xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision d1aea6f139360e9e7f1504facb24f8521047b15c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/abd.h>
49 
50 /*
51  * Virtual device management.
52  */
53 
54 static vdev_ops_t *vdev_ops_table[] = {
55 	&vdev_root_ops,
56 	&vdev_raidz_ops,
57 	&vdev_mirror_ops,
58 	&vdev_replacing_ops,
59 	&vdev_spare_ops,
60 	&vdev_disk_ops,
61 	&vdev_file_ops,
62 	&vdev_missing_ops,
63 	&vdev_hole_ops,
64 	NULL
65 };
66 
67 /* maximum scrub/resilver I/O queue per leaf vdev */
68 int zfs_scrub_limit = 10;
69 
70 /*
71  * When a vdev is added, it will be divided into approximately (but no
72  * more than) this number of metaslabs.
73  */
74 int metaslabs_per_vdev = 200;
75 
76 /*
77  * Given a vdev type, return the appropriate ops vector.
78  */
79 static vdev_ops_t *
80 vdev_getops(const char *type)
81 {
82 	vdev_ops_t *ops, **opspp;
83 
84 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
85 		if (strcmp(ops->vdev_op_type, type) == 0)
86 			break;
87 
88 	return (ops);
89 }
90 
91 /*
92  * Default asize function: return the MAX of psize with the asize of
93  * all children.  This is what's used by anything other than RAID-Z.
94  */
95 uint64_t
96 vdev_default_asize(vdev_t *vd, uint64_t psize)
97 {
98 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
99 	uint64_t csize;
100 
101 	for (int c = 0; c < vd->vdev_children; c++) {
102 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103 		asize = MAX(asize, csize);
104 	}
105 
106 	return (asize);
107 }
108 
109 /*
110  * Get the minimum allocatable size. We define the allocatable size as
111  * the vdev's asize rounded to the nearest metaslab. This allows us to
112  * replace or attach devices which don't have the same physical size but
113  * can still satisfy the same number of allocations.
114  */
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
117 {
118 	vdev_t *pvd = vd->vdev_parent;
119 
120 	/*
121 	 * If our parent is NULL (inactive spare or cache) or is the root,
122 	 * just return our own asize.
123 	 */
124 	if (pvd == NULL)
125 		return (vd->vdev_asize);
126 
127 	/*
128 	 * The top-level vdev just returns the allocatable size rounded
129 	 * to the nearest metaslab.
130 	 */
131 	if (vd == vd->vdev_top)
132 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
133 
134 	/*
135 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136 	 * so each child must provide at least 1/Nth of its asize.
137 	 */
138 	if (pvd->vdev_ops == &vdev_raidz_ops)
139 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140 		    pvd->vdev_children);
141 
142 	return (pvd->vdev_min_asize);
143 }
144 
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148 	vd->vdev_min_asize = vdev_get_min_asize(vd);
149 
150 	for (int c = 0; c < vd->vdev_children; c++)
151 		vdev_set_min_asize(vd->vdev_child[c]);
152 }
153 
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
156 {
157 	vdev_t *rvd = spa->spa_root_vdev;
158 
159 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
160 
161 	if (vdev < rvd->vdev_children) {
162 		ASSERT(rvd->vdev_child[vdev] != NULL);
163 		return (rvd->vdev_child[vdev]);
164 	}
165 
166 	return (NULL);
167 }
168 
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
171 {
172 	vdev_t *mvd;
173 
174 	if (vd->vdev_guid == guid)
175 		return (vd);
176 
177 	for (int c = 0; c < vd->vdev_children; c++)
178 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179 		    NULL)
180 			return (mvd);
181 
182 	return (NULL);
183 }
184 
185 static int
186 vdev_count_leaves_impl(vdev_t *vd)
187 {
188 	int n = 0;
189 
190 	if (vd->vdev_ops->vdev_op_leaf)
191 		return (1);
192 
193 	for (int c = 0; c < vd->vdev_children; c++)
194 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
195 
196 	return (n);
197 }
198 
199 int
200 vdev_count_leaves(spa_t *spa)
201 {
202 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
203 }
204 
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
207 {
208 	size_t oldsize, newsize;
209 	uint64_t id = cvd->vdev_id;
210 	vdev_t **newchild;
211 	spa_t *spa = cvd->vdev_spa;
212 
213 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
214 	ASSERT(cvd->vdev_parent == NULL);
215 
216 	cvd->vdev_parent = pvd;
217 
218 	if (pvd == NULL)
219 		return;
220 
221 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
222 
223 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
224 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
225 	newsize = pvd->vdev_children * sizeof (vdev_t *);
226 
227 	newchild = kmem_zalloc(newsize, KM_SLEEP);
228 	if (pvd->vdev_child != NULL) {
229 		bcopy(pvd->vdev_child, newchild, oldsize);
230 		kmem_free(pvd->vdev_child, oldsize);
231 	}
232 
233 	pvd->vdev_child = newchild;
234 	pvd->vdev_child[id] = cvd;
235 
236 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
237 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
238 
239 	/*
240 	 * Walk up all ancestors to update guid sum.
241 	 */
242 	for (; pvd != NULL; pvd = pvd->vdev_parent)
243 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
244 }
245 
246 void
247 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
248 {
249 	int c;
250 	uint_t id = cvd->vdev_id;
251 
252 	ASSERT(cvd->vdev_parent == pvd);
253 
254 	if (pvd == NULL)
255 		return;
256 
257 	ASSERT(id < pvd->vdev_children);
258 	ASSERT(pvd->vdev_child[id] == cvd);
259 
260 	pvd->vdev_child[id] = NULL;
261 	cvd->vdev_parent = NULL;
262 
263 	for (c = 0; c < pvd->vdev_children; c++)
264 		if (pvd->vdev_child[c])
265 			break;
266 
267 	if (c == pvd->vdev_children) {
268 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
269 		pvd->vdev_child = NULL;
270 		pvd->vdev_children = 0;
271 	}
272 
273 	/*
274 	 * Walk up all ancestors to update guid sum.
275 	 */
276 	for (; pvd != NULL; pvd = pvd->vdev_parent)
277 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
278 }
279 
280 /*
281  * Remove any holes in the child array.
282  */
283 void
284 vdev_compact_children(vdev_t *pvd)
285 {
286 	vdev_t **newchild, *cvd;
287 	int oldc = pvd->vdev_children;
288 	int newc;
289 
290 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
291 
292 	for (int c = newc = 0; c < oldc; c++)
293 		if (pvd->vdev_child[c])
294 			newc++;
295 
296 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
297 
298 	for (int c = newc = 0; c < oldc; c++) {
299 		if ((cvd = pvd->vdev_child[c]) != NULL) {
300 			newchild[newc] = cvd;
301 			cvd->vdev_id = newc++;
302 		}
303 	}
304 
305 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
306 	pvd->vdev_child = newchild;
307 	pvd->vdev_children = newc;
308 }
309 
310 /*
311  * Allocate and minimally initialize a vdev_t.
312  */
313 vdev_t *
314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
315 {
316 	vdev_t *vd;
317 
318 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
319 
320 	if (spa->spa_root_vdev == NULL) {
321 		ASSERT(ops == &vdev_root_ops);
322 		spa->spa_root_vdev = vd;
323 		spa->spa_load_guid = spa_generate_guid(NULL);
324 	}
325 
326 	if (guid == 0 && ops != &vdev_hole_ops) {
327 		if (spa->spa_root_vdev == vd) {
328 			/*
329 			 * The root vdev's guid will also be the pool guid,
330 			 * which must be unique among all pools.
331 			 */
332 			guid = spa_generate_guid(NULL);
333 		} else {
334 			/*
335 			 * Any other vdev's guid must be unique within the pool.
336 			 */
337 			guid = spa_generate_guid(spa);
338 		}
339 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
340 	}
341 
342 	vd->vdev_spa = spa;
343 	vd->vdev_id = id;
344 	vd->vdev_guid = guid;
345 	vd->vdev_guid_sum = guid;
346 	vd->vdev_ops = ops;
347 	vd->vdev_state = VDEV_STATE_CLOSED;
348 	vd->vdev_ishole = (ops == &vdev_hole_ops);
349 
350 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
351 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
352 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
353 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
354 	for (int t = 0; t < DTL_TYPES; t++) {
355 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356 		    &vd->vdev_dtl_lock);
357 	}
358 	txg_list_create(&vd->vdev_ms_list, spa,
359 	    offsetof(struct metaslab, ms_txg_node));
360 	txg_list_create(&vd->vdev_dtl_list, spa,
361 	    offsetof(struct vdev, vdev_dtl_node));
362 	vd->vdev_stat.vs_timestamp = gethrtime();
363 	vdev_queue_init(vd);
364 	vdev_cache_init(vd);
365 
366 	return (vd);
367 }
368 
369 /*
370  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
371  * creating a new vdev or loading an existing one - the behavior is slightly
372  * different for each case.
373  */
374 int
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376     int alloctype)
377 {
378 	vdev_ops_t *ops;
379 	char *type;
380 	uint64_t guid = 0, islog, nparity;
381 	vdev_t *vd;
382 
383 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384 
385 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386 		return (SET_ERROR(EINVAL));
387 
388 	if ((ops = vdev_getops(type)) == NULL)
389 		return (SET_ERROR(EINVAL));
390 
391 	/*
392 	 * If this is a load, get the vdev guid from the nvlist.
393 	 * Otherwise, vdev_alloc_common() will generate one for us.
394 	 */
395 	if (alloctype == VDEV_ALLOC_LOAD) {
396 		uint64_t label_id;
397 
398 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399 		    label_id != id)
400 			return (SET_ERROR(EINVAL));
401 
402 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 			return (SET_ERROR(EINVAL));
404 	} else if (alloctype == VDEV_ALLOC_SPARE) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 			return (SET_ERROR(EINVAL));
407 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
408 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 			return (SET_ERROR(EINVAL));
410 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412 			return (SET_ERROR(EINVAL));
413 	}
414 
415 	/*
416 	 * The first allocated vdev must be of type 'root'.
417 	 */
418 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419 		return (SET_ERROR(EINVAL));
420 
421 	/*
422 	 * Determine whether we're a log vdev.
423 	 */
424 	islog = 0;
425 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427 		return (SET_ERROR(ENOTSUP));
428 
429 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430 		return (SET_ERROR(ENOTSUP));
431 
432 	/*
433 	 * Set the nparity property for RAID-Z vdevs.
434 	 */
435 	nparity = -1ULL;
436 	if (ops == &vdev_raidz_ops) {
437 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438 		    &nparity) == 0) {
439 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440 				return (SET_ERROR(EINVAL));
441 			/*
442 			 * Previous versions could only support 1 or 2 parity
443 			 * device.
444 			 */
445 			if (nparity > 1 &&
446 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
447 				return (SET_ERROR(ENOTSUP));
448 			if (nparity > 2 &&
449 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
450 				return (SET_ERROR(ENOTSUP));
451 		} else {
452 			/*
453 			 * We require the parity to be specified for SPAs that
454 			 * support multiple parity levels.
455 			 */
456 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457 				return (SET_ERROR(EINVAL));
458 			/*
459 			 * Otherwise, we default to 1 parity device for RAID-Z.
460 			 */
461 			nparity = 1;
462 		}
463 	} else {
464 		nparity = 0;
465 	}
466 	ASSERT(nparity != -1ULL);
467 
468 	vd = vdev_alloc_common(spa, id, guid, ops);
469 
470 	vd->vdev_islog = islog;
471 	vd->vdev_nparity = nparity;
472 
473 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474 		vd->vdev_path = spa_strdup(vd->vdev_path);
475 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
477 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 	    &vd->vdev_physpath) == 0)
479 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
482 
483 	/*
484 	 * Set the whole_disk property.  If it's not specified, leave the value
485 	 * as -1.
486 	 */
487 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 	    &vd->vdev_wholedisk) != 0)
489 		vd->vdev_wholedisk = -1ULL;
490 
491 	/*
492 	 * Look for the 'not present' flag.  This will only be set if the device
493 	 * was not present at the time of import.
494 	 */
495 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496 	    &vd->vdev_not_present);
497 
498 	/*
499 	 * Get the alignment requirement.
500 	 */
501 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
502 
503 	/*
504 	 * Retrieve the vdev creation time.
505 	 */
506 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507 	    &vd->vdev_crtxg);
508 
509 	/*
510 	 * If we're a top-level vdev, try to load the allocation parameters.
511 	 */
512 	if (parent && !parent->vdev_parent &&
513 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515 		    &vd->vdev_ms_array);
516 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517 		    &vd->vdev_ms_shift);
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519 		    &vd->vdev_asize);
520 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 		    &vd->vdev_removing);
522 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
523 		    &vd->vdev_top_zap);
524 	} else {
525 		ASSERT0(vd->vdev_top_zap);
526 	}
527 
528 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
529 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
530 		    alloctype == VDEV_ALLOC_ADD ||
531 		    alloctype == VDEV_ALLOC_SPLIT ||
532 		    alloctype == VDEV_ALLOC_ROOTPOOL);
533 		vd->vdev_mg = metaslab_group_create(islog ?
534 		    spa_log_class(spa) : spa_normal_class(spa), vd);
535 	}
536 
537 	if (vd->vdev_ops->vdev_op_leaf &&
538 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
539 		(void) nvlist_lookup_uint64(nv,
540 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
541 	} else {
542 		ASSERT0(vd->vdev_leaf_zap);
543 	}
544 
545 	/*
546 	 * If we're a leaf vdev, try to load the DTL object and other state.
547 	 */
548 
549 	if (vd->vdev_ops->vdev_op_leaf &&
550 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
551 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
552 		if (alloctype == VDEV_ALLOC_LOAD) {
553 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
554 			    &vd->vdev_dtl_object);
555 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
556 			    &vd->vdev_unspare);
557 		}
558 
559 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
560 			uint64_t spare = 0;
561 
562 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
563 			    &spare) == 0 && spare)
564 				spa_spare_add(vd);
565 		}
566 
567 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
568 		    &vd->vdev_offline);
569 
570 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
571 		    &vd->vdev_resilver_txg);
572 
573 		/*
574 		 * When importing a pool, we want to ignore the persistent fault
575 		 * state, as the diagnosis made on another system may not be
576 		 * valid in the current context.  Local vdevs will
577 		 * remain in the faulted state.
578 		 */
579 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
580 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
581 			    &vd->vdev_faulted);
582 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
583 			    &vd->vdev_degraded);
584 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
585 			    &vd->vdev_removed);
586 
587 			if (vd->vdev_faulted || vd->vdev_degraded) {
588 				char *aux;
589 
590 				vd->vdev_label_aux =
591 				    VDEV_AUX_ERR_EXCEEDED;
592 				if (nvlist_lookup_string(nv,
593 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
594 				    strcmp(aux, "external") == 0)
595 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
596 			}
597 		}
598 	}
599 
600 	/*
601 	 * Add ourselves to the parent's list of children.
602 	 */
603 	vdev_add_child(parent, vd);
604 
605 	*vdp = vd;
606 
607 	return (0);
608 }
609 
610 void
611 vdev_free(vdev_t *vd)
612 {
613 	spa_t *spa = vd->vdev_spa;
614 
615 	/*
616 	 * vdev_free() implies closing the vdev first.  This is simpler than
617 	 * trying to ensure complicated semantics for all callers.
618 	 */
619 	vdev_close(vd);
620 
621 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
622 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
623 
624 	/*
625 	 * Free all children.
626 	 */
627 	for (int c = 0; c < vd->vdev_children; c++)
628 		vdev_free(vd->vdev_child[c]);
629 
630 	ASSERT(vd->vdev_child == NULL);
631 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
632 
633 	/*
634 	 * Discard allocation state.
635 	 */
636 	if (vd->vdev_mg != NULL) {
637 		vdev_metaslab_fini(vd);
638 		metaslab_group_destroy(vd->vdev_mg);
639 	}
640 
641 	ASSERT0(vd->vdev_stat.vs_space);
642 	ASSERT0(vd->vdev_stat.vs_dspace);
643 	ASSERT0(vd->vdev_stat.vs_alloc);
644 
645 	/*
646 	 * Remove this vdev from its parent's child list.
647 	 */
648 	vdev_remove_child(vd->vdev_parent, vd);
649 
650 	ASSERT(vd->vdev_parent == NULL);
651 
652 	/*
653 	 * Clean up vdev structure.
654 	 */
655 	vdev_queue_fini(vd);
656 	vdev_cache_fini(vd);
657 
658 	if (vd->vdev_path)
659 		spa_strfree(vd->vdev_path);
660 	if (vd->vdev_devid)
661 		spa_strfree(vd->vdev_devid);
662 	if (vd->vdev_physpath)
663 		spa_strfree(vd->vdev_physpath);
664 	if (vd->vdev_fru)
665 		spa_strfree(vd->vdev_fru);
666 
667 	if (vd->vdev_isspare)
668 		spa_spare_remove(vd);
669 	if (vd->vdev_isl2cache)
670 		spa_l2cache_remove(vd);
671 
672 	txg_list_destroy(&vd->vdev_ms_list);
673 	txg_list_destroy(&vd->vdev_dtl_list);
674 
675 	mutex_enter(&vd->vdev_dtl_lock);
676 	space_map_close(vd->vdev_dtl_sm);
677 	for (int t = 0; t < DTL_TYPES; t++) {
678 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
679 		range_tree_destroy(vd->vdev_dtl[t]);
680 	}
681 	mutex_exit(&vd->vdev_dtl_lock);
682 
683 	mutex_destroy(&vd->vdev_queue_lock);
684 	mutex_destroy(&vd->vdev_dtl_lock);
685 	mutex_destroy(&vd->vdev_stat_lock);
686 	mutex_destroy(&vd->vdev_probe_lock);
687 
688 	if (vd == spa->spa_root_vdev)
689 		spa->spa_root_vdev = NULL;
690 
691 	kmem_free(vd, sizeof (vdev_t));
692 }
693 
694 /*
695  * Transfer top-level vdev state from svd to tvd.
696  */
697 static void
698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
699 {
700 	spa_t *spa = svd->vdev_spa;
701 	metaslab_t *msp;
702 	vdev_t *vd;
703 	int t;
704 
705 	ASSERT(tvd == tvd->vdev_top);
706 
707 	tvd->vdev_ms_array = svd->vdev_ms_array;
708 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
709 	tvd->vdev_ms_count = svd->vdev_ms_count;
710 	tvd->vdev_top_zap = svd->vdev_top_zap;
711 
712 	svd->vdev_ms_array = 0;
713 	svd->vdev_ms_shift = 0;
714 	svd->vdev_ms_count = 0;
715 	svd->vdev_top_zap = 0;
716 
717 	if (tvd->vdev_mg)
718 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
719 	tvd->vdev_mg = svd->vdev_mg;
720 	tvd->vdev_ms = svd->vdev_ms;
721 
722 	svd->vdev_mg = NULL;
723 	svd->vdev_ms = NULL;
724 
725 	if (tvd->vdev_mg != NULL)
726 		tvd->vdev_mg->mg_vd = tvd;
727 
728 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
729 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
730 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
731 
732 	svd->vdev_stat.vs_alloc = 0;
733 	svd->vdev_stat.vs_space = 0;
734 	svd->vdev_stat.vs_dspace = 0;
735 
736 	for (t = 0; t < TXG_SIZE; t++) {
737 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
738 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
739 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
740 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
741 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
742 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
743 	}
744 
745 	if (list_link_active(&svd->vdev_config_dirty_node)) {
746 		vdev_config_clean(svd);
747 		vdev_config_dirty(tvd);
748 	}
749 
750 	if (list_link_active(&svd->vdev_state_dirty_node)) {
751 		vdev_state_clean(svd);
752 		vdev_state_dirty(tvd);
753 	}
754 
755 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
756 	svd->vdev_deflate_ratio = 0;
757 
758 	tvd->vdev_islog = svd->vdev_islog;
759 	svd->vdev_islog = 0;
760 }
761 
762 static void
763 vdev_top_update(vdev_t *tvd, vdev_t *vd)
764 {
765 	if (vd == NULL)
766 		return;
767 
768 	vd->vdev_top = tvd;
769 
770 	for (int c = 0; c < vd->vdev_children; c++)
771 		vdev_top_update(tvd, vd->vdev_child[c]);
772 }
773 
774 /*
775  * Add a mirror/replacing vdev above an existing vdev.
776  */
777 vdev_t *
778 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
779 {
780 	spa_t *spa = cvd->vdev_spa;
781 	vdev_t *pvd = cvd->vdev_parent;
782 	vdev_t *mvd;
783 
784 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
785 
786 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
787 
788 	mvd->vdev_asize = cvd->vdev_asize;
789 	mvd->vdev_min_asize = cvd->vdev_min_asize;
790 	mvd->vdev_max_asize = cvd->vdev_max_asize;
791 	mvd->vdev_ashift = cvd->vdev_ashift;
792 	mvd->vdev_state = cvd->vdev_state;
793 	mvd->vdev_crtxg = cvd->vdev_crtxg;
794 
795 	vdev_remove_child(pvd, cvd);
796 	vdev_add_child(pvd, mvd);
797 	cvd->vdev_id = mvd->vdev_children;
798 	vdev_add_child(mvd, cvd);
799 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800 
801 	if (mvd == mvd->vdev_top)
802 		vdev_top_transfer(cvd, mvd);
803 
804 	return (mvd);
805 }
806 
807 /*
808  * Remove a 1-way mirror/replacing vdev from the tree.
809  */
810 void
811 vdev_remove_parent(vdev_t *cvd)
812 {
813 	vdev_t *mvd = cvd->vdev_parent;
814 	vdev_t *pvd = mvd->vdev_parent;
815 
816 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
817 
818 	ASSERT(mvd->vdev_children == 1);
819 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
820 	    mvd->vdev_ops == &vdev_replacing_ops ||
821 	    mvd->vdev_ops == &vdev_spare_ops);
822 	cvd->vdev_ashift = mvd->vdev_ashift;
823 
824 	vdev_remove_child(mvd, cvd);
825 	vdev_remove_child(pvd, mvd);
826 
827 	/*
828 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
829 	 * Otherwise, we could have detached an offline device, and when we
830 	 * go to import the pool we'll think we have two top-level vdevs,
831 	 * instead of a different version of the same top-level vdev.
832 	 */
833 	if (mvd->vdev_top == mvd) {
834 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
835 		cvd->vdev_orig_guid = cvd->vdev_guid;
836 		cvd->vdev_guid += guid_delta;
837 		cvd->vdev_guid_sum += guid_delta;
838 	}
839 	cvd->vdev_id = mvd->vdev_id;
840 	vdev_add_child(pvd, cvd);
841 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
842 
843 	if (cvd == cvd->vdev_top)
844 		vdev_top_transfer(mvd, cvd);
845 
846 	ASSERT(mvd->vdev_children == 0);
847 	vdev_free(mvd);
848 }
849 
850 int
851 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
852 {
853 	spa_t *spa = vd->vdev_spa;
854 	objset_t *mos = spa->spa_meta_objset;
855 	uint64_t m;
856 	uint64_t oldc = vd->vdev_ms_count;
857 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
858 	metaslab_t **mspp;
859 	int error;
860 
861 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
862 
863 	/*
864 	 * This vdev is not being allocated from yet or is a hole.
865 	 */
866 	if (vd->vdev_ms_shift == 0)
867 		return (0);
868 
869 	ASSERT(!vd->vdev_ishole);
870 
871 	/*
872 	 * Compute the raidz-deflation ratio.  Note, we hard-code
873 	 * in 128k (1 << 17) because it is the "typical" blocksize.
874 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
875 	 * otherwise it would inconsistently account for existing bp's.
876 	 */
877 	vd->vdev_deflate_ratio = (1 << 17) /
878 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
879 
880 	ASSERT(oldc <= newc);
881 
882 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
883 
884 	if (oldc != 0) {
885 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
886 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
887 	}
888 
889 	vd->vdev_ms = mspp;
890 	vd->vdev_ms_count = newc;
891 
892 	for (m = oldc; m < newc; m++) {
893 		uint64_t object = 0;
894 
895 		if (txg == 0) {
896 			error = dmu_read(mos, vd->vdev_ms_array,
897 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
898 			    DMU_READ_PREFETCH);
899 			if (error)
900 				return (error);
901 		}
902 
903 		error = metaslab_init(vd->vdev_mg, m, object, txg,
904 		    &(vd->vdev_ms[m]));
905 		if (error)
906 			return (error);
907 	}
908 
909 	if (txg == 0)
910 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
911 
912 	/*
913 	 * If the vdev is being removed we don't activate
914 	 * the metaslabs since we want to ensure that no new
915 	 * allocations are performed on this device.
916 	 */
917 	if (oldc == 0 && !vd->vdev_removing)
918 		metaslab_group_activate(vd->vdev_mg);
919 
920 	if (txg == 0)
921 		spa_config_exit(spa, SCL_ALLOC, FTAG);
922 
923 	return (0);
924 }
925 
926 void
927 vdev_metaslab_fini(vdev_t *vd)
928 {
929 	uint64_t m;
930 	uint64_t count = vd->vdev_ms_count;
931 
932 	if (vd->vdev_ms != NULL) {
933 		metaslab_group_passivate(vd->vdev_mg);
934 		for (m = 0; m < count; m++) {
935 			metaslab_t *msp = vd->vdev_ms[m];
936 
937 			if (msp != NULL)
938 				metaslab_fini(msp);
939 		}
940 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
941 		vd->vdev_ms = NULL;
942 	}
943 }
944 
945 typedef struct vdev_probe_stats {
946 	boolean_t	vps_readable;
947 	boolean_t	vps_writeable;
948 	int		vps_flags;
949 } vdev_probe_stats_t;
950 
951 static void
952 vdev_probe_done(zio_t *zio)
953 {
954 	spa_t *spa = zio->io_spa;
955 	vdev_t *vd = zio->io_vd;
956 	vdev_probe_stats_t *vps = zio->io_private;
957 
958 	ASSERT(vd->vdev_probe_zio != NULL);
959 
960 	if (zio->io_type == ZIO_TYPE_READ) {
961 		if (zio->io_error == 0)
962 			vps->vps_readable = 1;
963 		if (zio->io_error == 0 && spa_writeable(spa)) {
964 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
965 			    zio->io_offset, zio->io_size, zio->io_abd,
966 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
967 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
968 		} else {
969 			abd_free(zio->io_abd);
970 		}
971 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
972 		if (zio->io_error == 0)
973 			vps->vps_writeable = 1;
974 		abd_free(zio->io_abd);
975 	} else if (zio->io_type == ZIO_TYPE_NULL) {
976 		zio_t *pio;
977 
978 		vd->vdev_cant_read |= !vps->vps_readable;
979 		vd->vdev_cant_write |= !vps->vps_writeable;
980 
981 		if (vdev_readable(vd) &&
982 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
983 			zio->io_error = 0;
984 		} else {
985 			ASSERT(zio->io_error != 0);
986 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
987 			    spa, vd, NULL, 0, 0);
988 			zio->io_error = SET_ERROR(ENXIO);
989 		}
990 
991 		mutex_enter(&vd->vdev_probe_lock);
992 		ASSERT(vd->vdev_probe_zio == zio);
993 		vd->vdev_probe_zio = NULL;
994 		mutex_exit(&vd->vdev_probe_lock);
995 
996 		zio_link_t *zl = NULL;
997 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
998 			if (!vdev_accessible(vd, pio))
999 				pio->io_error = SET_ERROR(ENXIO);
1000 
1001 		kmem_free(vps, sizeof (*vps));
1002 	}
1003 }
1004 
1005 /*
1006  * Determine whether this device is accessible.
1007  *
1008  * Read and write to several known locations: the pad regions of each
1009  * vdev label but the first, which we leave alone in case it contains
1010  * a VTOC.
1011  */
1012 zio_t *
1013 vdev_probe(vdev_t *vd, zio_t *zio)
1014 {
1015 	spa_t *spa = vd->vdev_spa;
1016 	vdev_probe_stats_t *vps = NULL;
1017 	zio_t *pio;
1018 
1019 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1020 
1021 	/*
1022 	 * Don't probe the probe.
1023 	 */
1024 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1025 		return (NULL);
1026 
1027 	/*
1028 	 * To prevent 'probe storms' when a device fails, we create
1029 	 * just one probe i/o at a time.  All zios that want to probe
1030 	 * this vdev will become parents of the probe io.
1031 	 */
1032 	mutex_enter(&vd->vdev_probe_lock);
1033 
1034 	if ((pio = vd->vdev_probe_zio) == NULL) {
1035 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1036 
1037 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1038 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1039 		    ZIO_FLAG_TRYHARD;
1040 
1041 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1042 			/*
1043 			 * vdev_cant_read and vdev_cant_write can only
1044 			 * transition from TRUE to FALSE when we have the
1045 			 * SCL_ZIO lock as writer; otherwise they can only
1046 			 * transition from FALSE to TRUE.  This ensures that
1047 			 * any zio looking at these values can assume that
1048 			 * failures persist for the life of the I/O.  That's
1049 			 * important because when a device has intermittent
1050 			 * connectivity problems, we want to ensure that
1051 			 * they're ascribed to the device (ENXIO) and not
1052 			 * the zio (EIO).
1053 			 *
1054 			 * Since we hold SCL_ZIO as writer here, clear both
1055 			 * values so the probe can reevaluate from first
1056 			 * principles.
1057 			 */
1058 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1059 			vd->vdev_cant_read = B_FALSE;
1060 			vd->vdev_cant_write = B_FALSE;
1061 		}
1062 
1063 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1064 		    vdev_probe_done, vps,
1065 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1066 
1067 		/*
1068 		 * We can't change the vdev state in this context, so we
1069 		 * kick off an async task to do it on our behalf.
1070 		 */
1071 		if (zio != NULL) {
1072 			vd->vdev_probe_wanted = B_TRUE;
1073 			spa_async_request(spa, SPA_ASYNC_PROBE);
1074 		}
1075 	}
1076 
1077 	if (zio != NULL)
1078 		zio_add_child(zio, pio);
1079 
1080 	mutex_exit(&vd->vdev_probe_lock);
1081 
1082 	if (vps == NULL) {
1083 		ASSERT(zio != NULL);
1084 		return (NULL);
1085 	}
1086 
1087 	for (int l = 1; l < VDEV_LABELS; l++) {
1088 		zio_nowait(zio_read_phys(pio, vd,
1089 		    vdev_label_offset(vd->vdev_psize, l,
1090 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1091 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1092 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1093 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1094 	}
1095 
1096 	if (zio == NULL)
1097 		return (pio);
1098 
1099 	zio_nowait(pio);
1100 	return (NULL);
1101 }
1102 
1103 static void
1104 vdev_open_child(void *arg)
1105 {
1106 	vdev_t *vd = arg;
1107 
1108 	vd->vdev_open_thread = curthread;
1109 	vd->vdev_open_error = vdev_open(vd);
1110 	vd->vdev_open_thread = NULL;
1111 }
1112 
1113 boolean_t
1114 vdev_uses_zvols(vdev_t *vd)
1115 {
1116 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1117 	    strlen(ZVOL_DIR)) == 0)
1118 		return (B_TRUE);
1119 	for (int c = 0; c < vd->vdev_children; c++)
1120 		if (vdev_uses_zvols(vd->vdev_child[c]))
1121 			return (B_TRUE);
1122 	return (B_FALSE);
1123 }
1124 
1125 void
1126 vdev_open_children(vdev_t *vd)
1127 {
1128 	taskq_t *tq;
1129 	int children = vd->vdev_children;
1130 
1131 	/*
1132 	 * in order to handle pools on top of zvols, do the opens
1133 	 * in a single thread so that the same thread holds the
1134 	 * spa_namespace_lock
1135 	 */
1136 	if (vdev_uses_zvols(vd)) {
1137 		for (int c = 0; c < children; c++)
1138 			vd->vdev_child[c]->vdev_open_error =
1139 			    vdev_open(vd->vdev_child[c]);
1140 		return;
1141 	}
1142 	tq = taskq_create("vdev_open", children, minclsyspri,
1143 	    children, children, TASKQ_PREPOPULATE);
1144 
1145 	for (int c = 0; c < children; c++)
1146 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1147 		    TQ_SLEEP) != NULL);
1148 
1149 	taskq_destroy(tq);
1150 }
1151 
1152 /*
1153  * Prepare a virtual device for access.
1154  */
1155 int
1156 vdev_open(vdev_t *vd)
1157 {
1158 	spa_t *spa = vd->vdev_spa;
1159 	int error;
1160 	uint64_t osize = 0;
1161 	uint64_t max_osize = 0;
1162 	uint64_t asize, max_asize, psize;
1163 	uint64_t ashift = 0;
1164 
1165 	ASSERT(vd->vdev_open_thread == curthread ||
1166 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1167 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1168 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1169 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1170 
1171 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1172 	vd->vdev_cant_read = B_FALSE;
1173 	vd->vdev_cant_write = B_FALSE;
1174 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1175 
1176 	/*
1177 	 * If this vdev is not removed, check its fault status.  If it's
1178 	 * faulted, bail out of the open.
1179 	 */
1180 	if (!vd->vdev_removed && vd->vdev_faulted) {
1181 		ASSERT(vd->vdev_children == 0);
1182 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1183 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1184 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1185 		    vd->vdev_label_aux);
1186 		return (SET_ERROR(ENXIO));
1187 	} else if (vd->vdev_offline) {
1188 		ASSERT(vd->vdev_children == 0);
1189 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1190 		return (SET_ERROR(ENXIO));
1191 	}
1192 
1193 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1194 
1195 	/*
1196 	 * Reset the vdev_reopening flag so that we actually close
1197 	 * the vdev on error.
1198 	 */
1199 	vd->vdev_reopening = B_FALSE;
1200 	if (zio_injection_enabled && error == 0)
1201 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1202 
1203 	if (error) {
1204 		if (vd->vdev_removed &&
1205 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1206 			vd->vdev_removed = B_FALSE;
1207 
1208 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 		    vd->vdev_stat.vs_aux);
1210 		return (error);
1211 	}
1212 
1213 	vd->vdev_removed = B_FALSE;
1214 
1215 	/*
1216 	 * Recheck the faulted flag now that we have confirmed that
1217 	 * the vdev is accessible.  If we're faulted, bail.
1218 	 */
1219 	if (vd->vdev_faulted) {
1220 		ASSERT(vd->vdev_children == 0);
1221 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1222 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1223 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1224 		    vd->vdev_label_aux);
1225 		return (SET_ERROR(ENXIO));
1226 	}
1227 
1228 	if (vd->vdev_degraded) {
1229 		ASSERT(vd->vdev_children == 0);
1230 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1231 		    VDEV_AUX_ERR_EXCEEDED);
1232 	} else {
1233 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1234 	}
1235 
1236 	/*
1237 	 * For hole or missing vdevs we just return success.
1238 	 */
1239 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1240 		return (0);
1241 
1242 	for (int c = 0; c < vd->vdev_children; c++) {
1243 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1244 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1245 			    VDEV_AUX_NONE);
1246 			break;
1247 		}
1248 	}
1249 
1250 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1251 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1252 
1253 	if (vd->vdev_children == 0) {
1254 		if (osize < SPA_MINDEVSIZE) {
1255 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1256 			    VDEV_AUX_TOO_SMALL);
1257 			return (SET_ERROR(EOVERFLOW));
1258 		}
1259 		psize = osize;
1260 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1261 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1262 		    VDEV_LABEL_END_SIZE);
1263 	} else {
1264 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1265 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1266 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267 			    VDEV_AUX_TOO_SMALL);
1268 			return (SET_ERROR(EOVERFLOW));
1269 		}
1270 		psize = 0;
1271 		asize = osize;
1272 		max_asize = max_osize;
1273 	}
1274 
1275 	vd->vdev_psize = psize;
1276 
1277 	/*
1278 	 * Make sure the allocatable size hasn't shrunk too much.
1279 	 */
1280 	if (asize < vd->vdev_min_asize) {
1281 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1282 		    VDEV_AUX_BAD_LABEL);
1283 		return (SET_ERROR(EINVAL));
1284 	}
1285 
1286 	if (vd->vdev_asize == 0) {
1287 		/*
1288 		 * This is the first-ever open, so use the computed values.
1289 		 * For testing purposes, a higher ashift can be requested.
1290 		 */
1291 		vd->vdev_asize = asize;
1292 		vd->vdev_max_asize = max_asize;
1293 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1294 	} else {
1295 		/*
1296 		 * Detect if the alignment requirement has increased.
1297 		 * We don't want to make the pool unavailable, just
1298 		 * issue a warning instead.
1299 		 */
1300 		if (ashift > vd->vdev_top->vdev_ashift &&
1301 		    vd->vdev_ops->vdev_op_leaf) {
1302 			cmn_err(CE_WARN,
1303 			    "Disk, '%s', has a block alignment that is "
1304 			    "larger than the pool's alignment\n",
1305 			    vd->vdev_path);
1306 		}
1307 		vd->vdev_max_asize = max_asize;
1308 	}
1309 
1310 	/*
1311 	 * If all children are healthy we update asize if either:
1312 	 * The asize has increased, due to a device expansion caused by dynamic
1313 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1314 	 * making the additional space available.
1315 	 *
1316 	 * The asize has decreased, due to a device shrink usually caused by a
1317 	 * vdev replace with a smaller device. This ensures that calculations
1318 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1319 	 * to do this as we've already validated that asize is greater than
1320 	 * vdev_min_asize.
1321 	 */
1322 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1323 	    ((asize > vd->vdev_asize &&
1324 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1325 	    (asize < vd->vdev_asize)))
1326 		vd->vdev_asize = asize;
1327 
1328 	vdev_set_min_asize(vd);
1329 
1330 	/*
1331 	 * Ensure we can issue some IO before declaring the
1332 	 * vdev open for business.
1333 	 */
1334 	if (vd->vdev_ops->vdev_op_leaf &&
1335 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1336 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1337 		    VDEV_AUX_ERR_EXCEEDED);
1338 		return (error);
1339 	}
1340 
1341 	/*
1342 	 * Track the min and max ashift values for normal data devices.
1343 	 */
1344 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1345 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1346 		if (vd->vdev_ashift > spa->spa_max_ashift)
1347 			spa->spa_max_ashift = vd->vdev_ashift;
1348 		if (vd->vdev_ashift < spa->spa_min_ashift)
1349 			spa->spa_min_ashift = vd->vdev_ashift;
1350 	}
1351 
1352 	/*
1353 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1354 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1355 	 * since this would just restart the scrub we are already doing.
1356 	 */
1357 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1358 	    vdev_resilver_needed(vd, NULL, NULL))
1359 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1360 
1361 	return (0);
1362 }
1363 
1364 /*
1365  * Called once the vdevs are all opened, this routine validates the label
1366  * contents.  This needs to be done before vdev_load() so that we don't
1367  * inadvertently do repair I/Os to the wrong device.
1368  *
1369  * If 'strict' is false ignore the spa guid check. This is necessary because
1370  * if the machine crashed during a re-guid the new guid might have been written
1371  * to all of the vdev labels, but not the cached config. The strict check
1372  * will be performed when the pool is opened again using the mos config.
1373  *
1374  * This function will only return failure if one of the vdevs indicates that it
1375  * has since been destroyed or exported.  This is only possible if
1376  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1377  * will be updated but the function will return 0.
1378  */
1379 int
1380 vdev_validate(vdev_t *vd, boolean_t strict)
1381 {
1382 	spa_t *spa = vd->vdev_spa;
1383 	nvlist_t *label;
1384 	uint64_t guid = 0, top_guid;
1385 	uint64_t state;
1386 
1387 	for (int c = 0; c < vd->vdev_children; c++)
1388 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1389 			return (SET_ERROR(EBADF));
1390 
1391 	/*
1392 	 * If the device has already failed, or was marked offline, don't do
1393 	 * any further validation.  Otherwise, label I/O will fail and we will
1394 	 * overwrite the previous state.
1395 	 */
1396 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1397 		uint64_t aux_guid = 0;
1398 		nvlist_t *nvl;
1399 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1400 		    spa_last_synced_txg(spa) : -1ULL;
1401 
1402 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1403 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1404 			    VDEV_AUX_BAD_LABEL);
1405 			return (0);
1406 		}
1407 
1408 		/*
1409 		 * Determine if this vdev has been split off into another
1410 		 * pool.  If so, then refuse to open it.
1411 		 */
1412 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1413 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1414 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1415 			    VDEV_AUX_SPLIT_POOL);
1416 			nvlist_free(label);
1417 			return (0);
1418 		}
1419 
1420 		if (strict && (nvlist_lookup_uint64(label,
1421 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1422 		    guid != spa_guid(spa))) {
1423 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 			    VDEV_AUX_CORRUPT_DATA);
1425 			nvlist_free(label);
1426 			return (0);
1427 		}
1428 
1429 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1430 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1431 		    &aux_guid) != 0)
1432 			aux_guid = 0;
1433 
1434 		/*
1435 		 * If this vdev just became a top-level vdev because its
1436 		 * sibling was detached, it will have adopted the parent's
1437 		 * vdev guid -- but the label may or may not be on disk yet.
1438 		 * Fortunately, either version of the label will have the
1439 		 * same top guid, so if we're a top-level vdev, we can
1440 		 * safely compare to that instead.
1441 		 *
1442 		 * If we split this vdev off instead, then we also check the
1443 		 * original pool's guid.  We don't want to consider the vdev
1444 		 * corrupt if it is partway through a split operation.
1445 		 */
1446 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1447 		    &guid) != 0 ||
1448 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1449 		    &top_guid) != 0 ||
1450 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1451 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1452 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1453 			    VDEV_AUX_CORRUPT_DATA);
1454 			nvlist_free(label);
1455 			return (0);
1456 		}
1457 
1458 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1459 		    &state) != 0) {
1460 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1461 			    VDEV_AUX_CORRUPT_DATA);
1462 			nvlist_free(label);
1463 			return (0);
1464 		}
1465 
1466 		nvlist_free(label);
1467 
1468 		/*
1469 		 * If this is a verbatim import, no need to check the
1470 		 * state of the pool.
1471 		 */
1472 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1473 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1474 		    state != POOL_STATE_ACTIVE)
1475 			return (SET_ERROR(EBADF));
1476 
1477 		/*
1478 		 * If we were able to open and validate a vdev that was
1479 		 * previously marked permanently unavailable, clear that state
1480 		 * now.
1481 		 */
1482 		if (vd->vdev_not_present)
1483 			vd->vdev_not_present = 0;
1484 	}
1485 
1486 	return (0);
1487 }
1488 
1489 /*
1490  * Close a virtual device.
1491  */
1492 void
1493 vdev_close(vdev_t *vd)
1494 {
1495 	spa_t *spa = vd->vdev_spa;
1496 	vdev_t *pvd = vd->vdev_parent;
1497 
1498 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1499 
1500 	/*
1501 	 * If our parent is reopening, then we are as well, unless we are
1502 	 * going offline.
1503 	 */
1504 	if (pvd != NULL && pvd->vdev_reopening)
1505 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1506 
1507 	vd->vdev_ops->vdev_op_close(vd);
1508 
1509 	vdev_cache_purge(vd);
1510 
1511 	/*
1512 	 * We record the previous state before we close it, so that if we are
1513 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1514 	 * it's still faulted.
1515 	 */
1516 	vd->vdev_prevstate = vd->vdev_state;
1517 
1518 	if (vd->vdev_offline)
1519 		vd->vdev_state = VDEV_STATE_OFFLINE;
1520 	else
1521 		vd->vdev_state = VDEV_STATE_CLOSED;
1522 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1523 }
1524 
1525 void
1526 vdev_hold(vdev_t *vd)
1527 {
1528 	spa_t *spa = vd->vdev_spa;
1529 
1530 	ASSERT(spa_is_root(spa));
1531 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1532 		return;
1533 
1534 	for (int c = 0; c < vd->vdev_children; c++)
1535 		vdev_hold(vd->vdev_child[c]);
1536 
1537 	if (vd->vdev_ops->vdev_op_leaf)
1538 		vd->vdev_ops->vdev_op_hold(vd);
1539 }
1540 
1541 void
1542 vdev_rele(vdev_t *vd)
1543 {
1544 	spa_t *spa = vd->vdev_spa;
1545 
1546 	ASSERT(spa_is_root(spa));
1547 	for (int c = 0; c < vd->vdev_children; c++)
1548 		vdev_rele(vd->vdev_child[c]);
1549 
1550 	if (vd->vdev_ops->vdev_op_leaf)
1551 		vd->vdev_ops->vdev_op_rele(vd);
1552 }
1553 
1554 /*
1555  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1556  * reopen leaf vdevs which had previously been opened as they might deadlock
1557  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1558  * If the leaf has never been opened then open it, as usual.
1559  */
1560 void
1561 vdev_reopen(vdev_t *vd)
1562 {
1563 	spa_t *spa = vd->vdev_spa;
1564 
1565 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1566 
1567 	/* set the reopening flag unless we're taking the vdev offline */
1568 	vd->vdev_reopening = !vd->vdev_offline;
1569 	vdev_close(vd);
1570 	(void) vdev_open(vd);
1571 
1572 	/*
1573 	 * Call vdev_validate() here to make sure we have the same device.
1574 	 * Otherwise, a device with an invalid label could be successfully
1575 	 * opened in response to vdev_reopen().
1576 	 */
1577 	if (vd->vdev_aux) {
1578 		(void) vdev_validate_aux(vd);
1579 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1580 		    vd->vdev_aux == &spa->spa_l2cache &&
1581 		    !l2arc_vdev_present(vd))
1582 			l2arc_add_vdev(spa, vd);
1583 	} else {
1584 		(void) vdev_validate(vd, B_TRUE);
1585 	}
1586 
1587 	/*
1588 	 * Reassess parent vdev's health.
1589 	 */
1590 	vdev_propagate_state(vd);
1591 }
1592 
1593 int
1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1595 {
1596 	int error;
1597 
1598 	/*
1599 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1600 	 * For a create, however, we want to fail the request if
1601 	 * there are any components we can't open.
1602 	 */
1603 	error = vdev_open(vd);
1604 
1605 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1606 		vdev_close(vd);
1607 		return (error ? error : ENXIO);
1608 	}
1609 
1610 	/*
1611 	 * Recursively load DTLs and initialize all labels.
1612 	 */
1613 	if ((error = vdev_dtl_load(vd)) != 0 ||
1614 	    (error = vdev_label_init(vd, txg, isreplacing ?
1615 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1616 		vdev_close(vd);
1617 		return (error);
1618 	}
1619 
1620 	return (0);
1621 }
1622 
1623 void
1624 vdev_metaslab_set_size(vdev_t *vd)
1625 {
1626 	/*
1627 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1628 	 */
1629 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1630 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1631 }
1632 
1633 void
1634 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1635 {
1636 	ASSERT(vd == vd->vdev_top);
1637 	ASSERT(!vd->vdev_ishole);
1638 	ASSERT(ISP2(flags));
1639 	ASSERT(spa_writeable(vd->vdev_spa));
1640 
1641 	if (flags & VDD_METASLAB)
1642 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1643 
1644 	if (flags & VDD_DTL)
1645 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1646 
1647 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1648 }
1649 
1650 void
1651 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1652 {
1653 	for (int c = 0; c < vd->vdev_children; c++)
1654 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1655 
1656 	if (vd->vdev_ops->vdev_op_leaf)
1657 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1658 }
1659 
1660 /*
1661  * DTLs.
1662  *
1663  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1664  * the vdev has less than perfect replication.  There are four kinds of DTL:
1665  *
1666  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1667  *
1668  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1669  *
1670  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1671  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1672  *	txgs that was scrubbed.
1673  *
1674  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1675  *	persistent errors or just some device being offline.
1676  *	Unlike the other three, the DTL_OUTAGE map is not generally
1677  *	maintained; it's only computed when needed, typically to
1678  *	determine whether a device can be detached.
1679  *
1680  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1681  * either has the data or it doesn't.
1682  *
1683  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1684  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1685  * if any child is less than fully replicated, then so is its parent.
1686  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1687  * comprising only those txgs which appear in 'maxfaults' or more children;
1688  * those are the txgs we don't have enough replication to read.  For example,
1689  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1690  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1691  * two child DTL_MISSING maps.
1692  *
1693  * It should be clear from the above that to compute the DTLs and outage maps
1694  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1695  * Therefore, that is all we keep on disk.  When loading the pool, or after
1696  * a configuration change, we generate all other DTLs from first principles.
1697  */
1698 void
1699 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1700 {
1701 	range_tree_t *rt = vd->vdev_dtl[t];
1702 
1703 	ASSERT(t < DTL_TYPES);
1704 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1705 	ASSERT(spa_writeable(vd->vdev_spa));
1706 
1707 	mutex_enter(rt->rt_lock);
1708 	if (!range_tree_contains(rt, txg, size))
1709 		range_tree_add(rt, txg, size);
1710 	mutex_exit(rt->rt_lock);
1711 }
1712 
1713 boolean_t
1714 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1715 {
1716 	range_tree_t *rt = vd->vdev_dtl[t];
1717 	boolean_t dirty = B_FALSE;
1718 
1719 	ASSERT(t < DTL_TYPES);
1720 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1721 
1722 	mutex_enter(rt->rt_lock);
1723 	if (range_tree_space(rt) != 0)
1724 		dirty = range_tree_contains(rt, txg, size);
1725 	mutex_exit(rt->rt_lock);
1726 
1727 	return (dirty);
1728 }
1729 
1730 boolean_t
1731 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1732 {
1733 	range_tree_t *rt = vd->vdev_dtl[t];
1734 	boolean_t empty;
1735 
1736 	mutex_enter(rt->rt_lock);
1737 	empty = (range_tree_space(rt) == 0);
1738 	mutex_exit(rt->rt_lock);
1739 
1740 	return (empty);
1741 }
1742 
1743 /*
1744  * Returns the lowest txg in the DTL range.
1745  */
1746 static uint64_t
1747 vdev_dtl_min(vdev_t *vd)
1748 {
1749 	range_seg_t *rs;
1750 
1751 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1752 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1753 	ASSERT0(vd->vdev_children);
1754 
1755 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1756 	return (rs->rs_start - 1);
1757 }
1758 
1759 /*
1760  * Returns the highest txg in the DTL.
1761  */
1762 static uint64_t
1763 vdev_dtl_max(vdev_t *vd)
1764 {
1765 	range_seg_t *rs;
1766 
1767 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1768 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1769 	ASSERT0(vd->vdev_children);
1770 
1771 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1772 	return (rs->rs_end);
1773 }
1774 
1775 /*
1776  * Determine if a resilvering vdev should remove any DTL entries from
1777  * its range. If the vdev was resilvering for the entire duration of the
1778  * scan then it should excise that range from its DTLs. Otherwise, this
1779  * vdev is considered partially resilvered and should leave its DTL
1780  * entries intact. The comment in vdev_dtl_reassess() describes how we
1781  * excise the DTLs.
1782  */
1783 static boolean_t
1784 vdev_dtl_should_excise(vdev_t *vd)
1785 {
1786 	spa_t *spa = vd->vdev_spa;
1787 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1788 
1789 	ASSERT0(scn->scn_phys.scn_errors);
1790 	ASSERT0(vd->vdev_children);
1791 
1792 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
1793 		return (B_FALSE);
1794 
1795 	if (vd->vdev_resilver_txg == 0 ||
1796 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1797 		return (B_TRUE);
1798 
1799 	/*
1800 	 * When a resilver is initiated the scan will assign the scn_max_txg
1801 	 * value to the highest txg value that exists in all DTLs. If this
1802 	 * device's max DTL is not part of this scan (i.e. it is not in
1803 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1804 	 * for excision.
1805 	 */
1806 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1807 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1808 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1809 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1810 		return (B_TRUE);
1811 	}
1812 	return (B_FALSE);
1813 }
1814 
1815 /*
1816  * Reassess DTLs after a config change or scrub completion.
1817  */
1818 void
1819 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1820 {
1821 	spa_t *spa = vd->vdev_spa;
1822 	avl_tree_t reftree;
1823 	int minref;
1824 
1825 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1826 
1827 	for (int c = 0; c < vd->vdev_children; c++)
1828 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1829 		    scrub_txg, scrub_done);
1830 
1831 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1832 		return;
1833 
1834 	if (vd->vdev_ops->vdev_op_leaf) {
1835 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1836 
1837 		mutex_enter(&vd->vdev_dtl_lock);
1838 
1839 		/*
1840 		 * If we've completed a scan cleanly then determine
1841 		 * if this vdev should remove any DTLs. We only want to
1842 		 * excise regions on vdevs that were available during
1843 		 * the entire duration of this scan.
1844 		 */
1845 		if (scrub_txg != 0 &&
1846 		    (spa->spa_scrub_started ||
1847 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1848 		    vdev_dtl_should_excise(vd)) {
1849 			/*
1850 			 * We completed a scrub up to scrub_txg.  If we
1851 			 * did it without rebooting, then the scrub dtl
1852 			 * will be valid, so excise the old region and
1853 			 * fold in the scrub dtl.  Otherwise, leave the
1854 			 * dtl as-is if there was an error.
1855 			 *
1856 			 * There's little trick here: to excise the beginning
1857 			 * of the DTL_MISSING map, we put it into a reference
1858 			 * tree and then add a segment with refcnt -1 that
1859 			 * covers the range [0, scrub_txg).  This means
1860 			 * that each txg in that range has refcnt -1 or 0.
1861 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1862 			 * entries in the range [0, scrub_txg) will have a
1863 			 * positive refcnt -- either 1 or 2.  We then convert
1864 			 * the reference tree into the new DTL_MISSING map.
1865 			 */
1866 			space_reftree_create(&reftree);
1867 			space_reftree_add_map(&reftree,
1868 			    vd->vdev_dtl[DTL_MISSING], 1);
1869 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1870 			space_reftree_add_map(&reftree,
1871 			    vd->vdev_dtl[DTL_SCRUB], 2);
1872 			space_reftree_generate_map(&reftree,
1873 			    vd->vdev_dtl[DTL_MISSING], 1);
1874 			space_reftree_destroy(&reftree);
1875 		}
1876 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1877 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1878 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1879 		if (scrub_done)
1880 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1881 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1882 		if (!vdev_readable(vd))
1883 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1884 		else
1885 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1886 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1887 
1888 		/*
1889 		 * If the vdev was resilvering and no longer has any
1890 		 * DTLs then reset its resilvering flag.
1891 		 */
1892 		if (vd->vdev_resilver_txg != 0 &&
1893 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1894 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1895 			vd->vdev_resilver_txg = 0;
1896 
1897 		mutex_exit(&vd->vdev_dtl_lock);
1898 
1899 		if (txg != 0)
1900 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1901 		return;
1902 	}
1903 
1904 	mutex_enter(&vd->vdev_dtl_lock);
1905 	for (int t = 0; t < DTL_TYPES; t++) {
1906 		/* account for child's outage in parent's missing map */
1907 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1908 		if (t == DTL_SCRUB)
1909 			continue;			/* leaf vdevs only */
1910 		if (t == DTL_PARTIAL)
1911 			minref = 1;			/* i.e. non-zero */
1912 		else if (vd->vdev_nparity != 0)
1913 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1914 		else
1915 			minref = vd->vdev_children;	/* any kind of mirror */
1916 		space_reftree_create(&reftree);
1917 		for (int c = 0; c < vd->vdev_children; c++) {
1918 			vdev_t *cvd = vd->vdev_child[c];
1919 			mutex_enter(&cvd->vdev_dtl_lock);
1920 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1921 			mutex_exit(&cvd->vdev_dtl_lock);
1922 		}
1923 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1924 		space_reftree_destroy(&reftree);
1925 	}
1926 	mutex_exit(&vd->vdev_dtl_lock);
1927 }
1928 
1929 int
1930 vdev_dtl_load(vdev_t *vd)
1931 {
1932 	spa_t *spa = vd->vdev_spa;
1933 	objset_t *mos = spa->spa_meta_objset;
1934 	int error = 0;
1935 
1936 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1937 		ASSERT(!vd->vdev_ishole);
1938 
1939 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1940 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1941 		if (error)
1942 			return (error);
1943 		ASSERT(vd->vdev_dtl_sm != NULL);
1944 
1945 		mutex_enter(&vd->vdev_dtl_lock);
1946 
1947 		/*
1948 		 * Now that we've opened the space_map we need to update
1949 		 * the in-core DTL.
1950 		 */
1951 		space_map_update(vd->vdev_dtl_sm);
1952 
1953 		error = space_map_load(vd->vdev_dtl_sm,
1954 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1955 		mutex_exit(&vd->vdev_dtl_lock);
1956 
1957 		return (error);
1958 	}
1959 
1960 	for (int c = 0; c < vd->vdev_children; c++) {
1961 		error = vdev_dtl_load(vd->vdev_child[c]);
1962 		if (error != 0)
1963 			break;
1964 	}
1965 
1966 	return (error);
1967 }
1968 
1969 void
1970 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1971 {
1972 	spa_t *spa = vd->vdev_spa;
1973 
1974 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1975 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1976 	    zapobj, tx));
1977 }
1978 
1979 uint64_t
1980 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1981 {
1982 	spa_t *spa = vd->vdev_spa;
1983 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1984 	    DMU_OT_NONE, 0, tx);
1985 
1986 	ASSERT(zap != 0);
1987 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1988 	    zap, tx));
1989 
1990 	return (zap);
1991 }
1992 
1993 void
1994 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1995 {
1996 	if (vd->vdev_ops != &vdev_hole_ops &&
1997 	    vd->vdev_ops != &vdev_missing_ops &&
1998 	    vd->vdev_ops != &vdev_root_ops &&
1999 	    !vd->vdev_top->vdev_removing) {
2000 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2001 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2002 		}
2003 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2004 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2005 		}
2006 	}
2007 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2008 		vdev_construct_zaps(vd->vdev_child[i], tx);
2009 	}
2010 }
2011 
2012 void
2013 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2014 {
2015 	spa_t *spa = vd->vdev_spa;
2016 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2017 	objset_t *mos = spa->spa_meta_objset;
2018 	range_tree_t *rtsync;
2019 	kmutex_t rtlock;
2020 	dmu_tx_t *tx;
2021 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2022 
2023 	ASSERT(!vd->vdev_ishole);
2024 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2025 
2026 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2027 
2028 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2029 		mutex_enter(&vd->vdev_dtl_lock);
2030 		space_map_free(vd->vdev_dtl_sm, tx);
2031 		space_map_close(vd->vdev_dtl_sm);
2032 		vd->vdev_dtl_sm = NULL;
2033 		mutex_exit(&vd->vdev_dtl_lock);
2034 
2035 		/*
2036 		 * We only destroy the leaf ZAP for detached leaves or for
2037 		 * removed log devices. Removed data devices handle leaf ZAP
2038 		 * cleanup later, once cancellation is no longer possible.
2039 		 */
2040 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2041 		    vd->vdev_top->vdev_islog)) {
2042 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2043 			vd->vdev_leaf_zap = 0;
2044 		}
2045 
2046 		dmu_tx_commit(tx);
2047 		return;
2048 	}
2049 
2050 	if (vd->vdev_dtl_sm == NULL) {
2051 		uint64_t new_object;
2052 
2053 		new_object = space_map_alloc(mos, tx);
2054 		VERIFY3U(new_object, !=, 0);
2055 
2056 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2057 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2058 		ASSERT(vd->vdev_dtl_sm != NULL);
2059 	}
2060 
2061 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2062 
2063 	rtsync = range_tree_create(NULL, NULL, &rtlock);
2064 
2065 	mutex_enter(&rtlock);
2066 
2067 	mutex_enter(&vd->vdev_dtl_lock);
2068 	range_tree_walk(rt, range_tree_add, rtsync);
2069 	mutex_exit(&vd->vdev_dtl_lock);
2070 
2071 	space_map_truncate(vd->vdev_dtl_sm, tx);
2072 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2073 	range_tree_vacate(rtsync, NULL, NULL);
2074 
2075 	range_tree_destroy(rtsync);
2076 
2077 	mutex_exit(&rtlock);
2078 	mutex_destroy(&rtlock);
2079 
2080 	/*
2081 	 * If the object for the space map has changed then dirty
2082 	 * the top level so that we update the config.
2083 	 */
2084 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2085 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2086 		    "new object %llu", txg, spa_name(spa), object,
2087 		    space_map_object(vd->vdev_dtl_sm));
2088 		vdev_config_dirty(vd->vdev_top);
2089 	}
2090 
2091 	dmu_tx_commit(tx);
2092 
2093 	mutex_enter(&vd->vdev_dtl_lock);
2094 	space_map_update(vd->vdev_dtl_sm);
2095 	mutex_exit(&vd->vdev_dtl_lock);
2096 }
2097 
2098 /*
2099  * Determine whether the specified vdev can be offlined/detached/removed
2100  * without losing data.
2101  */
2102 boolean_t
2103 vdev_dtl_required(vdev_t *vd)
2104 {
2105 	spa_t *spa = vd->vdev_spa;
2106 	vdev_t *tvd = vd->vdev_top;
2107 	uint8_t cant_read = vd->vdev_cant_read;
2108 	boolean_t required;
2109 
2110 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2111 
2112 	if (vd == spa->spa_root_vdev || vd == tvd)
2113 		return (B_TRUE);
2114 
2115 	/*
2116 	 * Temporarily mark the device as unreadable, and then determine
2117 	 * whether this results in any DTL outages in the top-level vdev.
2118 	 * If not, we can safely offline/detach/remove the device.
2119 	 */
2120 	vd->vdev_cant_read = B_TRUE;
2121 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2122 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2123 	vd->vdev_cant_read = cant_read;
2124 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2125 
2126 	if (!required && zio_injection_enabled)
2127 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2128 
2129 	return (required);
2130 }
2131 
2132 /*
2133  * Determine if resilver is needed, and if so the txg range.
2134  */
2135 boolean_t
2136 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2137 {
2138 	boolean_t needed = B_FALSE;
2139 	uint64_t thismin = UINT64_MAX;
2140 	uint64_t thismax = 0;
2141 
2142 	if (vd->vdev_children == 0) {
2143 		mutex_enter(&vd->vdev_dtl_lock);
2144 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2145 		    vdev_writeable(vd)) {
2146 
2147 			thismin = vdev_dtl_min(vd);
2148 			thismax = vdev_dtl_max(vd);
2149 			needed = B_TRUE;
2150 		}
2151 		mutex_exit(&vd->vdev_dtl_lock);
2152 	} else {
2153 		for (int c = 0; c < vd->vdev_children; c++) {
2154 			vdev_t *cvd = vd->vdev_child[c];
2155 			uint64_t cmin, cmax;
2156 
2157 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2158 				thismin = MIN(thismin, cmin);
2159 				thismax = MAX(thismax, cmax);
2160 				needed = B_TRUE;
2161 			}
2162 		}
2163 	}
2164 
2165 	if (needed && minp) {
2166 		*minp = thismin;
2167 		*maxp = thismax;
2168 	}
2169 	return (needed);
2170 }
2171 
2172 void
2173 vdev_load(vdev_t *vd)
2174 {
2175 	/*
2176 	 * Recursively load all children.
2177 	 */
2178 	for (int c = 0; c < vd->vdev_children; c++)
2179 		vdev_load(vd->vdev_child[c]);
2180 
2181 	/*
2182 	 * If this is a top-level vdev, initialize its metaslabs.
2183 	 */
2184 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2185 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2186 	    vdev_metaslab_init(vd, 0) != 0))
2187 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2188 		    VDEV_AUX_CORRUPT_DATA);
2189 
2190 	/*
2191 	 * If this is a leaf vdev, load its DTL.
2192 	 */
2193 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2194 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2195 		    VDEV_AUX_CORRUPT_DATA);
2196 }
2197 
2198 /*
2199  * The special vdev case is used for hot spares and l2cache devices.  Its
2200  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2201  * we make sure that we can open the underlying device, then try to read the
2202  * label, and make sure that the label is sane and that it hasn't been
2203  * repurposed to another pool.
2204  */
2205 int
2206 vdev_validate_aux(vdev_t *vd)
2207 {
2208 	nvlist_t *label;
2209 	uint64_t guid, version;
2210 	uint64_t state;
2211 
2212 	if (!vdev_readable(vd))
2213 		return (0);
2214 
2215 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2216 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2217 		    VDEV_AUX_CORRUPT_DATA);
2218 		return (-1);
2219 	}
2220 
2221 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2222 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2223 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2224 	    guid != vd->vdev_guid ||
2225 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2226 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2227 		    VDEV_AUX_CORRUPT_DATA);
2228 		nvlist_free(label);
2229 		return (-1);
2230 	}
2231 
2232 	/*
2233 	 * We don't actually check the pool state here.  If it's in fact in
2234 	 * use by another pool, we update this fact on the fly when requested.
2235 	 */
2236 	nvlist_free(label);
2237 	return (0);
2238 }
2239 
2240 void
2241 vdev_remove(vdev_t *vd, uint64_t txg)
2242 {
2243 	spa_t *spa = vd->vdev_spa;
2244 	objset_t *mos = spa->spa_meta_objset;
2245 	dmu_tx_t *tx;
2246 
2247 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2248 	ASSERT(vd == vd->vdev_top);
2249 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2250 
2251 	if (vd->vdev_ms != NULL) {
2252 		metaslab_group_t *mg = vd->vdev_mg;
2253 
2254 		metaslab_group_histogram_verify(mg);
2255 		metaslab_class_histogram_verify(mg->mg_class);
2256 
2257 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2258 			metaslab_t *msp = vd->vdev_ms[m];
2259 
2260 			if (msp == NULL || msp->ms_sm == NULL)
2261 				continue;
2262 
2263 			mutex_enter(&msp->ms_lock);
2264 			/*
2265 			 * If the metaslab was not loaded when the vdev
2266 			 * was removed then the histogram accounting may
2267 			 * not be accurate. Update the histogram information
2268 			 * here so that we ensure that the metaslab group
2269 			 * and metaslab class are up-to-date.
2270 			 */
2271 			metaslab_group_histogram_remove(mg, msp);
2272 
2273 			VERIFY0(space_map_allocated(msp->ms_sm));
2274 			space_map_free(msp->ms_sm, tx);
2275 			space_map_close(msp->ms_sm);
2276 			msp->ms_sm = NULL;
2277 			mutex_exit(&msp->ms_lock);
2278 		}
2279 
2280 		metaslab_group_histogram_verify(mg);
2281 		metaslab_class_histogram_verify(mg->mg_class);
2282 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2283 			ASSERT0(mg->mg_histogram[i]);
2284 
2285 	}
2286 
2287 	if (vd->vdev_ms_array) {
2288 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2289 		vd->vdev_ms_array = 0;
2290 	}
2291 
2292 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2293 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2294 		vd->vdev_top_zap = 0;
2295 	}
2296 	dmu_tx_commit(tx);
2297 }
2298 
2299 void
2300 vdev_sync_done(vdev_t *vd, uint64_t txg)
2301 {
2302 	metaslab_t *msp;
2303 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2304 
2305 	ASSERT(!vd->vdev_ishole);
2306 
2307 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2308 		metaslab_sync_done(msp, txg);
2309 
2310 	if (reassess)
2311 		metaslab_sync_reassess(vd->vdev_mg);
2312 }
2313 
2314 void
2315 vdev_sync(vdev_t *vd, uint64_t txg)
2316 {
2317 	spa_t *spa = vd->vdev_spa;
2318 	vdev_t *lvd;
2319 	metaslab_t *msp;
2320 	dmu_tx_t *tx;
2321 
2322 	ASSERT(!vd->vdev_ishole);
2323 
2324 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2325 		ASSERT(vd == vd->vdev_top);
2326 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2327 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2328 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2329 		ASSERT(vd->vdev_ms_array != 0);
2330 		vdev_config_dirty(vd);
2331 		dmu_tx_commit(tx);
2332 	}
2333 
2334 	/*
2335 	 * Remove the metadata associated with this vdev once it's empty.
2336 	 */
2337 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2338 		vdev_remove(vd, txg);
2339 
2340 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2341 		metaslab_sync(msp, txg);
2342 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2343 	}
2344 
2345 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2346 		vdev_dtl_sync(lvd, txg);
2347 
2348 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2349 }
2350 
2351 uint64_t
2352 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2353 {
2354 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2355 }
2356 
2357 /*
2358  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2359  * not be opened, and no I/O is attempted.
2360  */
2361 int
2362 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2363 {
2364 	vdev_t *vd, *tvd;
2365 
2366 	spa_vdev_state_enter(spa, SCL_NONE);
2367 
2368 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2369 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2370 
2371 	if (!vd->vdev_ops->vdev_op_leaf)
2372 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2373 
2374 	tvd = vd->vdev_top;
2375 
2376 	/*
2377 	 * We don't directly use the aux state here, but if we do a
2378 	 * vdev_reopen(), we need this value to be present to remember why we
2379 	 * were faulted.
2380 	 */
2381 	vd->vdev_label_aux = aux;
2382 
2383 	/*
2384 	 * Faulted state takes precedence over degraded.
2385 	 */
2386 	vd->vdev_delayed_close = B_FALSE;
2387 	vd->vdev_faulted = 1ULL;
2388 	vd->vdev_degraded = 0ULL;
2389 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2390 
2391 	/*
2392 	 * If this device has the only valid copy of the data, then
2393 	 * back off and simply mark the vdev as degraded instead.
2394 	 */
2395 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2396 		vd->vdev_degraded = 1ULL;
2397 		vd->vdev_faulted = 0ULL;
2398 
2399 		/*
2400 		 * If we reopen the device and it's not dead, only then do we
2401 		 * mark it degraded.
2402 		 */
2403 		vdev_reopen(tvd);
2404 
2405 		if (vdev_readable(vd))
2406 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2407 	}
2408 
2409 	return (spa_vdev_state_exit(spa, vd, 0));
2410 }
2411 
2412 /*
2413  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2414  * user that something is wrong.  The vdev continues to operate as normal as far
2415  * as I/O is concerned.
2416  */
2417 int
2418 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2419 {
2420 	vdev_t *vd;
2421 
2422 	spa_vdev_state_enter(spa, SCL_NONE);
2423 
2424 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2425 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2426 
2427 	if (!vd->vdev_ops->vdev_op_leaf)
2428 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2429 
2430 	/*
2431 	 * If the vdev is already faulted, then don't do anything.
2432 	 */
2433 	if (vd->vdev_faulted || vd->vdev_degraded)
2434 		return (spa_vdev_state_exit(spa, NULL, 0));
2435 
2436 	vd->vdev_degraded = 1ULL;
2437 	if (!vdev_is_dead(vd))
2438 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2439 		    aux);
2440 
2441 	return (spa_vdev_state_exit(spa, vd, 0));
2442 }
2443 
2444 /*
2445  * Online the given vdev.
2446  *
2447  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2448  * spare device should be detached when the device finishes resilvering.
2449  * Second, the online should be treated like a 'test' online case, so no FMA
2450  * events are generated if the device fails to open.
2451  */
2452 int
2453 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2454 {
2455 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2456 	boolean_t wasoffline;
2457 	vdev_state_t oldstate;
2458 
2459 	spa_vdev_state_enter(spa, SCL_NONE);
2460 
2461 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2462 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2463 
2464 	if (!vd->vdev_ops->vdev_op_leaf)
2465 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2466 
2467 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2468 	oldstate = vd->vdev_state;
2469 
2470 	tvd = vd->vdev_top;
2471 	vd->vdev_offline = B_FALSE;
2472 	vd->vdev_tmpoffline = B_FALSE;
2473 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2474 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2475 
2476 	/* XXX - L2ARC 1.0 does not support expansion */
2477 	if (!vd->vdev_aux) {
2478 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2479 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2480 	}
2481 
2482 	vdev_reopen(tvd);
2483 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2484 
2485 	if (!vd->vdev_aux) {
2486 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2487 			pvd->vdev_expanding = B_FALSE;
2488 	}
2489 
2490 	if (newstate)
2491 		*newstate = vd->vdev_state;
2492 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2493 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2494 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2495 	    vd->vdev_parent->vdev_child[0] == vd)
2496 		vd->vdev_unspare = B_TRUE;
2497 
2498 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2499 
2500 		/* XXX - L2ARC 1.0 does not support expansion */
2501 		if (vd->vdev_aux)
2502 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2503 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2504 	}
2505 
2506 	if (wasoffline ||
2507 	    (oldstate < VDEV_STATE_DEGRADED &&
2508 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
2509 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2510 
2511 	return (spa_vdev_state_exit(spa, vd, 0));
2512 }
2513 
2514 static int
2515 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2516 {
2517 	vdev_t *vd, *tvd;
2518 	int error = 0;
2519 	uint64_t generation;
2520 	metaslab_group_t *mg;
2521 
2522 top:
2523 	spa_vdev_state_enter(spa, SCL_ALLOC);
2524 
2525 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2526 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2527 
2528 	if (!vd->vdev_ops->vdev_op_leaf)
2529 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2530 
2531 	tvd = vd->vdev_top;
2532 	mg = tvd->vdev_mg;
2533 	generation = spa->spa_config_generation + 1;
2534 
2535 	/*
2536 	 * If the device isn't already offline, try to offline it.
2537 	 */
2538 	if (!vd->vdev_offline) {
2539 		/*
2540 		 * If this device has the only valid copy of some data,
2541 		 * don't allow it to be offlined. Log devices are always
2542 		 * expendable.
2543 		 */
2544 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2545 		    vdev_dtl_required(vd))
2546 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2547 
2548 		/*
2549 		 * If the top-level is a slog and it has had allocations
2550 		 * then proceed.  We check that the vdev's metaslab group
2551 		 * is not NULL since it's possible that we may have just
2552 		 * added this vdev but not yet initialized its metaslabs.
2553 		 */
2554 		if (tvd->vdev_islog && mg != NULL) {
2555 			/*
2556 			 * Prevent any future allocations.
2557 			 */
2558 			metaslab_group_passivate(mg);
2559 			(void) spa_vdev_state_exit(spa, vd, 0);
2560 
2561 			error = spa_offline_log(spa);
2562 
2563 			spa_vdev_state_enter(spa, SCL_ALLOC);
2564 
2565 			/*
2566 			 * Check to see if the config has changed.
2567 			 */
2568 			if (error || generation != spa->spa_config_generation) {
2569 				metaslab_group_activate(mg);
2570 				if (error)
2571 					return (spa_vdev_state_exit(spa,
2572 					    vd, error));
2573 				(void) spa_vdev_state_exit(spa, vd, 0);
2574 				goto top;
2575 			}
2576 			ASSERT0(tvd->vdev_stat.vs_alloc);
2577 		}
2578 
2579 		/*
2580 		 * Offline this device and reopen its top-level vdev.
2581 		 * If the top-level vdev is a log device then just offline
2582 		 * it. Otherwise, if this action results in the top-level
2583 		 * vdev becoming unusable, undo it and fail the request.
2584 		 */
2585 		vd->vdev_offline = B_TRUE;
2586 		vdev_reopen(tvd);
2587 
2588 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2589 		    vdev_is_dead(tvd)) {
2590 			vd->vdev_offline = B_FALSE;
2591 			vdev_reopen(tvd);
2592 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2593 		}
2594 
2595 		/*
2596 		 * Add the device back into the metaslab rotor so that
2597 		 * once we online the device it's open for business.
2598 		 */
2599 		if (tvd->vdev_islog && mg != NULL)
2600 			metaslab_group_activate(mg);
2601 	}
2602 
2603 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2604 
2605 	return (spa_vdev_state_exit(spa, vd, 0));
2606 }
2607 
2608 int
2609 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2610 {
2611 	int error;
2612 
2613 	mutex_enter(&spa->spa_vdev_top_lock);
2614 	error = vdev_offline_locked(spa, guid, flags);
2615 	mutex_exit(&spa->spa_vdev_top_lock);
2616 
2617 	return (error);
2618 }
2619 
2620 /*
2621  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2622  * vdev_offline(), we assume the spa config is locked.  We also clear all
2623  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2624  */
2625 void
2626 vdev_clear(spa_t *spa, vdev_t *vd)
2627 {
2628 	vdev_t *rvd = spa->spa_root_vdev;
2629 
2630 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2631 
2632 	if (vd == NULL)
2633 		vd = rvd;
2634 
2635 	vd->vdev_stat.vs_read_errors = 0;
2636 	vd->vdev_stat.vs_write_errors = 0;
2637 	vd->vdev_stat.vs_checksum_errors = 0;
2638 
2639 	for (int c = 0; c < vd->vdev_children; c++)
2640 		vdev_clear(spa, vd->vdev_child[c]);
2641 
2642 	/*
2643 	 * If we're in the FAULTED state or have experienced failed I/O, then
2644 	 * clear the persistent state and attempt to reopen the device.  We
2645 	 * also mark the vdev config dirty, so that the new faulted state is
2646 	 * written out to disk.
2647 	 */
2648 	if (vd->vdev_faulted || vd->vdev_degraded ||
2649 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2650 
2651 		/*
2652 		 * When reopening in reponse to a clear event, it may be due to
2653 		 * a fmadm repair request.  In this case, if the device is
2654 		 * still broken, we want to still post the ereport again.
2655 		 */
2656 		vd->vdev_forcefault = B_TRUE;
2657 
2658 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2659 		vd->vdev_cant_read = B_FALSE;
2660 		vd->vdev_cant_write = B_FALSE;
2661 
2662 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2663 
2664 		vd->vdev_forcefault = B_FALSE;
2665 
2666 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2667 			vdev_state_dirty(vd->vdev_top);
2668 
2669 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2670 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2671 
2672 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2673 	}
2674 
2675 	/*
2676 	 * When clearing a FMA-diagnosed fault, we always want to
2677 	 * unspare the device, as we assume that the original spare was
2678 	 * done in response to the FMA fault.
2679 	 */
2680 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2681 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2682 	    vd->vdev_parent->vdev_child[0] == vd)
2683 		vd->vdev_unspare = B_TRUE;
2684 }
2685 
2686 boolean_t
2687 vdev_is_dead(vdev_t *vd)
2688 {
2689 	/*
2690 	 * Holes and missing devices are always considered "dead".
2691 	 * This simplifies the code since we don't have to check for
2692 	 * these types of devices in the various code paths.
2693 	 * Instead we rely on the fact that we skip over dead devices
2694 	 * before issuing I/O to them.
2695 	 */
2696 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2697 	    vd->vdev_ops == &vdev_missing_ops);
2698 }
2699 
2700 boolean_t
2701 vdev_readable(vdev_t *vd)
2702 {
2703 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2704 }
2705 
2706 boolean_t
2707 vdev_writeable(vdev_t *vd)
2708 {
2709 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2710 }
2711 
2712 boolean_t
2713 vdev_allocatable(vdev_t *vd)
2714 {
2715 	uint64_t state = vd->vdev_state;
2716 
2717 	/*
2718 	 * We currently allow allocations from vdevs which may be in the
2719 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2720 	 * fails to reopen then we'll catch it later when we're holding
2721 	 * the proper locks.  Note that we have to get the vdev state
2722 	 * in a local variable because although it changes atomically,
2723 	 * we're asking two separate questions about it.
2724 	 */
2725 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2726 	    !vd->vdev_cant_write && !vd->vdev_ishole &&
2727 	    vd->vdev_mg->mg_initialized);
2728 }
2729 
2730 boolean_t
2731 vdev_accessible(vdev_t *vd, zio_t *zio)
2732 {
2733 	ASSERT(zio->io_vd == vd);
2734 
2735 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2736 		return (B_FALSE);
2737 
2738 	if (zio->io_type == ZIO_TYPE_READ)
2739 		return (!vd->vdev_cant_read);
2740 
2741 	if (zio->io_type == ZIO_TYPE_WRITE)
2742 		return (!vd->vdev_cant_write);
2743 
2744 	return (B_TRUE);
2745 }
2746 
2747 /*
2748  * Get statistics for the given vdev.
2749  */
2750 void
2751 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2752 {
2753 	spa_t *spa = vd->vdev_spa;
2754 	vdev_t *rvd = spa->spa_root_vdev;
2755 	vdev_t *tvd = vd->vdev_top;
2756 
2757 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2758 
2759 	mutex_enter(&vd->vdev_stat_lock);
2760 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2761 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2762 	vs->vs_state = vd->vdev_state;
2763 	vs->vs_rsize = vdev_get_min_asize(vd);
2764 	if (vd->vdev_ops->vdev_op_leaf)
2765 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2766 	/*
2767 	 * Report expandable space on top-level, non-auxillary devices only.
2768 	 * The expandable space is reported in terms of metaslab sized units
2769 	 * since that determines how much space the pool can expand.
2770 	 */
2771 	if (vd->vdev_aux == NULL && tvd != NULL) {
2772 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2773 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2774 	}
2775 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2776 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2777 	}
2778 
2779 	/*
2780 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2781 	 * over all top-level vdevs (i.e. the direct children of the root).
2782 	 */
2783 	if (vd == rvd) {
2784 		for (int c = 0; c < rvd->vdev_children; c++) {
2785 			vdev_t *cvd = rvd->vdev_child[c];
2786 			vdev_stat_t *cvs = &cvd->vdev_stat;
2787 
2788 			for (int t = 0; t < ZIO_TYPES; t++) {
2789 				vs->vs_ops[t] += cvs->vs_ops[t];
2790 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2791 			}
2792 			cvs->vs_scan_removing = cvd->vdev_removing;
2793 		}
2794 	}
2795 	mutex_exit(&vd->vdev_stat_lock);
2796 }
2797 
2798 void
2799 vdev_clear_stats(vdev_t *vd)
2800 {
2801 	mutex_enter(&vd->vdev_stat_lock);
2802 	vd->vdev_stat.vs_space = 0;
2803 	vd->vdev_stat.vs_dspace = 0;
2804 	vd->vdev_stat.vs_alloc = 0;
2805 	mutex_exit(&vd->vdev_stat_lock);
2806 }
2807 
2808 void
2809 vdev_scan_stat_init(vdev_t *vd)
2810 {
2811 	vdev_stat_t *vs = &vd->vdev_stat;
2812 
2813 	for (int c = 0; c < vd->vdev_children; c++)
2814 		vdev_scan_stat_init(vd->vdev_child[c]);
2815 
2816 	mutex_enter(&vd->vdev_stat_lock);
2817 	vs->vs_scan_processed = 0;
2818 	mutex_exit(&vd->vdev_stat_lock);
2819 }
2820 
2821 void
2822 vdev_stat_update(zio_t *zio, uint64_t psize)
2823 {
2824 	spa_t *spa = zio->io_spa;
2825 	vdev_t *rvd = spa->spa_root_vdev;
2826 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2827 	vdev_t *pvd;
2828 	uint64_t txg = zio->io_txg;
2829 	vdev_stat_t *vs = &vd->vdev_stat;
2830 	zio_type_t type = zio->io_type;
2831 	int flags = zio->io_flags;
2832 
2833 	/*
2834 	 * If this i/o is a gang leader, it didn't do any actual work.
2835 	 */
2836 	if (zio->io_gang_tree)
2837 		return;
2838 
2839 	if (zio->io_error == 0) {
2840 		/*
2841 		 * If this is a root i/o, don't count it -- we've already
2842 		 * counted the top-level vdevs, and vdev_get_stats() will
2843 		 * aggregate them when asked.  This reduces contention on
2844 		 * the root vdev_stat_lock and implicitly handles blocks
2845 		 * that compress away to holes, for which there is no i/o.
2846 		 * (Holes never create vdev children, so all the counters
2847 		 * remain zero, which is what we want.)
2848 		 *
2849 		 * Note: this only applies to successful i/o (io_error == 0)
2850 		 * because unlike i/o counts, errors are not additive.
2851 		 * When reading a ditto block, for example, failure of
2852 		 * one top-level vdev does not imply a root-level error.
2853 		 */
2854 		if (vd == rvd)
2855 			return;
2856 
2857 		ASSERT(vd == zio->io_vd);
2858 
2859 		if (flags & ZIO_FLAG_IO_BYPASS)
2860 			return;
2861 
2862 		mutex_enter(&vd->vdev_stat_lock);
2863 
2864 		if (flags & ZIO_FLAG_IO_REPAIR) {
2865 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2866 				dsl_scan_phys_t *scn_phys =
2867 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2868 				uint64_t *processed = &scn_phys->scn_processed;
2869 
2870 				/* XXX cleanup? */
2871 				if (vd->vdev_ops->vdev_op_leaf)
2872 					atomic_add_64(processed, psize);
2873 				vs->vs_scan_processed += psize;
2874 			}
2875 
2876 			if (flags & ZIO_FLAG_SELF_HEAL)
2877 				vs->vs_self_healed += psize;
2878 		}
2879 
2880 		vs->vs_ops[type]++;
2881 		vs->vs_bytes[type] += psize;
2882 
2883 		mutex_exit(&vd->vdev_stat_lock);
2884 		return;
2885 	}
2886 
2887 	if (flags & ZIO_FLAG_SPECULATIVE)
2888 		return;
2889 
2890 	/*
2891 	 * If this is an I/O error that is going to be retried, then ignore the
2892 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2893 	 * hard errors, when in reality they can happen for any number of
2894 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2895 	 */
2896 	if (zio->io_error == EIO &&
2897 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2898 		return;
2899 
2900 	/*
2901 	 * Intent logs writes won't propagate their error to the root
2902 	 * I/O so don't mark these types of failures as pool-level
2903 	 * errors.
2904 	 */
2905 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2906 		return;
2907 
2908 	mutex_enter(&vd->vdev_stat_lock);
2909 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2910 		if (zio->io_error == ECKSUM)
2911 			vs->vs_checksum_errors++;
2912 		else
2913 			vs->vs_read_errors++;
2914 	}
2915 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2916 		vs->vs_write_errors++;
2917 	mutex_exit(&vd->vdev_stat_lock);
2918 
2919 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2920 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2921 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2922 	    spa->spa_claiming)) {
2923 		/*
2924 		 * This is either a normal write (not a repair), or it's
2925 		 * a repair induced by the scrub thread, or it's a repair
2926 		 * made by zil_claim() during spa_load() in the first txg.
2927 		 * In the normal case, we commit the DTL change in the same
2928 		 * txg as the block was born.  In the scrub-induced repair
2929 		 * case, we know that scrubs run in first-pass syncing context,
2930 		 * so we commit the DTL change in spa_syncing_txg(spa).
2931 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2932 		 *
2933 		 * We currently do not make DTL entries for failed spontaneous
2934 		 * self-healing writes triggered by normal (non-scrubbing)
2935 		 * reads, because we have no transactional context in which to
2936 		 * do so -- and it's not clear that it'd be desirable anyway.
2937 		 */
2938 		if (vd->vdev_ops->vdev_op_leaf) {
2939 			uint64_t commit_txg = txg;
2940 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2941 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2942 				ASSERT(spa_sync_pass(spa) == 1);
2943 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2944 				commit_txg = spa_syncing_txg(spa);
2945 			} else if (spa->spa_claiming) {
2946 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2947 				commit_txg = spa_first_txg(spa);
2948 			}
2949 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2950 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2951 				return;
2952 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2953 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2954 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2955 		}
2956 		if (vd != rvd)
2957 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2958 	}
2959 }
2960 
2961 /*
2962  * Update the in-core space usage stats for this vdev, its metaslab class,
2963  * and the root vdev.
2964  */
2965 void
2966 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2967     int64_t space_delta)
2968 {
2969 	int64_t dspace_delta = space_delta;
2970 	spa_t *spa = vd->vdev_spa;
2971 	vdev_t *rvd = spa->spa_root_vdev;
2972 	metaslab_group_t *mg = vd->vdev_mg;
2973 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2974 
2975 	ASSERT(vd == vd->vdev_top);
2976 
2977 	/*
2978 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2979 	 * factor.  We must calculate this here and not at the root vdev
2980 	 * because the root vdev's psize-to-asize is simply the max of its
2981 	 * childrens', thus not accurate enough for us.
2982 	 */
2983 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2984 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2985 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2986 	    vd->vdev_deflate_ratio;
2987 
2988 	mutex_enter(&vd->vdev_stat_lock);
2989 	vd->vdev_stat.vs_alloc += alloc_delta;
2990 	vd->vdev_stat.vs_space += space_delta;
2991 	vd->vdev_stat.vs_dspace += dspace_delta;
2992 	mutex_exit(&vd->vdev_stat_lock);
2993 
2994 	if (mc == spa_normal_class(spa)) {
2995 		mutex_enter(&rvd->vdev_stat_lock);
2996 		rvd->vdev_stat.vs_alloc += alloc_delta;
2997 		rvd->vdev_stat.vs_space += space_delta;
2998 		rvd->vdev_stat.vs_dspace += dspace_delta;
2999 		mutex_exit(&rvd->vdev_stat_lock);
3000 	}
3001 
3002 	if (mc != NULL) {
3003 		ASSERT(rvd == vd->vdev_parent);
3004 		ASSERT(vd->vdev_ms_count != 0);
3005 
3006 		metaslab_class_space_update(mc,
3007 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3008 	}
3009 }
3010 
3011 /*
3012  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3013  * so that it will be written out next time the vdev configuration is synced.
3014  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3015  */
3016 void
3017 vdev_config_dirty(vdev_t *vd)
3018 {
3019 	spa_t *spa = vd->vdev_spa;
3020 	vdev_t *rvd = spa->spa_root_vdev;
3021 	int c;
3022 
3023 	ASSERT(spa_writeable(spa));
3024 
3025 	/*
3026 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3027 	 * update the vdev config manually and set the sync flag.
3028 	 */
3029 	if (vd->vdev_aux != NULL) {
3030 		spa_aux_vdev_t *sav = vd->vdev_aux;
3031 		nvlist_t **aux;
3032 		uint_t naux;
3033 
3034 		for (c = 0; c < sav->sav_count; c++) {
3035 			if (sav->sav_vdevs[c] == vd)
3036 				break;
3037 		}
3038 
3039 		if (c == sav->sav_count) {
3040 			/*
3041 			 * We're being removed.  There's nothing more to do.
3042 			 */
3043 			ASSERT(sav->sav_sync == B_TRUE);
3044 			return;
3045 		}
3046 
3047 		sav->sav_sync = B_TRUE;
3048 
3049 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3050 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3051 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3052 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3053 		}
3054 
3055 		ASSERT(c < naux);
3056 
3057 		/*
3058 		 * Setting the nvlist in the middle if the array is a little
3059 		 * sketchy, but it will work.
3060 		 */
3061 		nvlist_free(aux[c]);
3062 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3063 
3064 		return;
3065 	}
3066 
3067 	/*
3068 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3069 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3070 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3071 	 * so this is sufficient to ensure mutual exclusion.
3072 	 */
3073 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3074 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3075 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3076 
3077 	if (vd == rvd) {
3078 		for (c = 0; c < rvd->vdev_children; c++)
3079 			vdev_config_dirty(rvd->vdev_child[c]);
3080 	} else {
3081 		ASSERT(vd == vd->vdev_top);
3082 
3083 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3084 		    !vd->vdev_ishole)
3085 			list_insert_head(&spa->spa_config_dirty_list, vd);
3086 	}
3087 }
3088 
3089 void
3090 vdev_config_clean(vdev_t *vd)
3091 {
3092 	spa_t *spa = vd->vdev_spa;
3093 
3094 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3095 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3096 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3097 
3098 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3099 	list_remove(&spa->spa_config_dirty_list, vd);
3100 }
3101 
3102 /*
3103  * Mark a top-level vdev's state as dirty, so that the next pass of
3104  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3105  * the state changes from larger config changes because they require
3106  * much less locking, and are often needed for administrative actions.
3107  */
3108 void
3109 vdev_state_dirty(vdev_t *vd)
3110 {
3111 	spa_t *spa = vd->vdev_spa;
3112 
3113 	ASSERT(spa_writeable(spa));
3114 	ASSERT(vd == vd->vdev_top);
3115 
3116 	/*
3117 	 * The state list is protected by the SCL_STATE lock.  The caller
3118 	 * must either hold SCL_STATE as writer, or must be the sync thread
3119 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3120 	 * so this is sufficient to ensure mutual exclusion.
3121 	 */
3122 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3123 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3124 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3125 
3126 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3127 		list_insert_head(&spa->spa_state_dirty_list, vd);
3128 }
3129 
3130 void
3131 vdev_state_clean(vdev_t *vd)
3132 {
3133 	spa_t *spa = vd->vdev_spa;
3134 
3135 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3136 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3137 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3138 
3139 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3140 	list_remove(&spa->spa_state_dirty_list, vd);
3141 }
3142 
3143 /*
3144  * Propagate vdev state up from children to parent.
3145  */
3146 void
3147 vdev_propagate_state(vdev_t *vd)
3148 {
3149 	spa_t *spa = vd->vdev_spa;
3150 	vdev_t *rvd = spa->spa_root_vdev;
3151 	int degraded = 0, faulted = 0;
3152 	int corrupted = 0;
3153 	vdev_t *child;
3154 
3155 	if (vd->vdev_children > 0) {
3156 		for (int c = 0; c < vd->vdev_children; c++) {
3157 			child = vd->vdev_child[c];
3158 
3159 			/*
3160 			 * Don't factor holes into the decision.
3161 			 */
3162 			if (child->vdev_ishole)
3163 				continue;
3164 
3165 			if (!vdev_readable(child) ||
3166 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3167 				/*
3168 				 * Root special: if there is a top-level log
3169 				 * device, treat the root vdev as if it were
3170 				 * degraded.
3171 				 */
3172 				if (child->vdev_islog && vd == rvd)
3173 					degraded++;
3174 				else
3175 					faulted++;
3176 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3177 				degraded++;
3178 			}
3179 
3180 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3181 				corrupted++;
3182 		}
3183 
3184 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3185 
3186 		/*
3187 		 * Root special: if there is a top-level vdev that cannot be
3188 		 * opened due to corrupted metadata, then propagate the root
3189 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3190 		 * replicas'.
3191 		 */
3192 		if (corrupted && vd == rvd &&
3193 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3194 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3195 			    VDEV_AUX_CORRUPT_DATA);
3196 	}
3197 
3198 	if (vd->vdev_parent)
3199 		vdev_propagate_state(vd->vdev_parent);
3200 }
3201 
3202 /*
3203  * Set a vdev's state.  If this is during an open, we don't update the parent
3204  * state, because we're in the process of opening children depth-first.
3205  * Otherwise, we propagate the change to the parent.
3206  *
3207  * If this routine places a device in a faulted state, an appropriate ereport is
3208  * generated.
3209  */
3210 void
3211 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3212 {
3213 	uint64_t save_state;
3214 	spa_t *spa = vd->vdev_spa;
3215 
3216 	if (state == vd->vdev_state) {
3217 		vd->vdev_stat.vs_aux = aux;
3218 		return;
3219 	}
3220 
3221 	save_state = vd->vdev_state;
3222 
3223 	vd->vdev_state = state;
3224 	vd->vdev_stat.vs_aux = aux;
3225 
3226 	/*
3227 	 * If we are setting the vdev state to anything but an open state, then
3228 	 * always close the underlying device unless the device has requested
3229 	 * a delayed close (i.e. we're about to remove or fault the device).
3230 	 * Otherwise, we keep accessible but invalid devices open forever.
3231 	 * We don't call vdev_close() itself, because that implies some extra
3232 	 * checks (offline, etc) that we don't want here.  This is limited to
3233 	 * leaf devices, because otherwise closing the device will affect other
3234 	 * children.
3235 	 */
3236 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3237 	    vd->vdev_ops->vdev_op_leaf)
3238 		vd->vdev_ops->vdev_op_close(vd);
3239 
3240 	/*
3241 	 * If we have brought this vdev back into service, we need
3242 	 * to notify fmd so that it can gracefully repair any outstanding
3243 	 * cases due to a missing device.  We do this in all cases, even those
3244 	 * that probably don't correlate to a repaired fault.  This is sure to
3245 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3246 	 * this is a transient state it's OK, as the retire agent will
3247 	 * double-check the state of the vdev before repairing it.
3248 	 */
3249 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3250 	    vd->vdev_prevstate != state)
3251 		zfs_post_state_change(spa, vd);
3252 
3253 	if (vd->vdev_removed &&
3254 	    state == VDEV_STATE_CANT_OPEN &&
3255 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3256 		/*
3257 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3258 		 * device was previously marked removed and someone attempted to
3259 		 * reopen it.  If this failed due to a nonexistent device, then
3260 		 * keep the device in the REMOVED state.  We also let this be if
3261 		 * it is one of our special test online cases, which is only
3262 		 * attempting to online the device and shouldn't generate an FMA
3263 		 * fault.
3264 		 */
3265 		vd->vdev_state = VDEV_STATE_REMOVED;
3266 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3267 	} else if (state == VDEV_STATE_REMOVED) {
3268 		vd->vdev_removed = B_TRUE;
3269 	} else if (state == VDEV_STATE_CANT_OPEN) {
3270 		/*
3271 		 * If we fail to open a vdev during an import or recovery, we
3272 		 * mark it as "not available", which signifies that it was
3273 		 * never there to begin with.  Failure to open such a device
3274 		 * is not considered an error.
3275 		 */
3276 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3277 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3278 		    vd->vdev_ops->vdev_op_leaf)
3279 			vd->vdev_not_present = 1;
3280 
3281 		/*
3282 		 * Post the appropriate ereport.  If the 'prevstate' field is
3283 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3284 		 * that this is part of a vdev_reopen().  In this case, we don't
3285 		 * want to post the ereport if the device was already in the
3286 		 * CANT_OPEN state beforehand.
3287 		 *
3288 		 * If the 'checkremove' flag is set, then this is an attempt to
3289 		 * online the device in response to an insertion event.  If we
3290 		 * hit this case, then we have detected an insertion event for a
3291 		 * faulted or offline device that wasn't in the removed state.
3292 		 * In this scenario, we don't post an ereport because we are
3293 		 * about to replace the device, or attempt an online with
3294 		 * vdev_forcefault, which will generate the fault for us.
3295 		 */
3296 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3297 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3298 		    vd != spa->spa_root_vdev) {
3299 			const char *class;
3300 
3301 			switch (aux) {
3302 			case VDEV_AUX_OPEN_FAILED:
3303 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3304 				break;
3305 			case VDEV_AUX_CORRUPT_DATA:
3306 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3307 				break;
3308 			case VDEV_AUX_NO_REPLICAS:
3309 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3310 				break;
3311 			case VDEV_AUX_BAD_GUID_SUM:
3312 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3313 				break;
3314 			case VDEV_AUX_TOO_SMALL:
3315 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3316 				break;
3317 			case VDEV_AUX_BAD_LABEL:
3318 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3319 				break;
3320 			default:
3321 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3322 			}
3323 
3324 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3325 		}
3326 
3327 		/* Erase any notion of persistent removed state */
3328 		vd->vdev_removed = B_FALSE;
3329 	} else {
3330 		vd->vdev_removed = B_FALSE;
3331 	}
3332 
3333 	if (!isopen && vd->vdev_parent)
3334 		vdev_propagate_state(vd->vdev_parent);
3335 }
3336 
3337 /*
3338  * Check the vdev configuration to ensure that it's capable of supporting
3339  * a root pool. We do not support partial configuration.
3340  * In addition, only a single top-level vdev is allowed.
3341  */
3342 boolean_t
3343 vdev_is_bootable(vdev_t *vd)
3344 {
3345 	if (!vd->vdev_ops->vdev_op_leaf) {
3346 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3347 
3348 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3349 		    vd->vdev_children > 1) {
3350 			return (B_FALSE);
3351 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3352 			return (B_FALSE);
3353 		}
3354 	}
3355 
3356 	for (int c = 0; c < vd->vdev_children; c++) {
3357 		if (!vdev_is_bootable(vd->vdev_child[c]))
3358 			return (B_FALSE);
3359 	}
3360 	return (B_TRUE);
3361 }
3362 
3363 /*
3364  * Load the state from the original vdev tree (ovd) which
3365  * we've retrieved from the MOS config object. If the original
3366  * vdev was offline or faulted then we transfer that state to the
3367  * device in the current vdev tree (nvd).
3368  */
3369 void
3370 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3371 {
3372 	spa_t *spa = nvd->vdev_spa;
3373 
3374 	ASSERT(nvd->vdev_top->vdev_islog);
3375 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3376 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3377 
3378 	for (int c = 0; c < nvd->vdev_children; c++)
3379 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3380 
3381 	if (nvd->vdev_ops->vdev_op_leaf) {
3382 		/*
3383 		 * Restore the persistent vdev state
3384 		 */
3385 		nvd->vdev_offline = ovd->vdev_offline;
3386 		nvd->vdev_faulted = ovd->vdev_faulted;
3387 		nvd->vdev_degraded = ovd->vdev_degraded;
3388 		nvd->vdev_removed = ovd->vdev_removed;
3389 	}
3390 }
3391 
3392 /*
3393  * Determine if a log device has valid content.  If the vdev was
3394  * removed or faulted in the MOS config then we know that
3395  * the content on the log device has already been written to the pool.
3396  */
3397 boolean_t
3398 vdev_log_state_valid(vdev_t *vd)
3399 {
3400 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3401 	    !vd->vdev_removed)
3402 		return (B_TRUE);
3403 
3404 	for (int c = 0; c < vd->vdev_children; c++)
3405 		if (vdev_log_state_valid(vd->vdev_child[c]))
3406 			return (B_TRUE);
3407 
3408 	return (B_FALSE);
3409 }
3410 
3411 /*
3412  * Expand a vdev if possible.
3413  */
3414 void
3415 vdev_expand(vdev_t *vd, uint64_t txg)
3416 {
3417 	ASSERT(vd->vdev_top == vd);
3418 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3419 
3420 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3421 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3422 		vdev_config_dirty(vd);
3423 	}
3424 }
3425 
3426 /*
3427  * Split a vdev.
3428  */
3429 void
3430 vdev_split(vdev_t *vd)
3431 {
3432 	vdev_t *cvd, *pvd = vd->vdev_parent;
3433 
3434 	vdev_remove_child(pvd, vd);
3435 	vdev_compact_children(pvd);
3436 
3437 	cvd = pvd->vdev_child[0];
3438 	if (pvd->vdev_children == 1) {
3439 		vdev_remove_parent(cvd);
3440 		cvd->vdev_splitting = B_TRUE;
3441 	}
3442 	vdev_propagate_state(cvd);
3443 }
3444 
3445 void
3446 vdev_deadman(vdev_t *vd)
3447 {
3448 	for (int c = 0; c < vd->vdev_children; c++) {
3449 		vdev_t *cvd = vd->vdev_child[c];
3450 
3451 		vdev_deadman(cvd);
3452 	}
3453 
3454 	if (vd->vdev_ops->vdev_op_leaf) {
3455 		vdev_queue_t *vq = &vd->vdev_queue;
3456 
3457 		mutex_enter(&vq->vq_lock);
3458 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3459 			spa_t *spa = vd->vdev_spa;
3460 			zio_t *fio;
3461 			uint64_t delta;
3462 
3463 			/*
3464 			 * Look at the head of all the pending queues,
3465 			 * if any I/O has been outstanding for longer than
3466 			 * the spa_deadman_synctime we panic the system.
3467 			 */
3468 			fio = avl_first(&vq->vq_active_tree);
3469 			delta = gethrtime() - fio->io_timestamp;
3470 			if (delta > spa_deadman_synctime(spa)) {
3471 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3472 				    "delta %lluns, last io %lluns",
3473 				    fio->io_timestamp, delta,
3474 				    vq->vq_io_complete_ts);
3475 				fm_panic("I/O to pool '%s' appears to be "
3476 				    "hung.", spa_name(spa));
3477 			}
3478 		}
3479 		mutex_exit(&vq->vq_lock);
3480 	}
3481 }
3482