 } 128 } 129 130 void 131 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 132 { 133 char state[20]; 134 135 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 136 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 137 vd->vdev_ops->vdev_op_type); 138 return; 139 } 140 141 switch (vd->vdev_state) { 142 case VDEV_STATE_UNKNOWN: 143 (void) snprintf(state, sizeof (state), "unknown"); 144 break; 145 case VDEV_STATE_CLOSED: 146 (void) snprintf(state, sizeof (state), "closed"); 147 break; 148 case VDEV_STATE_OFFLINE: 149 (void) snprintf(state, sizeof (state), "offline"); 150 break; 151 case VDEV_STATE_REMOVED: 152 (void) snprintf(state, sizeof (state), "removed"); 153 break; 154 case VDEV_STATE_CANT_OPEN: 155 (void) snprintf(state, sizeof (state), "can't open"); 156 break; 157 case VDEV_STATE_FAULTED: 158 (void) snprintf(state, sizeof (state), "faulted"); 159 break; 160 case VDEV_STATE_DEGRADED: 161 (void) snprintf(state, sizeof (state), "degraded"); 162 break; 163 case VDEV_STATE_HEALTHY: 164 (void) snprintf(state, sizeof (state), "healthy"); 165 break; 166 default: 167 (void) snprintf(state, sizeof (state), "<state %u>", 168 (uint_t)vd->vdev_state); 169 } 170 171 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 172 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 173 vd->vdev_islog ? " (log)" : "", 174 (u_longlong_t)vd->vdev_guid, 175 vd->vdev_path ? vd->vdev_path : "N/A", state); 176 177 for (uint64_t i = 0; i < vd->vdev_children; i++) 178 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 179 } 180 181 /* 182 * Given a vdev type, return the appropriate ops vector. 183 */ 184 static vdev_ops_t * 185 vdev_getops(const char *type) 186 { 187 vdev_ops_t *ops, **opspp; 188 189 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 190 if (strcmp(ops->vdev_op_type, type) == 0) 191 break; 192 193 return (ops); 194 } 195 196 /* 197 * Derive the enumerated alloction bias from string input. 198 * String origin is either the per-vdev zap or zpool(1M). 199 */ 200 static vdev_alloc_bias_t 201 vdev_derive_alloc_bias(const char *bias) 202 { 203 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 204 205 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 206 alloc_bias = VDEV_BIAS_LOG; 207 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 208 alloc_bias = VDEV_BIAS_SPECIAL; 209 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 210 alloc_bias = VDEV_BIAS_DEDUP; 211 212 return (alloc_bias); 213 } 214 215 /* ARGSUSED */ 216 void 217 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res) 218 { 219 res->rs_start = in->rs_start; 220 res->rs_end = in->rs_end; 221 } 222 223 /* 224 * Default asize function: return the MAX of psize with the asize of 225 * all children. This is what's used by anything other than RAID-Z. 226 */ 227 uint64_t 228 vdev_default_asize(vdev_t *vd, uint64_t psize) 229 { 230 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 231 uint64_t csize; 232 233 for (int c = 0; c < vd->vdev_children; c++) { 234 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 235 asize = MAX(asize, csize); 236 } 237 238 return (asize); 239 } 240 241 /* 242 * Get the minimum allocatable size. We define the allocatable size as 243 * the vdev's asize rounded to the nearest metaslab. This allows us to 244 * replace or attach devices which don't have the same physical size but 245 * can still satisfy the same number of allocations. 246 */ 247 uint64_t 248 vdev_get_min_asize(vdev_t *vd) 249 { 250 vdev_t *pvd = vd->vdev_parent; 251 252 /* 253 * If our parent is NULL (inactive spare or cache) or is the root, 254 * just return our own asize. 255 */ 256 if (pvd == NULL) 257 return (vd->vdev_asize); 258 259 /* 260 * The top-level vdev just returns the allocatable size rounded 261 * to the nearest metaslab. 262 */ 263 if (vd == vd->vdev_top) 264 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 265 266 /* 267 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 268 * so each child must provide at least 1/Nth of its asize. 269 */ 270 if (pvd->vdev_ops == &vdev_raidz_ops) 271 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 272 pvd->vdev_children); 273 274 return (pvd->vdev_min_asize); 275 } 276 277 void 278 vdev_set_min_asize(vdev_t *vd) 279 { 280 vd->vdev_min_asize = vdev_get_min_asize(vd); 281 282 for (int c = 0; c < vd->vdev_children; c++) 283 vdev_set_min_asize(vd->vdev_child[c]); 284 } 285 286 vdev_t * 287 vdev_lookup_top(spa_t *spa, uint64_t vdev) 288 { 289 vdev_t *rvd = spa->spa_root_vdev; 290 291 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 292 293 if (vdev < rvd->vdev_children) { 294 ASSERT(rvd->vdev_child[vdev] != NULL); 295 return (rvd->vdev_child[vdev]); 296 } 297 298 return (NULL); 299 } 300 301 vdev_t * 302 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 303 { 304 vdev_t *mvd; 305 306 if (vd->vdev_guid == guid) 307 return (vd); 308 309 for (int c = 0; c < vd->vdev_children; c++) 310 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 311 NULL) 312 return (mvd); 313 314 return (NULL); 315 } 316 317 static int 318 vdev_count_leaves_impl(vdev_t *vd) 319 { 320 int n = 0; 321 322 if (vd->vdev_ops->vdev_op_leaf) 323 return (1); 324 325 for (int c = 0; c < vd->vdev_children; c++) 326 n += vdev_count_leaves_impl(vd->vdev_child[c]); 327 328 return (n); 329 } 330 331 int 332 vdev_count_leaves(spa_t *spa) 333 { 334 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 335 } 336 337 void 338 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 339 { 340 size_t oldsize, newsize; 341 uint64_t id = cvd->vdev_id; 342 vdev_t **newchild; 343 spa_t *spa = cvd->vdev_spa; 344 345 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 346 ASSERT(cvd->vdev_parent == NULL); 347 348 cvd->vdev_parent = pvd; 349 350 if (pvd == NULL) 351 return; 352 353 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 354 355 oldsize = pvd->vdev_children * sizeof (vdev_t *); 356 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 357 newsize = pvd->vdev_children * sizeof (vdev_t *); 358 359 newchild = kmem_zalloc(newsize, KM_SLEEP); 360 if (pvd->vdev_child != NULL) { 361 bcopy(pvd->vdev_child, newchild, oldsize); 362 kmem_free(pvd->vdev_child, oldsize); 363 } 364 365 pvd->vdev_child = newchild; 366 pvd->vdev_child[id] = cvd; 367 368 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 369 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 370 371 /* 372 * Walk up all ancestors to update guid sum. 373 */ 374 for (; pvd != NULL; pvd = pvd->vdev_parent) 375 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 376 377 if (cvd->vdev_ops->vdev_op_leaf) { 378 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 379 cvd->vdev_spa->spa_leaf_list_gen++; 380 } 381 } 382 383 void 384 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 385 { 386 int c; 387 uint_t id = cvd->vdev_id; 388 389 ASSERT(cvd->vdev_parent == pvd); 390 391 if (pvd == NULL) 392 return; 393 394 ASSERT(id < pvd->vdev_children); 395 ASSERT(pvd->vdev_child[id] == cvd); 396 397 pvd->vdev_child[id] = NULL; 398 cvd->vdev_parent = NULL; 399 400 for (c = 0; c < pvd->vdev_children; c++) 401 if (pvd->vdev_child[c]) 402 break; 403 404 if (c == pvd->vdev_children) { 405 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 406 pvd->vdev_child = NULL; 407 pvd->vdev_children = 0; 408 } 409 410 if (cvd->vdev_ops->vdev_op_leaf) { 411 spa_t *spa = cvd->vdev_spa; 412 list_remove(&spa->spa_leaf_list, cvd); 413 spa->spa_leaf_list_gen++; 414 } 415 416 /* 417 * Walk up all ancestors to update guid sum. 418 */ 419 for (; pvd != NULL; pvd = pvd->vdev_parent) 420 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 421 } 422 423 /* 424 * Remove any holes in the child array. 425 */ 426 void 427 vdev_compact_children(vdev_t *pvd) 428 { 429 vdev_t **newchild, *cvd; 430 int oldc = pvd->vdev_children; 431 int newc; 432 433 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 434 435 for (int c = newc = 0; c < oldc; c++) 436 if (pvd->vdev_child[c]) 437 newc++; 438 439 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 440 441 for (int c = newc = 0; c < oldc; c++) { 442 if ((cvd = pvd->vdev_child[c]) != NULL) { 443 newchild[newc] = cvd; 444 cvd->vdev_id = newc++; 445 } 446 } 447 448 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 449 pvd->vdev_child = newchild; 450 pvd->vdev_children = newc; 451 } 452 453 /* 454 * Allocate and minimally initialize a vdev_t. 455 */ 456 vdev_t * 457 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 458 { 459 vdev_t *vd; 460 vdev_indirect_config_t *vic; 461 462 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 463 vic = &vd->vdev_indirect_config; 464 465 if (spa->spa_root_vdev == NULL) { 466 ASSERT(ops == &vdev_root_ops); 467 spa->spa_root_vdev = vd; 468 spa->spa_load_guid = spa_generate_guid(NULL); 469 } 470 471 if (guid == 0 && ops != &vdev_hole_ops) { 472 if (spa->spa_root_vdev == vd) { 473 /* 474 * The root vdev's guid will also be the pool guid, 475 * which must be unique among all pools. 476 */ 477 guid = spa_generate_guid(NULL); 478 } else { 479 /* 480 * Any other vdev's guid must be unique within the pool. 481 */ 482 guid = spa_generate_guid(spa); 483 } 484 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 485 } 486 487 vd->vdev_spa = spa; 488 vd->vdev_id = id; 489 vd->vdev_guid = guid; 490 vd->vdev_guid_sum = guid; 491 vd->vdev_ops = ops; 492 vd->vdev_state = VDEV_STATE_CLOSED; 493 vd->vdev_ishole = (ops == &vdev_hole_ops); 494 vic->vic_prev_indirect_vdev = UINT64_MAX; 495 496 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 497 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 498 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); 499 500 list_link_init(&vd->vdev_leaf_node); 501 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 502 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 503 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 504 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 505 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 506 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 507 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 508 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 509 510 for (int t = 0; t < DTL_TYPES; t++) { 511 vd->vdev_dtl[t] = range_tree_create(NULL, NULL); 512 } 513 txg_list_create(&vd->vdev_ms_list, spa, 514 offsetof(struct metaslab, ms_txg_node)); 515 txg_list_create(&vd->vdev_dtl_list, spa, 516 offsetof(struct vdev, vdev_dtl_node)); 517 vd->vdev_stat.vs_timestamp = gethrtime(); 518 vdev_queue_init(vd); 519 vdev_cache_init(vd); 520 521 return (vd); 522 } 523 524 /* 525 * Allocate a new vdev. The 'alloctype' is used to control whether we are 526 * creating a new vdev or loading an existing one - the behavior is slightly 527 * different for each case. 528 */ 529 int 530 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 531 int alloctype) 532 { 533 vdev_ops_t *ops; 534 char *type; 535 uint64_t guid = 0, islog, nparity; 536 vdev_t *vd; 537 vdev_indirect_config_t *vic; 538 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 539 boolean_t top_level = (parent && !parent->vdev_parent); 540 541 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 542 543 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 544 return (SET_ERROR(EINVAL)); 545 546 if ((ops = vdev_getops(type)) == NULL) 547 return (SET_ERROR(EINVAL)); 548 549 /* 550 * If this is a load, get the vdev guid from the nvlist. 551 * Otherwise, vdev_alloc_common() will generate one for us. 552 */ 553 if (alloctype == VDEV_ALLOC_LOAD) { 554 uint64_t label_id; 555 556 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 557 label_id != id) 558 return (SET_ERROR(EINVAL)); 559 560 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 561 return (SET_ERROR(EINVAL)); 562 } else if (alloctype == VDEV_ALLOC_SPARE) { 563 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 564 return (SET_ERROR(EINVAL)); 565 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 566 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 567 return (SET_ERROR(EINVAL)); 568 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 569 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 570 return (SET_ERROR(EINVAL)); 571 } 572 573 /* 574 * The first allocated vdev must be of type 'root'. 575 */ 576 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 577 return (SET_ERROR(EINVAL)); 578 579 /* 580 * Determine whether we're a log vdev. 581 */ 582 islog = 0; 583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 584 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 585 return (SET_ERROR(ENOTSUP)); 586 587 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 588 return (SET_ERROR(ENOTSUP)); 589 590 /* 591 * Set the nparity property for RAID-Z vdevs. 592 */ 593 nparity = -1ULL; 594 if (ops == &vdev_raidz_ops) { 595 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 596 &nparity) == 0) { 597 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 598 return (SET_ERROR(EINVAL)); 599 /* 600 * Previous versions could only support 1 or 2 parity 601 * device. 602 */ 603 if (nparity > 1 && 604 spa_version(spa) < SPA_VERSION_RAIDZ2) 605 return (SET_ERROR(ENOTSUP)); 606 if (nparity > 2 && 607 spa_version(spa) < SPA_VERSION_RAIDZ3) 608 return (SET_ERROR(ENOTSUP)); 609 } else { 610 /* 611 * We require the parity to be specified for SPAs that 612 * support multiple parity levels. 613 */ 614 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 615 return (SET_ERROR(EINVAL)); 616 /* 617 * Otherwise, we default to 1 parity device for RAID-Z. 618 */ 619 nparity = 1; 620 } 621 } else { 622 nparity = 0; 623 } 624 ASSERT(nparity != -1ULL); 625 626 /* 627 * If creating a top-level vdev, check for allocation classes input 628 */ 629 if (top_level && alloctype == VDEV_ALLOC_ADD) { 630 char *bias; 631 632 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 633 &bias) == 0) { 634 alloc_bias = vdev_derive_alloc_bias(bias); 635 636 /* spa_vdev_add() expects feature to be enabled */ 637 if (spa->spa_load_state != SPA_LOAD_CREATE && 638 !spa_feature_is_enabled(spa, 639 SPA_FEATURE_ALLOCATION_CLASSES)) { 640 return (SET_ERROR(ENOTSUP)); 641 } 642 } 643 } 644 645 vd = vdev_alloc_common(spa, id, guid, ops); 646 vic = &vd->vdev_indirect_config; 647 648 vd->vdev_islog = islog; 649 vd->vdev_nparity = nparity; 650 if (top_level && alloc_bias != VDEV_BIAS_NONE) 651 vd->vdev_alloc_bias = alloc_bias; 652 653 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 654 vd->vdev_path = spa_strdup(vd->vdev_path); 655 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 656 vd->vdev_devid = spa_strdup(vd->vdev_devid); 657 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 658 &vd->vdev_physpath) == 0) 659 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 660 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 661 vd->vdev_fru = spa_strdup(vd->vdev_fru); 662 663 /* 664 * Set the whole_disk property. If it's not specified, leave the value 665 * as -1. 666 */ 667 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 668 &vd->vdev_wholedisk) != 0) 669 vd->vdev_wholedisk = -1ULL; 670 671 ASSERT0(vic->vic_mapping_object); 672 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 673 &vic->vic_mapping_object); 674 ASSERT0(vic->vic_births_object); 675 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 676 &vic->vic_births_object); 677 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 678 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 679 &vic->vic_prev_indirect_vdev); 680 681 /* 682 * Look for the 'not present' flag. This will only be set if the device 683 * was not present at the time of import. 684 */ 685 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 686 &vd->vdev_not_present); 687 688 /* 689 * Get the alignment requirement. 690 */ 691 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 692 693 /* 694 * Retrieve the vdev creation time. 695 */ 696 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 697 &vd->vdev_crtxg); 698 699 /* 700 * If we're a top-level vdev, try to load the allocation parameters. 701 */ 702 if (top_level && 703 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 704 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 705 &vd->vdev_ms_array); 706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 707 &vd->vdev_ms_shift); 708 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 709 &vd->vdev_asize); 710 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 711 &vd->vdev_removing); 712 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 713 &vd->vdev_top_zap); 714 } else { 715 ASSERT0(vd->vdev_top_zap); 716 } 717 718 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 719 ASSERT(alloctype == VDEV_ALLOC_LOAD || 720 alloctype == VDEV_ALLOC_ADD || 721 alloctype == VDEV_ALLOC_SPLIT || 722 alloctype == VDEV_ALLOC_ROOTPOOL); 723 /* Note: metaslab_group_create() is now deferred */ 724 } 725 726 if (vd->vdev_ops->vdev_op_leaf && 727 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 728 (void) nvlist_lookup_uint64(nv, 729 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 730 } else { 731 ASSERT0(vd->vdev_leaf_zap); 732 } 733 734 /* 735 * If we're a leaf vdev, try to load the DTL object and other state. 736 */ 737 738 if (vd->vdev_ops->vdev_op_leaf && 739 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 740 alloctype == VDEV_ALLOC_ROOTPOOL)) { 741 if (alloctype == VDEV_ALLOC_LOAD) { 742 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 743 &vd->vdev_dtl_object); 744 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 745 &vd->vdev_unspare); 746 } 747 748 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 749 uint64_t spare = 0; 750 751 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 752 &spare) == 0 && spare) 753 spa_spare_add(vd); 754 } 755 756 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 757 &vd->vdev_offline); 758 759 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 760 &vd->vdev_resilver_txg); 761 762 /* 763 * When importing a pool, we want to ignore the persistent fault 764 * state, as the diagnosis made on another system may not be 765 * valid in the current context. Local vdevs will 766 * remain in the faulted state. 767 */ 768 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 769 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 770 &vd->vdev_faulted); 771 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 772 &vd->vdev_degraded); 773 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 774 &vd->vdev_removed); 775 776 if (vd->vdev_faulted || vd->vdev_degraded) { 777 char *aux; 778 779 vd->vdev_label_aux = 780 VDEV_AUX_ERR_EXCEEDED; 781 if (nvlist_lookup_string(nv, 782 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 783 strcmp(aux, "external") == 0) 784 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 785 } 786 } 787 } 788 789 /* 790 * Add ourselves to the parent's list of children. 791 */ 792 vdev_add_child(parent, vd); 793 794 *vdp = vd; 795 796 return (0); 797 } 798 799 void 800 vdev_free(vdev_t *vd) 801 { 802 spa_t *spa = vd->vdev_spa; 803 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 804 805 /* 806 * vdev_free() implies closing the vdev first. This is simpler than 807 * trying to ensure complicated semantics for all callers. 808 */ 809 vdev_close(vd); 810 811 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 812 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 813 814 /* 815 * Free all children. 816 */ 817 for (int c = 0; c < vd->vdev_children; c++) 818 vdev_free(vd->vdev_child[c]); 819 820 ASSERT(vd->vdev_child == NULL); 821 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 822 ASSERT(vd->vdev_initialize_thread == NULL); 823 824 /* 825 * Discard allocation state. 826 */ 827 if (vd->vdev_mg != NULL) { 828 vdev_metaslab_fini(vd); 829 metaslab_group_destroy(vd->vdev_mg); 830 } 831 832 ASSERT0(vd->vdev_stat.vs_space); 833 ASSERT0(vd->vdev_stat.vs_dspace); 834 ASSERT0(vd->vdev_stat.vs_alloc); 835 836 /* 837 * Remove this vdev from its parent's child list. 838 */ 839 vdev_remove_child(vd->vdev_parent, vd); 840 841 ASSERT(vd->vdev_parent == NULL); 842 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 843 844 /* 845 * Clean up vdev structure. 846 */ 847 vdev_queue_fini(vd); 848 vdev_cache_fini(vd); 849 850 if (vd->vdev_path) 851 spa_strfree(vd->vdev_path); 852 if (vd->vdev_devid) 853 spa_strfree(vd->vdev_devid); 854 if (vd->vdev_physpath) 855 spa_strfree(vd->vdev_physpath); 856 if (vd->vdev_fru) 857 spa_strfree(vd->vdev_fru); 858 859 if (vd->vdev_isspare) 860 spa_spare_remove(vd); 861 if (vd->vdev_isl2cache) 862 spa_l2cache_remove(vd); 863 864 txg_list_destroy(&vd->vdev_ms_list); 865 txg_list_destroy(&vd->vdev_dtl_list); 866 867 mutex_enter(&vd->vdev_dtl_lock); 868 space_map_close(vd->vdev_dtl_sm); 869 for (int t = 0; t < DTL_TYPES; t++) { 870 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 871 range_tree_destroy(vd->vdev_dtl[t]); 872 } 873 mutex_exit(&vd->vdev_dtl_lock); 874 875 EQUIV(vd->vdev_indirect_births != NULL, 876 vd->vdev_indirect_mapping != NULL); 877 if (vd->vdev_indirect_births != NULL) { 878 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 879 vdev_indirect_births_close(vd->vdev_indirect_births); 880 } 881 882 if (vd->vdev_obsolete_sm != NULL) { 883 ASSERT(vd->vdev_removing || 884 vd->vdev_ops == &vdev_indirect_ops); 885 space_map_close(vd->vdev_obsolete_sm); 886 vd->vdev_obsolete_sm = NULL; 887 } 888 range_tree_destroy(vd->vdev_obsolete_segments); 889 rw_destroy(&vd->vdev_indirect_rwlock); 890 mutex_destroy(&vd->vdev_obsolete_lock); 891 892 mutex_destroy(&vd->vdev_queue_lock); 893 mutex_destroy(&vd->vdev_dtl_lock); 894 mutex_destroy(&vd->vdev_stat_lock); 895 mutex_destroy(&vd->vdev_probe_lock); 896 mutex_destroy(&vd->vdev_initialize_lock); 897 mutex_destroy(&vd->vdev_initialize_io_lock); 898 cv_destroy(&vd->vdev_initialize_io_cv); 899 cv_destroy(&vd->vdev_initialize_cv); 900 901 if (vd == spa->spa_root_vdev) 902 spa->spa_root_vdev = NULL; 903 904 kmem_free(vd, sizeof (vdev_t)); 905 } 906 907 /* 908 * Transfer top-level vdev state from svd to tvd. 909 */ 910 static void 911 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 912 { 913 spa_t *spa = svd->vdev_spa; 914 metaslab_t *msp; 915 vdev_t *vd; 916 int t; 917 918 ASSERT(tvd == tvd->vdev_top); 919 920 tvd->vdev_ms_array = svd->vdev_ms_array; 921 tvd->vdev_ms_shift = svd->vdev_ms_shift; 922 tvd->vdev_ms_count = svd->vdev_ms_count; 923 tvd->vdev_top_zap = svd->vdev_top_zap; 924 925 svd->vdev_ms_array = 0; 926 svd->vdev_ms_shift = 0; 927 svd->vdev_ms_count = 0; 928 svd->vdev_top_zap = 0; 929 930 if (tvd->vdev_mg) 931 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 932 tvd->vdev_mg = svd->vdev_mg; 933 tvd->vdev_ms = svd->vdev_ms; 934 935 svd->vdev_mg = NULL; 936 svd->vdev_ms = NULL; 937 938 if (tvd->vdev_mg != NULL) 939 tvd->vdev_mg->mg_vd = tvd; 940 941 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 942 svd->vdev_checkpoint_sm = NULL; 943 944 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 945 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 946 947 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 948 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 949 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 950 951 svd->vdev_stat.vs_alloc = 0; 952 svd->vdev_stat.vs_space = 0; 953 svd->vdev_stat.vs_dspace = 0; 954 955 /* 956 * State which may be set on a top-level vdev that's in the 957 * process of being removed. 958 */ 959 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 960 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 961 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 962 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 963 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 964 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 965 ASSERT0(tvd->vdev_removing); 966 tvd->vdev_removing = svd->vdev_removing; 967 tvd->vdev_indirect_config = svd->vdev_indirect_config; 968 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 969 tvd->vdev_indirect_births = svd->vdev_indirect_births; 970 range_tree_swap(&svd->vdev_obsolete_segments, 971 &tvd->vdev_obsolete_segments); 972 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 973 svd->vdev_indirect_config.vic_mapping_object = 0; 974 svd->vdev_indirect_config.vic_births_object = 0; 975 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 976 svd->vdev_indirect_mapping = NULL; 977 svd->vdev_indirect_births = NULL; 978 svd->vdev_obsolete_sm = NULL; 979 svd->vdev_removing = 0; 980 981 for (t = 0; t < TXG_SIZE; t++) { 982 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 983 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 984 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 985 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 986 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 987 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 988 } 989 990 if (list_link_active(&svd->vdev_config_dirty_node)) { 991 vdev_config_clean(svd); 992 vdev_config_dirty(tvd); 993 } 994 995 if (list_link_active(&svd->vdev_state_dirty_node)) { 996 vdev_state_clean(svd); 997 vdev_state_dirty(tvd); 998 } 999 1000 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1001 svd->vdev_deflate_ratio = 0; 1002 1003 tvd->vdev_islog = svd->vdev_islog; 1004 svd->vdev_islog = 0; 1005 } 1006 1007 static void 1008 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1009 { 1010 if (vd == NULL) 1011 return; 1012 1013 vd->vdev_top = tvd; 1014 1015 for (int c = 0; c < vd->vdev_children; c++) 1016 vdev_top_update(tvd, vd->vdev_child[c]); 1017 } 1018 1019 /* 1020 * Add a mirror/replacing vdev above an existing vdev. 1021 */ 1022 vdev_t * 1023 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1024 { 1025 spa_t *spa = cvd->vdev_spa; 1026 vdev_t *pvd = cvd->vdev_parent; 1027 vdev_t *mvd; 1028 1029 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1030 1031 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1032 1033 mvd->vdev_asize = cvd->vdev_asize; 1034 mvd->vdev_min_asize = cvd->vdev_min_asize; 1035 mvd->vdev_max_asize = cvd->vdev_max_asize; 1036 mvd->vdev_psize = cvd->vdev_psize; 1037 mvd->vdev_ashift = cvd->vdev_ashift; 1038 mvd->vdev_state = cvd->vdev_state; 1039 mvd->vdev_crtxg = cvd->vdev_crtxg; 1040 1041 vdev_remove_child(pvd, cvd); 1042 vdev_add_child(pvd, mvd); 1043 cvd->vdev_id = mvd->vdev_children; 1044 vdev_add_child(mvd, cvd); 1045 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1046 1047 if (mvd == mvd->vdev_top) 1048 vdev_top_transfer(cvd, mvd); 1049 1050 return (mvd); 1051 } 1052 1053 /* 1054 * Remove a 1-way mirror/replacing vdev from the tree. 1055 */ 1056 void 1057 vdev_remove_parent(vdev_t *cvd) 1058 { 1059 vdev_t *mvd = cvd->vdev_parent; 1060 vdev_t *pvd = mvd->vdev_parent; 1061 1062 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1063 1064 ASSERT(mvd->vdev_children == 1); 1065 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1066 mvd->vdev_ops == &vdev_replacing_ops || 1067 mvd->vdev_ops == &vdev_spare_ops); 1068 cvd->vdev_ashift = mvd->vdev_ashift; 1069 1070 vdev_remove_child(mvd, cvd); 1071 vdev_remove_child(pvd, mvd); 1072 1073 /* 1074 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1075 * Otherwise, we could have detached an offline device, and when we 1076 * go to import the pool we'll think we have two top-level vdevs, 1077 * instead of a different version of the same top-level vdev. 1078 */ 1079 if (mvd->vdev_top == mvd) { 1080 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1081 cvd->vdev_orig_guid = cvd->vdev_guid; 1082 cvd->vdev_guid += guid_delta; 1083 cvd->vdev_guid_sum += guid_delta; 1084 } 1085 cvd->vdev_id = mvd->vdev_id; 1086 vdev_add_child(pvd, cvd); 1087 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1088 1089 if (cvd == cvd->vdev_top) 1090 vdev_top_transfer(mvd, cvd); 1091 1092 ASSERT(mvd->vdev_children == 0); 1093 vdev_free(mvd); 1094 } 1095 1096 static void 1097 vdev_metaslab_group_create(vdev_t *vd) 1098 { 1099 spa_t *spa = vd->vdev_spa; 1100 1101 /* 1102 * metaslab_group_create was delayed until allocation bias was available 1103 */ 1104 if (vd->vdev_mg == NULL) { 1105 metaslab_class_t *mc; 1106 1107 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1108 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1109 1110 ASSERT3U(vd->vdev_islog, ==, 1111 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1112 1113 switch (vd->vdev_alloc_bias) { 1114 case VDEV_BIAS_LOG: 1115 mc = spa_log_class(spa); 1116 break; 1117 case VDEV_BIAS_SPECIAL: 1118 mc = spa_special_class(spa); 1119 break; 1120 case VDEV_BIAS_DEDUP: 1121 mc = spa_dedup_class(spa); 1122 break; 1123 default: 1124 mc = spa_normal_class(spa); 1125 } 1126 1127 vd->vdev_mg = metaslab_group_create(mc, vd, 1128 spa->spa_alloc_count); 1129 1130 /* 1131 * The spa ashift values currently only reflect the 1132 * general vdev classes. Class destination is late 1133 * binding so ashift checking had to wait until now 1134 */ 1135 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1136 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1137 if (vd->vdev_ashift > spa->spa_max_ashift) 1138 spa->spa_max_ashift = vd->vdev_ashift; 1139 if (vd->vdev_ashift < spa->spa_min_ashift) 1140 spa->spa_min_ashift = vd->vdev_ashift; 1141 } 1142 } 1143 } 1144 1145 int 1146 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1147 { 1148 spa_t *spa = vd->vdev_spa; 1149 objset_t *mos = spa->spa_meta_objset; 1150 uint64_t m; 1151 uint64_t oldc = vd->vdev_ms_count; 1152 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1153 metaslab_t **mspp; 1154 int error; 1155 boolean_t expanding = (oldc != 0); 1156 1157 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1158 1159 /* 1160 * This vdev is not being allocated from yet or is a hole. 1161 */ 1162 if (vd->vdev_ms_shift == 0) 1163 return (0); 1164 1165 ASSERT(!vd->vdev_ishole); 1166 1167 ASSERT(oldc <= newc); 1168 1169 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1170 1171 if (expanding) { 1172 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1173 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1174 } 1175 1176 vd->vdev_ms = mspp; 1177 vd->vdev_ms_count = newc; 1178 for (m = oldc; m < newc; m++) { 1179 uint64_t object = 0; 1180 1181 /* 1182 * vdev_ms_array may be 0 if we are creating the "fake" 1183 * metaslabs for an indirect vdev for zdb's leak detection. 1184 * See zdb_leak_init(). 1185 */ 1186 if (txg == 0 && vd->vdev_ms_array != 0) { 1187 error = dmu_read(mos, vd->vdev_ms_array, 1188 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1189 DMU_READ_PREFETCH); 1190 if (error != 0) { 1191 vdev_dbgmsg(vd, "unable to read the metaslab " 1192 "array [error=%d]", error); 1193 return (error); 1194 } 1195 } 1196 1197 #ifndef _KERNEL 1198 /* 1199 * To accomodate zdb_leak_init() fake indirect 1200 * metaslabs, we allocate a metaslab group for 1201 * indirect vdevs which normally don't have one. 1202 */ 1203 if (vd->vdev_mg == NULL) { 1204 ASSERT0(vdev_is_concrete(vd)); 1205 vdev_metaslab_group_create(vd); 1206 } 1207 #endif 1208 error = metaslab_init(vd->vdev_mg, m, object, txg, 1209 &(vd->vdev_ms[m])); 1210 if (error != 0) { 1211 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1212 error); 1213 return (error); 1214 } 1215 } 1216 1217 if (txg == 0) 1218 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1219 1220 /* 1221 * If the vdev is being removed we don't activate 1222 * the metaslabs since we want to ensure that no new 1223 * allocations are performed on this device. 1224 */ 1225 if (!expanding && !vd->vdev_removing) { 1226 metaslab_group_activate(vd->vdev_mg); 1227 } 1228 1229 if (txg == 0) 1230 spa_config_exit(spa, SCL_ALLOC, FTAG); 1231 1232 return (0); 1233 } 1234 1235 void 1236 vdev_metaslab_fini(vdev_t *vd) 1237 { 1238 if (vd->vdev_checkpoint_sm != NULL) { 1239 ASSERT(spa_feature_is_active(vd->vdev_spa, 1240 SPA_FEATURE_POOL_CHECKPOINT)); 1241 space_map_close(vd->vdev_checkpoint_sm); 1242 /* 1243 * Even though we close the space map, we need to set its 1244 * pointer to NULL. The reason is that vdev_metaslab_fini() 1245 * may be called multiple times for certain operations 1246 * (i.e. when destroying a pool) so we need to ensure that 1247 * this clause never executes twice. This logic is similar 1248 * to the one used for the vdev_ms clause below. 1249 */ 1250 vd->vdev_checkpoint_sm = NULL; 1251 } 1252 1253 if (vd->vdev_ms != NULL) { 1254 uint64_t count = vd->vdev_ms_count; 1255 1256 metaslab_group_passivate(vd->vdev_mg); 1257 for (uint64_t m = 0; m < count; m++) { 1258 metaslab_t *msp = vd->vdev_ms[m]; 1259 1260 if (msp != NULL) 1261 metaslab_fini(msp); 1262 } 1263 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1264 vd->vdev_ms = NULL; 1265 1266 vd->vdev_ms_count = 0; 1267 } 1268 ASSERT0(vd->vdev_ms_count); 1269 } 1270 1271 typedef struct vdev_probe_stats { 1272 boolean_t vps_readable; 1273 boolean_t vps_writeable; 1274 int vps_flags; 1275 } vdev_probe_stats_t; 1276 1277 static void 1278 vdev_probe_done(zio_t *zio) 1279 { 1280 spa_t *spa = zio->io_spa; 1281 vdev_t *vd = zio->io_vd; 1282 vdev_probe_stats_t *vps = zio->io_private; 1283 1284 ASSERT(vd->vdev_probe_zio != NULL); 1285 1286 if (zio->io_type == ZIO_TYPE_READ) { 1287 if (zio->io_error == 0) 1288 vps->vps_readable = 1; 1289 if (zio->io_error == 0 && spa_writeable(spa)) { 1290 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1291 zio->io_offset, zio->io_size, zio->io_abd, 1292 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1293 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1294 } else { 1295 abd_free(zio->io_abd); 1296 } 1297 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1298 if (zio->io_error == 0) 1299 vps->vps_writeable = 1; 1300 abd_free(zio->io_abd); 1301 } else if (zio->io_type == ZIO_TYPE_NULL) { 1302 zio_t *pio; 1303 1304 vd->vdev_cant_read |= !vps->vps_readable; 1305 vd->vdev_cant_write |= !vps->vps_writeable; 1306 1307 if (vdev_readable(vd) && 1308 (vdev_writeable(vd) || !spa_writeable(spa))) { 1309 zio->io_error = 0; 1310 } else { 1311 ASSERT(zio->io_error != 0); 1312 vdev_dbgmsg(vd, "failed probe"); 1313 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1314 spa, vd, NULL, 0, 0); 1315 zio->io_error = SET_ERROR(ENXIO); 1316 } 1317 1318 mutex_enter(&vd->vdev_probe_lock); 1319 ASSERT(vd->vdev_probe_zio == zio); 1320 vd->vdev_probe_zio = NULL; 1321 mutex_exit(&vd->vdev_probe_lock); 1322 1323 zio_link_t *zl = NULL; 1324 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1325 if (!vdev_accessible(vd, pio)) 1326 pio->io_error = SET_ERROR(ENXIO); 1327 1328 kmem_free(vps, sizeof (*vps)); 1329 } 1330 } 1331 1332 /* 1333 * Determine whether this device is accessible. 1334 * 1335 * Read and write to several known locations: the pad regions of each 1336 * vdev label but the first, which we leave alone in case it contains 1337 * a VTOC. 1338 */ 1339 zio_t * 1340 vdev_probe(vdev_t *vd, zio_t *zio) 1341 { 1342 spa_t *spa = vd->vdev_spa; 1343 vdev_probe_stats_t *vps = NULL; 1344 zio_t *pio; 1345 1346 ASSERT(vd->vdev_ops->vdev_op_leaf); 1347 1348 /* 1349 * Don't probe the probe. 1350 */ 1351 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1352 return (NULL); 1353 1354 /* 1355 * To prevent 'probe storms' when a device fails, we create 1356 * just one probe i/o at a time. All zios that want to probe 1357 * this vdev will become parents of the probe io. 1358 */ 1359 mutex_enter(&vd->vdev_probe_lock); 1360 1361 if ((pio = vd->vdev_probe_zio) == NULL) { 1362 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1363 1364 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1365 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1366 ZIO_FLAG_TRYHARD; 1367 1368 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1369 /* 1370 * vdev_cant_read and vdev_cant_write can only 1371 * transition from TRUE to FALSE when we have the 1372 * SCL_ZIO lock as writer; otherwise they can only 1373 * transition from FALSE to TRUE. This ensures that 1374 * any zio looking at these values can assume that 1375 * failures persist for the life of the I/O. That's 1376 * important because when a device has intermittent 1377 * connectivity problems, we want to ensure that 1378 * they're ascribed to the device (ENXIO) and not 1379 * the zio (EIO). 1380 * 1381 * Since we hold SCL_ZIO as writer here, clear both 1382 * values so the probe can reevaluate from first 1383 * principles. 1384 */ 1385 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1386 vd->vdev_cant_read = B_FALSE; 1387 vd->vdev_cant_write = B_FALSE; 1388 } 1389 1390 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1391 vdev_probe_done, vps, 1392 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1393 1394 /* 1395 * We can't change the vdev state in this context, so we 1396 * kick off an async task to do it on our behalf. 1397 */ 1398 if (zio != NULL) { 1399 vd->vdev_probe_wanted = B_TRUE; 1400 spa_async_request(spa, SPA_ASYNC_PROBE); 1401 } 1402 } 1403 1404 if (zio != NULL) 1405 zio_add_child(zio, pio); 1406 1407 mutex_exit(&vd->vdev_probe_lock); 1408 1409 if (vps == NULL) { 1410 ASSERT(zio != NULL); 1411 return (NULL); 1412 } 1413 1414 for (int l = 1; l < VDEV_LABELS; l++) { 1415 zio_nowait(zio_read_phys(pio, vd, 1416 vdev_label_offset(vd->vdev_psize, l, 1417 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1418 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1419 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1420 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1421 } 1422 1423 if (zio == NULL) 1424 return (pio); 1425 1426 zio_nowait(pio); 1427 return (NULL); 1428 } 1429 1430 static void 1431 vdev_open_child(void *arg) 1432 { 1433 vdev_t *vd = arg; 1434 1435 vd->vdev_open_thread = curthread; 1436 vd->vdev_open_error = vdev_open(vd); 1437 vd->vdev_open_thread = NULL; 1438 } 1439 1440 boolean_t 1441 vdev_uses_zvols(vdev_t *vd) 1442 { 1443 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1444 strlen(ZVOL_DIR)) == 0) 1445 return (B_TRUE); 1446 for (int c = 0; c < vd->vdev_children; c++) 1447 if (vdev_uses_zvols(vd->vdev_child[c])) 1448 return (B_TRUE); 1449 return (B_FALSE); 1450 } 1451 1452 void 1453 vdev_open_children(vdev_t *vd) 1454 { 1455 taskq_t *tq; 1456 int children = vd->vdev_children; 1457 1458 /* 1459 * in order to handle pools on top of zvols, do the opens 1460 * in a single thread so that the same thread holds the 1461 * spa_namespace_lock 1462 */ 1463 if (vdev_uses_zvols(vd)) { 1464 for (int c = 0; c < children; c++) 1465 vd->vdev_child[c]->vdev_open_error = 1466 vdev_open(vd->vdev_child[c]); 1467 return; 1468 } 1469 tq = taskq_create("vdev_open", children, minclsyspri, 1470 children, children, TASKQ_PREPOPULATE); 1471 1472 for (int c = 0; c < children; c++) 1473 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1474 TQ_SLEEP) != TASKQID_INVALID); 1475 1476 taskq_destroy(tq); 1477 } 1478 1479 /* 1480 * Compute the raidz-deflation ratio. Note, we hard-code 1481 * in 128k (1 << 17) because it is the "typical" blocksize. 1482 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1483 * otherwise it would inconsistently account for existing bp's. 1484 */ 1485 static void 1486 vdev_set_deflate_ratio(vdev_t *vd) 1487 { 1488 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1489 vd->vdev_deflate_ratio = (1 << 17) / 1490 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1491 } 1492 } 1493 1494 /* 1495 * Prepare a virtual device for access. 1496 */ 1497 int 1498 vdev_open(vdev_t *vd) 1499 { 1500 spa_t *spa = vd->vdev_spa; 1501 int error; 1502 uint64_t osize = 0; 1503 uint64_t max_osize = 0; 1504 uint64_t asize, max_asize, psize; 1505 uint64_t ashift = 0; 1506 1507 ASSERT(vd->vdev_open_thread == curthread || 1508 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1509 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1510 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1511 vd->vdev_state == VDEV_STATE_OFFLINE); 1512 1513 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1514 vd->vdev_cant_read = B_FALSE; 1515 vd->vdev_cant_write = B_FALSE; 1516 vd->vdev_min_asize = vdev_get_min_asize(vd); 1517 1518 /* 1519 * If this vdev is not removed, check its fault status. If it's 1520 * faulted, bail out of the open. 1521 */ 1522 if (!vd->vdev_removed && vd->vdev_faulted) { 1523 ASSERT(vd->vdev_children == 0); 1524 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1525 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1526 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1527 vd->vdev_label_aux); 1528 return (SET_ERROR(ENXIO)); 1529 } else if (vd->vdev_offline) { 1530 ASSERT(vd->vdev_children == 0); 1531 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1532 return (SET_ERROR(ENXIO)); 1533 } 1534 1535 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1536 1537 /* 1538 * Reset the vdev_reopening flag so that we actually close 1539 * the vdev on error. 1540 */ 1541 vd->vdev_reopening = B_FALSE; 1542 if (zio_injection_enabled && error == 0) 1543 error = zio_handle_device_injection(vd, NULL, ENXIO); 1544 1545 if (error) { 1546 if (vd->vdev_removed && 1547 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1548 vd->vdev_removed = B_FALSE; 1549 1550 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1551 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1552 vd->vdev_stat.vs_aux); 1553 } else { 1554 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1555 vd->vdev_stat.vs_aux); 1556 } 1557 return (error); 1558 } 1559 1560 vd->vdev_removed = B_FALSE; 1561 1562 /* 1563 * Recheck the faulted flag now that we have confirmed that 1564 * the vdev is accessible. If we're faulted, bail. 1565 */ 1566 if (vd->vdev_faulted) { 1567 ASSERT(vd->vdev_children == 0); 1568 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1569 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1570 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1571 vd->vdev_label_aux); 1572 return (SET_ERROR(ENXIO)); 1573 } 1574 1575 if (vd->vdev_degraded) { 1576 ASSERT(vd->vdev_children == 0); 1577 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1578 VDEV_AUX_ERR_EXCEEDED); 1579 } else { 1580 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1581 } 1582 1583 /* 1584 * For hole or missing vdevs we just return success. 1585 */ 1586 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1587 return (0); 1588 1589 for (int c = 0; c < vd->vdev_children; c++) { 1590 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1591 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1592 VDEV_AUX_NONE); 1593 break; 1594 } 1595 } 1596 1597 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1598 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1599 1600 if (vd->vdev_children == 0) { 1601 if (osize < SPA_MINDEVSIZE) { 1602 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1603 VDEV_AUX_TOO_SMALL); 1604 return (SET_ERROR(EOVERFLOW)); 1605 } 1606 psize = osize; 1607 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1608 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1609 VDEV_LABEL_END_SIZE); 1610 } else { 1611 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1612 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1613 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1614 VDEV_AUX_TOO_SMALL); 1615 return (SET_ERROR(EOVERFLOW)); 1616 } 1617 psize = 0; 1618 asize = osize; 1619 max_asize = max_osize; 1620 } 1621 1622 vd->vdev_psize = psize; 1623 1624 /* 1625 * Make sure the allocatable size hasn't shrunk too much. 1626 */ 1627 if (asize < vd->vdev_min_asize) { 1628 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1629 VDEV_AUX_BAD_LABEL); 1630 return (SET_ERROR(EINVAL)); 1631 } 1632 1633 if (vd->vdev_asize == 0) { 1634 /* 1635 * This is the first-ever open, so use the computed values. 1636 * For testing purposes, a higher ashift can be requested. 1637 */ 1638 vd->vdev_asize = asize; 1639 vd->vdev_max_asize = max_asize; 1640 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1641 vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift); 1642 } else { 1643 /* 1644 * Detect if the alignment requirement has increased. 1645 * We don't want to make the pool unavailable, just 1646 * issue a warning instead. 1647 */ 1648 if (ashift > vd->vdev_top->vdev_ashift && 1649 vd->vdev_ops->vdev_op_leaf) { 1650 cmn_err(CE_WARN, 1651 "Disk, '%s', has a block alignment that is " 1652 "larger than the pool's alignment\n", 1653 vd->vdev_path); 1654 } 1655 vd->vdev_max_asize = max_asize; 1656 } 1657 1658 /* 1659 * If all children are healthy we update asize if either: 1660 * The asize has increased, due to a device expansion caused by dynamic 1661 * LUN growth or vdev replacement, and automatic expansion is enabled; 1662 * making the additional space available. 1663 * 1664 * The asize has decreased, due to a device shrink usually caused by a 1665 * vdev replace with a smaller device. This ensures that calculations 1666 * based of max_asize and asize e.g. esize are always valid. It's safe 1667 * to do this as we've already validated that asize is greater than 1668 * vdev_min_asize. 1669 */ 1670 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1671 ((asize > vd->vdev_asize && 1672 (vd->vdev_expanding || spa->spa_autoexpand)) || 1673 (asize < vd->vdev_asize))) 1674 vd->vdev_asize = asize; 1675 1676 vdev_set_min_asize(vd); 1677 1678 /* 1679 * Ensure we can issue some IO before declaring the 1680 * vdev open for business. 1681 */ 1682 if (vd->vdev_ops->vdev_op_leaf && 1683 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1684 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1685 VDEV_AUX_ERR_EXCEEDED); 1686 return (error); 1687 } 1688 1689 /* 1690 * Track the min and max ashift values for normal data devices. 1691 * 1692 * DJB - TBD these should perhaps be tracked per allocation class 1693 * (e.g. spa_min_ashift is used to round up post compression buffers) 1694 */ 1695 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1696 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1697 vd->vdev_aux == NULL) { 1698 if (vd->vdev_ashift > spa->spa_max_ashift) 1699 spa->spa_max_ashift = vd->vdev_ashift; 1700 if (vd->vdev_ashift < spa->spa_min_ashift) 1701 spa->spa_min_ashift = vd->vdev_ashift; 1702 } 1703 1704 /* 1705 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1706 * resilver. But don't do this if we are doing a reopen for a scrub, 1707 * since this would just restart the scrub we are already doing. 1708 */ 1709 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1710 vdev_resilver_needed(vd, NULL, NULL)) 1711 spa_async_request(spa, SPA_ASYNC_RESILVER); 1712 1713 return (0); 1714 } 1715 1716 /* 1717 * Called once the vdevs are all opened, this routine validates the label 1718 * contents. This needs to be done before vdev_load() so that we don't 1719 * inadvertently do repair I/Os to the wrong device. 1720 * 1721 * This function will only return failure if one of the vdevs indicates that it 1722 * has since been destroyed or exported. This is only possible if 1723 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1724 * will be updated but the function will return 0. 1725 */ 1726 int 1727 vdev_validate(vdev_t *vd) 1728 { 1729 spa_t *spa = vd->vdev_spa; 1730 nvlist_t *label; 1731 uint64_t guid = 0, aux_guid = 0, top_guid; 1732 uint64_t state; 1733 nvlist_t *nvl; 1734 uint64_t txg; 1735 1736 if (vdev_validate_skip) 1737 return (0); 1738 1739 for (uint64_t c = 0; c < vd->vdev_children; c++) 1740 if (vdev_validate(vd->vdev_child[c]) != 0) 1741 return (SET_ERROR(EBADF)); 1742 1743 /* 1744 * If the device has already failed, or was marked offline, don't do 1745 * any further validation. Otherwise, label I/O will fail and we will 1746 * overwrite the previous state. 1747 */ 1748 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1749 return (0); 1750 1751 /* 1752 * If we are performing an extreme rewind, we allow for a label that 1753 * was modified at a point after the current txg. 1754 * If config lock is not held do not check for the txg. spa_sync could 1755 * be updating the vdev's label before updating spa_last_synced_txg. 1756 */ 1757 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1758 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1759 txg = UINT64_MAX; 1760 else 1761 txg = spa_last_synced_txg(spa); 1762 1763 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1764 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1765 VDEV_AUX_BAD_LABEL); 1766 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1767 "txg %llu", (u_longlong_t)txg); 1768 return (0); 1769 } 1770 1771 /* 1772 * Determine if this vdev has been split off into another 1773 * pool. If so, then refuse to open it. 1774 */ 1775 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1776 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1777 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1778 VDEV_AUX_SPLIT_POOL); 1779 nvlist_free(label); 1780 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1781 return (0); 1782 } 1783 1784 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1785 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1786 VDEV_AUX_CORRUPT_DATA); 1787 nvlist_free(label); 1788 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1789 ZPOOL_CONFIG_POOL_GUID); 1790 return (0); 1791 } 1792 1793 /* 1794 * If config is not trusted then ignore the spa guid check. This is 1795 * necessary because if the machine crashed during a re-guid the new 1796 * guid might have been written to all of the vdev labels, but not the 1797 * cached config. The check will be performed again once we have the 1798 * trusted config from the MOS. 1799 */ 1800 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1801 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1802 VDEV_AUX_CORRUPT_DATA); 1803 nvlist_free(label); 1804 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1805 "match config (%llu != %llu)", (u_longlong_t)guid, 1806 (u_longlong_t)spa_guid(spa)); 1807 return (0); 1808 } 1809 1810 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1811 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1812 &aux_guid) != 0) 1813 aux_guid = 0; 1814 1815 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1816 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1817 VDEV_AUX_CORRUPT_DATA); 1818 nvlist_free(label); 1819 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1820 ZPOOL_CONFIG_GUID); 1821 return (0); 1822 } 1823 1824 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1825 != 0) { 1826 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1827 VDEV_AUX_CORRUPT_DATA); 1828 nvlist_free(label); 1829 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1830 ZPOOL_CONFIG_TOP_GUID); 1831 return (0); 1832 } 1833 1834 /* 1835 * If this vdev just became a top-level vdev because its sibling was 1836 * detached, it will have adopted the parent's vdev guid -- but the 1837 * label may or may not be on disk yet. Fortunately, either version 1838 * of the label will have the same top guid, so if we're a top-level 1839 * vdev, we can safely compare to that instead. 1840 * However, if the config comes from a cachefile that failed to update 1841 * after the detach, a top-level vdev will appear as a non top-level 1842 * vdev in the config. Also relax the constraints if we perform an 1843 * extreme rewind. 1844 * 1845 * If we split this vdev off instead, then we also check the 1846 * original pool's guid. We don't want to consider the vdev 1847 * corrupt if it is partway through a split operation. 1848 */ 1849 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1850 boolean_t mismatch = B_FALSE; 1851 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1852 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1853 mismatch = B_TRUE; 1854 } else { 1855 if (vd->vdev_guid != top_guid && 1856 vd->vdev_top->vdev_guid != guid) 1857 mismatch = B_TRUE; 1858 } 1859 1860 if (mismatch) { 1861 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1862 VDEV_AUX_CORRUPT_DATA); 1863 nvlist_free(label); 1864 vdev_dbgmsg(vd, "vdev_validate: config guid " 1865 "doesn't match label guid"); 1866 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1867 (u_longlong_t)vd->vdev_guid, 1868 (u_longlong_t)vd->vdev_top->vdev_guid); 1869 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1870 "aux_guid %llu", (u_longlong_t)guid, 1871 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1872 return (0); 1873 } 1874 } 1875 1876 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1877 &state) != 0) { 1878 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1879 VDEV_AUX_CORRUPT_DATA); 1880 nvlist_free(label); 1881 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1882 ZPOOL_CONFIG_POOL_STATE); 1883 return (0); 1884 } 1885 1886 nvlist_free(label); 1887 1888 /* 1889 * If this is a verbatim import, no need to check the 1890 * state of the pool. 1891 */ 1892 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1893 spa_load_state(spa) == SPA_LOAD_OPEN && 1894 state != POOL_STATE_ACTIVE) { 1895 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1896 "for spa %s", (u_longlong_t)state, spa->spa_name); 1897 return (SET_ERROR(EBADF)); 1898 } 1899 1900 /* 1901 * If we were able to open and validate a vdev that was 1902 * previously marked permanently unavailable, clear that state 1903 * now. 1904 */ 1905 if (vd->vdev_not_present) 1906 vd->vdev_not_present = 0; 1907 1908 return (0); 1909 } 1910 1911 static void 1912 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1913 { 1914 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1915 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1916 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1917 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1918 dvd->vdev_path, svd->vdev_path); 1919 spa_strfree(dvd->vdev_path); 1920 dvd->vdev_path = spa_strdup(svd->vdev_path); 1921 } 1922 } else if (svd->vdev_path != NULL) { 1923 dvd->vdev_path = spa_strdup(svd->vdev_path); 1924 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 1925 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 1926 } 1927 } 1928 1929 /* 1930 * Recursively copy vdev paths from one vdev to another. Source and destination 1931 * vdev trees must have same geometry otherwise return error. Intended to copy 1932 * paths from userland config into MOS config. 1933 */ 1934 int 1935 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 1936 { 1937 if ((svd->vdev_ops == &vdev_missing_ops) || 1938 (svd->vdev_ishole && dvd->vdev_ishole) || 1939 (dvd->vdev_ops == &vdev_indirect_ops)) 1940 return (0); 1941 1942 if (svd->vdev_ops != dvd->vdev_ops) { 1943 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 1944 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 1945 return (SET_ERROR(EINVAL)); 1946 } 1947 1948 if (svd->vdev_guid != dvd->vdev_guid) { 1949 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 1950 "%llu)", (u_longlong_t)svd->vdev_guid, 1951 (u_longlong_t)dvd->vdev_guid); 1952 return (SET_ERROR(EINVAL)); 1953 } 1954 1955 if (svd->vdev_children != dvd->vdev_children) { 1956 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 1957 "%llu != %llu", (u_longlong_t)svd->vdev_children, 1958 (u_longlong_t)dvd->vdev_children); 1959 return (SET_ERROR(EINVAL)); 1960 } 1961 1962 for (uint64_t i = 0; i < svd->vdev_children; i++) { 1963 int error = vdev_copy_path_strict(svd->vdev_child[i], 1964 dvd->vdev_child[i]); 1965 if (error != 0) 1966 return (error); 1967 } 1968 1969 if (svd->vdev_ops->vdev_op_leaf) 1970 vdev_copy_path_impl(svd, dvd); 1971 1972 return (0); 1973 } 1974 1975 static void 1976 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 1977 { 1978 ASSERT(stvd->vdev_top == stvd); 1979 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 1980 1981 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 1982 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 1983 } 1984 1985 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 1986 return; 1987 1988 /* 1989 * The idea here is that while a vdev can shift positions within 1990 * a top vdev (when replacing, attaching mirror, etc.) it cannot 1991 * step outside of it. 1992 */ 1993 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 1994 1995 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 1996 return; 1997 1998 ASSERT(vd->vdev_ops->vdev_op_leaf); 1999 2000 vdev_copy_path_impl(vd, dvd); 2001 } 2002 2003 /* 2004 * Recursively copy vdev paths from one root vdev to another. Source and 2005 * destination vdev trees may differ in geometry. For each destination leaf 2006 * vdev, search a vdev with the same guid and top vdev id in the source. 2007 * Intended to copy paths from userland config into MOS config. 2008 */ 2009 void 2010 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2011 { 2012 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2013 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2014 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2015 2016 for (uint64_t i = 0; i < children; i++) { 2017 vdev_copy_path_search(srvd->vdev_child[i], 2018 drvd->vdev_child[i]); 2019 } 2020 } 2021 2022 /* 2023 * Close a virtual device. 2024 */ 2025 void 2026 vdev_close(vdev_t *vd) 2027 { 2028 spa_t *spa = vd->vdev_spa; 2029 vdev_t *pvd = vd->vdev_parent; 2030 2031 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2032 2033 /* 2034 * If our parent is reopening, then we are as well, unless we are 2035 * going offline. 2036 */ 2037 if (pvd != NULL && pvd->vdev_reopening) 2038 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2039 2040 vd->vdev_ops->vdev_op_close(vd); 2041 2042 vdev_cache_purge(vd); 2043 2044 /* 2045 * We record the previous state before we close it, so that if we are 2046 * doing a reopen(), we don't generate FMA ereports if we notice that 2047 * it's still faulted. 2048 */ 2049 vd->vdev_prevstate = vd->vdev_state; 2050 2051 if (vd->vdev_offline) 2052 vd->vdev_state = VDEV_STATE_OFFLINE; 2053 else 2054 vd->vdev_state = VDEV_STATE_CLOSED; 2055 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2056 } 2057 2058 void 2059 vdev_hold(vdev_t *vd) 2060 { 2061 spa_t *spa = vd->vdev_spa; 2062 2063 ASSERT(spa_is_root(spa)); 2064 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2065 return; 2066 2067 for (int c = 0; c < vd->vdev_children; c++) 2068 vdev_hold(vd->vdev_child[c]); 2069 2070 if (vd->vdev_ops->vdev_op_leaf) 2071 vd->vdev_ops->vdev_op_hold(vd); 2072 } 2073 2074 void 2075 vdev_rele(vdev_t *vd) 2076 { 2077 spa_t *spa = vd->vdev_spa; 2078 2079 ASSERT(spa_is_root(spa)); 2080 for (int c = 0; c < vd->vdev_children; c++) 2081 vdev_rele(vd->vdev_child[c]); 2082 2083 if (vd->vdev_ops->vdev_op_leaf) 2084 vd->vdev_ops->vdev_op_rele(vd); 2085 } 2086 2087 /* 2088 * Reopen all interior vdevs and any unopened leaves. We don't actually 2089 * reopen leaf vdevs which had previously been opened as they might deadlock 2090 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2091 * If the leaf has never been opened then open it, as usual. 2092 */ 2093 void 2094 vdev_reopen(vdev_t *vd) 2095 { 2096 spa_t *spa = vd->vdev_spa; 2097 2098 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2099 2100 /* set the reopening flag unless we're taking the vdev offline */ 2101 vd->vdev_reopening = !vd->vdev_offline; 2102 vdev_close(vd); 2103 (void) vdev_open(vd); 2104 2105 /* 2106 * Call vdev_validate() here to make sure we have the same device. 2107 * Otherwise, a device with an invalid label could be successfully 2108 * opened in response to vdev_reopen(). 2109 */ 2110 if (vd->vdev_aux) { 2111 (void) vdev_validate_aux(vd); 2112 if (vdev_readable(vd) && vdev_writeable(vd) && 2113 vd->vdev_aux == &spa->spa_l2cache && 2114 !l2arc_vdev_present(vd)) 2115 l2arc_add_vdev(spa, vd); 2116 } else { 2117 (void) vdev_validate(vd); 2118 } 2119 2120 /* 2121 * Reassess parent vdev's health. 2122 */ 2123 vdev_propagate_state(vd); 2124 } 2125 2126 int 2127 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2128 { 2129 int error; 2130 2131 /* 2132 * Normally, partial opens (e.g. of a mirror) are allowed. 2133 * For a create, however, we want to fail the request if 2134 * there are any components we can't open. 2135 */ 2136 error = vdev_open(vd); 2137 2138 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2139 vdev_close(vd); 2140 return (error ? error : ENXIO); 2141 } 2142 2143 /* 2144 * Recursively load DTLs and initialize all labels. 2145 */ 2146 if ((error = vdev_dtl_load(vd)) != 0 || 2147 (error = vdev_label_init(vd, txg, isreplacing ? 2148 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2149 vdev_close(vd); 2150 return (error); 2151 } 2152 2153 return (0); 2154 } 2155 2156 void 2157 vdev_metaslab_set_size(vdev_t *vd) 2158 { 2159 uint64_t asize = vd->vdev_asize; 2160 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2161 uint64_t ms_shift; 2162 2163 /* 2164 * There are two dimensions to the metaslab sizing calculation: 2165 * the size of the metaslab and the count of metaslabs per vdev. 2166 * 2167 * The default values used below are a good balance between memory 2168 * usage (larger metaslab size means more memory needed for loaded 2169 * metaslabs; more metaslabs means more memory needed for the 2170 * metaslab_t structs), metaslab load time (larger metaslabs take 2171 * longer to load), and metaslab sync time (more metaslabs means 2172 * more time spent syncing all of them). 2173 * 2174 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2175 * The range of the dimensions are as follows: 2176 * 2177 * 2^29 <= ms_size <= 2^34 2178 * 16 <= ms_count <= 131,072 2179 * 2180 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2181 * at least 512MB (2^29) to minimize fragmentation effects when 2182 * testing with smaller devices. However, the count constraint 2183 * of at least 16 metaslabs will override this minimum size goal. 2184 * 2185 * On the upper end of vdev sizes, we aim for a maximum metaslab 2186 * size of 16GB. However, we will cap the total count to 2^17 2187 * metaslabs to keep our memory footprint in check and let the 2188 * metaslab size grow from there if that limit is hit. 2189 * 2190 * The net effect of applying above constrains is summarized below. 2191 * 2192 * vdev size metaslab count 2193 * --------------|----------------- 2194 * < 8GB ~16 2195 * 8GB - 100GB one per 512MB 2196 * 100GB - 3TB ~200 2197 * 3TB - 2PB one per 16GB 2198 * > 2PB ~131,072 2199 * -------------------------------- 2200 * 2201 * Finally, note that all of the above calculate the initial 2202 * number of metaslabs. Expanding a top-level vdev will result 2203 * in additional metaslabs being allocated making it possible 2204 * to exceed the zfs_vdev_ms_count_limit. 2205 */ 2206 2207 if (ms_count < zfs_vdev_min_ms_count) 2208 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2209 else if (ms_count > zfs_vdev_default_ms_count) 2210 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2211 else 2212 ms_shift = zfs_vdev_default_ms_shift; 2213 2214 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2215 ms_shift = SPA_MAXBLOCKSHIFT; 2216 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2217 ms_shift = zfs_vdev_max_ms_shift; 2218 /* cap the total count to constrain memory footprint */ 2219 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2220 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2221 } 2222 2223 vd->vdev_ms_shift = ms_shift; 2224 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2225 } 2226 2227 void 2228 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2229 { 2230 ASSERT(vd == vd->vdev_top); 2231 /* indirect vdevs don't have metaslabs or dtls */ 2232 ASSERT(vdev_is_concrete(vd) || flags == 0); 2233 ASSERT(ISP2(flags)); 2234 ASSERT(spa_writeable(vd->vdev_spa)); 2235 2236 if (flags & VDD_METASLAB) 2237 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2238 2239 if (flags & VDD_DTL) 2240 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2241 2242 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2243 } 2244 2245 void 2246 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2247 { 2248 for (int c = 0; c < vd->vdev_children; c++) 2249 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2250 2251 if (vd->vdev_ops->vdev_op_leaf) 2252 vdev_dirty(vd->vdev_top, flags, vd, txg); 2253 } 2254 2255 /* 2256 * DTLs. 2257 * 2258 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2259 * the vdev has less than perfect replication. There are four kinds of DTL: 2260 * 2261 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2262 * 2263 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2264 * 2265 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2266 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2267 * txgs that was scrubbed. 2268 * 2269 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2270 * persistent errors or just some device being offline. 2271 * Unlike the other three, the DTL_OUTAGE map is not generally 2272 * maintained; it's only computed when needed, typically to 2273 * determine whether a device can be detached. 2274 * 2275 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2276 * either has the data or it doesn't. 2277 * 2278 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2279 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2280 * if any child is less than fully replicated, then so is its parent. 2281 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2282 * comprising only those txgs which appear in 'maxfaults' or more children; 2283 * those are the txgs we don't have enough replication to read. For example, 2284 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2285 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2286 * two child DTL_MISSING maps. 2287 * 2288 * It should be clear from the above that to compute the DTLs and outage maps 2289 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2290 * Therefore, that is all we keep on disk. When loading the pool, or after 2291 * a configuration change, we generate all other DTLs from first principles. 2292 */ 2293 void 2294 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2295 { 2296 range_tree_t *rt = vd->vdev_dtl[t]; 2297 2298 ASSERT(t < DTL_TYPES); 2299 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2300 ASSERT(spa_writeable(vd->vdev_spa)); 2301 2302 mutex_enter(&vd->vdev_dtl_lock); 2303 if (!range_tree_contains(rt, txg, size)) 2304 range_tree_add(rt, txg, size); 2305 mutex_exit(&vd->vdev_dtl_lock); 2306 } 2307 2308 boolean_t 2309 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2310 { 2311 range_tree_t *rt = vd->vdev_dtl[t]; 2312 boolean_t dirty = B_FALSE; 2313 2314 ASSERT(t < DTL_TYPES); 2315 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2316 2317 /* 2318 * While we are loading the pool, the DTLs have not been loaded yet. 2319 * Ignore the DTLs and try all devices. This avoids a recursive 2320 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2321 * when loading the pool (relying on the checksum to ensure that 2322 * we get the right data -- note that we while loading, we are 2323 * only reading the MOS, which is always checksummed). 2324 */ 2325 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2326 return (B_FALSE); 2327 2328 mutex_enter(&vd->vdev_dtl_lock); 2329 if (!range_tree_is_empty(rt)) 2330 dirty = range_tree_contains(rt, txg, size); 2331 mutex_exit(&vd->vdev_dtl_lock); 2332 2333 return (dirty); 2334 } 2335 2336 boolean_t 2337 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2338 { 2339 range_tree_t *rt = vd->vdev_dtl[t]; 2340 boolean_t empty; 2341 2342 mutex_enter(&vd->vdev_dtl_lock); 2343 empty = range_tree_is_empty(rt); 2344 mutex_exit(&vd->vdev_dtl_lock); 2345 2346 return (empty); 2347 } 2348 2349 /* 2350 * Returns the lowest txg in the DTL range. 2351 */ 2352 static uint64_t 2353 vdev_dtl_min(vdev_t *vd) 2354 { 2355 range_seg_t *rs; 2356 2357 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2358 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2359 ASSERT0(vd->vdev_children); 2360 2361 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2362 return (rs->rs_start - 1); 2363 } 2364 2365 /* 2366 * Returns the highest txg in the DTL. 2367 */ 2368 static uint64_t 2369 vdev_dtl_max(vdev_t *vd) 2370 { 2371 range_seg_t *rs; 2372 2373 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2374 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2375 ASSERT0(vd->vdev_children); 2376 2377 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2378 return (rs->rs_end); 2379 } 2380 2381 /* 2382 * Determine if a resilvering vdev should remove any DTL entries from 2383 * its range. If the vdev was resilvering for the entire duration of the 2384 * scan then it should excise that range from its DTLs. Otherwise, this 2385 * vdev is considered partially resilvered and should leave its DTL 2386 * entries intact. The comment in vdev_dtl_reassess() describes how we 2387 * excise the DTLs. 2388 */ 2389 static boolean_t 2390 vdev_dtl_should_excise(vdev_t *vd) 2391 { 2392 spa_t *spa = vd->vdev_spa; 2393 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2394 2395 ASSERT0(scn->scn_phys.scn_errors); 2396 ASSERT0(vd->vdev_children); 2397 2398 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2399 return (B_FALSE); 2400 2401 if (vd->vdev_resilver_txg == 0 || 2402 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2403 return (B_TRUE); 2404 2405 /* 2406 * When a resilver is initiated the scan will assign the scn_max_txg 2407 * value to the highest txg value that exists in all DTLs. If this 2408 * device's max DTL is not part of this scan (i.e. it is not in 2409 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2410 * for excision. 2411 */ 2412 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2413 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2414 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2415 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2416 return (B_TRUE); 2417 } 2418 return (B_FALSE); 2419 } 2420 2421 /* 2422 * Reassess DTLs after a config change or scrub completion. 2423 */ 2424 void 2425 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2426 { 2427 spa_t *spa = vd->vdev_spa; 2428 avl_tree_t reftree; 2429 int minref; 2430 2431 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2432 2433 for (int c = 0; c < vd->vdev_children; c++) 2434 vdev_dtl_reassess(vd->vdev_child[c], txg, 2435 scrub_txg, scrub_done); 2436 2437 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2438 return; 2439 2440 if (vd->vdev_ops->vdev_op_leaf) { 2441 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2442 2443 mutex_enter(&vd->vdev_dtl_lock); 2444 2445 /* 2446 * If we've completed a scan cleanly then determine 2447 * if this vdev should remove any DTLs. We only want to 2448 * excise regions on vdevs that were available during 2449 * the entire duration of this scan. 2450 */ 2451 if (scrub_txg != 0 && 2452 (spa->spa_scrub_started || 2453 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2454 vdev_dtl_should_excise(vd)) { 2455 /* 2456 * We completed a scrub up to scrub_txg. If we 2457 * did it without rebooting, then the scrub dtl 2458 * will be valid, so excise the old region and 2459 * fold in the scrub dtl. Otherwise, leave the 2460 * dtl as-is if there was an error. 2461 * 2462 * There's little trick here: to excise the beginning 2463 * of the DTL_MISSING map, we put it into a reference 2464 * tree and then add a segment with refcnt -1 that 2465 * covers the range [0, scrub_txg). This means 2466 * that each txg in that range has refcnt -1 or 0. 2467 * We then add DTL_SCRUB with a refcnt of 2, so that 2468 * entries in the range [0, scrub_txg) will have a 2469 * positive refcnt -- either 1 or 2. We then convert 2470 * the reference tree into the new DTL_MISSING map. 2471 */ 2472 space_reftree_create(&reftree); 2473 space_reftree_add_map(&reftree, 2474 vd->vdev_dtl[DTL_MISSING], 1); 2475 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2476 space_reftree_add_map(&reftree, 2477 vd->vdev_dtl[DTL_SCRUB], 2); 2478 space_reftree_generate_map(&reftree, 2479 vd->vdev_dtl[DTL_MISSING], 1); 2480 space_reftree_destroy(&reftree); 2481 } 2482 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2483 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2484 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2485 if (scrub_done) 2486 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2487 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2488 if (!vdev_readable(vd)) 2489 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2490 else 2491 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2492 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2493 2494 /* 2495 * If the vdev was resilvering and no longer has any 2496 * DTLs then reset its resilvering flag. 2497 */ 2498 if (vd->vdev_resilver_txg != 0 && 2499 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2500 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2501 vd->vdev_resilver_txg = 0; 2502 2503 mutex_exit(&vd->vdev_dtl_lock); 2504 2505 if (txg != 0) 2506 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2507 return; 2508 } 2509 2510 mutex_enter(&vd->vdev_dtl_lock); 2511 for (int t = 0; t < DTL_TYPES; t++) { 2512 /* account for child's outage in parent's missing map */ 2513 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2514 if (t == DTL_SCRUB) 2515 continue; /* leaf vdevs only */ 2516 if (t == DTL_PARTIAL) 2517 minref = 1; /* i.e. non-zero */ 2518 else if (vd->vdev_nparity != 0) 2519 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2520 else 2521 minref = vd->vdev_children; /* any kind of mirror */ 2522 space_reftree_create(&reftree); 2523 for (int c = 0; c < vd->vdev_children; c++) { 2524 vdev_t *cvd = vd->vdev_child[c]; 2525 mutex_enter(&cvd->vdev_dtl_lock); 2526 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2527 mutex_exit(&cvd->vdev_dtl_lock); 2528 } 2529 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2530 space_reftree_destroy(&reftree); 2531 } 2532 mutex_exit(&vd->vdev_dtl_lock); 2533 } 2534 2535 int 2536 vdev_dtl_load(vdev_t *vd) 2537 { 2538 spa_t *spa = vd->vdev_spa; 2539 objset_t *mos = spa->spa_meta_objset; 2540 int error = 0; 2541 2542 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2543 ASSERT(vdev_is_concrete(vd)); 2544 2545 error = space_map_open(&vd->vdev_dtl_sm, mos, 2546 vd->vdev_dtl_object, 0, -1ULL, 0); 2547 if (error) 2548 return (error); 2549 ASSERT(vd->vdev_dtl_sm != NULL); 2550 2551 mutex_enter(&vd->vdev_dtl_lock); 2552 2553 /* 2554 * Now that we've opened the space_map we need to update 2555 * the in-core DTL. 2556 */ 2557 space_map_update(vd->vdev_dtl_sm); 2558 2559 error = space_map_load(vd->vdev_dtl_sm, 2560 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2561 mutex_exit(&vd->vdev_dtl_lock); 2562 2563 return (error); 2564 } 2565 2566 for (int c = 0; c < vd->vdev_children; c++) { 2567 error = vdev_dtl_load(vd->vdev_child[c]); 2568 if (error != 0) 2569 break; 2570 } 2571 2572 return (error); 2573 } 2574 2575 static void 2576 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2577 { 2578 spa_t *spa = vd->vdev_spa; 2579 objset_t *mos = spa->spa_meta_objset; 2580 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2581 const char *string; 2582 2583 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2584 2585 string = 2586 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2587 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2588 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2589 2590 ASSERT(string != NULL); 2591 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2592 1, strlen(string) + 1, string, tx)); 2593 2594 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2595 spa_activate_allocation_classes(spa, tx); 2596 } 2597 } 2598 2599 void 2600 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2601 { 2602 spa_t *spa = vd->vdev_spa; 2603 2604 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2605 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2606 zapobj, tx)); 2607 } 2608 2609 uint64_t 2610 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2611 { 2612 spa_t *spa = vd->vdev_spa; 2613 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2614 DMU_OT_NONE, 0, tx); 2615 2616 ASSERT(zap != 0); 2617 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2618 zap, tx)); 2619 2620 return (zap); 2621 } 2622 2623 void 2624 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2625 { 2626 if (vd->vdev_ops != &vdev_hole_ops && 2627 vd->vdev_ops != &vdev_missing_ops && 2628 vd->vdev_ops != &vdev_root_ops && 2629 !vd->vdev_top->vdev_removing) { 2630 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2631 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2632 } 2633 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2634 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2635 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2636 vdev_zap_allocation_data(vd, tx); 2637 } 2638 } 2639 2640 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2641 vdev_construct_zaps(vd->vdev_child[i], tx); 2642 } 2643 } 2644 2645 void 2646 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2647 { 2648 spa_t *spa = vd->vdev_spa; 2649 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2650 objset_t *mos = spa->spa_meta_objset; 2651 range_tree_t *rtsync; 2652 dmu_tx_t *tx; 2653 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2654 2655 ASSERT(vdev_is_concrete(vd)); 2656 ASSERT(vd->vdev_ops->vdev_op_leaf); 2657 2658 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2659 2660 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2661 mutex_enter(&vd->vdev_dtl_lock); 2662 space_map_free(vd->vdev_dtl_sm, tx); 2663 space_map_close(vd->vdev_dtl_sm); 2664 vd->vdev_dtl_sm = NULL; 2665 mutex_exit(&vd->vdev_dtl_lock); 2666 2667 /* 2668 * We only destroy the leaf ZAP for detached leaves or for 2669 * removed log devices. Removed data devices handle leaf ZAP 2670 * cleanup later, once cancellation is no longer possible. 2671 */ 2672 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2673 vd->vdev_top->vdev_islog)) { 2674 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2675 vd->vdev_leaf_zap = 0; 2676 } 2677 2678 dmu_tx_commit(tx); 2679 return; 2680 } 2681 2682 if (vd->vdev_dtl_sm == NULL) { 2683 uint64_t new_object; 2684 2685 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx); 2686 VERIFY3U(new_object, !=, 0); 2687 2688 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2689 0, -1ULL, 0)); 2690 ASSERT(vd->vdev_dtl_sm != NULL); 2691 } 2692 2693 rtsync = range_tree_create(NULL, NULL); 2694 2695 mutex_enter(&vd->vdev_dtl_lock); 2696 range_tree_walk(rt, range_tree_add, rtsync); 2697 mutex_exit(&vd->vdev_dtl_lock); 2698 2699 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx); 2700 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2701 range_tree_vacate(rtsync, NULL, NULL); 2702 2703 range_tree_destroy(rtsync); 2704 2705 /* 2706 * If the object for the space map has changed then dirty 2707 * the top level so that we update the config. 2708 */ 2709 if (object != space_map_object(vd->vdev_dtl_sm)) { 2710 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2711 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2712 (u_longlong_t)object, 2713 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2714 vdev_config_dirty(vd->vdev_top); 2715 } 2716 2717 dmu_tx_commit(tx); 2718 2719 mutex_enter(&vd->vdev_dtl_lock); 2720 space_map_update(vd->vdev_dtl_sm); 2721 mutex_exit(&vd->vdev_dtl_lock); 2722 } 2723 2724 /* 2725 * Determine whether the specified vdev can be offlined/detached/removed 2726 * without losing data. 2727 */ 2728 boolean_t 2729 vdev_dtl_required(vdev_t *vd) 2730 { 2731 spa_t *spa = vd->vdev_spa; 2732 vdev_t *tvd = vd->vdev_top; 2733 uint8_t cant_read = vd->vdev_cant_read; 2734 boolean_t required; 2735 2736 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2737 2738 if (vd == spa->spa_root_vdev || vd == tvd) 2739 return (B_TRUE); 2740 2741 /* 2742 * Temporarily mark the device as unreadable, and then determine 2743 * whether this results in any DTL outages in the top-level vdev. 2744 * If not, we can safely offline/detach/remove the device. 2745 */ 2746 vd->vdev_cant_read = B_TRUE; 2747 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2748 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2749 vd->vdev_cant_read = cant_read; 2750 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2751 2752 if (!required && zio_injection_enabled) 2753 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2754 2755 return (required); 2756 } 2757 2758 /* 2759 * Determine if resilver is needed, and if so the txg range. 2760 */ 2761 boolean_t 2762 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2763 { 2764 boolean_t needed = B_FALSE; 2765 uint64_t thismin = UINT64_MAX; 2766 uint64_t thismax = 0; 2767 2768 if (vd->vdev_children == 0) { 2769 mutex_enter(&vd->vdev_dtl_lock); 2770 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2771 vdev_writeable(vd)) { 2772 2773 thismin = vdev_dtl_min(vd); 2774 thismax = vdev_dtl_max(vd); 2775 needed = B_TRUE; 2776 } 2777 mutex_exit(&vd->vdev_dtl_lock); 2778 } else { 2779 for (int c = 0; c < vd->vdev_children; c++) { 2780 vdev_t *cvd = vd->vdev_child[c]; 2781 uint64_t cmin, cmax; 2782 2783 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2784 thismin = MIN(thismin, cmin); 2785 thismax = MAX(thismax, cmax); 2786 needed = B_TRUE; 2787 } 2788 } 2789 } 2790 2791 if (needed && minp) { 2792 *minp = thismin; 2793 *maxp = thismax; 2794 } 2795 return (needed); 2796 } 2797 2798 /* 2799 * Gets the checkpoint space map object from the vdev's ZAP. 2800 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2801 * or the ZAP doesn't exist yet. 2802 */ 2803 int 2804 vdev_checkpoint_sm_object(vdev_t *vd) 2805 { 2806 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2807 if (vd->vdev_top_zap == 0) { 2808 return (0); 2809 } 2810 2811 uint64_t sm_obj = 0; 2812 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2813 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2814 2815 ASSERT(err == 0 || err == ENOENT); 2816 2817 return (sm_obj); 2818 } 2819 2820 int 2821 vdev_load(vdev_t *vd) 2822 { 2823 int error = 0; 2824 /* 2825 * Recursively load all children. 2826 */ 2827 for (int c = 0; c < vd->vdev_children; c++) { 2828 error = vdev_load(vd->vdev_child[c]); 2829 if (error != 0) { 2830 return (error); 2831 } 2832 } 2833 2834 vdev_set_deflate_ratio(vd); 2835 2836 /* 2837 * On spa_load path, grab the allocation bias from our zap 2838 */ 2839 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2840 spa_t *spa = vd->vdev_spa; 2841 char bias_str[64]; 2842 2843 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2844 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2845 bias_str) == 0) { 2846 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2847 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2848 } 2849 } 2850 2851 /* 2852 * If this is a top-level vdev, initialize its metaslabs. 2853 */ 2854 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2855 vdev_metaslab_group_create(vd); 2856 2857 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2858 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2859 VDEV_AUX_CORRUPT_DATA); 2860 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2861 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2862 (u_longlong_t)vd->vdev_asize); 2863 return (SET_ERROR(ENXIO)); 2864 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) { 2865 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2866 "[error=%d]", error); 2867 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2868 VDEV_AUX_CORRUPT_DATA); 2869 return (error); 2870 } 2871 2872 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2873 if (checkpoint_sm_obj != 0) { 2874 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2875 ASSERT(vd->vdev_asize != 0); 2876 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2877 2878 if ((error = space_map_open(&vd->vdev_checkpoint_sm, 2879 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 2880 vd->vdev_ashift))) { 2881 vdev_dbgmsg(vd, "vdev_load: space_map_open " 2882 "failed for checkpoint spacemap (obj %llu) " 2883 "[error=%d]", 2884 (u_longlong_t)checkpoint_sm_obj, error); 2885 return (error); 2886 } 2887 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2888 space_map_update(vd->vdev_checkpoint_sm); 2889 2890 /* 2891 * Since the checkpoint_sm contains free entries 2892 * exclusively we can use sm_alloc to indicate the 2893 * culmulative checkpointed space that has been freed. 2894 */ 2895 vd->vdev_stat.vs_checkpoint_space = 2896 -vd->vdev_checkpoint_sm->sm_alloc; 2897 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 2898 vd->vdev_stat.vs_checkpoint_space; 2899 } 2900 } 2901 2902 /* 2903 * If this is a leaf vdev, load its DTL. 2904 */ 2905 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 2906 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2907 VDEV_AUX_CORRUPT_DATA); 2908 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 2909 "[error=%d]", error); 2910 return (error); 2911 } 2912 2913 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 2914 if (obsolete_sm_object != 0) { 2915 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2916 ASSERT(vd->vdev_asize != 0); 2917 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 2918 2919 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 2920 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 2921 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2922 VDEV_AUX_CORRUPT_DATA); 2923 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 2924 "obsolete spacemap (obj %llu) [error=%d]", 2925 (u_longlong_t)obsolete_sm_object, error); 2926 return (error); 2927 } 2928 space_map_update(vd->vdev_obsolete_sm); 2929 } 2930 2931 return (0); 2932 } 2933 2934 /* 2935 * The special vdev case is used for hot spares and l2cache devices. Its 2936 * sole purpose it to set the vdev state for the associated vdev. To do this, 2937 * we make sure that we can open the underlying device, then try to read the 2938 * label, and make sure that the label is sane and that it hasn't been 2939 * repurposed to another pool. 2940 */ 2941 int 2942 vdev_validate_aux(vdev_t *vd) 2943 { 2944 nvlist_t *label; 2945 uint64_t guid, version; 2946 uint64_t state; 2947 2948 if (!vdev_readable(vd)) 2949 return (0); 2950 2951 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2952 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2953 VDEV_AUX_CORRUPT_DATA); 2954 return (-1); 2955 } 2956 2957 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2958 !SPA_VERSION_IS_SUPPORTED(version) || 2959 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2960 guid != vd->vdev_guid || 2961 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2962 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2963 VDEV_AUX_CORRUPT_DATA); 2964 nvlist_free(label); 2965 return (-1); 2966 } 2967 2968 /* 2969 * We don't actually check the pool state here. If it's in fact in 2970 * use by another pool, we update this fact on the fly when requested. 2971 */ 2972 nvlist_free(label); 2973 return (0); 2974 } 2975 2976 /* 2977 * Free the objects used to store this vdev's spacemaps, and the array 2978 * that points to them. 2979 */ 2980 void 2981 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 2982 { 2983 if (vd->vdev_ms_array == 0) 2984 return; 2985 2986 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2987 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 2988 size_t array_bytes = array_count * sizeof (uint64_t); 2989 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 2990 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 2991 array_bytes, smobj_array, 0)); 2992 2993 for (uint64_t i = 0; i < array_count; i++) { 2994 uint64_t smobj = smobj_array[i]; 2995 if (smobj == 0) 2996 continue; 2997 2998 space_map_free_obj(mos, smobj, tx); 2999 } 3000 3001 kmem_free(smobj_array, array_bytes); 3002 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3003 vd->vdev_ms_array = 0; 3004 } 3005 3006 static void 3007 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3008 { 3009 spa_t *spa = vd->vdev_spa; 3010 3011 ASSERT(vd->vdev_islog); 3012 ASSERT(vd == vd->vdev_top); 3013 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3014 3015 if (vd->vdev_ms != NULL) { 3016 metaslab_group_t *mg = vd->vdev_mg; 3017 3018 metaslab_group_histogram_verify(mg); 3019 metaslab_class_histogram_verify(mg->mg_class); 3020 3021 for (int m = 0; m < vd->vdev_ms_count; m++) { 3022 metaslab_t *msp = vd->vdev_ms[m]; 3023 3024 if (msp == NULL || msp->ms_sm == NULL) 3025 continue; 3026 3027 mutex_enter(&msp->ms_lock); 3028 /* 3029 * If the metaslab was not loaded when the vdev 3030 * was removed then the histogram accounting may 3031 * not be accurate. Update the histogram information 3032 * here so that we ensure that the metaslab group 3033 * and metaslab class are up-to-date. 3034 */ 3035 metaslab_group_histogram_remove(mg, msp); 3036 3037 VERIFY0(space_map_allocated(msp->ms_sm)); 3038 space_map_close(msp->ms_sm); 3039 msp->ms_sm = NULL; 3040 mutex_exit(&msp->ms_lock); 3041 } 3042 3043 if (vd->vdev_checkpoint_sm != NULL) { 3044 ASSERT(spa_has_checkpoint(spa)); 3045 space_map_close(vd->vdev_checkpoint_sm); 3046 vd->vdev_checkpoint_sm = NULL; 3047 } 3048 3049 metaslab_group_histogram_verify(mg); 3050 metaslab_class_histogram_verify(mg->mg_class); 3051 3052 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 3053 ASSERT0(mg->mg_histogram[i]); 3054 } 3055 3056 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3057 3058 vdev_destroy_spacemaps(vd, tx); 3059 if (vd->vdev_top_zap != 0) { 3060 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3061 vd->vdev_top_zap = 0; 3062 } 3063 3064 dmu_tx_commit(tx); 3065 } 3066 3067 void 3068 vdev_sync_done(vdev_t *vd, uint64_t txg) 3069 { 3070 metaslab_t *msp; 3071 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3072 3073 ASSERT(vdev_is_concrete(vd)); 3074 3075 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3076 != NULL) 3077 metaslab_sync_done(msp, txg); 3078 3079 if (reassess) 3080 metaslab_sync_reassess(vd->vdev_mg); 3081 } 3082 3083 void 3084 vdev_sync(vdev_t *vd, uint64_t txg) 3085 { 3086 spa_t *spa = vd->vdev_spa; 3087 vdev_t *lvd; 3088 metaslab_t *msp; 3089 dmu_tx_t *tx; 3090 3091 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3092 dmu_tx_t *tx; 3093 3094 ASSERT(vd->vdev_removing || 3095 vd->vdev_ops == &vdev_indirect_ops); 3096 3097 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3098 vdev_indirect_sync_obsolete(vd, tx); 3099 dmu_tx_commit(tx); 3100 3101 /* 3102 * If the vdev is indirect, it can't have dirty 3103 * metaslabs or DTLs. 3104 */ 3105 if (vd->vdev_ops == &vdev_indirect_ops) { 3106 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3107 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3108 return; 3109 } 3110 } 3111 3112 ASSERT(vdev_is_concrete(vd)); 3113 3114 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3115 !vd->vdev_removing) { 3116 ASSERT(vd == vd->vdev_top); 3117 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3118 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3119 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3120 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3121 ASSERT(vd->vdev_ms_array != 0); 3122 vdev_config_dirty(vd); 3123 dmu_tx_commit(tx); 3124 } 3125 3126 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3127 metaslab_sync(msp, txg); 3128 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3129 } 3130 3131 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3132 vdev_dtl_sync(lvd, txg); 3133 3134 /* 3135 * If this is an empty log device being removed, destroy the 3136 * metadata associated with it. 3137 */ 3138 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3139 vdev_remove_empty_log(vd, txg); 3140 3141 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3142 } 3143 3144 uint64_t 3145 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3146 { 3147 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3148 } 3149 3150 /* 3151 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3152 * not be opened, and no I/O is attempted. 3153 */ 3154 int 3155 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3156 { 3157 vdev_t *vd, *tvd; 3158 3159 spa_vdev_state_enter(spa, SCL_NONE); 3160 3161 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3162 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3163 3164 if (!vd->vdev_ops->vdev_op_leaf) 3165 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3166 3167 tvd = vd->vdev_top; 3168 3169 /* 3170 * We don't directly use the aux state here, but if we do a 3171 * vdev_reopen(), we need this value to be present to remember why we 3172 * were faulted. 3173 */ 3174 vd->vdev_label_aux = aux; 3175 3176 /* 3177 * Faulted state takes precedence over degraded. 3178 */ 3179 vd->vdev_delayed_close = B_FALSE; 3180 vd->vdev_faulted = 1ULL; 3181 vd->vdev_degraded = 0ULL; 3182 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3183 3184 /* 3185 * If this device has the only valid copy of the data, then 3186 * back off and simply mark the vdev as degraded instead. 3187 */ 3188 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3189 vd->vdev_degraded = 1ULL; 3190 vd->vdev_faulted = 0ULL; 3191 3192 /* 3193 * If we reopen the device and it's not dead, only then do we 3194 * mark it degraded. 3195 */ 3196 vdev_reopen(tvd); 3197 3198 if (vdev_readable(vd)) 3199 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3200 } 3201 3202 return (spa_vdev_state_exit(spa, vd, 0)); 3203 } 3204 3205 /* 3206 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3207 * user that something is wrong. The vdev continues to operate as normal as far 3208 * as I/O is concerned. 3209 */ 3210 int 3211 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3212 { 3213 vdev_t *vd; 3214 3215 spa_vdev_state_enter(spa, SCL_NONE); 3216 3217 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3218 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3219 3220 if (!vd->vdev_ops->vdev_op_leaf) 3221 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3222 3223 /* 3224 * If the vdev is already faulted, then don't do anything. 3225 */ 3226 if (vd->vdev_faulted || vd->vdev_degraded) 3227 return (spa_vdev_state_exit(spa, NULL, 0)); 3228 3229 vd->vdev_degraded = 1ULL; 3230 if (!vdev_is_dead(vd)) 3231 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3232 aux); 3233 3234 return (spa_vdev_state_exit(spa, vd, 0)); 3235 } 3236 3237 /* 3238 * Online the given vdev. 3239 * 3240 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3241 * spare device should be detached when the device finishes resilvering. 3242 * Second, the online should be treated like a 'test' online case, so no FMA 3243 * events are generated if the device fails to open. 3244 */ 3245 int 3246 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3247 { 3248 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3249 boolean_t wasoffline; 3250 vdev_state_t oldstate; 3251 3252 spa_vdev_state_enter(spa, SCL_NONE); 3253 3254 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3255 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3256 3257 if (!vd->vdev_ops->vdev_op_leaf) 3258 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3259 3260 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3261 oldstate = vd->vdev_state; 3262 3263 tvd = vd->vdev_top; 3264 vd->vdev_offline = B_FALSE; 3265 vd->vdev_tmpoffline = B_FALSE; 3266 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3267 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3268 3269 /* XXX - L2ARC 1.0 does not support expansion */ 3270 if (!vd->vdev_aux) { 3271 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3272 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3273 } 3274 3275 vdev_reopen(tvd); 3276 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3277 3278 if (!vd->vdev_aux) { 3279 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3280 pvd->vdev_expanding = B_FALSE; 3281 } 3282 3283 if (newstate) 3284 *newstate = vd->vdev_state; 3285 if ((flags & ZFS_ONLINE_UNSPARE) && 3286 !vdev_is_dead(vd) && vd->vdev_parent && 3287 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3288 vd->vdev_parent->vdev_child[0] == vd) 3289 vd->vdev_unspare = B_TRUE; 3290 3291 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3292 3293 /* XXX - L2ARC 1.0 does not support expansion */ 3294 if (vd->vdev_aux) 3295 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3296 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3297 } 3298 3299 /* Restart initializing if necessary */ 3300 mutex_enter(&vd->vdev_initialize_lock); 3301 if (vdev_writeable(vd) && 3302 vd->vdev_initialize_thread == NULL && 3303 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3304 (void) vdev_initialize(vd); 3305 } 3306 mutex_exit(&vd->vdev_initialize_lock); 3307 3308 if (wasoffline || 3309 (oldstate < VDEV_STATE_DEGRADED && 3310 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3311 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3312 3313 return (spa_vdev_state_exit(spa, vd, 0)); 3314 } 3315 3316 static int 3317 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3318 { 3319 vdev_t *vd, *tvd; 3320 int error = 0; 3321 uint64_t generation; 3322 metaslab_group_t *mg; 3323 3324 top: 3325 spa_vdev_state_enter(spa, SCL_ALLOC); 3326 3327 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3328 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3329 3330 if (!vd->vdev_ops->vdev_op_leaf) 3331 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3332 3333 tvd = vd->vdev_top; 3334 mg = tvd->vdev_mg; 3335 generation = spa->spa_config_generation + 1; 3336 3337 /* 3338 * If the device isn't already offline, try to offline it. 3339 */ 3340 if (!vd->vdev_offline) { 3341 /* 3342 * If this device has the only valid copy of some data, 3343 * don't allow it to be offlined. Log devices are always 3344 * expendable. 3345 */ 3346 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3347 vdev_dtl_required(vd)) 3348 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3349 3350 /* 3351 * If the top-level is a slog and it has had allocations 3352 * then proceed. We check that the vdev's metaslab group 3353 * is not NULL since it's possible that we may have just 3354 * added this vdev but not yet initialized its metaslabs. 3355 */ 3356 if (tvd->vdev_islog && mg != NULL) { 3357 /* 3358 * Prevent any future allocations. 3359 */ 3360 metaslab_group_passivate(mg); 3361 (void) spa_vdev_state_exit(spa, vd, 0); 3362 3363 error = spa_reset_logs(spa); 3364 3365 /* 3366 * If the log device was successfully reset but has 3367 * checkpointed data, do not offline it. 3368 */ 3369 if (error == 0 && 3370 tvd->vdev_checkpoint_sm != NULL) { 3371 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc, 3372 !=, 0); 3373 error = ZFS_ERR_CHECKPOINT_EXISTS; 3374 } 3375 3376 spa_vdev_state_enter(spa, SCL_ALLOC); 3377 3378 /* 3379 * Check to see if the config has changed. 3380 */ 3381 if (error || generation != spa->spa_config_generation) { 3382 metaslab_group_activate(mg); 3383 if (error) 3384 return (spa_vdev_state_exit(spa, 3385 vd, error)); 3386 (void) spa_vdev_state_exit(spa, vd, 0); 3387 goto top; 3388 } 3389 ASSERT0(tvd->vdev_stat.vs_alloc); 3390 } 3391 3392 /* 3393 * Offline this device and reopen its top-level vdev. 3394 * If the top-level vdev is a log device then just offline 3395 * it. Otherwise, if this action results in the top-level 3396 * vdev becoming unusable, undo it and fail the request. 3397 */ 3398 vd->vdev_offline = B_TRUE; 3399 vdev_reopen(tvd); 3400 3401 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3402 vdev_is_dead(tvd)) { 3403 vd->vdev_offline = B_FALSE; 3404 vdev_reopen(tvd); 3405 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3406 } 3407 3408 /* 3409 * Add the device back into the metaslab rotor so that 3410 * once we online the device it's open for business. 3411 */ 3412 if (tvd->vdev_islog && mg != NULL) 3413 metaslab_group_activate(mg); 3414 } 3415 3416 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3417 3418 return (spa_vdev_state_exit(spa, vd, 0)); 3419 } 3420 3421 int 3422 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3423 { 3424 int error; 3425 3426 mutex_enter(&spa->spa_vdev_top_lock); 3427 error = vdev_offline_locked(spa, guid, flags); 3428 mutex_exit(&spa->spa_vdev_top_lock); 3429 3430 return (error); 3431 } 3432 3433 /* 3434 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3435 * vdev_offline(), we assume the spa config is locked. We also clear all 3436 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3437 */ 3438 void 3439 vdev_clear(spa_t *spa, vdev_t *vd) 3440 { 3441 vdev_t *rvd = spa->spa_root_vdev; 3442 3443 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3444 3445 if (vd == NULL) 3446 vd = rvd; 3447 3448 vd->vdev_stat.vs_read_errors = 0; 3449 vd->vdev_stat.vs_write_errors = 0; 3450 vd->vdev_stat.vs_checksum_errors = 0; 3451 3452 for (int c = 0; c < vd->vdev_children; c++) 3453 vdev_clear(spa, vd->vdev_child[c]); 3454 3455 /* 3456 * It makes no sense to "clear" an indirect vdev. 3457 */ 3458 if (!vdev_is_concrete(vd)) 3459 return; 3460 3461 /* 3462 * If we're in the FAULTED state or have experienced failed I/O, then 3463 * clear the persistent state and attempt to reopen the device. We 3464 * also mark the vdev config dirty, so that the new faulted state is 3465 * written out to disk. 3466 */ 3467 if (vd->vdev_faulted || vd->vdev_degraded || 3468 !vdev_readable(vd) || !vdev_writeable(vd)) { 3469 3470 /* 3471 * When reopening in reponse to a clear event, it may be due to 3472 * a fmadm repair request. In this case, if the device is 3473 * still broken, we want to still post the ereport again. 3474 */ 3475 vd->vdev_forcefault = B_TRUE; 3476 3477 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3478 vd->vdev_cant_read = B_FALSE; 3479 vd->vdev_cant_write = B_FALSE; 3480 3481 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3482 3483 vd->vdev_forcefault = B_FALSE; 3484 3485 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3486 vdev_state_dirty(vd->vdev_top); 3487 3488 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 3489 spa_async_request(spa, SPA_ASYNC_RESILVER); 3490 3491 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3492 } 3493 3494 /* 3495 * When clearing a FMA-diagnosed fault, we always want to 3496 * unspare the device, as we assume that the original spare was 3497 * done in response to the FMA fault. 3498 */ 3499 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3500 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3501 vd->vdev_parent->vdev_child[0] == vd) 3502 vd->vdev_unspare = B_TRUE; 3503 } 3504 3505 boolean_t 3506 vdev_is_dead(vdev_t *vd) 3507 { 3508 /* 3509 * Holes and missing devices are always considered "dead". 3510 * This simplifies the code since we don't have to check for 3511 * these types of devices in the various code paths. 3512 * Instead we rely on the fact that we skip over dead devices 3513 * before issuing I/O to them. 3514 */ 3515 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3516 vd->vdev_ops == &vdev_hole_ops || 3517 vd->vdev_ops == &vdev_missing_ops); 3518 } 3519 3520 boolean_t 3521 vdev_readable(vdev_t *vd) 3522 { 3523 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3524 } 3525 3526 boolean_t 3527 vdev_writeable(vdev_t *vd) 3528 { 3529 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3530 vdev_is_concrete(vd)); 3531 } 3532 3533 boolean_t 3534 vdev_allocatable(vdev_t *vd) 3535 { 3536 uint64_t state = vd->vdev_state; 3537 3538 /* 3539 * We currently allow allocations from vdevs which may be in the 3540 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3541 * fails to reopen then we'll catch it later when we're holding 3542 * the proper locks. Note that we have to get the vdev state 3543 * in a local variable because although it changes atomically, 3544 * we're asking two separate questions about it. 3545 */ 3546 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3547 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3548 vd->vdev_mg->mg_initialized); 3549 } 3550 3551 boolean_t 3552 vdev_accessible(vdev_t *vd, zio_t *zio) 3553 { 3554 ASSERT(zio->io_vd == vd); 3555 3556 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3557 return (B_FALSE); 3558 3559 if (zio->io_type == ZIO_TYPE_READ) 3560 return (!vd->vdev_cant_read); 3561 3562 if (zio->io_type == ZIO_TYPE_WRITE) 3563 return (!vd->vdev_cant_write); 3564 3565 return (B_TRUE); 3566 } 3567 3568 boolean_t 3569 vdev_is_spacemap_addressable(vdev_t *vd) 3570 { 3571 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3572 return (B_TRUE); 3573 3574 /* 3575 * If double-word space map entries are not enabled we assume 3576 * 47 bits of the space map entry are dedicated to the entry's 3577 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3578 * to calculate the maximum address that can be described by a 3579 * space map entry for the given device. 3580 */ 3581 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3582 3583 if (shift >= 63) /* detect potential overflow */ 3584 return (B_TRUE); 3585 3586 return (vd->vdev_asize < (1ULL << shift)); 3587 } 3588 3589 /* 3590 * Get statistics for the given vdev. 3591 */ 3592 void 3593 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3594 { 3595 spa_t *spa = vd->vdev_spa; 3596 vdev_t *rvd = spa->spa_root_vdev; 3597 vdev_t *tvd = vd->vdev_top; 3598 3599 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3600 3601 mutex_enter(&vd->vdev_stat_lock); 3602 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3603 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3604 vs->vs_state = vd->vdev_state; 3605 vs->vs_rsize = vdev_get_min_asize(vd); 3606 if (vd->vdev_ops->vdev_op_leaf) { 3607 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 3608 /* 3609 * Report intializing progress. Since we don't have the 3610 * initializing locks held, this is only an estimate (although a 3611 * fairly accurate one). 3612 */ 3613 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done; 3614 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est; 3615 vs->vs_initialize_state = vd->vdev_initialize_state; 3616 vs->vs_initialize_action_time = vd->vdev_initialize_action_time; 3617 } 3618 /* 3619 * Report expandable space on top-level, non-auxillary devices only. 3620 * The expandable space is reported in terms of metaslab sized units 3621 * since that determines how much space the pool can expand. 3622 */ 3623 if (vd->vdev_aux == NULL && tvd != NULL) { 3624 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 3625 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3626 } 3627 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3628 vdev_is_concrete(vd)) { 3629 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3630 vd->vdev_mg->mg_fragmentation : 0; 3631 } 3632 3633 /* 3634 * If we're getting stats on the root vdev, aggregate the I/O counts 3635 * over all top-level vdevs (i.e. the direct children of the root). 3636 */ 3637 if (vd == rvd) { 3638 for (int c = 0; c < rvd->vdev_children; c++) { 3639 vdev_t *cvd = rvd->vdev_child[c]; 3640 vdev_stat_t *cvs = &cvd->vdev_stat; 3641 3642 for (int t = 0; t < ZIO_TYPES; t++) { 3643 vs->vs_ops[t] += cvs->vs_ops[t]; 3644 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3645 } 3646 cvs->vs_scan_removing = cvd->vdev_removing; 3647 } 3648 } 3649 mutex_exit(&vd->vdev_stat_lock); 3650 } 3651 3652 void 3653 vdev_clear_stats(vdev_t *vd) 3654 { 3655 mutex_enter(&vd->vdev_stat_lock); 3656 vd->vdev_stat.vs_space = 0; 3657 vd->vdev_stat.vs_dspace = 0; 3658 vd->vdev_stat.vs_alloc = 0; 3659 mutex_exit(&vd->vdev_stat_lock); 3660 } 3661 3662 void 3663 vdev_scan_stat_init(vdev_t *vd) 3664 { 3665 vdev_stat_t *vs = &vd->vdev_stat; 3666 3667 for (int c = 0; c < vd->vdev_children; c++) 3668 vdev_scan_stat_init(vd->vdev_child[c]); 3669 3670 mutex_enter(&vd->vdev_stat_lock); 3671 vs->vs_scan_processed = 0; 3672 mutex_exit(&vd->vdev_stat_lock); 3673 } 3674 3675 void 3676 vdev_stat_update(zio_t *zio, uint64_t psize) 3677 { 3678 spa_t *spa = zio->io_spa; 3679 vdev_t *rvd = spa->spa_root_vdev; 3680 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3681 vdev_t *pvd; 3682 uint64_t txg = zio->io_txg; 3683 vdev_stat_t *vs = &vd->vdev_stat; 3684 zio_type_t type = zio->io_type; 3685 int flags = zio->io_flags; 3686 3687 /* 3688 * If this i/o is a gang leader, it didn't do any actual work. 3689 */ 3690 if (zio->io_gang_tree) 3691 return; 3692 3693 if (zio->io_error == 0) { 3694 /* 3695 * If this is a root i/o, don't count it -- we've already 3696 * counted the top-level vdevs, and vdev_get_stats() will 3697 * aggregate them when asked. This reduces contention on 3698 * the root vdev_stat_lock and implicitly handles blocks 3699 * that compress away to holes, for which there is no i/o. 3700 * (Holes never create vdev children, so all the counters 3701 * remain zero, which is what we want.) 3702 * 3703 * Note: this only applies to successful i/o (io_error == 0) 3704 * because unlike i/o counts, errors are not additive. 3705 * When reading a ditto block, for example, failure of 3706 * one top-level vdev does not imply a root-level error. 3707 */ 3708 if (vd == rvd) 3709 return; 3710 3711 ASSERT(vd == zio->io_vd); 3712 3713 if (flags & ZIO_FLAG_IO_BYPASS) 3714 return; 3715 3716 mutex_enter(&vd->vdev_stat_lock); 3717 3718 if (flags & ZIO_FLAG_IO_REPAIR) { 3719 if (flags & ZIO_FLAG_SCAN_THREAD) { 3720 dsl_scan_phys_t *scn_phys = 3721 &spa->spa_dsl_pool->dp_scan->scn_phys; 3722 uint64_t *processed = &scn_phys->scn_processed; 3723 3724 /* XXX cleanup? */ 3725 if (vd->vdev_ops->vdev_op_leaf) 3726 atomic_add_64(processed, psize); 3727 vs->vs_scan_processed += psize; 3728 } 3729 3730 if (flags & ZIO_FLAG_SELF_HEAL) 3731 vs->vs_self_healed += psize; 3732 } 3733 3734 vs->vs_ops[type]++; 3735 vs->vs_bytes[type] += psize; 3736 3737 mutex_exit(&vd->vdev_stat_lock); 3738 return; 3739 } 3740 3741 if (flags & ZIO_FLAG_SPECULATIVE) 3742 return; 3743 3744 /* 3745 * If this is an I/O error that is going to be retried, then ignore the 3746 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3747 * hard errors, when in reality they can happen for any number of 3748 * innocuous reasons (bus resets, MPxIO link failure, etc). 3749 */ 3750 if (zio->io_error == EIO && 3751 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3752 return; 3753 3754 /* 3755 * Intent logs writes won't propagate their error to the root 3756 * I/O so don't mark these types of failures as pool-level 3757 * errors. 3758 */ 3759 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3760 return; 3761 3762 mutex_enter(&vd->vdev_stat_lock); 3763 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3764 if (zio->io_error == ECKSUM) 3765 vs->vs_checksum_errors++; 3766 else 3767 vs->vs_read_errors++; 3768 } 3769 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3770 vs->vs_write_errors++; 3771 mutex_exit(&vd->vdev_stat_lock); 3772 3773 if (spa->spa_load_state == SPA_LOAD_NONE && 3774 type == ZIO_TYPE_WRITE && txg != 0 && 3775 (!(flags & ZIO_FLAG_IO_REPAIR) || 3776 (flags & ZIO_FLAG_SCAN_THREAD) || 3777 spa->spa_claiming)) { 3778 /* 3779 * This is either a normal write (not a repair), or it's 3780 * a repair induced by the scrub thread, or it's a repair 3781 * made by zil_claim() during spa_load() in the first txg. 3782 * In the normal case, we commit the DTL change in the same 3783 * txg as the block was born. In the scrub-induced repair 3784 * case, we know that scrubs run in first-pass syncing context, 3785 * so we commit the DTL change in spa_syncing_txg(spa). 3786 * In the zil_claim() case, we commit in spa_first_txg(spa). 3787 * 3788 * We currently do not make DTL entries for failed spontaneous 3789 * self-healing writes triggered by normal (non-scrubbing) 3790 * reads, because we have no transactional context in which to 3791 * do so -- and it's not clear that it'd be desirable anyway. 3792 */ 3793 if (vd->vdev_ops->vdev_op_leaf) { 3794 uint64_t commit_txg = txg; 3795 if (flags & ZIO_FLAG_SCAN_THREAD) { 3796 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3797 ASSERT(spa_sync_pass(spa) == 1); 3798 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3799 commit_txg = spa_syncing_txg(spa); 3800 } else if (spa->spa_claiming) { 3801 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3802 commit_txg = spa_first_txg(spa); 3803 } 3804 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3805 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3806 return; 3807 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3808 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3809 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3810 } 3811 if (vd != rvd) 3812 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3813 } 3814 } 3815 3816 int64_t 3817 vdev_deflated_space(vdev_t *vd, int64_t space) 3818 { 3819 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 3820 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3821 3822 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 3823 } 3824 3825 /* 3826 * Update the in-core space usage stats for this vdev and the root vdev. 3827 */ 3828 void 3829 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3830 int64_t space_delta) 3831 { 3832 int64_t dspace_delta; 3833 spa_t *spa = vd->vdev_spa; 3834 vdev_t *rvd = spa->spa_root_vdev; 3835 3836 ASSERT(vd == vd->vdev_top); 3837 3838 /* 3839 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3840 * factor. We must calculate this here and not at the root vdev 3841 * because the root vdev's psize-to-asize is simply the max of its 3842 * childrens', thus not accurate enough for us. 3843 */ 3844 dspace_delta = vdev_deflated_space(vd, space_delta); 3845 3846 mutex_enter(&vd->vdev_stat_lock); 3847 vd->vdev_stat.vs_alloc += alloc_delta; 3848 vd->vdev_stat.vs_space += space_delta; 3849 vd->vdev_stat.vs_dspace += dspace_delta; 3850 mutex_exit(&vd->vdev_stat_lock); 3851 3852 /* every class but log contributes to root space stats */ 3853 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 3854 mutex_enter(&rvd->vdev_stat_lock); 3855 rvd->vdev_stat.vs_alloc += alloc_delta; 3856 rvd->vdev_stat.vs_space += space_delta; 3857 rvd->vdev_stat.vs_dspace += dspace_delta; 3858 mutex_exit(&rvd->vdev_stat_lock); 3859 } 3860 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 3861 } 3862 3863 /* 3864 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3865 * so that it will be written out next time the vdev configuration is synced. 3866 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3867 */ 3868 void 3869 vdev_config_dirty(vdev_t *vd) 3870 { 3871 spa_t *spa = vd->vdev_spa; 3872 vdev_t *rvd = spa->spa_root_vdev; 3873 int c; 3874 3875 ASSERT(spa_writeable(spa)); 3876 3877 /* 3878 * If this is an aux vdev (as with l2cache and spare devices), then we 3879 * update the vdev config manually and set the sync flag. 3880 */ 3881 if (vd->vdev_aux != NULL) { 3882 spa_aux_vdev_t *sav = vd->vdev_aux; 3883 nvlist_t **aux; 3884 uint_t naux; 3885 3886 for (c = 0; c < sav->sav_count; c++) { 3887 if (sav->sav_vdevs[c] == vd) 3888 break; 3889 } 3890 3891 if (c == sav->sav_count) { 3892 /* 3893 * We're being removed. There's nothing more to do. 3894 */ 3895 ASSERT(sav->sav_sync == B_TRUE); 3896 return; 3897 } 3898 3899 sav->sav_sync = B_TRUE; 3900 3901 if (nvlist_lookup_nvlist_array(sav->sav_config, 3902 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3903 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3904 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3905 } 3906 3907 ASSERT(c < naux); 3908 3909 /* 3910 * Setting the nvlist in the middle if the array is a little 3911 * sketchy, but it will work. 3912 */ 3913 nvlist_free(aux[c]); 3914 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3915 3916 return; 3917 } 3918 3919 /* 3920 * The dirty list is protected by the SCL_CONFIG lock. The caller 3921 * must either hold SCL_CONFIG as writer, or must be the sync thread 3922 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3923 * so this is sufficient to ensure mutual exclusion. 3924 */ 3925 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3926 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3927 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3928 3929 if (vd == rvd) { 3930 for (c = 0; c < rvd->vdev_children; c++) 3931 vdev_config_dirty(rvd->vdev_child[c]); 3932 } else { 3933 ASSERT(vd == vd->vdev_top); 3934 3935 if (!list_link_active(&vd->vdev_config_dirty_node) && 3936 vdev_is_concrete(vd)) { 3937 list_insert_head(&spa->spa_config_dirty_list, vd); 3938 } 3939 } 3940 } 3941 3942 void 3943 vdev_config_clean(vdev_t *vd) 3944 { 3945 spa_t *spa = vd->vdev_spa; 3946 3947 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3948 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3949 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3950 3951 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3952 list_remove(&spa->spa_config_dirty_list, vd); 3953 } 3954 3955 /* 3956 * Mark a top-level vdev's state as dirty, so that the next pass of 3957 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3958 * the state changes from larger config changes because they require 3959 * much less locking, and are often needed for administrative actions. 3960 */ 3961 void 3962 vdev_state_dirty(vdev_t *vd) 3963 { 3964 spa_t *spa = vd->vdev_spa; 3965 3966 ASSERT(spa_writeable(spa)); 3967 ASSERT(vd == vd->vdev_top); 3968 3969 /* 3970 * The state list is protected by the SCL_STATE lock. The caller 3971 * must either hold SCL_STATE as writer, or must be the sync thread 3972 * (which holds SCL_STATE as reader). There's only one sync thread, 3973 * so this is sufficient to ensure mutual exclusion. 3974 */ 3975 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3976 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3977 spa_config_held(spa, SCL_STATE, RW_READER))); 3978 3979 if (!list_link_active(&vd->vdev_state_dirty_node) && 3980 vdev_is_concrete(vd)) 3981 list_insert_head(&spa->spa_state_dirty_list, vd); 3982 } 3983 3984 void 3985 vdev_state_clean(vdev_t *vd) 3986 { 3987 spa_t *spa = vd->vdev_spa; 3988 3989 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3990 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3991 spa_config_held(spa, SCL_STATE, RW_READER))); 3992 3993 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3994 list_remove(&spa->spa_state_dirty_list, vd); 3995 } 3996 3997 /* 3998 * Propagate vdev state up from children to parent. 3999 */ 4000 void 4001 vdev_propagate_state(vdev_t *vd) 4002 { 4003 spa_t *spa = vd->vdev_spa; 4004 vdev_t *rvd = spa->spa_root_vdev; 4005 int degraded = 0, faulted = 0; 4006 int corrupted = 0; 4007 vdev_t *child; 4008 4009 if (vd->vdev_children > 0) { 4010 for (int c = 0; c < vd->vdev_children; c++) { 4011 child = vd->vdev_child[c]; 4012 4013 /* 4014 * Don't factor holes or indirect vdevs into the 4015 * decision. 4016 */ 4017 if (!vdev_is_concrete(child)) 4018 continue; 4019 4020 if (!vdev_readable(child) || 4021 (!vdev_writeable(child) && spa_writeable(spa))) { 4022 /* 4023 * Root special: if there is a top-level log 4024 * device, treat the root vdev as if it were 4025 * degraded. 4026 */ 4027 if (child->vdev_islog && vd == rvd) 4028 degraded++; 4029 else 4030 faulted++; 4031 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4032 degraded++; 4033 } 4034 4035 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4036 corrupted++; 4037 } 4038 4039 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4040 4041 /* 4042 * Root special: if there is a top-level vdev that cannot be 4043 * opened due to corrupted metadata, then propagate the root 4044 * vdev's aux state as 'corrupt' rather than 'insufficient 4045 * replicas'. 4046 */ 4047 if (corrupted && vd == rvd && 4048 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4049 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4050 VDEV_AUX_CORRUPT_DATA); 4051 } 4052 4053 if (vd->vdev_parent) 4054 vdev_propagate_state(vd->vdev_parent); 4055 } 4056 4057 /* 4058 * Set a vdev's state. If this is during an open, we don't update the parent 4059 * state, because we're in the process of opening children depth-first. 4060 * Otherwise, we propagate the change to the parent. 4061 * 4062 * If this routine places a device in a faulted state, an appropriate ereport is 4063 * generated. 4064 */ 4065 void 4066 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4067 { 4068 uint64_t save_state; 4069 spa_t *spa = vd->vdev_spa; 4070 4071 if (state == vd->vdev_state) { 4072 vd->vdev_stat.vs_aux = aux; 4073 return; 4074 } 4075 4076 save_state = vd->vdev_state; 4077 4078 vd->vdev_state = state; 4079 vd->vdev_stat.vs_aux = aux; 4080 4081 /* 4082 * If we are setting the vdev state to anything but an open state, then 4083 * always close the underlying device unless the device has requested 4084 * a delayed close (i.e. we're about to remove or fault the device). 4085 * Otherwise, we keep accessible but invalid devices open forever. 4086 * We don't call vdev_close() itself, because that implies some extra 4087 * checks (offline, etc) that we don't want here. This is limited to 4088 * leaf devices, because otherwise closing the device will affect other 4089 * children. 4090 */ 4091 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4092 vd->vdev_ops->vdev_op_leaf) 4093 vd->vdev_ops->vdev_op_close(vd); 4094 4095 /* 4096 * If we have brought this vdev back into service, we need 4097 * to notify fmd so that it can gracefully repair any outstanding 4098 * cases due to a missing device. We do this in all cases, even those 4099 * that probably don't correlate to a repaired fault. This is sure to 4100 * catch all cases, and we let the zfs-retire agent sort it out. If 4101 * this is a transient state it's OK, as the retire agent will 4102 * double-check the state of the vdev before repairing it. 4103 */ 4104 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4105 vd->vdev_prevstate != state) 4106 zfs_post_state_change(spa, vd); 4107 4108 if (vd->vdev_removed && 4109 state == VDEV_STATE_CANT_OPEN && 4110 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4111 /* 4112 * If the previous state is set to VDEV_STATE_REMOVED, then this 4113 * device was previously marked removed and someone attempted to 4114 * reopen it. If this failed due to a nonexistent device, then 4115 * keep the device in the REMOVED state. We also let this be if 4116 * it is one of our special test online cases, which is only 4117 * attempting to online the device and shouldn't generate an FMA 4118 * fault. 4119 */ 4120 vd->vdev_state = VDEV_STATE_REMOVED; 4121 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4122 } else if (state == VDEV_STATE_REMOVED) { 4123 vd->vdev_removed = B_TRUE; 4124 } else if (state == VDEV_STATE_CANT_OPEN) { 4125 /* 4126 * If we fail to open a vdev during an import or recovery, we 4127 * mark it as "not available", which signifies that it was 4128 * never there to begin with. Failure to open such a device 4129 * is not considered an error. 4130 */ 4131 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4132 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4133 vd->vdev_ops->vdev_op_leaf) 4134 vd->vdev_not_present = 1; 4135 4136 /* 4137 * Post the appropriate ereport. If the 'prevstate' field is 4138 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4139 * that this is part of a vdev_reopen(). In this case, we don't 4140 * want to post the ereport if the device was already in the 4141 * CANT_OPEN state beforehand. 4142 * 4143 * If the 'checkremove' flag is set, then this is an attempt to 4144 * online the device in response to an insertion event. If we 4145 * hit this case, then we have detected an insertion event for a 4146 * faulted or offline device that wasn't in the removed state. 4147 * In this scenario, we don't post an ereport because we are 4148 * about to replace the device, or attempt an online with 4149 * vdev_forcefault, which will generate the fault for us. 4150 */ 4151 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4152 !vd->vdev_not_present && !vd->vdev_checkremove && 4153 vd != spa->spa_root_vdev) { 4154 const char *class; 4155 4156 switch (aux) { 4157 case VDEV_AUX_OPEN_FAILED: 4158 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4159 break; 4160 case VDEV_AUX_CORRUPT_DATA: 4161 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4162 break; 4163 case VDEV_AUX_NO_REPLICAS: 4164 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4165 break; 4166 case VDEV_AUX_BAD_GUID_SUM: 4167 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4168 break; 4169 case VDEV_AUX_TOO_SMALL: 4170 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4171 break; 4172 case VDEV_AUX_BAD_LABEL: 4173 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4174 break; 4175 default: 4176 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4177 } 4178 4179 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 4180 } 4181 4182 /* Erase any notion of persistent removed state */ 4183 vd->vdev_removed = B_FALSE; 4184 } else { 4185 vd->vdev_removed = B_FALSE; 4186 } 4187 4188 if (!isopen && vd->vdev_parent) 4189 vdev_propagate_state(vd->vdev_parent); 4190 } 4191 4192 boolean_t 4193 vdev_children_are_offline(vdev_t *vd) 4194 { 4195 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4196 4197 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4198 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4199 return (B_FALSE); 4200 } 4201 4202 return (B_TRUE); 4203 } 4204 4205 /* 4206 * Check the vdev configuration to ensure that it's capable of supporting 4207 * a root pool. We do not support partial configuration. 4208 * In addition, only a single top-level vdev is allowed. 4209 */ 4210 boolean_t 4211 vdev_is_bootable(vdev_t *vd) 4212 { 4213 if (!vd->vdev_ops->vdev_op_leaf) { 4214 char *vdev_type = vd->vdev_ops->vdev_op_type; 4215 4216 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 4217 vd->vdev_children > 1) { 4218 return (B_FALSE); 4219 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 4220 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 4221 return (B_FALSE); 4222 } 4223 } 4224 4225 for (int c = 0; c < vd->vdev_children; c++) { 4226 if (!vdev_is_bootable(vd->vdev_child[c])) 4227 return (B_FALSE); 4228 } 4229 return (B_TRUE); 4230 } 4231 4232 boolean_t 4233 vdev_is_concrete(vdev_t *vd) 4234 { 4235 vdev_ops_t *ops = vd->vdev_ops; 4236 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4237 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4238 return (B_FALSE); 4239 } else { 4240 return (B_TRUE); 4241 } 4242 } 4243 4244 /* 4245 * Determine if a log device has valid content. If the vdev was 4246 * removed or faulted in the MOS config then we know that 4247 * the content on the log device has already been written to the pool. 4248 */ 4249 boolean_t 4250 vdev_log_state_valid(vdev_t *vd) 4251 { 4252 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4253 !vd->vdev_removed) 4254 return (B_TRUE); 4255 4256 for (int c = 0; c < vd->vdev_children; c++) 4257 if (vdev_log_state_valid(vd->vdev_child[c])) 4258 return (B_TRUE); 4259 4260 return (B_FALSE); 4261 } 4262 4263 /* 4264 * Expand a vdev if possible. 4265 */ 4266 void 4267 vdev_expand(vdev_t *vd, uint64_t txg) 4268 { 4269 ASSERT(vd->vdev_top == vd); 4270 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4271 ASSERT(vdev_is_concrete(vd)); 4272 4273 vdev_set_deflate_ratio(vd); 4274 4275 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4276 vdev_is_concrete(vd)) { 4277 vdev_metaslab_group_create(vd); 4278 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4279 vdev_config_dirty(vd); 4280 } 4281 } 4282 4283 /* 4284 * Split a vdev. 4285 */ 4286 void 4287 vdev_split(vdev_t *vd) 4288 { 4289 vdev_t *cvd, *pvd = vd->vdev_parent; 4290 4291 vdev_remove_child(pvd, vd); 4292 vdev_compact_children(pvd); 4293 4294 cvd = pvd->vdev_child[0]; 4295 if (pvd->vdev_children == 1) { 4296 vdev_remove_parent(cvd); 4297 cvd->vdev_splitting = B_TRUE; 4298 } 4299 vdev_propagate_state(cvd); 4300 } 4301 4302 void 4303 vdev_deadman(vdev_t *vd) 4304 { 4305 for (int c = 0; c < vd->vdev_children; c++) { 4306 vdev_t *cvd = vd->vdev_child[c]; 4307 4308 vdev_deadman(cvd); 4309 } 4310 4311 if (vd->vdev_ops->vdev_op_leaf) { 4312 vdev_queue_t *vq = &vd->vdev_queue; 4313 4314 mutex_enter(&vq->vq_lock); 4315 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4316 spa_t *spa = vd->vdev_spa; 4317 zio_t *fio; 4318 uint64_t delta; 4319 4320 /* 4321 * Look at the head of all the pending queues, 4322 * if any I/O has been outstanding for longer than 4323 * the spa_deadman_synctime we panic the system. 4324 */ 4325 fio = avl_first(&vq->vq_active_tree); 4326 delta = gethrtime() - fio->io_timestamp; 4327 if (delta > spa_deadman_synctime(spa)) { 4328 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4329 "%lluns, delta %lluns, last io %lluns", 4330 fio->io_timestamp, (u_longlong_t)delta, 4331 vq->vq_io_complete_ts); 4332 fm_panic("I/O to pool '%s' appears to be " 4333 "hung.", spa_name(spa)); 4334 } 4335 } 4336 mutex_exit(&vq->vq_lock); 4337 } 4338 } 4339