1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 #include <sys/abd.h> 49 50 /* 51 * Virtual device management. 52 */ 53 54 static vdev_ops_t *vdev_ops_table[] = { 55 &vdev_root_ops, 56 &vdev_raidz_ops, 57 &vdev_mirror_ops, 58 &vdev_replacing_ops, 59 &vdev_spare_ops, 60 &vdev_disk_ops, 61 &vdev_file_ops, 62 &vdev_missing_ops, 63 &vdev_hole_ops, 64 NULL 65 }; 66 67 /* maximum scrub/resilver I/O queue per leaf vdev */ 68 int zfs_scrub_limit = 10; 69 70 /* 71 * When a vdev is added, it will be divided into approximately (but no 72 * more than) this number of metaslabs. 73 */ 74 int metaslabs_per_vdev = 200; 75 76 /* 77 * Given a vdev type, return the appropriate ops vector. 78 */ 79 static vdev_ops_t * 80 vdev_getops(const char *type) 81 { 82 vdev_ops_t *ops, **opspp; 83 84 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 85 if (strcmp(ops->vdev_op_type, type) == 0) 86 break; 87 88 return (ops); 89 } 90 91 /* 92 * Default asize function: return the MAX of psize with the asize of 93 * all children. This is what's used by anything other than RAID-Z. 94 */ 95 uint64_t 96 vdev_default_asize(vdev_t *vd, uint64_t psize) 97 { 98 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 99 uint64_t csize; 100 101 for (int c = 0; c < vd->vdev_children; c++) { 102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 103 asize = MAX(asize, csize); 104 } 105 106 return (asize); 107 } 108 109 /* 110 * Get the minimum allocatable size. We define the allocatable size as 111 * the vdev's asize rounded to the nearest metaslab. This allows us to 112 * replace or attach devices which don't have the same physical size but 113 * can still satisfy the same number of allocations. 114 */ 115 uint64_t 116 vdev_get_min_asize(vdev_t *vd) 117 { 118 vdev_t *pvd = vd->vdev_parent; 119 120 /* 121 * If our parent is NULL (inactive spare or cache) or is the root, 122 * just return our own asize. 123 */ 124 if (pvd == NULL) 125 return (vd->vdev_asize); 126 127 /* 128 * The top-level vdev just returns the allocatable size rounded 129 * to the nearest metaslab. 130 */ 131 if (vd == vd->vdev_top) 132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 133 134 /* 135 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 136 * so each child must provide at least 1/Nth of its asize. 137 */ 138 if (pvd->vdev_ops == &vdev_raidz_ops) 139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 140 pvd->vdev_children); 141 142 return (pvd->vdev_min_asize); 143 } 144 145 void 146 vdev_set_min_asize(vdev_t *vd) 147 { 148 vd->vdev_min_asize = vdev_get_min_asize(vd); 149 150 for (int c = 0; c < vd->vdev_children; c++) 151 vdev_set_min_asize(vd->vdev_child[c]); 152 } 153 154 vdev_t * 155 vdev_lookup_top(spa_t *spa, uint64_t vdev) 156 { 157 vdev_t *rvd = spa->spa_root_vdev; 158 159 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 160 161 if (vdev < rvd->vdev_children) { 162 ASSERT(rvd->vdev_child[vdev] != NULL); 163 return (rvd->vdev_child[vdev]); 164 } 165 166 return (NULL); 167 } 168 169 vdev_t * 170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 171 { 172 vdev_t *mvd; 173 174 if (vd->vdev_guid == guid) 175 return (vd); 176 177 for (int c = 0; c < vd->vdev_children; c++) 178 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 179 NULL) 180 return (mvd); 181 182 return (NULL); 183 } 184 185 static int 186 vdev_count_leaves_impl(vdev_t *vd) 187 { 188 int n = 0; 189 190 if (vd->vdev_ops->vdev_op_leaf) 191 return (1); 192 193 for (int c = 0; c < vd->vdev_children; c++) 194 n += vdev_count_leaves_impl(vd->vdev_child[c]); 195 196 return (n); 197 } 198 199 int 200 vdev_count_leaves(spa_t *spa) 201 { 202 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 203 } 204 205 void 206 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 207 { 208 size_t oldsize, newsize; 209 uint64_t id = cvd->vdev_id; 210 vdev_t **newchild; 211 spa_t *spa = cvd->vdev_spa; 212 213 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 214 ASSERT(cvd->vdev_parent == NULL); 215 216 cvd->vdev_parent = pvd; 217 218 if (pvd == NULL) 219 return; 220 221 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 222 223 oldsize = pvd->vdev_children * sizeof (vdev_t *); 224 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 225 newsize = pvd->vdev_children * sizeof (vdev_t *); 226 227 newchild = kmem_zalloc(newsize, KM_SLEEP); 228 if (pvd->vdev_child != NULL) { 229 bcopy(pvd->vdev_child, newchild, oldsize); 230 kmem_free(pvd->vdev_child, oldsize); 231 } 232 233 pvd->vdev_child = newchild; 234 pvd->vdev_child[id] = cvd; 235 236 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 237 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 238 239 /* 240 * Walk up all ancestors to update guid sum. 241 */ 242 for (; pvd != NULL; pvd = pvd->vdev_parent) 243 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 244 } 245 246 void 247 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 248 { 249 int c; 250 uint_t id = cvd->vdev_id; 251 252 ASSERT(cvd->vdev_parent == pvd); 253 254 if (pvd == NULL) 255 return; 256 257 ASSERT(id < pvd->vdev_children); 258 ASSERT(pvd->vdev_child[id] == cvd); 259 260 pvd->vdev_child[id] = NULL; 261 cvd->vdev_parent = NULL; 262 263 for (c = 0; c < pvd->vdev_children; c++) 264 if (pvd->vdev_child[c]) 265 break; 266 267 if (c == pvd->vdev_children) { 268 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 269 pvd->vdev_child = NULL; 270 pvd->vdev_children = 0; 271 } 272 273 /* 274 * Walk up all ancestors to update guid sum. 275 */ 276 for (; pvd != NULL; pvd = pvd->vdev_parent) 277 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 278 } 279 280 /* 281 * Remove any holes in the child array. 282 */ 283 void 284 vdev_compact_children(vdev_t *pvd) 285 { 286 vdev_t **newchild, *cvd; 287 int oldc = pvd->vdev_children; 288 int newc; 289 290 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 291 292 for (int c = newc = 0; c < oldc; c++) 293 if (pvd->vdev_child[c]) 294 newc++; 295 296 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 297 298 for (int c = newc = 0; c < oldc; c++) { 299 if ((cvd = pvd->vdev_child[c]) != NULL) { 300 newchild[newc] = cvd; 301 cvd->vdev_id = newc++; 302 } 303 } 304 305 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 306 pvd->vdev_child = newchild; 307 pvd->vdev_children = newc; 308 } 309 310 /* 311 * Allocate and minimally initialize a vdev_t. 312 */ 313 vdev_t * 314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 315 { 316 vdev_t *vd; 317 318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 319 320 if (spa->spa_root_vdev == NULL) { 321 ASSERT(ops == &vdev_root_ops); 322 spa->spa_root_vdev = vd; 323 spa->spa_load_guid = spa_generate_guid(NULL); 324 } 325 326 if (guid == 0 && ops != &vdev_hole_ops) { 327 if (spa->spa_root_vdev == vd) { 328 /* 329 * The root vdev's guid will also be the pool guid, 330 * which must be unique among all pools. 331 */ 332 guid = spa_generate_guid(NULL); 333 } else { 334 /* 335 * Any other vdev's guid must be unique within the pool. 336 */ 337 guid = spa_generate_guid(spa); 338 } 339 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 340 } 341 342 vd->vdev_spa = spa; 343 vd->vdev_id = id; 344 vd->vdev_guid = guid; 345 vd->vdev_guid_sum = guid; 346 vd->vdev_ops = ops; 347 vd->vdev_state = VDEV_STATE_CLOSED; 348 vd->vdev_ishole = (ops == &vdev_hole_ops); 349 350 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 351 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 352 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 353 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 354 for (int t = 0; t < DTL_TYPES; t++) { 355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 356 &vd->vdev_dtl_lock); 357 } 358 txg_list_create(&vd->vdev_ms_list, spa, 359 offsetof(struct metaslab, ms_txg_node)); 360 txg_list_create(&vd->vdev_dtl_list, spa, 361 offsetof(struct vdev, vdev_dtl_node)); 362 vd->vdev_stat.vs_timestamp = gethrtime(); 363 vdev_queue_init(vd); 364 vdev_cache_init(vd); 365 366 return (vd); 367 } 368 369 /* 370 * Allocate a new vdev. The 'alloctype' is used to control whether we are 371 * creating a new vdev or loading an existing one - the behavior is slightly 372 * different for each case. 373 */ 374 int 375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 376 int alloctype) 377 { 378 vdev_ops_t *ops; 379 char *type; 380 uint64_t guid = 0, islog, nparity; 381 vdev_t *vd; 382 383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 384 385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 386 return (SET_ERROR(EINVAL)); 387 388 if ((ops = vdev_getops(type)) == NULL) 389 return (SET_ERROR(EINVAL)); 390 391 /* 392 * If this is a load, get the vdev guid from the nvlist. 393 * Otherwise, vdev_alloc_common() will generate one for us. 394 */ 395 if (alloctype == VDEV_ALLOC_LOAD) { 396 uint64_t label_id; 397 398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 399 label_id != id) 400 return (SET_ERROR(EINVAL)); 401 402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 403 return (SET_ERROR(EINVAL)); 404 } else if (alloctype == VDEV_ALLOC_SPARE) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 406 return (SET_ERROR(EINVAL)); 407 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 409 return (SET_ERROR(EINVAL)); 410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 412 return (SET_ERROR(EINVAL)); 413 } 414 415 /* 416 * The first allocated vdev must be of type 'root'. 417 */ 418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 419 return (SET_ERROR(EINVAL)); 420 421 /* 422 * Determine whether we're a log vdev. 423 */ 424 islog = 0; 425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 427 return (SET_ERROR(ENOTSUP)); 428 429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 430 return (SET_ERROR(ENOTSUP)); 431 432 /* 433 * Set the nparity property for RAID-Z vdevs. 434 */ 435 nparity = -1ULL; 436 if (ops == &vdev_raidz_ops) { 437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 438 &nparity) == 0) { 439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 440 return (SET_ERROR(EINVAL)); 441 /* 442 * Previous versions could only support 1 or 2 parity 443 * device. 444 */ 445 if (nparity > 1 && 446 spa_version(spa) < SPA_VERSION_RAIDZ2) 447 return (SET_ERROR(ENOTSUP)); 448 if (nparity > 2 && 449 spa_version(spa) < SPA_VERSION_RAIDZ3) 450 return (SET_ERROR(ENOTSUP)); 451 } else { 452 /* 453 * We require the parity to be specified for SPAs that 454 * support multiple parity levels. 455 */ 456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 457 return (SET_ERROR(EINVAL)); 458 /* 459 * Otherwise, we default to 1 parity device for RAID-Z. 460 */ 461 nparity = 1; 462 } 463 } else { 464 nparity = 0; 465 } 466 ASSERT(nparity != -1ULL); 467 468 vd = vdev_alloc_common(spa, id, guid, ops); 469 470 vd->vdev_islog = islog; 471 vd->vdev_nparity = nparity; 472 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 474 vd->vdev_path = spa_strdup(vd->vdev_path); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 476 vd->vdev_devid = spa_strdup(vd->vdev_devid); 477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 478 &vd->vdev_physpath) == 0) 479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 481 vd->vdev_fru = spa_strdup(vd->vdev_fru); 482 483 /* 484 * Set the whole_disk property. If it's not specified, leave the value 485 * as -1. 486 */ 487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 488 &vd->vdev_wholedisk) != 0) 489 vd->vdev_wholedisk = -1ULL; 490 491 /* 492 * Look for the 'not present' flag. This will only be set if the device 493 * was not present at the time of import. 494 */ 495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 496 &vd->vdev_not_present); 497 498 /* 499 * Get the alignment requirement. 500 */ 501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 502 503 /* 504 * Retrieve the vdev creation time. 505 */ 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 507 &vd->vdev_crtxg); 508 509 /* 510 * If we're a top-level vdev, try to load the allocation parameters. 511 */ 512 if (parent && !parent->vdev_parent && 513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 515 &vd->vdev_ms_array); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 517 &vd->vdev_ms_shift); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 519 &vd->vdev_asize); 520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 521 &vd->vdev_removing); 522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 523 &vd->vdev_top_zap); 524 } else { 525 ASSERT0(vd->vdev_top_zap); 526 } 527 528 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 529 ASSERT(alloctype == VDEV_ALLOC_LOAD || 530 alloctype == VDEV_ALLOC_ADD || 531 alloctype == VDEV_ALLOC_SPLIT || 532 alloctype == VDEV_ALLOC_ROOTPOOL); 533 vd->vdev_mg = metaslab_group_create(islog ? 534 spa_log_class(spa) : spa_normal_class(spa), vd); 535 } 536 537 if (vd->vdev_ops->vdev_op_leaf && 538 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 539 (void) nvlist_lookup_uint64(nv, 540 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 541 } else { 542 ASSERT0(vd->vdev_leaf_zap); 543 } 544 545 /* 546 * If we're a leaf vdev, try to load the DTL object and other state. 547 */ 548 549 if (vd->vdev_ops->vdev_op_leaf && 550 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 551 alloctype == VDEV_ALLOC_ROOTPOOL)) { 552 if (alloctype == VDEV_ALLOC_LOAD) { 553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 554 &vd->vdev_dtl_object); 555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 556 &vd->vdev_unspare); 557 } 558 559 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 560 uint64_t spare = 0; 561 562 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 563 &spare) == 0 && spare) 564 spa_spare_add(vd); 565 } 566 567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 568 &vd->vdev_offline); 569 570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 571 &vd->vdev_resilver_txg); 572 573 /* 574 * When importing a pool, we want to ignore the persistent fault 575 * state, as the diagnosis made on another system may not be 576 * valid in the current context. Local vdevs will 577 * remain in the faulted state. 578 */ 579 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 581 &vd->vdev_faulted); 582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 583 &vd->vdev_degraded); 584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 585 &vd->vdev_removed); 586 587 if (vd->vdev_faulted || vd->vdev_degraded) { 588 char *aux; 589 590 vd->vdev_label_aux = 591 VDEV_AUX_ERR_EXCEEDED; 592 if (nvlist_lookup_string(nv, 593 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 594 strcmp(aux, "external") == 0) 595 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 596 } 597 } 598 } 599 600 /* 601 * Add ourselves to the parent's list of children. 602 */ 603 vdev_add_child(parent, vd); 604 605 *vdp = vd; 606 607 return (0); 608 } 609 610 void 611 vdev_free(vdev_t *vd) 612 { 613 spa_t *spa = vd->vdev_spa; 614 615 /* 616 * vdev_free() implies closing the vdev first. This is simpler than 617 * trying to ensure complicated semantics for all callers. 618 */ 619 vdev_close(vd); 620 621 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 622 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 623 624 /* 625 * Free all children. 626 */ 627 for (int c = 0; c < vd->vdev_children; c++) 628 vdev_free(vd->vdev_child[c]); 629 630 ASSERT(vd->vdev_child == NULL); 631 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 632 633 /* 634 * Discard allocation state. 635 */ 636 if (vd->vdev_mg != NULL) { 637 vdev_metaslab_fini(vd); 638 metaslab_group_destroy(vd->vdev_mg); 639 } 640 641 ASSERT0(vd->vdev_stat.vs_space); 642 ASSERT0(vd->vdev_stat.vs_dspace); 643 ASSERT0(vd->vdev_stat.vs_alloc); 644 645 /* 646 * Remove this vdev from its parent's child list. 647 */ 648 vdev_remove_child(vd->vdev_parent, vd); 649 650 ASSERT(vd->vdev_parent == NULL); 651 652 /* 653 * Clean up vdev structure. 654 */ 655 vdev_queue_fini(vd); 656 vdev_cache_fini(vd); 657 658 if (vd->vdev_path) 659 spa_strfree(vd->vdev_path); 660 if (vd->vdev_devid) 661 spa_strfree(vd->vdev_devid); 662 if (vd->vdev_physpath) 663 spa_strfree(vd->vdev_physpath); 664 if (vd->vdev_fru) 665 spa_strfree(vd->vdev_fru); 666 667 if (vd->vdev_isspare) 668 spa_spare_remove(vd); 669 if (vd->vdev_isl2cache) 670 spa_l2cache_remove(vd); 671 672 txg_list_destroy(&vd->vdev_ms_list); 673 txg_list_destroy(&vd->vdev_dtl_list); 674 675 mutex_enter(&vd->vdev_dtl_lock); 676 space_map_close(vd->vdev_dtl_sm); 677 for (int t = 0; t < DTL_TYPES; t++) { 678 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 679 range_tree_destroy(vd->vdev_dtl[t]); 680 } 681 mutex_exit(&vd->vdev_dtl_lock); 682 683 mutex_destroy(&vd->vdev_queue_lock); 684 mutex_destroy(&vd->vdev_dtl_lock); 685 mutex_destroy(&vd->vdev_stat_lock); 686 mutex_destroy(&vd->vdev_probe_lock); 687 688 if (vd == spa->spa_root_vdev) 689 spa->spa_root_vdev = NULL; 690 691 kmem_free(vd, sizeof (vdev_t)); 692 } 693 694 /* 695 * Transfer top-level vdev state from svd to tvd. 696 */ 697 static void 698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 699 { 700 spa_t *spa = svd->vdev_spa; 701 metaslab_t *msp; 702 vdev_t *vd; 703 int t; 704 705 ASSERT(tvd == tvd->vdev_top); 706 707 tvd->vdev_ms_array = svd->vdev_ms_array; 708 tvd->vdev_ms_shift = svd->vdev_ms_shift; 709 tvd->vdev_ms_count = svd->vdev_ms_count; 710 tvd->vdev_top_zap = svd->vdev_top_zap; 711 712 svd->vdev_ms_array = 0; 713 svd->vdev_ms_shift = 0; 714 svd->vdev_ms_count = 0; 715 svd->vdev_top_zap = 0; 716 717 if (tvd->vdev_mg) 718 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 719 tvd->vdev_mg = svd->vdev_mg; 720 tvd->vdev_ms = svd->vdev_ms; 721 722 svd->vdev_mg = NULL; 723 svd->vdev_ms = NULL; 724 725 if (tvd->vdev_mg != NULL) 726 tvd->vdev_mg->mg_vd = tvd; 727 728 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 729 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 730 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 731 732 svd->vdev_stat.vs_alloc = 0; 733 svd->vdev_stat.vs_space = 0; 734 svd->vdev_stat.vs_dspace = 0; 735 736 for (t = 0; t < TXG_SIZE; t++) { 737 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 738 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 739 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 740 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 741 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 742 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 743 } 744 745 if (list_link_active(&svd->vdev_config_dirty_node)) { 746 vdev_config_clean(svd); 747 vdev_config_dirty(tvd); 748 } 749 750 if (list_link_active(&svd->vdev_state_dirty_node)) { 751 vdev_state_clean(svd); 752 vdev_state_dirty(tvd); 753 } 754 755 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 756 svd->vdev_deflate_ratio = 0; 757 758 tvd->vdev_islog = svd->vdev_islog; 759 svd->vdev_islog = 0; 760 } 761 762 static void 763 vdev_top_update(vdev_t *tvd, vdev_t *vd) 764 { 765 if (vd == NULL) 766 return; 767 768 vd->vdev_top = tvd; 769 770 for (int c = 0; c < vd->vdev_children; c++) 771 vdev_top_update(tvd, vd->vdev_child[c]); 772 } 773 774 /* 775 * Add a mirror/replacing vdev above an existing vdev. 776 */ 777 vdev_t * 778 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 779 { 780 spa_t *spa = cvd->vdev_spa; 781 vdev_t *pvd = cvd->vdev_parent; 782 vdev_t *mvd; 783 784 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 785 786 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 787 788 mvd->vdev_asize = cvd->vdev_asize; 789 mvd->vdev_min_asize = cvd->vdev_min_asize; 790 mvd->vdev_max_asize = cvd->vdev_max_asize; 791 mvd->vdev_ashift = cvd->vdev_ashift; 792 mvd->vdev_state = cvd->vdev_state; 793 mvd->vdev_crtxg = cvd->vdev_crtxg; 794 795 vdev_remove_child(pvd, cvd); 796 vdev_add_child(pvd, mvd); 797 cvd->vdev_id = mvd->vdev_children; 798 vdev_add_child(mvd, cvd); 799 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 800 801 if (mvd == mvd->vdev_top) 802 vdev_top_transfer(cvd, mvd); 803 804 return (mvd); 805 } 806 807 /* 808 * Remove a 1-way mirror/replacing vdev from the tree. 809 */ 810 void 811 vdev_remove_parent(vdev_t *cvd) 812 { 813 vdev_t *mvd = cvd->vdev_parent; 814 vdev_t *pvd = mvd->vdev_parent; 815 816 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 817 818 ASSERT(mvd->vdev_children == 1); 819 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 820 mvd->vdev_ops == &vdev_replacing_ops || 821 mvd->vdev_ops == &vdev_spare_ops); 822 cvd->vdev_ashift = mvd->vdev_ashift; 823 824 vdev_remove_child(mvd, cvd); 825 vdev_remove_child(pvd, mvd); 826 827 /* 828 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 829 * Otherwise, we could have detached an offline device, and when we 830 * go to import the pool we'll think we have two top-level vdevs, 831 * instead of a different version of the same top-level vdev. 832 */ 833 if (mvd->vdev_top == mvd) { 834 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 835 cvd->vdev_orig_guid = cvd->vdev_guid; 836 cvd->vdev_guid += guid_delta; 837 cvd->vdev_guid_sum += guid_delta; 838 } 839 cvd->vdev_id = mvd->vdev_id; 840 vdev_add_child(pvd, cvd); 841 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 842 843 if (cvd == cvd->vdev_top) 844 vdev_top_transfer(mvd, cvd); 845 846 ASSERT(mvd->vdev_children == 0); 847 vdev_free(mvd); 848 } 849 850 int 851 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 852 { 853 spa_t *spa = vd->vdev_spa; 854 objset_t *mos = spa->spa_meta_objset; 855 uint64_t m; 856 uint64_t oldc = vd->vdev_ms_count; 857 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 858 metaslab_t **mspp; 859 int error; 860 861 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 862 863 /* 864 * This vdev is not being allocated from yet or is a hole. 865 */ 866 if (vd->vdev_ms_shift == 0) 867 return (0); 868 869 ASSERT(!vd->vdev_ishole); 870 871 /* 872 * Compute the raidz-deflation ratio. Note, we hard-code 873 * in 128k (1 << 17) because it is the "typical" blocksize. 874 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 875 * otherwise it would inconsistently account for existing bp's. 876 */ 877 vd->vdev_deflate_ratio = (1 << 17) / 878 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 879 880 ASSERT(oldc <= newc); 881 882 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 883 884 if (oldc != 0) { 885 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 886 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 887 } 888 889 vd->vdev_ms = mspp; 890 vd->vdev_ms_count = newc; 891 892 for (m = oldc; m < newc; m++) { 893 uint64_t object = 0; 894 895 if (txg == 0) { 896 error = dmu_read(mos, vd->vdev_ms_array, 897 m * sizeof (uint64_t), sizeof (uint64_t), &object, 898 DMU_READ_PREFETCH); 899 if (error) 900 return (error); 901 } 902 903 error = metaslab_init(vd->vdev_mg, m, object, txg, 904 &(vd->vdev_ms[m])); 905 if (error) 906 return (error); 907 } 908 909 if (txg == 0) 910 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 911 912 /* 913 * If the vdev is being removed we don't activate 914 * the metaslabs since we want to ensure that no new 915 * allocations are performed on this device. 916 */ 917 if (oldc == 0 && !vd->vdev_removing) 918 metaslab_group_activate(vd->vdev_mg); 919 920 if (txg == 0) 921 spa_config_exit(spa, SCL_ALLOC, FTAG); 922 923 return (0); 924 } 925 926 void 927 vdev_metaslab_fini(vdev_t *vd) 928 { 929 uint64_t m; 930 uint64_t count = vd->vdev_ms_count; 931 932 if (vd->vdev_ms != NULL) { 933 metaslab_group_passivate(vd->vdev_mg); 934 for (m = 0; m < count; m++) { 935 metaslab_t *msp = vd->vdev_ms[m]; 936 937 if (msp != NULL) 938 metaslab_fini(msp); 939 } 940 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 941 vd->vdev_ms = NULL; 942 } 943 } 944 945 typedef struct vdev_probe_stats { 946 boolean_t vps_readable; 947 boolean_t vps_writeable; 948 int vps_flags; 949 } vdev_probe_stats_t; 950 951 static void 952 vdev_probe_done(zio_t *zio) 953 { 954 spa_t *spa = zio->io_spa; 955 vdev_t *vd = zio->io_vd; 956 vdev_probe_stats_t *vps = zio->io_private; 957 958 ASSERT(vd->vdev_probe_zio != NULL); 959 960 if (zio->io_type == ZIO_TYPE_READ) { 961 if (zio->io_error == 0) 962 vps->vps_readable = 1; 963 if (zio->io_error == 0 && spa_writeable(spa)) { 964 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 965 zio->io_offset, zio->io_size, zio->io_abd, 966 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 967 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 968 } else { 969 abd_free(zio->io_abd); 970 } 971 } else if (zio->io_type == ZIO_TYPE_WRITE) { 972 if (zio->io_error == 0) 973 vps->vps_writeable = 1; 974 abd_free(zio->io_abd); 975 } else if (zio->io_type == ZIO_TYPE_NULL) { 976 zio_t *pio; 977 978 vd->vdev_cant_read |= !vps->vps_readable; 979 vd->vdev_cant_write |= !vps->vps_writeable; 980 981 if (vdev_readable(vd) && 982 (vdev_writeable(vd) || !spa_writeable(spa))) { 983 zio->io_error = 0; 984 } else { 985 ASSERT(zio->io_error != 0); 986 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 987 spa, vd, NULL, 0, 0); 988 zio->io_error = SET_ERROR(ENXIO); 989 } 990 991 mutex_enter(&vd->vdev_probe_lock); 992 ASSERT(vd->vdev_probe_zio == zio); 993 vd->vdev_probe_zio = NULL; 994 mutex_exit(&vd->vdev_probe_lock); 995 996 zio_link_t *zl = NULL; 997 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 998 if (!vdev_accessible(vd, pio)) 999 pio->io_error = SET_ERROR(ENXIO); 1000 1001 kmem_free(vps, sizeof (*vps)); 1002 } 1003 } 1004 1005 /* 1006 * Determine whether this device is accessible. 1007 * 1008 * Read and write to several known locations: the pad regions of each 1009 * vdev label but the first, which we leave alone in case it contains 1010 * a VTOC. 1011 */ 1012 zio_t * 1013 vdev_probe(vdev_t *vd, zio_t *zio) 1014 { 1015 spa_t *spa = vd->vdev_spa; 1016 vdev_probe_stats_t *vps = NULL; 1017 zio_t *pio; 1018 1019 ASSERT(vd->vdev_ops->vdev_op_leaf); 1020 1021 /* 1022 * Don't probe the probe. 1023 */ 1024 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1025 return (NULL); 1026 1027 /* 1028 * To prevent 'probe storms' when a device fails, we create 1029 * just one probe i/o at a time. All zios that want to probe 1030 * this vdev will become parents of the probe io. 1031 */ 1032 mutex_enter(&vd->vdev_probe_lock); 1033 1034 if ((pio = vd->vdev_probe_zio) == NULL) { 1035 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1036 1037 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1038 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1039 ZIO_FLAG_TRYHARD; 1040 1041 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1042 /* 1043 * vdev_cant_read and vdev_cant_write can only 1044 * transition from TRUE to FALSE when we have the 1045 * SCL_ZIO lock as writer; otherwise they can only 1046 * transition from FALSE to TRUE. This ensures that 1047 * any zio looking at these values can assume that 1048 * failures persist for the life of the I/O. That's 1049 * important because when a device has intermittent 1050 * connectivity problems, we want to ensure that 1051 * they're ascribed to the device (ENXIO) and not 1052 * the zio (EIO). 1053 * 1054 * Since we hold SCL_ZIO as writer here, clear both 1055 * values so the probe can reevaluate from first 1056 * principles. 1057 */ 1058 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1059 vd->vdev_cant_read = B_FALSE; 1060 vd->vdev_cant_write = B_FALSE; 1061 } 1062 1063 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1064 vdev_probe_done, vps, 1065 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1066 1067 /* 1068 * We can't change the vdev state in this context, so we 1069 * kick off an async task to do it on our behalf. 1070 */ 1071 if (zio != NULL) { 1072 vd->vdev_probe_wanted = B_TRUE; 1073 spa_async_request(spa, SPA_ASYNC_PROBE); 1074 } 1075 } 1076 1077 if (zio != NULL) 1078 zio_add_child(zio, pio); 1079 1080 mutex_exit(&vd->vdev_probe_lock); 1081 1082 if (vps == NULL) { 1083 ASSERT(zio != NULL); 1084 return (NULL); 1085 } 1086 1087 for (int l = 1; l < VDEV_LABELS; l++) { 1088 zio_nowait(zio_read_phys(pio, vd, 1089 vdev_label_offset(vd->vdev_psize, l, 1090 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1091 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1092 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1093 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1094 } 1095 1096 if (zio == NULL) 1097 return (pio); 1098 1099 zio_nowait(pio); 1100 return (NULL); 1101 } 1102 1103 static void 1104 vdev_open_child(void *arg) 1105 { 1106 vdev_t *vd = arg; 1107 1108 vd->vdev_open_thread = curthread; 1109 vd->vdev_open_error = vdev_open(vd); 1110 vd->vdev_open_thread = NULL; 1111 } 1112 1113 boolean_t 1114 vdev_uses_zvols(vdev_t *vd) 1115 { 1116 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1117 strlen(ZVOL_DIR)) == 0) 1118 return (B_TRUE); 1119 for (int c = 0; c < vd->vdev_children; c++) 1120 if (vdev_uses_zvols(vd->vdev_child[c])) 1121 return (B_TRUE); 1122 return (B_FALSE); 1123 } 1124 1125 void 1126 vdev_open_children(vdev_t *vd) 1127 { 1128 taskq_t *tq; 1129 int children = vd->vdev_children; 1130 1131 /* 1132 * in order to handle pools on top of zvols, do the opens 1133 * in a single thread so that the same thread holds the 1134 * spa_namespace_lock 1135 */ 1136 if (vdev_uses_zvols(vd)) { 1137 for (int c = 0; c < children; c++) 1138 vd->vdev_child[c]->vdev_open_error = 1139 vdev_open(vd->vdev_child[c]); 1140 return; 1141 } 1142 tq = taskq_create("vdev_open", children, minclsyspri, 1143 children, children, TASKQ_PREPOPULATE); 1144 1145 for (int c = 0; c < children; c++) 1146 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1147 TQ_SLEEP) != NULL); 1148 1149 taskq_destroy(tq); 1150 } 1151 1152 /* 1153 * Prepare a virtual device for access. 1154 */ 1155 int 1156 vdev_open(vdev_t *vd) 1157 { 1158 spa_t *spa = vd->vdev_spa; 1159 int error; 1160 uint64_t osize = 0; 1161 uint64_t max_osize = 0; 1162 uint64_t asize, max_asize, psize; 1163 uint64_t ashift = 0; 1164 1165 ASSERT(vd->vdev_open_thread == curthread || 1166 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1167 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1168 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1169 vd->vdev_state == VDEV_STATE_OFFLINE); 1170 1171 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1172 vd->vdev_cant_read = B_FALSE; 1173 vd->vdev_cant_write = B_FALSE; 1174 vd->vdev_min_asize = vdev_get_min_asize(vd); 1175 1176 /* 1177 * If this vdev is not removed, check its fault status. If it's 1178 * faulted, bail out of the open. 1179 */ 1180 if (!vd->vdev_removed && vd->vdev_faulted) { 1181 ASSERT(vd->vdev_children == 0); 1182 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1183 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1184 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1185 vd->vdev_label_aux); 1186 return (SET_ERROR(ENXIO)); 1187 } else if (vd->vdev_offline) { 1188 ASSERT(vd->vdev_children == 0); 1189 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1190 return (SET_ERROR(ENXIO)); 1191 } 1192 1193 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1194 1195 /* 1196 * Reset the vdev_reopening flag so that we actually close 1197 * the vdev on error. 1198 */ 1199 vd->vdev_reopening = B_FALSE; 1200 if (zio_injection_enabled && error == 0) 1201 error = zio_handle_device_injection(vd, NULL, ENXIO); 1202 1203 if (error) { 1204 if (vd->vdev_removed && 1205 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1206 vd->vdev_removed = B_FALSE; 1207 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1209 vd->vdev_stat.vs_aux); 1210 return (error); 1211 } 1212 1213 vd->vdev_removed = B_FALSE; 1214 1215 /* 1216 * Recheck the faulted flag now that we have confirmed that 1217 * the vdev is accessible. If we're faulted, bail. 1218 */ 1219 if (vd->vdev_faulted) { 1220 ASSERT(vd->vdev_children == 0); 1221 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1222 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1224 vd->vdev_label_aux); 1225 return (SET_ERROR(ENXIO)); 1226 } 1227 1228 if (vd->vdev_degraded) { 1229 ASSERT(vd->vdev_children == 0); 1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1231 VDEV_AUX_ERR_EXCEEDED); 1232 } else { 1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1234 } 1235 1236 /* 1237 * For hole or missing vdevs we just return success. 1238 */ 1239 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1240 return (0); 1241 1242 for (int c = 0; c < vd->vdev_children; c++) { 1243 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1245 VDEV_AUX_NONE); 1246 break; 1247 } 1248 } 1249 1250 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1251 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1252 1253 if (vd->vdev_children == 0) { 1254 if (osize < SPA_MINDEVSIZE) { 1255 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1256 VDEV_AUX_TOO_SMALL); 1257 return (SET_ERROR(EOVERFLOW)); 1258 } 1259 psize = osize; 1260 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1261 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1262 VDEV_LABEL_END_SIZE); 1263 } else { 1264 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1265 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1267 VDEV_AUX_TOO_SMALL); 1268 return (SET_ERROR(EOVERFLOW)); 1269 } 1270 psize = 0; 1271 asize = osize; 1272 max_asize = max_osize; 1273 } 1274 1275 vd->vdev_psize = psize; 1276 1277 /* 1278 * Make sure the allocatable size hasn't shrunk too much. 1279 */ 1280 if (asize < vd->vdev_min_asize) { 1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1282 VDEV_AUX_BAD_LABEL); 1283 return (SET_ERROR(EINVAL)); 1284 } 1285 1286 if (vd->vdev_asize == 0) { 1287 /* 1288 * This is the first-ever open, so use the computed values. 1289 * For testing purposes, a higher ashift can be requested. 1290 */ 1291 vd->vdev_asize = asize; 1292 vd->vdev_max_asize = max_asize; 1293 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1294 } else { 1295 /* 1296 * Detect if the alignment requirement has increased. 1297 * We don't want to make the pool unavailable, just 1298 * issue a warning instead. 1299 */ 1300 if (ashift > vd->vdev_top->vdev_ashift && 1301 vd->vdev_ops->vdev_op_leaf) { 1302 cmn_err(CE_WARN, 1303 "Disk, '%s', has a block alignment that is " 1304 "larger than the pool's alignment\n", 1305 vd->vdev_path); 1306 } 1307 vd->vdev_max_asize = max_asize; 1308 } 1309 1310 /* 1311 * If all children are healthy we update asize if either: 1312 * The asize has increased, due to a device expansion caused by dynamic 1313 * LUN growth or vdev replacement, and automatic expansion is enabled; 1314 * making the additional space available. 1315 * 1316 * The asize has decreased, due to a device shrink usually caused by a 1317 * vdev replace with a smaller device. This ensures that calculations 1318 * based of max_asize and asize e.g. esize are always valid. It's safe 1319 * to do this as we've already validated that asize is greater than 1320 * vdev_min_asize. 1321 */ 1322 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1323 ((asize > vd->vdev_asize && 1324 (vd->vdev_expanding || spa->spa_autoexpand)) || 1325 (asize < vd->vdev_asize))) 1326 vd->vdev_asize = asize; 1327 1328 vdev_set_min_asize(vd); 1329 1330 /* 1331 * Ensure we can issue some IO before declaring the 1332 * vdev open for business. 1333 */ 1334 if (vd->vdev_ops->vdev_op_leaf && 1335 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1337 VDEV_AUX_ERR_EXCEEDED); 1338 return (error); 1339 } 1340 1341 /* 1342 * Track the min and max ashift values for normal data devices. 1343 */ 1344 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1345 !vd->vdev_islog && vd->vdev_aux == NULL) { 1346 if (vd->vdev_ashift > spa->spa_max_ashift) 1347 spa->spa_max_ashift = vd->vdev_ashift; 1348 if (vd->vdev_ashift < spa->spa_min_ashift) 1349 spa->spa_min_ashift = vd->vdev_ashift; 1350 } 1351 1352 /* 1353 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1354 * resilver. But don't do this if we are doing a reopen for a scrub, 1355 * since this would just restart the scrub we are already doing. 1356 */ 1357 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1358 vdev_resilver_needed(vd, NULL, NULL)) 1359 spa_async_request(spa, SPA_ASYNC_RESILVER); 1360 1361 return (0); 1362 } 1363 1364 /* 1365 * Called once the vdevs are all opened, this routine validates the label 1366 * contents. This needs to be done before vdev_load() so that we don't 1367 * inadvertently do repair I/Os to the wrong device. 1368 * 1369 * If 'strict' is false ignore the spa guid check. This is necessary because 1370 * if the machine crashed during a re-guid the new guid might have been written 1371 * to all of the vdev labels, but not the cached config. The strict check 1372 * will be performed when the pool is opened again using the mos config. 1373 * 1374 * This function will only return failure if one of the vdevs indicates that it 1375 * has since been destroyed or exported. This is only possible if 1376 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1377 * will be updated but the function will return 0. 1378 */ 1379 int 1380 vdev_validate(vdev_t *vd, boolean_t strict) 1381 { 1382 spa_t *spa = vd->vdev_spa; 1383 nvlist_t *label; 1384 uint64_t guid = 0, top_guid; 1385 uint64_t state; 1386 1387 for (int c = 0; c < vd->vdev_children; c++) 1388 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1389 return (SET_ERROR(EBADF)); 1390 1391 /* 1392 * If the device has already failed, or was marked offline, don't do 1393 * any further validation. Otherwise, label I/O will fail and we will 1394 * overwrite the previous state. 1395 */ 1396 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1397 uint64_t aux_guid = 0; 1398 nvlist_t *nvl; 1399 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1400 spa_last_synced_txg(spa) : -1ULL; 1401 1402 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1403 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1404 VDEV_AUX_BAD_LABEL); 1405 return (0); 1406 } 1407 1408 /* 1409 * Determine if this vdev has been split off into another 1410 * pool. If so, then refuse to open it. 1411 */ 1412 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1413 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1414 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1415 VDEV_AUX_SPLIT_POOL); 1416 nvlist_free(label); 1417 return (0); 1418 } 1419 1420 if (strict && (nvlist_lookup_uint64(label, 1421 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1422 guid != spa_guid(spa))) { 1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1424 VDEV_AUX_CORRUPT_DATA); 1425 nvlist_free(label); 1426 return (0); 1427 } 1428 1429 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1430 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1431 &aux_guid) != 0) 1432 aux_guid = 0; 1433 1434 /* 1435 * If this vdev just became a top-level vdev because its 1436 * sibling was detached, it will have adopted the parent's 1437 * vdev guid -- but the label may or may not be on disk yet. 1438 * Fortunately, either version of the label will have the 1439 * same top guid, so if we're a top-level vdev, we can 1440 * safely compare to that instead. 1441 * 1442 * If we split this vdev off instead, then we also check the 1443 * original pool's guid. We don't want to consider the vdev 1444 * corrupt if it is partway through a split operation. 1445 */ 1446 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1447 &guid) != 0 || 1448 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1449 &top_guid) != 0 || 1450 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1451 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1452 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1453 VDEV_AUX_CORRUPT_DATA); 1454 nvlist_free(label); 1455 return (0); 1456 } 1457 1458 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1459 &state) != 0) { 1460 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1461 VDEV_AUX_CORRUPT_DATA); 1462 nvlist_free(label); 1463 return (0); 1464 } 1465 1466 nvlist_free(label); 1467 1468 /* 1469 * If this is a verbatim import, no need to check the 1470 * state of the pool. 1471 */ 1472 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1473 spa_load_state(spa) == SPA_LOAD_OPEN && 1474 state != POOL_STATE_ACTIVE) 1475 return (SET_ERROR(EBADF)); 1476 1477 /* 1478 * If we were able to open and validate a vdev that was 1479 * previously marked permanently unavailable, clear that state 1480 * now. 1481 */ 1482 if (vd->vdev_not_present) 1483 vd->vdev_not_present = 0; 1484 } 1485 1486 return (0); 1487 } 1488 1489 /* 1490 * Close a virtual device. 1491 */ 1492 void 1493 vdev_close(vdev_t *vd) 1494 { 1495 spa_t *spa = vd->vdev_spa; 1496 vdev_t *pvd = vd->vdev_parent; 1497 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1499 1500 /* 1501 * If our parent is reopening, then we are as well, unless we are 1502 * going offline. 1503 */ 1504 if (pvd != NULL && pvd->vdev_reopening) 1505 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1506 1507 vd->vdev_ops->vdev_op_close(vd); 1508 1509 vdev_cache_purge(vd); 1510 1511 /* 1512 * We record the previous state before we close it, so that if we are 1513 * doing a reopen(), we don't generate FMA ereports if we notice that 1514 * it's still faulted. 1515 */ 1516 vd->vdev_prevstate = vd->vdev_state; 1517 1518 if (vd->vdev_offline) 1519 vd->vdev_state = VDEV_STATE_OFFLINE; 1520 else 1521 vd->vdev_state = VDEV_STATE_CLOSED; 1522 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1523 } 1524 1525 void 1526 vdev_hold(vdev_t *vd) 1527 { 1528 spa_t *spa = vd->vdev_spa; 1529 1530 ASSERT(spa_is_root(spa)); 1531 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1532 return; 1533 1534 for (int c = 0; c < vd->vdev_children; c++) 1535 vdev_hold(vd->vdev_child[c]); 1536 1537 if (vd->vdev_ops->vdev_op_leaf) 1538 vd->vdev_ops->vdev_op_hold(vd); 1539 } 1540 1541 void 1542 vdev_rele(vdev_t *vd) 1543 { 1544 spa_t *spa = vd->vdev_spa; 1545 1546 ASSERT(spa_is_root(spa)); 1547 for (int c = 0; c < vd->vdev_children; c++) 1548 vdev_rele(vd->vdev_child[c]); 1549 1550 if (vd->vdev_ops->vdev_op_leaf) 1551 vd->vdev_ops->vdev_op_rele(vd); 1552 } 1553 1554 /* 1555 * Reopen all interior vdevs and any unopened leaves. We don't actually 1556 * reopen leaf vdevs which had previously been opened as they might deadlock 1557 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1558 * If the leaf has never been opened then open it, as usual. 1559 */ 1560 void 1561 vdev_reopen(vdev_t *vd) 1562 { 1563 spa_t *spa = vd->vdev_spa; 1564 1565 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1566 1567 /* set the reopening flag unless we're taking the vdev offline */ 1568 vd->vdev_reopening = !vd->vdev_offline; 1569 vdev_close(vd); 1570 (void) vdev_open(vd); 1571 1572 /* 1573 * Call vdev_validate() here to make sure we have the same device. 1574 * Otherwise, a device with an invalid label could be successfully 1575 * opened in response to vdev_reopen(). 1576 */ 1577 if (vd->vdev_aux) { 1578 (void) vdev_validate_aux(vd); 1579 if (vdev_readable(vd) && vdev_writeable(vd) && 1580 vd->vdev_aux == &spa->spa_l2cache && 1581 !l2arc_vdev_present(vd)) 1582 l2arc_add_vdev(spa, vd); 1583 } else { 1584 (void) vdev_validate(vd, B_TRUE); 1585 } 1586 1587 /* 1588 * Reassess parent vdev's health. 1589 */ 1590 vdev_propagate_state(vd); 1591 } 1592 1593 int 1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1595 { 1596 int error; 1597 1598 /* 1599 * Normally, partial opens (e.g. of a mirror) are allowed. 1600 * For a create, however, we want to fail the request if 1601 * there are any components we can't open. 1602 */ 1603 error = vdev_open(vd); 1604 1605 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1606 vdev_close(vd); 1607 return (error ? error : ENXIO); 1608 } 1609 1610 /* 1611 * Recursively load DTLs and initialize all labels. 1612 */ 1613 if ((error = vdev_dtl_load(vd)) != 0 || 1614 (error = vdev_label_init(vd, txg, isreplacing ? 1615 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1616 vdev_close(vd); 1617 return (error); 1618 } 1619 1620 return (0); 1621 } 1622 1623 void 1624 vdev_metaslab_set_size(vdev_t *vd) 1625 { 1626 /* 1627 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1628 */ 1629 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1630 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1631 } 1632 1633 void 1634 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1635 { 1636 ASSERT(vd == vd->vdev_top); 1637 ASSERT(!vd->vdev_ishole); 1638 ASSERT(ISP2(flags)); 1639 ASSERT(spa_writeable(vd->vdev_spa)); 1640 1641 if (flags & VDD_METASLAB) 1642 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1643 1644 if (flags & VDD_DTL) 1645 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1646 1647 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1648 } 1649 1650 void 1651 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1652 { 1653 for (int c = 0; c < vd->vdev_children; c++) 1654 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1655 1656 if (vd->vdev_ops->vdev_op_leaf) 1657 vdev_dirty(vd->vdev_top, flags, vd, txg); 1658 } 1659 1660 /* 1661 * DTLs. 1662 * 1663 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1664 * the vdev has less than perfect replication. There are four kinds of DTL: 1665 * 1666 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1667 * 1668 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1669 * 1670 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1671 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1672 * txgs that was scrubbed. 1673 * 1674 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1675 * persistent errors or just some device being offline. 1676 * Unlike the other three, the DTL_OUTAGE map is not generally 1677 * maintained; it's only computed when needed, typically to 1678 * determine whether a device can be detached. 1679 * 1680 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1681 * either has the data or it doesn't. 1682 * 1683 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1684 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1685 * if any child is less than fully replicated, then so is its parent. 1686 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1687 * comprising only those txgs which appear in 'maxfaults' or more children; 1688 * those are the txgs we don't have enough replication to read. For example, 1689 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1690 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1691 * two child DTL_MISSING maps. 1692 * 1693 * It should be clear from the above that to compute the DTLs and outage maps 1694 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1695 * Therefore, that is all we keep on disk. When loading the pool, or after 1696 * a configuration change, we generate all other DTLs from first principles. 1697 */ 1698 void 1699 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1700 { 1701 range_tree_t *rt = vd->vdev_dtl[t]; 1702 1703 ASSERT(t < DTL_TYPES); 1704 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1705 ASSERT(spa_writeable(vd->vdev_spa)); 1706 1707 mutex_enter(rt->rt_lock); 1708 if (!range_tree_contains(rt, txg, size)) 1709 range_tree_add(rt, txg, size); 1710 mutex_exit(rt->rt_lock); 1711 } 1712 1713 boolean_t 1714 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1715 { 1716 range_tree_t *rt = vd->vdev_dtl[t]; 1717 boolean_t dirty = B_FALSE; 1718 1719 ASSERT(t < DTL_TYPES); 1720 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1721 1722 mutex_enter(rt->rt_lock); 1723 if (range_tree_space(rt) != 0) 1724 dirty = range_tree_contains(rt, txg, size); 1725 mutex_exit(rt->rt_lock); 1726 1727 return (dirty); 1728 } 1729 1730 boolean_t 1731 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1732 { 1733 range_tree_t *rt = vd->vdev_dtl[t]; 1734 boolean_t empty; 1735 1736 mutex_enter(rt->rt_lock); 1737 empty = (range_tree_space(rt) == 0); 1738 mutex_exit(rt->rt_lock); 1739 1740 return (empty); 1741 } 1742 1743 /* 1744 * Returns the lowest txg in the DTL range. 1745 */ 1746 static uint64_t 1747 vdev_dtl_min(vdev_t *vd) 1748 { 1749 range_seg_t *rs; 1750 1751 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1752 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1753 ASSERT0(vd->vdev_children); 1754 1755 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1756 return (rs->rs_start - 1); 1757 } 1758 1759 /* 1760 * Returns the highest txg in the DTL. 1761 */ 1762 static uint64_t 1763 vdev_dtl_max(vdev_t *vd) 1764 { 1765 range_seg_t *rs; 1766 1767 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1768 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1769 ASSERT0(vd->vdev_children); 1770 1771 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1772 return (rs->rs_end); 1773 } 1774 1775 /* 1776 * Determine if a resilvering vdev should remove any DTL entries from 1777 * its range. If the vdev was resilvering for the entire duration of the 1778 * scan then it should excise that range from its DTLs. Otherwise, this 1779 * vdev is considered partially resilvered and should leave its DTL 1780 * entries intact. The comment in vdev_dtl_reassess() describes how we 1781 * excise the DTLs. 1782 */ 1783 static boolean_t 1784 vdev_dtl_should_excise(vdev_t *vd) 1785 { 1786 spa_t *spa = vd->vdev_spa; 1787 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1788 1789 ASSERT0(scn->scn_phys.scn_errors); 1790 ASSERT0(vd->vdev_children); 1791 1792 if (vd->vdev_state < VDEV_STATE_DEGRADED) 1793 return (B_FALSE); 1794 1795 if (vd->vdev_resilver_txg == 0 || 1796 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1797 return (B_TRUE); 1798 1799 /* 1800 * When a resilver is initiated the scan will assign the scn_max_txg 1801 * value to the highest txg value that exists in all DTLs. If this 1802 * device's max DTL is not part of this scan (i.e. it is not in 1803 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1804 * for excision. 1805 */ 1806 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1807 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1808 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1809 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1810 return (B_TRUE); 1811 } 1812 return (B_FALSE); 1813 } 1814 1815 /* 1816 * Reassess DTLs after a config change or scrub completion. 1817 */ 1818 void 1819 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1820 { 1821 spa_t *spa = vd->vdev_spa; 1822 avl_tree_t reftree; 1823 int minref; 1824 1825 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1826 1827 for (int c = 0; c < vd->vdev_children; c++) 1828 vdev_dtl_reassess(vd->vdev_child[c], txg, 1829 scrub_txg, scrub_done); 1830 1831 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1832 return; 1833 1834 if (vd->vdev_ops->vdev_op_leaf) { 1835 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1836 1837 mutex_enter(&vd->vdev_dtl_lock); 1838 1839 /* 1840 * If we've completed a scan cleanly then determine 1841 * if this vdev should remove any DTLs. We only want to 1842 * excise regions on vdevs that were available during 1843 * the entire duration of this scan. 1844 */ 1845 if (scrub_txg != 0 && 1846 (spa->spa_scrub_started || 1847 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1848 vdev_dtl_should_excise(vd)) { 1849 /* 1850 * We completed a scrub up to scrub_txg. If we 1851 * did it without rebooting, then the scrub dtl 1852 * will be valid, so excise the old region and 1853 * fold in the scrub dtl. Otherwise, leave the 1854 * dtl as-is if there was an error. 1855 * 1856 * There's little trick here: to excise the beginning 1857 * of the DTL_MISSING map, we put it into a reference 1858 * tree and then add a segment with refcnt -1 that 1859 * covers the range [0, scrub_txg). This means 1860 * that each txg in that range has refcnt -1 or 0. 1861 * We then add DTL_SCRUB with a refcnt of 2, so that 1862 * entries in the range [0, scrub_txg) will have a 1863 * positive refcnt -- either 1 or 2. We then convert 1864 * the reference tree into the new DTL_MISSING map. 1865 */ 1866 space_reftree_create(&reftree); 1867 space_reftree_add_map(&reftree, 1868 vd->vdev_dtl[DTL_MISSING], 1); 1869 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1870 space_reftree_add_map(&reftree, 1871 vd->vdev_dtl[DTL_SCRUB], 2); 1872 space_reftree_generate_map(&reftree, 1873 vd->vdev_dtl[DTL_MISSING], 1); 1874 space_reftree_destroy(&reftree); 1875 } 1876 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1877 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1878 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1879 if (scrub_done) 1880 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1881 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1882 if (!vdev_readable(vd)) 1883 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1884 else 1885 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1886 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1887 1888 /* 1889 * If the vdev was resilvering and no longer has any 1890 * DTLs then reset its resilvering flag. 1891 */ 1892 if (vd->vdev_resilver_txg != 0 && 1893 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1894 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1895 vd->vdev_resilver_txg = 0; 1896 1897 mutex_exit(&vd->vdev_dtl_lock); 1898 1899 if (txg != 0) 1900 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1901 return; 1902 } 1903 1904 mutex_enter(&vd->vdev_dtl_lock); 1905 for (int t = 0; t < DTL_TYPES; t++) { 1906 /* account for child's outage in parent's missing map */ 1907 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1908 if (t == DTL_SCRUB) 1909 continue; /* leaf vdevs only */ 1910 if (t == DTL_PARTIAL) 1911 minref = 1; /* i.e. non-zero */ 1912 else if (vd->vdev_nparity != 0) 1913 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1914 else 1915 minref = vd->vdev_children; /* any kind of mirror */ 1916 space_reftree_create(&reftree); 1917 for (int c = 0; c < vd->vdev_children; c++) { 1918 vdev_t *cvd = vd->vdev_child[c]; 1919 mutex_enter(&cvd->vdev_dtl_lock); 1920 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1921 mutex_exit(&cvd->vdev_dtl_lock); 1922 } 1923 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1924 space_reftree_destroy(&reftree); 1925 } 1926 mutex_exit(&vd->vdev_dtl_lock); 1927 } 1928 1929 int 1930 vdev_dtl_load(vdev_t *vd) 1931 { 1932 spa_t *spa = vd->vdev_spa; 1933 objset_t *mos = spa->spa_meta_objset; 1934 int error = 0; 1935 1936 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1937 ASSERT(!vd->vdev_ishole); 1938 1939 error = space_map_open(&vd->vdev_dtl_sm, mos, 1940 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1941 if (error) 1942 return (error); 1943 ASSERT(vd->vdev_dtl_sm != NULL); 1944 1945 mutex_enter(&vd->vdev_dtl_lock); 1946 1947 /* 1948 * Now that we've opened the space_map we need to update 1949 * the in-core DTL. 1950 */ 1951 space_map_update(vd->vdev_dtl_sm); 1952 1953 error = space_map_load(vd->vdev_dtl_sm, 1954 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1955 mutex_exit(&vd->vdev_dtl_lock); 1956 1957 return (error); 1958 } 1959 1960 for (int c = 0; c < vd->vdev_children; c++) { 1961 error = vdev_dtl_load(vd->vdev_child[c]); 1962 if (error != 0) 1963 break; 1964 } 1965 1966 return (error); 1967 } 1968 1969 void 1970 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1971 { 1972 spa_t *spa = vd->vdev_spa; 1973 1974 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1975 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1976 zapobj, tx)); 1977 } 1978 1979 uint64_t 1980 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1981 { 1982 spa_t *spa = vd->vdev_spa; 1983 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1984 DMU_OT_NONE, 0, tx); 1985 1986 ASSERT(zap != 0); 1987 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1988 zap, tx)); 1989 1990 return (zap); 1991 } 1992 1993 void 1994 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1995 { 1996 if (vd->vdev_ops != &vdev_hole_ops && 1997 vd->vdev_ops != &vdev_missing_ops && 1998 vd->vdev_ops != &vdev_root_ops && 1999 !vd->vdev_top->vdev_removing) { 2000 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2001 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2002 } 2003 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2004 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2005 } 2006 } 2007 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2008 vdev_construct_zaps(vd->vdev_child[i], tx); 2009 } 2010 } 2011 2012 void 2013 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2014 { 2015 spa_t *spa = vd->vdev_spa; 2016 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2017 objset_t *mos = spa->spa_meta_objset; 2018 range_tree_t *rtsync; 2019 kmutex_t rtlock; 2020 dmu_tx_t *tx; 2021 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2022 2023 ASSERT(!vd->vdev_ishole); 2024 ASSERT(vd->vdev_ops->vdev_op_leaf); 2025 2026 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2027 2028 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2029 mutex_enter(&vd->vdev_dtl_lock); 2030 space_map_free(vd->vdev_dtl_sm, tx); 2031 space_map_close(vd->vdev_dtl_sm); 2032 vd->vdev_dtl_sm = NULL; 2033 mutex_exit(&vd->vdev_dtl_lock); 2034 2035 /* 2036 * We only destroy the leaf ZAP for detached leaves or for 2037 * removed log devices. Removed data devices handle leaf ZAP 2038 * cleanup later, once cancellation is no longer possible. 2039 */ 2040 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2041 vd->vdev_top->vdev_islog)) { 2042 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2043 vd->vdev_leaf_zap = 0; 2044 } 2045 2046 dmu_tx_commit(tx); 2047 return; 2048 } 2049 2050 if (vd->vdev_dtl_sm == NULL) { 2051 uint64_t new_object; 2052 2053 new_object = space_map_alloc(mos, tx); 2054 VERIFY3U(new_object, !=, 0); 2055 2056 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2057 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2058 ASSERT(vd->vdev_dtl_sm != NULL); 2059 } 2060 2061 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2062 2063 rtsync = range_tree_create(NULL, NULL, &rtlock); 2064 2065 mutex_enter(&rtlock); 2066 2067 mutex_enter(&vd->vdev_dtl_lock); 2068 range_tree_walk(rt, range_tree_add, rtsync); 2069 mutex_exit(&vd->vdev_dtl_lock); 2070 2071 space_map_truncate(vd->vdev_dtl_sm, tx); 2072 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2073 range_tree_vacate(rtsync, NULL, NULL); 2074 2075 range_tree_destroy(rtsync); 2076 2077 mutex_exit(&rtlock); 2078 mutex_destroy(&rtlock); 2079 2080 /* 2081 * If the object for the space map has changed then dirty 2082 * the top level so that we update the config. 2083 */ 2084 if (object != space_map_object(vd->vdev_dtl_sm)) { 2085 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2086 "new object %llu", txg, spa_name(spa), object, 2087 space_map_object(vd->vdev_dtl_sm)); 2088 vdev_config_dirty(vd->vdev_top); 2089 } 2090 2091 dmu_tx_commit(tx); 2092 2093 mutex_enter(&vd->vdev_dtl_lock); 2094 space_map_update(vd->vdev_dtl_sm); 2095 mutex_exit(&vd->vdev_dtl_lock); 2096 } 2097 2098 /* 2099 * Determine whether the specified vdev can be offlined/detached/removed 2100 * without losing data. 2101 */ 2102 boolean_t 2103 vdev_dtl_required(vdev_t *vd) 2104 { 2105 spa_t *spa = vd->vdev_spa; 2106 vdev_t *tvd = vd->vdev_top; 2107 uint8_t cant_read = vd->vdev_cant_read; 2108 boolean_t required; 2109 2110 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2111 2112 if (vd == spa->spa_root_vdev || vd == tvd) 2113 return (B_TRUE); 2114 2115 /* 2116 * Temporarily mark the device as unreadable, and then determine 2117 * whether this results in any DTL outages in the top-level vdev. 2118 * If not, we can safely offline/detach/remove the device. 2119 */ 2120 vd->vdev_cant_read = B_TRUE; 2121 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2122 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2123 vd->vdev_cant_read = cant_read; 2124 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2125 2126 if (!required && zio_injection_enabled) 2127 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2128 2129 return (required); 2130 } 2131 2132 /* 2133 * Determine if resilver is needed, and if so the txg range. 2134 */ 2135 boolean_t 2136 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2137 { 2138 boolean_t needed = B_FALSE; 2139 uint64_t thismin = UINT64_MAX; 2140 uint64_t thismax = 0; 2141 2142 if (vd->vdev_children == 0) { 2143 mutex_enter(&vd->vdev_dtl_lock); 2144 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2145 vdev_writeable(vd)) { 2146 2147 thismin = vdev_dtl_min(vd); 2148 thismax = vdev_dtl_max(vd); 2149 needed = B_TRUE; 2150 } 2151 mutex_exit(&vd->vdev_dtl_lock); 2152 } else { 2153 for (int c = 0; c < vd->vdev_children; c++) { 2154 vdev_t *cvd = vd->vdev_child[c]; 2155 uint64_t cmin, cmax; 2156 2157 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2158 thismin = MIN(thismin, cmin); 2159 thismax = MAX(thismax, cmax); 2160 needed = B_TRUE; 2161 } 2162 } 2163 } 2164 2165 if (needed && minp) { 2166 *minp = thismin; 2167 *maxp = thismax; 2168 } 2169 return (needed); 2170 } 2171 2172 void 2173 vdev_load(vdev_t *vd) 2174 { 2175 /* 2176 * Recursively load all children. 2177 */ 2178 for (int c = 0; c < vd->vdev_children; c++) 2179 vdev_load(vd->vdev_child[c]); 2180 2181 /* 2182 * If this is a top-level vdev, initialize its metaslabs. 2183 */ 2184 if (vd == vd->vdev_top && !vd->vdev_ishole && 2185 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2186 vdev_metaslab_init(vd, 0) != 0)) 2187 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2188 VDEV_AUX_CORRUPT_DATA); 2189 2190 /* 2191 * If this is a leaf vdev, load its DTL. 2192 */ 2193 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2195 VDEV_AUX_CORRUPT_DATA); 2196 } 2197 2198 /* 2199 * The special vdev case is used for hot spares and l2cache devices. Its 2200 * sole purpose it to set the vdev state for the associated vdev. To do this, 2201 * we make sure that we can open the underlying device, then try to read the 2202 * label, and make sure that the label is sane and that it hasn't been 2203 * repurposed to another pool. 2204 */ 2205 int 2206 vdev_validate_aux(vdev_t *vd) 2207 { 2208 nvlist_t *label; 2209 uint64_t guid, version; 2210 uint64_t state; 2211 2212 if (!vdev_readable(vd)) 2213 return (0); 2214 2215 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2217 VDEV_AUX_CORRUPT_DATA); 2218 return (-1); 2219 } 2220 2221 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2222 !SPA_VERSION_IS_SUPPORTED(version) || 2223 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2224 guid != vd->vdev_guid || 2225 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2226 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2227 VDEV_AUX_CORRUPT_DATA); 2228 nvlist_free(label); 2229 return (-1); 2230 } 2231 2232 /* 2233 * We don't actually check the pool state here. If it's in fact in 2234 * use by another pool, we update this fact on the fly when requested. 2235 */ 2236 nvlist_free(label); 2237 return (0); 2238 } 2239 2240 void 2241 vdev_remove(vdev_t *vd, uint64_t txg) 2242 { 2243 spa_t *spa = vd->vdev_spa; 2244 objset_t *mos = spa->spa_meta_objset; 2245 dmu_tx_t *tx; 2246 2247 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2248 ASSERT(vd == vd->vdev_top); 2249 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2250 2251 if (vd->vdev_ms != NULL) { 2252 metaslab_group_t *mg = vd->vdev_mg; 2253 2254 metaslab_group_histogram_verify(mg); 2255 metaslab_class_histogram_verify(mg->mg_class); 2256 2257 for (int m = 0; m < vd->vdev_ms_count; m++) { 2258 metaslab_t *msp = vd->vdev_ms[m]; 2259 2260 if (msp == NULL || msp->ms_sm == NULL) 2261 continue; 2262 2263 mutex_enter(&msp->ms_lock); 2264 /* 2265 * If the metaslab was not loaded when the vdev 2266 * was removed then the histogram accounting may 2267 * not be accurate. Update the histogram information 2268 * here so that we ensure that the metaslab group 2269 * and metaslab class are up-to-date. 2270 */ 2271 metaslab_group_histogram_remove(mg, msp); 2272 2273 VERIFY0(space_map_allocated(msp->ms_sm)); 2274 space_map_free(msp->ms_sm, tx); 2275 space_map_close(msp->ms_sm); 2276 msp->ms_sm = NULL; 2277 mutex_exit(&msp->ms_lock); 2278 } 2279 2280 metaslab_group_histogram_verify(mg); 2281 metaslab_class_histogram_verify(mg->mg_class); 2282 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2283 ASSERT0(mg->mg_histogram[i]); 2284 2285 } 2286 2287 if (vd->vdev_ms_array) { 2288 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2289 vd->vdev_ms_array = 0; 2290 } 2291 2292 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2293 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2294 vd->vdev_top_zap = 0; 2295 } 2296 dmu_tx_commit(tx); 2297 } 2298 2299 void 2300 vdev_sync_done(vdev_t *vd, uint64_t txg) 2301 { 2302 metaslab_t *msp; 2303 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2304 2305 ASSERT(!vd->vdev_ishole); 2306 2307 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2308 metaslab_sync_done(msp, txg); 2309 2310 if (reassess) 2311 metaslab_sync_reassess(vd->vdev_mg); 2312 } 2313 2314 void 2315 vdev_sync(vdev_t *vd, uint64_t txg) 2316 { 2317 spa_t *spa = vd->vdev_spa; 2318 vdev_t *lvd; 2319 metaslab_t *msp; 2320 dmu_tx_t *tx; 2321 2322 ASSERT(!vd->vdev_ishole); 2323 2324 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2325 ASSERT(vd == vd->vdev_top); 2326 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2327 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2328 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2329 ASSERT(vd->vdev_ms_array != 0); 2330 vdev_config_dirty(vd); 2331 dmu_tx_commit(tx); 2332 } 2333 2334 /* 2335 * Remove the metadata associated with this vdev once it's empty. 2336 */ 2337 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2338 vdev_remove(vd, txg); 2339 2340 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2341 metaslab_sync(msp, txg); 2342 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2343 } 2344 2345 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2346 vdev_dtl_sync(lvd, txg); 2347 2348 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2349 } 2350 2351 uint64_t 2352 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2353 { 2354 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2355 } 2356 2357 /* 2358 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2359 * not be opened, and no I/O is attempted. 2360 */ 2361 int 2362 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2363 { 2364 vdev_t *vd, *tvd; 2365 2366 spa_vdev_state_enter(spa, SCL_NONE); 2367 2368 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2369 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2370 2371 if (!vd->vdev_ops->vdev_op_leaf) 2372 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2373 2374 tvd = vd->vdev_top; 2375 2376 /* 2377 * We don't directly use the aux state here, but if we do a 2378 * vdev_reopen(), we need this value to be present to remember why we 2379 * were faulted. 2380 */ 2381 vd->vdev_label_aux = aux; 2382 2383 /* 2384 * Faulted state takes precedence over degraded. 2385 */ 2386 vd->vdev_delayed_close = B_FALSE; 2387 vd->vdev_faulted = 1ULL; 2388 vd->vdev_degraded = 0ULL; 2389 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2390 2391 /* 2392 * If this device has the only valid copy of the data, then 2393 * back off and simply mark the vdev as degraded instead. 2394 */ 2395 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2396 vd->vdev_degraded = 1ULL; 2397 vd->vdev_faulted = 0ULL; 2398 2399 /* 2400 * If we reopen the device and it's not dead, only then do we 2401 * mark it degraded. 2402 */ 2403 vdev_reopen(tvd); 2404 2405 if (vdev_readable(vd)) 2406 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2407 } 2408 2409 return (spa_vdev_state_exit(spa, vd, 0)); 2410 } 2411 2412 /* 2413 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2414 * user that something is wrong. The vdev continues to operate as normal as far 2415 * as I/O is concerned. 2416 */ 2417 int 2418 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2419 { 2420 vdev_t *vd; 2421 2422 spa_vdev_state_enter(spa, SCL_NONE); 2423 2424 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2425 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2426 2427 if (!vd->vdev_ops->vdev_op_leaf) 2428 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2429 2430 /* 2431 * If the vdev is already faulted, then don't do anything. 2432 */ 2433 if (vd->vdev_faulted || vd->vdev_degraded) 2434 return (spa_vdev_state_exit(spa, NULL, 0)); 2435 2436 vd->vdev_degraded = 1ULL; 2437 if (!vdev_is_dead(vd)) 2438 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2439 aux); 2440 2441 return (spa_vdev_state_exit(spa, vd, 0)); 2442 } 2443 2444 /* 2445 * Online the given vdev. 2446 * 2447 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2448 * spare device should be detached when the device finishes resilvering. 2449 * Second, the online should be treated like a 'test' online case, so no FMA 2450 * events are generated if the device fails to open. 2451 */ 2452 int 2453 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2454 { 2455 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2456 boolean_t wasoffline; 2457 vdev_state_t oldstate; 2458 2459 spa_vdev_state_enter(spa, SCL_NONE); 2460 2461 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2462 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2463 2464 if (!vd->vdev_ops->vdev_op_leaf) 2465 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2466 2467 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 2468 oldstate = vd->vdev_state; 2469 2470 tvd = vd->vdev_top; 2471 vd->vdev_offline = B_FALSE; 2472 vd->vdev_tmpoffline = B_FALSE; 2473 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2474 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2475 2476 /* XXX - L2ARC 1.0 does not support expansion */ 2477 if (!vd->vdev_aux) { 2478 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2479 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2480 } 2481 2482 vdev_reopen(tvd); 2483 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2484 2485 if (!vd->vdev_aux) { 2486 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2487 pvd->vdev_expanding = B_FALSE; 2488 } 2489 2490 if (newstate) 2491 *newstate = vd->vdev_state; 2492 if ((flags & ZFS_ONLINE_UNSPARE) && 2493 !vdev_is_dead(vd) && vd->vdev_parent && 2494 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2495 vd->vdev_parent->vdev_child[0] == vd) 2496 vd->vdev_unspare = B_TRUE; 2497 2498 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2499 2500 /* XXX - L2ARC 1.0 does not support expansion */ 2501 if (vd->vdev_aux) 2502 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2503 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2504 } 2505 2506 if (wasoffline || 2507 (oldstate < VDEV_STATE_DEGRADED && 2508 vd->vdev_state >= VDEV_STATE_DEGRADED)) 2509 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2510 2511 return (spa_vdev_state_exit(spa, vd, 0)); 2512 } 2513 2514 static int 2515 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2516 { 2517 vdev_t *vd, *tvd; 2518 int error = 0; 2519 uint64_t generation; 2520 metaslab_group_t *mg; 2521 2522 top: 2523 spa_vdev_state_enter(spa, SCL_ALLOC); 2524 2525 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2526 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2527 2528 if (!vd->vdev_ops->vdev_op_leaf) 2529 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2530 2531 tvd = vd->vdev_top; 2532 mg = tvd->vdev_mg; 2533 generation = spa->spa_config_generation + 1; 2534 2535 /* 2536 * If the device isn't already offline, try to offline it. 2537 */ 2538 if (!vd->vdev_offline) { 2539 /* 2540 * If this device has the only valid copy of some data, 2541 * don't allow it to be offlined. Log devices are always 2542 * expendable. 2543 */ 2544 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2545 vdev_dtl_required(vd)) 2546 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2547 2548 /* 2549 * If the top-level is a slog and it has had allocations 2550 * then proceed. We check that the vdev's metaslab group 2551 * is not NULL since it's possible that we may have just 2552 * added this vdev but not yet initialized its metaslabs. 2553 */ 2554 if (tvd->vdev_islog && mg != NULL) { 2555 /* 2556 * Prevent any future allocations. 2557 */ 2558 metaslab_group_passivate(mg); 2559 (void) spa_vdev_state_exit(spa, vd, 0); 2560 2561 error = spa_offline_log(spa); 2562 2563 spa_vdev_state_enter(spa, SCL_ALLOC); 2564 2565 /* 2566 * Check to see if the config has changed. 2567 */ 2568 if (error || generation != spa->spa_config_generation) { 2569 metaslab_group_activate(mg); 2570 if (error) 2571 return (spa_vdev_state_exit(spa, 2572 vd, error)); 2573 (void) spa_vdev_state_exit(spa, vd, 0); 2574 goto top; 2575 } 2576 ASSERT0(tvd->vdev_stat.vs_alloc); 2577 } 2578 2579 /* 2580 * Offline this device and reopen its top-level vdev. 2581 * If the top-level vdev is a log device then just offline 2582 * it. Otherwise, if this action results in the top-level 2583 * vdev becoming unusable, undo it and fail the request. 2584 */ 2585 vd->vdev_offline = B_TRUE; 2586 vdev_reopen(tvd); 2587 2588 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2589 vdev_is_dead(tvd)) { 2590 vd->vdev_offline = B_FALSE; 2591 vdev_reopen(tvd); 2592 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2593 } 2594 2595 /* 2596 * Add the device back into the metaslab rotor so that 2597 * once we online the device it's open for business. 2598 */ 2599 if (tvd->vdev_islog && mg != NULL) 2600 metaslab_group_activate(mg); 2601 } 2602 2603 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2604 2605 return (spa_vdev_state_exit(spa, vd, 0)); 2606 } 2607 2608 int 2609 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2610 { 2611 int error; 2612 2613 mutex_enter(&spa->spa_vdev_top_lock); 2614 error = vdev_offline_locked(spa, guid, flags); 2615 mutex_exit(&spa->spa_vdev_top_lock); 2616 2617 return (error); 2618 } 2619 2620 /* 2621 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2622 * vdev_offline(), we assume the spa config is locked. We also clear all 2623 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2624 */ 2625 void 2626 vdev_clear(spa_t *spa, vdev_t *vd) 2627 { 2628 vdev_t *rvd = spa->spa_root_vdev; 2629 2630 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2631 2632 if (vd == NULL) 2633 vd = rvd; 2634 2635 vd->vdev_stat.vs_read_errors = 0; 2636 vd->vdev_stat.vs_write_errors = 0; 2637 vd->vdev_stat.vs_checksum_errors = 0; 2638 2639 for (int c = 0; c < vd->vdev_children; c++) 2640 vdev_clear(spa, vd->vdev_child[c]); 2641 2642 /* 2643 * If we're in the FAULTED state or have experienced failed I/O, then 2644 * clear the persistent state and attempt to reopen the device. We 2645 * also mark the vdev config dirty, so that the new faulted state is 2646 * written out to disk. 2647 */ 2648 if (vd->vdev_faulted || vd->vdev_degraded || 2649 !vdev_readable(vd) || !vdev_writeable(vd)) { 2650 2651 /* 2652 * When reopening in reponse to a clear event, it may be due to 2653 * a fmadm repair request. In this case, if the device is 2654 * still broken, we want to still post the ereport again. 2655 */ 2656 vd->vdev_forcefault = B_TRUE; 2657 2658 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2659 vd->vdev_cant_read = B_FALSE; 2660 vd->vdev_cant_write = B_FALSE; 2661 2662 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2663 2664 vd->vdev_forcefault = B_FALSE; 2665 2666 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2667 vdev_state_dirty(vd->vdev_top); 2668 2669 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2670 spa_async_request(spa, SPA_ASYNC_RESILVER); 2671 2672 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2673 } 2674 2675 /* 2676 * When clearing a FMA-diagnosed fault, we always want to 2677 * unspare the device, as we assume that the original spare was 2678 * done in response to the FMA fault. 2679 */ 2680 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2681 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2682 vd->vdev_parent->vdev_child[0] == vd) 2683 vd->vdev_unspare = B_TRUE; 2684 } 2685 2686 boolean_t 2687 vdev_is_dead(vdev_t *vd) 2688 { 2689 /* 2690 * Holes and missing devices are always considered "dead". 2691 * This simplifies the code since we don't have to check for 2692 * these types of devices in the various code paths. 2693 * Instead we rely on the fact that we skip over dead devices 2694 * before issuing I/O to them. 2695 */ 2696 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2697 vd->vdev_ops == &vdev_missing_ops); 2698 } 2699 2700 boolean_t 2701 vdev_readable(vdev_t *vd) 2702 { 2703 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2704 } 2705 2706 boolean_t 2707 vdev_writeable(vdev_t *vd) 2708 { 2709 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2710 } 2711 2712 boolean_t 2713 vdev_allocatable(vdev_t *vd) 2714 { 2715 uint64_t state = vd->vdev_state; 2716 2717 /* 2718 * We currently allow allocations from vdevs which may be in the 2719 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2720 * fails to reopen then we'll catch it later when we're holding 2721 * the proper locks. Note that we have to get the vdev state 2722 * in a local variable because although it changes atomically, 2723 * we're asking two separate questions about it. 2724 */ 2725 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2726 !vd->vdev_cant_write && !vd->vdev_ishole && 2727 vd->vdev_mg->mg_initialized); 2728 } 2729 2730 boolean_t 2731 vdev_accessible(vdev_t *vd, zio_t *zio) 2732 { 2733 ASSERT(zio->io_vd == vd); 2734 2735 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2736 return (B_FALSE); 2737 2738 if (zio->io_type == ZIO_TYPE_READ) 2739 return (!vd->vdev_cant_read); 2740 2741 if (zio->io_type == ZIO_TYPE_WRITE) 2742 return (!vd->vdev_cant_write); 2743 2744 return (B_TRUE); 2745 } 2746 2747 /* 2748 * Get statistics for the given vdev. 2749 */ 2750 void 2751 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2752 { 2753 spa_t *spa = vd->vdev_spa; 2754 vdev_t *rvd = spa->spa_root_vdev; 2755 vdev_t *tvd = vd->vdev_top; 2756 2757 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2758 2759 mutex_enter(&vd->vdev_stat_lock); 2760 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2761 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2762 vs->vs_state = vd->vdev_state; 2763 vs->vs_rsize = vdev_get_min_asize(vd); 2764 if (vd->vdev_ops->vdev_op_leaf) 2765 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2766 /* 2767 * Report expandable space on top-level, non-auxillary devices only. 2768 * The expandable space is reported in terms of metaslab sized units 2769 * since that determines how much space the pool can expand. 2770 */ 2771 if (vd->vdev_aux == NULL && tvd != NULL) { 2772 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 2773 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 2774 } 2775 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2776 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2777 } 2778 2779 /* 2780 * If we're getting stats on the root vdev, aggregate the I/O counts 2781 * over all top-level vdevs (i.e. the direct children of the root). 2782 */ 2783 if (vd == rvd) { 2784 for (int c = 0; c < rvd->vdev_children; c++) { 2785 vdev_t *cvd = rvd->vdev_child[c]; 2786 vdev_stat_t *cvs = &cvd->vdev_stat; 2787 2788 for (int t = 0; t < ZIO_TYPES; t++) { 2789 vs->vs_ops[t] += cvs->vs_ops[t]; 2790 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2791 } 2792 cvs->vs_scan_removing = cvd->vdev_removing; 2793 } 2794 } 2795 mutex_exit(&vd->vdev_stat_lock); 2796 } 2797 2798 void 2799 vdev_clear_stats(vdev_t *vd) 2800 { 2801 mutex_enter(&vd->vdev_stat_lock); 2802 vd->vdev_stat.vs_space = 0; 2803 vd->vdev_stat.vs_dspace = 0; 2804 vd->vdev_stat.vs_alloc = 0; 2805 mutex_exit(&vd->vdev_stat_lock); 2806 } 2807 2808 void 2809 vdev_scan_stat_init(vdev_t *vd) 2810 { 2811 vdev_stat_t *vs = &vd->vdev_stat; 2812 2813 for (int c = 0; c < vd->vdev_children; c++) 2814 vdev_scan_stat_init(vd->vdev_child[c]); 2815 2816 mutex_enter(&vd->vdev_stat_lock); 2817 vs->vs_scan_processed = 0; 2818 mutex_exit(&vd->vdev_stat_lock); 2819 } 2820 2821 void 2822 vdev_stat_update(zio_t *zio, uint64_t psize) 2823 { 2824 spa_t *spa = zio->io_spa; 2825 vdev_t *rvd = spa->spa_root_vdev; 2826 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2827 vdev_t *pvd; 2828 uint64_t txg = zio->io_txg; 2829 vdev_stat_t *vs = &vd->vdev_stat; 2830 zio_type_t type = zio->io_type; 2831 int flags = zio->io_flags; 2832 2833 /* 2834 * If this i/o is a gang leader, it didn't do any actual work. 2835 */ 2836 if (zio->io_gang_tree) 2837 return; 2838 2839 if (zio->io_error == 0) { 2840 /* 2841 * If this is a root i/o, don't count it -- we've already 2842 * counted the top-level vdevs, and vdev_get_stats() will 2843 * aggregate them when asked. This reduces contention on 2844 * the root vdev_stat_lock and implicitly handles blocks 2845 * that compress away to holes, for which there is no i/o. 2846 * (Holes never create vdev children, so all the counters 2847 * remain zero, which is what we want.) 2848 * 2849 * Note: this only applies to successful i/o (io_error == 0) 2850 * because unlike i/o counts, errors are not additive. 2851 * When reading a ditto block, for example, failure of 2852 * one top-level vdev does not imply a root-level error. 2853 */ 2854 if (vd == rvd) 2855 return; 2856 2857 ASSERT(vd == zio->io_vd); 2858 2859 if (flags & ZIO_FLAG_IO_BYPASS) 2860 return; 2861 2862 mutex_enter(&vd->vdev_stat_lock); 2863 2864 if (flags & ZIO_FLAG_IO_REPAIR) { 2865 if (flags & ZIO_FLAG_SCAN_THREAD) { 2866 dsl_scan_phys_t *scn_phys = 2867 &spa->spa_dsl_pool->dp_scan->scn_phys; 2868 uint64_t *processed = &scn_phys->scn_processed; 2869 2870 /* XXX cleanup? */ 2871 if (vd->vdev_ops->vdev_op_leaf) 2872 atomic_add_64(processed, psize); 2873 vs->vs_scan_processed += psize; 2874 } 2875 2876 if (flags & ZIO_FLAG_SELF_HEAL) 2877 vs->vs_self_healed += psize; 2878 } 2879 2880 vs->vs_ops[type]++; 2881 vs->vs_bytes[type] += psize; 2882 2883 mutex_exit(&vd->vdev_stat_lock); 2884 return; 2885 } 2886 2887 if (flags & ZIO_FLAG_SPECULATIVE) 2888 return; 2889 2890 /* 2891 * If this is an I/O error that is going to be retried, then ignore the 2892 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2893 * hard errors, when in reality they can happen for any number of 2894 * innocuous reasons (bus resets, MPxIO link failure, etc). 2895 */ 2896 if (zio->io_error == EIO && 2897 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2898 return; 2899 2900 /* 2901 * Intent logs writes won't propagate their error to the root 2902 * I/O so don't mark these types of failures as pool-level 2903 * errors. 2904 */ 2905 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2906 return; 2907 2908 mutex_enter(&vd->vdev_stat_lock); 2909 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2910 if (zio->io_error == ECKSUM) 2911 vs->vs_checksum_errors++; 2912 else 2913 vs->vs_read_errors++; 2914 } 2915 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2916 vs->vs_write_errors++; 2917 mutex_exit(&vd->vdev_stat_lock); 2918 2919 if (type == ZIO_TYPE_WRITE && txg != 0 && 2920 (!(flags & ZIO_FLAG_IO_REPAIR) || 2921 (flags & ZIO_FLAG_SCAN_THREAD) || 2922 spa->spa_claiming)) { 2923 /* 2924 * This is either a normal write (not a repair), or it's 2925 * a repair induced by the scrub thread, or it's a repair 2926 * made by zil_claim() during spa_load() in the first txg. 2927 * In the normal case, we commit the DTL change in the same 2928 * txg as the block was born. In the scrub-induced repair 2929 * case, we know that scrubs run in first-pass syncing context, 2930 * so we commit the DTL change in spa_syncing_txg(spa). 2931 * In the zil_claim() case, we commit in spa_first_txg(spa). 2932 * 2933 * We currently do not make DTL entries for failed spontaneous 2934 * self-healing writes triggered by normal (non-scrubbing) 2935 * reads, because we have no transactional context in which to 2936 * do so -- and it's not clear that it'd be desirable anyway. 2937 */ 2938 if (vd->vdev_ops->vdev_op_leaf) { 2939 uint64_t commit_txg = txg; 2940 if (flags & ZIO_FLAG_SCAN_THREAD) { 2941 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2942 ASSERT(spa_sync_pass(spa) == 1); 2943 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2944 commit_txg = spa_syncing_txg(spa); 2945 } else if (spa->spa_claiming) { 2946 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2947 commit_txg = spa_first_txg(spa); 2948 } 2949 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2950 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2951 return; 2952 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2953 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2954 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2955 } 2956 if (vd != rvd) 2957 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2958 } 2959 } 2960 2961 /* 2962 * Update the in-core space usage stats for this vdev, its metaslab class, 2963 * and the root vdev. 2964 */ 2965 void 2966 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2967 int64_t space_delta) 2968 { 2969 int64_t dspace_delta = space_delta; 2970 spa_t *spa = vd->vdev_spa; 2971 vdev_t *rvd = spa->spa_root_vdev; 2972 metaslab_group_t *mg = vd->vdev_mg; 2973 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2974 2975 ASSERT(vd == vd->vdev_top); 2976 2977 /* 2978 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2979 * factor. We must calculate this here and not at the root vdev 2980 * because the root vdev's psize-to-asize is simply the max of its 2981 * childrens', thus not accurate enough for us. 2982 */ 2983 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2984 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2985 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2986 vd->vdev_deflate_ratio; 2987 2988 mutex_enter(&vd->vdev_stat_lock); 2989 vd->vdev_stat.vs_alloc += alloc_delta; 2990 vd->vdev_stat.vs_space += space_delta; 2991 vd->vdev_stat.vs_dspace += dspace_delta; 2992 mutex_exit(&vd->vdev_stat_lock); 2993 2994 if (mc == spa_normal_class(spa)) { 2995 mutex_enter(&rvd->vdev_stat_lock); 2996 rvd->vdev_stat.vs_alloc += alloc_delta; 2997 rvd->vdev_stat.vs_space += space_delta; 2998 rvd->vdev_stat.vs_dspace += dspace_delta; 2999 mutex_exit(&rvd->vdev_stat_lock); 3000 } 3001 3002 if (mc != NULL) { 3003 ASSERT(rvd == vd->vdev_parent); 3004 ASSERT(vd->vdev_ms_count != 0); 3005 3006 metaslab_class_space_update(mc, 3007 alloc_delta, defer_delta, space_delta, dspace_delta); 3008 } 3009 } 3010 3011 /* 3012 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3013 * so that it will be written out next time the vdev configuration is synced. 3014 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3015 */ 3016 void 3017 vdev_config_dirty(vdev_t *vd) 3018 { 3019 spa_t *spa = vd->vdev_spa; 3020 vdev_t *rvd = spa->spa_root_vdev; 3021 int c; 3022 3023 ASSERT(spa_writeable(spa)); 3024 3025 /* 3026 * If this is an aux vdev (as with l2cache and spare devices), then we 3027 * update the vdev config manually and set the sync flag. 3028 */ 3029 if (vd->vdev_aux != NULL) { 3030 spa_aux_vdev_t *sav = vd->vdev_aux; 3031 nvlist_t **aux; 3032 uint_t naux; 3033 3034 for (c = 0; c < sav->sav_count; c++) { 3035 if (sav->sav_vdevs[c] == vd) 3036 break; 3037 } 3038 3039 if (c == sav->sav_count) { 3040 /* 3041 * We're being removed. There's nothing more to do. 3042 */ 3043 ASSERT(sav->sav_sync == B_TRUE); 3044 return; 3045 } 3046 3047 sav->sav_sync = B_TRUE; 3048 3049 if (nvlist_lookup_nvlist_array(sav->sav_config, 3050 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3051 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3052 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3053 } 3054 3055 ASSERT(c < naux); 3056 3057 /* 3058 * Setting the nvlist in the middle if the array is a little 3059 * sketchy, but it will work. 3060 */ 3061 nvlist_free(aux[c]); 3062 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3063 3064 return; 3065 } 3066 3067 /* 3068 * The dirty list is protected by the SCL_CONFIG lock. The caller 3069 * must either hold SCL_CONFIG as writer, or must be the sync thread 3070 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3071 * so this is sufficient to ensure mutual exclusion. 3072 */ 3073 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3074 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3075 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3076 3077 if (vd == rvd) { 3078 for (c = 0; c < rvd->vdev_children; c++) 3079 vdev_config_dirty(rvd->vdev_child[c]); 3080 } else { 3081 ASSERT(vd == vd->vdev_top); 3082 3083 if (!list_link_active(&vd->vdev_config_dirty_node) && 3084 !vd->vdev_ishole) 3085 list_insert_head(&spa->spa_config_dirty_list, vd); 3086 } 3087 } 3088 3089 void 3090 vdev_config_clean(vdev_t *vd) 3091 { 3092 spa_t *spa = vd->vdev_spa; 3093 3094 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3095 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3096 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3097 3098 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3099 list_remove(&spa->spa_config_dirty_list, vd); 3100 } 3101 3102 /* 3103 * Mark a top-level vdev's state as dirty, so that the next pass of 3104 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3105 * the state changes from larger config changes because they require 3106 * much less locking, and are often needed for administrative actions. 3107 */ 3108 void 3109 vdev_state_dirty(vdev_t *vd) 3110 { 3111 spa_t *spa = vd->vdev_spa; 3112 3113 ASSERT(spa_writeable(spa)); 3114 ASSERT(vd == vd->vdev_top); 3115 3116 /* 3117 * The state list is protected by the SCL_STATE lock. The caller 3118 * must either hold SCL_STATE as writer, or must be the sync thread 3119 * (which holds SCL_STATE as reader). There's only one sync thread, 3120 * so this is sufficient to ensure mutual exclusion. 3121 */ 3122 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3123 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3124 spa_config_held(spa, SCL_STATE, RW_READER))); 3125 3126 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3127 list_insert_head(&spa->spa_state_dirty_list, vd); 3128 } 3129 3130 void 3131 vdev_state_clean(vdev_t *vd) 3132 { 3133 spa_t *spa = vd->vdev_spa; 3134 3135 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3136 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3137 spa_config_held(spa, SCL_STATE, RW_READER))); 3138 3139 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3140 list_remove(&spa->spa_state_dirty_list, vd); 3141 } 3142 3143 /* 3144 * Propagate vdev state up from children to parent. 3145 */ 3146 void 3147 vdev_propagate_state(vdev_t *vd) 3148 { 3149 spa_t *spa = vd->vdev_spa; 3150 vdev_t *rvd = spa->spa_root_vdev; 3151 int degraded = 0, faulted = 0; 3152 int corrupted = 0; 3153 vdev_t *child; 3154 3155 if (vd->vdev_children > 0) { 3156 for (int c = 0; c < vd->vdev_children; c++) { 3157 child = vd->vdev_child[c]; 3158 3159 /* 3160 * Don't factor holes into the decision. 3161 */ 3162 if (child->vdev_ishole) 3163 continue; 3164 3165 if (!vdev_readable(child) || 3166 (!vdev_writeable(child) && spa_writeable(spa))) { 3167 /* 3168 * Root special: if there is a top-level log 3169 * device, treat the root vdev as if it were 3170 * degraded. 3171 */ 3172 if (child->vdev_islog && vd == rvd) 3173 degraded++; 3174 else 3175 faulted++; 3176 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3177 degraded++; 3178 } 3179 3180 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3181 corrupted++; 3182 } 3183 3184 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3185 3186 /* 3187 * Root special: if there is a top-level vdev that cannot be 3188 * opened due to corrupted metadata, then propagate the root 3189 * vdev's aux state as 'corrupt' rather than 'insufficient 3190 * replicas'. 3191 */ 3192 if (corrupted && vd == rvd && 3193 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3194 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3195 VDEV_AUX_CORRUPT_DATA); 3196 } 3197 3198 if (vd->vdev_parent) 3199 vdev_propagate_state(vd->vdev_parent); 3200 } 3201 3202 /* 3203 * Set a vdev's state. If this is during an open, we don't update the parent 3204 * state, because we're in the process of opening children depth-first. 3205 * Otherwise, we propagate the change to the parent. 3206 * 3207 * If this routine places a device in a faulted state, an appropriate ereport is 3208 * generated. 3209 */ 3210 void 3211 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3212 { 3213 uint64_t save_state; 3214 spa_t *spa = vd->vdev_spa; 3215 3216 if (state == vd->vdev_state) { 3217 vd->vdev_stat.vs_aux = aux; 3218 return; 3219 } 3220 3221 save_state = vd->vdev_state; 3222 3223 vd->vdev_state = state; 3224 vd->vdev_stat.vs_aux = aux; 3225 3226 /* 3227 * If we are setting the vdev state to anything but an open state, then 3228 * always close the underlying device unless the device has requested 3229 * a delayed close (i.e. we're about to remove or fault the device). 3230 * Otherwise, we keep accessible but invalid devices open forever. 3231 * We don't call vdev_close() itself, because that implies some extra 3232 * checks (offline, etc) that we don't want here. This is limited to 3233 * leaf devices, because otherwise closing the device will affect other 3234 * children. 3235 */ 3236 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3237 vd->vdev_ops->vdev_op_leaf) 3238 vd->vdev_ops->vdev_op_close(vd); 3239 3240 /* 3241 * If we have brought this vdev back into service, we need 3242 * to notify fmd so that it can gracefully repair any outstanding 3243 * cases due to a missing device. We do this in all cases, even those 3244 * that probably don't correlate to a repaired fault. This is sure to 3245 * catch all cases, and we let the zfs-retire agent sort it out. If 3246 * this is a transient state it's OK, as the retire agent will 3247 * double-check the state of the vdev before repairing it. 3248 */ 3249 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3250 vd->vdev_prevstate != state) 3251 zfs_post_state_change(spa, vd); 3252 3253 if (vd->vdev_removed && 3254 state == VDEV_STATE_CANT_OPEN && 3255 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3256 /* 3257 * If the previous state is set to VDEV_STATE_REMOVED, then this 3258 * device was previously marked removed and someone attempted to 3259 * reopen it. If this failed due to a nonexistent device, then 3260 * keep the device in the REMOVED state. We also let this be if 3261 * it is one of our special test online cases, which is only 3262 * attempting to online the device and shouldn't generate an FMA 3263 * fault. 3264 */ 3265 vd->vdev_state = VDEV_STATE_REMOVED; 3266 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3267 } else if (state == VDEV_STATE_REMOVED) { 3268 vd->vdev_removed = B_TRUE; 3269 } else if (state == VDEV_STATE_CANT_OPEN) { 3270 /* 3271 * If we fail to open a vdev during an import or recovery, we 3272 * mark it as "not available", which signifies that it was 3273 * never there to begin with. Failure to open such a device 3274 * is not considered an error. 3275 */ 3276 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3277 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3278 vd->vdev_ops->vdev_op_leaf) 3279 vd->vdev_not_present = 1; 3280 3281 /* 3282 * Post the appropriate ereport. If the 'prevstate' field is 3283 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3284 * that this is part of a vdev_reopen(). In this case, we don't 3285 * want to post the ereport if the device was already in the 3286 * CANT_OPEN state beforehand. 3287 * 3288 * If the 'checkremove' flag is set, then this is an attempt to 3289 * online the device in response to an insertion event. If we 3290 * hit this case, then we have detected an insertion event for a 3291 * faulted or offline device that wasn't in the removed state. 3292 * In this scenario, we don't post an ereport because we are 3293 * about to replace the device, or attempt an online with 3294 * vdev_forcefault, which will generate the fault for us. 3295 */ 3296 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3297 !vd->vdev_not_present && !vd->vdev_checkremove && 3298 vd != spa->spa_root_vdev) { 3299 const char *class; 3300 3301 switch (aux) { 3302 case VDEV_AUX_OPEN_FAILED: 3303 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3304 break; 3305 case VDEV_AUX_CORRUPT_DATA: 3306 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3307 break; 3308 case VDEV_AUX_NO_REPLICAS: 3309 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3310 break; 3311 case VDEV_AUX_BAD_GUID_SUM: 3312 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3313 break; 3314 case VDEV_AUX_TOO_SMALL: 3315 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3316 break; 3317 case VDEV_AUX_BAD_LABEL: 3318 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3319 break; 3320 default: 3321 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3322 } 3323 3324 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3325 } 3326 3327 /* Erase any notion of persistent removed state */ 3328 vd->vdev_removed = B_FALSE; 3329 } else { 3330 vd->vdev_removed = B_FALSE; 3331 } 3332 3333 if (!isopen && vd->vdev_parent) 3334 vdev_propagate_state(vd->vdev_parent); 3335 } 3336 3337 /* 3338 * Check the vdev configuration to ensure that it's capable of supporting 3339 * a root pool. We do not support partial configuration. 3340 * In addition, only a single top-level vdev is allowed. 3341 */ 3342 boolean_t 3343 vdev_is_bootable(vdev_t *vd) 3344 { 3345 if (!vd->vdev_ops->vdev_op_leaf) { 3346 char *vdev_type = vd->vdev_ops->vdev_op_type; 3347 3348 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3349 vd->vdev_children > 1) { 3350 return (B_FALSE); 3351 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3352 return (B_FALSE); 3353 } 3354 } 3355 3356 for (int c = 0; c < vd->vdev_children; c++) { 3357 if (!vdev_is_bootable(vd->vdev_child[c])) 3358 return (B_FALSE); 3359 } 3360 return (B_TRUE); 3361 } 3362 3363 /* 3364 * Load the state from the original vdev tree (ovd) which 3365 * we've retrieved from the MOS config object. If the original 3366 * vdev was offline or faulted then we transfer that state to the 3367 * device in the current vdev tree (nvd). 3368 */ 3369 void 3370 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3371 { 3372 spa_t *spa = nvd->vdev_spa; 3373 3374 ASSERT(nvd->vdev_top->vdev_islog); 3375 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3376 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3377 3378 for (int c = 0; c < nvd->vdev_children; c++) 3379 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3380 3381 if (nvd->vdev_ops->vdev_op_leaf) { 3382 /* 3383 * Restore the persistent vdev state 3384 */ 3385 nvd->vdev_offline = ovd->vdev_offline; 3386 nvd->vdev_faulted = ovd->vdev_faulted; 3387 nvd->vdev_degraded = ovd->vdev_degraded; 3388 nvd->vdev_removed = ovd->vdev_removed; 3389 } 3390 } 3391 3392 /* 3393 * Determine if a log device has valid content. If the vdev was 3394 * removed or faulted in the MOS config then we know that 3395 * the content on the log device has already been written to the pool. 3396 */ 3397 boolean_t 3398 vdev_log_state_valid(vdev_t *vd) 3399 { 3400 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3401 !vd->vdev_removed) 3402 return (B_TRUE); 3403 3404 for (int c = 0; c < vd->vdev_children; c++) 3405 if (vdev_log_state_valid(vd->vdev_child[c])) 3406 return (B_TRUE); 3407 3408 return (B_FALSE); 3409 } 3410 3411 /* 3412 * Expand a vdev if possible. 3413 */ 3414 void 3415 vdev_expand(vdev_t *vd, uint64_t txg) 3416 { 3417 ASSERT(vd->vdev_top == vd); 3418 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3419 3420 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3421 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3422 vdev_config_dirty(vd); 3423 } 3424 } 3425 3426 /* 3427 * Split a vdev. 3428 */ 3429 void 3430 vdev_split(vdev_t *vd) 3431 { 3432 vdev_t *cvd, *pvd = vd->vdev_parent; 3433 3434 vdev_remove_child(pvd, vd); 3435 vdev_compact_children(pvd); 3436 3437 cvd = pvd->vdev_child[0]; 3438 if (pvd->vdev_children == 1) { 3439 vdev_remove_parent(cvd); 3440 cvd->vdev_splitting = B_TRUE; 3441 } 3442 vdev_propagate_state(cvd); 3443 } 3444 3445 void 3446 vdev_deadman(vdev_t *vd) 3447 { 3448 for (int c = 0; c < vd->vdev_children; c++) { 3449 vdev_t *cvd = vd->vdev_child[c]; 3450 3451 vdev_deadman(cvd); 3452 } 3453 3454 if (vd->vdev_ops->vdev_op_leaf) { 3455 vdev_queue_t *vq = &vd->vdev_queue; 3456 3457 mutex_enter(&vq->vq_lock); 3458 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3459 spa_t *spa = vd->vdev_spa; 3460 zio_t *fio; 3461 uint64_t delta; 3462 3463 /* 3464 * Look at the head of all the pending queues, 3465 * if any I/O has been outstanding for longer than 3466 * the spa_deadman_synctime we panic the system. 3467 */ 3468 fio = avl_first(&vq->vq_active_tree); 3469 delta = gethrtime() - fio->io_timestamp; 3470 if (delta > spa_deadman_synctime(spa)) { 3471 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3472 "delta %lluns, last io %lluns", 3473 fio->io_timestamp, delta, 3474 vq->vq_io_complete_ts); 3475 fm_panic("I/O to pool '%s' appears to be " 3476 "hung.", spa_name(spa)); 3477 } 3478 } 3479 mutex_exit(&vq->vq_lock); 3480 } 3481 } 3482