1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/spa_impl.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/uberblock_impl.h> 39 #include <sys/metaslab.h> 40 #include <sys/metaslab_impl.h> 41 #include <sys/space_map.h> 42 #include <sys/space_reftree.h> 43 #include <sys/zio.h> 44 #include <sys/zap.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/arc.h> 47 #include <sys/zil.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/abd.h> 50 51 /* 52 * Virtual device management. 53 */ 54 55 static vdev_ops_t *vdev_ops_table[] = { 56 &vdev_root_ops, 57 &vdev_raidz_ops, 58 &vdev_mirror_ops, 59 &vdev_replacing_ops, 60 &vdev_spare_ops, 61 &vdev_disk_ops, 62 &vdev_file_ops, 63 &vdev_missing_ops, 64 &vdev_hole_ops, 65 NULL 66 }; 67 68 /* maximum scrub/resilver I/O queue per leaf vdev */ 69 int zfs_scrub_limit = 10; 70 71 /* 72 * When a vdev is added, it will be divided into approximately (but no 73 * more than) this number of metaslabs. 74 */ 75 int metaslabs_per_vdev = 200; 76 77 /* 78 * Given a vdev type, return the appropriate ops vector. 79 */ 80 static vdev_ops_t * 81 vdev_getops(const char *type) 82 { 83 vdev_ops_t *ops, **opspp; 84 85 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 86 if (strcmp(ops->vdev_op_type, type) == 0) 87 break; 88 89 return (ops); 90 } 91 92 /* 93 * Default asize function: return the MAX of psize with the asize of 94 * all children. This is what's used by anything other than RAID-Z. 95 */ 96 uint64_t 97 vdev_default_asize(vdev_t *vd, uint64_t psize) 98 { 99 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 100 uint64_t csize; 101 102 for (int c = 0; c < vd->vdev_children; c++) { 103 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 104 asize = MAX(asize, csize); 105 } 106 107 return (asize); 108 } 109 110 /* 111 * Get the minimum allocatable size. We define the allocatable size as 112 * the vdev's asize rounded to the nearest metaslab. This allows us to 113 * replace or attach devices which don't have the same physical size but 114 * can still satisfy the same number of allocations. 115 */ 116 uint64_t 117 vdev_get_min_asize(vdev_t *vd) 118 { 119 vdev_t *pvd = vd->vdev_parent; 120 121 /* 122 * If our parent is NULL (inactive spare or cache) or is the root, 123 * just return our own asize. 124 */ 125 if (pvd == NULL) 126 return (vd->vdev_asize); 127 128 /* 129 * The top-level vdev just returns the allocatable size rounded 130 * to the nearest metaslab. 131 */ 132 if (vd == vd->vdev_top) 133 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 134 135 /* 136 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 137 * so each child must provide at least 1/Nth of its asize. 138 */ 139 if (pvd->vdev_ops == &vdev_raidz_ops) 140 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 141 pvd->vdev_children); 142 143 return (pvd->vdev_min_asize); 144 } 145 146 void 147 vdev_set_min_asize(vdev_t *vd) 148 { 149 vd->vdev_min_asize = vdev_get_min_asize(vd); 150 151 for (int c = 0; c < vd->vdev_children; c++) 152 vdev_set_min_asize(vd->vdev_child[c]); 153 } 154 155 vdev_t * 156 vdev_lookup_top(spa_t *spa, uint64_t vdev) 157 { 158 vdev_t *rvd = spa->spa_root_vdev; 159 160 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 161 162 if (vdev < rvd->vdev_children) { 163 ASSERT(rvd->vdev_child[vdev] != NULL); 164 return (rvd->vdev_child[vdev]); 165 } 166 167 return (NULL); 168 } 169 170 vdev_t * 171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 172 { 173 vdev_t *mvd; 174 175 if (vd->vdev_guid == guid) 176 return (vd); 177 178 for (int c = 0; c < vd->vdev_children; c++) 179 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 180 NULL) 181 return (mvd); 182 183 return (NULL); 184 } 185 186 static int 187 vdev_count_leaves_impl(vdev_t *vd) 188 { 189 int n = 0; 190 191 if (vd->vdev_ops->vdev_op_leaf) 192 return (1); 193 194 for (int c = 0; c < vd->vdev_children; c++) 195 n += vdev_count_leaves_impl(vd->vdev_child[c]); 196 197 return (n); 198 } 199 200 int 201 vdev_count_leaves(spa_t *spa) 202 { 203 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 204 } 205 206 void 207 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 208 { 209 size_t oldsize, newsize; 210 uint64_t id = cvd->vdev_id; 211 vdev_t **newchild; 212 spa_t *spa = cvd->vdev_spa; 213 214 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 215 ASSERT(cvd->vdev_parent == NULL); 216 217 cvd->vdev_parent = pvd; 218 219 if (pvd == NULL) 220 return; 221 222 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 223 224 oldsize = pvd->vdev_children * sizeof (vdev_t *); 225 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 226 newsize = pvd->vdev_children * sizeof (vdev_t *); 227 228 newchild = kmem_zalloc(newsize, KM_SLEEP); 229 if (pvd->vdev_child != NULL) { 230 bcopy(pvd->vdev_child, newchild, oldsize); 231 kmem_free(pvd->vdev_child, oldsize); 232 } 233 234 pvd->vdev_child = newchild; 235 pvd->vdev_child[id] = cvd; 236 237 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 238 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 239 240 /* 241 * Walk up all ancestors to update guid sum. 242 */ 243 for (; pvd != NULL; pvd = pvd->vdev_parent) 244 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 245 } 246 247 void 248 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 249 { 250 int c; 251 uint_t id = cvd->vdev_id; 252 253 ASSERT(cvd->vdev_parent == pvd); 254 255 if (pvd == NULL) 256 return; 257 258 ASSERT(id < pvd->vdev_children); 259 ASSERT(pvd->vdev_child[id] == cvd); 260 261 pvd->vdev_child[id] = NULL; 262 cvd->vdev_parent = NULL; 263 264 for (c = 0; c < pvd->vdev_children; c++) 265 if (pvd->vdev_child[c]) 266 break; 267 268 if (c == pvd->vdev_children) { 269 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 270 pvd->vdev_child = NULL; 271 pvd->vdev_children = 0; 272 } 273 274 /* 275 * Walk up all ancestors to update guid sum. 276 */ 277 for (; pvd != NULL; pvd = pvd->vdev_parent) 278 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 279 } 280 281 /* 282 * Remove any holes in the child array. 283 */ 284 void 285 vdev_compact_children(vdev_t *pvd) 286 { 287 vdev_t **newchild, *cvd; 288 int oldc = pvd->vdev_children; 289 int newc; 290 291 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 292 293 for (int c = newc = 0; c < oldc; c++) 294 if (pvd->vdev_child[c]) 295 newc++; 296 297 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 298 299 for (int c = newc = 0; c < oldc; c++) { 300 if ((cvd = pvd->vdev_child[c]) != NULL) { 301 newchild[newc] = cvd; 302 cvd->vdev_id = newc++; 303 } 304 } 305 306 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 307 pvd->vdev_child = newchild; 308 pvd->vdev_children = newc; 309 } 310 311 /* 312 * Allocate and minimally initialize a vdev_t. 313 */ 314 vdev_t * 315 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 316 { 317 vdev_t *vd; 318 319 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 320 321 if (spa->spa_root_vdev == NULL) { 322 ASSERT(ops == &vdev_root_ops); 323 spa->spa_root_vdev = vd; 324 spa->spa_load_guid = spa_generate_guid(NULL); 325 } 326 327 if (guid == 0 && ops != &vdev_hole_ops) { 328 if (spa->spa_root_vdev == vd) { 329 /* 330 * The root vdev's guid will also be the pool guid, 331 * which must be unique among all pools. 332 */ 333 guid = spa_generate_guid(NULL); 334 } else { 335 /* 336 * Any other vdev's guid must be unique within the pool. 337 */ 338 guid = spa_generate_guid(spa); 339 } 340 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 341 } 342 343 vd->vdev_spa = spa; 344 vd->vdev_id = id; 345 vd->vdev_guid = guid; 346 vd->vdev_guid_sum = guid; 347 vd->vdev_ops = ops; 348 vd->vdev_state = VDEV_STATE_CLOSED; 349 vd->vdev_ishole = (ops == &vdev_hole_ops); 350 351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 354 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 355 for (int t = 0; t < DTL_TYPES; t++) { 356 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 357 &vd->vdev_dtl_lock); 358 } 359 txg_list_create(&vd->vdev_ms_list, spa, 360 offsetof(struct metaslab, ms_txg_node)); 361 txg_list_create(&vd->vdev_dtl_list, spa, 362 offsetof(struct vdev, vdev_dtl_node)); 363 vd->vdev_stat.vs_timestamp = gethrtime(); 364 vdev_queue_init(vd); 365 vdev_cache_init(vd); 366 367 return (vd); 368 } 369 370 /* 371 * Allocate a new vdev. The 'alloctype' is used to control whether we are 372 * creating a new vdev or loading an existing one - the behavior is slightly 373 * different for each case. 374 */ 375 int 376 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 377 int alloctype) 378 { 379 vdev_ops_t *ops; 380 char *type; 381 uint64_t guid = 0, islog, nparity; 382 vdev_t *vd; 383 384 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 385 386 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 387 return (SET_ERROR(EINVAL)); 388 389 if ((ops = vdev_getops(type)) == NULL) 390 return (SET_ERROR(EINVAL)); 391 392 /* 393 * If this is a load, get the vdev guid from the nvlist. 394 * Otherwise, vdev_alloc_common() will generate one for us. 395 */ 396 if (alloctype == VDEV_ALLOC_LOAD) { 397 uint64_t label_id; 398 399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 400 label_id != id) 401 return (SET_ERROR(EINVAL)); 402 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_SPARE) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 410 return (SET_ERROR(EINVAL)); 411 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 412 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 413 return (SET_ERROR(EINVAL)); 414 } 415 416 /* 417 * The first allocated vdev must be of type 'root'. 418 */ 419 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 420 return (SET_ERROR(EINVAL)); 421 422 /* 423 * Determine whether we're a log vdev. 424 */ 425 islog = 0; 426 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 427 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 428 return (SET_ERROR(ENOTSUP)); 429 430 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 431 return (SET_ERROR(ENOTSUP)); 432 433 /* 434 * Set the nparity property for RAID-Z vdevs. 435 */ 436 nparity = -1ULL; 437 if (ops == &vdev_raidz_ops) { 438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 439 &nparity) == 0) { 440 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 441 return (SET_ERROR(EINVAL)); 442 /* 443 * Previous versions could only support 1 or 2 parity 444 * device. 445 */ 446 if (nparity > 1 && 447 spa_version(spa) < SPA_VERSION_RAIDZ2) 448 return (SET_ERROR(ENOTSUP)); 449 if (nparity > 2 && 450 spa_version(spa) < SPA_VERSION_RAIDZ3) 451 return (SET_ERROR(ENOTSUP)); 452 } else { 453 /* 454 * We require the parity to be specified for SPAs that 455 * support multiple parity levels. 456 */ 457 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 458 return (SET_ERROR(EINVAL)); 459 /* 460 * Otherwise, we default to 1 parity device for RAID-Z. 461 */ 462 nparity = 1; 463 } 464 } else { 465 nparity = 0; 466 } 467 ASSERT(nparity != -1ULL); 468 469 vd = vdev_alloc_common(spa, id, guid, ops); 470 471 vd->vdev_islog = islog; 472 vd->vdev_nparity = nparity; 473 474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 475 vd->vdev_path = spa_strdup(vd->vdev_path); 476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 477 vd->vdev_devid = spa_strdup(vd->vdev_devid); 478 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 479 &vd->vdev_physpath) == 0) 480 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 481 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 482 vd->vdev_fru = spa_strdup(vd->vdev_fru); 483 484 /* 485 * Set the whole_disk property. If it's not specified, leave the value 486 * as -1. 487 */ 488 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 489 &vd->vdev_wholedisk) != 0) 490 vd->vdev_wholedisk = -1ULL; 491 492 /* 493 * Look for the 'not present' flag. This will only be set if the device 494 * was not present at the time of import. 495 */ 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 497 &vd->vdev_not_present); 498 499 /* 500 * Get the alignment requirement. 501 */ 502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 503 504 /* 505 * Retrieve the vdev creation time. 506 */ 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 508 &vd->vdev_crtxg); 509 510 /* 511 * If we're a top-level vdev, try to load the allocation parameters. 512 */ 513 if (parent && !parent->vdev_parent && 514 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 516 &vd->vdev_ms_array); 517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 518 &vd->vdev_ms_shift); 519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 520 &vd->vdev_asize); 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 522 &vd->vdev_removing); 523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 524 &vd->vdev_top_zap); 525 } else { 526 ASSERT0(vd->vdev_top_zap); 527 } 528 529 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 530 ASSERT(alloctype == VDEV_ALLOC_LOAD || 531 alloctype == VDEV_ALLOC_ADD || 532 alloctype == VDEV_ALLOC_SPLIT || 533 alloctype == VDEV_ALLOC_ROOTPOOL); 534 vd->vdev_mg = metaslab_group_create(islog ? 535 spa_log_class(spa) : spa_normal_class(spa), vd); 536 } 537 538 if (vd->vdev_ops->vdev_op_leaf && 539 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 540 (void) nvlist_lookup_uint64(nv, 541 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 542 } else { 543 ASSERT0(vd->vdev_leaf_zap); 544 } 545 546 /* 547 * If we're a leaf vdev, try to load the DTL object and other state. 548 */ 549 550 if (vd->vdev_ops->vdev_op_leaf && 551 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 552 alloctype == VDEV_ALLOC_ROOTPOOL)) { 553 if (alloctype == VDEV_ALLOC_LOAD) { 554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 555 &vd->vdev_dtl_object); 556 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 557 &vd->vdev_unspare); 558 } 559 560 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 561 uint64_t spare = 0; 562 563 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 564 &spare) == 0 && spare) 565 spa_spare_add(vd); 566 } 567 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 569 &vd->vdev_offline); 570 571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 572 &vd->vdev_resilver_txg); 573 574 /* 575 * When importing a pool, we want to ignore the persistent fault 576 * state, as the diagnosis made on another system may not be 577 * valid in the current context. Local vdevs will 578 * remain in the faulted state. 579 */ 580 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 581 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 582 &vd->vdev_faulted); 583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 584 &vd->vdev_degraded); 585 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 586 &vd->vdev_removed); 587 588 if (vd->vdev_faulted || vd->vdev_degraded) { 589 char *aux; 590 591 vd->vdev_label_aux = 592 VDEV_AUX_ERR_EXCEEDED; 593 if (nvlist_lookup_string(nv, 594 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 595 strcmp(aux, "external") == 0) 596 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 597 } 598 } 599 } 600 601 /* 602 * Add ourselves to the parent's list of children. 603 */ 604 vdev_add_child(parent, vd); 605 606 *vdp = vd; 607 608 return (0); 609 } 610 611 void 612 vdev_free(vdev_t *vd) 613 { 614 spa_t *spa = vd->vdev_spa; 615 616 /* 617 * vdev_free() implies closing the vdev first. This is simpler than 618 * trying to ensure complicated semantics for all callers. 619 */ 620 vdev_close(vd); 621 622 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 623 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 624 625 /* 626 * Free all children. 627 */ 628 for (int c = 0; c < vd->vdev_children; c++) 629 vdev_free(vd->vdev_child[c]); 630 631 ASSERT(vd->vdev_child == NULL); 632 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 633 634 /* 635 * Discard allocation state. 636 */ 637 if (vd->vdev_mg != NULL) { 638 vdev_metaslab_fini(vd); 639 metaslab_group_destroy(vd->vdev_mg); 640 } 641 642 ASSERT0(vd->vdev_stat.vs_space); 643 ASSERT0(vd->vdev_stat.vs_dspace); 644 ASSERT0(vd->vdev_stat.vs_alloc); 645 646 /* 647 * Remove this vdev from its parent's child list. 648 */ 649 vdev_remove_child(vd->vdev_parent, vd); 650 651 ASSERT(vd->vdev_parent == NULL); 652 653 /* 654 * Clean up vdev structure. 655 */ 656 vdev_queue_fini(vd); 657 vdev_cache_fini(vd); 658 659 if (vd->vdev_path) 660 spa_strfree(vd->vdev_path); 661 if (vd->vdev_devid) 662 spa_strfree(vd->vdev_devid); 663 if (vd->vdev_physpath) 664 spa_strfree(vd->vdev_physpath); 665 if (vd->vdev_fru) 666 spa_strfree(vd->vdev_fru); 667 668 if (vd->vdev_isspare) 669 spa_spare_remove(vd); 670 if (vd->vdev_isl2cache) 671 spa_l2cache_remove(vd); 672 673 txg_list_destroy(&vd->vdev_ms_list); 674 txg_list_destroy(&vd->vdev_dtl_list); 675 676 mutex_enter(&vd->vdev_dtl_lock); 677 space_map_close(vd->vdev_dtl_sm); 678 for (int t = 0; t < DTL_TYPES; t++) { 679 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 680 range_tree_destroy(vd->vdev_dtl[t]); 681 } 682 mutex_exit(&vd->vdev_dtl_lock); 683 684 mutex_destroy(&vd->vdev_queue_lock); 685 mutex_destroy(&vd->vdev_dtl_lock); 686 mutex_destroy(&vd->vdev_stat_lock); 687 mutex_destroy(&vd->vdev_probe_lock); 688 689 if (vd == spa->spa_root_vdev) 690 spa->spa_root_vdev = NULL; 691 692 kmem_free(vd, sizeof (vdev_t)); 693 } 694 695 /* 696 * Transfer top-level vdev state from svd to tvd. 697 */ 698 static void 699 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 700 { 701 spa_t *spa = svd->vdev_spa; 702 metaslab_t *msp; 703 vdev_t *vd; 704 int t; 705 706 ASSERT(tvd == tvd->vdev_top); 707 708 tvd->vdev_ms_array = svd->vdev_ms_array; 709 tvd->vdev_ms_shift = svd->vdev_ms_shift; 710 tvd->vdev_ms_count = svd->vdev_ms_count; 711 tvd->vdev_top_zap = svd->vdev_top_zap; 712 713 svd->vdev_ms_array = 0; 714 svd->vdev_ms_shift = 0; 715 svd->vdev_ms_count = 0; 716 svd->vdev_top_zap = 0; 717 718 if (tvd->vdev_mg) 719 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 720 tvd->vdev_mg = svd->vdev_mg; 721 tvd->vdev_ms = svd->vdev_ms; 722 723 svd->vdev_mg = NULL; 724 svd->vdev_ms = NULL; 725 726 if (tvd->vdev_mg != NULL) 727 tvd->vdev_mg->mg_vd = tvd; 728 729 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 730 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 731 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 732 733 svd->vdev_stat.vs_alloc = 0; 734 svd->vdev_stat.vs_space = 0; 735 svd->vdev_stat.vs_dspace = 0; 736 737 for (t = 0; t < TXG_SIZE; t++) { 738 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 739 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 740 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 741 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 742 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 743 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 744 } 745 746 if (list_link_active(&svd->vdev_config_dirty_node)) { 747 vdev_config_clean(svd); 748 vdev_config_dirty(tvd); 749 } 750 751 if (list_link_active(&svd->vdev_state_dirty_node)) { 752 vdev_state_clean(svd); 753 vdev_state_dirty(tvd); 754 } 755 756 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 757 svd->vdev_deflate_ratio = 0; 758 759 tvd->vdev_islog = svd->vdev_islog; 760 svd->vdev_islog = 0; 761 } 762 763 static void 764 vdev_top_update(vdev_t *tvd, vdev_t *vd) 765 { 766 if (vd == NULL) 767 return; 768 769 vd->vdev_top = tvd; 770 771 for (int c = 0; c < vd->vdev_children; c++) 772 vdev_top_update(tvd, vd->vdev_child[c]); 773 } 774 775 /* 776 * Add a mirror/replacing vdev above an existing vdev. 777 */ 778 vdev_t * 779 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 780 { 781 spa_t *spa = cvd->vdev_spa; 782 vdev_t *pvd = cvd->vdev_parent; 783 vdev_t *mvd; 784 785 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 786 787 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 788 789 mvd->vdev_asize = cvd->vdev_asize; 790 mvd->vdev_min_asize = cvd->vdev_min_asize; 791 mvd->vdev_max_asize = cvd->vdev_max_asize; 792 mvd->vdev_ashift = cvd->vdev_ashift; 793 mvd->vdev_state = cvd->vdev_state; 794 mvd->vdev_crtxg = cvd->vdev_crtxg; 795 796 vdev_remove_child(pvd, cvd); 797 vdev_add_child(pvd, mvd); 798 cvd->vdev_id = mvd->vdev_children; 799 vdev_add_child(mvd, cvd); 800 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 801 802 if (mvd == mvd->vdev_top) 803 vdev_top_transfer(cvd, mvd); 804 805 return (mvd); 806 } 807 808 /* 809 * Remove a 1-way mirror/replacing vdev from the tree. 810 */ 811 void 812 vdev_remove_parent(vdev_t *cvd) 813 { 814 vdev_t *mvd = cvd->vdev_parent; 815 vdev_t *pvd = mvd->vdev_parent; 816 817 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 818 819 ASSERT(mvd->vdev_children == 1); 820 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 821 mvd->vdev_ops == &vdev_replacing_ops || 822 mvd->vdev_ops == &vdev_spare_ops); 823 cvd->vdev_ashift = mvd->vdev_ashift; 824 825 vdev_remove_child(mvd, cvd); 826 vdev_remove_child(pvd, mvd); 827 828 /* 829 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 830 * Otherwise, we could have detached an offline device, and when we 831 * go to import the pool we'll think we have two top-level vdevs, 832 * instead of a different version of the same top-level vdev. 833 */ 834 if (mvd->vdev_top == mvd) { 835 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 836 cvd->vdev_orig_guid = cvd->vdev_guid; 837 cvd->vdev_guid += guid_delta; 838 cvd->vdev_guid_sum += guid_delta; 839 } 840 cvd->vdev_id = mvd->vdev_id; 841 vdev_add_child(pvd, cvd); 842 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 843 844 if (cvd == cvd->vdev_top) 845 vdev_top_transfer(mvd, cvd); 846 847 ASSERT(mvd->vdev_children == 0); 848 vdev_free(mvd); 849 } 850 851 int 852 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 853 { 854 spa_t *spa = vd->vdev_spa; 855 objset_t *mos = spa->spa_meta_objset; 856 uint64_t m; 857 uint64_t oldc = vd->vdev_ms_count; 858 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 859 metaslab_t **mspp; 860 int error; 861 862 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 863 864 /* 865 * This vdev is not being allocated from yet or is a hole. 866 */ 867 if (vd->vdev_ms_shift == 0) 868 return (0); 869 870 ASSERT(!vd->vdev_ishole); 871 872 /* 873 * Compute the raidz-deflation ratio. Note, we hard-code 874 * in 128k (1 << 17) because it is the "typical" blocksize. 875 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 876 * otherwise it would inconsistently account for existing bp's. 877 */ 878 vd->vdev_deflate_ratio = (1 << 17) / 879 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 880 881 ASSERT(oldc <= newc); 882 883 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 884 885 if (oldc != 0) { 886 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 887 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 888 } 889 890 vd->vdev_ms = mspp; 891 vd->vdev_ms_count = newc; 892 893 for (m = oldc; m < newc; m++) { 894 uint64_t object = 0; 895 896 if (txg == 0) { 897 error = dmu_read(mos, vd->vdev_ms_array, 898 m * sizeof (uint64_t), sizeof (uint64_t), &object, 899 DMU_READ_PREFETCH); 900 if (error) 901 return (error); 902 } 903 904 error = metaslab_init(vd->vdev_mg, m, object, txg, 905 &(vd->vdev_ms[m])); 906 if (error) 907 return (error); 908 } 909 910 if (txg == 0) 911 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 912 913 /* 914 * If the vdev is being removed we don't activate 915 * the metaslabs since we want to ensure that no new 916 * allocations are performed on this device. 917 */ 918 if (oldc == 0 && !vd->vdev_removing) 919 metaslab_group_activate(vd->vdev_mg); 920 921 if (txg == 0) 922 spa_config_exit(spa, SCL_ALLOC, FTAG); 923 924 return (0); 925 } 926 927 void 928 vdev_metaslab_fini(vdev_t *vd) 929 { 930 uint64_t m; 931 uint64_t count = vd->vdev_ms_count; 932 933 if (vd->vdev_ms != NULL) { 934 metaslab_group_passivate(vd->vdev_mg); 935 for (m = 0; m < count; m++) { 936 metaslab_t *msp = vd->vdev_ms[m]; 937 938 if (msp != NULL) 939 metaslab_fini(msp); 940 } 941 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 942 vd->vdev_ms = NULL; 943 } 944 } 945 946 typedef struct vdev_probe_stats { 947 boolean_t vps_readable; 948 boolean_t vps_writeable; 949 int vps_flags; 950 } vdev_probe_stats_t; 951 952 static void 953 vdev_probe_done(zio_t *zio) 954 { 955 spa_t *spa = zio->io_spa; 956 vdev_t *vd = zio->io_vd; 957 vdev_probe_stats_t *vps = zio->io_private; 958 959 ASSERT(vd->vdev_probe_zio != NULL); 960 961 if (zio->io_type == ZIO_TYPE_READ) { 962 if (zio->io_error == 0) 963 vps->vps_readable = 1; 964 if (zio->io_error == 0 && spa_writeable(spa)) { 965 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 966 zio->io_offset, zio->io_size, zio->io_abd, 967 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 968 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 969 } else { 970 abd_free(zio->io_abd); 971 } 972 } else if (zio->io_type == ZIO_TYPE_WRITE) { 973 if (zio->io_error == 0) 974 vps->vps_writeable = 1; 975 abd_free(zio->io_abd); 976 } else if (zio->io_type == ZIO_TYPE_NULL) { 977 zio_t *pio; 978 979 vd->vdev_cant_read |= !vps->vps_readable; 980 vd->vdev_cant_write |= !vps->vps_writeable; 981 982 if (vdev_readable(vd) && 983 (vdev_writeable(vd) || !spa_writeable(spa))) { 984 zio->io_error = 0; 985 } else { 986 ASSERT(zio->io_error != 0); 987 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 988 spa, vd, NULL, 0, 0); 989 zio->io_error = SET_ERROR(ENXIO); 990 } 991 992 mutex_enter(&vd->vdev_probe_lock); 993 ASSERT(vd->vdev_probe_zio == zio); 994 vd->vdev_probe_zio = NULL; 995 mutex_exit(&vd->vdev_probe_lock); 996 997 zio_link_t *zl = NULL; 998 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 999 if (!vdev_accessible(vd, pio)) 1000 pio->io_error = SET_ERROR(ENXIO); 1001 1002 kmem_free(vps, sizeof (*vps)); 1003 } 1004 } 1005 1006 /* 1007 * Determine whether this device is accessible. 1008 * 1009 * Read and write to several known locations: the pad regions of each 1010 * vdev label but the first, which we leave alone in case it contains 1011 * a VTOC. 1012 */ 1013 zio_t * 1014 vdev_probe(vdev_t *vd, zio_t *zio) 1015 { 1016 spa_t *spa = vd->vdev_spa; 1017 vdev_probe_stats_t *vps = NULL; 1018 zio_t *pio; 1019 1020 ASSERT(vd->vdev_ops->vdev_op_leaf); 1021 1022 /* 1023 * Don't probe the probe. 1024 */ 1025 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1026 return (NULL); 1027 1028 /* 1029 * To prevent 'probe storms' when a device fails, we create 1030 * just one probe i/o at a time. All zios that want to probe 1031 * this vdev will become parents of the probe io. 1032 */ 1033 mutex_enter(&vd->vdev_probe_lock); 1034 1035 if ((pio = vd->vdev_probe_zio) == NULL) { 1036 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1037 1038 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1039 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1040 ZIO_FLAG_TRYHARD; 1041 1042 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1043 /* 1044 * vdev_cant_read and vdev_cant_write can only 1045 * transition from TRUE to FALSE when we have the 1046 * SCL_ZIO lock as writer; otherwise they can only 1047 * transition from FALSE to TRUE. This ensures that 1048 * any zio looking at these values can assume that 1049 * failures persist for the life of the I/O. That's 1050 * important because when a device has intermittent 1051 * connectivity problems, we want to ensure that 1052 * they're ascribed to the device (ENXIO) and not 1053 * the zio (EIO). 1054 * 1055 * Since we hold SCL_ZIO as writer here, clear both 1056 * values so the probe can reevaluate from first 1057 * principles. 1058 */ 1059 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1060 vd->vdev_cant_read = B_FALSE; 1061 vd->vdev_cant_write = B_FALSE; 1062 } 1063 1064 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1065 vdev_probe_done, vps, 1066 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1067 1068 /* 1069 * We can't change the vdev state in this context, so we 1070 * kick off an async task to do it on our behalf. 1071 */ 1072 if (zio != NULL) { 1073 vd->vdev_probe_wanted = B_TRUE; 1074 spa_async_request(spa, SPA_ASYNC_PROBE); 1075 } 1076 } 1077 1078 if (zio != NULL) 1079 zio_add_child(zio, pio); 1080 1081 mutex_exit(&vd->vdev_probe_lock); 1082 1083 if (vps == NULL) { 1084 ASSERT(zio != NULL); 1085 return (NULL); 1086 } 1087 1088 for (int l = 1; l < VDEV_LABELS; l++) { 1089 zio_nowait(zio_read_phys(pio, vd, 1090 vdev_label_offset(vd->vdev_psize, l, 1091 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1092 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1093 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1094 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1095 } 1096 1097 if (zio == NULL) 1098 return (pio); 1099 1100 zio_nowait(pio); 1101 return (NULL); 1102 } 1103 1104 static void 1105 vdev_open_child(void *arg) 1106 { 1107 vdev_t *vd = arg; 1108 1109 vd->vdev_open_thread = curthread; 1110 vd->vdev_open_error = vdev_open(vd); 1111 vd->vdev_open_thread = NULL; 1112 } 1113 1114 boolean_t 1115 vdev_uses_zvols(vdev_t *vd) 1116 { 1117 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1118 strlen(ZVOL_DIR)) == 0) 1119 return (B_TRUE); 1120 for (int c = 0; c < vd->vdev_children; c++) 1121 if (vdev_uses_zvols(vd->vdev_child[c])) 1122 return (B_TRUE); 1123 return (B_FALSE); 1124 } 1125 1126 void 1127 vdev_open_children(vdev_t *vd) 1128 { 1129 taskq_t *tq; 1130 int children = vd->vdev_children; 1131 1132 /* 1133 * in order to handle pools on top of zvols, do the opens 1134 * in a single thread so that the same thread holds the 1135 * spa_namespace_lock 1136 */ 1137 if (vdev_uses_zvols(vd)) { 1138 for (int c = 0; c < children; c++) 1139 vd->vdev_child[c]->vdev_open_error = 1140 vdev_open(vd->vdev_child[c]); 1141 return; 1142 } 1143 tq = taskq_create("vdev_open", children, minclsyspri, 1144 children, children, TASKQ_PREPOPULATE); 1145 1146 for (int c = 0; c < children; c++) 1147 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1148 TQ_SLEEP) != NULL); 1149 1150 taskq_destroy(tq); 1151 } 1152 1153 /* 1154 * Prepare a virtual device for access. 1155 */ 1156 int 1157 vdev_open(vdev_t *vd) 1158 { 1159 spa_t *spa = vd->vdev_spa; 1160 int error; 1161 uint64_t osize = 0; 1162 uint64_t max_osize = 0; 1163 uint64_t asize, max_asize, psize; 1164 uint64_t ashift = 0; 1165 1166 ASSERT(vd->vdev_open_thread == curthread || 1167 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1168 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1169 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1170 vd->vdev_state == VDEV_STATE_OFFLINE); 1171 1172 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1173 vd->vdev_cant_read = B_FALSE; 1174 vd->vdev_cant_write = B_FALSE; 1175 vd->vdev_min_asize = vdev_get_min_asize(vd); 1176 1177 /* 1178 * If this vdev is not removed, check its fault status. If it's 1179 * faulted, bail out of the open. 1180 */ 1181 if (!vd->vdev_removed && vd->vdev_faulted) { 1182 ASSERT(vd->vdev_children == 0); 1183 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1184 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1185 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1186 vd->vdev_label_aux); 1187 return (SET_ERROR(ENXIO)); 1188 } else if (vd->vdev_offline) { 1189 ASSERT(vd->vdev_children == 0); 1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1191 return (SET_ERROR(ENXIO)); 1192 } 1193 1194 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1195 1196 /* 1197 * Reset the vdev_reopening flag so that we actually close 1198 * the vdev on error. 1199 */ 1200 vd->vdev_reopening = B_FALSE; 1201 if (zio_injection_enabled && error == 0) 1202 error = zio_handle_device_injection(vd, NULL, ENXIO); 1203 1204 if (error) { 1205 if (vd->vdev_removed && 1206 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1207 vd->vdev_removed = B_FALSE; 1208 1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1210 vd->vdev_stat.vs_aux); 1211 return (error); 1212 } 1213 1214 vd->vdev_removed = B_FALSE; 1215 1216 /* 1217 * Recheck the faulted flag now that we have confirmed that 1218 * the vdev is accessible. If we're faulted, bail. 1219 */ 1220 if (vd->vdev_faulted) { 1221 ASSERT(vd->vdev_children == 0); 1222 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1223 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1225 vd->vdev_label_aux); 1226 return (SET_ERROR(ENXIO)); 1227 } 1228 1229 if (vd->vdev_degraded) { 1230 ASSERT(vd->vdev_children == 0); 1231 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1232 VDEV_AUX_ERR_EXCEEDED); 1233 } else { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1235 } 1236 1237 /* 1238 * For hole or missing vdevs we just return success. 1239 */ 1240 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1241 return (0); 1242 1243 for (int c = 0; c < vd->vdev_children; c++) { 1244 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1245 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1246 VDEV_AUX_NONE); 1247 break; 1248 } 1249 } 1250 1251 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1252 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1253 1254 if (vd->vdev_children == 0) { 1255 if (osize < SPA_MINDEVSIZE) { 1256 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1257 VDEV_AUX_TOO_SMALL); 1258 return (SET_ERROR(EOVERFLOW)); 1259 } 1260 psize = osize; 1261 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1262 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1263 VDEV_LABEL_END_SIZE); 1264 } else { 1265 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1266 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1267 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1268 VDEV_AUX_TOO_SMALL); 1269 return (SET_ERROR(EOVERFLOW)); 1270 } 1271 psize = 0; 1272 asize = osize; 1273 max_asize = max_osize; 1274 } 1275 1276 vd->vdev_psize = psize; 1277 1278 /* 1279 * Make sure the allocatable size hasn't shrunk too much. 1280 */ 1281 if (asize < vd->vdev_min_asize) { 1282 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1283 VDEV_AUX_BAD_LABEL); 1284 return (SET_ERROR(EINVAL)); 1285 } 1286 1287 if (vd->vdev_asize == 0) { 1288 /* 1289 * This is the first-ever open, so use the computed values. 1290 * For testing purposes, a higher ashift can be requested. 1291 */ 1292 vd->vdev_asize = asize; 1293 vd->vdev_max_asize = max_asize; 1294 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1295 } else { 1296 /* 1297 * Detect if the alignment requirement has increased. 1298 * We don't want to make the pool unavailable, just 1299 * issue a warning instead. 1300 */ 1301 if (ashift > vd->vdev_top->vdev_ashift && 1302 vd->vdev_ops->vdev_op_leaf) { 1303 cmn_err(CE_WARN, 1304 "Disk, '%s', has a block alignment that is " 1305 "larger than the pool's alignment\n", 1306 vd->vdev_path); 1307 } 1308 vd->vdev_max_asize = max_asize; 1309 } 1310 1311 /* 1312 * If all children are healthy we update asize if either: 1313 * The asize has increased, due to a device expansion caused by dynamic 1314 * LUN growth or vdev replacement, and automatic expansion is enabled; 1315 * making the additional space available. 1316 * 1317 * The asize has decreased, due to a device shrink usually caused by a 1318 * vdev replace with a smaller device. This ensures that calculations 1319 * based of max_asize and asize e.g. esize are always valid. It's safe 1320 * to do this as we've already validated that asize is greater than 1321 * vdev_min_asize. 1322 */ 1323 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1324 ((asize > vd->vdev_asize && 1325 (vd->vdev_expanding || spa->spa_autoexpand)) || 1326 (asize < vd->vdev_asize))) 1327 vd->vdev_asize = asize; 1328 1329 vdev_set_min_asize(vd); 1330 1331 /* 1332 * Ensure we can issue some IO before declaring the 1333 * vdev open for business. 1334 */ 1335 if (vd->vdev_ops->vdev_op_leaf && 1336 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1337 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1338 VDEV_AUX_ERR_EXCEEDED); 1339 return (error); 1340 } 1341 1342 /* 1343 * Track the min and max ashift values for normal data devices. 1344 */ 1345 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1346 !vd->vdev_islog && vd->vdev_aux == NULL) { 1347 if (vd->vdev_ashift > spa->spa_max_ashift) 1348 spa->spa_max_ashift = vd->vdev_ashift; 1349 if (vd->vdev_ashift < spa->spa_min_ashift) 1350 spa->spa_min_ashift = vd->vdev_ashift; 1351 } 1352 1353 /* 1354 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1355 * resilver. But don't do this if we are doing a reopen for a scrub, 1356 * since this would just restart the scrub we are already doing. 1357 */ 1358 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1359 vdev_resilver_needed(vd, NULL, NULL)) 1360 spa_async_request(spa, SPA_ASYNC_RESILVER); 1361 1362 return (0); 1363 } 1364 1365 /* 1366 * Called once the vdevs are all opened, this routine validates the label 1367 * contents. This needs to be done before vdev_load() so that we don't 1368 * inadvertently do repair I/Os to the wrong device. 1369 * 1370 * If 'strict' is false ignore the spa guid check. This is necessary because 1371 * if the machine crashed during a re-guid the new guid might have been written 1372 * to all of the vdev labels, but not the cached config. The strict check 1373 * will be performed when the pool is opened again using the mos config. 1374 * 1375 * This function will only return failure if one of the vdevs indicates that it 1376 * has since been destroyed or exported. This is only possible if 1377 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1378 * will be updated but the function will return 0. 1379 */ 1380 int 1381 vdev_validate(vdev_t *vd, boolean_t strict) 1382 { 1383 spa_t *spa = vd->vdev_spa; 1384 nvlist_t *label; 1385 uint64_t guid = 0, top_guid; 1386 uint64_t state; 1387 1388 for (int c = 0; c < vd->vdev_children; c++) 1389 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1390 return (SET_ERROR(EBADF)); 1391 1392 /* 1393 * If the device has already failed, or was marked offline, don't do 1394 * any further validation. Otherwise, label I/O will fail and we will 1395 * overwrite the previous state. 1396 */ 1397 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1398 uint64_t aux_guid = 0; 1399 nvlist_t *nvl; 1400 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1401 spa_last_synced_txg(spa) : -1ULL; 1402 1403 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1404 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1405 VDEV_AUX_BAD_LABEL); 1406 return (0); 1407 } 1408 1409 /* 1410 * Determine if this vdev has been split off into another 1411 * pool. If so, then refuse to open it. 1412 */ 1413 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1414 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1415 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1416 VDEV_AUX_SPLIT_POOL); 1417 nvlist_free(label); 1418 return (0); 1419 } 1420 1421 if (strict && (nvlist_lookup_uint64(label, 1422 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1423 guid != spa_guid(spa))) { 1424 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1425 VDEV_AUX_CORRUPT_DATA); 1426 nvlist_free(label); 1427 return (0); 1428 } 1429 1430 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1431 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1432 &aux_guid) != 0) 1433 aux_guid = 0; 1434 1435 /* 1436 * If this vdev just became a top-level vdev because its 1437 * sibling was detached, it will have adopted the parent's 1438 * vdev guid -- but the label may or may not be on disk yet. 1439 * Fortunately, either version of the label will have the 1440 * same top guid, so if we're a top-level vdev, we can 1441 * safely compare to that instead. 1442 * 1443 * If we split this vdev off instead, then we also check the 1444 * original pool's guid. We don't want to consider the vdev 1445 * corrupt if it is partway through a split operation. 1446 */ 1447 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1448 &guid) != 0 || 1449 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1450 &top_guid) != 0 || 1451 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1452 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1453 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1454 VDEV_AUX_CORRUPT_DATA); 1455 nvlist_free(label); 1456 return (0); 1457 } 1458 1459 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1460 &state) != 0) { 1461 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1462 VDEV_AUX_CORRUPT_DATA); 1463 nvlist_free(label); 1464 return (0); 1465 } 1466 1467 nvlist_free(label); 1468 1469 /* 1470 * If this is a verbatim import, no need to check the 1471 * state of the pool. 1472 */ 1473 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1474 spa_load_state(spa) == SPA_LOAD_OPEN && 1475 state != POOL_STATE_ACTIVE) 1476 return (SET_ERROR(EBADF)); 1477 1478 /* 1479 * If we were able to open and validate a vdev that was 1480 * previously marked permanently unavailable, clear that state 1481 * now. 1482 */ 1483 if (vd->vdev_not_present) 1484 vd->vdev_not_present = 0; 1485 } 1486 1487 return (0); 1488 } 1489 1490 /* 1491 * Close a virtual device. 1492 */ 1493 void 1494 vdev_close(vdev_t *vd) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 vdev_t *pvd = vd->vdev_parent; 1498 1499 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1500 1501 /* 1502 * If our parent is reopening, then we are as well, unless we are 1503 * going offline. 1504 */ 1505 if (pvd != NULL && pvd->vdev_reopening) 1506 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1507 1508 vd->vdev_ops->vdev_op_close(vd); 1509 1510 vdev_cache_purge(vd); 1511 1512 /* 1513 * We record the previous state before we close it, so that if we are 1514 * doing a reopen(), we don't generate FMA ereports if we notice that 1515 * it's still faulted. 1516 */ 1517 vd->vdev_prevstate = vd->vdev_state; 1518 1519 if (vd->vdev_offline) 1520 vd->vdev_state = VDEV_STATE_OFFLINE; 1521 else 1522 vd->vdev_state = VDEV_STATE_CLOSED; 1523 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1524 } 1525 1526 void 1527 vdev_hold(vdev_t *vd) 1528 { 1529 spa_t *spa = vd->vdev_spa; 1530 1531 ASSERT(spa_is_root(spa)); 1532 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1533 return; 1534 1535 for (int c = 0; c < vd->vdev_children; c++) 1536 vdev_hold(vd->vdev_child[c]); 1537 1538 if (vd->vdev_ops->vdev_op_leaf) 1539 vd->vdev_ops->vdev_op_hold(vd); 1540 } 1541 1542 void 1543 vdev_rele(vdev_t *vd) 1544 { 1545 spa_t *spa = vd->vdev_spa; 1546 1547 ASSERT(spa_is_root(spa)); 1548 for (int c = 0; c < vd->vdev_children; c++) 1549 vdev_rele(vd->vdev_child[c]); 1550 1551 if (vd->vdev_ops->vdev_op_leaf) 1552 vd->vdev_ops->vdev_op_rele(vd); 1553 } 1554 1555 /* 1556 * Reopen all interior vdevs and any unopened leaves. We don't actually 1557 * reopen leaf vdevs which had previously been opened as they might deadlock 1558 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1559 * If the leaf has never been opened then open it, as usual. 1560 */ 1561 void 1562 vdev_reopen(vdev_t *vd) 1563 { 1564 spa_t *spa = vd->vdev_spa; 1565 1566 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1567 1568 /* set the reopening flag unless we're taking the vdev offline */ 1569 vd->vdev_reopening = !vd->vdev_offline; 1570 vdev_close(vd); 1571 (void) vdev_open(vd); 1572 1573 /* 1574 * Call vdev_validate() here to make sure we have the same device. 1575 * Otherwise, a device with an invalid label could be successfully 1576 * opened in response to vdev_reopen(). 1577 */ 1578 if (vd->vdev_aux) { 1579 (void) vdev_validate_aux(vd); 1580 if (vdev_readable(vd) && vdev_writeable(vd) && 1581 vd->vdev_aux == &spa->spa_l2cache && 1582 !l2arc_vdev_present(vd)) 1583 l2arc_add_vdev(spa, vd); 1584 } else { 1585 (void) vdev_validate(vd, B_TRUE); 1586 } 1587 1588 /* 1589 * Reassess parent vdev's health. 1590 */ 1591 vdev_propagate_state(vd); 1592 } 1593 1594 int 1595 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1596 { 1597 int error; 1598 1599 /* 1600 * Normally, partial opens (e.g. of a mirror) are allowed. 1601 * For a create, however, we want to fail the request if 1602 * there are any components we can't open. 1603 */ 1604 error = vdev_open(vd); 1605 1606 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1607 vdev_close(vd); 1608 return (error ? error : ENXIO); 1609 } 1610 1611 /* 1612 * Recursively load DTLs and initialize all labels. 1613 */ 1614 if ((error = vdev_dtl_load(vd)) != 0 || 1615 (error = vdev_label_init(vd, txg, isreplacing ? 1616 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1617 vdev_close(vd); 1618 return (error); 1619 } 1620 1621 return (0); 1622 } 1623 1624 void 1625 vdev_metaslab_set_size(vdev_t *vd) 1626 { 1627 /* 1628 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1629 */ 1630 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1631 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1632 } 1633 1634 void 1635 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1636 { 1637 ASSERT(vd == vd->vdev_top); 1638 ASSERT(!vd->vdev_ishole); 1639 ASSERT(ISP2(flags)); 1640 ASSERT(spa_writeable(vd->vdev_spa)); 1641 1642 if (flags & VDD_METASLAB) 1643 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1644 1645 if (flags & VDD_DTL) 1646 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1647 1648 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1649 } 1650 1651 void 1652 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1653 { 1654 for (int c = 0; c < vd->vdev_children; c++) 1655 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1656 1657 if (vd->vdev_ops->vdev_op_leaf) 1658 vdev_dirty(vd->vdev_top, flags, vd, txg); 1659 } 1660 1661 /* 1662 * DTLs. 1663 * 1664 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1665 * the vdev has less than perfect replication. There are four kinds of DTL: 1666 * 1667 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1668 * 1669 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1670 * 1671 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1672 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1673 * txgs that was scrubbed. 1674 * 1675 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1676 * persistent errors or just some device being offline. 1677 * Unlike the other three, the DTL_OUTAGE map is not generally 1678 * maintained; it's only computed when needed, typically to 1679 * determine whether a device can be detached. 1680 * 1681 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1682 * either has the data or it doesn't. 1683 * 1684 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1685 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1686 * if any child is less than fully replicated, then so is its parent. 1687 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1688 * comprising only those txgs which appear in 'maxfaults' or more children; 1689 * those are the txgs we don't have enough replication to read. For example, 1690 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1691 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1692 * two child DTL_MISSING maps. 1693 * 1694 * It should be clear from the above that to compute the DTLs and outage maps 1695 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1696 * Therefore, that is all we keep on disk. When loading the pool, or after 1697 * a configuration change, we generate all other DTLs from first principles. 1698 */ 1699 void 1700 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1701 { 1702 range_tree_t *rt = vd->vdev_dtl[t]; 1703 1704 ASSERT(t < DTL_TYPES); 1705 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1706 ASSERT(spa_writeable(vd->vdev_spa)); 1707 1708 mutex_enter(rt->rt_lock); 1709 if (!range_tree_contains(rt, txg, size)) 1710 range_tree_add(rt, txg, size); 1711 mutex_exit(rt->rt_lock); 1712 } 1713 1714 boolean_t 1715 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1716 { 1717 range_tree_t *rt = vd->vdev_dtl[t]; 1718 boolean_t dirty = B_FALSE; 1719 1720 ASSERT(t < DTL_TYPES); 1721 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1722 1723 mutex_enter(rt->rt_lock); 1724 if (range_tree_space(rt) != 0) 1725 dirty = range_tree_contains(rt, txg, size); 1726 mutex_exit(rt->rt_lock); 1727 1728 return (dirty); 1729 } 1730 1731 boolean_t 1732 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1733 { 1734 range_tree_t *rt = vd->vdev_dtl[t]; 1735 boolean_t empty; 1736 1737 mutex_enter(rt->rt_lock); 1738 empty = (range_tree_space(rt) == 0); 1739 mutex_exit(rt->rt_lock); 1740 1741 return (empty); 1742 } 1743 1744 /* 1745 * Returns the lowest txg in the DTL range. 1746 */ 1747 static uint64_t 1748 vdev_dtl_min(vdev_t *vd) 1749 { 1750 range_seg_t *rs; 1751 1752 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1753 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1754 ASSERT0(vd->vdev_children); 1755 1756 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1757 return (rs->rs_start - 1); 1758 } 1759 1760 /* 1761 * Returns the highest txg in the DTL. 1762 */ 1763 static uint64_t 1764 vdev_dtl_max(vdev_t *vd) 1765 { 1766 range_seg_t *rs; 1767 1768 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1769 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1770 ASSERT0(vd->vdev_children); 1771 1772 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1773 return (rs->rs_end); 1774 } 1775 1776 /* 1777 * Determine if a resilvering vdev should remove any DTL entries from 1778 * its range. If the vdev was resilvering for the entire duration of the 1779 * scan then it should excise that range from its DTLs. Otherwise, this 1780 * vdev is considered partially resilvered and should leave its DTL 1781 * entries intact. The comment in vdev_dtl_reassess() describes how we 1782 * excise the DTLs. 1783 */ 1784 static boolean_t 1785 vdev_dtl_should_excise(vdev_t *vd) 1786 { 1787 spa_t *spa = vd->vdev_spa; 1788 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1789 1790 ASSERT0(scn->scn_phys.scn_errors); 1791 ASSERT0(vd->vdev_children); 1792 1793 if (vd->vdev_state < VDEV_STATE_DEGRADED) 1794 return (B_FALSE); 1795 1796 if (vd->vdev_resilver_txg == 0 || 1797 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1798 return (B_TRUE); 1799 1800 /* 1801 * When a resilver is initiated the scan will assign the scn_max_txg 1802 * value to the highest txg value that exists in all DTLs. If this 1803 * device's max DTL is not part of this scan (i.e. it is not in 1804 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1805 * for excision. 1806 */ 1807 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1808 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1809 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1810 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1811 return (B_TRUE); 1812 } 1813 return (B_FALSE); 1814 } 1815 1816 /* 1817 * Reassess DTLs after a config change or scrub completion. 1818 */ 1819 void 1820 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1821 { 1822 spa_t *spa = vd->vdev_spa; 1823 avl_tree_t reftree; 1824 int minref; 1825 1826 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1827 1828 for (int c = 0; c < vd->vdev_children; c++) 1829 vdev_dtl_reassess(vd->vdev_child[c], txg, 1830 scrub_txg, scrub_done); 1831 1832 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1833 return; 1834 1835 if (vd->vdev_ops->vdev_op_leaf) { 1836 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1837 1838 mutex_enter(&vd->vdev_dtl_lock); 1839 1840 /* 1841 * If we've completed a scan cleanly then determine 1842 * if this vdev should remove any DTLs. We only want to 1843 * excise regions on vdevs that were available during 1844 * the entire duration of this scan. 1845 */ 1846 if (scrub_txg != 0 && 1847 (spa->spa_scrub_started || 1848 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1849 vdev_dtl_should_excise(vd)) { 1850 /* 1851 * We completed a scrub up to scrub_txg. If we 1852 * did it without rebooting, then the scrub dtl 1853 * will be valid, so excise the old region and 1854 * fold in the scrub dtl. Otherwise, leave the 1855 * dtl as-is if there was an error. 1856 * 1857 * There's little trick here: to excise the beginning 1858 * of the DTL_MISSING map, we put it into a reference 1859 * tree and then add a segment with refcnt -1 that 1860 * covers the range [0, scrub_txg). This means 1861 * that each txg in that range has refcnt -1 or 0. 1862 * We then add DTL_SCRUB with a refcnt of 2, so that 1863 * entries in the range [0, scrub_txg) will have a 1864 * positive refcnt -- either 1 or 2. We then convert 1865 * the reference tree into the new DTL_MISSING map. 1866 */ 1867 space_reftree_create(&reftree); 1868 space_reftree_add_map(&reftree, 1869 vd->vdev_dtl[DTL_MISSING], 1); 1870 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1871 space_reftree_add_map(&reftree, 1872 vd->vdev_dtl[DTL_SCRUB], 2); 1873 space_reftree_generate_map(&reftree, 1874 vd->vdev_dtl[DTL_MISSING], 1); 1875 space_reftree_destroy(&reftree); 1876 } 1877 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1878 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1879 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1880 if (scrub_done) 1881 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1882 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1883 if (!vdev_readable(vd)) 1884 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1885 else 1886 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1887 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1888 1889 /* 1890 * If the vdev was resilvering and no longer has any 1891 * DTLs then reset its resilvering flag. 1892 */ 1893 if (vd->vdev_resilver_txg != 0 && 1894 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1895 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1896 vd->vdev_resilver_txg = 0; 1897 1898 mutex_exit(&vd->vdev_dtl_lock); 1899 1900 if (txg != 0) 1901 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1902 return; 1903 } 1904 1905 mutex_enter(&vd->vdev_dtl_lock); 1906 for (int t = 0; t < DTL_TYPES; t++) { 1907 /* account for child's outage in parent's missing map */ 1908 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1909 if (t == DTL_SCRUB) 1910 continue; /* leaf vdevs only */ 1911 if (t == DTL_PARTIAL) 1912 minref = 1; /* i.e. non-zero */ 1913 else if (vd->vdev_nparity != 0) 1914 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1915 else 1916 minref = vd->vdev_children; /* any kind of mirror */ 1917 space_reftree_create(&reftree); 1918 for (int c = 0; c < vd->vdev_children; c++) { 1919 vdev_t *cvd = vd->vdev_child[c]; 1920 mutex_enter(&cvd->vdev_dtl_lock); 1921 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1922 mutex_exit(&cvd->vdev_dtl_lock); 1923 } 1924 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1925 space_reftree_destroy(&reftree); 1926 } 1927 mutex_exit(&vd->vdev_dtl_lock); 1928 } 1929 1930 int 1931 vdev_dtl_load(vdev_t *vd) 1932 { 1933 spa_t *spa = vd->vdev_spa; 1934 objset_t *mos = spa->spa_meta_objset; 1935 int error = 0; 1936 1937 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1938 ASSERT(!vd->vdev_ishole); 1939 1940 error = space_map_open(&vd->vdev_dtl_sm, mos, 1941 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1942 if (error) 1943 return (error); 1944 ASSERT(vd->vdev_dtl_sm != NULL); 1945 1946 mutex_enter(&vd->vdev_dtl_lock); 1947 1948 /* 1949 * Now that we've opened the space_map we need to update 1950 * the in-core DTL. 1951 */ 1952 space_map_update(vd->vdev_dtl_sm); 1953 1954 error = space_map_load(vd->vdev_dtl_sm, 1955 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1956 mutex_exit(&vd->vdev_dtl_lock); 1957 1958 return (error); 1959 } 1960 1961 for (int c = 0; c < vd->vdev_children; c++) { 1962 error = vdev_dtl_load(vd->vdev_child[c]); 1963 if (error != 0) 1964 break; 1965 } 1966 1967 return (error); 1968 } 1969 1970 void 1971 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1972 { 1973 spa_t *spa = vd->vdev_spa; 1974 1975 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1976 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1977 zapobj, tx)); 1978 } 1979 1980 uint64_t 1981 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1982 { 1983 spa_t *spa = vd->vdev_spa; 1984 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1985 DMU_OT_NONE, 0, tx); 1986 1987 ASSERT(zap != 0); 1988 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1989 zap, tx)); 1990 1991 return (zap); 1992 } 1993 1994 void 1995 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1996 { 1997 if (vd->vdev_ops != &vdev_hole_ops && 1998 vd->vdev_ops != &vdev_missing_ops && 1999 vd->vdev_ops != &vdev_root_ops && 2000 !vd->vdev_top->vdev_removing) { 2001 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2002 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2003 } 2004 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2005 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2006 } 2007 } 2008 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2009 vdev_construct_zaps(vd->vdev_child[i], tx); 2010 } 2011 } 2012 2013 void 2014 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2015 { 2016 spa_t *spa = vd->vdev_spa; 2017 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2018 objset_t *mos = spa->spa_meta_objset; 2019 range_tree_t *rtsync; 2020 kmutex_t rtlock; 2021 dmu_tx_t *tx; 2022 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2023 2024 ASSERT(!vd->vdev_ishole); 2025 ASSERT(vd->vdev_ops->vdev_op_leaf); 2026 2027 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2028 2029 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2030 mutex_enter(&vd->vdev_dtl_lock); 2031 space_map_free(vd->vdev_dtl_sm, tx); 2032 space_map_close(vd->vdev_dtl_sm); 2033 vd->vdev_dtl_sm = NULL; 2034 mutex_exit(&vd->vdev_dtl_lock); 2035 2036 /* 2037 * We only destroy the leaf ZAP for detached leaves or for 2038 * removed log devices. Removed data devices handle leaf ZAP 2039 * cleanup later, once cancellation is no longer possible. 2040 */ 2041 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2042 vd->vdev_top->vdev_islog)) { 2043 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2044 vd->vdev_leaf_zap = 0; 2045 } 2046 2047 dmu_tx_commit(tx); 2048 return; 2049 } 2050 2051 if (vd->vdev_dtl_sm == NULL) { 2052 uint64_t new_object; 2053 2054 new_object = space_map_alloc(mos, tx); 2055 VERIFY3U(new_object, !=, 0); 2056 2057 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2058 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2059 ASSERT(vd->vdev_dtl_sm != NULL); 2060 } 2061 2062 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2063 2064 rtsync = range_tree_create(NULL, NULL, &rtlock); 2065 2066 mutex_enter(&rtlock); 2067 2068 mutex_enter(&vd->vdev_dtl_lock); 2069 range_tree_walk(rt, range_tree_add, rtsync); 2070 mutex_exit(&vd->vdev_dtl_lock); 2071 2072 space_map_truncate(vd->vdev_dtl_sm, tx); 2073 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2074 range_tree_vacate(rtsync, NULL, NULL); 2075 2076 range_tree_destroy(rtsync); 2077 2078 mutex_exit(&rtlock); 2079 mutex_destroy(&rtlock); 2080 2081 /* 2082 * If the object for the space map has changed then dirty 2083 * the top level so that we update the config. 2084 */ 2085 if (object != space_map_object(vd->vdev_dtl_sm)) { 2086 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2087 "new object %llu", txg, spa_name(spa), object, 2088 space_map_object(vd->vdev_dtl_sm)); 2089 vdev_config_dirty(vd->vdev_top); 2090 } 2091 2092 dmu_tx_commit(tx); 2093 2094 mutex_enter(&vd->vdev_dtl_lock); 2095 space_map_update(vd->vdev_dtl_sm); 2096 mutex_exit(&vd->vdev_dtl_lock); 2097 } 2098 2099 /* 2100 * Determine whether the specified vdev can be offlined/detached/removed 2101 * without losing data. 2102 */ 2103 boolean_t 2104 vdev_dtl_required(vdev_t *vd) 2105 { 2106 spa_t *spa = vd->vdev_spa; 2107 vdev_t *tvd = vd->vdev_top; 2108 uint8_t cant_read = vd->vdev_cant_read; 2109 boolean_t required; 2110 2111 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2112 2113 if (vd == spa->spa_root_vdev || vd == tvd) 2114 return (B_TRUE); 2115 2116 /* 2117 * Temporarily mark the device as unreadable, and then determine 2118 * whether this results in any DTL outages in the top-level vdev. 2119 * If not, we can safely offline/detach/remove the device. 2120 */ 2121 vd->vdev_cant_read = B_TRUE; 2122 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2123 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2124 vd->vdev_cant_read = cant_read; 2125 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2126 2127 if (!required && zio_injection_enabled) 2128 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2129 2130 return (required); 2131 } 2132 2133 /* 2134 * Determine if resilver is needed, and if so the txg range. 2135 */ 2136 boolean_t 2137 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2138 { 2139 boolean_t needed = B_FALSE; 2140 uint64_t thismin = UINT64_MAX; 2141 uint64_t thismax = 0; 2142 2143 if (vd->vdev_children == 0) { 2144 mutex_enter(&vd->vdev_dtl_lock); 2145 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2146 vdev_writeable(vd)) { 2147 2148 thismin = vdev_dtl_min(vd); 2149 thismax = vdev_dtl_max(vd); 2150 needed = B_TRUE; 2151 } 2152 mutex_exit(&vd->vdev_dtl_lock); 2153 } else { 2154 for (int c = 0; c < vd->vdev_children; c++) { 2155 vdev_t *cvd = vd->vdev_child[c]; 2156 uint64_t cmin, cmax; 2157 2158 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2159 thismin = MIN(thismin, cmin); 2160 thismax = MAX(thismax, cmax); 2161 needed = B_TRUE; 2162 } 2163 } 2164 } 2165 2166 if (needed && minp) { 2167 *minp = thismin; 2168 *maxp = thismax; 2169 } 2170 return (needed); 2171 } 2172 2173 void 2174 vdev_load(vdev_t *vd) 2175 { 2176 /* 2177 * Recursively load all children. 2178 */ 2179 for (int c = 0; c < vd->vdev_children; c++) 2180 vdev_load(vd->vdev_child[c]); 2181 2182 /* 2183 * If this is a top-level vdev, initialize its metaslabs. 2184 */ 2185 if (vd == vd->vdev_top && !vd->vdev_ishole && 2186 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2187 vdev_metaslab_init(vd, 0) != 0)) 2188 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2189 VDEV_AUX_CORRUPT_DATA); 2190 2191 /* 2192 * If this is a leaf vdev, load its DTL. 2193 */ 2194 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2195 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2196 VDEV_AUX_CORRUPT_DATA); 2197 } 2198 2199 /* 2200 * The special vdev case is used for hot spares and l2cache devices. Its 2201 * sole purpose it to set the vdev state for the associated vdev. To do this, 2202 * we make sure that we can open the underlying device, then try to read the 2203 * label, and make sure that the label is sane and that it hasn't been 2204 * repurposed to another pool. 2205 */ 2206 int 2207 vdev_validate_aux(vdev_t *vd) 2208 { 2209 nvlist_t *label; 2210 uint64_t guid, version; 2211 uint64_t state; 2212 2213 if (!vdev_readable(vd)) 2214 return (0); 2215 2216 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2218 VDEV_AUX_CORRUPT_DATA); 2219 return (-1); 2220 } 2221 2222 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2223 !SPA_VERSION_IS_SUPPORTED(version) || 2224 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2225 guid != vd->vdev_guid || 2226 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2227 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2228 VDEV_AUX_CORRUPT_DATA); 2229 nvlist_free(label); 2230 return (-1); 2231 } 2232 2233 /* 2234 * We don't actually check the pool state here. If it's in fact in 2235 * use by another pool, we update this fact on the fly when requested. 2236 */ 2237 nvlist_free(label); 2238 return (0); 2239 } 2240 2241 void 2242 vdev_remove(vdev_t *vd, uint64_t txg) 2243 { 2244 spa_t *spa = vd->vdev_spa; 2245 objset_t *mos = spa->spa_meta_objset; 2246 dmu_tx_t *tx; 2247 2248 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2249 ASSERT(vd == vd->vdev_top); 2250 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2251 2252 if (vd->vdev_ms != NULL) { 2253 metaslab_group_t *mg = vd->vdev_mg; 2254 2255 metaslab_group_histogram_verify(mg); 2256 metaslab_class_histogram_verify(mg->mg_class); 2257 2258 for (int m = 0; m < vd->vdev_ms_count; m++) { 2259 metaslab_t *msp = vd->vdev_ms[m]; 2260 2261 if (msp == NULL || msp->ms_sm == NULL) 2262 continue; 2263 2264 mutex_enter(&msp->ms_lock); 2265 /* 2266 * If the metaslab was not loaded when the vdev 2267 * was removed then the histogram accounting may 2268 * not be accurate. Update the histogram information 2269 * here so that we ensure that the metaslab group 2270 * and metaslab class are up-to-date. 2271 */ 2272 metaslab_group_histogram_remove(mg, msp); 2273 2274 VERIFY0(space_map_allocated(msp->ms_sm)); 2275 space_map_free(msp->ms_sm, tx); 2276 space_map_close(msp->ms_sm); 2277 msp->ms_sm = NULL; 2278 mutex_exit(&msp->ms_lock); 2279 } 2280 2281 metaslab_group_histogram_verify(mg); 2282 metaslab_class_histogram_verify(mg->mg_class); 2283 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2284 ASSERT0(mg->mg_histogram[i]); 2285 2286 } 2287 2288 if (vd->vdev_ms_array) { 2289 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2290 vd->vdev_ms_array = 0; 2291 } 2292 2293 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2294 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2295 vd->vdev_top_zap = 0; 2296 } 2297 dmu_tx_commit(tx); 2298 } 2299 2300 void 2301 vdev_sync_done(vdev_t *vd, uint64_t txg) 2302 { 2303 metaslab_t *msp; 2304 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2305 2306 ASSERT(!vd->vdev_ishole); 2307 2308 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2309 metaslab_sync_done(msp, txg); 2310 2311 if (reassess) 2312 metaslab_sync_reassess(vd->vdev_mg); 2313 } 2314 2315 void 2316 vdev_sync(vdev_t *vd, uint64_t txg) 2317 { 2318 spa_t *spa = vd->vdev_spa; 2319 vdev_t *lvd; 2320 metaslab_t *msp; 2321 dmu_tx_t *tx; 2322 2323 ASSERT(!vd->vdev_ishole); 2324 2325 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2326 ASSERT(vd == vd->vdev_top); 2327 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2328 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2329 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2330 ASSERT(vd->vdev_ms_array != 0); 2331 vdev_config_dirty(vd); 2332 dmu_tx_commit(tx); 2333 } 2334 2335 /* 2336 * Remove the metadata associated with this vdev once it's empty. 2337 */ 2338 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2339 vdev_remove(vd, txg); 2340 2341 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2342 metaslab_sync(msp, txg); 2343 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2344 } 2345 2346 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2347 vdev_dtl_sync(lvd, txg); 2348 2349 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2350 } 2351 2352 uint64_t 2353 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2354 { 2355 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2356 } 2357 2358 /* 2359 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2360 * not be opened, and no I/O is attempted. 2361 */ 2362 int 2363 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2364 { 2365 vdev_t *vd, *tvd; 2366 2367 spa_vdev_state_enter(spa, SCL_NONE); 2368 2369 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2370 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2371 2372 if (!vd->vdev_ops->vdev_op_leaf) 2373 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2374 2375 tvd = vd->vdev_top; 2376 2377 /* 2378 * We don't directly use the aux state here, but if we do a 2379 * vdev_reopen(), we need this value to be present to remember why we 2380 * were faulted. 2381 */ 2382 vd->vdev_label_aux = aux; 2383 2384 /* 2385 * Faulted state takes precedence over degraded. 2386 */ 2387 vd->vdev_delayed_close = B_FALSE; 2388 vd->vdev_faulted = 1ULL; 2389 vd->vdev_degraded = 0ULL; 2390 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2391 2392 /* 2393 * If this device has the only valid copy of the data, then 2394 * back off and simply mark the vdev as degraded instead. 2395 */ 2396 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2397 vd->vdev_degraded = 1ULL; 2398 vd->vdev_faulted = 0ULL; 2399 2400 /* 2401 * If we reopen the device and it's not dead, only then do we 2402 * mark it degraded. 2403 */ 2404 vdev_reopen(tvd); 2405 2406 if (vdev_readable(vd)) 2407 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2408 } 2409 2410 return (spa_vdev_state_exit(spa, vd, 0)); 2411 } 2412 2413 /* 2414 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2415 * user that something is wrong. The vdev continues to operate as normal as far 2416 * as I/O is concerned. 2417 */ 2418 int 2419 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2420 { 2421 vdev_t *vd; 2422 2423 spa_vdev_state_enter(spa, SCL_NONE); 2424 2425 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2426 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2427 2428 if (!vd->vdev_ops->vdev_op_leaf) 2429 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2430 2431 /* 2432 * If the vdev is already faulted, then don't do anything. 2433 */ 2434 if (vd->vdev_faulted || vd->vdev_degraded) 2435 return (spa_vdev_state_exit(spa, NULL, 0)); 2436 2437 vd->vdev_degraded = 1ULL; 2438 if (!vdev_is_dead(vd)) 2439 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2440 aux); 2441 2442 return (spa_vdev_state_exit(spa, vd, 0)); 2443 } 2444 2445 /* 2446 * Online the given vdev. 2447 * 2448 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2449 * spare device should be detached when the device finishes resilvering. 2450 * Second, the online should be treated like a 'test' online case, so no FMA 2451 * events are generated if the device fails to open. 2452 */ 2453 int 2454 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2455 { 2456 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2457 boolean_t wasoffline; 2458 vdev_state_t oldstate; 2459 2460 spa_vdev_state_enter(spa, SCL_NONE); 2461 2462 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2463 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2464 2465 if (!vd->vdev_ops->vdev_op_leaf) 2466 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2467 2468 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 2469 oldstate = vd->vdev_state; 2470 2471 tvd = vd->vdev_top; 2472 vd->vdev_offline = B_FALSE; 2473 vd->vdev_tmpoffline = B_FALSE; 2474 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2475 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2476 2477 /* XXX - L2ARC 1.0 does not support expansion */ 2478 if (!vd->vdev_aux) { 2479 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2480 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2481 } 2482 2483 vdev_reopen(tvd); 2484 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2485 2486 if (!vd->vdev_aux) { 2487 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2488 pvd->vdev_expanding = B_FALSE; 2489 } 2490 2491 if (newstate) 2492 *newstate = vd->vdev_state; 2493 if ((flags & ZFS_ONLINE_UNSPARE) && 2494 !vdev_is_dead(vd) && vd->vdev_parent && 2495 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2496 vd->vdev_parent->vdev_child[0] == vd) 2497 vd->vdev_unspare = B_TRUE; 2498 2499 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2500 2501 /* XXX - L2ARC 1.0 does not support expansion */ 2502 if (vd->vdev_aux) 2503 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2504 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2505 } 2506 2507 if (wasoffline || 2508 (oldstate < VDEV_STATE_DEGRADED && 2509 vd->vdev_state >= VDEV_STATE_DEGRADED)) 2510 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 2511 2512 return (spa_vdev_state_exit(spa, vd, 0)); 2513 } 2514 2515 static int 2516 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2517 { 2518 vdev_t *vd, *tvd; 2519 int error = 0; 2520 uint64_t generation; 2521 metaslab_group_t *mg; 2522 2523 top: 2524 spa_vdev_state_enter(spa, SCL_ALLOC); 2525 2526 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2527 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2528 2529 if (!vd->vdev_ops->vdev_op_leaf) 2530 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2531 2532 tvd = vd->vdev_top; 2533 mg = tvd->vdev_mg; 2534 generation = spa->spa_config_generation + 1; 2535 2536 /* 2537 * If the device isn't already offline, try to offline it. 2538 */ 2539 if (!vd->vdev_offline) { 2540 /* 2541 * If this device has the only valid copy of some data, 2542 * don't allow it to be offlined. Log devices are always 2543 * expendable. 2544 */ 2545 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2546 vdev_dtl_required(vd)) 2547 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2548 2549 /* 2550 * If the top-level is a slog and it has had allocations 2551 * then proceed. We check that the vdev's metaslab group 2552 * is not NULL since it's possible that we may have just 2553 * added this vdev but not yet initialized its metaslabs. 2554 */ 2555 if (tvd->vdev_islog && mg != NULL) { 2556 /* 2557 * Prevent any future allocations. 2558 */ 2559 metaslab_group_passivate(mg); 2560 (void) spa_vdev_state_exit(spa, vd, 0); 2561 2562 error = spa_offline_log(spa); 2563 2564 spa_vdev_state_enter(spa, SCL_ALLOC); 2565 2566 /* 2567 * Check to see if the config has changed. 2568 */ 2569 if (error || generation != spa->spa_config_generation) { 2570 metaslab_group_activate(mg); 2571 if (error) 2572 return (spa_vdev_state_exit(spa, 2573 vd, error)); 2574 (void) spa_vdev_state_exit(spa, vd, 0); 2575 goto top; 2576 } 2577 ASSERT0(tvd->vdev_stat.vs_alloc); 2578 } 2579 2580 /* 2581 * Offline this device and reopen its top-level vdev. 2582 * If the top-level vdev is a log device then just offline 2583 * it. Otherwise, if this action results in the top-level 2584 * vdev becoming unusable, undo it and fail the request. 2585 */ 2586 vd->vdev_offline = B_TRUE; 2587 vdev_reopen(tvd); 2588 2589 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2590 vdev_is_dead(tvd)) { 2591 vd->vdev_offline = B_FALSE; 2592 vdev_reopen(tvd); 2593 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2594 } 2595 2596 /* 2597 * Add the device back into the metaslab rotor so that 2598 * once we online the device it's open for business. 2599 */ 2600 if (tvd->vdev_islog && mg != NULL) 2601 metaslab_group_activate(mg); 2602 } 2603 2604 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2605 2606 return (spa_vdev_state_exit(spa, vd, 0)); 2607 } 2608 2609 int 2610 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2611 { 2612 int error; 2613 2614 mutex_enter(&spa->spa_vdev_top_lock); 2615 error = vdev_offline_locked(spa, guid, flags); 2616 mutex_exit(&spa->spa_vdev_top_lock); 2617 2618 return (error); 2619 } 2620 2621 /* 2622 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2623 * vdev_offline(), we assume the spa config is locked. We also clear all 2624 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2625 */ 2626 void 2627 vdev_clear(spa_t *spa, vdev_t *vd) 2628 { 2629 vdev_t *rvd = spa->spa_root_vdev; 2630 2631 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2632 2633 if (vd == NULL) 2634 vd = rvd; 2635 2636 vd->vdev_stat.vs_read_errors = 0; 2637 vd->vdev_stat.vs_write_errors = 0; 2638 vd->vdev_stat.vs_checksum_errors = 0; 2639 2640 for (int c = 0; c < vd->vdev_children; c++) 2641 vdev_clear(spa, vd->vdev_child[c]); 2642 2643 /* 2644 * If we're in the FAULTED state or have experienced failed I/O, then 2645 * clear the persistent state and attempt to reopen the device. We 2646 * also mark the vdev config dirty, so that the new faulted state is 2647 * written out to disk. 2648 */ 2649 if (vd->vdev_faulted || vd->vdev_degraded || 2650 !vdev_readable(vd) || !vdev_writeable(vd)) { 2651 2652 /* 2653 * When reopening in reponse to a clear event, it may be due to 2654 * a fmadm repair request. In this case, if the device is 2655 * still broken, we want to still post the ereport again. 2656 */ 2657 vd->vdev_forcefault = B_TRUE; 2658 2659 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2660 vd->vdev_cant_read = B_FALSE; 2661 vd->vdev_cant_write = B_FALSE; 2662 2663 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2664 2665 vd->vdev_forcefault = B_FALSE; 2666 2667 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2668 vdev_state_dirty(vd->vdev_top); 2669 2670 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2671 spa_async_request(spa, SPA_ASYNC_RESILVER); 2672 2673 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 2674 } 2675 2676 /* 2677 * When clearing a FMA-diagnosed fault, we always want to 2678 * unspare the device, as we assume that the original spare was 2679 * done in response to the FMA fault. 2680 */ 2681 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2682 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2683 vd->vdev_parent->vdev_child[0] == vd) 2684 vd->vdev_unspare = B_TRUE; 2685 } 2686 2687 boolean_t 2688 vdev_is_dead(vdev_t *vd) 2689 { 2690 /* 2691 * Holes and missing devices are always considered "dead". 2692 * This simplifies the code since we don't have to check for 2693 * these types of devices in the various code paths. 2694 * Instead we rely on the fact that we skip over dead devices 2695 * before issuing I/O to them. 2696 */ 2697 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2698 vd->vdev_ops == &vdev_missing_ops); 2699 } 2700 2701 boolean_t 2702 vdev_readable(vdev_t *vd) 2703 { 2704 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2705 } 2706 2707 boolean_t 2708 vdev_writeable(vdev_t *vd) 2709 { 2710 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2711 } 2712 2713 boolean_t 2714 vdev_allocatable(vdev_t *vd) 2715 { 2716 uint64_t state = vd->vdev_state; 2717 2718 /* 2719 * We currently allow allocations from vdevs which may be in the 2720 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2721 * fails to reopen then we'll catch it later when we're holding 2722 * the proper locks. Note that we have to get the vdev state 2723 * in a local variable because although it changes atomically, 2724 * we're asking two separate questions about it. 2725 */ 2726 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2727 !vd->vdev_cant_write && !vd->vdev_ishole && 2728 vd->vdev_mg->mg_initialized); 2729 } 2730 2731 boolean_t 2732 vdev_accessible(vdev_t *vd, zio_t *zio) 2733 { 2734 ASSERT(zio->io_vd == vd); 2735 2736 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2737 return (B_FALSE); 2738 2739 if (zio->io_type == ZIO_TYPE_READ) 2740 return (!vd->vdev_cant_read); 2741 2742 if (zio->io_type == ZIO_TYPE_WRITE) 2743 return (!vd->vdev_cant_write); 2744 2745 return (B_TRUE); 2746 } 2747 2748 /* 2749 * Get statistics for the given vdev. 2750 */ 2751 void 2752 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2753 { 2754 spa_t *spa = vd->vdev_spa; 2755 vdev_t *rvd = spa->spa_root_vdev; 2756 vdev_t *tvd = vd->vdev_top; 2757 2758 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2759 2760 mutex_enter(&vd->vdev_stat_lock); 2761 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2762 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2763 vs->vs_state = vd->vdev_state; 2764 vs->vs_rsize = vdev_get_min_asize(vd); 2765 if (vd->vdev_ops->vdev_op_leaf) 2766 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2767 /* 2768 * Report expandable space on top-level, non-auxillary devices only. 2769 * The expandable space is reported in terms of metaslab sized units 2770 * since that determines how much space the pool can expand. 2771 */ 2772 if (vd->vdev_aux == NULL && tvd != NULL) { 2773 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 2774 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 2775 } 2776 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2777 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2778 } 2779 2780 /* 2781 * If we're getting stats on the root vdev, aggregate the I/O counts 2782 * over all top-level vdevs (i.e. the direct children of the root). 2783 */ 2784 if (vd == rvd) { 2785 for (int c = 0; c < rvd->vdev_children; c++) { 2786 vdev_t *cvd = rvd->vdev_child[c]; 2787 vdev_stat_t *cvs = &cvd->vdev_stat; 2788 2789 for (int t = 0; t < ZIO_TYPES; t++) { 2790 vs->vs_ops[t] += cvs->vs_ops[t]; 2791 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2792 } 2793 cvs->vs_scan_removing = cvd->vdev_removing; 2794 } 2795 } 2796 mutex_exit(&vd->vdev_stat_lock); 2797 } 2798 2799 void 2800 vdev_clear_stats(vdev_t *vd) 2801 { 2802 mutex_enter(&vd->vdev_stat_lock); 2803 vd->vdev_stat.vs_space = 0; 2804 vd->vdev_stat.vs_dspace = 0; 2805 vd->vdev_stat.vs_alloc = 0; 2806 mutex_exit(&vd->vdev_stat_lock); 2807 } 2808 2809 void 2810 vdev_scan_stat_init(vdev_t *vd) 2811 { 2812 vdev_stat_t *vs = &vd->vdev_stat; 2813 2814 for (int c = 0; c < vd->vdev_children; c++) 2815 vdev_scan_stat_init(vd->vdev_child[c]); 2816 2817 mutex_enter(&vd->vdev_stat_lock); 2818 vs->vs_scan_processed = 0; 2819 mutex_exit(&vd->vdev_stat_lock); 2820 } 2821 2822 void 2823 vdev_stat_update(zio_t *zio, uint64_t psize) 2824 { 2825 spa_t *spa = zio->io_spa; 2826 vdev_t *rvd = spa->spa_root_vdev; 2827 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2828 vdev_t *pvd; 2829 uint64_t txg = zio->io_txg; 2830 vdev_stat_t *vs = &vd->vdev_stat; 2831 zio_type_t type = zio->io_type; 2832 int flags = zio->io_flags; 2833 2834 /* 2835 * If this i/o is a gang leader, it didn't do any actual work. 2836 */ 2837 if (zio->io_gang_tree) 2838 return; 2839 2840 if (zio->io_error == 0) { 2841 /* 2842 * If this is a root i/o, don't count it -- we've already 2843 * counted the top-level vdevs, and vdev_get_stats() will 2844 * aggregate them when asked. This reduces contention on 2845 * the root vdev_stat_lock and implicitly handles blocks 2846 * that compress away to holes, for which there is no i/o. 2847 * (Holes never create vdev children, so all the counters 2848 * remain zero, which is what we want.) 2849 * 2850 * Note: this only applies to successful i/o (io_error == 0) 2851 * because unlike i/o counts, errors are not additive. 2852 * When reading a ditto block, for example, failure of 2853 * one top-level vdev does not imply a root-level error. 2854 */ 2855 if (vd == rvd) 2856 return; 2857 2858 ASSERT(vd == zio->io_vd); 2859 2860 if (flags & ZIO_FLAG_IO_BYPASS) 2861 return; 2862 2863 mutex_enter(&vd->vdev_stat_lock); 2864 2865 if (flags & ZIO_FLAG_IO_REPAIR) { 2866 if (flags & ZIO_FLAG_SCAN_THREAD) { 2867 dsl_scan_phys_t *scn_phys = 2868 &spa->spa_dsl_pool->dp_scan->scn_phys; 2869 uint64_t *processed = &scn_phys->scn_processed; 2870 2871 /* XXX cleanup? */ 2872 if (vd->vdev_ops->vdev_op_leaf) 2873 atomic_add_64(processed, psize); 2874 vs->vs_scan_processed += psize; 2875 } 2876 2877 if (flags & ZIO_FLAG_SELF_HEAL) 2878 vs->vs_self_healed += psize; 2879 } 2880 2881 vs->vs_ops[type]++; 2882 vs->vs_bytes[type] += psize; 2883 2884 mutex_exit(&vd->vdev_stat_lock); 2885 return; 2886 } 2887 2888 if (flags & ZIO_FLAG_SPECULATIVE) 2889 return; 2890 2891 /* 2892 * If this is an I/O error that is going to be retried, then ignore the 2893 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2894 * hard errors, when in reality they can happen for any number of 2895 * innocuous reasons (bus resets, MPxIO link failure, etc). 2896 */ 2897 if (zio->io_error == EIO && 2898 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2899 return; 2900 2901 /* 2902 * Intent logs writes won't propagate their error to the root 2903 * I/O so don't mark these types of failures as pool-level 2904 * errors. 2905 */ 2906 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2907 return; 2908 2909 mutex_enter(&vd->vdev_stat_lock); 2910 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2911 if (zio->io_error == ECKSUM) 2912 vs->vs_checksum_errors++; 2913 else 2914 vs->vs_read_errors++; 2915 } 2916 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2917 vs->vs_write_errors++; 2918 mutex_exit(&vd->vdev_stat_lock); 2919 2920 if (type == ZIO_TYPE_WRITE && txg != 0 && 2921 (!(flags & ZIO_FLAG_IO_REPAIR) || 2922 (flags & ZIO_FLAG_SCAN_THREAD) || 2923 spa->spa_claiming)) { 2924 /* 2925 * This is either a normal write (not a repair), or it's 2926 * a repair induced by the scrub thread, or it's a repair 2927 * made by zil_claim() during spa_load() in the first txg. 2928 * In the normal case, we commit the DTL change in the same 2929 * txg as the block was born. In the scrub-induced repair 2930 * case, we know that scrubs run in first-pass syncing context, 2931 * so we commit the DTL change in spa_syncing_txg(spa). 2932 * In the zil_claim() case, we commit in spa_first_txg(spa). 2933 * 2934 * We currently do not make DTL entries for failed spontaneous 2935 * self-healing writes triggered by normal (non-scrubbing) 2936 * reads, because we have no transactional context in which to 2937 * do so -- and it's not clear that it'd be desirable anyway. 2938 */ 2939 if (vd->vdev_ops->vdev_op_leaf) { 2940 uint64_t commit_txg = txg; 2941 if (flags & ZIO_FLAG_SCAN_THREAD) { 2942 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2943 ASSERT(spa_sync_pass(spa) == 1); 2944 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2945 commit_txg = spa_syncing_txg(spa); 2946 } else if (spa->spa_claiming) { 2947 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2948 commit_txg = spa_first_txg(spa); 2949 } 2950 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2951 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2952 return; 2953 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2954 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2955 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2956 } 2957 if (vd != rvd) 2958 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2959 } 2960 } 2961 2962 /* 2963 * Update the in-core space usage stats for this vdev, its metaslab class, 2964 * and the root vdev. 2965 */ 2966 void 2967 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2968 int64_t space_delta) 2969 { 2970 int64_t dspace_delta = space_delta; 2971 spa_t *spa = vd->vdev_spa; 2972 vdev_t *rvd = spa->spa_root_vdev; 2973 metaslab_group_t *mg = vd->vdev_mg; 2974 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2975 2976 ASSERT(vd == vd->vdev_top); 2977 2978 /* 2979 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2980 * factor. We must calculate this here and not at the root vdev 2981 * because the root vdev's psize-to-asize is simply the max of its 2982 * childrens', thus not accurate enough for us. 2983 */ 2984 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2985 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2986 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2987 vd->vdev_deflate_ratio; 2988 2989 mutex_enter(&vd->vdev_stat_lock); 2990 vd->vdev_stat.vs_alloc += alloc_delta; 2991 vd->vdev_stat.vs_space += space_delta; 2992 vd->vdev_stat.vs_dspace += dspace_delta; 2993 mutex_exit(&vd->vdev_stat_lock); 2994 2995 if (mc == spa_normal_class(spa)) { 2996 mutex_enter(&rvd->vdev_stat_lock); 2997 rvd->vdev_stat.vs_alloc += alloc_delta; 2998 rvd->vdev_stat.vs_space += space_delta; 2999 rvd->vdev_stat.vs_dspace += dspace_delta; 3000 mutex_exit(&rvd->vdev_stat_lock); 3001 } 3002 3003 if (mc != NULL) { 3004 ASSERT(rvd == vd->vdev_parent); 3005 ASSERT(vd->vdev_ms_count != 0); 3006 3007 metaslab_class_space_update(mc, 3008 alloc_delta, defer_delta, space_delta, dspace_delta); 3009 } 3010 } 3011 3012 /* 3013 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3014 * so that it will be written out next time the vdev configuration is synced. 3015 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3016 */ 3017 void 3018 vdev_config_dirty(vdev_t *vd) 3019 { 3020 spa_t *spa = vd->vdev_spa; 3021 vdev_t *rvd = spa->spa_root_vdev; 3022 int c; 3023 3024 ASSERT(spa_writeable(spa)); 3025 3026 /* 3027 * If this is an aux vdev (as with l2cache and spare devices), then we 3028 * update the vdev config manually and set the sync flag. 3029 */ 3030 if (vd->vdev_aux != NULL) { 3031 spa_aux_vdev_t *sav = vd->vdev_aux; 3032 nvlist_t **aux; 3033 uint_t naux; 3034 3035 for (c = 0; c < sav->sav_count; c++) { 3036 if (sav->sav_vdevs[c] == vd) 3037 break; 3038 } 3039 3040 if (c == sav->sav_count) { 3041 /* 3042 * We're being removed. There's nothing more to do. 3043 */ 3044 ASSERT(sav->sav_sync == B_TRUE); 3045 return; 3046 } 3047 3048 sav->sav_sync = B_TRUE; 3049 3050 if (nvlist_lookup_nvlist_array(sav->sav_config, 3051 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3052 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3053 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3054 } 3055 3056 ASSERT(c < naux); 3057 3058 /* 3059 * Setting the nvlist in the middle if the array is a little 3060 * sketchy, but it will work. 3061 */ 3062 nvlist_free(aux[c]); 3063 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3064 3065 return; 3066 } 3067 3068 /* 3069 * The dirty list is protected by the SCL_CONFIG lock. The caller 3070 * must either hold SCL_CONFIG as writer, or must be the sync thread 3071 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3072 * so this is sufficient to ensure mutual exclusion. 3073 */ 3074 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3075 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3076 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3077 3078 if (vd == rvd) { 3079 for (c = 0; c < rvd->vdev_children; c++) 3080 vdev_config_dirty(rvd->vdev_child[c]); 3081 } else { 3082 ASSERT(vd == vd->vdev_top); 3083 3084 if (!list_link_active(&vd->vdev_config_dirty_node) && 3085 !vd->vdev_ishole) 3086 list_insert_head(&spa->spa_config_dirty_list, vd); 3087 } 3088 } 3089 3090 void 3091 vdev_config_clean(vdev_t *vd) 3092 { 3093 spa_t *spa = vd->vdev_spa; 3094 3095 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3096 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3097 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3098 3099 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3100 list_remove(&spa->spa_config_dirty_list, vd); 3101 } 3102 3103 /* 3104 * Mark a top-level vdev's state as dirty, so that the next pass of 3105 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3106 * the state changes from larger config changes because they require 3107 * much less locking, and are often needed for administrative actions. 3108 */ 3109 void 3110 vdev_state_dirty(vdev_t *vd) 3111 { 3112 spa_t *spa = vd->vdev_spa; 3113 3114 ASSERT(spa_writeable(spa)); 3115 ASSERT(vd == vd->vdev_top); 3116 3117 /* 3118 * The state list is protected by the SCL_STATE lock. The caller 3119 * must either hold SCL_STATE as writer, or must be the sync thread 3120 * (which holds SCL_STATE as reader). There's only one sync thread, 3121 * so this is sufficient to ensure mutual exclusion. 3122 */ 3123 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3124 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3125 spa_config_held(spa, SCL_STATE, RW_READER))); 3126 3127 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3128 list_insert_head(&spa->spa_state_dirty_list, vd); 3129 } 3130 3131 void 3132 vdev_state_clean(vdev_t *vd) 3133 { 3134 spa_t *spa = vd->vdev_spa; 3135 3136 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3137 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3138 spa_config_held(spa, SCL_STATE, RW_READER))); 3139 3140 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3141 list_remove(&spa->spa_state_dirty_list, vd); 3142 } 3143 3144 /* 3145 * Propagate vdev state up from children to parent. 3146 */ 3147 void 3148 vdev_propagate_state(vdev_t *vd) 3149 { 3150 spa_t *spa = vd->vdev_spa; 3151 vdev_t *rvd = spa->spa_root_vdev; 3152 int degraded = 0, faulted = 0; 3153 int corrupted = 0; 3154 vdev_t *child; 3155 3156 if (vd->vdev_children > 0) { 3157 for (int c = 0; c < vd->vdev_children; c++) { 3158 child = vd->vdev_child[c]; 3159 3160 /* 3161 * Don't factor holes into the decision. 3162 */ 3163 if (child->vdev_ishole) 3164 continue; 3165 3166 if (!vdev_readable(child) || 3167 (!vdev_writeable(child) && spa_writeable(spa))) { 3168 /* 3169 * Root special: if there is a top-level log 3170 * device, treat the root vdev as if it were 3171 * degraded. 3172 */ 3173 if (child->vdev_islog && vd == rvd) 3174 degraded++; 3175 else 3176 faulted++; 3177 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3178 degraded++; 3179 } 3180 3181 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3182 corrupted++; 3183 } 3184 3185 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3186 3187 /* 3188 * Root special: if there is a top-level vdev that cannot be 3189 * opened due to corrupted metadata, then propagate the root 3190 * vdev's aux state as 'corrupt' rather than 'insufficient 3191 * replicas'. 3192 */ 3193 if (corrupted && vd == rvd && 3194 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3195 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3196 VDEV_AUX_CORRUPT_DATA); 3197 } 3198 3199 if (vd->vdev_parent) 3200 vdev_propagate_state(vd->vdev_parent); 3201 } 3202 3203 /* 3204 * Set a vdev's state. If this is during an open, we don't update the parent 3205 * state, because we're in the process of opening children depth-first. 3206 * Otherwise, we propagate the change to the parent. 3207 * 3208 * If this routine places a device in a faulted state, an appropriate ereport is 3209 * generated. 3210 */ 3211 void 3212 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3213 { 3214 uint64_t save_state; 3215 spa_t *spa = vd->vdev_spa; 3216 3217 if (state == vd->vdev_state) { 3218 vd->vdev_stat.vs_aux = aux; 3219 return; 3220 } 3221 3222 save_state = vd->vdev_state; 3223 3224 vd->vdev_state = state; 3225 vd->vdev_stat.vs_aux = aux; 3226 3227 /* 3228 * If we are setting the vdev state to anything but an open state, then 3229 * always close the underlying device unless the device has requested 3230 * a delayed close (i.e. we're about to remove or fault the device). 3231 * Otherwise, we keep accessible but invalid devices open forever. 3232 * We don't call vdev_close() itself, because that implies some extra 3233 * checks (offline, etc) that we don't want here. This is limited to 3234 * leaf devices, because otherwise closing the device will affect other 3235 * children. 3236 */ 3237 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3238 vd->vdev_ops->vdev_op_leaf) 3239 vd->vdev_ops->vdev_op_close(vd); 3240 3241 /* 3242 * If we have brought this vdev back into service, we need 3243 * to notify fmd so that it can gracefully repair any outstanding 3244 * cases due to a missing device. We do this in all cases, even those 3245 * that probably don't correlate to a repaired fault. This is sure to 3246 * catch all cases, and we let the zfs-retire agent sort it out. If 3247 * this is a transient state it's OK, as the retire agent will 3248 * double-check the state of the vdev before repairing it. 3249 */ 3250 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3251 vd->vdev_prevstate != state) 3252 zfs_post_state_change(spa, vd); 3253 3254 if (vd->vdev_removed && 3255 state == VDEV_STATE_CANT_OPEN && 3256 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3257 /* 3258 * If the previous state is set to VDEV_STATE_REMOVED, then this 3259 * device was previously marked removed and someone attempted to 3260 * reopen it. If this failed due to a nonexistent device, then 3261 * keep the device in the REMOVED state. We also let this be if 3262 * it is one of our special test online cases, which is only 3263 * attempting to online the device and shouldn't generate an FMA 3264 * fault. 3265 */ 3266 vd->vdev_state = VDEV_STATE_REMOVED; 3267 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3268 } else if (state == VDEV_STATE_REMOVED) { 3269 vd->vdev_removed = B_TRUE; 3270 } else if (state == VDEV_STATE_CANT_OPEN) { 3271 /* 3272 * If we fail to open a vdev during an import or recovery, we 3273 * mark it as "not available", which signifies that it was 3274 * never there to begin with. Failure to open such a device 3275 * is not considered an error. 3276 */ 3277 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3278 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3279 vd->vdev_ops->vdev_op_leaf) 3280 vd->vdev_not_present = 1; 3281 3282 /* 3283 * Post the appropriate ereport. If the 'prevstate' field is 3284 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3285 * that this is part of a vdev_reopen(). In this case, we don't 3286 * want to post the ereport if the device was already in the 3287 * CANT_OPEN state beforehand. 3288 * 3289 * If the 'checkremove' flag is set, then this is an attempt to 3290 * online the device in response to an insertion event. If we 3291 * hit this case, then we have detected an insertion event for a 3292 * faulted or offline device that wasn't in the removed state. 3293 * In this scenario, we don't post an ereport because we are 3294 * about to replace the device, or attempt an online with 3295 * vdev_forcefault, which will generate the fault for us. 3296 */ 3297 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3298 !vd->vdev_not_present && !vd->vdev_checkremove && 3299 vd != spa->spa_root_vdev) { 3300 const char *class; 3301 3302 switch (aux) { 3303 case VDEV_AUX_OPEN_FAILED: 3304 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3305 break; 3306 case VDEV_AUX_CORRUPT_DATA: 3307 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3308 break; 3309 case VDEV_AUX_NO_REPLICAS: 3310 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3311 break; 3312 case VDEV_AUX_BAD_GUID_SUM: 3313 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3314 break; 3315 case VDEV_AUX_TOO_SMALL: 3316 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3317 break; 3318 case VDEV_AUX_BAD_LABEL: 3319 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3320 break; 3321 default: 3322 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3323 } 3324 3325 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3326 } 3327 3328 /* Erase any notion of persistent removed state */ 3329 vd->vdev_removed = B_FALSE; 3330 } else { 3331 vd->vdev_removed = B_FALSE; 3332 } 3333 3334 if (!isopen && vd->vdev_parent) 3335 vdev_propagate_state(vd->vdev_parent); 3336 } 3337 3338 /* 3339 * Check the vdev configuration to ensure that it's capable of supporting 3340 * a root pool. We do not support partial configuration. 3341 * In addition, only a single top-level vdev is allowed. 3342 */ 3343 boolean_t 3344 vdev_is_bootable(vdev_t *vd) 3345 { 3346 if (!vd->vdev_ops->vdev_op_leaf) { 3347 char *vdev_type = vd->vdev_ops->vdev_op_type; 3348 3349 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3350 vd->vdev_children > 1) { 3351 return (B_FALSE); 3352 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3353 return (B_FALSE); 3354 } 3355 } 3356 3357 for (int c = 0; c < vd->vdev_children; c++) { 3358 if (!vdev_is_bootable(vd->vdev_child[c])) 3359 return (B_FALSE); 3360 } 3361 return (B_TRUE); 3362 } 3363 3364 /* 3365 * Load the state from the original vdev tree (ovd) which 3366 * we've retrieved from the MOS config object. If the original 3367 * vdev was offline or faulted then we transfer that state to the 3368 * device in the current vdev tree (nvd). 3369 */ 3370 void 3371 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3372 { 3373 spa_t *spa = nvd->vdev_spa; 3374 3375 ASSERT(nvd->vdev_top->vdev_islog); 3376 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3377 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3378 3379 for (int c = 0; c < nvd->vdev_children; c++) 3380 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3381 3382 if (nvd->vdev_ops->vdev_op_leaf) { 3383 /* 3384 * Restore the persistent vdev state 3385 */ 3386 nvd->vdev_offline = ovd->vdev_offline; 3387 nvd->vdev_faulted = ovd->vdev_faulted; 3388 nvd->vdev_degraded = ovd->vdev_degraded; 3389 nvd->vdev_removed = ovd->vdev_removed; 3390 } 3391 } 3392 3393 /* 3394 * Determine if a log device has valid content. If the vdev was 3395 * removed or faulted in the MOS config then we know that 3396 * the content on the log device has already been written to the pool. 3397 */ 3398 boolean_t 3399 vdev_log_state_valid(vdev_t *vd) 3400 { 3401 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3402 !vd->vdev_removed) 3403 return (B_TRUE); 3404 3405 for (int c = 0; c < vd->vdev_children; c++) 3406 if (vdev_log_state_valid(vd->vdev_child[c])) 3407 return (B_TRUE); 3408 3409 return (B_FALSE); 3410 } 3411 3412 /* 3413 * Expand a vdev if possible. 3414 */ 3415 void 3416 vdev_expand(vdev_t *vd, uint64_t txg) 3417 { 3418 ASSERT(vd->vdev_top == vd); 3419 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3420 3421 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3422 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3423 vdev_config_dirty(vd); 3424 } 3425 } 3426 3427 /* 3428 * Split a vdev. 3429 */ 3430 void 3431 vdev_split(vdev_t *vd) 3432 { 3433 vdev_t *cvd, *pvd = vd->vdev_parent; 3434 3435 vdev_remove_child(pvd, vd); 3436 vdev_compact_children(pvd); 3437 3438 cvd = pvd->vdev_child[0]; 3439 if (pvd->vdev_children == 1) { 3440 vdev_remove_parent(cvd); 3441 cvd->vdev_splitting = B_TRUE; 3442 } 3443 vdev_propagate_state(cvd); 3444 } 3445 3446 void 3447 vdev_deadman(vdev_t *vd) 3448 { 3449 for (int c = 0; c < vd->vdev_children; c++) { 3450 vdev_t *cvd = vd->vdev_child[c]; 3451 3452 vdev_deadman(cvd); 3453 } 3454 3455 if (vd->vdev_ops->vdev_op_leaf) { 3456 vdev_queue_t *vq = &vd->vdev_queue; 3457 3458 mutex_enter(&vq->vq_lock); 3459 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3460 spa_t *spa = vd->vdev_spa; 3461 zio_t *fio; 3462 uint64_t delta; 3463 3464 /* 3465 * Look at the head of all the pending queues, 3466 * if any I/O has been outstanding for longer than 3467 * the spa_deadman_synctime we panic the system. 3468 */ 3469 fio = avl_first(&vq->vq_active_tree); 3470 delta = gethrtime() - fio->io_timestamp; 3471 if (delta > spa_deadman_synctime(spa)) { 3472 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3473 "delta %lluns, last io %lluns", 3474 fio->io_timestamp, delta, 3475 vq->vq_io_complete_ts); 3476 fm_panic("I/O to pool '%s' appears to be " 3477 "hung.", spa_name(spa)); 3478 } 3479 } 3480 mutex_exit(&vq->vq_lock); 3481 } 3482 } 3483