1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/uberblock_impl.h> 34 #include <sys/metaslab.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/space_map.h> 37 #include <sys/zio.h> 38 #include <sys/zap.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/arc.h> 41 #include <sys/zil.h> 42 #include <sys/dsl_scan.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 211 if (cvd->vdev_ops->vdev_op_leaf) 212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 248 if (cvd->vdev_ops->vdev_op_leaf) 249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 250 } 251 252 /* 253 * Remove any holes in the child array. 254 */ 255 void 256 vdev_compact_children(vdev_t *pvd) 257 { 258 vdev_t **newchild, *cvd; 259 int oldc = pvd->vdev_children; 260 int newc; 261 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 263 264 for (int c = newc = 0; c < oldc; c++) 265 if (pvd->vdev_child[c]) 266 newc++; 267 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 269 270 for (int c = newc = 0; c < oldc; c++) { 271 if ((cvd = pvd->vdev_child[c]) != NULL) { 272 newchild[newc] = cvd; 273 cvd->vdev_id = newc++; 274 } 275 } 276 277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 278 pvd->vdev_child = newchild; 279 pvd->vdev_children = newc; 280 } 281 282 /* 283 * Allocate and minimally initialize a vdev_t. 284 */ 285 vdev_t * 286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 287 { 288 vdev_t *vd; 289 290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 291 292 if (spa->spa_root_vdev == NULL) { 293 ASSERT(ops == &vdev_root_ops); 294 spa->spa_root_vdev = vd; 295 } 296 297 if (guid == 0 && ops != &vdev_hole_ops) { 298 if (spa->spa_root_vdev == vd) { 299 /* 300 * The root vdev's guid will also be the pool guid, 301 * which must be unique among all pools. 302 */ 303 guid = spa_generate_guid(NULL); 304 } else { 305 /* 306 * Any other vdev's guid must be unique within the pool. 307 */ 308 guid = spa_generate_guid(spa); 309 } 310 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 311 } 312 313 vd->vdev_spa = spa; 314 vd->vdev_id = id; 315 vd->vdev_guid = guid; 316 vd->vdev_guid_sum = guid; 317 vd->vdev_ops = ops; 318 vd->vdev_state = VDEV_STATE_CLOSED; 319 vd->vdev_ishole = (ops == &vdev_hole_ops); 320 321 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 322 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 323 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 324 for (int t = 0; t < DTL_TYPES; t++) { 325 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 326 &vd->vdev_dtl_lock); 327 } 328 txg_list_create(&vd->vdev_ms_list, 329 offsetof(struct metaslab, ms_txg_node)); 330 txg_list_create(&vd->vdev_dtl_list, 331 offsetof(struct vdev, vdev_dtl_node)); 332 vd->vdev_stat.vs_timestamp = gethrtime(); 333 vdev_queue_init(vd); 334 vdev_cache_init(vd); 335 336 return (vd); 337 } 338 339 /* 340 * Allocate a new vdev. The 'alloctype' is used to control whether we are 341 * creating a new vdev or loading an existing one - the behavior is slightly 342 * different for each case. 343 */ 344 int 345 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 346 int alloctype) 347 { 348 vdev_ops_t *ops; 349 char *type; 350 uint64_t guid = 0, islog, nparity; 351 vdev_t *vd; 352 353 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 354 355 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 356 return (EINVAL); 357 358 if ((ops = vdev_getops(type)) == NULL) 359 return (EINVAL); 360 361 /* 362 * If this is a load, get the vdev guid from the nvlist. 363 * Otherwise, vdev_alloc_common() will generate one for us. 364 */ 365 if (alloctype == VDEV_ALLOC_LOAD) { 366 uint64_t label_id; 367 368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 369 label_id != id) 370 return (EINVAL); 371 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (EINVAL); 374 } else if (alloctype == VDEV_ALLOC_SPARE) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } 384 385 /* 386 * The first allocated vdev must be of type 'root'. 387 */ 388 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 389 return (EINVAL); 390 391 /* 392 * Determine whether we're a log vdev. 393 */ 394 islog = 0; 395 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 396 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 397 return (ENOTSUP); 398 399 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 400 return (ENOTSUP); 401 402 /* 403 * Set the nparity property for RAID-Z vdevs. 404 */ 405 nparity = -1ULL; 406 if (ops == &vdev_raidz_ops) { 407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 408 &nparity) == 0) { 409 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 410 return (EINVAL); 411 /* 412 * Previous versions could only support 1 or 2 parity 413 * device. 414 */ 415 if (nparity > 1 && 416 spa_version(spa) < SPA_VERSION_RAIDZ2) 417 return (ENOTSUP); 418 if (nparity > 2 && 419 spa_version(spa) < SPA_VERSION_RAIDZ3) 420 return (ENOTSUP); 421 } else { 422 /* 423 * We require the parity to be specified for SPAs that 424 * support multiple parity levels. 425 */ 426 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 427 return (EINVAL); 428 /* 429 * Otherwise, we default to 1 parity device for RAID-Z. 430 */ 431 nparity = 1; 432 } 433 } else { 434 nparity = 0; 435 } 436 ASSERT(nparity != -1ULL); 437 438 vd = vdev_alloc_common(spa, id, guid, ops); 439 440 vd->vdev_islog = islog; 441 vd->vdev_nparity = nparity; 442 443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 444 vd->vdev_path = spa_strdup(vd->vdev_path); 445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 446 vd->vdev_devid = spa_strdup(vd->vdev_devid); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 448 &vd->vdev_physpath) == 0) 449 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 451 vd->vdev_fru = spa_strdup(vd->vdev_fru); 452 453 /* 454 * Set the whole_disk property. If it's not specified, leave the value 455 * as -1. 456 */ 457 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 458 &vd->vdev_wholedisk) != 0) 459 vd->vdev_wholedisk = -1ULL; 460 461 /* 462 * Look for the 'not present' flag. This will only be set if the device 463 * was not present at the time of import. 464 */ 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 466 &vd->vdev_not_present); 467 468 /* 469 * Get the alignment requirement. 470 */ 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 472 473 /* 474 * Retrieve the vdev creation time. 475 */ 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 477 &vd->vdev_crtxg); 478 479 /* 480 * If we're a top-level vdev, try to load the allocation parameters. 481 */ 482 if (parent && !parent->vdev_parent && 483 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 485 &vd->vdev_ms_array); 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 487 &vd->vdev_ms_shift); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 489 &vd->vdev_asize); 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 491 &vd->vdev_removing); 492 } 493 494 if (parent && !parent->vdev_parent) { 495 ASSERT(alloctype == VDEV_ALLOC_LOAD || 496 alloctype == VDEV_ALLOC_ADD || 497 alloctype == VDEV_ALLOC_SPLIT || 498 alloctype == VDEV_ALLOC_ROOTPOOL); 499 vd->vdev_mg = metaslab_group_create(islog ? 500 spa_log_class(spa) : spa_normal_class(spa), vd); 501 } 502 503 /* 504 * If we're a leaf vdev, try to load the DTL object and other state. 505 */ 506 if (vd->vdev_ops->vdev_op_leaf && 507 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 508 alloctype == VDEV_ALLOC_ROOTPOOL)) { 509 if (alloctype == VDEV_ALLOC_LOAD) { 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 511 &vd->vdev_dtl_smo.smo_object); 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 513 &vd->vdev_unspare); 514 } 515 516 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 517 uint64_t spare = 0; 518 519 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 520 &spare) == 0 && spare) 521 spa_spare_add(vd); 522 } 523 524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 525 &vd->vdev_offline); 526 527 /* 528 * When importing a pool, we want to ignore the persistent fault 529 * state, as the diagnosis made on another system may not be 530 * valid in the current context. Local vdevs will 531 * remain in the faulted state. 532 */ 533 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 535 &vd->vdev_faulted); 536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 537 &vd->vdev_degraded); 538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 539 &vd->vdev_removed); 540 541 if (vd->vdev_faulted || vd->vdev_degraded) { 542 char *aux; 543 544 vd->vdev_label_aux = 545 VDEV_AUX_ERR_EXCEEDED; 546 if (nvlist_lookup_string(nv, 547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 548 strcmp(aux, "external") == 0) 549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 550 } 551 } 552 } 553 554 /* 555 * Add ourselves to the parent's list of children. 556 */ 557 vdev_add_child(parent, vd); 558 559 *vdp = vd; 560 561 return (0); 562 } 563 564 void 565 vdev_free(vdev_t *vd) 566 { 567 spa_t *spa = vd->vdev_spa; 568 569 /* 570 * vdev_free() implies closing the vdev first. This is simpler than 571 * trying to ensure complicated semantics for all callers. 572 */ 573 vdev_close(vd); 574 575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 577 578 /* 579 * Free all children. 580 */ 581 for (int c = 0; c < vd->vdev_children; c++) 582 vdev_free(vd->vdev_child[c]); 583 584 ASSERT(vd->vdev_child == NULL); 585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 586 587 /* 588 * Discard allocation state. 589 */ 590 if (vd->vdev_mg != NULL) { 591 vdev_metaslab_fini(vd); 592 metaslab_group_destroy(vd->vdev_mg); 593 } 594 595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 598 599 /* 600 * Remove this vdev from its parent's child list. 601 */ 602 vdev_remove_child(vd->vdev_parent, vd); 603 604 ASSERT(vd->vdev_parent == NULL); 605 606 /* 607 * Clean up vdev structure. 608 */ 609 vdev_queue_fini(vd); 610 vdev_cache_fini(vd); 611 612 if (vd->vdev_path) 613 spa_strfree(vd->vdev_path); 614 if (vd->vdev_devid) 615 spa_strfree(vd->vdev_devid); 616 if (vd->vdev_physpath) 617 spa_strfree(vd->vdev_physpath); 618 if (vd->vdev_fru) 619 spa_strfree(vd->vdev_fru); 620 621 if (vd->vdev_isspare) 622 spa_spare_remove(vd); 623 if (vd->vdev_isl2cache) 624 spa_l2cache_remove(vd); 625 626 txg_list_destroy(&vd->vdev_ms_list); 627 txg_list_destroy(&vd->vdev_dtl_list); 628 629 mutex_enter(&vd->vdev_dtl_lock); 630 for (int t = 0; t < DTL_TYPES; t++) { 631 space_map_unload(&vd->vdev_dtl[t]); 632 space_map_destroy(&vd->vdev_dtl[t]); 633 } 634 mutex_exit(&vd->vdev_dtl_lock); 635 636 mutex_destroy(&vd->vdev_dtl_lock); 637 mutex_destroy(&vd->vdev_stat_lock); 638 mutex_destroy(&vd->vdev_probe_lock); 639 640 if (vd == spa->spa_root_vdev) 641 spa->spa_root_vdev = NULL; 642 643 kmem_free(vd, sizeof (vdev_t)); 644 } 645 646 /* 647 * Transfer top-level vdev state from svd to tvd. 648 */ 649 static void 650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 651 { 652 spa_t *spa = svd->vdev_spa; 653 metaslab_t *msp; 654 vdev_t *vd; 655 int t; 656 657 ASSERT(tvd == tvd->vdev_top); 658 659 tvd->vdev_ms_array = svd->vdev_ms_array; 660 tvd->vdev_ms_shift = svd->vdev_ms_shift; 661 tvd->vdev_ms_count = svd->vdev_ms_count; 662 663 svd->vdev_ms_array = 0; 664 svd->vdev_ms_shift = 0; 665 svd->vdev_ms_count = 0; 666 667 tvd->vdev_mg = svd->vdev_mg; 668 tvd->vdev_ms = svd->vdev_ms; 669 670 svd->vdev_mg = NULL; 671 svd->vdev_ms = NULL; 672 673 if (tvd->vdev_mg != NULL) 674 tvd->vdev_mg->mg_vd = tvd; 675 676 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 677 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 678 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 679 680 svd->vdev_stat.vs_alloc = 0; 681 svd->vdev_stat.vs_space = 0; 682 svd->vdev_stat.vs_dspace = 0; 683 684 for (t = 0; t < TXG_SIZE; t++) { 685 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 686 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 687 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 688 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 689 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 690 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 691 } 692 693 if (list_link_active(&svd->vdev_config_dirty_node)) { 694 vdev_config_clean(svd); 695 vdev_config_dirty(tvd); 696 } 697 698 if (list_link_active(&svd->vdev_state_dirty_node)) { 699 vdev_state_clean(svd); 700 vdev_state_dirty(tvd); 701 } 702 703 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 704 svd->vdev_deflate_ratio = 0; 705 706 tvd->vdev_islog = svd->vdev_islog; 707 svd->vdev_islog = 0; 708 } 709 710 static void 711 vdev_top_update(vdev_t *tvd, vdev_t *vd) 712 { 713 if (vd == NULL) 714 return; 715 716 vd->vdev_top = tvd; 717 718 for (int c = 0; c < vd->vdev_children; c++) 719 vdev_top_update(tvd, vd->vdev_child[c]); 720 } 721 722 /* 723 * Add a mirror/replacing vdev above an existing vdev. 724 */ 725 vdev_t * 726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 727 { 728 spa_t *spa = cvd->vdev_spa; 729 vdev_t *pvd = cvd->vdev_parent; 730 vdev_t *mvd; 731 732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 733 734 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 735 736 mvd->vdev_asize = cvd->vdev_asize; 737 mvd->vdev_min_asize = cvd->vdev_min_asize; 738 mvd->vdev_ashift = cvd->vdev_ashift; 739 mvd->vdev_state = cvd->vdev_state; 740 mvd->vdev_crtxg = cvd->vdev_crtxg; 741 742 vdev_remove_child(pvd, cvd); 743 vdev_add_child(pvd, mvd); 744 cvd->vdev_id = mvd->vdev_children; 745 vdev_add_child(mvd, cvd); 746 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 747 748 if (mvd == mvd->vdev_top) 749 vdev_top_transfer(cvd, mvd); 750 751 return (mvd); 752 } 753 754 /* 755 * Remove a 1-way mirror/replacing vdev from the tree. 756 */ 757 void 758 vdev_remove_parent(vdev_t *cvd) 759 { 760 vdev_t *mvd = cvd->vdev_parent; 761 vdev_t *pvd = mvd->vdev_parent; 762 763 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 764 765 ASSERT(mvd->vdev_children == 1); 766 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 767 mvd->vdev_ops == &vdev_replacing_ops || 768 mvd->vdev_ops == &vdev_spare_ops); 769 cvd->vdev_ashift = mvd->vdev_ashift; 770 771 vdev_remove_child(mvd, cvd); 772 vdev_remove_child(pvd, mvd); 773 774 /* 775 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 776 * Otherwise, we could have detached an offline device, and when we 777 * go to import the pool we'll think we have two top-level vdevs, 778 * instead of a different version of the same top-level vdev. 779 */ 780 if (mvd->vdev_top == mvd) { 781 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 782 cvd->vdev_orig_guid = cvd->vdev_guid; 783 cvd->vdev_guid += guid_delta; 784 cvd->vdev_guid_sum += guid_delta; 785 } 786 cvd->vdev_id = mvd->vdev_id; 787 vdev_add_child(pvd, cvd); 788 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 789 790 if (cvd == cvd->vdev_top) 791 vdev_top_transfer(mvd, cvd); 792 793 ASSERT(mvd->vdev_children == 0); 794 vdev_free(mvd); 795 } 796 797 int 798 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 799 { 800 spa_t *spa = vd->vdev_spa; 801 objset_t *mos = spa->spa_meta_objset; 802 uint64_t m; 803 uint64_t oldc = vd->vdev_ms_count; 804 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 805 metaslab_t **mspp; 806 int error; 807 808 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 809 810 /* 811 * This vdev is not being allocated from yet or is a hole. 812 */ 813 if (vd->vdev_ms_shift == 0) 814 return (0); 815 816 ASSERT(!vd->vdev_ishole); 817 818 /* 819 * Compute the raidz-deflation ratio. Note, we hard-code 820 * in 128k (1 << 17) because it is the current "typical" blocksize. 821 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 822 * or we will inconsistently account for existing bp's. 823 */ 824 vd->vdev_deflate_ratio = (1 << 17) / 825 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 826 827 ASSERT(oldc <= newc); 828 829 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 830 831 if (oldc != 0) { 832 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 833 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 834 } 835 836 vd->vdev_ms = mspp; 837 vd->vdev_ms_count = newc; 838 839 for (m = oldc; m < newc; m++) { 840 space_map_obj_t smo = { 0, 0, 0 }; 841 if (txg == 0) { 842 uint64_t object = 0; 843 error = dmu_read(mos, vd->vdev_ms_array, 844 m * sizeof (uint64_t), sizeof (uint64_t), &object, 845 DMU_READ_PREFETCH); 846 if (error) 847 return (error); 848 if (object != 0) { 849 dmu_buf_t *db; 850 error = dmu_bonus_hold(mos, object, FTAG, &db); 851 if (error) 852 return (error); 853 ASSERT3U(db->db_size, >=, sizeof (smo)); 854 bcopy(db->db_data, &smo, sizeof (smo)); 855 ASSERT3U(smo.smo_object, ==, object); 856 dmu_buf_rele(db, FTAG); 857 } 858 } 859 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 860 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 861 } 862 863 if (txg == 0) 864 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 865 866 /* 867 * If the vdev is being removed we don't activate 868 * the metaslabs since we want to ensure that no new 869 * allocations are performed on this device. 870 */ 871 if (oldc == 0 && !vd->vdev_removing) 872 metaslab_group_activate(vd->vdev_mg); 873 874 if (txg == 0) 875 spa_config_exit(spa, SCL_ALLOC, FTAG); 876 877 return (0); 878 } 879 880 void 881 vdev_metaslab_fini(vdev_t *vd) 882 { 883 uint64_t m; 884 uint64_t count = vd->vdev_ms_count; 885 886 if (vd->vdev_ms != NULL) { 887 metaslab_group_passivate(vd->vdev_mg); 888 for (m = 0; m < count; m++) 889 if (vd->vdev_ms[m] != NULL) 890 metaslab_fini(vd->vdev_ms[m]); 891 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 892 vd->vdev_ms = NULL; 893 } 894 } 895 896 typedef struct vdev_probe_stats { 897 boolean_t vps_readable; 898 boolean_t vps_writeable; 899 int vps_flags; 900 } vdev_probe_stats_t; 901 902 static void 903 vdev_probe_done(zio_t *zio) 904 { 905 spa_t *spa = zio->io_spa; 906 vdev_t *vd = zio->io_vd; 907 vdev_probe_stats_t *vps = zio->io_private; 908 909 ASSERT(vd->vdev_probe_zio != NULL); 910 911 if (zio->io_type == ZIO_TYPE_READ) { 912 if (zio->io_error == 0) 913 vps->vps_readable = 1; 914 if (zio->io_error == 0 && spa_writeable(spa)) { 915 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 916 zio->io_offset, zio->io_size, zio->io_data, 917 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 918 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 919 } else { 920 zio_buf_free(zio->io_data, zio->io_size); 921 } 922 } else if (zio->io_type == ZIO_TYPE_WRITE) { 923 if (zio->io_error == 0) 924 vps->vps_writeable = 1; 925 zio_buf_free(zio->io_data, zio->io_size); 926 } else if (zio->io_type == ZIO_TYPE_NULL) { 927 zio_t *pio; 928 929 vd->vdev_cant_read |= !vps->vps_readable; 930 vd->vdev_cant_write |= !vps->vps_writeable; 931 932 if (vdev_readable(vd) && 933 (vdev_writeable(vd) || !spa_writeable(spa))) { 934 zio->io_error = 0; 935 } else { 936 ASSERT(zio->io_error != 0); 937 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 938 spa, vd, NULL, 0, 0); 939 zio->io_error = ENXIO; 940 } 941 942 mutex_enter(&vd->vdev_probe_lock); 943 ASSERT(vd->vdev_probe_zio == zio); 944 vd->vdev_probe_zio = NULL; 945 mutex_exit(&vd->vdev_probe_lock); 946 947 while ((pio = zio_walk_parents(zio)) != NULL) 948 if (!vdev_accessible(vd, pio)) 949 pio->io_error = ENXIO; 950 951 kmem_free(vps, sizeof (*vps)); 952 } 953 } 954 955 /* 956 * Determine whether this device is accessible by reading and writing 957 * to several known locations: the pad regions of each vdev label 958 * but the first (which we leave alone in case it contains a VTOC). 959 */ 960 zio_t * 961 vdev_probe(vdev_t *vd, zio_t *zio) 962 { 963 spa_t *spa = vd->vdev_spa; 964 vdev_probe_stats_t *vps = NULL; 965 zio_t *pio; 966 967 ASSERT(vd->vdev_ops->vdev_op_leaf); 968 969 /* 970 * Don't probe the probe. 971 */ 972 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 973 return (NULL); 974 975 /* 976 * To prevent 'probe storms' when a device fails, we create 977 * just one probe i/o at a time. All zios that want to probe 978 * this vdev will become parents of the probe io. 979 */ 980 mutex_enter(&vd->vdev_probe_lock); 981 982 if ((pio = vd->vdev_probe_zio) == NULL) { 983 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 984 985 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 986 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 987 ZIO_FLAG_TRYHARD; 988 989 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 990 /* 991 * vdev_cant_read and vdev_cant_write can only 992 * transition from TRUE to FALSE when we have the 993 * SCL_ZIO lock as writer; otherwise they can only 994 * transition from FALSE to TRUE. This ensures that 995 * any zio looking at these values can assume that 996 * failures persist for the life of the I/O. That's 997 * important because when a device has intermittent 998 * connectivity problems, we want to ensure that 999 * they're ascribed to the device (ENXIO) and not 1000 * the zio (EIO). 1001 * 1002 * Since we hold SCL_ZIO as writer here, clear both 1003 * values so the probe can reevaluate from first 1004 * principles. 1005 */ 1006 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1007 vd->vdev_cant_read = B_FALSE; 1008 vd->vdev_cant_write = B_FALSE; 1009 } 1010 1011 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1012 vdev_probe_done, vps, 1013 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1014 1015 /* 1016 * We can't change the vdev state in this context, so we 1017 * kick off an async task to do it on our behalf. 1018 */ 1019 if (zio != NULL) { 1020 vd->vdev_probe_wanted = B_TRUE; 1021 spa_async_request(spa, SPA_ASYNC_PROBE); 1022 } 1023 } 1024 1025 if (zio != NULL) 1026 zio_add_child(zio, pio); 1027 1028 mutex_exit(&vd->vdev_probe_lock); 1029 1030 if (vps == NULL) { 1031 ASSERT(zio != NULL); 1032 return (NULL); 1033 } 1034 1035 for (int l = 1; l < VDEV_LABELS; l++) { 1036 zio_nowait(zio_read_phys(pio, vd, 1037 vdev_label_offset(vd->vdev_psize, l, 1038 offsetof(vdev_label_t, vl_pad2)), 1039 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1040 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1041 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1042 } 1043 1044 if (zio == NULL) 1045 return (pio); 1046 1047 zio_nowait(pio); 1048 return (NULL); 1049 } 1050 1051 static void 1052 vdev_open_child(void *arg) 1053 { 1054 vdev_t *vd = arg; 1055 1056 vd->vdev_open_thread = curthread; 1057 vd->vdev_open_error = vdev_open(vd); 1058 vd->vdev_open_thread = NULL; 1059 } 1060 1061 boolean_t 1062 vdev_uses_zvols(vdev_t *vd) 1063 { 1064 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1065 strlen(ZVOL_DIR)) == 0) 1066 return (B_TRUE); 1067 for (int c = 0; c < vd->vdev_children; c++) 1068 if (vdev_uses_zvols(vd->vdev_child[c])) 1069 return (B_TRUE); 1070 return (B_FALSE); 1071 } 1072 1073 void 1074 vdev_open_children(vdev_t *vd) 1075 { 1076 taskq_t *tq; 1077 int children = vd->vdev_children; 1078 1079 /* 1080 * in order to handle pools on top of zvols, do the opens 1081 * in a single thread so that the same thread holds the 1082 * spa_namespace_lock 1083 */ 1084 if (vdev_uses_zvols(vd)) { 1085 for (int c = 0; c < children; c++) 1086 vd->vdev_child[c]->vdev_open_error = 1087 vdev_open(vd->vdev_child[c]); 1088 return; 1089 } 1090 tq = taskq_create("vdev_open", children, minclsyspri, 1091 children, children, TASKQ_PREPOPULATE); 1092 1093 for (int c = 0; c < children; c++) 1094 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1095 TQ_SLEEP) != NULL); 1096 1097 taskq_destroy(tq); 1098 } 1099 1100 /* 1101 * Prepare a virtual device for access. 1102 */ 1103 int 1104 vdev_open(vdev_t *vd) 1105 { 1106 spa_t *spa = vd->vdev_spa; 1107 int error; 1108 uint64_t osize = 0; 1109 uint64_t asize, psize; 1110 uint64_t ashift = 0; 1111 1112 ASSERT(vd->vdev_open_thread == curthread || 1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1115 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1116 vd->vdev_state == VDEV_STATE_OFFLINE); 1117 1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1119 vd->vdev_cant_read = B_FALSE; 1120 vd->vdev_cant_write = B_FALSE; 1121 vd->vdev_min_asize = vdev_get_min_asize(vd); 1122 1123 /* 1124 * If this vdev is not removed, check its fault status. If it's 1125 * faulted, bail out of the open. 1126 */ 1127 if (!vd->vdev_removed && vd->vdev_faulted) { 1128 ASSERT(vd->vdev_children == 0); 1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1132 vd->vdev_label_aux); 1133 return (ENXIO); 1134 } else if (vd->vdev_offline) { 1135 ASSERT(vd->vdev_children == 0); 1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1137 return (ENXIO); 1138 } 1139 1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1141 1142 /* 1143 * Reset the vdev_reopening flag so that we actually close 1144 * the vdev on error. 1145 */ 1146 vd->vdev_reopening = B_FALSE; 1147 if (zio_injection_enabled && error == 0) 1148 error = zio_handle_device_injection(vd, NULL, ENXIO); 1149 1150 if (error) { 1151 if (vd->vdev_removed && 1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1153 vd->vdev_removed = B_FALSE; 1154 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1156 vd->vdev_stat.vs_aux); 1157 return (error); 1158 } 1159 1160 vd->vdev_removed = B_FALSE; 1161 1162 /* 1163 * Recheck the faulted flag now that we have confirmed that 1164 * the vdev is accessible. If we're faulted, bail. 1165 */ 1166 if (vd->vdev_faulted) { 1167 ASSERT(vd->vdev_children == 0); 1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1171 vd->vdev_label_aux); 1172 return (ENXIO); 1173 } 1174 1175 if (vd->vdev_degraded) { 1176 ASSERT(vd->vdev_children == 0); 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1178 VDEV_AUX_ERR_EXCEEDED); 1179 } else { 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1181 } 1182 1183 /* 1184 * For hole or missing vdevs we just return success. 1185 */ 1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1187 return (0); 1188 1189 for (int c = 0; c < vd->vdev_children; c++) { 1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1192 VDEV_AUX_NONE); 1193 break; 1194 } 1195 } 1196 1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1198 1199 if (vd->vdev_children == 0) { 1200 if (osize < SPA_MINDEVSIZE) { 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1202 VDEV_AUX_TOO_SMALL); 1203 return (EOVERFLOW); 1204 } 1205 psize = osize; 1206 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1207 } else { 1208 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1209 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1211 VDEV_AUX_TOO_SMALL); 1212 return (EOVERFLOW); 1213 } 1214 psize = 0; 1215 asize = osize; 1216 } 1217 1218 vd->vdev_psize = psize; 1219 1220 /* 1221 * Make sure the allocatable size hasn't shrunk. 1222 */ 1223 if (asize < vd->vdev_min_asize) { 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1225 VDEV_AUX_BAD_LABEL); 1226 return (EINVAL); 1227 } 1228 1229 if (vd->vdev_asize == 0) { 1230 /* 1231 * This is the first-ever open, so use the computed values. 1232 * For testing purposes, a higher ashift can be requested. 1233 */ 1234 vd->vdev_asize = asize; 1235 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1236 } else { 1237 /* 1238 * Make sure the alignment requirement hasn't increased. 1239 */ 1240 if (ashift > vd->vdev_top->vdev_ashift) { 1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1242 VDEV_AUX_BAD_LABEL); 1243 return (EINVAL); 1244 } 1245 } 1246 1247 /* 1248 * If all children are healthy and the asize has increased, 1249 * then we've experienced dynamic LUN growth. If automatic 1250 * expansion is enabled then use the additional space. 1251 */ 1252 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1253 (vd->vdev_expanding || spa->spa_autoexpand)) 1254 vd->vdev_asize = asize; 1255 1256 vdev_set_min_asize(vd); 1257 1258 /* 1259 * Ensure we can issue some IO before declaring the 1260 * vdev open for business. 1261 */ 1262 if (vd->vdev_ops->vdev_op_leaf && 1263 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1265 VDEV_AUX_ERR_EXCEEDED); 1266 return (error); 1267 } 1268 1269 /* 1270 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1271 * resilver. But don't do this if we are doing a reopen for a scrub, 1272 * since this would just restart the scrub we are already doing. 1273 */ 1274 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1275 vdev_resilver_needed(vd, NULL, NULL)) 1276 spa_async_request(spa, SPA_ASYNC_RESILVER); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Called once the vdevs are all opened, this routine validates the label 1283 * contents. This needs to be done before vdev_load() so that we don't 1284 * inadvertently do repair I/Os to the wrong device. 1285 * 1286 * This function will only return failure if one of the vdevs indicates that it 1287 * has since been destroyed or exported. This is only possible if 1288 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1289 * will be updated but the function will return 0. 1290 */ 1291 int 1292 vdev_validate(vdev_t *vd) 1293 { 1294 spa_t *spa = vd->vdev_spa; 1295 nvlist_t *label; 1296 uint64_t guid = 0, top_guid; 1297 uint64_t state; 1298 1299 for (int c = 0; c < vd->vdev_children; c++) 1300 if (vdev_validate(vd->vdev_child[c]) != 0) 1301 return (EBADF); 1302 1303 /* 1304 * If the device has already failed, or was marked offline, don't do 1305 * any further validation. Otherwise, label I/O will fail and we will 1306 * overwrite the previous state. 1307 */ 1308 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1309 uint64_t aux_guid = 0; 1310 nvlist_t *nvl; 1311 1312 if ((label = vdev_label_read_config(vd)) == NULL) { 1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1314 VDEV_AUX_BAD_LABEL); 1315 return (0); 1316 } 1317 1318 /* 1319 * Determine if this vdev has been split off into another 1320 * pool. If so, then refuse to open it. 1321 */ 1322 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1323 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1325 VDEV_AUX_SPLIT_POOL); 1326 nvlist_free(label); 1327 return (0); 1328 } 1329 1330 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1331 &guid) != 0 || guid != spa_guid(spa)) { 1332 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1333 VDEV_AUX_CORRUPT_DATA); 1334 nvlist_free(label); 1335 return (0); 1336 } 1337 1338 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1339 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1340 &aux_guid) != 0) 1341 aux_guid = 0; 1342 1343 /* 1344 * If this vdev just became a top-level vdev because its 1345 * sibling was detached, it will have adopted the parent's 1346 * vdev guid -- but the label may or may not be on disk yet. 1347 * Fortunately, either version of the label will have the 1348 * same top guid, so if we're a top-level vdev, we can 1349 * safely compare to that instead. 1350 * 1351 * If we split this vdev off instead, then we also check the 1352 * original pool's guid. We don't want to consider the vdev 1353 * corrupt if it is partway through a split operation. 1354 */ 1355 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1356 &guid) != 0 || 1357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1358 &top_guid) != 0 || 1359 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1360 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1362 VDEV_AUX_CORRUPT_DATA); 1363 nvlist_free(label); 1364 return (0); 1365 } 1366 1367 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1368 &state) != 0) { 1369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1370 VDEV_AUX_CORRUPT_DATA); 1371 nvlist_free(label); 1372 return (0); 1373 } 1374 1375 nvlist_free(label); 1376 1377 /* 1378 * If spa->spa_load_verbatim is true, no need to check the 1379 * state of the pool. 1380 */ 1381 if (!spa->spa_load_verbatim && 1382 spa_load_state(spa) == SPA_LOAD_OPEN && 1383 state != POOL_STATE_ACTIVE) 1384 return (EBADF); 1385 1386 /* 1387 * If we were able to open and validate a vdev that was 1388 * previously marked permanently unavailable, clear that state 1389 * now. 1390 */ 1391 if (vd->vdev_not_present) 1392 vd->vdev_not_present = 0; 1393 } 1394 1395 return (0); 1396 } 1397 1398 /* 1399 * Close a virtual device. 1400 */ 1401 void 1402 vdev_close(vdev_t *vd) 1403 { 1404 spa_t *spa = vd->vdev_spa; 1405 vdev_t *pvd = vd->vdev_parent; 1406 1407 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1408 1409 /* 1410 * If our parent is reopening, then we are as well, unless we are 1411 * going offline. 1412 */ 1413 if (pvd != NULL && pvd->vdev_reopening) 1414 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1415 1416 vd->vdev_ops->vdev_op_close(vd); 1417 1418 vdev_cache_purge(vd); 1419 1420 /* 1421 * We record the previous state before we close it, so that if we are 1422 * doing a reopen(), we don't generate FMA ereports if we notice that 1423 * it's still faulted. 1424 */ 1425 vd->vdev_prevstate = vd->vdev_state; 1426 1427 if (vd->vdev_offline) 1428 vd->vdev_state = VDEV_STATE_OFFLINE; 1429 else 1430 vd->vdev_state = VDEV_STATE_CLOSED; 1431 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1432 } 1433 1434 void 1435 vdev_hold(vdev_t *vd) 1436 { 1437 spa_t *spa = vd->vdev_spa; 1438 1439 ASSERT(spa_is_root(spa)); 1440 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1441 return; 1442 1443 for (int c = 0; c < vd->vdev_children; c++) 1444 vdev_hold(vd->vdev_child[c]); 1445 1446 if (vd->vdev_ops->vdev_op_leaf) 1447 vd->vdev_ops->vdev_op_hold(vd); 1448 } 1449 1450 void 1451 vdev_rele(vdev_t *vd) 1452 { 1453 spa_t *spa = vd->vdev_spa; 1454 1455 ASSERT(spa_is_root(spa)); 1456 for (int c = 0; c < vd->vdev_children; c++) 1457 vdev_rele(vd->vdev_child[c]); 1458 1459 if (vd->vdev_ops->vdev_op_leaf) 1460 vd->vdev_ops->vdev_op_rele(vd); 1461 } 1462 1463 /* 1464 * Reopen all interior vdevs and any unopened leaves. We don't actually 1465 * reopen leaf vdevs which had previously been opened as they might deadlock 1466 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1467 * If the leaf has never been opened then open it, as usual. 1468 */ 1469 void 1470 vdev_reopen(vdev_t *vd) 1471 { 1472 spa_t *spa = vd->vdev_spa; 1473 1474 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1475 1476 /* set the reopening flag unless we're taking the vdev offline */ 1477 vd->vdev_reopening = !vd->vdev_offline; 1478 vdev_close(vd); 1479 (void) vdev_open(vd); 1480 1481 /* 1482 * Call vdev_validate() here to make sure we have the same device. 1483 * Otherwise, a device with an invalid label could be successfully 1484 * opened in response to vdev_reopen(). 1485 */ 1486 if (vd->vdev_aux) { 1487 (void) vdev_validate_aux(vd); 1488 if (vdev_readable(vd) && vdev_writeable(vd) && 1489 vd->vdev_aux == &spa->spa_l2cache && 1490 !l2arc_vdev_present(vd)) 1491 l2arc_add_vdev(spa, vd); 1492 } else { 1493 (void) vdev_validate(vd); 1494 } 1495 1496 /* 1497 * Reassess parent vdev's health. 1498 */ 1499 vdev_propagate_state(vd); 1500 } 1501 1502 int 1503 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1504 { 1505 int error; 1506 1507 /* 1508 * Normally, partial opens (e.g. of a mirror) are allowed. 1509 * For a create, however, we want to fail the request if 1510 * there are any components we can't open. 1511 */ 1512 error = vdev_open(vd); 1513 1514 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1515 vdev_close(vd); 1516 return (error ? error : ENXIO); 1517 } 1518 1519 /* 1520 * Recursively initialize all labels. 1521 */ 1522 if ((error = vdev_label_init(vd, txg, isreplacing ? 1523 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1524 vdev_close(vd); 1525 return (error); 1526 } 1527 1528 return (0); 1529 } 1530 1531 void 1532 vdev_metaslab_set_size(vdev_t *vd) 1533 { 1534 /* 1535 * Aim for roughly 200 metaslabs per vdev. 1536 */ 1537 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1538 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1539 } 1540 1541 void 1542 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1543 { 1544 ASSERT(vd == vd->vdev_top); 1545 ASSERT(!vd->vdev_ishole); 1546 ASSERT(ISP2(flags)); 1547 1548 if (flags & VDD_METASLAB) 1549 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1550 1551 if (flags & VDD_DTL) 1552 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1553 1554 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1555 } 1556 1557 /* 1558 * DTLs. 1559 * 1560 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1561 * the vdev has less than perfect replication. There are four kinds of DTL: 1562 * 1563 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1564 * 1565 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1566 * 1567 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1568 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1569 * txgs that was scrubbed. 1570 * 1571 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1572 * persistent errors or just some device being offline. 1573 * Unlike the other three, the DTL_OUTAGE map is not generally 1574 * maintained; it's only computed when needed, typically to 1575 * determine whether a device can be detached. 1576 * 1577 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1578 * either has the data or it doesn't. 1579 * 1580 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1581 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1582 * if any child is less than fully replicated, then so is its parent. 1583 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1584 * comprising only those txgs which appear in 'maxfaults' or more children; 1585 * those are the txgs we don't have enough replication to read. For example, 1586 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1587 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1588 * two child DTL_MISSING maps. 1589 * 1590 * It should be clear from the above that to compute the DTLs and outage maps 1591 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1592 * Therefore, that is all we keep on disk. When loading the pool, or after 1593 * a configuration change, we generate all other DTLs from first principles. 1594 */ 1595 void 1596 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1597 { 1598 space_map_t *sm = &vd->vdev_dtl[t]; 1599 1600 ASSERT(t < DTL_TYPES); 1601 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1602 1603 mutex_enter(sm->sm_lock); 1604 if (!space_map_contains(sm, txg, size)) 1605 space_map_add(sm, txg, size); 1606 mutex_exit(sm->sm_lock); 1607 } 1608 1609 boolean_t 1610 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1611 { 1612 space_map_t *sm = &vd->vdev_dtl[t]; 1613 boolean_t dirty = B_FALSE; 1614 1615 ASSERT(t < DTL_TYPES); 1616 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1617 1618 mutex_enter(sm->sm_lock); 1619 if (sm->sm_space != 0) 1620 dirty = space_map_contains(sm, txg, size); 1621 mutex_exit(sm->sm_lock); 1622 1623 return (dirty); 1624 } 1625 1626 boolean_t 1627 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1628 { 1629 space_map_t *sm = &vd->vdev_dtl[t]; 1630 boolean_t empty; 1631 1632 mutex_enter(sm->sm_lock); 1633 empty = (sm->sm_space == 0); 1634 mutex_exit(sm->sm_lock); 1635 1636 return (empty); 1637 } 1638 1639 /* 1640 * Reassess DTLs after a config change or scrub completion. 1641 */ 1642 void 1643 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1644 { 1645 spa_t *spa = vd->vdev_spa; 1646 avl_tree_t reftree; 1647 int minref; 1648 1649 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1650 1651 for (int c = 0; c < vd->vdev_children; c++) 1652 vdev_dtl_reassess(vd->vdev_child[c], txg, 1653 scrub_txg, scrub_done); 1654 1655 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1656 return; 1657 1658 if (vd->vdev_ops->vdev_op_leaf) { 1659 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1660 1661 mutex_enter(&vd->vdev_dtl_lock); 1662 if (scrub_txg != 0 && 1663 (spa->spa_scrub_started || 1664 (scn && scn->scn_phys.scn_errors == 0))) { 1665 /* 1666 * We completed a scrub up to scrub_txg. If we 1667 * did it without rebooting, then the scrub dtl 1668 * will be valid, so excise the old region and 1669 * fold in the scrub dtl. Otherwise, leave the 1670 * dtl as-is if there was an error. 1671 * 1672 * There's little trick here: to excise the beginning 1673 * of the DTL_MISSING map, we put it into a reference 1674 * tree and then add a segment with refcnt -1 that 1675 * covers the range [0, scrub_txg). This means 1676 * that each txg in that range has refcnt -1 or 0. 1677 * We then add DTL_SCRUB with a refcnt of 2, so that 1678 * entries in the range [0, scrub_txg) will have a 1679 * positive refcnt -- either 1 or 2. We then convert 1680 * the reference tree into the new DTL_MISSING map. 1681 */ 1682 space_map_ref_create(&reftree); 1683 space_map_ref_add_map(&reftree, 1684 &vd->vdev_dtl[DTL_MISSING], 1); 1685 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1686 space_map_ref_add_map(&reftree, 1687 &vd->vdev_dtl[DTL_SCRUB], 2); 1688 space_map_ref_generate_map(&reftree, 1689 &vd->vdev_dtl[DTL_MISSING], 1); 1690 space_map_ref_destroy(&reftree); 1691 } 1692 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1693 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1694 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1695 if (scrub_done) 1696 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1697 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1698 if (!vdev_readable(vd)) 1699 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1700 else 1701 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1702 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1703 mutex_exit(&vd->vdev_dtl_lock); 1704 1705 if (txg != 0) 1706 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1707 return; 1708 } 1709 1710 mutex_enter(&vd->vdev_dtl_lock); 1711 for (int t = 0; t < DTL_TYPES; t++) { 1712 /* account for child's outage in parent's missing map */ 1713 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1714 if (t == DTL_SCRUB) 1715 continue; /* leaf vdevs only */ 1716 if (t == DTL_PARTIAL) 1717 minref = 1; /* i.e. non-zero */ 1718 else if (vd->vdev_nparity != 0) 1719 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1720 else 1721 minref = vd->vdev_children; /* any kind of mirror */ 1722 space_map_ref_create(&reftree); 1723 for (int c = 0; c < vd->vdev_children; c++) { 1724 vdev_t *cvd = vd->vdev_child[c]; 1725 mutex_enter(&cvd->vdev_dtl_lock); 1726 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1727 mutex_exit(&cvd->vdev_dtl_lock); 1728 } 1729 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1730 space_map_ref_destroy(&reftree); 1731 } 1732 mutex_exit(&vd->vdev_dtl_lock); 1733 } 1734 1735 static int 1736 vdev_dtl_load(vdev_t *vd) 1737 { 1738 spa_t *spa = vd->vdev_spa; 1739 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1740 objset_t *mos = spa->spa_meta_objset; 1741 dmu_buf_t *db; 1742 int error; 1743 1744 ASSERT(vd->vdev_children == 0); 1745 1746 if (smo->smo_object == 0) 1747 return (0); 1748 1749 ASSERT(!vd->vdev_ishole); 1750 1751 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1752 return (error); 1753 1754 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1755 bcopy(db->db_data, smo, sizeof (*smo)); 1756 dmu_buf_rele(db, FTAG); 1757 1758 mutex_enter(&vd->vdev_dtl_lock); 1759 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1760 NULL, SM_ALLOC, smo, mos); 1761 mutex_exit(&vd->vdev_dtl_lock); 1762 1763 return (error); 1764 } 1765 1766 void 1767 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1768 { 1769 spa_t *spa = vd->vdev_spa; 1770 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1771 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1772 objset_t *mos = spa->spa_meta_objset; 1773 space_map_t smsync; 1774 kmutex_t smlock; 1775 dmu_buf_t *db; 1776 dmu_tx_t *tx; 1777 1778 ASSERT(!vd->vdev_ishole); 1779 1780 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1781 1782 if (vd->vdev_detached) { 1783 if (smo->smo_object != 0) { 1784 int err = dmu_object_free(mos, smo->smo_object, tx); 1785 ASSERT3U(err, ==, 0); 1786 smo->smo_object = 0; 1787 } 1788 dmu_tx_commit(tx); 1789 return; 1790 } 1791 1792 if (smo->smo_object == 0) { 1793 ASSERT(smo->smo_objsize == 0); 1794 ASSERT(smo->smo_alloc == 0); 1795 smo->smo_object = dmu_object_alloc(mos, 1796 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1797 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1798 ASSERT(smo->smo_object != 0); 1799 vdev_config_dirty(vd->vdev_top); 1800 } 1801 1802 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1803 1804 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1805 &smlock); 1806 1807 mutex_enter(&smlock); 1808 1809 mutex_enter(&vd->vdev_dtl_lock); 1810 space_map_walk(sm, space_map_add, &smsync); 1811 mutex_exit(&vd->vdev_dtl_lock); 1812 1813 space_map_truncate(smo, mos, tx); 1814 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1815 1816 space_map_destroy(&smsync); 1817 1818 mutex_exit(&smlock); 1819 mutex_destroy(&smlock); 1820 1821 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1822 dmu_buf_will_dirty(db, tx); 1823 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1824 bcopy(smo, db->db_data, sizeof (*smo)); 1825 dmu_buf_rele(db, FTAG); 1826 1827 dmu_tx_commit(tx); 1828 } 1829 1830 /* 1831 * Determine whether the specified vdev can be offlined/detached/removed 1832 * without losing data. 1833 */ 1834 boolean_t 1835 vdev_dtl_required(vdev_t *vd) 1836 { 1837 spa_t *spa = vd->vdev_spa; 1838 vdev_t *tvd = vd->vdev_top; 1839 uint8_t cant_read = vd->vdev_cant_read; 1840 boolean_t required; 1841 1842 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1843 1844 if (vd == spa->spa_root_vdev || vd == tvd) 1845 return (B_TRUE); 1846 1847 /* 1848 * Temporarily mark the device as unreadable, and then determine 1849 * whether this results in any DTL outages in the top-level vdev. 1850 * If not, we can safely offline/detach/remove the device. 1851 */ 1852 vd->vdev_cant_read = B_TRUE; 1853 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1854 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1855 vd->vdev_cant_read = cant_read; 1856 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1857 1858 return (required); 1859 } 1860 1861 /* 1862 * Determine if resilver is needed, and if so the txg range. 1863 */ 1864 boolean_t 1865 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1866 { 1867 boolean_t needed = B_FALSE; 1868 uint64_t thismin = UINT64_MAX; 1869 uint64_t thismax = 0; 1870 1871 if (vd->vdev_children == 0) { 1872 mutex_enter(&vd->vdev_dtl_lock); 1873 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1874 vdev_writeable(vd)) { 1875 space_seg_t *ss; 1876 1877 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1878 thismin = ss->ss_start - 1; 1879 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1880 thismax = ss->ss_end; 1881 needed = B_TRUE; 1882 } 1883 mutex_exit(&vd->vdev_dtl_lock); 1884 } else { 1885 for (int c = 0; c < vd->vdev_children; c++) { 1886 vdev_t *cvd = vd->vdev_child[c]; 1887 uint64_t cmin, cmax; 1888 1889 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1890 thismin = MIN(thismin, cmin); 1891 thismax = MAX(thismax, cmax); 1892 needed = B_TRUE; 1893 } 1894 } 1895 } 1896 1897 if (needed && minp) { 1898 *minp = thismin; 1899 *maxp = thismax; 1900 } 1901 return (needed); 1902 } 1903 1904 void 1905 vdev_load(vdev_t *vd) 1906 { 1907 /* 1908 * Recursively load all children. 1909 */ 1910 for (int c = 0; c < vd->vdev_children; c++) 1911 vdev_load(vd->vdev_child[c]); 1912 1913 /* 1914 * If this is a top-level vdev, initialize its metaslabs. 1915 */ 1916 if (vd == vd->vdev_top && !vd->vdev_ishole && 1917 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1918 vdev_metaslab_init(vd, 0) != 0)) 1919 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1920 VDEV_AUX_CORRUPT_DATA); 1921 1922 /* 1923 * If this is a leaf vdev, load its DTL. 1924 */ 1925 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1927 VDEV_AUX_CORRUPT_DATA); 1928 } 1929 1930 /* 1931 * The special vdev case is used for hot spares and l2cache devices. Its 1932 * sole purpose it to set the vdev state for the associated vdev. To do this, 1933 * we make sure that we can open the underlying device, then try to read the 1934 * label, and make sure that the label is sane and that it hasn't been 1935 * repurposed to another pool. 1936 */ 1937 int 1938 vdev_validate_aux(vdev_t *vd) 1939 { 1940 nvlist_t *label; 1941 uint64_t guid, version; 1942 uint64_t state; 1943 1944 if (!vdev_readable(vd)) 1945 return (0); 1946 1947 if ((label = vdev_label_read_config(vd)) == NULL) { 1948 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1949 VDEV_AUX_CORRUPT_DATA); 1950 return (-1); 1951 } 1952 1953 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1954 version > SPA_VERSION || 1955 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1956 guid != vd->vdev_guid || 1957 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1958 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1959 VDEV_AUX_CORRUPT_DATA); 1960 nvlist_free(label); 1961 return (-1); 1962 } 1963 1964 /* 1965 * We don't actually check the pool state here. If it's in fact in 1966 * use by another pool, we update this fact on the fly when requested. 1967 */ 1968 nvlist_free(label); 1969 return (0); 1970 } 1971 1972 void 1973 vdev_remove(vdev_t *vd, uint64_t txg) 1974 { 1975 spa_t *spa = vd->vdev_spa; 1976 objset_t *mos = spa->spa_meta_objset; 1977 dmu_tx_t *tx; 1978 1979 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1980 1981 if (vd->vdev_dtl_smo.smo_object) { 1982 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1983 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1984 vd->vdev_dtl_smo.smo_object = 0; 1985 } 1986 1987 if (vd->vdev_ms != NULL) { 1988 for (int m = 0; m < vd->vdev_ms_count; m++) { 1989 metaslab_t *msp = vd->vdev_ms[m]; 1990 1991 if (msp == NULL || msp->ms_smo.smo_object == 0) 1992 continue; 1993 1994 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1995 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1996 msp->ms_smo.smo_object = 0; 1997 } 1998 } 1999 2000 if (vd->vdev_ms_array) { 2001 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2002 vd->vdev_ms_array = 0; 2003 vd->vdev_ms_shift = 0; 2004 } 2005 dmu_tx_commit(tx); 2006 } 2007 2008 void 2009 vdev_sync_done(vdev_t *vd, uint64_t txg) 2010 { 2011 metaslab_t *msp; 2012 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2013 2014 ASSERT(!vd->vdev_ishole); 2015 2016 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2017 metaslab_sync_done(msp, txg); 2018 2019 if (reassess) 2020 metaslab_sync_reassess(vd->vdev_mg); 2021 } 2022 2023 void 2024 vdev_sync(vdev_t *vd, uint64_t txg) 2025 { 2026 spa_t *spa = vd->vdev_spa; 2027 vdev_t *lvd; 2028 metaslab_t *msp; 2029 dmu_tx_t *tx; 2030 2031 ASSERT(!vd->vdev_ishole); 2032 2033 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2034 ASSERT(vd == vd->vdev_top); 2035 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2036 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2037 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2038 ASSERT(vd->vdev_ms_array != 0); 2039 vdev_config_dirty(vd); 2040 dmu_tx_commit(tx); 2041 } 2042 2043 /* 2044 * Remove the metadata associated with this vdev once it's empty. 2045 */ 2046 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2047 vdev_remove(vd, txg); 2048 2049 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2050 metaslab_sync(msp, txg); 2051 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2052 } 2053 2054 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2055 vdev_dtl_sync(lvd, txg); 2056 2057 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2058 } 2059 2060 uint64_t 2061 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2062 { 2063 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2064 } 2065 2066 /* 2067 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2068 * not be opened, and no I/O is attempted. 2069 */ 2070 int 2071 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2072 { 2073 vdev_t *vd; 2074 2075 spa_vdev_state_enter(spa, SCL_NONE); 2076 2077 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2078 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2079 2080 if (!vd->vdev_ops->vdev_op_leaf) 2081 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2082 2083 /* 2084 * We don't directly use the aux state here, but if we do a 2085 * vdev_reopen(), we need this value to be present to remember why we 2086 * were faulted. 2087 */ 2088 vd->vdev_label_aux = aux; 2089 2090 /* 2091 * Faulted state takes precedence over degraded. 2092 */ 2093 vd->vdev_delayed_close = B_FALSE; 2094 vd->vdev_faulted = 1ULL; 2095 vd->vdev_degraded = 0ULL; 2096 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2097 2098 /* 2099 * If this device has the only valid copy of the data, then 2100 * back off and simply mark the vdev as degraded instead. 2101 */ 2102 if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2103 vd->vdev_degraded = 1ULL; 2104 vd->vdev_faulted = 0ULL; 2105 2106 /* 2107 * If we reopen the device and it's not dead, only then do we 2108 * mark it degraded. 2109 */ 2110 vdev_reopen(vd); 2111 2112 if (vdev_readable(vd)) 2113 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2114 } 2115 2116 return (spa_vdev_state_exit(spa, vd, 0)); 2117 } 2118 2119 /* 2120 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2121 * user that something is wrong. The vdev continues to operate as normal as far 2122 * as I/O is concerned. 2123 */ 2124 int 2125 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2126 { 2127 vdev_t *vd; 2128 2129 spa_vdev_state_enter(spa, SCL_NONE); 2130 2131 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2132 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2133 2134 if (!vd->vdev_ops->vdev_op_leaf) 2135 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2136 2137 /* 2138 * If the vdev is already faulted, then don't do anything. 2139 */ 2140 if (vd->vdev_faulted || vd->vdev_degraded) 2141 return (spa_vdev_state_exit(spa, NULL, 0)); 2142 2143 vd->vdev_degraded = 1ULL; 2144 if (!vdev_is_dead(vd)) 2145 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2146 aux); 2147 2148 return (spa_vdev_state_exit(spa, vd, 0)); 2149 } 2150 2151 /* 2152 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2153 * any attached spare device should be detached when the device finishes 2154 * resilvering. Second, the online should be treated like a 'test' online case, 2155 * so no FMA events are generated if the device fails to open. 2156 */ 2157 int 2158 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2159 { 2160 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2161 2162 spa_vdev_state_enter(spa, SCL_NONE); 2163 2164 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2165 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2166 2167 if (!vd->vdev_ops->vdev_op_leaf) 2168 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2169 2170 tvd = vd->vdev_top; 2171 vd->vdev_offline = B_FALSE; 2172 vd->vdev_tmpoffline = B_FALSE; 2173 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2174 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2175 2176 /* XXX - L2ARC 1.0 does not support expansion */ 2177 if (!vd->vdev_aux) { 2178 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2179 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2180 } 2181 2182 vdev_reopen(tvd); 2183 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2184 2185 if (!vd->vdev_aux) { 2186 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2187 pvd->vdev_expanding = B_FALSE; 2188 } 2189 2190 if (newstate) 2191 *newstate = vd->vdev_state; 2192 if ((flags & ZFS_ONLINE_UNSPARE) && 2193 !vdev_is_dead(vd) && vd->vdev_parent && 2194 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2195 vd->vdev_parent->vdev_child[0] == vd) 2196 vd->vdev_unspare = B_TRUE; 2197 2198 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2199 2200 /* XXX - L2ARC 1.0 does not support expansion */ 2201 if (vd->vdev_aux) 2202 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2203 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2204 } 2205 return (spa_vdev_state_exit(spa, vd, 0)); 2206 } 2207 2208 static int 2209 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2210 { 2211 vdev_t *vd, *tvd; 2212 int error = 0; 2213 uint64_t generation; 2214 metaslab_group_t *mg; 2215 2216 top: 2217 spa_vdev_state_enter(spa, SCL_ALLOC); 2218 2219 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2220 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2221 2222 if (!vd->vdev_ops->vdev_op_leaf) 2223 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2224 2225 tvd = vd->vdev_top; 2226 mg = tvd->vdev_mg; 2227 generation = spa->spa_config_generation + 1; 2228 2229 /* 2230 * If the device isn't already offline, try to offline it. 2231 */ 2232 if (!vd->vdev_offline) { 2233 /* 2234 * If this device has the only valid copy of some data, 2235 * don't allow it to be offlined. Log devices are always 2236 * expendable. 2237 */ 2238 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2239 vdev_dtl_required(vd)) 2240 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2241 2242 /* 2243 * If the top-level is a slog and it has had allocations 2244 * then proceed. We check that the vdev's metaslab group 2245 * is not NULL since it's possible that we may have just 2246 * added this vdev but not yet initialized its metaslabs. 2247 */ 2248 if (tvd->vdev_islog && mg != NULL) { 2249 /* 2250 * Prevent any future allocations. 2251 */ 2252 metaslab_group_passivate(mg); 2253 (void) spa_vdev_state_exit(spa, vd, 0); 2254 2255 error = spa_offline_log(spa); 2256 2257 spa_vdev_state_enter(spa, SCL_ALLOC); 2258 2259 /* 2260 * Check to see if the config has changed. 2261 */ 2262 if (error || generation != spa->spa_config_generation) { 2263 metaslab_group_activate(mg); 2264 if (error) 2265 return (spa_vdev_state_exit(spa, 2266 vd, error)); 2267 (void) spa_vdev_state_exit(spa, vd, 0); 2268 goto top; 2269 } 2270 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2271 } 2272 2273 /* 2274 * Offline this device and reopen its top-level vdev. 2275 * If the top-level vdev is a log device then just offline 2276 * it. Otherwise, if this action results in the top-level 2277 * vdev becoming unusable, undo it and fail the request. 2278 */ 2279 vd->vdev_offline = B_TRUE; 2280 vdev_reopen(tvd); 2281 2282 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2283 vdev_is_dead(tvd)) { 2284 vd->vdev_offline = B_FALSE; 2285 vdev_reopen(tvd); 2286 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2287 } 2288 2289 /* 2290 * Add the device back into the metaslab rotor so that 2291 * once we online the device it's open for business. 2292 */ 2293 if (tvd->vdev_islog && mg != NULL) 2294 metaslab_group_activate(mg); 2295 } 2296 2297 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2298 2299 return (spa_vdev_state_exit(spa, vd, 0)); 2300 } 2301 2302 int 2303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2304 { 2305 int error; 2306 2307 mutex_enter(&spa->spa_vdev_top_lock); 2308 error = vdev_offline_locked(spa, guid, flags); 2309 mutex_exit(&spa->spa_vdev_top_lock); 2310 2311 return (error); 2312 } 2313 2314 /* 2315 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2316 * vdev_offline(), we assume the spa config is locked. We also clear all 2317 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2318 */ 2319 void 2320 vdev_clear(spa_t *spa, vdev_t *vd) 2321 { 2322 vdev_t *rvd = spa->spa_root_vdev; 2323 2324 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2325 2326 if (vd == NULL) 2327 vd = rvd; 2328 2329 vd->vdev_stat.vs_read_errors = 0; 2330 vd->vdev_stat.vs_write_errors = 0; 2331 vd->vdev_stat.vs_checksum_errors = 0; 2332 2333 for (int c = 0; c < vd->vdev_children; c++) 2334 vdev_clear(spa, vd->vdev_child[c]); 2335 2336 /* 2337 * If we're in the FAULTED state or have experienced failed I/O, then 2338 * clear the persistent state and attempt to reopen the device. We 2339 * also mark the vdev config dirty, so that the new faulted state is 2340 * written out to disk. 2341 */ 2342 if (vd->vdev_faulted || vd->vdev_degraded || 2343 !vdev_readable(vd) || !vdev_writeable(vd)) { 2344 2345 /* 2346 * When reopening in reponse to a clear event, it may be due to 2347 * a fmadm repair request. In this case, if the device is 2348 * still broken, we want to still post the ereport again. 2349 */ 2350 vd->vdev_forcefault = B_TRUE; 2351 2352 vd->vdev_faulted = vd->vdev_degraded = 0; 2353 vd->vdev_cant_read = B_FALSE; 2354 vd->vdev_cant_write = B_FALSE; 2355 2356 vdev_reopen(vd); 2357 2358 vd->vdev_forcefault = B_FALSE; 2359 2360 if (vd != rvd) 2361 vdev_state_dirty(vd->vdev_top); 2362 2363 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2364 spa_async_request(spa, SPA_ASYNC_RESILVER); 2365 2366 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2367 } 2368 2369 /* 2370 * When clearing a FMA-diagnosed fault, we always want to 2371 * unspare the device, as we assume that the original spare was 2372 * done in response to the FMA fault. 2373 */ 2374 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2375 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2376 vd->vdev_parent->vdev_child[0] == vd) 2377 vd->vdev_unspare = B_TRUE; 2378 } 2379 2380 boolean_t 2381 vdev_is_dead(vdev_t *vd) 2382 { 2383 /* 2384 * Holes and missing devices are always considered "dead". 2385 * This simplifies the code since we don't have to check for 2386 * these types of devices in the various code paths. 2387 * Instead we rely on the fact that we skip over dead devices 2388 * before issuing I/O to them. 2389 */ 2390 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2391 vd->vdev_ops == &vdev_missing_ops); 2392 } 2393 2394 boolean_t 2395 vdev_readable(vdev_t *vd) 2396 { 2397 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2398 } 2399 2400 boolean_t 2401 vdev_writeable(vdev_t *vd) 2402 { 2403 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2404 } 2405 2406 boolean_t 2407 vdev_allocatable(vdev_t *vd) 2408 { 2409 uint64_t state = vd->vdev_state; 2410 2411 /* 2412 * We currently allow allocations from vdevs which may be in the 2413 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2414 * fails to reopen then we'll catch it later when we're holding 2415 * the proper locks. Note that we have to get the vdev state 2416 * in a local variable because although it changes atomically, 2417 * we're asking two separate questions about it. 2418 */ 2419 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2420 !vd->vdev_cant_write && !vd->vdev_ishole); 2421 } 2422 2423 boolean_t 2424 vdev_accessible(vdev_t *vd, zio_t *zio) 2425 { 2426 ASSERT(zio->io_vd == vd); 2427 2428 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2429 return (B_FALSE); 2430 2431 if (zio->io_type == ZIO_TYPE_READ) 2432 return (!vd->vdev_cant_read); 2433 2434 if (zio->io_type == ZIO_TYPE_WRITE) 2435 return (!vd->vdev_cant_write); 2436 2437 return (B_TRUE); 2438 } 2439 2440 /* 2441 * Get statistics for the given vdev. 2442 */ 2443 void 2444 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2445 { 2446 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2447 2448 mutex_enter(&vd->vdev_stat_lock); 2449 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2450 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2451 vs->vs_state = vd->vdev_state; 2452 vs->vs_rsize = vdev_get_min_asize(vd); 2453 if (vd->vdev_ops->vdev_op_leaf) 2454 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2455 mutex_exit(&vd->vdev_stat_lock); 2456 2457 /* 2458 * If we're getting stats on the root vdev, aggregate the I/O counts 2459 * over all top-level vdevs (i.e. the direct children of the root). 2460 */ 2461 if (vd == rvd) { 2462 for (int c = 0; c < rvd->vdev_children; c++) { 2463 vdev_t *cvd = rvd->vdev_child[c]; 2464 vdev_stat_t *cvs = &cvd->vdev_stat; 2465 2466 mutex_enter(&vd->vdev_stat_lock); 2467 for (int t = 0; t < ZIO_TYPES; t++) { 2468 vs->vs_ops[t] += cvs->vs_ops[t]; 2469 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2470 } 2471 cvs->vs_scan_removing = cvd->vdev_removing; 2472 mutex_exit(&vd->vdev_stat_lock); 2473 } 2474 } 2475 } 2476 2477 void 2478 vdev_clear_stats(vdev_t *vd) 2479 { 2480 mutex_enter(&vd->vdev_stat_lock); 2481 vd->vdev_stat.vs_space = 0; 2482 vd->vdev_stat.vs_dspace = 0; 2483 vd->vdev_stat.vs_alloc = 0; 2484 mutex_exit(&vd->vdev_stat_lock); 2485 } 2486 2487 void 2488 vdev_scan_stat_init(vdev_t *vd) 2489 { 2490 vdev_stat_t *vs = &vd->vdev_stat; 2491 2492 for (int c = 0; c < vd->vdev_children; c++) 2493 vdev_scan_stat_init(vd->vdev_child[c]); 2494 2495 mutex_enter(&vd->vdev_stat_lock); 2496 vs->vs_scan_processed = 0; 2497 mutex_exit(&vd->vdev_stat_lock); 2498 } 2499 2500 void 2501 vdev_stat_update(zio_t *zio, uint64_t psize) 2502 { 2503 spa_t *spa = zio->io_spa; 2504 vdev_t *rvd = spa->spa_root_vdev; 2505 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2506 vdev_t *pvd; 2507 uint64_t txg = zio->io_txg; 2508 vdev_stat_t *vs = &vd->vdev_stat; 2509 zio_type_t type = zio->io_type; 2510 int flags = zio->io_flags; 2511 2512 /* 2513 * If this i/o is a gang leader, it didn't do any actual work. 2514 */ 2515 if (zio->io_gang_tree) 2516 return; 2517 2518 if (zio->io_error == 0) { 2519 /* 2520 * If this is a root i/o, don't count it -- we've already 2521 * counted the top-level vdevs, and vdev_get_stats() will 2522 * aggregate them when asked. This reduces contention on 2523 * the root vdev_stat_lock and implicitly handles blocks 2524 * that compress away to holes, for which there is no i/o. 2525 * (Holes never create vdev children, so all the counters 2526 * remain zero, which is what we want.) 2527 * 2528 * Note: this only applies to successful i/o (io_error == 0) 2529 * because unlike i/o counts, errors are not additive. 2530 * When reading a ditto block, for example, failure of 2531 * one top-level vdev does not imply a root-level error. 2532 */ 2533 if (vd == rvd) 2534 return; 2535 2536 ASSERT(vd == zio->io_vd); 2537 2538 if (flags & ZIO_FLAG_IO_BYPASS) 2539 return; 2540 2541 mutex_enter(&vd->vdev_stat_lock); 2542 2543 if (flags & ZIO_FLAG_IO_REPAIR) { 2544 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2545 dsl_scan_phys_t *scn_phys = 2546 &spa->spa_dsl_pool->dp_scan->scn_phys; 2547 uint64_t *processed = &scn_phys->scn_processed; 2548 2549 /* XXX cleanup? */ 2550 if (vd->vdev_ops->vdev_op_leaf) 2551 atomic_add_64(processed, psize); 2552 vs->vs_scan_processed += psize; 2553 } 2554 2555 if (flags & ZIO_FLAG_SELF_HEAL) 2556 vs->vs_self_healed += psize; 2557 } 2558 2559 vs->vs_ops[type]++; 2560 vs->vs_bytes[type] += psize; 2561 2562 mutex_exit(&vd->vdev_stat_lock); 2563 return; 2564 } 2565 2566 if (flags & ZIO_FLAG_SPECULATIVE) 2567 return; 2568 2569 /* 2570 * If this is an I/O error that is going to be retried, then ignore the 2571 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2572 * hard errors, when in reality they can happen for any number of 2573 * innocuous reasons (bus resets, MPxIO link failure, etc). 2574 */ 2575 if (zio->io_error == EIO && 2576 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2577 return; 2578 2579 /* 2580 * Intent logs writes won't propagate their error to the root 2581 * I/O so don't mark these types of failures as pool-level 2582 * errors. 2583 */ 2584 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2585 return; 2586 2587 mutex_enter(&vd->vdev_stat_lock); 2588 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2589 if (zio->io_error == ECKSUM) 2590 vs->vs_checksum_errors++; 2591 else 2592 vs->vs_read_errors++; 2593 } 2594 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2595 vs->vs_write_errors++; 2596 mutex_exit(&vd->vdev_stat_lock); 2597 2598 if (type == ZIO_TYPE_WRITE && txg != 0 && 2599 (!(flags & ZIO_FLAG_IO_REPAIR) || 2600 (flags & ZIO_FLAG_SCRUB_THREAD) || 2601 spa->spa_claiming)) { 2602 /* 2603 * This is either a normal write (not a repair), or it's 2604 * a repair induced by the scrub thread, or it's a repair 2605 * made by zil_claim() during spa_load() in the first txg. 2606 * In the normal case, we commit the DTL change in the same 2607 * txg as the block was born. In the scrub-induced repair 2608 * case, we know that scrubs run in first-pass syncing context, 2609 * so we commit the DTL change in spa_syncing_txg(spa). 2610 * In the zil_claim() case, we commit in spa_first_txg(spa). 2611 * 2612 * We currently do not make DTL entries for failed spontaneous 2613 * self-healing writes triggered by normal (non-scrubbing) 2614 * reads, because we have no transactional context in which to 2615 * do so -- and it's not clear that it'd be desirable anyway. 2616 */ 2617 if (vd->vdev_ops->vdev_op_leaf) { 2618 uint64_t commit_txg = txg; 2619 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2620 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2621 ASSERT(spa_sync_pass(spa) == 1); 2622 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2623 commit_txg = spa_syncing_txg(spa); 2624 } else if (spa->spa_claiming) { 2625 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2626 commit_txg = spa_first_txg(spa); 2627 } 2628 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2629 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2630 return; 2631 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2632 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2633 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2634 } 2635 if (vd != rvd) 2636 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2637 } 2638 } 2639 2640 /* 2641 * Update the in-core space usage stats for this vdev, its metaslab class, 2642 * and the root vdev. 2643 */ 2644 void 2645 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2646 int64_t space_delta) 2647 { 2648 int64_t dspace_delta = space_delta; 2649 spa_t *spa = vd->vdev_spa; 2650 vdev_t *rvd = spa->spa_root_vdev; 2651 metaslab_group_t *mg = vd->vdev_mg; 2652 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2653 2654 ASSERT(vd == vd->vdev_top); 2655 2656 /* 2657 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2658 * factor. We must calculate this here and not at the root vdev 2659 * because the root vdev's psize-to-asize is simply the max of its 2660 * childrens', thus not accurate enough for us. 2661 */ 2662 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2663 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2664 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2665 vd->vdev_deflate_ratio; 2666 2667 mutex_enter(&vd->vdev_stat_lock); 2668 vd->vdev_stat.vs_alloc += alloc_delta; 2669 vd->vdev_stat.vs_space += space_delta; 2670 vd->vdev_stat.vs_dspace += dspace_delta; 2671 mutex_exit(&vd->vdev_stat_lock); 2672 2673 if (mc == spa_normal_class(spa)) { 2674 mutex_enter(&rvd->vdev_stat_lock); 2675 rvd->vdev_stat.vs_alloc += alloc_delta; 2676 rvd->vdev_stat.vs_space += space_delta; 2677 rvd->vdev_stat.vs_dspace += dspace_delta; 2678 mutex_exit(&rvd->vdev_stat_lock); 2679 } 2680 2681 if (mc != NULL) { 2682 ASSERT(rvd == vd->vdev_parent); 2683 ASSERT(vd->vdev_ms_count != 0); 2684 2685 metaslab_class_space_update(mc, 2686 alloc_delta, defer_delta, space_delta, dspace_delta); 2687 } 2688 } 2689 2690 /* 2691 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2692 * so that it will be written out next time the vdev configuration is synced. 2693 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2694 */ 2695 void 2696 vdev_config_dirty(vdev_t *vd) 2697 { 2698 spa_t *spa = vd->vdev_spa; 2699 vdev_t *rvd = spa->spa_root_vdev; 2700 int c; 2701 2702 /* 2703 * If this is an aux vdev (as with l2cache and spare devices), then we 2704 * update the vdev config manually and set the sync flag. 2705 */ 2706 if (vd->vdev_aux != NULL) { 2707 spa_aux_vdev_t *sav = vd->vdev_aux; 2708 nvlist_t **aux; 2709 uint_t naux; 2710 2711 for (c = 0; c < sav->sav_count; c++) { 2712 if (sav->sav_vdevs[c] == vd) 2713 break; 2714 } 2715 2716 if (c == sav->sav_count) { 2717 /* 2718 * We're being removed. There's nothing more to do. 2719 */ 2720 ASSERT(sav->sav_sync == B_TRUE); 2721 return; 2722 } 2723 2724 sav->sav_sync = B_TRUE; 2725 2726 if (nvlist_lookup_nvlist_array(sav->sav_config, 2727 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2728 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2729 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2730 } 2731 2732 ASSERT(c < naux); 2733 2734 /* 2735 * Setting the nvlist in the middle if the array is a little 2736 * sketchy, but it will work. 2737 */ 2738 nvlist_free(aux[c]); 2739 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2740 2741 return; 2742 } 2743 2744 /* 2745 * The dirty list is protected by the SCL_CONFIG lock. The caller 2746 * must either hold SCL_CONFIG as writer, or must be the sync thread 2747 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2748 * so this is sufficient to ensure mutual exclusion. 2749 */ 2750 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2751 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2752 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2753 2754 if (vd == rvd) { 2755 for (c = 0; c < rvd->vdev_children; c++) 2756 vdev_config_dirty(rvd->vdev_child[c]); 2757 } else { 2758 ASSERT(vd == vd->vdev_top); 2759 2760 if (!list_link_active(&vd->vdev_config_dirty_node) && 2761 !vd->vdev_ishole) 2762 list_insert_head(&spa->spa_config_dirty_list, vd); 2763 } 2764 } 2765 2766 void 2767 vdev_config_clean(vdev_t *vd) 2768 { 2769 spa_t *spa = vd->vdev_spa; 2770 2771 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2772 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2773 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2774 2775 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2776 list_remove(&spa->spa_config_dirty_list, vd); 2777 } 2778 2779 /* 2780 * Mark a top-level vdev's state as dirty, so that the next pass of 2781 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2782 * the state changes from larger config changes because they require 2783 * much less locking, and are often needed for administrative actions. 2784 */ 2785 void 2786 vdev_state_dirty(vdev_t *vd) 2787 { 2788 spa_t *spa = vd->vdev_spa; 2789 2790 ASSERT(vd == vd->vdev_top); 2791 2792 /* 2793 * The state list is protected by the SCL_STATE lock. The caller 2794 * must either hold SCL_STATE as writer, or must be the sync thread 2795 * (which holds SCL_STATE as reader). There's only one sync thread, 2796 * so this is sufficient to ensure mutual exclusion. 2797 */ 2798 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2799 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2800 spa_config_held(spa, SCL_STATE, RW_READER))); 2801 2802 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2803 list_insert_head(&spa->spa_state_dirty_list, vd); 2804 } 2805 2806 void 2807 vdev_state_clean(vdev_t *vd) 2808 { 2809 spa_t *spa = vd->vdev_spa; 2810 2811 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2812 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2813 spa_config_held(spa, SCL_STATE, RW_READER))); 2814 2815 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2816 list_remove(&spa->spa_state_dirty_list, vd); 2817 } 2818 2819 /* 2820 * Propagate vdev state up from children to parent. 2821 */ 2822 void 2823 vdev_propagate_state(vdev_t *vd) 2824 { 2825 spa_t *spa = vd->vdev_spa; 2826 vdev_t *rvd = spa->spa_root_vdev; 2827 int degraded = 0, faulted = 0; 2828 int corrupted = 0; 2829 vdev_t *child; 2830 2831 if (vd->vdev_children > 0) { 2832 for (int c = 0; c < vd->vdev_children; c++) { 2833 child = vd->vdev_child[c]; 2834 2835 /* 2836 * Don't factor holes into the decision. 2837 */ 2838 if (child->vdev_ishole) 2839 continue; 2840 2841 if (!vdev_readable(child) || 2842 (!vdev_writeable(child) && spa_writeable(spa))) { 2843 /* 2844 * Root special: if there is a top-level log 2845 * device, treat the root vdev as if it were 2846 * degraded. 2847 */ 2848 if (child->vdev_islog && vd == rvd) 2849 degraded++; 2850 else 2851 faulted++; 2852 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2853 degraded++; 2854 } 2855 2856 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2857 corrupted++; 2858 } 2859 2860 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2861 2862 /* 2863 * Root special: if there is a top-level vdev that cannot be 2864 * opened due to corrupted metadata, then propagate the root 2865 * vdev's aux state as 'corrupt' rather than 'insufficient 2866 * replicas'. 2867 */ 2868 if (corrupted && vd == rvd && 2869 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2870 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2871 VDEV_AUX_CORRUPT_DATA); 2872 } 2873 2874 if (vd->vdev_parent) 2875 vdev_propagate_state(vd->vdev_parent); 2876 } 2877 2878 /* 2879 * Set a vdev's state. If this is during an open, we don't update the parent 2880 * state, because we're in the process of opening children depth-first. 2881 * Otherwise, we propagate the change to the parent. 2882 * 2883 * If this routine places a device in a faulted state, an appropriate ereport is 2884 * generated. 2885 */ 2886 void 2887 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2888 { 2889 uint64_t save_state; 2890 spa_t *spa = vd->vdev_spa; 2891 2892 if (state == vd->vdev_state) { 2893 vd->vdev_stat.vs_aux = aux; 2894 return; 2895 } 2896 2897 save_state = vd->vdev_state; 2898 2899 vd->vdev_state = state; 2900 vd->vdev_stat.vs_aux = aux; 2901 2902 /* 2903 * If we are setting the vdev state to anything but an open state, then 2904 * always close the underlying device unless the device has requested 2905 * a delayed close (i.e. we're about to remove or fault the device). 2906 * Otherwise, we keep accessible but invalid devices open forever. 2907 * We don't call vdev_close() itself, because that implies some extra 2908 * checks (offline, etc) that we don't want here. This is limited to 2909 * leaf devices, because otherwise closing the device will affect other 2910 * children. 2911 */ 2912 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2913 vd->vdev_ops->vdev_op_leaf) 2914 vd->vdev_ops->vdev_op_close(vd); 2915 2916 /* 2917 * If we have brought this vdev back into service, we need 2918 * to notify fmd so that it can gracefully repair any outstanding 2919 * cases due to a missing device. We do this in all cases, even those 2920 * that probably don't correlate to a repaired fault. This is sure to 2921 * catch all cases, and we let the zfs-retire agent sort it out. If 2922 * this is a transient state it's OK, as the retire agent will 2923 * double-check the state of the vdev before repairing it. 2924 */ 2925 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2926 vd->vdev_prevstate != state) 2927 zfs_post_state_change(spa, vd); 2928 2929 if (vd->vdev_removed && 2930 state == VDEV_STATE_CANT_OPEN && 2931 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2932 /* 2933 * If the previous state is set to VDEV_STATE_REMOVED, then this 2934 * device was previously marked removed and someone attempted to 2935 * reopen it. If this failed due to a nonexistent device, then 2936 * keep the device in the REMOVED state. We also let this be if 2937 * it is one of our special test online cases, which is only 2938 * attempting to online the device and shouldn't generate an FMA 2939 * fault. 2940 */ 2941 vd->vdev_state = VDEV_STATE_REMOVED; 2942 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2943 } else if (state == VDEV_STATE_REMOVED) { 2944 vd->vdev_removed = B_TRUE; 2945 } else if (state == VDEV_STATE_CANT_OPEN) { 2946 /* 2947 * If we fail to open a vdev during an import, we mark it as 2948 * "not available", which signifies that it was never there to 2949 * begin with. Failure to open such a device is not considered 2950 * an error. 2951 */ 2952 if (spa_load_state(spa) == SPA_LOAD_IMPORT && 2953 vd->vdev_ops->vdev_op_leaf) 2954 vd->vdev_not_present = 1; 2955 2956 /* 2957 * Post the appropriate ereport. If the 'prevstate' field is 2958 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2959 * that this is part of a vdev_reopen(). In this case, we don't 2960 * want to post the ereport if the device was already in the 2961 * CANT_OPEN state beforehand. 2962 * 2963 * If the 'checkremove' flag is set, then this is an attempt to 2964 * online the device in response to an insertion event. If we 2965 * hit this case, then we have detected an insertion event for a 2966 * faulted or offline device that wasn't in the removed state. 2967 * In this scenario, we don't post an ereport because we are 2968 * about to replace the device, or attempt an online with 2969 * vdev_forcefault, which will generate the fault for us. 2970 */ 2971 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2972 !vd->vdev_not_present && !vd->vdev_checkremove && 2973 vd != spa->spa_root_vdev) { 2974 const char *class; 2975 2976 switch (aux) { 2977 case VDEV_AUX_OPEN_FAILED: 2978 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2979 break; 2980 case VDEV_AUX_CORRUPT_DATA: 2981 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2982 break; 2983 case VDEV_AUX_NO_REPLICAS: 2984 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2985 break; 2986 case VDEV_AUX_BAD_GUID_SUM: 2987 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2988 break; 2989 case VDEV_AUX_TOO_SMALL: 2990 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2991 break; 2992 case VDEV_AUX_BAD_LABEL: 2993 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2994 break; 2995 default: 2996 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2997 } 2998 2999 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3000 } 3001 3002 /* Erase any notion of persistent removed state */ 3003 vd->vdev_removed = B_FALSE; 3004 } else { 3005 vd->vdev_removed = B_FALSE; 3006 } 3007 3008 if (!isopen && vd->vdev_parent) 3009 vdev_propagate_state(vd->vdev_parent); 3010 } 3011 3012 /* 3013 * Check the vdev configuration to ensure that it's capable of supporting 3014 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3015 * In addition, only a single top-level vdev is allowed and none of the leaves 3016 * can be wholedisks. 3017 */ 3018 boolean_t 3019 vdev_is_bootable(vdev_t *vd) 3020 { 3021 if (!vd->vdev_ops->vdev_op_leaf) { 3022 char *vdev_type = vd->vdev_ops->vdev_op_type; 3023 3024 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3025 vd->vdev_children > 1) { 3026 return (B_FALSE); 3027 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3028 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3029 return (B_FALSE); 3030 } 3031 } else if (vd->vdev_wholedisk == 1) { 3032 return (B_FALSE); 3033 } 3034 3035 for (int c = 0; c < vd->vdev_children; c++) { 3036 if (!vdev_is_bootable(vd->vdev_child[c])) 3037 return (B_FALSE); 3038 } 3039 return (B_TRUE); 3040 } 3041 3042 /* 3043 * Load the state from the original vdev tree (ovd) which 3044 * we've retrieved from the MOS config object. If the original 3045 * vdev was offline then we transfer that state to the device 3046 * in the current vdev tree (nvd). 3047 */ 3048 void 3049 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3050 { 3051 spa_t *spa = nvd->vdev_spa; 3052 3053 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3054 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3055 3056 for (int c = 0; c < nvd->vdev_children; c++) 3057 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3058 3059 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 3060 /* 3061 * It would be nice to call vdev_offline() 3062 * directly but the pool isn't fully loaded and 3063 * the txg threads have not been started yet. 3064 */ 3065 nvd->vdev_offline = ovd->vdev_offline; 3066 vdev_reopen(nvd->vdev_top); 3067 } 3068 } 3069 3070 /* 3071 * Expand a vdev if possible. 3072 */ 3073 void 3074 vdev_expand(vdev_t *vd, uint64_t txg) 3075 { 3076 ASSERT(vd->vdev_top == vd); 3077 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3078 3079 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3080 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3081 vdev_config_dirty(vd); 3082 } 3083 } 3084 3085 /* 3086 * Split a vdev. 3087 */ 3088 void 3089 vdev_split(vdev_t *vd) 3090 { 3091 vdev_t *cvd, *pvd = vd->vdev_parent; 3092 3093 vdev_remove_child(pvd, vd); 3094 vdev_compact_children(pvd); 3095 3096 cvd = pvd->vdev_child[0]; 3097 if (pvd->vdev_children == 1) { 3098 vdev_remove_parent(cvd); 3099 cvd->vdev_splitting = B_TRUE; 3100 } 3101 vdev_propagate_state(cvd); 3102 } 3103