xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision a69e76ca280a5227e229566b1e076da8f32193e0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 
53 /*
54  * Virtual device management.
55  */
56 
57 static vdev_ops_t *vdev_ops_table[] = {
58 	&vdev_root_ops,
59 	&vdev_raidz_ops,
60 	&vdev_mirror_ops,
61 	&vdev_replacing_ops,
62 	&vdev_spare_ops,
63 	&vdev_disk_ops,
64 	&vdev_file_ops,
65 	&vdev_missing_ops,
66 	&vdev_hole_ops,
67 	&vdev_indirect_ops,
68 	NULL
69 };
70 
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
73 
74 /*
75  * When a vdev is added, it will be divided into approximately (but no
76  * more than) this number of metaslabs.
77  */
78 int metaslabs_per_vdev = 200;
79 
80 boolean_t vdev_validate_skip = B_FALSE;
81 
82 /*PRINTFLIKE2*/
83 void
84 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
85 {
86 	va_list adx;
87 	char buf[256];
88 
89 	va_start(adx, fmt);
90 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
91 	va_end(adx);
92 
93 	if (vd->vdev_path != NULL) {
94 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
95 		    vd->vdev_path, buf);
96 	} else {
97 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
98 		    vd->vdev_ops->vdev_op_type,
99 		    (u_longlong_t)vd->vdev_id,
100 		    (u_longlong_t)vd->vdev_guid, buf);
101 	}
102 }
103 
104 void
105 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
106 {
107 	char state[20];
108 
109 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
110 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
111 		    vd->vdev_ops->vdev_op_type);
112 		return;
113 	}
114 
115 	switch (vd->vdev_state) {
116 	case VDEV_STATE_UNKNOWN:
117 		(void) snprintf(state, sizeof (state), "unknown");
118 		break;
119 	case VDEV_STATE_CLOSED:
120 		(void) snprintf(state, sizeof (state), "closed");
121 		break;
122 	case VDEV_STATE_OFFLINE:
123 		(void) snprintf(state, sizeof (state), "offline");
124 		break;
125 	case VDEV_STATE_REMOVED:
126 		(void) snprintf(state, sizeof (state), "removed");
127 		break;
128 	case VDEV_STATE_CANT_OPEN:
129 		(void) snprintf(state, sizeof (state), "can't open");
130 		break;
131 	case VDEV_STATE_FAULTED:
132 		(void) snprintf(state, sizeof (state), "faulted");
133 		break;
134 	case VDEV_STATE_DEGRADED:
135 		(void) snprintf(state, sizeof (state), "degraded");
136 		break;
137 	case VDEV_STATE_HEALTHY:
138 		(void) snprintf(state, sizeof (state), "healthy");
139 		break;
140 	default:
141 		(void) snprintf(state, sizeof (state), "<state %u>",
142 		    (uint_t)vd->vdev_state);
143 	}
144 
145 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
146 	    "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
147 	    vd->vdev_islog ? " (log)" : "",
148 	    (u_longlong_t)vd->vdev_guid,
149 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
150 
151 	for (uint64_t i = 0; i < vd->vdev_children; i++)
152 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
153 }
154 
155 /*
156  * Given a vdev type, return the appropriate ops vector.
157  */
158 static vdev_ops_t *
159 vdev_getops(const char *type)
160 {
161 	vdev_ops_t *ops, **opspp;
162 
163 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
164 		if (strcmp(ops->vdev_op_type, type) == 0)
165 			break;
166 
167 	return (ops);
168 }
169 
170 /*
171  * Default asize function: return the MAX of psize with the asize of
172  * all children.  This is what's used by anything other than RAID-Z.
173  */
174 uint64_t
175 vdev_default_asize(vdev_t *vd, uint64_t psize)
176 {
177 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
178 	uint64_t csize;
179 
180 	for (int c = 0; c < vd->vdev_children; c++) {
181 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
182 		asize = MAX(asize, csize);
183 	}
184 
185 	return (asize);
186 }
187 
188 /*
189  * Get the minimum allocatable size. We define the allocatable size as
190  * the vdev's asize rounded to the nearest metaslab. This allows us to
191  * replace or attach devices which don't have the same physical size but
192  * can still satisfy the same number of allocations.
193  */
194 uint64_t
195 vdev_get_min_asize(vdev_t *vd)
196 {
197 	vdev_t *pvd = vd->vdev_parent;
198 
199 	/*
200 	 * If our parent is NULL (inactive spare or cache) or is the root,
201 	 * just return our own asize.
202 	 */
203 	if (pvd == NULL)
204 		return (vd->vdev_asize);
205 
206 	/*
207 	 * The top-level vdev just returns the allocatable size rounded
208 	 * to the nearest metaslab.
209 	 */
210 	if (vd == vd->vdev_top)
211 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
212 
213 	/*
214 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
215 	 * so each child must provide at least 1/Nth of its asize.
216 	 */
217 	if (pvd->vdev_ops == &vdev_raidz_ops)
218 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
219 		    pvd->vdev_children);
220 
221 	return (pvd->vdev_min_asize);
222 }
223 
224 void
225 vdev_set_min_asize(vdev_t *vd)
226 {
227 	vd->vdev_min_asize = vdev_get_min_asize(vd);
228 
229 	for (int c = 0; c < vd->vdev_children; c++)
230 		vdev_set_min_asize(vd->vdev_child[c]);
231 }
232 
233 vdev_t *
234 vdev_lookup_top(spa_t *spa, uint64_t vdev)
235 {
236 	vdev_t *rvd = spa->spa_root_vdev;
237 
238 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
239 
240 	if (vdev < rvd->vdev_children) {
241 		ASSERT(rvd->vdev_child[vdev] != NULL);
242 		return (rvd->vdev_child[vdev]);
243 	}
244 
245 	return (NULL);
246 }
247 
248 vdev_t *
249 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
250 {
251 	vdev_t *mvd;
252 
253 	if (vd->vdev_guid == guid)
254 		return (vd);
255 
256 	for (int c = 0; c < vd->vdev_children; c++)
257 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
258 		    NULL)
259 			return (mvd);
260 
261 	return (NULL);
262 }
263 
264 static int
265 vdev_count_leaves_impl(vdev_t *vd)
266 {
267 	int n = 0;
268 
269 	if (vd->vdev_ops->vdev_op_leaf)
270 		return (1);
271 
272 	for (int c = 0; c < vd->vdev_children; c++)
273 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
274 
275 	return (n);
276 }
277 
278 int
279 vdev_count_leaves(spa_t *spa)
280 {
281 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
282 }
283 
284 void
285 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
286 {
287 	size_t oldsize, newsize;
288 	uint64_t id = cvd->vdev_id;
289 	vdev_t **newchild;
290 	spa_t *spa = cvd->vdev_spa;
291 
292 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
293 	ASSERT(cvd->vdev_parent == NULL);
294 
295 	cvd->vdev_parent = pvd;
296 
297 	if (pvd == NULL)
298 		return;
299 
300 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
301 
302 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
303 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
304 	newsize = pvd->vdev_children * sizeof (vdev_t *);
305 
306 	newchild = kmem_zalloc(newsize, KM_SLEEP);
307 	if (pvd->vdev_child != NULL) {
308 		bcopy(pvd->vdev_child, newchild, oldsize);
309 		kmem_free(pvd->vdev_child, oldsize);
310 	}
311 
312 	pvd->vdev_child = newchild;
313 	pvd->vdev_child[id] = cvd;
314 
315 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
316 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
317 
318 	/*
319 	 * Walk up all ancestors to update guid sum.
320 	 */
321 	for (; pvd != NULL; pvd = pvd->vdev_parent)
322 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
323 }
324 
325 void
326 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
327 {
328 	int c;
329 	uint_t id = cvd->vdev_id;
330 
331 	ASSERT(cvd->vdev_parent == pvd);
332 
333 	if (pvd == NULL)
334 		return;
335 
336 	ASSERT(id < pvd->vdev_children);
337 	ASSERT(pvd->vdev_child[id] == cvd);
338 
339 	pvd->vdev_child[id] = NULL;
340 	cvd->vdev_parent = NULL;
341 
342 	for (c = 0; c < pvd->vdev_children; c++)
343 		if (pvd->vdev_child[c])
344 			break;
345 
346 	if (c == pvd->vdev_children) {
347 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
348 		pvd->vdev_child = NULL;
349 		pvd->vdev_children = 0;
350 	}
351 
352 	/*
353 	 * Walk up all ancestors to update guid sum.
354 	 */
355 	for (; pvd != NULL; pvd = pvd->vdev_parent)
356 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
357 }
358 
359 /*
360  * Remove any holes in the child array.
361  */
362 void
363 vdev_compact_children(vdev_t *pvd)
364 {
365 	vdev_t **newchild, *cvd;
366 	int oldc = pvd->vdev_children;
367 	int newc;
368 
369 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
370 
371 	for (int c = newc = 0; c < oldc; c++)
372 		if (pvd->vdev_child[c])
373 			newc++;
374 
375 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
376 
377 	for (int c = newc = 0; c < oldc; c++) {
378 		if ((cvd = pvd->vdev_child[c]) != NULL) {
379 			newchild[newc] = cvd;
380 			cvd->vdev_id = newc++;
381 		}
382 	}
383 
384 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
385 	pvd->vdev_child = newchild;
386 	pvd->vdev_children = newc;
387 }
388 
389 /*
390  * Allocate and minimally initialize a vdev_t.
391  */
392 vdev_t *
393 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
394 {
395 	vdev_t *vd;
396 	vdev_indirect_config_t *vic;
397 
398 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
399 	vic = &vd->vdev_indirect_config;
400 
401 	if (spa->spa_root_vdev == NULL) {
402 		ASSERT(ops == &vdev_root_ops);
403 		spa->spa_root_vdev = vd;
404 		spa->spa_load_guid = spa_generate_guid(NULL);
405 	}
406 
407 	if (guid == 0 && ops != &vdev_hole_ops) {
408 		if (spa->spa_root_vdev == vd) {
409 			/*
410 			 * The root vdev's guid will also be the pool guid,
411 			 * which must be unique among all pools.
412 			 */
413 			guid = spa_generate_guid(NULL);
414 		} else {
415 			/*
416 			 * Any other vdev's guid must be unique within the pool.
417 			 */
418 			guid = spa_generate_guid(spa);
419 		}
420 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
421 	}
422 
423 	vd->vdev_spa = spa;
424 	vd->vdev_id = id;
425 	vd->vdev_guid = guid;
426 	vd->vdev_guid_sum = guid;
427 	vd->vdev_ops = ops;
428 	vd->vdev_state = VDEV_STATE_CLOSED;
429 	vd->vdev_ishole = (ops == &vdev_hole_ops);
430 	vic->vic_prev_indirect_vdev = UINT64_MAX;
431 
432 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
433 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
434 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
435 
436 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
440 	for (int t = 0; t < DTL_TYPES; t++) {
441 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
442 	}
443 	txg_list_create(&vd->vdev_ms_list, spa,
444 	    offsetof(struct metaslab, ms_txg_node));
445 	txg_list_create(&vd->vdev_dtl_list, spa,
446 	    offsetof(struct vdev, vdev_dtl_node));
447 	vd->vdev_stat.vs_timestamp = gethrtime();
448 	vdev_queue_init(vd);
449 	vdev_cache_init(vd);
450 
451 	return (vd);
452 }
453 
454 /*
455  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
456  * creating a new vdev or loading an existing one - the behavior is slightly
457  * different for each case.
458  */
459 int
460 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
461     int alloctype)
462 {
463 	vdev_ops_t *ops;
464 	char *type;
465 	uint64_t guid = 0, islog, nparity;
466 	vdev_t *vd;
467 	vdev_indirect_config_t *vic;
468 
469 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
470 
471 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
472 		return (SET_ERROR(EINVAL));
473 
474 	if ((ops = vdev_getops(type)) == NULL)
475 		return (SET_ERROR(EINVAL));
476 
477 	/*
478 	 * If this is a load, get the vdev guid from the nvlist.
479 	 * Otherwise, vdev_alloc_common() will generate one for us.
480 	 */
481 	if (alloctype == VDEV_ALLOC_LOAD) {
482 		uint64_t label_id;
483 
484 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
485 		    label_id != id)
486 			return (SET_ERROR(EINVAL));
487 
488 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
489 			return (SET_ERROR(EINVAL));
490 	} else if (alloctype == VDEV_ALLOC_SPARE) {
491 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
492 			return (SET_ERROR(EINVAL));
493 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
494 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
495 			return (SET_ERROR(EINVAL));
496 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
497 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
498 			return (SET_ERROR(EINVAL));
499 	}
500 
501 	/*
502 	 * The first allocated vdev must be of type 'root'.
503 	 */
504 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
505 		return (SET_ERROR(EINVAL));
506 
507 	/*
508 	 * Determine whether we're a log vdev.
509 	 */
510 	islog = 0;
511 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
512 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
513 		return (SET_ERROR(ENOTSUP));
514 
515 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
516 		return (SET_ERROR(ENOTSUP));
517 
518 	/*
519 	 * Set the nparity property for RAID-Z vdevs.
520 	 */
521 	nparity = -1ULL;
522 	if (ops == &vdev_raidz_ops) {
523 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
524 		    &nparity) == 0) {
525 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
526 				return (SET_ERROR(EINVAL));
527 			/*
528 			 * Previous versions could only support 1 or 2 parity
529 			 * device.
530 			 */
531 			if (nparity > 1 &&
532 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
533 				return (SET_ERROR(ENOTSUP));
534 			if (nparity > 2 &&
535 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
536 				return (SET_ERROR(ENOTSUP));
537 		} else {
538 			/*
539 			 * We require the parity to be specified for SPAs that
540 			 * support multiple parity levels.
541 			 */
542 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
543 				return (SET_ERROR(EINVAL));
544 			/*
545 			 * Otherwise, we default to 1 parity device for RAID-Z.
546 			 */
547 			nparity = 1;
548 		}
549 	} else {
550 		nparity = 0;
551 	}
552 	ASSERT(nparity != -1ULL);
553 
554 	vd = vdev_alloc_common(spa, id, guid, ops);
555 	vic = &vd->vdev_indirect_config;
556 
557 	vd->vdev_islog = islog;
558 	vd->vdev_nparity = nparity;
559 
560 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
561 		vd->vdev_path = spa_strdup(vd->vdev_path);
562 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
563 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
564 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
565 	    &vd->vdev_physpath) == 0)
566 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
567 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
568 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
569 
570 	/*
571 	 * Set the whole_disk property.  If it's not specified, leave the value
572 	 * as -1.
573 	 */
574 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
575 	    &vd->vdev_wholedisk) != 0)
576 		vd->vdev_wholedisk = -1ULL;
577 
578 	ASSERT0(vic->vic_mapping_object);
579 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
580 	    &vic->vic_mapping_object);
581 	ASSERT0(vic->vic_births_object);
582 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
583 	    &vic->vic_births_object);
584 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
585 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
586 	    &vic->vic_prev_indirect_vdev);
587 
588 	/*
589 	 * Look for the 'not present' flag.  This will only be set if the device
590 	 * was not present at the time of import.
591 	 */
592 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
593 	    &vd->vdev_not_present);
594 
595 	/*
596 	 * Get the alignment requirement.
597 	 */
598 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
599 
600 	/*
601 	 * Retrieve the vdev creation time.
602 	 */
603 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
604 	    &vd->vdev_crtxg);
605 
606 	/*
607 	 * If we're a top-level vdev, try to load the allocation parameters.
608 	 */
609 	if (parent && !parent->vdev_parent &&
610 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
611 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
612 		    &vd->vdev_ms_array);
613 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
614 		    &vd->vdev_ms_shift);
615 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
616 		    &vd->vdev_asize);
617 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
618 		    &vd->vdev_removing);
619 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
620 		    &vd->vdev_top_zap);
621 	} else {
622 		ASSERT0(vd->vdev_top_zap);
623 	}
624 
625 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
626 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
627 		    alloctype == VDEV_ALLOC_ADD ||
628 		    alloctype == VDEV_ALLOC_SPLIT ||
629 		    alloctype == VDEV_ALLOC_ROOTPOOL);
630 		vd->vdev_mg = metaslab_group_create(islog ?
631 		    spa_log_class(spa) : spa_normal_class(spa), vd);
632 	}
633 
634 	if (vd->vdev_ops->vdev_op_leaf &&
635 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
636 		(void) nvlist_lookup_uint64(nv,
637 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
638 	} else {
639 		ASSERT0(vd->vdev_leaf_zap);
640 	}
641 
642 	/*
643 	 * If we're a leaf vdev, try to load the DTL object and other state.
644 	 */
645 
646 	if (vd->vdev_ops->vdev_op_leaf &&
647 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
648 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
649 		if (alloctype == VDEV_ALLOC_LOAD) {
650 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
651 			    &vd->vdev_dtl_object);
652 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
653 			    &vd->vdev_unspare);
654 		}
655 
656 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
657 			uint64_t spare = 0;
658 
659 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
660 			    &spare) == 0 && spare)
661 				spa_spare_add(vd);
662 		}
663 
664 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
665 		    &vd->vdev_offline);
666 
667 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
668 		    &vd->vdev_resilver_txg);
669 
670 		/*
671 		 * When importing a pool, we want to ignore the persistent fault
672 		 * state, as the diagnosis made on another system may not be
673 		 * valid in the current context.  Local vdevs will
674 		 * remain in the faulted state.
675 		 */
676 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
677 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
678 			    &vd->vdev_faulted);
679 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
680 			    &vd->vdev_degraded);
681 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
682 			    &vd->vdev_removed);
683 
684 			if (vd->vdev_faulted || vd->vdev_degraded) {
685 				char *aux;
686 
687 				vd->vdev_label_aux =
688 				    VDEV_AUX_ERR_EXCEEDED;
689 				if (nvlist_lookup_string(nv,
690 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
691 				    strcmp(aux, "external") == 0)
692 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
693 			}
694 		}
695 	}
696 
697 	/*
698 	 * Add ourselves to the parent's list of children.
699 	 */
700 	vdev_add_child(parent, vd);
701 
702 	*vdp = vd;
703 
704 	return (0);
705 }
706 
707 void
708 vdev_free(vdev_t *vd)
709 {
710 	spa_t *spa = vd->vdev_spa;
711 
712 	/*
713 	 * vdev_free() implies closing the vdev first.  This is simpler than
714 	 * trying to ensure complicated semantics for all callers.
715 	 */
716 	vdev_close(vd);
717 
718 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
719 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
720 
721 	/*
722 	 * Free all children.
723 	 */
724 	for (int c = 0; c < vd->vdev_children; c++)
725 		vdev_free(vd->vdev_child[c]);
726 
727 	ASSERT(vd->vdev_child == NULL);
728 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
729 
730 	/*
731 	 * Discard allocation state.
732 	 */
733 	if (vd->vdev_mg != NULL) {
734 		vdev_metaslab_fini(vd);
735 		metaslab_group_destroy(vd->vdev_mg);
736 	}
737 
738 	ASSERT0(vd->vdev_stat.vs_space);
739 	ASSERT0(vd->vdev_stat.vs_dspace);
740 	ASSERT0(vd->vdev_stat.vs_alloc);
741 
742 	/*
743 	 * Remove this vdev from its parent's child list.
744 	 */
745 	vdev_remove_child(vd->vdev_parent, vd);
746 
747 	ASSERT(vd->vdev_parent == NULL);
748 
749 	/*
750 	 * Clean up vdev structure.
751 	 */
752 	vdev_queue_fini(vd);
753 	vdev_cache_fini(vd);
754 
755 	if (vd->vdev_path)
756 		spa_strfree(vd->vdev_path);
757 	if (vd->vdev_devid)
758 		spa_strfree(vd->vdev_devid);
759 	if (vd->vdev_physpath)
760 		spa_strfree(vd->vdev_physpath);
761 	if (vd->vdev_fru)
762 		spa_strfree(vd->vdev_fru);
763 
764 	if (vd->vdev_isspare)
765 		spa_spare_remove(vd);
766 	if (vd->vdev_isl2cache)
767 		spa_l2cache_remove(vd);
768 
769 	txg_list_destroy(&vd->vdev_ms_list);
770 	txg_list_destroy(&vd->vdev_dtl_list);
771 
772 	mutex_enter(&vd->vdev_dtl_lock);
773 	space_map_close(vd->vdev_dtl_sm);
774 	for (int t = 0; t < DTL_TYPES; t++) {
775 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
776 		range_tree_destroy(vd->vdev_dtl[t]);
777 	}
778 	mutex_exit(&vd->vdev_dtl_lock);
779 
780 	EQUIV(vd->vdev_indirect_births != NULL,
781 	    vd->vdev_indirect_mapping != NULL);
782 	if (vd->vdev_indirect_births != NULL) {
783 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
784 		vdev_indirect_births_close(vd->vdev_indirect_births);
785 	}
786 
787 	if (vd->vdev_obsolete_sm != NULL) {
788 		ASSERT(vd->vdev_removing ||
789 		    vd->vdev_ops == &vdev_indirect_ops);
790 		space_map_close(vd->vdev_obsolete_sm);
791 		vd->vdev_obsolete_sm = NULL;
792 	}
793 	range_tree_destroy(vd->vdev_obsolete_segments);
794 	rw_destroy(&vd->vdev_indirect_rwlock);
795 	mutex_destroy(&vd->vdev_obsolete_lock);
796 
797 	mutex_destroy(&vd->vdev_queue_lock);
798 	mutex_destroy(&vd->vdev_dtl_lock);
799 	mutex_destroy(&vd->vdev_stat_lock);
800 	mutex_destroy(&vd->vdev_probe_lock);
801 
802 	if (vd == spa->spa_root_vdev)
803 		spa->spa_root_vdev = NULL;
804 
805 	kmem_free(vd, sizeof (vdev_t));
806 }
807 
808 /*
809  * Transfer top-level vdev state from svd to tvd.
810  */
811 static void
812 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
813 {
814 	spa_t *spa = svd->vdev_spa;
815 	metaslab_t *msp;
816 	vdev_t *vd;
817 	int t;
818 
819 	ASSERT(tvd == tvd->vdev_top);
820 
821 	tvd->vdev_ms_array = svd->vdev_ms_array;
822 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
823 	tvd->vdev_ms_count = svd->vdev_ms_count;
824 	tvd->vdev_top_zap = svd->vdev_top_zap;
825 
826 	svd->vdev_ms_array = 0;
827 	svd->vdev_ms_shift = 0;
828 	svd->vdev_ms_count = 0;
829 	svd->vdev_top_zap = 0;
830 
831 	if (tvd->vdev_mg)
832 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
833 	tvd->vdev_mg = svd->vdev_mg;
834 	tvd->vdev_ms = svd->vdev_ms;
835 
836 	svd->vdev_mg = NULL;
837 	svd->vdev_ms = NULL;
838 
839 	if (tvd->vdev_mg != NULL)
840 		tvd->vdev_mg->mg_vd = tvd;
841 
842 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
843 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
844 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
845 
846 	svd->vdev_stat.vs_alloc = 0;
847 	svd->vdev_stat.vs_space = 0;
848 	svd->vdev_stat.vs_dspace = 0;
849 
850 	for (t = 0; t < TXG_SIZE; t++) {
851 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
852 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
853 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
854 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
855 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
856 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
857 	}
858 
859 	if (list_link_active(&svd->vdev_config_dirty_node)) {
860 		vdev_config_clean(svd);
861 		vdev_config_dirty(tvd);
862 	}
863 
864 	if (list_link_active(&svd->vdev_state_dirty_node)) {
865 		vdev_state_clean(svd);
866 		vdev_state_dirty(tvd);
867 	}
868 
869 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
870 	svd->vdev_deflate_ratio = 0;
871 
872 	tvd->vdev_islog = svd->vdev_islog;
873 	svd->vdev_islog = 0;
874 }
875 
876 static void
877 vdev_top_update(vdev_t *tvd, vdev_t *vd)
878 {
879 	if (vd == NULL)
880 		return;
881 
882 	vd->vdev_top = tvd;
883 
884 	for (int c = 0; c < vd->vdev_children; c++)
885 		vdev_top_update(tvd, vd->vdev_child[c]);
886 }
887 
888 /*
889  * Add a mirror/replacing vdev above an existing vdev.
890  */
891 vdev_t *
892 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
893 {
894 	spa_t *spa = cvd->vdev_spa;
895 	vdev_t *pvd = cvd->vdev_parent;
896 	vdev_t *mvd;
897 
898 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
899 
900 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
901 
902 	mvd->vdev_asize = cvd->vdev_asize;
903 	mvd->vdev_min_asize = cvd->vdev_min_asize;
904 	mvd->vdev_max_asize = cvd->vdev_max_asize;
905 	mvd->vdev_psize = cvd->vdev_psize;
906 	mvd->vdev_ashift = cvd->vdev_ashift;
907 	mvd->vdev_state = cvd->vdev_state;
908 	mvd->vdev_crtxg = cvd->vdev_crtxg;
909 
910 	vdev_remove_child(pvd, cvd);
911 	vdev_add_child(pvd, mvd);
912 	cvd->vdev_id = mvd->vdev_children;
913 	vdev_add_child(mvd, cvd);
914 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
915 
916 	if (mvd == mvd->vdev_top)
917 		vdev_top_transfer(cvd, mvd);
918 
919 	return (mvd);
920 }
921 
922 /*
923  * Remove a 1-way mirror/replacing vdev from the tree.
924  */
925 void
926 vdev_remove_parent(vdev_t *cvd)
927 {
928 	vdev_t *mvd = cvd->vdev_parent;
929 	vdev_t *pvd = mvd->vdev_parent;
930 
931 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
932 
933 	ASSERT(mvd->vdev_children == 1);
934 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
935 	    mvd->vdev_ops == &vdev_replacing_ops ||
936 	    mvd->vdev_ops == &vdev_spare_ops);
937 	cvd->vdev_ashift = mvd->vdev_ashift;
938 
939 	vdev_remove_child(mvd, cvd);
940 	vdev_remove_child(pvd, mvd);
941 
942 	/*
943 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
944 	 * Otherwise, we could have detached an offline device, and when we
945 	 * go to import the pool we'll think we have two top-level vdevs,
946 	 * instead of a different version of the same top-level vdev.
947 	 */
948 	if (mvd->vdev_top == mvd) {
949 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
950 		cvd->vdev_orig_guid = cvd->vdev_guid;
951 		cvd->vdev_guid += guid_delta;
952 		cvd->vdev_guid_sum += guid_delta;
953 	}
954 	cvd->vdev_id = mvd->vdev_id;
955 	vdev_add_child(pvd, cvd);
956 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
957 
958 	if (cvd == cvd->vdev_top)
959 		vdev_top_transfer(mvd, cvd);
960 
961 	ASSERT(mvd->vdev_children == 0);
962 	vdev_free(mvd);
963 }
964 
965 int
966 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
967 {
968 	spa_t *spa = vd->vdev_spa;
969 	objset_t *mos = spa->spa_meta_objset;
970 	uint64_t m;
971 	uint64_t oldc = vd->vdev_ms_count;
972 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
973 	metaslab_t **mspp;
974 	int error;
975 
976 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
977 
978 	/*
979 	 * This vdev is not being allocated from yet or is a hole.
980 	 */
981 	if (vd->vdev_ms_shift == 0)
982 		return (0);
983 
984 	ASSERT(!vd->vdev_ishole);
985 
986 	ASSERT(oldc <= newc);
987 
988 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
989 
990 	if (oldc != 0) {
991 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
992 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
993 	}
994 
995 	vd->vdev_ms = mspp;
996 	vd->vdev_ms_count = newc;
997 
998 	for (m = oldc; m < newc; m++) {
999 		uint64_t object = 0;
1000 
1001 		/*
1002 		 * vdev_ms_array may be 0 if we are creating the "fake"
1003 		 * metaslabs for an indirect vdev for zdb's leak detection.
1004 		 * See zdb_leak_init().
1005 		 */
1006 		if (txg == 0 && vd->vdev_ms_array != 0) {
1007 			error = dmu_read(mos, vd->vdev_ms_array,
1008 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1009 			    DMU_READ_PREFETCH);
1010 			if (error != 0) {
1011 				vdev_dbgmsg(vd, "unable to read the metaslab "
1012 				    "array [error=%d]", error);
1013 				return (error);
1014 			}
1015 		}
1016 
1017 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1018 		    &(vd->vdev_ms[m]));
1019 		if (error != 0) {
1020 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1021 			    error);
1022 			return (error);
1023 		}
1024 	}
1025 
1026 	if (txg == 0)
1027 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1028 
1029 	/*
1030 	 * If the vdev is being removed we don't activate
1031 	 * the metaslabs since we want to ensure that no new
1032 	 * allocations are performed on this device.
1033 	 */
1034 	if (oldc == 0 && !vd->vdev_removing)
1035 		metaslab_group_activate(vd->vdev_mg);
1036 
1037 	if (txg == 0)
1038 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1039 
1040 	return (0);
1041 }
1042 
1043 void
1044 vdev_metaslab_fini(vdev_t *vd)
1045 {
1046 	if (vd->vdev_ms != NULL) {
1047 		uint64_t count = vd->vdev_ms_count;
1048 
1049 		metaslab_group_passivate(vd->vdev_mg);
1050 		for (uint64_t m = 0; m < count; m++) {
1051 			metaslab_t *msp = vd->vdev_ms[m];
1052 
1053 			if (msp != NULL)
1054 				metaslab_fini(msp);
1055 		}
1056 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1057 		vd->vdev_ms = NULL;
1058 
1059 		vd->vdev_ms_count = 0;
1060 	}
1061 	ASSERT0(vd->vdev_ms_count);
1062 }
1063 
1064 typedef struct vdev_probe_stats {
1065 	boolean_t	vps_readable;
1066 	boolean_t	vps_writeable;
1067 	int		vps_flags;
1068 } vdev_probe_stats_t;
1069 
1070 static void
1071 vdev_probe_done(zio_t *zio)
1072 {
1073 	spa_t *spa = zio->io_spa;
1074 	vdev_t *vd = zio->io_vd;
1075 	vdev_probe_stats_t *vps = zio->io_private;
1076 
1077 	ASSERT(vd->vdev_probe_zio != NULL);
1078 
1079 	if (zio->io_type == ZIO_TYPE_READ) {
1080 		if (zio->io_error == 0)
1081 			vps->vps_readable = 1;
1082 		if (zio->io_error == 0 && spa_writeable(spa)) {
1083 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1084 			    zio->io_offset, zio->io_size, zio->io_abd,
1085 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1086 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1087 		} else {
1088 			abd_free(zio->io_abd);
1089 		}
1090 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1091 		if (zio->io_error == 0)
1092 			vps->vps_writeable = 1;
1093 		abd_free(zio->io_abd);
1094 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1095 		zio_t *pio;
1096 
1097 		vd->vdev_cant_read |= !vps->vps_readable;
1098 		vd->vdev_cant_write |= !vps->vps_writeable;
1099 
1100 		if (vdev_readable(vd) &&
1101 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1102 			zio->io_error = 0;
1103 		} else {
1104 			ASSERT(zio->io_error != 0);
1105 			vdev_dbgmsg(vd, "failed probe");
1106 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1107 			    spa, vd, NULL, 0, 0);
1108 			zio->io_error = SET_ERROR(ENXIO);
1109 		}
1110 
1111 		mutex_enter(&vd->vdev_probe_lock);
1112 		ASSERT(vd->vdev_probe_zio == zio);
1113 		vd->vdev_probe_zio = NULL;
1114 		mutex_exit(&vd->vdev_probe_lock);
1115 
1116 		zio_link_t *zl = NULL;
1117 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1118 			if (!vdev_accessible(vd, pio))
1119 				pio->io_error = SET_ERROR(ENXIO);
1120 
1121 		kmem_free(vps, sizeof (*vps));
1122 	}
1123 }
1124 
1125 /*
1126  * Determine whether this device is accessible.
1127  *
1128  * Read and write to several known locations: the pad regions of each
1129  * vdev label but the first, which we leave alone in case it contains
1130  * a VTOC.
1131  */
1132 zio_t *
1133 vdev_probe(vdev_t *vd, zio_t *zio)
1134 {
1135 	spa_t *spa = vd->vdev_spa;
1136 	vdev_probe_stats_t *vps = NULL;
1137 	zio_t *pio;
1138 
1139 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1140 
1141 	/*
1142 	 * Don't probe the probe.
1143 	 */
1144 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1145 		return (NULL);
1146 
1147 	/*
1148 	 * To prevent 'probe storms' when a device fails, we create
1149 	 * just one probe i/o at a time.  All zios that want to probe
1150 	 * this vdev will become parents of the probe io.
1151 	 */
1152 	mutex_enter(&vd->vdev_probe_lock);
1153 
1154 	if ((pio = vd->vdev_probe_zio) == NULL) {
1155 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1156 
1157 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1158 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1159 		    ZIO_FLAG_TRYHARD;
1160 
1161 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1162 			/*
1163 			 * vdev_cant_read and vdev_cant_write can only
1164 			 * transition from TRUE to FALSE when we have the
1165 			 * SCL_ZIO lock as writer; otherwise they can only
1166 			 * transition from FALSE to TRUE.  This ensures that
1167 			 * any zio looking at these values can assume that
1168 			 * failures persist for the life of the I/O.  That's
1169 			 * important because when a device has intermittent
1170 			 * connectivity problems, we want to ensure that
1171 			 * they're ascribed to the device (ENXIO) and not
1172 			 * the zio (EIO).
1173 			 *
1174 			 * Since we hold SCL_ZIO as writer here, clear both
1175 			 * values so the probe can reevaluate from first
1176 			 * principles.
1177 			 */
1178 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1179 			vd->vdev_cant_read = B_FALSE;
1180 			vd->vdev_cant_write = B_FALSE;
1181 		}
1182 
1183 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1184 		    vdev_probe_done, vps,
1185 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1186 
1187 		/*
1188 		 * We can't change the vdev state in this context, so we
1189 		 * kick off an async task to do it on our behalf.
1190 		 */
1191 		if (zio != NULL) {
1192 			vd->vdev_probe_wanted = B_TRUE;
1193 			spa_async_request(spa, SPA_ASYNC_PROBE);
1194 		}
1195 	}
1196 
1197 	if (zio != NULL)
1198 		zio_add_child(zio, pio);
1199 
1200 	mutex_exit(&vd->vdev_probe_lock);
1201 
1202 	if (vps == NULL) {
1203 		ASSERT(zio != NULL);
1204 		return (NULL);
1205 	}
1206 
1207 	for (int l = 1; l < VDEV_LABELS; l++) {
1208 		zio_nowait(zio_read_phys(pio, vd,
1209 		    vdev_label_offset(vd->vdev_psize, l,
1210 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1211 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1212 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1213 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1214 	}
1215 
1216 	if (zio == NULL)
1217 		return (pio);
1218 
1219 	zio_nowait(pio);
1220 	return (NULL);
1221 }
1222 
1223 static void
1224 vdev_open_child(void *arg)
1225 {
1226 	vdev_t *vd = arg;
1227 
1228 	vd->vdev_open_thread = curthread;
1229 	vd->vdev_open_error = vdev_open(vd);
1230 	vd->vdev_open_thread = NULL;
1231 }
1232 
1233 boolean_t
1234 vdev_uses_zvols(vdev_t *vd)
1235 {
1236 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1237 	    strlen(ZVOL_DIR)) == 0)
1238 		return (B_TRUE);
1239 	for (int c = 0; c < vd->vdev_children; c++)
1240 		if (vdev_uses_zvols(vd->vdev_child[c]))
1241 			return (B_TRUE);
1242 	return (B_FALSE);
1243 }
1244 
1245 void
1246 vdev_open_children(vdev_t *vd)
1247 {
1248 	taskq_t *tq;
1249 	int children = vd->vdev_children;
1250 
1251 	/*
1252 	 * in order to handle pools on top of zvols, do the opens
1253 	 * in a single thread so that the same thread holds the
1254 	 * spa_namespace_lock
1255 	 */
1256 	if (vdev_uses_zvols(vd)) {
1257 		for (int c = 0; c < children; c++)
1258 			vd->vdev_child[c]->vdev_open_error =
1259 			    vdev_open(vd->vdev_child[c]);
1260 		return;
1261 	}
1262 	tq = taskq_create("vdev_open", children, minclsyspri,
1263 	    children, children, TASKQ_PREPOPULATE);
1264 
1265 	for (int c = 0; c < children; c++)
1266 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1267 		    TQ_SLEEP) != NULL);
1268 
1269 	taskq_destroy(tq);
1270 }
1271 
1272 /*
1273  * Compute the raidz-deflation ratio.  Note, we hard-code
1274  * in 128k (1 << 17) because it is the "typical" blocksize.
1275  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1276  * otherwise it would inconsistently account for existing bp's.
1277  */
1278 static void
1279 vdev_set_deflate_ratio(vdev_t *vd)
1280 {
1281 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1282 		vd->vdev_deflate_ratio = (1 << 17) /
1283 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1284 	}
1285 }
1286 
1287 /*
1288  * Prepare a virtual device for access.
1289  */
1290 int
1291 vdev_open(vdev_t *vd)
1292 {
1293 	spa_t *spa = vd->vdev_spa;
1294 	int error;
1295 	uint64_t osize = 0;
1296 	uint64_t max_osize = 0;
1297 	uint64_t asize, max_asize, psize;
1298 	uint64_t ashift = 0;
1299 
1300 	ASSERT(vd->vdev_open_thread == curthread ||
1301 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1302 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1303 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1304 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1305 
1306 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1307 	vd->vdev_cant_read = B_FALSE;
1308 	vd->vdev_cant_write = B_FALSE;
1309 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1310 
1311 	/*
1312 	 * If this vdev is not removed, check its fault status.  If it's
1313 	 * faulted, bail out of the open.
1314 	 */
1315 	if (!vd->vdev_removed && vd->vdev_faulted) {
1316 		ASSERT(vd->vdev_children == 0);
1317 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1318 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1319 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1320 		    vd->vdev_label_aux);
1321 		return (SET_ERROR(ENXIO));
1322 	} else if (vd->vdev_offline) {
1323 		ASSERT(vd->vdev_children == 0);
1324 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1325 		return (SET_ERROR(ENXIO));
1326 	}
1327 
1328 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1329 
1330 	/*
1331 	 * Reset the vdev_reopening flag so that we actually close
1332 	 * the vdev on error.
1333 	 */
1334 	vd->vdev_reopening = B_FALSE;
1335 	if (zio_injection_enabled && error == 0)
1336 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1337 
1338 	if (error) {
1339 		if (vd->vdev_removed &&
1340 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1341 			vd->vdev_removed = B_FALSE;
1342 
1343 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1344 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1345 			    vd->vdev_stat.vs_aux);
1346 		} else {
1347 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348 			    vd->vdev_stat.vs_aux);
1349 		}
1350 		return (error);
1351 	}
1352 
1353 	vd->vdev_removed = B_FALSE;
1354 
1355 	/*
1356 	 * Recheck the faulted flag now that we have confirmed that
1357 	 * the vdev is accessible.  If we're faulted, bail.
1358 	 */
1359 	if (vd->vdev_faulted) {
1360 		ASSERT(vd->vdev_children == 0);
1361 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1362 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1363 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1364 		    vd->vdev_label_aux);
1365 		return (SET_ERROR(ENXIO));
1366 	}
1367 
1368 	if (vd->vdev_degraded) {
1369 		ASSERT(vd->vdev_children == 0);
1370 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1371 		    VDEV_AUX_ERR_EXCEEDED);
1372 	} else {
1373 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1374 	}
1375 
1376 	/*
1377 	 * For hole or missing vdevs we just return success.
1378 	 */
1379 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1380 		return (0);
1381 
1382 	for (int c = 0; c < vd->vdev_children; c++) {
1383 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1384 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1385 			    VDEV_AUX_NONE);
1386 			break;
1387 		}
1388 	}
1389 
1390 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1391 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1392 
1393 	if (vd->vdev_children == 0) {
1394 		if (osize < SPA_MINDEVSIZE) {
1395 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396 			    VDEV_AUX_TOO_SMALL);
1397 			return (SET_ERROR(EOVERFLOW));
1398 		}
1399 		psize = osize;
1400 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1401 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1402 		    VDEV_LABEL_END_SIZE);
1403 	} else {
1404 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1405 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1406 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407 			    VDEV_AUX_TOO_SMALL);
1408 			return (SET_ERROR(EOVERFLOW));
1409 		}
1410 		psize = 0;
1411 		asize = osize;
1412 		max_asize = max_osize;
1413 	}
1414 
1415 	vd->vdev_psize = psize;
1416 
1417 	/*
1418 	 * Make sure the allocatable size hasn't shrunk too much.
1419 	 */
1420 	if (asize < vd->vdev_min_asize) {
1421 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1422 		    VDEV_AUX_BAD_LABEL);
1423 		return (SET_ERROR(EINVAL));
1424 	}
1425 
1426 	if (vd->vdev_asize == 0) {
1427 		/*
1428 		 * This is the first-ever open, so use the computed values.
1429 		 * For testing purposes, a higher ashift can be requested.
1430 		 */
1431 		vd->vdev_asize = asize;
1432 		vd->vdev_max_asize = max_asize;
1433 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1434 	} else {
1435 		/*
1436 		 * Detect if the alignment requirement has increased.
1437 		 * We don't want to make the pool unavailable, just
1438 		 * issue a warning instead.
1439 		 */
1440 		if (ashift > vd->vdev_top->vdev_ashift &&
1441 		    vd->vdev_ops->vdev_op_leaf) {
1442 			cmn_err(CE_WARN,
1443 			    "Disk, '%s', has a block alignment that is "
1444 			    "larger than the pool's alignment\n",
1445 			    vd->vdev_path);
1446 		}
1447 		vd->vdev_max_asize = max_asize;
1448 	}
1449 
1450 	/*
1451 	 * If all children are healthy we update asize if either:
1452 	 * The asize has increased, due to a device expansion caused by dynamic
1453 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1454 	 * making the additional space available.
1455 	 *
1456 	 * The asize has decreased, due to a device shrink usually caused by a
1457 	 * vdev replace with a smaller device. This ensures that calculations
1458 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1459 	 * to do this as we've already validated that asize is greater than
1460 	 * vdev_min_asize.
1461 	 */
1462 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1463 	    ((asize > vd->vdev_asize &&
1464 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1465 	    (asize < vd->vdev_asize)))
1466 		vd->vdev_asize = asize;
1467 
1468 	vdev_set_min_asize(vd);
1469 
1470 	/*
1471 	 * Ensure we can issue some IO before declaring the
1472 	 * vdev open for business.
1473 	 */
1474 	if (vd->vdev_ops->vdev_op_leaf &&
1475 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1476 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1477 		    VDEV_AUX_ERR_EXCEEDED);
1478 		return (error);
1479 	}
1480 
1481 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1482 	    !vd->vdev_isl2cache && !vd->vdev_islog) {
1483 		if (vd->vdev_ashift > spa->spa_max_ashift)
1484 			spa->spa_max_ashift = vd->vdev_ashift;
1485 		if (vd->vdev_ashift < spa->spa_min_ashift)
1486 			spa->spa_min_ashift = vd->vdev_ashift;
1487 	}
1488 
1489 	/*
1490 	 * Track the min and max ashift values for normal data devices.
1491 	 */
1492 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1493 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1494 		if (vd->vdev_ashift > spa->spa_max_ashift)
1495 			spa->spa_max_ashift = vd->vdev_ashift;
1496 		if (vd->vdev_ashift < spa->spa_min_ashift)
1497 			spa->spa_min_ashift = vd->vdev_ashift;
1498 	}
1499 
1500 	/*
1501 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1502 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1503 	 * since this would just restart the scrub we are already doing.
1504 	 */
1505 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1506 	    vdev_resilver_needed(vd, NULL, NULL))
1507 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1508 
1509 	return (0);
1510 }
1511 
1512 /*
1513  * Called once the vdevs are all opened, this routine validates the label
1514  * contents. This needs to be done before vdev_load() so that we don't
1515  * inadvertently do repair I/Os to the wrong device.
1516  *
1517  * This function will only return failure if one of the vdevs indicates that it
1518  * has since been destroyed or exported.  This is only possible if
1519  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1520  * will be updated but the function will return 0.
1521  */
1522 int
1523 vdev_validate(vdev_t *vd)
1524 {
1525 	spa_t *spa = vd->vdev_spa;
1526 	nvlist_t *label;
1527 	uint64_t guid = 0, aux_guid = 0, top_guid;
1528 	uint64_t state;
1529 	nvlist_t *nvl;
1530 	uint64_t txg;
1531 
1532 	if (vdev_validate_skip)
1533 		return (0);
1534 
1535 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1536 		if (vdev_validate(vd->vdev_child[c]) != 0)
1537 			return (SET_ERROR(EBADF));
1538 
1539 	/*
1540 	 * If the device has already failed, or was marked offline, don't do
1541 	 * any further validation.  Otherwise, label I/O will fail and we will
1542 	 * overwrite the previous state.
1543 	 */
1544 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1545 		return (0);
1546 
1547 	/*
1548 	 * If we are performing an extreme rewind, we allow for a label that
1549 	 * was modified at a point after the current txg.
1550 	 */
1551 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1552 		txg = UINT64_MAX;
1553 	else
1554 		txg = spa_last_synced_txg(spa);
1555 
1556 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1557 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1558 		    VDEV_AUX_BAD_LABEL);
1559 		vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1560 		return (0);
1561 	}
1562 
1563 	/*
1564 	 * Determine if this vdev has been split off into another
1565 	 * pool.  If so, then refuse to open it.
1566 	 */
1567 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1568 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1569 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1570 		    VDEV_AUX_SPLIT_POOL);
1571 		nvlist_free(label);
1572 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1573 		return (0);
1574 	}
1575 
1576 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1577 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1578 		    VDEV_AUX_CORRUPT_DATA);
1579 		nvlist_free(label);
1580 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1581 		    ZPOOL_CONFIG_POOL_GUID);
1582 		return (0);
1583 	}
1584 
1585 	/*
1586 	 * If config is not trusted then ignore the spa guid check. This is
1587 	 * necessary because if the machine crashed during a re-guid the new
1588 	 * guid might have been written to all of the vdev labels, but not the
1589 	 * cached config. The check will be performed again once we have the
1590 	 * trusted config from the MOS.
1591 	 */
1592 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1593 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1594 		    VDEV_AUX_CORRUPT_DATA);
1595 		nvlist_free(label);
1596 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1597 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1598 		    (u_longlong_t)spa_guid(spa));
1599 		return (0);
1600 	}
1601 
1602 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1603 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1604 	    &aux_guid) != 0)
1605 		aux_guid = 0;
1606 
1607 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1608 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1609 		    VDEV_AUX_CORRUPT_DATA);
1610 		nvlist_free(label);
1611 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1612 		    ZPOOL_CONFIG_GUID);
1613 		return (0);
1614 	}
1615 
1616 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1617 	    != 0) {
1618 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1619 		    VDEV_AUX_CORRUPT_DATA);
1620 		nvlist_free(label);
1621 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1622 		    ZPOOL_CONFIG_TOP_GUID);
1623 		return (0);
1624 	}
1625 
1626 	/*
1627 	 * If this vdev just became a top-level vdev because its sibling was
1628 	 * detached, it will have adopted the parent's vdev guid -- but the
1629 	 * label may or may not be on disk yet. Fortunately, either version
1630 	 * of the label will have the same top guid, so if we're a top-level
1631 	 * vdev, we can safely compare to that instead.
1632 	 * However, if the config comes from a cachefile that failed to update
1633 	 * after the detach, a top-level vdev will appear as a non top-level
1634 	 * vdev in the config. Also relax the constraints if we perform an
1635 	 * extreme rewind.
1636 	 *
1637 	 * If we split this vdev off instead, then we also check the
1638 	 * original pool's guid. We don't want to consider the vdev
1639 	 * corrupt if it is partway through a split operation.
1640 	 */
1641 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1642 		boolean_t mismatch = B_FALSE;
1643 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1644 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1645 				mismatch = B_TRUE;
1646 		} else {
1647 			if (vd->vdev_guid != top_guid &&
1648 			    vd->vdev_top->vdev_guid != guid)
1649 				mismatch = B_TRUE;
1650 		}
1651 
1652 		if (mismatch) {
1653 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1654 			    VDEV_AUX_CORRUPT_DATA);
1655 			nvlist_free(label);
1656 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1657 			    "doesn't match label guid");
1658 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1659 			    (u_longlong_t)vd->vdev_guid,
1660 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1661 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1662 			    "aux_guid %llu", (u_longlong_t)guid,
1663 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1664 			return (0);
1665 		}
1666 	}
1667 
1668 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1669 	    &state) != 0) {
1670 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1671 		    VDEV_AUX_CORRUPT_DATA);
1672 		nvlist_free(label);
1673 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1674 		    ZPOOL_CONFIG_POOL_STATE);
1675 		return (0);
1676 	}
1677 
1678 	nvlist_free(label);
1679 
1680 	/*
1681 	 * If this is a verbatim import, no need to check the
1682 	 * state of the pool.
1683 	 */
1684 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1685 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1686 	    state != POOL_STATE_ACTIVE) {
1687 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1688 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1689 		return (SET_ERROR(EBADF));
1690 	}
1691 
1692 	/*
1693 	 * If we were able to open and validate a vdev that was
1694 	 * previously marked permanently unavailable, clear that state
1695 	 * now.
1696 	 */
1697 	if (vd->vdev_not_present)
1698 		vd->vdev_not_present = 0;
1699 
1700 	return (0);
1701 }
1702 
1703 static void
1704 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1705 {
1706 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1707 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1708 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1709 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1710 			    dvd->vdev_path, svd->vdev_path);
1711 			spa_strfree(dvd->vdev_path);
1712 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1713 		}
1714 	} else if (svd->vdev_path != NULL) {
1715 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1716 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1717 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1718 	}
1719 }
1720 
1721 /*
1722  * Recursively copy vdev paths from one vdev to another. Source and destination
1723  * vdev trees must have same geometry otherwise return error. Intended to copy
1724  * paths from userland config into MOS config.
1725  */
1726 int
1727 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1728 {
1729 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1730 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1731 	    (dvd->vdev_ops == &vdev_indirect_ops))
1732 		return (0);
1733 
1734 	if (svd->vdev_ops != dvd->vdev_ops) {
1735 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1736 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1737 		return (SET_ERROR(EINVAL));
1738 	}
1739 
1740 	if (svd->vdev_guid != dvd->vdev_guid) {
1741 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1742 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1743 		    (u_longlong_t)dvd->vdev_guid);
1744 		return (SET_ERROR(EINVAL));
1745 	}
1746 
1747 	if (svd->vdev_children != dvd->vdev_children) {
1748 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1749 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1750 		    (u_longlong_t)dvd->vdev_children);
1751 		return (SET_ERROR(EINVAL));
1752 	}
1753 
1754 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1755 		int error = vdev_copy_path_strict(svd->vdev_child[i],
1756 		    dvd->vdev_child[i]);
1757 		if (error != 0)
1758 			return (error);
1759 	}
1760 
1761 	if (svd->vdev_ops->vdev_op_leaf)
1762 		vdev_copy_path_impl(svd, dvd);
1763 
1764 	return (0);
1765 }
1766 
1767 static void
1768 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1769 {
1770 	ASSERT(stvd->vdev_top == stvd);
1771 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1772 
1773 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1774 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1775 	}
1776 
1777 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1778 		return;
1779 
1780 	/*
1781 	 * The idea here is that while a vdev can shift positions within
1782 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1783 	 * step outside of it.
1784 	 */
1785 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1786 
1787 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1788 		return;
1789 
1790 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1791 
1792 	vdev_copy_path_impl(vd, dvd);
1793 }
1794 
1795 /*
1796  * Recursively copy vdev paths from one root vdev to another. Source and
1797  * destination vdev trees may differ in geometry. For each destination leaf
1798  * vdev, search a vdev with the same guid and top vdev id in the source.
1799  * Intended to copy paths from userland config into MOS config.
1800  */
1801 void
1802 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1803 {
1804 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1805 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
1806 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
1807 
1808 	for (uint64_t i = 0; i < children; i++) {
1809 		vdev_copy_path_search(srvd->vdev_child[i],
1810 		    drvd->vdev_child[i]);
1811 	}
1812 }
1813 
1814 /*
1815  * Close a virtual device.
1816  */
1817 void
1818 vdev_close(vdev_t *vd)
1819 {
1820 	spa_t *spa = vd->vdev_spa;
1821 	vdev_t *pvd = vd->vdev_parent;
1822 
1823 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1824 
1825 	/*
1826 	 * If our parent is reopening, then we are as well, unless we are
1827 	 * going offline.
1828 	 */
1829 	if (pvd != NULL && pvd->vdev_reopening)
1830 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1831 
1832 	vd->vdev_ops->vdev_op_close(vd);
1833 
1834 	vdev_cache_purge(vd);
1835 
1836 	/*
1837 	 * We record the previous state before we close it, so that if we are
1838 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1839 	 * it's still faulted.
1840 	 */
1841 	vd->vdev_prevstate = vd->vdev_state;
1842 
1843 	if (vd->vdev_offline)
1844 		vd->vdev_state = VDEV_STATE_OFFLINE;
1845 	else
1846 		vd->vdev_state = VDEV_STATE_CLOSED;
1847 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1848 }
1849 
1850 void
1851 vdev_hold(vdev_t *vd)
1852 {
1853 	spa_t *spa = vd->vdev_spa;
1854 
1855 	ASSERT(spa_is_root(spa));
1856 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1857 		return;
1858 
1859 	for (int c = 0; c < vd->vdev_children; c++)
1860 		vdev_hold(vd->vdev_child[c]);
1861 
1862 	if (vd->vdev_ops->vdev_op_leaf)
1863 		vd->vdev_ops->vdev_op_hold(vd);
1864 }
1865 
1866 void
1867 vdev_rele(vdev_t *vd)
1868 {
1869 	spa_t *spa = vd->vdev_spa;
1870 
1871 	ASSERT(spa_is_root(spa));
1872 	for (int c = 0; c < vd->vdev_children; c++)
1873 		vdev_rele(vd->vdev_child[c]);
1874 
1875 	if (vd->vdev_ops->vdev_op_leaf)
1876 		vd->vdev_ops->vdev_op_rele(vd);
1877 }
1878 
1879 /*
1880  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1881  * reopen leaf vdevs which had previously been opened as they might deadlock
1882  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1883  * If the leaf has never been opened then open it, as usual.
1884  */
1885 void
1886 vdev_reopen(vdev_t *vd)
1887 {
1888 	spa_t *spa = vd->vdev_spa;
1889 
1890 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1891 
1892 	/* set the reopening flag unless we're taking the vdev offline */
1893 	vd->vdev_reopening = !vd->vdev_offline;
1894 	vdev_close(vd);
1895 	(void) vdev_open(vd);
1896 
1897 	/*
1898 	 * Call vdev_validate() here to make sure we have the same device.
1899 	 * Otherwise, a device with an invalid label could be successfully
1900 	 * opened in response to vdev_reopen().
1901 	 */
1902 	if (vd->vdev_aux) {
1903 		(void) vdev_validate_aux(vd);
1904 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1905 		    vd->vdev_aux == &spa->spa_l2cache &&
1906 		    !l2arc_vdev_present(vd))
1907 			l2arc_add_vdev(spa, vd);
1908 	} else {
1909 		(void) vdev_validate(vd);
1910 	}
1911 
1912 	/*
1913 	 * Reassess parent vdev's health.
1914 	 */
1915 	vdev_propagate_state(vd);
1916 }
1917 
1918 int
1919 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1920 {
1921 	int error;
1922 
1923 	/*
1924 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1925 	 * For a create, however, we want to fail the request if
1926 	 * there are any components we can't open.
1927 	 */
1928 	error = vdev_open(vd);
1929 
1930 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1931 		vdev_close(vd);
1932 		return (error ? error : ENXIO);
1933 	}
1934 
1935 	/*
1936 	 * Recursively load DTLs and initialize all labels.
1937 	 */
1938 	if ((error = vdev_dtl_load(vd)) != 0 ||
1939 	    (error = vdev_label_init(vd, txg, isreplacing ?
1940 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1941 		vdev_close(vd);
1942 		return (error);
1943 	}
1944 
1945 	return (0);
1946 }
1947 
1948 void
1949 vdev_metaslab_set_size(vdev_t *vd)
1950 {
1951 	/*
1952 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1953 	 */
1954 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1955 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1956 }
1957 
1958 void
1959 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1960 {
1961 	ASSERT(vd == vd->vdev_top);
1962 	/* indirect vdevs don't have metaslabs or dtls */
1963 	ASSERT(vdev_is_concrete(vd) || flags == 0);
1964 	ASSERT(ISP2(flags));
1965 	ASSERT(spa_writeable(vd->vdev_spa));
1966 
1967 	if (flags & VDD_METASLAB)
1968 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1969 
1970 	if (flags & VDD_DTL)
1971 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1972 
1973 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1974 }
1975 
1976 void
1977 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1978 {
1979 	for (int c = 0; c < vd->vdev_children; c++)
1980 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1981 
1982 	if (vd->vdev_ops->vdev_op_leaf)
1983 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1984 }
1985 
1986 /*
1987  * DTLs.
1988  *
1989  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1990  * the vdev has less than perfect replication.  There are four kinds of DTL:
1991  *
1992  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1993  *
1994  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1995  *
1996  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1997  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1998  *	txgs that was scrubbed.
1999  *
2000  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2001  *	persistent errors or just some device being offline.
2002  *	Unlike the other three, the DTL_OUTAGE map is not generally
2003  *	maintained; it's only computed when needed, typically to
2004  *	determine whether a device can be detached.
2005  *
2006  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2007  * either has the data or it doesn't.
2008  *
2009  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2010  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2011  * if any child is less than fully replicated, then so is its parent.
2012  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2013  * comprising only those txgs which appear in 'maxfaults' or more children;
2014  * those are the txgs we don't have enough replication to read.  For example,
2015  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2016  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2017  * two child DTL_MISSING maps.
2018  *
2019  * It should be clear from the above that to compute the DTLs and outage maps
2020  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2021  * Therefore, that is all we keep on disk.  When loading the pool, or after
2022  * a configuration change, we generate all other DTLs from first principles.
2023  */
2024 void
2025 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2026 {
2027 	range_tree_t *rt = vd->vdev_dtl[t];
2028 
2029 	ASSERT(t < DTL_TYPES);
2030 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2031 	ASSERT(spa_writeable(vd->vdev_spa));
2032 
2033 	mutex_enter(&vd->vdev_dtl_lock);
2034 	if (!range_tree_contains(rt, txg, size))
2035 		range_tree_add(rt, txg, size);
2036 	mutex_exit(&vd->vdev_dtl_lock);
2037 }
2038 
2039 boolean_t
2040 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2041 {
2042 	range_tree_t *rt = vd->vdev_dtl[t];
2043 	boolean_t dirty = B_FALSE;
2044 
2045 	ASSERT(t < DTL_TYPES);
2046 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2047 
2048 	/*
2049 	 * While we are loading the pool, the DTLs have not been loaded yet.
2050 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2051 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2052 	 * when loading the pool (relying on the checksum to ensure that
2053 	 * we get the right data -- note that we while loading, we are
2054 	 * only reading the MOS, which is always checksummed).
2055 	 */
2056 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2057 		return (B_FALSE);
2058 
2059 	mutex_enter(&vd->vdev_dtl_lock);
2060 	if (range_tree_space(rt) != 0)
2061 		dirty = range_tree_contains(rt, txg, size);
2062 	mutex_exit(&vd->vdev_dtl_lock);
2063 
2064 	return (dirty);
2065 }
2066 
2067 boolean_t
2068 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2069 {
2070 	range_tree_t *rt = vd->vdev_dtl[t];
2071 	boolean_t empty;
2072 
2073 	mutex_enter(&vd->vdev_dtl_lock);
2074 	empty = (range_tree_space(rt) == 0);
2075 	mutex_exit(&vd->vdev_dtl_lock);
2076 
2077 	return (empty);
2078 }
2079 
2080 /*
2081  * Returns the lowest txg in the DTL range.
2082  */
2083 static uint64_t
2084 vdev_dtl_min(vdev_t *vd)
2085 {
2086 	range_seg_t *rs;
2087 
2088 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2089 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2090 	ASSERT0(vd->vdev_children);
2091 
2092 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2093 	return (rs->rs_start - 1);
2094 }
2095 
2096 /*
2097  * Returns the highest txg in the DTL.
2098  */
2099 static uint64_t
2100 vdev_dtl_max(vdev_t *vd)
2101 {
2102 	range_seg_t *rs;
2103 
2104 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2105 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2106 	ASSERT0(vd->vdev_children);
2107 
2108 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2109 	return (rs->rs_end);
2110 }
2111 
2112 /*
2113  * Determine if a resilvering vdev should remove any DTL entries from
2114  * its range. If the vdev was resilvering for the entire duration of the
2115  * scan then it should excise that range from its DTLs. Otherwise, this
2116  * vdev is considered partially resilvered and should leave its DTL
2117  * entries intact. The comment in vdev_dtl_reassess() describes how we
2118  * excise the DTLs.
2119  */
2120 static boolean_t
2121 vdev_dtl_should_excise(vdev_t *vd)
2122 {
2123 	spa_t *spa = vd->vdev_spa;
2124 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2125 
2126 	ASSERT0(scn->scn_phys.scn_errors);
2127 	ASSERT0(vd->vdev_children);
2128 
2129 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2130 		return (B_FALSE);
2131 
2132 	if (vd->vdev_resilver_txg == 0 ||
2133 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2134 		return (B_TRUE);
2135 
2136 	/*
2137 	 * When a resilver is initiated the scan will assign the scn_max_txg
2138 	 * value to the highest txg value that exists in all DTLs. If this
2139 	 * device's max DTL is not part of this scan (i.e. it is not in
2140 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2141 	 * for excision.
2142 	 */
2143 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2144 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2145 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2146 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2147 		return (B_TRUE);
2148 	}
2149 	return (B_FALSE);
2150 }
2151 
2152 /*
2153  * Reassess DTLs after a config change or scrub completion.
2154  */
2155 void
2156 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2157 {
2158 	spa_t *spa = vd->vdev_spa;
2159 	avl_tree_t reftree;
2160 	int minref;
2161 
2162 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2163 
2164 	for (int c = 0; c < vd->vdev_children; c++)
2165 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2166 		    scrub_txg, scrub_done);
2167 
2168 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2169 		return;
2170 
2171 	if (vd->vdev_ops->vdev_op_leaf) {
2172 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2173 
2174 		mutex_enter(&vd->vdev_dtl_lock);
2175 
2176 		/*
2177 		 * If we've completed a scan cleanly then determine
2178 		 * if this vdev should remove any DTLs. We only want to
2179 		 * excise regions on vdevs that were available during
2180 		 * the entire duration of this scan.
2181 		 */
2182 		if (scrub_txg != 0 &&
2183 		    (spa->spa_scrub_started ||
2184 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2185 		    vdev_dtl_should_excise(vd)) {
2186 			/*
2187 			 * We completed a scrub up to scrub_txg.  If we
2188 			 * did it without rebooting, then the scrub dtl
2189 			 * will be valid, so excise the old region and
2190 			 * fold in the scrub dtl.  Otherwise, leave the
2191 			 * dtl as-is if there was an error.
2192 			 *
2193 			 * There's little trick here: to excise the beginning
2194 			 * of the DTL_MISSING map, we put it into a reference
2195 			 * tree and then add a segment with refcnt -1 that
2196 			 * covers the range [0, scrub_txg).  This means
2197 			 * that each txg in that range has refcnt -1 or 0.
2198 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2199 			 * entries in the range [0, scrub_txg) will have a
2200 			 * positive refcnt -- either 1 or 2.  We then convert
2201 			 * the reference tree into the new DTL_MISSING map.
2202 			 */
2203 			space_reftree_create(&reftree);
2204 			space_reftree_add_map(&reftree,
2205 			    vd->vdev_dtl[DTL_MISSING], 1);
2206 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2207 			space_reftree_add_map(&reftree,
2208 			    vd->vdev_dtl[DTL_SCRUB], 2);
2209 			space_reftree_generate_map(&reftree,
2210 			    vd->vdev_dtl[DTL_MISSING], 1);
2211 			space_reftree_destroy(&reftree);
2212 		}
2213 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2214 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2215 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2216 		if (scrub_done)
2217 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2218 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2219 		if (!vdev_readable(vd))
2220 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2221 		else
2222 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2223 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2224 
2225 		/*
2226 		 * If the vdev was resilvering and no longer has any
2227 		 * DTLs then reset its resilvering flag.
2228 		 */
2229 		if (vd->vdev_resilver_txg != 0 &&
2230 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2231 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
2232 			vd->vdev_resilver_txg = 0;
2233 
2234 		mutex_exit(&vd->vdev_dtl_lock);
2235 
2236 		if (txg != 0)
2237 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2238 		return;
2239 	}
2240 
2241 	mutex_enter(&vd->vdev_dtl_lock);
2242 	for (int t = 0; t < DTL_TYPES; t++) {
2243 		/* account for child's outage in parent's missing map */
2244 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2245 		if (t == DTL_SCRUB)
2246 			continue;			/* leaf vdevs only */
2247 		if (t == DTL_PARTIAL)
2248 			minref = 1;			/* i.e. non-zero */
2249 		else if (vd->vdev_nparity != 0)
2250 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2251 		else
2252 			minref = vd->vdev_children;	/* any kind of mirror */
2253 		space_reftree_create(&reftree);
2254 		for (int c = 0; c < vd->vdev_children; c++) {
2255 			vdev_t *cvd = vd->vdev_child[c];
2256 			mutex_enter(&cvd->vdev_dtl_lock);
2257 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2258 			mutex_exit(&cvd->vdev_dtl_lock);
2259 		}
2260 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2261 		space_reftree_destroy(&reftree);
2262 	}
2263 	mutex_exit(&vd->vdev_dtl_lock);
2264 }
2265 
2266 int
2267 vdev_dtl_load(vdev_t *vd)
2268 {
2269 	spa_t *spa = vd->vdev_spa;
2270 	objset_t *mos = spa->spa_meta_objset;
2271 	int error = 0;
2272 
2273 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2274 		ASSERT(vdev_is_concrete(vd));
2275 
2276 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2277 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2278 		if (error)
2279 			return (error);
2280 		ASSERT(vd->vdev_dtl_sm != NULL);
2281 
2282 		mutex_enter(&vd->vdev_dtl_lock);
2283 
2284 		/*
2285 		 * Now that we've opened the space_map we need to update
2286 		 * the in-core DTL.
2287 		 */
2288 		space_map_update(vd->vdev_dtl_sm);
2289 
2290 		error = space_map_load(vd->vdev_dtl_sm,
2291 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2292 		mutex_exit(&vd->vdev_dtl_lock);
2293 
2294 		return (error);
2295 	}
2296 
2297 	for (int c = 0; c < vd->vdev_children; c++) {
2298 		error = vdev_dtl_load(vd->vdev_child[c]);
2299 		if (error != 0)
2300 			break;
2301 	}
2302 
2303 	return (error);
2304 }
2305 
2306 void
2307 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2308 {
2309 	spa_t *spa = vd->vdev_spa;
2310 
2311 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2312 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2313 	    zapobj, tx));
2314 }
2315 
2316 uint64_t
2317 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2318 {
2319 	spa_t *spa = vd->vdev_spa;
2320 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2321 	    DMU_OT_NONE, 0, tx);
2322 
2323 	ASSERT(zap != 0);
2324 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2325 	    zap, tx));
2326 
2327 	return (zap);
2328 }
2329 
2330 void
2331 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2332 {
2333 	if (vd->vdev_ops != &vdev_hole_ops &&
2334 	    vd->vdev_ops != &vdev_missing_ops &&
2335 	    vd->vdev_ops != &vdev_root_ops &&
2336 	    !vd->vdev_top->vdev_removing) {
2337 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2338 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2339 		}
2340 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2341 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2342 		}
2343 	}
2344 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2345 		vdev_construct_zaps(vd->vdev_child[i], tx);
2346 	}
2347 }
2348 
2349 void
2350 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2351 {
2352 	spa_t *spa = vd->vdev_spa;
2353 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2354 	objset_t *mos = spa->spa_meta_objset;
2355 	range_tree_t *rtsync;
2356 	dmu_tx_t *tx;
2357 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2358 
2359 	ASSERT(vdev_is_concrete(vd));
2360 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2361 
2362 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2363 
2364 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2365 		mutex_enter(&vd->vdev_dtl_lock);
2366 		space_map_free(vd->vdev_dtl_sm, tx);
2367 		space_map_close(vd->vdev_dtl_sm);
2368 		vd->vdev_dtl_sm = NULL;
2369 		mutex_exit(&vd->vdev_dtl_lock);
2370 
2371 		/*
2372 		 * We only destroy the leaf ZAP for detached leaves or for
2373 		 * removed log devices. Removed data devices handle leaf ZAP
2374 		 * cleanup later, once cancellation is no longer possible.
2375 		 */
2376 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2377 		    vd->vdev_top->vdev_islog)) {
2378 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2379 			vd->vdev_leaf_zap = 0;
2380 		}
2381 
2382 		dmu_tx_commit(tx);
2383 		return;
2384 	}
2385 
2386 	if (vd->vdev_dtl_sm == NULL) {
2387 		uint64_t new_object;
2388 
2389 		new_object = space_map_alloc(mos, tx);
2390 		VERIFY3U(new_object, !=, 0);
2391 
2392 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2393 		    0, -1ULL, 0));
2394 		ASSERT(vd->vdev_dtl_sm != NULL);
2395 	}
2396 
2397 	rtsync = range_tree_create(NULL, NULL);
2398 
2399 	mutex_enter(&vd->vdev_dtl_lock);
2400 	range_tree_walk(rt, range_tree_add, rtsync);
2401 	mutex_exit(&vd->vdev_dtl_lock);
2402 
2403 	space_map_truncate(vd->vdev_dtl_sm, tx);
2404 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2405 	range_tree_vacate(rtsync, NULL, NULL);
2406 
2407 	range_tree_destroy(rtsync);
2408 
2409 	/*
2410 	 * If the object for the space map has changed then dirty
2411 	 * the top level so that we update the config.
2412 	 */
2413 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2414 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2415 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2416 		    (u_longlong_t)object,
2417 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2418 		vdev_config_dirty(vd->vdev_top);
2419 	}
2420 
2421 	dmu_tx_commit(tx);
2422 
2423 	mutex_enter(&vd->vdev_dtl_lock);
2424 	space_map_update(vd->vdev_dtl_sm);
2425 	mutex_exit(&vd->vdev_dtl_lock);
2426 }
2427 
2428 /*
2429  * Determine whether the specified vdev can be offlined/detached/removed
2430  * without losing data.
2431  */
2432 boolean_t
2433 vdev_dtl_required(vdev_t *vd)
2434 {
2435 	spa_t *spa = vd->vdev_spa;
2436 	vdev_t *tvd = vd->vdev_top;
2437 	uint8_t cant_read = vd->vdev_cant_read;
2438 	boolean_t required;
2439 
2440 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2441 
2442 	if (vd == spa->spa_root_vdev || vd == tvd)
2443 		return (B_TRUE);
2444 
2445 	/*
2446 	 * Temporarily mark the device as unreadable, and then determine
2447 	 * whether this results in any DTL outages in the top-level vdev.
2448 	 * If not, we can safely offline/detach/remove the device.
2449 	 */
2450 	vd->vdev_cant_read = B_TRUE;
2451 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2452 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2453 	vd->vdev_cant_read = cant_read;
2454 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2455 
2456 	if (!required && zio_injection_enabled)
2457 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2458 
2459 	return (required);
2460 }
2461 
2462 /*
2463  * Determine if resilver is needed, and if so the txg range.
2464  */
2465 boolean_t
2466 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2467 {
2468 	boolean_t needed = B_FALSE;
2469 	uint64_t thismin = UINT64_MAX;
2470 	uint64_t thismax = 0;
2471 
2472 	if (vd->vdev_children == 0) {
2473 		mutex_enter(&vd->vdev_dtl_lock);
2474 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2475 		    vdev_writeable(vd)) {
2476 
2477 			thismin = vdev_dtl_min(vd);
2478 			thismax = vdev_dtl_max(vd);
2479 			needed = B_TRUE;
2480 		}
2481 		mutex_exit(&vd->vdev_dtl_lock);
2482 	} else {
2483 		for (int c = 0; c < vd->vdev_children; c++) {
2484 			vdev_t *cvd = vd->vdev_child[c];
2485 			uint64_t cmin, cmax;
2486 
2487 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2488 				thismin = MIN(thismin, cmin);
2489 				thismax = MAX(thismax, cmax);
2490 				needed = B_TRUE;
2491 			}
2492 		}
2493 	}
2494 
2495 	if (needed && minp) {
2496 		*minp = thismin;
2497 		*maxp = thismax;
2498 	}
2499 	return (needed);
2500 }
2501 
2502 int
2503 vdev_load(vdev_t *vd)
2504 {
2505 	int error = 0;
2506 	/*
2507 	 * Recursively load all children.
2508 	 */
2509 	for (int c = 0; c < vd->vdev_children; c++) {
2510 		error = vdev_load(vd->vdev_child[c]);
2511 		if (error != 0) {
2512 			return (error);
2513 		}
2514 	}
2515 
2516 	vdev_set_deflate_ratio(vd);
2517 
2518 	/*
2519 	 * If this is a top-level vdev, initialize its metaslabs.
2520 	 */
2521 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2522 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2523 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2524 			    VDEV_AUX_CORRUPT_DATA);
2525 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2526 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2527 			    (u_longlong_t)vd->vdev_asize);
2528 			return (SET_ERROR(ENXIO));
2529 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2530 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2531 			    "[error=%d]", error);
2532 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2533 			    VDEV_AUX_CORRUPT_DATA);
2534 			return (error);
2535 		}
2536 	}
2537 
2538 	/*
2539 	 * If this is a leaf vdev, load its DTL.
2540 	 */
2541 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2542 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2543 		    VDEV_AUX_CORRUPT_DATA);
2544 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2545 		    "[error=%d]", error);
2546 		return (error);
2547 	}
2548 
2549 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2550 	if (obsolete_sm_object != 0) {
2551 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2552 		ASSERT(vd->vdev_asize != 0);
2553 		ASSERT(vd->vdev_obsolete_sm == NULL);
2554 
2555 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2556 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2557 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2558 			    VDEV_AUX_CORRUPT_DATA);
2559 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2560 			    "obsolete spacemap (obj %llu) [error=%d]",
2561 			    (u_longlong_t)obsolete_sm_object, error);
2562 			return (error);
2563 		}
2564 		space_map_update(vd->vdev_obsolete_sm);
2565 	}
2566 
2567 	return (0);
2568 }
2569 
2570 /*
2571  * The special vdev case is used for hot spares and l2cache devices.  Its
2572  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2573  * we make sure that we can open the underlying device, then try to read the
2574  * label, and make sure that the label is sane and that it hasn't been
2575  * repurposed to another pool.
2576  */
2577 int
2578 vdev_validate_aux(vdev_t *vd)
2579 {
2580 	nvlist_t *label;
2581 	uint64_t guid, version;
2582 	uint64_t state;
2583 
2584 	if (!vdev_readable(vd))
2585 		return (0);
2586 
2587 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2588 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2589 		    VDEV_AUX_CORRUPT_DATA);
2590 		return (-1);
2591 	}
2592 
2593 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2594 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2595 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2596 	    guid != vd->vdev_guid ||
2597 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2598 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2599 		    VDEV_AUX_CORRUPT_DATA);
2600 		nvlist_free(label);
2601 		return (-1);
2602 	}
2603 
2604 	/*
2605 	 * We don't actually check the pool state here.  If it's in fact in
2606 	 * use by another pool, we update this fact on the fly when requested.
2607 	 */
2608 	nvlist_free(label);
2609 	return (0);
2610 }
2611 
2612 /*
2613  * Free the objects used to store this vdev's spacemaps, and the array
2614  * that points to them.
2615  */
2616 void
2617 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2618 {
2619 	if (vd->vdev_ms_array == 0)
2620 		return;
2621 
2622 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2623 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2624 	size_t array_bytes = array_count * sizeof (uint64_t);
2625 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2626 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2627 	    array_bytes, smobj_array, 0));
2628 
2629 	for (uint64_t i = 0; i < array_count; i++) {
2630 		uint64_t smobj = smobj_array[i];
2631 		if (smobj == 0)
2632 			continue;
2633 
2634 		space_map_free_obj(mos, smobj, tx);
2635 	}
2636 
2637 	kmem_free(smobj_array, array_bytes);
2638 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2639 	vd->vdev_ms_array = 0;
2640 }
2641 
2642 static void
2643 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2644 {
2645 	spa_t *spa = vd->vdev_spa;
2646 	dmu_tx_t *tx;
2647 
2648 	ASSERT(vd == vd->vdev_top);
2649 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2650 
2651 	if (vd->vdev_ms != NULL) {
2652 		metaslab_group_t *mg = vd->vdev_mg;
2653 
2654 		metaslab_group_histogram_verify(mg);
2655 		metaslab_class_histogram_verify(mg->mg_class);
2656 
2657 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2658 			metaslab_t *msp = vd->vdev_ms[m];
2659 
2660 			if (msp == NULL || msp->ms_sm == NULL)
2661 				continue;
2662 
2663 			mutex_enter(&msp->ms_lock);
2664 			/*
2665 			 * If the metaslab was not loaded when the vdev
2666 			 * was removed then the histogram accounting may
2667 			 * not be accurate. Update the histogram information
2668 			 * here so that we ensure that the metaslab group
2669 			 * and metaslab class are up-to-date.
2670 			 */
2671 			metaslab_group_histogram_remove(mg, msp);
2672 
2673 			VERIFY0(space_map_allocated(msp->ms_sm));
2674 			space_map_close(msp->ms_sm);
2675 			msp->ms_sm = NULL;
2676 			mutex_exit(&msp->ms_lock);
2677 		}
2678 
2679 		metaslab_group_histogram_verify(mg);
2680 		metaslab_class_histogram_verify(mg->mg_class);
2681 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2682 			ASSERT0(mg->mg_histogram[i]);
2683 	}
2684 
2685 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2686 	vdev_destroy_spacemaps(vd, tx);
2687 
2688 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2689 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2690 		vd->vdev_top_zap = 0;
2691 	}
2692 	dmu_tx_commit(tx);
2693 }
2694 
2695 void
2696 vdev_sync_done(vdev_t *vd, uint64_t txg)
2697 {
2698 	metaslab_t *msp;
2699 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2700 
2701 	ASSERT(vdev_is_concrete(vd));
2702 
2703 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2704 		metaslab_sync_done(msp, txg);
2705 
2706 	if (reassess)
2707 		metaslab_sync_reassess(vd->vdev_mg);
2708 }
2709 
2710 void
2711 vdev_sync(vdev_t *vd, uint64_t txg)
2712 {
2713 	spa_t *spa = vd->vdev_spa;
2714 	vdev_t *lvd;
2715 	metaslab_t *msp;
2716 	dmu_tx_t *tx;
2717 
2718 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2719 		dmu_tx_t *tx;
2720 
2721 		ASSERT(vd->vdev_removing ||
2722 		    vd->vdev_ops == &vdev_indirect_ops);
2723 
2724 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2725 		vdev_indirect_sync_obsolete(vd, tx);
2726 		dmu_tx_commit(tx);
2727 
2728 		/*
2729 		 * If the vdev is indirect, it can't have dirty
2730 		 * metaslabs or DTLs.
2731 		 */
2732 		if (vd->vdev_ops == &vdev_indirect_ops) {
2733 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2734 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2735 			return;
2736 		}
2737 	}
2738 
2739 	ASSERT(vdev_is_concrete(vd));
2740 
2741 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2742 	    !vd->vdev_removing) {
2743 		ASSERT(vd == vd->vdev_top);
2744 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2745 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2746 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2747 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2748 		ASSERT(vd->vdev_ms_array != 0);
2749 		vdev_config_dirty(vd);
2750 		dmu_tx_commit(tx);
2751 	}
2752 
2753 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2754 		metaslab_sync(msp, txg);
2755 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2756 	}
2757 
2758 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2759 		vdev_dtl_sync(lvd, txg);
2760 
2761 	/*
2762 	 * Remove the metadata associated with this vdev once it's empty.
2763 	 * Note that this is typically used for log/cache device removal;
2764 	 * we don't empty toplevel vdevs when removing them.  But if
2765 	 * a toplevel happens to be emptied, this is not harmful.
2766 	 */
2767 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2768 		vdev_remove_empty(vd, txg);
2769 	}
2770 
2771 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2772 }
2773 
2774 uint64_t
2775 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2776 {
2777 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2778 }
2779 
2780 /*
2781  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2782  * not be opened, and no I/O is attempted.
2783  */
2784 int
2785 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2786 {
2787 	vdev_t *vd, *tvd;
2788 
2789 	spa_vdev_state_enter(spa, SCL_NONE);
2790 
2791 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2792 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2793 
2794 	if (!vd->vdev_ops->vdev_op_leaf)
2795 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2796 
2797 	tvd = vd->vdev_top;
2798 
2799 	/*
2800 	 * We don't directly use the aux state here, but if we do a
2801 	 * vdev_reopen(), we need this value to be present to remember why we
2802 	 * were faulted.
2803 	 */
2804 	vd->vdev_label_aux = aux;
2805 
2806 	/*
2807 	 * Faulted state takes precedence over degraded.
2808 	 */
2809 	vd->vdev_delayed_close = B_FALSE;
2810 	vd->vdev_faulted = 1ULL;
2811 	vd->vdev_degraded = 0ULL;
2812 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2813 
2814 	/*
2815 	 * If this device has the only valid copy of the data, then
2816 	 * back off and simply mark the vdev as degraded instead.
2817 	 */
2818 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2819 		vd->vdev_degraded = 1ULL;
2820 		vd->vdev_faulted = 0ULL;
2821 
2822 		/*
2823 		 * If we reopen the device and it's not dead, only then do we
2824 		 * mark it degraded.
2825 		 */
2826 		vdev_reopen(tvd);
2827 
2828 		if (vdev_readable(vd))
2829 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2830 	}
2831 
2832 	return (spa_vdev_state_exit(spa, vd, 0));
2833 }
2834 
2835 /*
2836  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2837  * user that something is wrong.  The vdev continues to operate as normal as far
2838  * as I/O is concerned.
2839  */
2840 int
2841 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2842 {
2843 	vdev_t *vd;
2844 
2845 	spa_vdev_state_enter(spa, SCL_NONE);
2846 
2847 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2848 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2849 
2850 	if (!vd->vdev_ops->vdev_op_leaf)
2851 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2852 
2853 	/*
2854 	 * If the vdev is already faulted, then don't do anything.
2855 	 */
2856 	if (vd->vdev_faulted || vd->vdev_degraded)
2857 		return (spa_vdev_state_exit(spa, NULL, 0));
2858 
2859 	vd->vdev_degraded = 1ULL;
2860 	if (!vdev_is_dead(vd))
2861 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2862 		    aux);
2863 
2864 	return (spa_vdev_state_exit(spa, vd, 0));
2865 }
2866 
2867 /*
2868  * Online the given vdev.
2869  *
2870  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2871  * spare device should be detached when the device finishes resilvering.
2872  * Second, the online should be treated like a 'test' online case, so no FMA
2873  * events are generated if the device fails to open.
2874  */
2875 int
2876 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2877 {
2878 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2879 	boolean_t wasoffline;
2880 	vdev_state_t oldstate;
2881 
2882 	spa_vdev_state_enter(spa, SCL_NONE);
2883 
2884 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2885 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2886 
2887 	if (!vd->vdev_ops->vdev_op_leaf)
2888 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2889 
2890 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2891 	oldstate = vd->vdev_state;
2892 
2893 	tvd = vd->vdev_top;
2894 	vd->vdev_offline = B_FALSE;
2895 	vd->vdev_tmpoffline = B_FALSE;
2896 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2897 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2898 
2899 	/* XXX - L2ARC 1.0 does not support expansion */
2900 	if (!vd->vdev_aux) {
2901 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2902 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2903 	}
2904 
2905 	vdev_reopen(tvd);
2906 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2907 
2908 	if (!vd->vdev_aux) {
2909 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2910 			pvd->vdev_expanding = B_FALSE;
2911 	}
2912 
2913 	if (newstate)
2914 		*newstate = vd->vdev_state;
2915 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2916 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2917 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2918 	    vd->vdev_parent->vdev_child[0] == vd)
2919 		vd->vdev_unspare = B_TRUE;
2920 
2921 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2922 
2923 		/* XXX - L2ARC 1.0 does not support expansion */
2924 		if (vd->vdev_aux)
2925 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2926 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2927 	}
2928 
2929 	if (wasoffline ||
2930 	    (oldstate < VDEV_STATE_DEGRADED &&
2931 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
2932 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2933 
2934 	return (spa_vdev_state_exit(spa, vd, 0));
2935 }
2936 
2937 static int
2938 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2939 {
2940 	vdev_t *vd, *tvd;
2941 	int error = 0;
2942 	uint64_t generation;
2943 	metaslab_group_t *mg;
2944 
2945 top:
2946 	spa_vdev_state_enter(spa, SCL_ALLOC);
2947 
2948 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2949 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2950 
2951 	if (!vd->vdev_ops->vdev_op_leaf)
2952 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2953 
2954 	tvd = vd->vdev_top;
2955 	mg = tvd->vdev_mg;
2956 	generation = spa->spa_config_generation + 1;
2957 
2958 	/*
2959 	 * If the device isn't already offline, try to offline it.
2960 	 */
2961 	if (!vd->vdev_offline) {
2962 		/*
2963 		 * If this device has the only valid copy of some data,
2964 		 * don't allow it to be offlined. Log devices are always
2965 		 * expendable.
2966 		 */
2967 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2968 		    vdev_dtl_required(vd))
2969 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2970 
2971 		/*
2972 		 * If the top-level is a slog and it has had allocations
2973 		 * then proceed.  We check that the vdev's metaslab group
2974 		 * is not NULL since it's possible that we may have just
2975 		 * added this vdev but not yet initialized its metaslabs.
2976 		 */
2977 		if (tvd->vdev_islog && mg != NULL) {
2978 			/*
2979 			 * Prevent any future allocations.
2980 			 */
2981 			metaslab_group_passivate(mg);
2982 			(void) spa_vdev_state_exit(spa, vd, 0);
2983 
2984 			error = spa_reset_logs(spa);
2985 
2986 			spa_vdev_state_enter(spa, SCL_ALLOC);
2987 
2988 			/*
2989 			 * Check to see if the config has changed.
2990 			 */
2991 			if (error || generation != spa->spa_config_generation) {
2992 				metaslab_group_activate(mg);
2993 				if (error)
2994 					return (spa_vdev_state_exit(spa,
2995 					    vd, error));
2996 				(void) spa_vdev_state_exit(spa, vd, 0);
2997 				goto top;
2998 			}
2999 			ASSERT0(tvd->vdev_stat.vs_alloc);
3000 		}
3001 
3002 		/*
3003 		 * Offline this device and reopen its top-level vdev.
3004 		 * If the top-level vdev is a log device then just offline
3005 		 * it. Otherwise, if this action results in the top-level
3006 		 * vdev becoming unusable, undo it and fail the request.
3007 		 */
3008 		vd->vdev_offline = B_TRUE;
3009 		vdev_reopen(tvd);
3010 
3011 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3012 		    vdev_is_dead(tvd)) {
3013 			vd->vdev_offline = B_FALSE;
3014 			vdev_reopen(tvd);
3015 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3016 		}
3017 
3018 		/*
3019 		 * Add the device back into the metaslab rotor so that
3020 		 * once we online the device it's open for business.
3021 		 */
3022 		if (tvd->vdev_islog && mg != NULL)
3023 			metaslab_group_activate(mg);
3024 	}
3025 
3026 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3027 
3028 	return (spa_vdev_state_exit(spa, vd, 0));
3029 }
3030 
3031 int
3032 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3033 {
3034 	int error;
3035 
3036 	mutex_enter(&spa->spa_vdev_top_lock);
3037 	error = vdev_offline_locked(spa, guid, flags);
3038 	mutex_exit(&spa->spa_vdev_top_lock);
3039 
3040 	return (error);
3041 }
3042 
3043 /*
3044  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3045  * vdev_offline(), we assume the spa config is locked.  We also clear all
3046  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3047  */
3048 void
3049 vdev_clear(spa_t *spa, vdev_t *vd)
3050 {
3051 	vdev_t *rvd = spa->spa_root_vdev;
3052 
3053 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3054 
3055 	if (vd == NULL)
3056 		vd = rvd;
3057 
3058 	vd->vdev_stat.vs_read_errors = 0;
3059 	vd->vdev_stat.vs_write_errors = 0;
3060 	vd->vdev_stat.vs_checksum_errors = 0;
3061 
3062 	for (int c = 0; c < vd->vdev_children; c++)
3063 		vdev_clear(spa, vd->vdev_child[c]);
3064 
3065 	/*
3066 	 * It makes no sense to "clear" an indirect vdev.
3067 	 */
3068 	if (!vdev_is_concrete(vd))
3069 		return;
3070 
3071 	/*
3072 	 * If we're in the FAULTED state or have experienced failed I/O, then
3073 	 * clear the persistent state and attempt to reopen the device.  We
3074 	 * also mark the vdev config dirty, so that the new faulted state is
3075 	 * written out to disk.
3076 	 */
3077 	if (vd->vdev_faulted || vd->vdev_degraded ||
3078 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3079 
3080 		/*
3081 		 * When reopening in reponse to a clear event, it may be due to
3082 		 * a fmadm repair request.  In this case, if the device is
3083 		 * still broken, we want to still post the ereport again.
3084 		 */
3085 		vd->vdev_forcefault = B_TRUE;
3086 
3087 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3088 		vd->vdev_cant_read = B_FALSE;
3089 		vd->vdev_cant_write = B_FALSE;
3090 
3091 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3092 
3093 		vd->vdev_forcefault = B_FALSE;
3094 
3095 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3096 			vdev_state_dirty(vd->vdev_top);
3097 
3098 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3099 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3100 
3101 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3102 	}
3103 
3104 	/*
3105 	 * When clearing a FMA-diagnosed fault, we always want to
3106 	 * unspare the device, as we assume that the original spare was
3107 	 * done in response to the FMA fault.
3108 	 */
3109 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3110 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3111 	    vd->vdev_parent->vdev_child[0] == vd)
3112 		vd->vdev_unspare = B_TRUE;
3113 }
3114 
3115 boolean_t
3116 vdev_is_dead(vdev_t *vd)
3117 {
3118 	/*
3119 	 * Holes and missing devices are always considered "dead".
3120 	 * This simplifies the code since we don't have to check for
3121 	 * these types of devices in the various code paths.
3122 	 * Instead we rely on the fact that we skip over dead devices
3123 	 * before issuing I/O to them.
3124 	 */
3125 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3126 	    vd->vdev_ops == &vdev_hole_ops ||
3127 	    vd->vdev_ops == &vdev_missing_ops);
3128 }
3129 
3130 boolean_t
3131 vdev_readable(vdev_t *vd)
3132 {
3133 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3134 }
3135 
3136 boolean_t
3137 vdev_writeable(vdev_t *vd)
3138 {
3139 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3140 	    vdev_is_concrete(vd));
3141 }
3142 
3143 boolean_t
3144 vdev_allocatable(vdev_t *vd)
3145 {
3146 	uint64_t state = vd->vdev_state;
3147 
3148 	/*
3149 	 * We currently allow allocations from vdevs which may be in the
3150 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3151 	 * fails to reopen then we'll catch it later when we're holding
3152 	 * the proper locks.  Note that we have to get the vdev state
3153 	 * in a local variable because although it changes atomically,
3154 	 * we're asking two separate questions about it.
3155 	 */
3156 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3157 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3158 	    vd->vdev_mg->mg_initialized);
3159 }
3160 
3161 boolean_t
3162 vdev_accessible(vdev_t *vd, zio_t *zio)
3163 {
3164 	ASSERT(zio->io_vd == vd);
3165 
3166 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3167 		return (B_FALSE);
3168 
3169 	if (zio->io_type == ZIO_TYPE_READ)
3170 		return (!vd->vdev_cant_read);
3171 
3172 	if (zio->io_type == ZIO_TYPE_WRITE)
3173 		return (!vd->vdev_cant_write);
3174 
3175 	return (B_TRUE);
3176 }
3177 
3178 /*
3179  * Get statistics for the given vdev.
3180  */
3181 void
3182 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3183 {
3184 	spa_t *spa = vd->vdev_spa;
3185 	vdev_t *rvd = spa->spa_root_vdev;
3186 	vdev_t *tvd = vd->vdev_top;
3187 
3188 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3189 
3190 	mutex_enter(&vd->vdev_stat_lock);
3191 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3192 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3193 	vs->vs_state = vd->vdev_state;
3194 	vs->vs_rsize = vdev_get_min_asize(vd);
3195 	if (vd->vdev_ops->vdev_op_leaf)
3196 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3197 	/*
3198 	 * Report expandable space on top-level, non-auxillary devices only.
3199 	 * The expandable space is reported in terms of metaslab sized units
3200 	 * since that determines how much space the pool can expand.
3201 	 */
3202 	if (vd->vdev_aux == NULL && tvd != NULL) {
3203 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3204 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3205 	}
3206 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3207 	    vdev_is_concrete(vd)) {
3208 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3209 	}
3210 
3211 	/*
3212 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3213 	 * over all top-level vdevs (i.e. the direct children of the root).
3214 	 */
3215 	if (vd == rvd) {
3216 		for (int c = 0; c < rvd->vdev_children; c++) {
3217 			vdev_t *cvd = rvd->vdev_child[c];
3218 			vdev_stat_t *cvs = &cvd->vdev_stat;
3219 
3220 			for (int t = 0; t < ZIO_TYPES; t++) {
3221 				vs->vs_ops[t] += cvs->vs_ops[t];
3222 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3223 			}
3224 			cvs->vs_scan_removing = cvd->vdev_removing;
3225 		}
3226 	}
3227 	mutex_exit(&vd->vdev_stat_lock);
3228 }
3229 
3230 void
3231 vdev_clear_stats(vdev_t *vd)
3232 {
3233 	mutex_enter(&vd->vdev_stat_lock);
3234 	vd->vdev_stat.vs_space = 0;
3235 	vd->vdev_stat.vs_dspace = 0;
3236 	vd->vdev_stat.vs_alloc = 0;
3237 	mutex_exit(&vd->vdev_stat_lock);
3238 }
3239 
3240 void
3241 vdev_scan_stat_init(vdev_t *vd)
3242 {
3243 	vdev_stat_t *vs = &vd->vdev_stat;
3244 
3245 	for (int c = 0; c < vd->vdev_children; c++)
3246 		vdev_scan_stat_init(vd->vdev_child[c]);
3247 
3248 	mutex_enter(&vd->vdev_stat_lock);
3249 	vs->vs_scan_processed = 0;
3250 	mutex_exit(&vd->vdev_stat_lock);
3251 }
3252 
3253 void
3254 vdev_stat_update(zio_t *zio, uint64_t psize)
3255 {
3256 	spa_t *spa = zio->io_spa;
3257 	vdev_t *rvd = spa->spa_root_vdev;
3258 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3259 	vdev_t *pvd;
3260 	uint64_t txg = zio->io_txg;
3261 	vdev_stat_t *vs = &vd->vdev_stat;
3262 	zio_type_t type = zio->io_type;
3263 	int flags = zio->io_flags;
3264 
3265 	/*
3266 	 * If this i/o is a gang leader, it didn't do any actual work.
3267 	 */
3268 	if (zio->io_gang_tree)
3269 		return;
3270 
3271 	if (zio->io_error == 0) {
3272 		/*
3273 		 * If this is a root i/o, don't count it -- we've already
3274 		 * counted the top-level vdevs, and vdev_get_stats() will
3275 		 * aggregate them when asked.  This reduces contention on
3276 		 * the root vdev_stat_lock and implicitly handles blocks
3277 		 * that compress away to holes, for which there is no i/o.
3278 		 * (Holes never create vdev children, so all the counters
3279 		 * remain zero, which is what we want.)
3280 		 *
3281 		 * Note: this only applies to successful i/o (io_error == 0)
3282 		 * because unlike i/o counts, errors are not additive.
3283 		 * When reading a ditto block, for example, failure of
3284 		 * one top-level vdev does not imply a root-level error.
3285 		 */
3286 		if (vd == rvd)
3287 			return;
3288 
3289 		ASSERT(vd == zio->io_vd);
3290 
3291 		if (flags & ZIO_FLAG_IO_BYPASS)
3292 			return;
3293 
3294 		mutex_enter(&vd->vdev_stat_lock);
3295 
3296 		if (flags & ZIO_FLAG_IO_REPAIR) {
3297 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3298 				dsl_scan_phys_t *scn_phys =
3299 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3300 				uint64_t *processed = &scn_phys->scn_processed;
3301 
3302 				/* XXX cleanup? */
3303 				if (vd->vdev_ops->vdev_op_leaf)
3304 					atomic_add_64(processed, psize);
3305 				vs->vs_scan_processed += psize;
3306 			}
3307 
3308 			if (flags & ZIO_FLAG_SELF_HEAL)
3309 				vs->vs_self_healed += psize;
3310 		}
3311 
3312 		vs->vs_ops[type]++;
3313 		vs->vs_bytes[type] += psize;
3314 
3315 		mutex_exit(&vd->vdev_stat_lock);
3316 		return;
3317 	}
3318 
3319 	if (flags & ZIO_FLAG_SPECULATIVE)
3320 		return;
3321 
3322 	/*
3323 	 * If this is an I/O error that is going to be retried, then ignore the
3324 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3325 	 * hard errors, when in reality they can happen for any number of
3326 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3327 	 */
3328 	if (zio->io_error == EIO &&
3329 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3330 		return;
3331 
3332 	/*
3333 	 * Intent logs writes won't propagate their error to the root
3334 	 * I/O so don't mark these types of failures as pool-level
3335 	 * errors.
3336 	 */
3337 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3338 		return;
3339 
3340 	mutex_enter(&vd->vdev_stat_lock);
3341 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3342 		if (zio->io_error == ECKSUM)
3343 			vs->vs_checksum_errors++;
3344 		else
3345 			vs->vs_read_errors++;
3346 	}
3347 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3348 		vs->vs_write_errors++;
3349 	mutex_exit(&vd->vdev_stat_lock);
3350 
3351 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3352 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3353 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3354 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3355 	    spa->spa_claiming)) {
3356 		/*
3357 		 * This is either a normal write (not a repair), or it's
3358 		 * a repair induced by the scrub thread, or it's a repair
3359 		 * made by zil_claim() during spa_load() in the first txg.
3360 		 * In the normal case, we commit the DTL change in the same
3361 		 * txg as the block was born.  In the scrub-induced repair
3362 		 * case, we know that scrubs run in first-pass syncing context,
3363 		 * so we commit the DTL change in spa_syncing_txg(spa).
3364 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3365 		 *
3366 		 * We currently do not make DTL entries for failed spontaneous
3367 		 * self-healing writes triggered by normal (non-scrubbing)
3368 		 * reads, because we have no transactional context in which to
3369 		 * do so -- and it's not clear that it'd be desirable anyway.
3370 		 */
3371 		if (vd->vdev_ops->vdev_op_leaf) {
3372 			uint64_t commit_txg = txg;
3373 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3374 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3375 				ASSERT(spa_sync_pass(spa) == 1);
3376 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3377 				commit_txg = spa_syncing_txg(spa);
3378 			} else if (spa->spa_claiming) {
3379 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3380 				commit_txg = spa_first_txg(spa);
3381 			}
3382 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3383 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3384 				return;
3385 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3386 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3387 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3388 		}
3389 		if (vd != rvd)
3390 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3391 	}
3392 }
3393 
3394 /*
3395  * Update the in-core space usage stats for this vdev, its metaslab class,
3396  * and the root vdev.
3397  */
3398 void
3399 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3400     int64_t space_delta)
3401 {
3402 	int64_t dspace_delta = space_delta;
3403 	spa_t *spa = vd->vdev_spa;
3404 	vdev_t *rvd = spa->spa_root_vdev;
3405 	metaslab_group_t *mg = vd->vdev_mg;
3406 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3407 
3408 	ASSERT(vd == vd->vdev_top);
3409 
3410 	/*
3411 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3412 	 * factor.  We must calculate this here and not at the root vdev
3413 	 * because the root vdev's psize-to-asize is simply the max of its
3414 	 * childrens', thus not accurate enough for us.
3415 	 */
3416 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3417 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3418 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3419 	    vd->vdev_deflate_ratio;
3420 
3421 	mutex_enter(&vd->vdev_stat_lock);
3422 	vd->vdev_stat.vs_alloc += alloc_delta;
3423 	vd->vdev_stat.vs_space += space_delta;
3424 	vd->vdev_stat.vs_dspace += dspace_delta;
3425 	mutex_exit(&vd->vdev_stat_lock);
3426 
3427 	if (mc == spa_normal_class(spa)) {
3428 		mutex_enter(&rvd->vdev_stat_lock);
3429 		rvd->vdev_stat.vs_alloc += alloc_delta;
3430 		rvd->vdev_stat.vs_space += space_delta;
3431 		rvd->vdev_stat.vs_dspace += dspace_delta;
3432 		mutex_exit(&rvd->vdev_stat_lock);
3433 	}
3434 
3435 	if (mc != NULL) {
3436 		ASSERT(rvd == vd->vdev_parent);
3437 		ASSERT(vd->vdev_ms_count != 0);
3438 
3439 		metaslab_class_space_update(mc,
3440 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3441 	}
3442 }
3443 
3444 /*
3445  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3446  * so that it will be written out next time the vdev configuration is synced.
3447  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3448  */
3449 void
3450 vdev_config_dirty(vdev_t *vd)
3451 {
3452 	spa_t *spa = vd->vdev_spa;
3453 	vdev_t *rvd = spa->spa_root_vdev;
3454 	int c;
3455 
3456 	ASSERT(spa_writeable(spa));
3457 
3458 	/*
3459 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3460 	 * update the vdev config manually and set the sync flag.
3461 	 */
3462 	if (vd->vdev_aux != NULL) {
3463 		spa_aux_vdev_t *sav = vd->vdev_aux;
3464 		nvlist_t **aux;
3465 		uint_t naux;
3466 
3467 		for (c = 0; c < sav->sav_count; c++) {
3468 			if (sav->sav_vdevs[c] == vd)
3469 				break;
3470 		}
3471 
3472 		if (c == sav->sav_count) {
3473 			/*
3474 			 * We're being removed.  There's nothing more to do.
3475 			 */
3476 			ASSERT(sav->sav_sync == B_TRUE);
3477 			return;
3478 		}
3479 
3480 		sav->sav_sync = B_TRUE;
3481 
3482 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3483 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3484 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3485 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3486 		}
3487 
3488 		ASSERT(c < naux);
3489 
3490 		/*
3491 		 * Setting the nvlist in the middle if the array is a little
3492 		 * sketchy, but it will work.
3493 		 */
3494 		nvlist_free(aux[c]);
3495 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3496 
3497 		return;
3498 	}
3499 
3500 	/*
3501 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3502 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3503 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3504 	 * so this is sufficient to ensure mutual exclusion.
3505 	 */
3506 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3507 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3508 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3509 
3510 	if (vd == rvd) {
3511 		for (c = 0; c < rvd->vdev_children; c++)
3512 			vdev_config_dirty(rvd->vdev_child[c]);
3513 	} else {
3514 		ASSERT(vd == vd->vdev_top);
3515 
3516 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3517 		    vdev_is_concrete(vd)) {
3518 			list_insert_head(&spa->spa_config_dirty_list, vd);
3519 		}
3520 	}
3521 }
3522 
3523 void
3524 vdev_config_clean(vdev_t *vd)
3525 {
3526 	spa_t *spa = vd->vdev_spa;
3527 
3528 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3529 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3530 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3531 
3532 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3533 	list_remove(&spa->spa_config_dirty_list, vd);
3534 }
3535 
3536 /*
3537  * Mark a top-level vdev's state as dirty, so that the next pass of
3538  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3539  * the state changes from larger config changes because they require
3540  * much less locking, and are often needed for administrative actions.
3541  */
3542 void
3543 vdev_state_dirty(vdev_t *vd)
3544 {
3545 	spa_t *spa = vd->vdev_spa;
3546 
3547 	ASSERT(spa_writeable(spa));
3548 	ASSERT(vd == vd->vdev_top);
3549 
3550 	/*
3551 	 * The state list is protected by the SCL_STATE lock.  The caller
3552 	 * must either hold SCL_STATE as writer, or must be the sync thread
3553 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3554 	 * so this is sufficient to ensure mutual exclusion.
3555 	 */
3556 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3557 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3558 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3559 
3560 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3561 	    vdev_is_concrete(vd))
3562 		list_insert_head(&spa->spa_state_dirty_list, vd);
3563 }
3564 
3565 void
3566 vdev_state_clean(vdev_t *vd)
3567 {
3568 	spa_t *spa = vd->vdev_spa;
3569 
3570 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3571 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3572 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3573 
3574 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3575 	list_remove(&spa->spa_state_dirty_list, vd);
3576 }
3577 
3578 /*
3579  * Propagate vdev state up from children to parent.
3580  */
3581 void
3582 vdev_propagate_state(vdev_t *vd)
3583 {
3584 	spa_t *spa = vd->vdev_spa;
3585 	vdev_t *rvd = spa->spa_root_vdev;
3586 	int degraded = 0, faulted = 0;
3587 	int corrupted = 0;
3588 	vdev_t *child;
3589 
3590 	if (vd->vdev_children > 0) {
3591 		for (int c = 0; c < vd->vdev_children; c++) {
3592 			child = vd->vdev_child[c];
3593 
3594 			/*
3595 			 * Don't factor holes or indirect vdevs into the
3596 			 * decision.
3597 			 */
3598 			if (!vdev_is_concrete(child))
3599 				continue;
3600 
3601 			if (!vdev_readable(child) ||
3602 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3603 				/*
3604 				 * Root special: if there is a top-level log
3605 				 * device, treat the root vdev as if it were
3606 				 * degraded.
3607 				 */
3608 				if (child->vdev_islog && vd == rvd)
3609 					degraded++;
3610 				else
3611 					faulted++;
3612 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3613 				degraded++;
3614 			}
3615 
3616 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3617 				corrupted++;
3618 		}
3619 
3620 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3621 
3622 		/*
3623 		 * Root special: if there is a top-level vdev that cannot be
3624 		 * opened due to corrupted metadata, then propagate the root
3625 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3626 		 * replicas'.
3627 		 */
3628 		if (corrupted && vd == rvd &&
3629 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3630 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3631 			    VDEV_AUX_CORRUPT_DATA);
3632 	}
3633 
3634 	if (vd->vdev_parent)
3635 		vdev_propagate_state(vd->vdev_parent);
3636 }
3637 
3638 /*
3639  * Set a vdev's state.  If this is during an open, we don't update the parent
3640  * state, because we're in the process of opening children depth-first.
3641  * Otherwise, we propagate the change to the parent.
3642  *
3643  * If this routine places a device in a faulted state, an appropriate ereport is
3644  * generated.
3645  */
3646 void
3647 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3648 {
3649 	uint64_t save_state;
3650 	spa_t *spa = vd->vdev_spa;
3651 
3652 	if (state == vd->vdev_state) {
3653 		vd->vdev_stat.vs_aux = aux;
3654 		return;
3655 	}
3656 
3657 	save_state = vd->vdev_state;
3658 
3659 	vd->vdev_state = state;
3660 	vd->vdev_stat.vs_aux = aux;
3661 
3662 	/*
3663 	 * If we are setting the vdev state to anything but an open state, then
3664 	 * always close the underlying device unless the device has requested
3665 	 * a delayed close (i.e. we're about to remove or fault the device).
3666 	 * Otherwise, we keep accessible but invalid devices open forever.
3667 	 * We don't call vdev_close() itself, because that implies some extra
3668 	 * checks (offline, etc) that we don't want here.  This is limited to
3669 	 * leaf devices, because otherwise closing the device will affect other
3670 	 * children.
3671 	 */
3672 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3673 	    vd->vdev_ops->vdev_op_leaf)
3674 		vd->vdev_ops->vdev_op_close(vd);
3675 
3676 	/*
3677 	 * If we have brought this vdev back into service, we need
3678 	 * to notify fmd so that it can gracefully repair any outstanding
3679 	 * cases due to a missing device.  We do this in all cases, even those
3680 	 * that probably don't correlate to a repaired fault.  This is sure to
3681 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3682 	 * this is a transient state it's OK, as the retire agent will
3683 	 * double-check the state of the vdev before repairing it.
3684 	 */
3685 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3686 	    vd->vdev_prevstate != state)
3687 		zfs_post_state_change(spa, vd);
3688 
3689 	if (vd->vdev_removed &&
3690 	    state == VDEV_STATE_CANT_OPEN &&
3691 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3692 		/*
3693 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3694 		 * device was previously marked removed and someone attempted to
3695 		 * reopen it.  If this failed due to a nonexistent device, then
3696 		 * keep the device in the REMOVED state.  We also let this be if
3697 		 * it is one of our special test online cases, which is only
3698 		 * attempting to online the device and shouldn't generate an FMA
3699 		 * fault.
3700 		 */
3701 		vd->vdev_state = VDEV_STATE_REMOVED;
3702 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3703 	} else if (state == VDEV_STATE_REMOVED) {
3704 		vd->vdev_removed = B_TRUE;
3705 	} else if (state == VDEV_STATE_CANT_OPEN) {
3706 		/*
3707 		 * If we fail to open a vdev during an import or recovery, we
3708 		 * mark it as "not available", which signifies that it was
3709 		 * never there to begin with.  Failure to open such a device
3710 		 * is not considered an error.
3711 		 */
3712 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3713 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3714 		    vd->vdev_ops->vdev_op_leaf)
3715 			vd->vdev_not_present = 1;
3716 
3717 		/*
3718 		 * Post the appropriate ereport.  If the 'prevstate' field is
3719 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3720 		 * that this is part of a vdev_reopen().  In this case, we don't
3721 		 * want to post the ereport if the device was already in the
3722 		 * CANT_OPEN state beforehand.
3723 		 *
3724 		 * If the 'checkremove' flag is set, then this is an attempt to
3725 		 * online the device in response to an insertion event.  If we
3726 		 * hit this case, then we have detected an insertion event for a
3727 		 * faulted or offline device that wasn't in the removed state.
3728 		 * In this scenario, we don't post an ereport because we are
3729 		 * about to replace the device, or attempt an online with
3730 		 * vdev_forcefault, which will generate the fault for us.
3731 		 */
3732 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3733 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3734 		    vd != spa->spa_root_vdev) {
3735 			const char *class;
3736 
3737 			switch (aux) {
3738 			case VDEV_AUX_OPEN_FAILED:
3739 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3740 				break;
3741 			case VDEV_AUX_CORRUPT_DATA:
3742 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3743 				break;
3744 			case VDEV_AUX_NO_REPLICAS:
3745 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3746 				break;
3747 			case VDEV_AUX_BAD_GUID_SUM:
3748 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3749 				break;
3750 			case VDEV_AUX_TOO_SMALL:
3751 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3752 				break;
3753 			case VDEV_AUX_BAD_LABEL:
3754 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3755 				break;
3756 			default:
3757 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3758 			}
3759 
3760 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3761 		}
3762 
3763 		/* Erase any notion of persistent removed state */
3764 		vd->vdev_removed = B_FALSE;
3765 	} else {
3766 		vd->vdev_removed = B_FALSE;
3767 	}
3768 
3769 	if (!isopen && vd->vdev_parent)
3770 		vdev_propagate_state(vd->vdev_parent);
3771 }
3772 
3773 boolean_t
3774 vdev_children_are_offline(vdev_t *vd)
3775 {
3776 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
3777 
3778 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3779 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3780 			return (B_FALSE);
3781 	}
3782 
3783 	return (B_TRUE);
3784 }
3785 
3786 /*
3787  * Check the vdev configuration to ensure that it's capable of supporting
3788  * a root pool. We do not support partial configuration.
3789  * In addition, only a single top-level vdev is allowed.
3790  */
3791 boolean_t
3792 vdev_is_bootable(vdev_t *vd)
3793 {
3794 	if (!vd->vdev_ops->vdev_op_leaf) {
3795 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3796 
3797 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3798 		    vd->vdev_children > 1) {
3799 			return (B_FALSE);
3800 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3801 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3802 			return (B_FALSE);
3803 		}
3804 	}
3805 
3806 	for (int c = 0; c < vd->vdev_children; c++) {
3807 		if (!vdev_is_bootable(vd->vdev_child[c]))
3808 			return (B_FALSE);
3809 	}
3810 	return (B_TRUE);
3811 }
3812 
3813 boolean_t
3814 vdev_is_concrete(vdev_t *vd)
3815 {
3816 	vdev_ops_t *ops = vd->vdev_ops;
3817 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3818 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3819 		return (B_FALSE);
3820 	} else {
3821 		return (B_TRUE);
3822 	}
3823 }
3824 
3825 /*
3826  * Determine if a log device has valid content.  If the vdev was
3827  * removed or faulted in the MOS config then we know that
3828  * the content on the log device has already been written to the pool.
3829  */
3830 boolean_t
3831 vdev_log_state_valid(vdev_t *vd)
3832 {
3833 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3834 	    !vd->vdev_removed)
3835 		return (B_TRUE);
3836 
3837 	for (int c = 0; c < vd->vdev_children; c++)
3838 		if (vdev_log_state_valid(vd->vdev_child[c]))
3839 			return (B_TRUE);
3840 
3841 	return (B_FALSE);
3842 }
3843 
3844 /*
3845  * Expand a vdev if possible.
3846  */
3847 void
3848 vdev_expand(vdev_t *vd, uint64_t txg)
3849 {
3850 	ASSERT(vd->vdev_top == vd);
3851 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3852 
3853 	vdev_set_deflate_ratio(vd);
3854 
3855 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3856 	    vdev_is_concrete(vd)) {
3857 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3858 		vdev_config_dirty(vd);
3859 	}
3860 }
3861 
3862 /*
3863  * Split a vdev.
3864  */
3865 void
3866 vdev_split(vdev_t *vd)
3867 {
3868 	vdev_t *cvd, *pvd = vd->vdev_parent;
3869 
3870 	vdev_remove_child(pvd, vd);
3871 	vdev_compact_children(pvd);
3872 
3873 	cvd = pvd->vdev_child[0];
3874 	if (pvd->vdev_children == 1) {
3875 		vdev_remove_parent(cvd);
3876 		cvd->vdev_splitting = B_TRUE;
3877 	}
3878 	vdev_propagate_state(cvd);
3879 }
3880 
3881 void
3882 vdev_deadman(vdev_t *vd)
3883 {
3884 	for (int c = 0; c < vd->vdev_children; c++) {
3885 		vdev_t *cvd = vd->vdev_child[c];
3886 
3887 		vdev_deadman(cvd);
3888 	}
3889 
3890 	if (vd->vdev_ops->vdev_op_leaf) {
3891 		vdev_queue_t *vq = &vd->vdev_queue;
3892 
3893 		mutex_enter(&vq->vq_lock);
3894 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3895 			spa_t *spa = vd->vdev_spa;
3896 			zio_t *fio;
3897 			uint64_t delta;
3898 
3899 			/*
3900 			 * Look at the head of all the pending queues,
3901 			 * if any I/O has been outstanding for longer than
3902 			 * the spa_deadman_synctime we panic the system.
3903 			 */
3904 			fio = avl_first(&vq->vq_active_tree);
3905 			delta = gethrtime() - fio->io_timestamp;
3906 			if (delta > spa_deadman_synctime(spa)) {
3907 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3908 				    "%lluns, delta %lluns, last io %lluns",
3909 				    fio->io_timestamp, (u_longlong_t)delta,
3910 				    vq->vq_io_complete_ts);
3911 				fm_panic("I/O to pool '%s' appears to be "
3912 				    "hung.", spa_name(spa));
3913 			}
3914 		}
3915 		mutex_exit(&vq->vq_lock);
3916 	}
3917 }
3918