1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/spa_impl.h> 35 #include <sys/bpobj.h> 36 #include <sys/dmu.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/vdev_impl.h> 40 #include <sys/uberblock_impl.h> 41 #include <sys/metaslab.h> 42 #include <sys/metaslab_impl.h> 43 #include <sys/space_map.h> 44 #include <sys/space_reftree.h> 45 #include <sys/zio.h> 46 #include <sys/zap.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/arc.h> 49 #include <sys/zil.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/abd.h> 52 53 /* 54 * Virtual device management. 55 */ 56 57 static vdev_ops_t *vdev_ops_table[] = { 58 &vdev_root_ops, 59 &vdev_raidz_ops, 60 &vdev_mirror_ops, 61 &vdev_replacing_ops, 62 &vdev_spare_ops, 63 &vdev_disk_ops, 64 &vdev_file_ops, 65 &vdev_missing_ops, 66 &vdev_hole_ops, 67 &vdev_indirect_ops, 68 NULL 69 }; 70 71 /* maximum scrub/resilver I/O queue per leaf vdev */ 72 int zfs_scrub_limit = 10; 73 74 /* 75 * When a vdev is added, it will be divided into approximately (but no 76 * more than) this number of metaslabs. 77 */ 78 int metaslabs_per_vdev = 200; 79 80 /*PRINTFLIKE2*/ 81 void 82 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 83 { 84 va_list adx; 85 char buf[256]; 86 87 va_start(adx, fmt); 88 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 89 va_end(adx); 90 91 if (vd->vdev_path != NULL) { 92 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 93 vd->vdev_path, buf); 94 } else { 95 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 96 vd->vdev_ops->vdev_op_type, 97 (u_longlong_t)vd->vdev_id, 98 (u_longlong_t)vd->vdev_guid, buf); 99 } 100 } 101 102 /* 103 * Given a vdev type, return the appropriate ops vector. 104 */ 105 static vdev_ops_t * 106 vdev_getops(const char *type) 107 { 108 vdev_ops_t *ops, **opspp; 109 110 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 111 if (strcmp(ops->vdev_op_type, type) == 0) 112 break; 113 114 return (ops); 115 } 116 117 /* 118 * Default asize function: return the MAX of psize with the asize of 119 * all children. This is what's used by anything other than RAID-Z. 120 */ 121 uint64_t 122 vdev_default_asize(vdev_t *vd, uint64_t psize) 123 { 124 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 125 uint64_t csize; 126 127 for (int c = 0; c < vd->vdev_children; c++) { 128 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 129 asize = MAX(asize, csize); 130 } 131 132 return (asize); 133 } 134 135 /* 136 * Get the minimum allocatable size. We define the allocatable size as 137 * the vdev's asize rounded to the nearest metaslab. This allows us to 138 * replace or attach devices which don't have the same physical size but 139 * can still satisfy the same number of allocations. 140 */ 141 uint64_t 142 vdev_get_min_asize(vdev_t *vd) 143 { 144 vdev_t *pvd = vd->vdev_parent; 145 146 /* 147 * If our parent is NULL (inactive spare or cache) or is the root, 148 * just return our own asize. 149 */ 150 if (pvd == NULL) 151 return (vd->vdev_asize); 152 153 /* 154 * The top-level vdev just returns the allocatable size rounded 155 * to the nearest metaslab. 156 */ 157 if (vd == vd->vdev_top) 158 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 159 160 /* 161 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 162 * so each child must provide at least 1/Nth of its asize. 163 */ 164 if (pvd->vdev_ops == &vdev_raidz_ops) 165 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 166 pvd->vdev_children); 167 168 return (pvd->vdev_min_asize); 169 } 170 171 void 172 vdev_set_min_asize(vdev_t *vd) 173 { 174 vd->vdev_min_asize = vdev_get_min_asize(vd); 175 176 for (int c = 0; c < vd->vdev_children; c++) 177 vdev_set_min_asize(vd->vdev_child[c]); 178 } 179 180 vdev_t * 181 vdev_lookup_top(spa_t *spa, uint64_t vdev) 182 { 183 vdev_t *rvd = spa->spa_root_vdev; 184 185 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 186 187 if (vdev < rvd->vdev_children) { 188 ASSERT(rvd->vdev_child[vdev] != NULL); 189 return (rvd->vdev_child[vdev]); 190 } 191 192 return (NULL); 193 } 194 195 vdev_t * 196 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 197 { 198 vdev_t *mvd; 199 200 if (vd->vdev_guid == guid) 201 return (vd); 202 203 for (int c = 0; c < vd->vdev_children; c++) 204 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 205 NULL) 206 return (mvd); 207 208 return (NULL); 209 } 210 211 static int 212 vdev_count_leaves_impl(vdev_t *vd) 213 { 214 int n = 0; 215 216 if (vd->vdev_ops->vdev_op_leaf) 217 return (1); 218 219 for (int c = 0; c < vd->vdev_children; c++) 220 n += vdev_count_leaves_impl(vd->vdev_child[c]); 221 222 return (n); 223 } 224 225 int 226 vdev_count_leaves(spa_t *spa) 227 { 228 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 229 } 230 231 void 232 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 233 { 234 size_t oldsize, newsize; 235 uint64_t id = cvd->vdev_id; 236 vdev_t **newchild; 237 spa_t *spa = cvd->vdev_spa; 238 239 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 240 ASSERT(cvd->vdev_parent == NULL); 241 242 cvd->vdev_parent = pvd; 243 244 if (pvd == NULL) 245 return; 246 247 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 248 249 oldsize = pvd->vdev_children * sizeof (vdev_t *); 250 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 251 newsize = pvd->vdev_children * sizeof (vdev_t *); 252 253 newchild = kmem_zalloc(newsize, KM_SLEEP); 254 if (pvd->vdev_child != NULL) { 255 bcopy(pvd->vdev_child, newchild, oldsize); 256 kmem_free(pvd->vdev_child, oldsize); 257 } 258 259 pvd->vdev_child = newchild; 260 pvd->vdev_child[id] = cvd; 261 262 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 263 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 264 265 /* 266 * Walk up all ancestors to update guid sum. 267 */ 268 for (; pvd != NULL; pvd = pvd->vdev_parent) 269 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 270 } 271 272 void 273 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 274 { 275 int c; 276 uint_t id = cvd->vdev_id; 277 278 ASSERT(cvd->vdev_parent == pvd); 279 280 if (pvd == NULL) 281 return; 282 283 ASSERT(id < pvd->vdev_children); 284 ASSERT(pvd->vdev_child[id] == cvd); 285 286 pvd->vdev_child[id] = NULL; 287 cvd->vdev_parent = NULL; 288 289 for (c = 0; c < pvd->vdev_children; c++) 290 if (pvd->vdev_child[c]) 291 break; 292 293 if (c == pvd->vdev_children) { 294 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 295 pvd->vdev_child = NULL; 296 pvd->vdev_children = 0; 297 } 298 299 /* 300 * Walk up all ancestors to update guid sum. 301 */ 302 for (; pvd != NULL; pvd = pvd->vdev_parent) 303 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 304 } 305 306 /* 307 * Remove any holes in the child array. 308 */ 309 void 310 vdev_compact_children(vdev_t *pvd) 311 { 312 vdev_t **newchild, *cvd; 313 int oldc = pvd->vdev_children; 314 int newc; 315 316 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 317 318 for (int c = newc = 0; c < oldc; c++) 319 if (pvd->vdev_child[c]) 320 newc++; 321 322 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 323 324 for (int c = newc = 0; c < oldc; c++) { 325 if ((cvd = pvd->vdev_child[c]) != NULL) { 326 newchild[newc] = cvd; 327 cvd->vdev_id = newc++; 328 } 329 } 330 331 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 332 pvd->vdev_child = newchild; 333 pvd->vdev_children = newc; 334 } 335 336 /* 337 * Allocate and minimally initialize a vdev_t. 338 */ 339 vdev_t * 340 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 341 { 342 vdev_t *vd; 343 vdev_indirect_config_t *vic; 344 345 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 346 vic = &vd->vdev_indirect_config; 347 348 if (spa->spa_root_vdev == NULL) { 349 ASSERT(ops == &vdev_root_ops); 350 spa->spa_root_vdev = vd; 351 spa->spa_load_guid = spa_generate_guid(NULL); 352 } 353 354 if (guid == 0 && ops != &vdev_hole_ops) { 355 if (spa->spa_root_vdev == vd) { 356 /* 357 * The root vdev's guid will also be the pool guid, 358 * which must be unique among all pools. 359 */ 360 guid = spa_generate_guid(NULL); 361 } else { 362 /* 363 * Any other vdev's guid must be unique within the pool. 364 */ 365 guid = spa_generate_guid(spa); 366 } 367 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 368 } 369 370 vd->vdev_spa = spa; 371 vd->vdev_id = id; 372 vd->vdev_guid = guid; 373 vd->vdev_guid_sum = guid; 374 vd->vdev_ops = ops; 375 vd->vdev_state = VDEV_STATE_CLOSED; 376 vd->vdev_ishole = (ops == &vdev_hole_ops); 377 vic->vic_prev_indirect_vdev = UINT64_MAX; 378 379 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 380 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 381 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); 382 383 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 384 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 385 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 386 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 387 for (int t = 0; t < DTL_TYPES; t++) { 388 vd->vdev_dtl[t] = range_tree_create(NULL, NULL); 389 } 390 txg_list_create(&vd->vdev_ms_list, spa, 391 offsetof(struct metaslab, ms_txg_node)); 392 txg_list_create(&vd->vdev_dtl_list, spa, 393 offsetof(struct vdev, vdev_dtl_node)); 394 vd->vdev_stat.vs_timestamp = gethrtime(); 395 vdev_queue_init(vd); 396 vdev_cache_init(vd); 397 398 return (vd); 399 } 400 401 /* 402 * Allocate a new vdev. The 'alloctype' is used to control whether we are 403 * creating a new vdev or loading an existing one - the behavior is slightly 404 * different for each case. 405 */ 406 int 407 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 408 int alloctype) 409 { 410 vdev_ops_t *ops; 411 char *type; 412 uint64_t guid = 0, islog, nparity; 413 vdev_t *vd; 414 vdev_indirect_config_t *vic; 415 416 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 417 418 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 419 return (SET_ERROR(EINVAL)); 420 421 if ((ops = vdev_getops(type)) == NULL) 422 return (SET_ERROR(EINVAL)); 423 424 /* 425 * If this is a load, get the vdev guid from the nvlist. 426 * Otherwise, vdev_alloc_common() will generate one for us. 427 */ 428 if (alloctype == VDEV_ALLOC_LOAD) { 429 uint64_t label_id; 430 431 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 432 label_id != id) 433 return (SET_ERROR(EINVAL)); 434 435 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 436 return (SET_ERROR(EINVAL)); 437 } else if (alloctype == VDEV_ALLOC_SPARE) { 438 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 439 return (SET_ERROR(EINVAL)); 440 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 441 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 442 return (SET_ERROR(EINVAL)); 443 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 444 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 445 return (SET_ERROR(EINVAL)); 446 } 447 448 /* 449 * The first allocated vdev must be of type 'root'. 450 */ 451 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 452 return (SET_ERROR(EINVAL)); 453 454 /* 455 * Determine whether we're a log vdev. 456 */ 457 islog = 0; 458 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 459 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 460 return (SET_ERROR(ENOTSUP)); 461 462 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 463 return (SET_ERROR(ENOTSUP)); 464 465 /* 466 * Set the nparity property for RAID-Z vdevs. 467 */ 468 nparity = -1ULL; 469 if (ops == &vdev_raidz_ops) { 470 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 471 &nparity) == 0) { 472 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 473 return (SET_ERROR(EINVAL)); 474 /* 475 * Previous versions could only support 1 or 2 parity 476 * device. 477 */ 478 if (nparity > 1 && 479 spa_version(spa) < SPA_VERSION_RAIDZ2) 480 return (SET_ERROR(ENOTSUP)); 481 if (nparity > 2 && 482 spa_version(spa) < SPA_VERSION_RAIDZ3) 483 return (SET_ERROR(ENOTSUP)); 484 } else { 485 /* 486 * We require the parity to be specified for SPAs that 487 * support multiple parity levels. 488 */ 489 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 490 return (SET_ERROR(EINVAL)); 491 /* 492 * Otherwise, we default to 1 parity device for RAID-Z. 493 */ 494 nparity = 1; 495 } 496 } else { 497 nparity = 0; 498 } 499 ASSERT(nparity != -1ULL); 500 501 vd = vdev_alloc_common(spa, id, guid, ops); 502 vic = &vd->vdev_indirect_config; 503 504 vd->vdev_islog = islog; 505 vd->vdev_nparity = nparity; 506 507 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 508 vd->vdev_path = spa_strdup(vd->vdev_path); 509 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 510 vd->vdev_devid = spa_strdup(vd->vdev_devid); 511 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 512 &vd->vdev_physpath) == 0) 513 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 514 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 515 vd->vdev_fru = spa_strdup(vd->vdev_fru); 516 517 /* 518 * Set the whole_disk property. If it's not specified, leave the value 519 * as -1. 520 */ 521 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 522 &vd->vdev_wholedisk) != 0) 523 vd->vdev_wholedisk = -1ULL; 524 525 ASSERT0(vic->vic_mapping_object); 526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 527 &vic->vic_mapping_object); 528 ASSERT0(vic->vic_births_object); 529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 530 &vic->vic_births_object); 531 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 533 &vic->vic_prev_indirect_vdev); 534 535 /* 536 * Look for the 'not present' flag. This will only be set if the device 537 * was not present at the time of import. 538 */ 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 540 &vd->vdev_not_present); 541 542 /* 543 * Get the alignment requirement. 544 */ 545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 546 547 /* 548 * Retrieve the vdev creation time. 549 */ 550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 551 &vd->vdev_crtxg); 552 553 /* 554 * If we're a top-level vdev, try to load the allocation parameters. 555 */ 556 if (parent && !parent->vdev_parent && 557 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 558 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 559 &vd->vdev_ms_array); 560 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 561 &vd->vdev_ms_shift); 562 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 563 &vd->vdev_asize); 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 565 &vd->vdev_removing); 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 567 &vd->vdev_top_zap); 568 } else { 569 ASSERT0(vd->vdev_top_zap); 570 } 571 572 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 573 ASSERT(alloctype == VDEV_ALLOC_LOAD || 574 alloctype == VDEV_ALLOC_ADD || 575 alloctype == VDEV_ALLOC_SPLIT || 576 alloctype == VDEV_ALLOC_ROOTPOOL); 577 vd->vdev_mg = metaslab_group_create(islog ? 578 spa_log_class(spa) : spa_normal_class(spa), vd); 579 } 580 581 if (vd->vdev_ops->vdev_op_leaf && 582 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 583 (void) nvlist_lookup_uint64(nv, 584 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 585 } else { 586 ASSERT0(vd->vdev_leaf_zap); 587 } 588 589 /* 590 * If we're a leaf vdev, try to load the DTL object and other state. 591 */ 592 593 if (vd->vdev_ops->vdev_op_leaf && 594 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 595 alloctype == VDEV_ALLOC_ROOTPOOL)) { 596 if (alloctype == VDEV_ALLOC_LOAD) { 597 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 598 &vd->vdev_dtl_object); 599 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 600 &vd->vdev_unspare); 601 } 602 603 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 604 uint64_t spare = 0; 605 606 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 607 &spare) == 0 && spare) 608 spa_spare_add(vd); 609 } 610 611 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 612 &vd->vdev_offline); 613 614 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 615 &vd->vdev_resilver_txg); 616 617 /* 618 * When importing a pool, we want to ignore the persistent fault 619 * state, as the diagnosis made on another system may not be 620 * valid in the current context. Local vdevs will 621 * remain in the faulted state. 622 */ 623 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 624 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 625 &vd->vdev_faulted); 626 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 627 &vd->vdev_degraded); 628 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 629 &vd->vdev_removed); 630 631 if (vd->vdev_faulted || vd->vdev_degraded) { 632 char *aux; 633 634 vd->vdev_label_aux = 635 VDEV_AUX_ERR_EXCEEDED; 636 if (nvlist_lookup_string(nv, 637 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 638 strcmp(aux, "external") == 0) 639 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 640 } 641 } 642 } 643 644 /* 645 * Add ourselves to the parent's list of children. 646 */ 647 vdev_add_child(parent, vd); 648 649 *vdp = vd; 650 651 return (0); 652 } 653 654 void 655 vdev_free(vdev_t *vd) 656 { 657 spa_t *spa = vd->vdev_spa; 658 659 /* 660 * vdev_free() implies closing the vdev first. This is simpler than 661 * trying to ensure complicated semantics for all callers. 662 */ 663 vdev_close(vd); 664 665 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 666 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 667 668 /* 669 * Free all children. 670 */ 671 for (int c = 0; c < vd->vdev_children; c++) 672 vdev_free(vd->vdev_child[c]); 673 674 ASSERT(vd->vdev_child == NULL); 675 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 676 677 /* 678 * Discard allocation state. 679 */ 680 if (vd->vdev_mg != NULL) { 681 vdev_metaslab_fini(vd); 682 metaslab_group_destroy(vd->vdev_mg); 683 } 684 685 ASSERT0(vd->vdev_stat.vs_space); 686 ASSERT0(vd->vdev_stat.vs_dspace); 687 ASSERT0(vd->vdev_stat.vs_alloc); 688 689 /* 690 * Remove this vdev from its parent's child list. 691 */ 692 vdev_remove_child(vd->vdev_parent, vd); 693 694 ASSERT(vd->vdev_parent == NULL); 695 696 /* 697 * Clean up vdev structure. 698 */ 699 vdev_queue_fini(vd); 700 vdev_cache_fini(vd); 701 702 if (vd->vdev_path) 703 spa_strfree(vd->vdev_path); 704 if (vd->vdev_devid) 705 spa_strfree(vd->vdev_devid); 706 if (vd->vdev_physpath) 707 spa_strfree(vd->vdev_physpath); 708 if (vd->vdev_fru) 709 spa_strfree(vd->vdev_fru); 710 711 if (vd->vdev_isspare) 712 spa_spare_remove(vd); 713 if (vd->vdev_isl2cache) 714 spa_l2cache_remove(vd); 715 716 txg_list_destroy(&vd->vdev_ms_list); 717 txg_list_destroy(&vd->vdev_dtl_list); 718 719 mutex_enter(&vd->vdev_dtl_lock); 720 space_map_close(vd->vdev_dtl_sm); 721 for (int t = 0; t < DTL_TYPES; t++) { 722 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 723 range_tree_destroy(vd->vdev_dtl[t]); 724 } 725 mutex_exit(&vd->vdev_dtl_lock); 726 727 EQUIV(vd->vdev_indirect_births != NULL, 728 vd->vdev_indirect_mapping != NULL); 729 if (vd->vdev_indirect_births != NULL) { 730 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 731 vdev_indirect_births_close(vd->vdev_indirect_births); 732 } 733 734 if (vd->vdev_obsolete_sm != NULL) { 735 ASSERT(vd->vdev_removing || 736 vd->vdev_ops == &vdev_indirect_ops); 737 space_map_close(vd->vdev_obsolete_sm); 738 vd->vdev_obsolete_sm = NULL; 739 } 740 range_tree_destroy(vd->vdev_obsolete_segments); 741 rw_destroy(&vd->vdev_indirect_rwlock); 742 mutex_destroy(&vd->vdev_obsolete_lock); 743 744 mutex_destroy(&vd->vdev_queue_lock); 745 mutex_destroy(&vd->vdev_dtl_lock); 746 mutex_destroy(&vd->vdev_stat_lock); 747 mutex_destroy(&vd->vdev_probe_lock); 748 749 if (vd == spa->spa_root_vdev) 750 spa->spa_root_vdev = NULL; 751 752 kmem_free(vd, sizeof (vdev_t)); 753 } 754 755 /* 756 * Transfer top-level vdev state from svd to tvd. 757 */ 758 static void 759 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 760 { 761 spa_t *spa = svd->vdev_spa; 762 metaslab_t *msp; 763 vdev_t *vd; 764 int t; 765 766 ASSERT(tvd == tvd->vdev_top); 767 768 tvd->vdev_ms_array = svd->vdev_ms_array; 769 tvd->vdev_ms_shift = svd->vdev_ms_shift; 770 tvd->vdev_ms_count = svd->vdev_ms_count; 771 tvd->vdev_top_zap = svd->vdev_top_zap; 772 773 svd->vdev_ms_array = 0; 774 svd->vdev_ms_shift = 0; 775 svd->vdev_ms_count = 0; 776 svd->vdev_top_zap = 0; 777 778 if (tvd->vdev_mg) 779 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 780 tvd->vdev_mg = svd->vdev_mg; 781 tvd->vdev_ms = svd->vdev_ms; 782 783 svd->vdev_mg = NULL; 784 svd->vdev_ms = NULL; 785 786 if (tvd->vdev_mg != NULL) 787 tvd->vdev_mg->mg_vd = tvd; 788 789 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 790 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 791 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 792 793 svd->vdev_stat.vs_alloc = 0; 794 svd->vdev_stat.vs_space = 0; 795 svd->vdev_stat.vs_dspace = 0; 796 797 for (t = 0; t < TXG_SIZE; t++) { 798 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 799 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 800 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 801 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 802 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 803 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 804 } 805 806 if (list_link_active(&svd->vdev_config_dirty_node)) { 807 vdev_config_clean(svd); 808 vdev_config_dirty(tvd); 809 } 810 811 if (list_link_active(&svd->vdev_state_dirty_node)) { 812 vdev_state_clean(svd); 813 vdev_state_dirty(tvd); 814 } 815 816 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 817 svd->vdev_deflate_ratio = 0; 818 819 tvd->vdev_islog = svd->vdev_islog; 820 svd->vdev_islog = 0; 821 } 822 823 static void 824 vdev_top_update(vdev_t *tvd, vdev_t *vd) 825 { 826 if (vd == NULL) 827 return; 828 829 vd->vdev_top = tvd; 830 831 for (int c = 0; c < vd->vdev_children; c++) 832 vdev_top_update(tvd, vd->vdev_child[c]); 833 } 834 835 /* 836 * Add a mirror/replacing vdev above an existing vdev. 837 */ 838 vdev_t * 839 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 840 { 841 spa_t *spa = cvd->vdev_spa; 842 vdev_t *pvd = cvd->vdev_parent; 843 vdev_t *mvd; 844 845 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 846 847 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 848 849 mvd->vdev_asize = cvd->vdev_asize; 850 mvd->vdev_min_asize = cvd->vdev_min_asize; 851 mvd->vdev_max_asize = cvd->vdev_max_asize; 852 mvd->vdev_psize = cvd->vdev_psize; 853 mvd->vdev_ashift = cvd->vdev_ashift; 854 mvd->vdev_state = cvd->vdev_state; 855 mvd->vdev_crtxg = cvd->vdev_crtxg; 856 857 vdev_remove_child(pvd, cvd); 858 vdev_add_child(pvd, mvd); 859 cvd->vdev_id = mvd->vdev_children; 860 vdev_add_child(mvd, cvd); 861 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 862 863 if (mvd == mvd->vdev_top) 864 vdev_top_transfer(cvd, mvd); 865 866 return (mvd); 867 } 868 869 /* 870 * Remove a 1-way mirror/replacing vdev from the tree. 871 */ 872 void 873 vdev_remove_parent(vdev_t *cvd) 874 { 875 vdev_t *mvd = cvd->vdev_parent; 876 vdev_t *pvd = mvd->vdev_parent; 877 878 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 879 880 ASSERT(mvd->vdev_children == 1); 881 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 882 mvd->vdev_ops == &vdev_replacing_ops || 883 mvd->vdev_ops == &vdev_spare_ops); 884 cvd->vdev_ashift = mvd->vdev_ashift; 885 886 vdev_remove_child(mvd, cvd); 887 vdev_remove_child(pvd, mvd); 888 889 /* 890 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 891 * Otherwise, we could have detached an offline device, and when we 892 * go to import the pool we'll think we have two top-level vdevs, 893 * instead of a different version of the same top-level vdev. 894 */ 895 if (mvd->vdev_top == mvd) { 896 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 897 cvd->vdev_orig_guid = cvd->vdev_guid; 898 cvd->vdev_guid += guid_delta; 899 cvd->vdev_guid_sum += guid_delta; 900 } 901 cvd->vdev_id = mvd->vdev_id; 902 vdev_add_child(pvd, cvd); 903 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 904 905 if (cvd == cvd->vdev_top) 906 vdev_top_transfer(mvd, cvd); 907 908 ASSERT(mvd->vdev_children == 0); 909 vdev_free(mvd); 910 } 911 912 int 913 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 914 { 915 spa_t *spa = vd->vdev_spa; 916 objset_t *mos = spa->spa_meta_objset; 917 uint64_t m; 918 uint64_t oldc = vd->vdev_ms_count; 919 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 920 metaslab_t **mspp; 921 int error; 922 923 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 924 925 /* 926 * This vdev is not being allocated from yet or is a hole. 927 */ 928 if (vd->vdev_ms_shift == 0) 929 return (0); 930 931 ASSERT(!vd->vdev_ishole); 932 933 ASSERT(oldc <= newc); 934 935 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 936 937 if (oldc != 0) { 938 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 939 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 940 } 941 942 vd->vdev_ms = mspp; 943 vd->vdev_ms_count = newc; 944 945 for (m = oldc; m < newc; m++) { 946 uint64_t object = 0; 947 948 /* 949 * vdev_ms_array may be 0 if we are creating the "fake" 950 * metaslabs for an indirect vdev for zdb's leak detection. 951 * See zdb_leak_init(). 952 */ 953 if (txg == 0 && vd->vdev_ms_array != 0) { 954 error = dmu_read(mos, vd->vdev_ms_array, 955 m * sizeof (uint64_t), sizeof (uint64_t), &object, 956 DMU_READ_PREFETCH); 957 if (error != 0) { 958 vdev_dbgmsg(vd, "unable to read the metaslab " 959 "array [error=%d]", error); 960 return (error); 961 } 962 } 963 964 error = metaslab_init(vd->vdev_mg, m, object, txg, 965 &(vd->vdev_ms[m])); 966 if (error != 0) { 967 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 968 error); 969 return (error); 970 } 971 } 972 973 if (txg == 0) 974 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 975 976 /* 977 * If the vdev is being removed we don't activate 978 * the metaslabs since we want to ensure that no new 979 * allocations are performed on this device. 980 */ 981 if (oldc == 0 && !vd->vdev_removing) 982 metaslab_group_activate(vd->vdev_mg); 983 984 if (txg == 0) 985 spa_config_exit(spa, SCL_ALLOC, FTAG); 986 987 return (0); 988 } 989 990 void 991 vdev_metaslab_fini(vdev_t *vd) 992 { 993 if (vd->vdev_ms != NULL) { 994 uint64_t count = vd->vdev_ms_count; 995 996 metaslab_group_passivate(vd->vdev_mg); 997 for (uint64_t m = 0; m < count; m++) { 998 metaslab_t *msp = vd->vdev_ms[m]; 999 1000 if (msp != NULL) 1001 metaslab_fini(msp); 1002 } 1003 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1004 vd->vdev_ms = NULL; 1005 1006 vd->vdev_ms_count = 0; 1007 } 1008 ASSERT0(vd->vdev_ms_count); 1009 } 1010 1011 typedef struct vdev_probe_stats { 1012 boolean_t vps_readable; 1013 boolean_t vps_writeable; 1014 int vps_flags; 1015 } vdev_probe_stats_t; 1016 1017 static void 1018 vdev_probe_done(zio_t *zio) 1019 { 1020 spa_t *spa = zio->io_spa; 1021 vdev_t *vd = zio->io_vd; 1022 vdev_probe_stats_t *vps = zio->io_private; 1023 1024 ASSERT(vd->vdev_probe_zio != NULL); 1025 1026 if (zio->io_type == ZIO_TYPE_READ) { 1027 if (zio->io_error == 0) 1028 vps->vps_readable = 1; 1029 if (zio->io_error == 0 && spa_writeable(spa)) { 1030 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1031 zio->io_offset, zio->io_size, zio->io_abd, 1032 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1033 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1034 } else { 1035 abd_free(zio->io_abd); 1036 } 1037 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1038 if (zio->io_error == 0) 1039 vps->vps_writeable = 1; 1040 abd_free(zio->io_abd); 1041 } else if (zio->io_type == ZIO_TYPE_NULL) { 1042 zio_t *pio; 1043 1044 vd->vdev_cant_read |= !vps->vps_readable; 1045 vd->vdev_cant_write |= !vps->vps_writeable; 1046 1047 if (vdev_readable(vd) && 1048 (vdev_writeable(vd) || !spa_writeable(spa))) { 1049 zio->io_error = 0; 1050 } else { 1051 ASSERT(zio->io_error != 0); 1052 vdev_dbgmsg(vd, "failed probe"); 1053 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1054 spa, vd, NULL, 0, 0); 1055 zio->io_error = SET_ERROR(ENXIO); 1056 } 1057 1058 mutex_enter(&vd->vdev_probe_lock); 1059 ASSERT(vd->vdev_probe_zio == zio); 1060 vd->vdev_probe_zio = NULL; 1061 mutex_exit(&vd->vdev_probe_lock); 1062 1063 zio_link_t *zl = NULL; 1064 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1065 if (!vdev_accessible(vd, pio)) 1066 pio->io_error = SET_ERROR(ENXIO); 1067 1068 kmem_free(vps, sizeof (*vps)); 1069 } 1070 } 1071 1072 /* 1073 * Determine whether this device is accessible. 1074 * 1075 * Read and write to several known locations: the pad regions of each 1076 * vdev label but the first, which we leave alone in case it contains 1077 * a VTOC. 1078 */ 1079 zio_t * 1080 vdev_probe(vdev_t *vd, zio_t *zio) 1081 { 1082 spa_t *spa = vd->vdev_spa; 1083 vdev_probe_stats_t *vps = NULL; 1084 zio_t *pio; 1085 1086 ASSERT(vd->vdev_ops->vdev_op_leaf); 1087 1088 /* 1089 * Don't probe the probe. 1090 */ 1091 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1092 return (NULL); 1093 1094 /* 1095 * To prevent 'probe storms' when a device fails, we create 1096 * just one probe i/o at a time. All zios that want to probe 1097 * this vdev will become parents of the probe io. 1098 */ 1099 mutex_enter(&vd->vdev_probe_lock); 1100 1101 if ((pio = vd->vdev_probe_zio) == NULL) { 1102 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1103 1104 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1105 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1106 ZIO_FLAG_TRYHARD; 1107 1108 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1109 /* 1110 * vdev_cant_read and vdev_cant_write can only 1111 * transition from TRUE to FALSE when we have the 1112 * SCL_ZIO lock as writer; otherwise they can only 1113 * transition from FALSE to TRUE. This ensures that 1114 * any zio looking at these values can assume that 1115 * failures persist for the life of the I/O. That's 1116 * important because when a device has intermittent 1117 * connectivity problems, we want to ensure that 1118 * they're ascribed to the device (ENXIO) and not 1119 * the zio (EIO). 1120 * 1121 * Since we hold SCL_ZIO as writer here, clear both 1122 * values so the probe can reevaluate from first 1123 * principles. 1124 */ 1125 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1126 vd->vdev_cant_read = B_FALSE; 1127 vd->vdev_cant_write = B_FALSE; 1128 } 1129 1130 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1131 vdev_probe_done, vps, 1132 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1133 1134 /* 1135 * We can't change the vdev state in this context, so we 1136 * kick off an async task to do it on our behalf. 1137 */ 1138 if (zio != NULL) { 1139 vd->vdev_probe_wanted = B_TRUE; 1140 spa_async_request(spa, SPA_ASYNC_PROBE); 1141 } 1142 } 1143 1144 if (zio != NULL) 1145 zio_add_child(zio, pio); 1146 1147 mutex_exit(&vd->vdev_probe_lock); 1148 1149 if (vps == NULL) { 1150 ASSERT(zio != NULL); 1151 return (NULL); 1152 } 1153 1154 for (int l = 1; l < VDEV_LABELS; l++) { 1155 zio_nowait(zio_read_phys(pio, vd, 1156 vdev_label_offset(vd->vdev_psize, l, 1157 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1158 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1159 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1160 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1161 } 1162 1163 if (zio == NULL) 1164 return (pio); 1165 1166 zio_nowait(pio); 1167 return (NULL); 1168 } 1169 1170 static void 1171 vdev_open_child(void *arg) 1172 { 1173 vdev_t *vd = arg; 1174 1175 vd->vdev_open_thread = curthread; 1176 vd->vdev_open_error = vdev_open(vd); 1177 vd->vdev_open_thread = NULL; 1178 } 1179 1180 boolean_t 1181 vdev_uses_zvols(vdev_t *vd) 1182 { 1183 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1184 strlen(ZVOL_DIR)) == 0) 1185 return (B_TRUE); 1186 for (int c = 0; c < vd->vdev_children; c++) 1187 if (vdev_uses_zvols(vd->vdev_child[c])) 1188 return (B_TRUE); 1189 return (B_FALSE); 1190 } 1191 1192 void 1193 vdev_open_children(vdev_t *vd) 1194 { 1195 taskq_t *tq; 1196 int children = vd->vdev_children; 1197 1198 /* 1199 * in order to handle pools on top of zvols, do the opens 1200 * in a single thread so that the same thread holds the 1201 * spa_namespace_lock 1202 */ 1203 if (vdev_uses_zvols(vd)) { 1204 for (int c = 0; c < children; c++) 1205 vd->vdev_child[c]->vdev_open_error = 1206 vdev_open(vd->vdev_child[c]); 1207 return; 1208 } 1209 tq = taskq_create("vdev_open", children, minclsyspri, 1210 children, children, TASKQ_PREPOPULATE); 1211 1212 for (int c = 0; c < children; c++) 1213 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1214 TQ_SLEEP) != NULL); 1215 1216 taskq_destroy(tq); 1217 } 1218 1219 /* 1220 * Compute the raidz-deflation ratio. Note, we hard-code 1221 * in 128k (1 << 17) because it is the "typical" blocksize. 1222 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1223 * otherwise it would inconsistently account for existing bp's. 1224 */ 1225 static void 1226 vdev_set_deflate_ratio(vdev_t *vd) 1227 { 1228 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1229 vd->vdev_deflate_ratio = (1 << 17) / 1230 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1231 } 1232 } 1233 1234 /* 1235 * Prepare a virtual device for access. 1236 */ 1237 int 1238 vdev_open(vdev_t *vd) 1239 { 1240 spa_t *spa = vd->vdev_spa; 1241 int error; 1242 uint64_t osize = 0; 1243 uint64_t max_osize = 0; 1244 uint64_t asize, max_asize, psize; 1245 uint64_t ashift = 0; 1246 1247 ASSERT(vd->vdev_open_thread == curthread || 1248 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1249 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1250 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1251 vd->vdev_state == VDEV_STATE_OFFLINE); 1252 1253 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1254 vd->vdev_cant_read = B_FALSE; 1255 vd->vdev_cant_write = B_FALSE; 1256 vd->vdev_min_asize = vdev_get_min_asize(vd); 1257 1258 /* 1259 * If this vdev is not removed, check its fault status. If it's 1260 * faulted, bail out of the open. 1261 */ 1262 if (!vd->vdev_removed && vd->vdev_faulted) { 1263 ASSERT(vd->vdev_children == 0); 1264 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1265 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1267 vd->vdev_label_aux); 1268 return (SET_ERROR(ENXIO)); 1269 } else if (vd->vdev_offline) { 1270 ASSERT(vd->vdev_children == 0); 1271 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1272 return (SET_ERROR(ENXIO)); 1273 } 1274 1275 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1276 1277 /* 1278 * Reset the vdev_reopening flag so that we actually close 1279 * the vdev on error. 1280 */ 1281 vd->vdev_reopening = B_FALSE; 1282 if (zio_injection_enabled && error == 0) 1283 error = zio_handle_device_injection(vd, NULL, ENXIO); 1284 1285 if (error) { 1286 if (vd->vdev_removed && 1287 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1288 vd->vdev_removed = B_FALSE; 1289 1290 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1291 vd->vdev_stat.vs_aux); 1292 return (error); 1293 } 1294 1295 vd->vdev_removed = B_FALSE; 1296 1297 /* 1298 * Recheck the faulted flag now that we have confirmed that 1299 * the vdev is accessible. If we're faulted, bail. 1300 */ 1301 if (vd->vdev_faulted) { 1302 ASSERT(vd->vdev_children == 0); 1303 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1304 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1306 vd->vdev_label_aux); 1307 return (SET_ERROR(ENXIO)); 1308 } 1309 1310 if (vd->vdev_degraded) { 1311 ASSERT(vd->vdev_children == 0); 1312 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1313 VDEV_AUX_ERR_EXCEEDED); 1314 } else { 1315 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1316 } 1317 1318 /* 1319 * For hole or missing vdevs we just return success. 1320 */ 1321 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1322 return (0); 1323 1324 for (int c = 0; c < vd->vdev_children; c++) { 1325 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1326 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1327 VDEV_AUX_NONE); 1328 break; 1329 } 1330 } 1331 1332 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1333 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1334 1335 if (vd->vdev_children == 0) { 1336 if (osize < SPA_MINDEVSIZE) { 1337 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1338 VDEV_AUX_TOO_SMALL); 1339 return (SET_ERROR(EOVERFLOW)); 1340 } 1341 psize = osize; 1342 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1343 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1344 VDEV_LABEL_END_SIZE); 1345 } else { 1346 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1347 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1348 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1349 VDEV_AUX_TOO_SMALL); 1350 return (SET_ERROR(EOVERFLOW)); 1351 } 1352 psize = 0; 1353 asize = osize; 1354 max_asize = max_osize; 1355 } 1356 1357 vd->vdev_psize = psize; 1358 1359 /* 1360 * Make sure the allocatable size hasn't shrunk too much. 1361 */ 1362 if (asize < vd->vdev_min_asize) { 1363 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1364 VDEV_AUX_BAD_LABEL); 1365 return (SET_ERROR(EINVAL)); 1366 } 1367 1368 if (vd->vdev_asize == 0) { 1369 /* 1370 * This is the first-ever open, so use the computed values. 1371 * For testing purposes, a higher ashift can be requested. 1372 */ 1373 vd->vdev_asize = asize; 1374 vd->vdev_max_asize = max_asize; 1375 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1376 } else { 1377 /* 1378 * Detect if the alignment requirement has increased. 1379 * We don't want to make the pool unavailable, just 1380 * issue a warning instead. 1381 */ 1382 if (ashift > vd->vdev_top->vdev_ashift && 1383 vd->vdev_ops->vdev_op_leaf) { 1384 cmn_err(CE_WARN, 1385 "Disk, '%s', has a block alignment that is " 1386 "larger than the pool's alignment\n", 1387 vd->vdev_path); 1388 } 1389 vd->vdev_max_asize = max_asize; 1390 } 1391 1392 /* 1393 * If all children are healthy we update asize if either: 1394 * The asize has increased, due to a device expansion caused by dynamic 1395 * LUN growth or vdev replacement, and automatic expansion is enabled; 1396 * making the additional space available. 1397 * 1398 * The asize has decreased, due to a device shrink usually caused by a 1399 * vdev replace with a smaller device. This ensures that calculations 1400 * based of max_asize and asize e.g. esize are always valid. It's safe 1401 * to do this as we've already validated that asize is greater than 1402 * vdev_min_asize. 1403 */ 1404 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1405 ((asize > vd->vdev_asize && 1406 (vd->vdev_expanding || spa->spa_autoexpand)) || 1407 (asize < vd->vdev_asize))) 1408 vd->vdev_asize = asize; 1409 1410 vdev_set_min_asize(vd); 1411 1412 /* 1413 * Ensure we can issue some IO before declaring the 1414 * vdev open for business. 1415 */ 1416 if (vd->vdev_ops->vdev_op_leaf && 1417 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1418 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1419 VDEV_AUX_ERR_EXCEEDED); 1420 return (error); 1421 } 1422 1423 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1424 !vd->vdev_isl2cache && !vd->vdev_islog) { 1425 if (vd->vdev_ashift > spa->spa_max_ashift) 1426 spa->spa_max_ashift = vd->vdev_ashift; 1427 if (vd->vdev_ashift < spa->spa_min_ashift) 1428 spa->spa_min_ashift = vd->vdev_ashift; 1429 } 1430 1431 /* 1432 * Track the min and max ashift values for normal data devices. 1433 */ 1434 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1435 !vd->vdev_islog && vd->vdev_aux == NULL) { 1436 if (vd->vdev_ashift > spa->spa_max_ashift) 1437 spa->spa_max_ashift = vd->vdev_ashift; 1438 if (vd->vdev_ashift < spa->spa_min_ashift) 1439 spa->spa_min_ashift = vd->vdev_ashift; 1440 } 1441 1442 /* 1443 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1444 * resilver. But don't do this if we are doing a reopen for a scrub, 1445 * since this would just restart the scrub we are already doing. 1446 */ 1447 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1448 vdev_resilver_needed(vd, NULL, NULL)) 1449 spa_async_request(spa, SPA_ASYNC_RESILVER); 1450 1451 return (0); 1452 } 1453 1454 /* 1455 * Called once the vdevs are all opened, this routine validates the label 1456 * contents. This needs to be done before vdev_load() so that we don't 1457 * inadvertently do repair I/Os to the wrong device. 1458 * 1459 * If 'strict' is false ignore the spa guid check. This is necessary because 1460 * if the machine crashed during a re-guid the new guid might have been written 1461 * to all of the vdev labels, but not the cached config. The strict check 1462 * will be performed when the pool is opened again using the mos config. 1463 * 1464 * This function will only return failure if one of the vdevs indicates that it 1465 * has since been destroyed or exported. This is only possible if 1466 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1467 * will be updated but the function will return 0. 1468 */ 1469 int 1470 vdev_validate(vdev_t *vd, boolean_t strict) 1471 { 1472 spa_t *spa = vd->vdev_spa; 1473 nvlist_t *label; 1474 uint64_t guid = 0, top_guid; 1475 uint64_t state; 1476 1477 for (int c = 0; c < vd->vdev_children; c++) 1478 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1479 return (SET_ERROR(EBADF)); 1480 1481 /* 1482 * If the device has already failed, or was marked offline, don't do 1483 * any further validation. Otherwise, label I/O will fail and we will 1484 * overwrite the previous state. 1485 */ 1486 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1487 uint64_t aux_guid = 0; 1488 nvlist_t *nvl; 1489 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1490 spa_last_synced_txg(spa) : -1ULL; 1491 1492 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1493 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1494 VDEV_AUX_BAD_LABEL); 1495 vdev_dbgmsg(vd, "vdev_validate: failed reading config"); 1496 return (0); 1497 } 1498 1499 /* 1500 * Determine if this vdev has been split off into another 1501 * pool. If so, then refuse to open it. 1502 */ 1503 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1504 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1505 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1506 VDEV_AUX_SPLIT_POOL); 1507 nvlist_free(label); 1508 vdev_dbgmsg(vd, "vdev_validate: vdev split into other " 1509 "pool"); 1510 return (0); 1511 } 1512 1513 if (strict && (nvlist_lookup_uint64(label, 1514 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1515 guid != spa_guid(spa))) { 1516 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1517 VDEV_AUX_CORRUPT_DATA); 1518 nvlist_free(label); 1519 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid " 1520 "doesn't match config (%llu != %llu)", 1521 (u_longlong_t)guid, 1522 (u_longlong_t)spa_guid(spa)); 1523 return (0); 1524 } 1525 1526 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1527 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1528 &aux_guid) != 0) 1529 aux_guid = 0; 1530 1531 /* 1532 * If this vdev just became a top-level vdev because its 1533 * sibling was detached, it will have adopted the parent's 1534 * vdev guid -- but the label may or may not be on disk yet. 1535 * Fortunately, either version of the label will have the 1536 * same top guid, so if we're a top-level vdev, we can 1537 * safely compare to that instead. 1538 * 1539 * If we split this vdev off instead, then we also check the 1540 * original pool's guid. We don't want to consider the vdev 1541 * corrupt if it is partway through a split operation. 1542 */ 1543 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1544 &guid) != 0 || 1545 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1546 &top_guid) != 0 || 1547 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1548 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1549 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1550 VDEV_AUX_CORRUPT_DATA); 1551 nvlist_free(label); 1552 vdev_dbgmsg(vd, "vdev_validate: config guid doesn't " 1553 "match label guid (%llu != %llu)", 1554 (u_longlong_t)vd->vdev_guid, (u_longlong_t)guid); 1555 return (0); 1556 } 1557 1558 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1559 &state) != 0) { 1560 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1561 VDEV_AUX_CORRUPT_DATA); 1562 nvlist_free(label); 1563 vdev_dbgmsg(vd, "vdev_validate: '%s' missing", 1564 ZPOOL_CONFIG_POOL_STATE); 1565 return (0); 1566 } 1567 1568 nvlist_free(label); 1569 1570 /* 1571 * If this is a verbatim import, no need to check the 1572 * state of the pool. 1573 */ 1574 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1575 spa_load_state(spa) == SPA_LOAD_OPEN && 1576 state != POOL_STATE_ACTIVE) { 1577 vdev_dbgmsg(vd, "vdev_validate: invalid pool state " 1578 "(%llu) for spa %s", (u_longlong_t)state, 1579 spa->spa_name); 1580 return (SET_ERROR(EBADF)); 1581 } 1582 1583 /* 1584 * If we were able to open and validate a vdev that was 1585 * previously marked permanently unavailable, clear that state 1586 * now. 1587 */ 1588 if (vd->vdev_not_present) 1589 vd->vdev_not_present = 0; 1590 } 1591 1592 return (0); 1593 } 1594 1595 /* 1596 * Close a virtual device. 1597 */ 1598 void 1599 vdev_close(vdev_t *vd) 1600 { 1601 spa_t *spa = vd->vdev_spa; 1602 vdev_t *pvd = vd->vdev_parent; 1603 1604 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1605 1606 /* 1607 * If our parent is reopening, then we are as well, unless we are 1608 * going offline. 1609 */ 1610 if (pvd != NULL && pvd->vdev_reopening) 1611 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1612 1613 vd->vdev_ops->vdev_op_close(vd); 1614 1615 vdev_cache_purge(vd); 1616 1617 /* 1618 * We record the previous state before we close it, so that if we are 1619 * doing a reopen(), we don't generate FMA ereports if we notice that 1620 * it's still faulted. 1621 */ 1622 vd->vdev_prevstate = vd->vdev_state; 1623 1624 if (vd->vdev_offline) 1625 vd->vdev_state = VDEV_STATE_OFFLINE; 1626 else 1627 vd->vdev_state = VDEV_STATE_CLOSED; 1628 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1629 } 1630 1631 void 1632 vdev_hold(vdev_t *vd) 1633 { 1634 spa_t *spa = vd->vdev_spa; 1635 1636 ASSERT(spa_is_root(spa)); 1637 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1638 return; 1639 1640 for (int c = 0; c < vd->vdev_children; c++) 1641 vdev_hold(vd->vdev_child[c]); 1642 1643 if (vd->vdev_ops->vdev_op_leaf) 1644 vd->vdev_ops->vdev_op_hold(vd); 1645 } 1646 1647 void 1648 vdev_rele(vdev_t *vd) 1649 { 1650 spa_t *spa = vd->vdev_spa; 1651 1652 ASSERT(spa_is_root(spa)); 1653 for (int c = 0; c < vd->vdev_children; c++) 1654 vdev_rele(vd->vdev_child[c]); 1655 1656 if (vd->vdev_ops->vdev_op_leaf) 1657 vd->vdev_ops->vdev_op_rele(vd); 1658 } 1659 1660 /* 1661 * Reopen all interior vdevs and any unopened leaves. We don't actually 1662 * reopen leaf vdevs which had previously been opened as they might deadlock 1663 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1664 * If the leaf has never been opened then open it, as usual. 1665 */ 1666 void 1667 vdev_reopen(vdev_t *vd) 1668 { 1669 spa_t *spa = vd->vdev_spa; 1670 1671 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1672 1673 /* set the reopening flag unless we're taking the vdev offline */ 1674 vd->vdev_reopening = !vd->vdev_offline; 1675 vdev_close(vd); 1676 (void) vdev_open(vd); 1677 1678 /* 1679 * Call vdev_validate() here to make sure we have the same device. 1680 * Otherwise, a device with an invalid label could be successfully 1681 * opened in response to vdev_reopen(). 1682 */ 1683 if (vd->vdev_aux) { 1684 (void) vdev_validate_aux(vd); 1685 if (vdev_readable(vd) && vdev_writeable(vd) && 1686 vd->vdev_aux == &spa->spa_l2cache && 1687 !l2arc_vdev_present(vd)) 1688 l2arc_add_vdev(spa, vd); 1689 } else { 1690 (void) vdev_validate(vd, B_TRUE); 1691 } 1692 1693 /* 1694 * Reassess parent vdev's health. 1695 */ 1696 vdev_propagate_state(vd); 1697 } 1698 1699 int 1700 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1701 { 1702 int error; 1703 1704 /* 1705 * Normally, partial opens (e.g. of a mirror) are allowed. 1706 * For a create, however, we want to fail the request if 1707 * there are any components we can't open. 1708 */ 1709 error = vdev_open(vd); 1710 1711 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1712 vdev_close(vd); 1713 return (error ? error : ENXIO); 1714 } 1715 1716 /* 1717 * Recursively load DTLs and initialize all labels. 1718 */ 1719 if ((error = vdev_dtl_load(vd)) != 0 || 1720 (error = vdev_label_init(vd, txg, isreplacing ? 1721 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1722 vdev_close(vd); 1723 return (error); 1724 } 1725 1726 return (0); 1727 } 1728 1729 void 1730 vdev_metaslab_set_size(vdev_t *vd) 1731 { 1732 /* 1733 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1734 */ 1735 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1736 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1737 } 1738 1739 void 1740 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1741 { 1742 ASSERT(vd == vd->vdev_top); 1743 /* indirect vdevs don't have metaslabs or dtls */ 1744 ASSERT(vdev_is_concrete(vd) || flags == 0); 1745 ASSERT(ISP2(flags)); 1746 ASSERT(spa_writeable(vd->vdev_spa)); 1747 1748 if (flags & VDD_METASLAB) 1749 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1750 1751 if (flags & VDD_DTL) 1752 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1753 1754 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1755 } 1756 1757 void 1758 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1759 { 1760 for (int c = 0; c < vd->vdev_children; c++) 1761 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1762 1763 if (vd->vdev_ops->vdev_op_leaf) 1764 vdev_dirty(vd->vdev_top, flags, vd, txg); 1765 } 1766 1767 /* 1768 * DTLs. 1769 * 1770 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1771 * the vdev has less than perfect replication. There are four kinds of DTL: 1772 * 1773 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1774 * 1775 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1776 * 1777 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1778 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1779 * txgs that was scrubbed. 1780 * 1781 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1782 * persistent errors or just some device being offline. 1783 * Unlike the other three, the DTL_OUTAGE map is not generally 1784 * maintained; it's only computed when needed, typically to 1785 * determine whether a device can be detached. 1786 * 1787 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1788 * either has the data or it doesn't. 1789 * 1790 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1791 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1792 * if any child is less than fully replicated, then so is its parent. 1793 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1794 * comprising only those txgs which appear in 'maxfaults' or more children; 1795 * those are the txgs we don't have enough replication to read. For example, 1796 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1797 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1798 * two child DTL_MISSING maps. 1799 * 1800 * It should be clear from the above that to compute the DTLs and outage maps 1801 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1802 * Therefore, that is all we keep on disk. When loading the pool, or after 1803 * a configuration change, we generate all other DTLs from first principles. 1804 */ 1805 void 1806 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1807 { 1808 range_tree_t *rt = vd->vdev_dtl[t]; 1809 1810 ASSERT(t < DTL_TYPES); 1811 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1812 ASSERT(spa_writeable(vd->vdev_spa)); 1813 1814 mutex_enter(&vd->vdev_dtl_lock); 1815 if (!range_tree_contains(rt, txg, size)) 1816 range_tree_add(rt, txg, size); 1817 mutex_exit(&vd->vdev_dtl_lock); 1818 } 1819 1820 boolean_t 1821 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1822 { 1823 range_tree_t *rt = vd->vdev_dtl[t]; 1824 boolean_t dirty = B_FALSE; 1825 1826 ASSERT(t < DTL_TYPES); 1827 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1828 1829 /* 1830 * While we are loading the pool, the DTLs have not been loaded yet. 1831 * Ignore the DTLs and try all devices. This avoids a recursive 1832 * mutex enter on the vdev_dtl_lock, and also makes us try hard 1833 * when loading the pool (relying on the checksum to ensure that 1834 * we get the right data -- note that we while loading, we are 1835 * only reading the MOS, which is always checksummed). 1836 */ 1837 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 1838 return (B_FALSE); 1839 1840 mutex_enter(&vd->vdev_dtl_lock); 1841 if (range_tree_space(rt) != 0) 1842 dirty = range_tree_contains(rt, txg, size); 1843 mutex_exit(&vd->vdev_dtl_lock); 1844 1845 return (dirty); 1846 } 1847 1848 boolean_t 1849 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1850 { 1851 range_tree_t *rt = vd->vdev_dtl[t]; 1852 boolean_t empty; 1853 1854 mutex_enter(&vd->vdev_dtl_lock); 1855 empty = (range_tree_space(rt) == 0); 1856 mutex_exit(&vd->vdev_dtl_lock); 1857 1858 return (empty); 1859 } 1860 1861 /* 1862 * Returns the lowest txg in the DTL range. 1863 */ 1864 static uint64_t 1865 vdev_dtl_min(vdev_t *vd) 1866 { 1867 range_seg_t *rs; 1868 1869 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1870 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1871 ASSERT0(vd->vdev_children); 1872 1873 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1874 return (rs->rs_start - 1); 1875 } 1876 1877 /* 1878 * Returns the highest txg in the DTL. 1879 */ 1880 static uint64_t 1881 vdev_dtl_max(vdev_t *vd) 1882 { 1883 range_seg_t *rs; 1884 1885 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1886 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1887 ASSERT0(vd->vdev_children); 1888 1889 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1890 return (rs->rs_end); 1891 } 1892 1893 /* 1894 * Determine if a resilvering vdev should remove any DTL entries from 1895 * its range. If the vdev was resilvering for the entire duration of the 1896 * scan then it should excise that range from its DTLs. Otherwise, this 1897 * vdev is considered partially resilvered and should leave its DTL 1898 * entries intact. The comment in vdev_dtl_reassess() describes how we 1899 * excise the DTLs. 1900 */ 1901 static boolean_t 1902 vdev_dtl_should_excise(vdev_t *vd) 1903 { 1904 spa_t *spa = vd->vdev_spa; 1905 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1906 1907 ASSERT0(scn->scn_phys.scn_errors); 1908 ASSERT0(vd->vdev_children); 1909 1910 if (vd->vdev_state < VDEV_STATE_DEGRADED) 1911 return (B_FALSE); 1912 1913 if (vd->vdev_resilver_txg == 0 || 1914 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1915 return (B_TRUE); 1916 1917 /* 1918 * When a resilver is initiated the scan will assign the scn_max_txg 1919 * value to the highest txg value that exists in all DTLs. If this 1920 * device's max DTL is not part of this scan (i.e. it is not in 1921 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1922 * for excision. 1923 */ 1924 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1925 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1926 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1927 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1928 return (B_TRUE); 1929 } 1930 return (B_FALSE); 1931 } 1932 1933 /* 1934 * Reassess DTLs after a config change or scrub completion. 1935 */ 1936 void 1937 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1938 { 1939 spa_t *spa = vd->vdev_spa; 1940 avl_tree_t reftree; 1941 int minref; 1942 1943 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1944 1945 for (int c = 0; c < vd->vdev_children; c++) 1946 vdev_dtl_reassess(vd->vdev_child[c], txg, 1947 scrub_txg, scrub_done); 1948 1949 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 1950 return; 1951 1952 if (vd->vdev_ops->vdev_op_leaf) { 1953 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1954 1955 mutex_enter(&vd->vdev_dtl_lock); 1956 1957 /* 1958 * If we've completed a scan cleanly then determine 1959 * if this vdev should remove any DTLs. We only want to 1960 * excise regions on vdevs that were available during 1961 * the entire duration of this scan. 1962 */ 1963 if (scrub_txg != 0 && 1964 (spa->spa_scrub_started || 1965 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1966 vdev_dtl_should_excise(vd)) { 1967 /* 1968 * We completed a scrub up to scrub_txg. If we 1969 * did it without rebooting, then the scrub dtl 1970 * will be valid, so excise the old region and 1971 * fold in the scrub dtl. Otherwise, leave the 1972 * dtl as-is if there was an error. 1973 * 1974 * There's little trick here: to excise the beginning 1975 * of the DTL_MISSING map, we put it into a reference 1976 * tree and then add a segment with refcnt -1 that 1977 * covers the range [0, scrub_txg). This means 1978 * that each txg in that range has refcnt -1 or 0. 1979 * We then add DTL_SCRUB with a refcnt of 2, so that 1980 * entries in the range [0, scrub_txg) will have a 1981 * positive refcnt -- either 1 or 2. We then convert 1982 * the reference tree into the new DTL_MISSING map. 1983 */ 1984 space_reftree_create(&reftree); 1985 space_reftree_add_map(&reftree, 1986 vd->vdev_dtl[DTL_MISSING], 1); 1987 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1988 space_reftree_add_map(&reftree, 1989 vd->vdev_dtl[DTL_SCRUB], 2); 1990 space_reftree_generate_map(&reftree, 1991 vd->vdev_dtl[DTL_MISSING], 1); 1992 space_reftree_destroy(&reftree); 1993 } 1994 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1995 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1996 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1997 if (scrub_done) 1998 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1999 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2000 if (!vdev_readable(vd)) 2001 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2002 else 2003 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2004 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2005 2006 /* 2007 * If the vdev was resilvering and no longer has any 2008 * DTLs then reset its resilvering flag. 2009 */ 2010 if (vd->vdev_resilver_txg != 0 && 2011 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 2012 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 2013 vd->vdev_resilver_txg = 0; 2014 2015 mutex_exit(&vd->vdev_dtl_lock); 2016 2017 if (txg != 0) 2018 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2019 return; 2020 } 2021 2022 mutex_enter(&vd->vdev_dtl_lock); 2023 for (int t = 0; t < DTL_TYPES; t++) { 2024 /* account for child's outage in parent's missing map */ 2025 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2026 if (t == DTL_SCRUB) 2027 continue; /* leaf vdevs only */ 2028 if (t == DTL_PARTIAL) 2029 minref = 1; /* i.e. non-zero */ 2030 else if (vd->vdev_nparity != 0) 2031 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2032 else 2033 minref = vd->vdev_children; /* any kind of mirror */ 2034 space_reftree_create(&reftree); 2035 for (int c = 0; c < vd->vdev_children; c++) { 2036 vdev_t *cvd = vd->vdev_child[c]; 2037 mutex_enter(&cvd->vdev_dtl_lock); 2038 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2039 mutex_exit(&cvd->vdev_dtl_lock); 2040 } 2041 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2042 space_reftree_destroy(&reftree); 2043 } 2044 mutex_exit(&vd->vdev_dtl_lock); 2045 } 2046 2047 int 2048 vdev_dtl_load(vdev_t *vd) 2049 { 2050 spa_t *spa = vd->vdev_spa; 2051 objset_t *mos = spa->spa_meta_objset; 2052 int error = 0; 2053 2054 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2055 ASSERT(vdev_is_concrete(vd)); 2056 2057 error = space_map_open(&vd->vdev_dtl_sm, mos, 2058 vd->vdev_dtl_object, 0, -1ULL, 0); 2059 if (error) 2060 return (error); 2061 ASSERT(vd->vdev_dtl_sm != NULL); 2062 2063 mutex_enter(&vd->vdev_dtl_lock); 2064 2065 /* 2066 * Now that we've opened the space_map we need to update 2067 * the in-core DTL. 2068 */ 2069 space_map_update(vd->vdev_dtl_sm); 2070 2071 error = space_map_load(vd->vdev_dtl_sm, 2072 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2073 mutex_exit(&vd->vdev_dtl_lock); 2074 2075 return (error); 2076 } 2077 2078 for (int c = 0; c < vd->vdev_children; c++) { 2079 error = vdev_dtl_load(vd->vdev_child[c]); 2080 if (error != 0) 2081 break; 2082 } 2083 2084 return (error); 2085 } 2086 2087 void 2088 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2089 { 2090 spa_t *spa = vd->vdev_spa; 2091 2092 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2093 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2094 zapobj, tx)); 2095 } 2096 2097 uint64_t 2098 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2099 { 2100 spa_t *spa = vd->vdev_spa; 2101 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2102 DMU_OT_NONE, 0, tx); 2103 2104 ASSERT(zap != 0); 2105 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2106 zap, tx)); 2107 2108 return (zap); 2109 } 2110 2111 void 2112 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2113 { 2114 if (vd->vdev_ops != &vdev_hole_ops && 2115 vd->vdev_ops != &vdev_missing_ops && 2116 vd->vdev_ops != &vdev_root_ops && 2117 !vd->vdev_top->vdev_removing) { 2118 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2119 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2120 } 2121 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2122 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2123 } 2124 } 2125 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2126 vdev_construct_zaps(vd->vdev_child[i], tx); 2127 } 2128 } 2129 2130 void 2131 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2132 { 2133 spa_t *spa = vd->vdev_spa; 2134 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2135 objset_t *mos = spa->spa_meta_objset; 2136 range_tree_t *rtsync; 2137 dmu_tx_t *tx; 2138 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2139 2140 ASSERT(vdev_is_concrete(vd)); 2141 ASSERT(vd->vdev_ops->vdev_op_leaf); 2142 2143 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2144 2145 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2146 mutex_enter(&vd->vdev_dtl_lock); 2147 space_map_free(vd->vdev_dtl_sm, tx); 2148 space_map_close(vd->vdev_dtl_sm); 2149 vd->vdev_dtl_sm = NULL; 2150 mutex_exit(&vd->vdev_dtl_lock); 2151 2152 /* 2153 * We only destroy the leaf ZAP for detached leaves or for 2154 * removed log devices. Removed data devices handle leaf ZAP 2155 * cleanup later, once cancellation is no longer possible. 2156 */ 2157 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2158 vd->vdev_top->vdev_islog)) { 2159 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2160 vd->vdev_leaf_zap = 0; 2161 } 2162 2163 dmu_tx_commit(tx); 2164 return; 2165 } 2166 2167 if (vd->vdev_dtl_sm == NULL) { 2168 uint64_t new_object; 2169 2170 new_object = space_map_alloc(mos, tx); 2171 VERIFY3U(new_object, !=, 0); 2172 2173 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2174 0, -1ULL, 0)); 2175 ASSERT(vd->vdev_dtl_sm != NULL); 2176 } 2177 2178 rtsync = range_tree_create(NULL, NULL); 2179 2180 mutex_enter(&vd->vdev_dtl_lock); 2181 range_tree_walk(rt, range_tree_add, rtsync); 2182 mutex_exit(&vd->vdev_dtl_lock); 2183 2184 space_map_truncate(vd->vdev_dtl_sm, tx); 2185 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2186 range_tree_vacate(rtsync, NULL, NULL); 2187 2188 range_tree_destroy(rtsync); 2189 2190 /* 2191 * If the object for the space map has changed then dirty 2192 * the top level so that we update the config. 2193 */ 2194 if (object != space_map_object(vd->vdev_dtl_sm)) { 2195 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2196 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2197 (u_longlong_t)object, 2198 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2199 vdev_config_dirty(vd->vdev_top); 2200 } 2201 2202 dmu_tx_commit(tx); 2203 2204 mutex_enter(&vd->vdev_dtl_lock); 2205 space_map_update(vd->vdev_dtl_sm); 2206 mutex_exit(&vd->vdev_dtl_lock); 2207 } 2208 2209 /* 2210 * Determine whether the specified vdev can be offlined/detached/removed 2211 * without losing data. 2212 */ 2213 boolean_t 2214 vdev_dtl_required(vdev_t *vd) 2215 { 2216 spa_t *spa = vd->vdev_spa; 2217 vdev_t *tvd = vd->vdev_top; 2218 uint8_t cant_read = vd->vdev_cant_read; 2219 boolean_t required; 2220 2221 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2222 2223 if (vd == spa->spa_root_vdev || vd == tvd) 2224 return (B_TRUE); 2225 2226 /* 2227 * Temporarily mark the device as unreadable, and then determine 2228 * whether this results in any DTL outages in the top-level vdev. 2229 * If not, we can safely offline/detach/remove the device. 2230 */ 2231 vd->vdev_cant_read = B_TRUE; 2232 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2233 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2234 vd->vdev_cant_read = cant_read; 2235 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2236 2237 if (!required && zio_injection_enabled) 2238 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2239 2240 return (required); 2241 } 2242 2243 /* 2244 * Determine if resilver is needed, and if so the txg range. 2245 */ 2246 boolean_t 2247 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2248 { 2249 boolean_t needed = B_FALSE; 2250 uint64_t thismin = UINT64_MAX; 2251 uint64_t thismax = 0; 2252 2253 if (vd->vdev_children == 0) { 2254 mutex_enter(&vd->vdev_dtl_lock); 2255 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2256 vdev_writeable(vd)) { 2257 2258 thismin = vdev_dtl_min(vd); 2259 thismax = vdev_dtl_max(vd); 2260 needed = B_TRUE; 2261 } 2262 mutex_exit(&vd->vdev_dtl_lock); 2263 } else { 2264 for (int c = 0; c < vd->vdev_children; c++) { 2265 vdev_t *cvd = vd->vdev_child[c]; 2266 uint64_t cmin, cmax; 2267 2268 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2269 thismin = MIN(thismin, cmin); 2270 thismax = MAX(thismax, cmax); 2271 needed = B_TRUE; 2272 } 2273 } 2274 } 2275 2276 if (needed && minp) { 2277 *minp = thismin; 2278 *maxp = thismax; 2279 } 2280 return (needed); 2281 } 2282 2283 int 2284 vdev_load(vdev_t *vd) 2285 { 2286 int error = 0; 2287 /* 2288 * Recursively load all children. 2289 */ 2290 for (int c = 0; c < vd->vdev_children; c++) { 2291 error = vdev_load(vd->vdev_child[c]); 2292 if (error != 0) { 2293 return (error); 2294 } 2295 } 2296 2297 vdev_set_deflate_ratio(vd); 2298 2299 /* 2300 * If this is a top-level vdev, initialize its metaslabs. 2301 */ 2302 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2303 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2304 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2305 VDEV_AUX_CORRUPT_DATA); 2306 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2307 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2308 (u_longlong_t)vd->vdev_asize); 2309 return (SET_ERROR(ENXIO)); 2310 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) { 2311 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2312 "[error=%d]", error); 2313 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2314 VDEV_AUX_CORRUPT_DATA); 2315 return (error); 2316 } 2317 } 2318 2319 /* 2320 * If this is a leaf vdev, load its DTL. 2321 */ 2322 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 2323 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2324 VDEV_AUX_CORRUPT_DATA); 2325 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 2326 "[error=%d]", error); 2327 return (error); 2328 } 2329 2330 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 2331 if (obsolete_sm_object != 0) { 2332 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2333 ASSERT(vd->vdev_asize != 0); 2334 ASSERT(vd->vdev_obsolete_sm == NULL); 2335 2336 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 2337 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 2338 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2339 VDEV_AUX_CORRUPT_DATA); 2340 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 2341 "obsolete spacemap (obj %llu) [error=%d]", 2342 (u_longlong_t)obsolete_sm_object, error); 2343 return (error); 2344 } 2345 space_map_update(vd->vdev_obsolete_sm); 2346 } 2347 2348 return (0); 2349 } 2350 2351 /* 2352 * The special vdev case is used for hot spares and l2cache devices. Its 2353 * sole purpose it to set the vdev state for the associated vdev. To do this, 2354 * we make sure that we can open the underlying device, then try to read the 2355 * label, and make sure that the label is sane and that it hasn't been 2356 * repurposed to another pool. 2357 */ 2358 int 2359 vdev_validate_aux(vdev_t *vd) 2360 { 2361 nvlist_t *label; 2362 uint64_t guid, version; 2363 uint64_t state; 2364 2365 if (!vdev_readable(vd)) 2366 return (0); 2367 2368 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2369 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2370 VDEV_AUX_CORRUPT_DATA); 2371 return (-1); 2372 } 2373 2374 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2375 !SPA_VERSION_IS_SUPPORTED(version) || 2376 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2377 guid != vd->vdev_guid || 2378 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2379 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2380 VDEV_AUX_CORRUPT_DATA); 2381 nvlist_free(label); 2382 return (-1); 2383 } 2384 2385 /* 2386 * We don't actually check the pool state here. If it's in fact in 2387 * use by another pool, we update this fact on the fly when requested. 2388 */ 2389 nvlist_free(label); 2390 return (0); 2391 } 2392 2393 /* 2394 * Free the objects used to store this vdev's spacemaps, and the array 2395 * that points to them. 2396 */ 2397 void 2398 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 2399 { 2400 if (vd->vdev_ms_array == 0) 2401 return; 2402 2403 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2404 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 2405 size_t array_bytes = array_count * sizeof (uint64_t); 2406 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 2407 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 2408 array_bytes, smobj_array, 0)); 2409 2410 for (uint64_t i = 0; i < array_count; i++) { 2411 uint64_t smobj = smobj_array[i]; 2412 if (smobj == 0) 2413 continue; 2414 2415 space_map_free_obj(mos, smobj, tx); 2416 } 2417 2418 kmem_free(smobj_array, array_bytes); 2419 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 2420 vd->vdev_ms_array = 0; 2421 } 2422 2423 static void 2424 vdev_remove_empty(vdev_t *vd, uint64_t txg) 2425 { 2426 spa_t *spa = vd->vdev_spa; 2427 dmu_tx_t *tx; 2428 2429 ASSERT(vd == vd->vdev_top); 2430 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2431 2432 if (vd->vdev_ms != NULL) { 2433 metaslab_group_t *mg = vd->vdev_mg; 2434 2435 metaslab_group_histogram_verify(mg); 2436 metaslab_class_histogram_verify(mg->mg_class); 2437 2438 for (int m = 0; m < vd->vdev_ms_count; m++) { 2439 metaslab_t *msp = vd->vdev_ms[m]; 2440 2441 if (msp == NULL || msp->ms_sm == NULL) 2442 continue; 2443 2444 mutex_enter(&msp->ms_lock); 2445 /* 2446 * If the metaslab was not loaded when the vdev 2447 * was removed then the histogram accounting may 2448 * not be accurate. Update the histogram information 2449 * here so that we ensure that the metaslab group 2450 * and metaslab class are up-to-date. 2451 */ 2452 metaslab_group_histogram_remove(mg, msp); 2453 2454 VERIFY0(space_map_allocated(msp->ms_sm)); 2455 space_map_close(msp->ms_sm); 2456 msp->ms_sm = NULL; 2457 mutex_exit(&msp->ms_lock); 2458 } 2459 2460 metaslab_group_histogram_verify(mg); 2461 metaslab_class_histogram_verify(mg->mg_class); 2462 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2463 ASSERT0(mg->mg_histogram[i]); 2464 } 2465 2466 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2467 vdev_destroy_spacemaps(vd, tx); 2468 2469 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2470 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2471 vd->vdev_top_zap = 0; 2472 } 2473 dmu_tx_commit(tx); 2474 } 2475 2476 void 2477 vdev_sync_done(vdev_t *vd, uint64_t txg) 2478 { 2479 metaslab_t *msp; 2480 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2481 2482 ASSERT(vdev_is_concrete(vd)); 2483 2484 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2485 metaslab_sync_done(msp, txg); 2486 2487 if (reassess) 2488 metaslab_sync_reassess(vd->vdev_mg); 2489 } 2490 2491 void 2492 vdev_sync(vdev_t *vd, uint64_t txg) 2493 { 2494 spa_t *spa = vd->vdev_spa; 2495 vdev_t *lvd; 2496 metaslab_t *msp; 2497 dmu_tx_t *tx; 2498 2499 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 2500 dmu_tx_t *tx; 2501 2502 ASSERT(vd->vdev_removing || 2503 vd->vdev_ops == &vdev_indirect_ops); 2504 2505 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2506 vdev_indirect_sync_obsolete(vd, tx); 2507 dmu_tx_commit(tx); 2508 2509 /* 2510 * If the vdev is indirect, it can't have dirty 2511 * metaslabs or DTLs. 2512 */ 2513 if (vd->vdev_ops == &vdev_indirect_ops) { 2514 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 2515 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 2516 return; 2517 } 2518 } 2519 2520 ASSERT(vdev_is_concrete(vd)); 2521 2522 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 2523 !vd->vdev_removing) { 2524 ASSERT(vd == vd->vdev_top); 2525 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 2526 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2527 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2528 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2529 ASSERT(vd->vdev_ms_array != 0); 2530 vdev_config_dirty(vd); 2531 dmu_tx_commit(tx); 2532 } 2533 2534 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2535 metaslab_sync(msp, txg); 2536 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2537 } 2538 2539 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2540 vdev_dtl_sync(lvd, txg); 2541 2542 /* 2543 * Remove the metadata associated with this vdev once it's empty. 2544 * Note that this is typically used for log/cache device removal; 2545 * we don't empty toplevel vdevs when removing them. But if 2546 * a toplevel happens to be emptied, this is not harmful. 2547 */ 2548 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) { 2549 vdev_remove_empty(vd, txg); 2550 } 2551 2552 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2553 } 2554 2555 uint64_t 2556 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2557 { 2558 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2559 } 2560 2561 /* 2562 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2563 * not be opened, and no I/O is attempted. 2564 */ 2565 int 2566 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2567 { 2568 vdev_t *vd, *tvd; 2569 2570 spa_vdev_state_enter(spa, SCL_NONE); 2571 2572 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2573 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2574 2575 if (!vd->vdev_ops->vdev_op_leaf) 2576 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2577 2578 tvd = vd->vdev_top; 2579 2580 /* 2581 * We don't directly use the aux state here, but if we do a 2582 * vdev_reopen(), we need this value to be present to remember why we 2583 * were faulted. 2584 */ 2585 vd->vdev_label_aux = aux; 2586 2587 /* 2588 * Faulted state takes precedence over degraded. 2589 */ 2590 vd->vdev_delayed_close = B_FALSE; 2591 vd->vdev_faulted = 1ULL; 2592 vd->vdev_degraded = 0ULL; 2593 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2594 2595 /* 2596 * If this device has the only valid copy of the data, then 2597 * back off and simply mark the vdev as degraded instead. 2598 */ 2599 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2600 vd->vdev_degraded = 1ULL; 2601 vd->vdev_faulted = 0ULL; 2602 2603 /* 2604 * If we reopen the device and it's not dead, only then do we 2605 * mark it degraded. 2606 */ 2607 vdev_reopen(tvd); 2608 2609 if (vdev_readable(vd)) 2610 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2611 } 2612 2613 return (spa_vdev_state_exit(spa, vd, 0)); 2614 } 2615 2616 /* 2617 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2618 * user that something is wrong. The vdev continues to operate as normal as far 2619 * as I/O is concerned. 2620 */ 2621 int 2622 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2623 { 2624 vdev_t *vd; 2625 2626 spa_vdev_state_enter(spa, SCL_NONE); 2627 2628 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2629 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2630 2631 if (!vd->vdev_ops->vdev_op_leaf) 2632 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2633 2634 /* 2635 * If the vdev is already faulted, then don't do anything. 2636 */ 2637 if (vd->vdev_faulted || vd->vdev_degraded) 2638 return (spa_vdev_state_exit(spa, NULL, 0)); 2639 2640 vd->vdev_degraded = 1ULL; 2641 if (!vdev_is_dead(vd)) 2642 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2643 aux); 2644 2645 return (spa_vdev_state_exit(spa, vd, 0)); 2646 } 2647 2648 /* 2649 * Online the given vdev. 2650 * 2651 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2652 * spare device should be detached when the device finishes resilvering. 2653 * Second, the online should be treated like a 'test' online case, so no FMA 2654 * events are generated if the device fails to open. 2655 */ 2656 int 2657 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2658 { 2659 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2660 boolean_t wasoffline; 2661 vdev_state_t oldstate; 2662 2663 spa_vdev_state_enter(spa, SCL_NONE); 2664 2665 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2666 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2667 2668 if (!vd->vdev_ops->vdev_op_leaf) 2669 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2670 2671 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 2672 oldstate = vd->vdev_state; 2673 2674 tvd = vd->vdev_top; 2675 vd->vdev_offline = B_FALSE; 2676 vd->vdev_tmpoffline = B_FALSE; 2677 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2678 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2679 2680 /* XXX - L2ARC 1.0 does not support expansion */ 2681 if (!vd->vdev_aux) { 2682 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2683 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2684 } 2685 2686 vdev_reopen(tvd); 2687 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2688 2689 if (!vd->vdev_aux) { 2690 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2691 pvd->vdev_expanding = B_FALSE; 2692 } 2693 2694 if (newstate) 2695 *newstate = vd->vdev_state; 2696 if ((flags & ZFS_ONLINE_UNSPARE) && 2697 !vdev_is_dead(vd) && vd->vdev_parent && 2698 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2699 vd->vdev_parent->vdev_child[0] == vd) 2700 vd->vdev_unspare = B_TRUE; 2701 2702 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2703 2704 /* XXX - L2ARC 1.0 does not support expansion */ 2705 if (vd->vdev_aux) 2706 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2707 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2708 } 2709 2710 if (wasoffline || 2711 (oldstate < VDEV_STATE_DEGRADED && 2712 vd->vdev_state >= VDEV_STATE_DEGRADED)) 2713 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 2714 2715 return (spa_vdev_state_exit(spa, vd, 0)); 2716 } 2717 2718 static int 2719 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2720 { 2721 vdev_t *vd, *tvd; 2722 int error = 0; 2723 uint64_t generation; 2724 metaslab_group_t *mg; 2725 2726 top: 2727 spa_vdev_state_enter(spa, SCL_ALLOC); 2728 2729 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2730 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2731 2732 if (!vd->vdev_ops->vdev_op_leaf) 2733 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2734 2735 tvd = vd->vdev_top; 2736 mg = tvd->vdev_mg; 2737 generation = spa->spa_config_generation + 1; 2738 2739 /* 2740 * If the device isn't already offline, try to offline it. 2741 */ 2742 if (!vd->vdev_offline) { 2743 /* 2744 * If this device has the only valid copy of some data, 2745 * don't allow it to be offlined. Log devices are always 2746 * expendable. 2747 */ 2748 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2749 vdev_dtl_required(vd)) 2750 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2751 2752 /* 2753 * If the top-level is a slog and it has had allocations 2754 * then proceed. We check that the vdev's metaslab group 2755 * is not NULL since it's possible that we may have just 2756 * added this vdev but not yet initialized its metaslabs. 2757 */ 2758 if (tvd->vdev_islog && mg != NULL) { 2759 /* 2760 * Prevent any future allocations. 2761 */ 2762 metaslab_group_passivate(mg); 2763 (void) spa_vdev_state_exit(spa, vd, 0); 2764 2765 error = spa_reset_logs(spa); 2766 2767 spa_vdev_state_enter(spa, SCL_ALLOC); 2768 2769 /* 2770 * Check to see if the config has changed. 2771 */ 2772 if (error || generation != spa->spa_config_generation) { 2773 metaslab_group_activate(mg); 2774 if (error) 2775 return (spa_vdev_state_exit(spa, 2776 vd, error)); 2777 (void) spa_vdev_state_exit(spa, vd, 0); 2778 goto top; 2779 } 2780 ASSERT0(tvd->vdev_stat.vs_alloc); 2781 } 2782 2783 /* 2784 * Offline this device and reopen its top-level vdev. 2785 * If the top-level vdev is a log device then just offline 2786 * it. Otherwise, if this action results in the top-level 2787 * vdev becoming unusable, undo it and fail the request. 2788 */ 2789 vd->vdev_offline = B_TRUE; 2790 vdev_reopen(tvd); 2791 2792 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2793 vdev_is_dead(tvd)) { 2794 vd->vdev_offline = B_FALSE; 2795 vdev_reopen(tvd); 2796 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2797 } 2798 2799 /* 2800 * Add the device back into the metaslab rotor so that 2801 * once we online the device it's open for business. 2802 */ 2803 if (tvd->vdev_islog && mg != NULL) 2804 metaslab_group_activate(mg); 2805 } 2806 2807 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2808 2809 return (spa_vdev_state_exit(spa, vd, 0)); 2810 } 2811 2812 int 2813 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2814 { 2815 int error; 2816 2817 mutex_enter(&spa->spa_vdev_top_lock); 2818 error = vdev_offline_locked(spa, guid, flags); 2819 mutex_exit(&spa->spa_vdev_top_lock); 2820 2821 return (error); 2822 } 2823 2824 /* 2825 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2826 * vdev_offline(), we assume the spa config is locked. We also clear all 2827 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2828 */ 2829 void 2830 vdev_clear(spa_t *spa, vdev_t *vd) 2831 { 2832 vdev_t *rvd = spa->spa_root_vdev; 2833 2834 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2835 2836 if (vd == NULL) 2837 vd = rvd; 2838 2839 vd->vdev_stat.vs_read_errors = 0; 2840 vd->vdev_stat.vs_write_errors = 0; 2841 vd->vdev_stat.vs_checksum_errors = 0; 2842 2843 for (int c = 0; c < vd->vdev_children; c++) 2844 vdev_clear(spa, vd->vdev_child[c]); 2845 2846 /* 2847 * It makes no sense to "clear" an indirect vdev. 2848 */ 2849 if (!vdev_is_concrete(vd)) 2850 return; 2851 2852 /* 2853 * If we're in the FAULTED state or have experienced failed I/O, then 2854 * clear the persistent state and attempt to reopen the device. We 2855 * also mark the vdev config dirty, so that the new faulted state is 2856 * written out to disk. 2857 */ 2858 if (vd->vdev_faulted || vd->vdev_degraded || 2859 !vdev_readable(vd) || !vdev_writeable(vd)) { 2860 2861 /* 2862 * When reopening in reponse to a clear event, it may be due to 2863 * a fmadm repair request. In this case, if the device is 2864 * still broken, we want to still post the ereport again. 2865 */ 2866 vd->vdev_forcefault = B_TRUE; 2867 2868 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2869 vd->vdev_cant_read = B_FALSE; 2870 vd->vdev_cant_write = B_FALSE; 2871 2872 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2873 2874 vd->vdev_forcefault = B_FALSE; 2875 2876 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2877 vdev_state_dirty(vd->vdev_top); 2878 2879 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2880 spa_async_request(spa, SPA_ASYNC_RESILVER); 2881 2882 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 2883 } 2884 2885 /* 2886 * When clearing a FMA-diagnosed fault, we always want to 2887 * unspare the device, as we assume that the original spare was 2888 * done in response to the FMA fault. 2889 */ 2890 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2891 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2892 vd->vdev_parent->vdev_child[0] == vd) 2893 vd->vdev_unspare = B_TRUE; 2894 } 2895 2896 boolean_t 2897 vdev_is_dead(vdev_t *vd) 2898 { 2899 /* 2900 * Holes and missing devices are always considered "dead". 2901 * This simplifies the code since we don't have to check for 2902 * these types of devices in the various code paths. 2903 * Instead we rely on the fact that we skip over dead devices 2904 * before issuing I/O to them. 2905 */ 2906 return (vd->vdev_state < VDEV_STATE_DEGRADED || 2907 vd->vdev_ops == &vdev_hole_ops || 2908 vd->vdev_ops == &vdev_missing_ops); 2909 } 2910 2911 boolean_t 2912 vdev_readable(vdev_t *vd) 2913 { 2914 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2915 } 2916 2917 boolean_t 2918 vdev_writeable(vdev_t *vd) 2919 { 2920 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 2921 vdev_is_concrete(vd)); 2922 } 2923 2924 boolean_t 2925 vdev_allocatable(vdev_t *vd) 2926 { 2927 uint64_t state = vd->vdev_state; 2928 2929 /* 2930 * We currently allow allocations from vdevs which may be in the 2931 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2932 * fails to reopen then we'll catch it later when we're holding 2933 * the proper locks. Note that we have to get the vdev state 2934 * in a local variable because although it changes atomically, 2935 * we're asking two separate questions about it. 2936 */ 2937 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2938 !vd->vdev_cant_write && vdev_is_concrete(vd) && 2939 vd->vdev_mg->mg_initialized); 2940 } 2941 2942 boolean_t 2943 vdev_accessible(vdev_t *vd, zio_t *zio) 2944 { 2945 ASSERT(zio->io_vd == vd); 2946 2947 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2948 return (B_FALSE); 2949 2950 if (zio->io_type == ZIO_TYPE_READ) 2951 return (!vd->vdev_cant_read); 2952 2953 if (zio->io_type == ZIO_TYPE_WRITE) 2954 return (!vd->vdev_cant_write); 2955 2956 return (B_TRUE); 2957 } 2958 2959 /* 2960 * Get statistics for the given vdev. 2961 */ 2962 void 2963 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2964 { 2965 spa_t *spa = vd->vdev_spa; 2966 vdev_t *rvd = spa->spa_root_vdev; 2967 vdev_t *tvd = vd->vdev_top; 2968 2969 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2970 2971 mutex_enter(&vd->vdev_stat_lock); 2972 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2973 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2974 vs->vs_state = vd->vdev_state; 2975 vs->vs_rsize = vdev_get_min_asize(vd); 2976 if (vd->vdev_ops->vdev_op_leaf) 2977 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2978 /* 2979 * Report expandable space on top-level, non-auxillary devices only. 2980 * The expandable space is reported in terms of metaslab sized units 2981 * since that determines how much space the pool can expand. 2982 */ 2983 if (vd->vdev_aux == NULL && tvd != NULL) { 2984 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 2985 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 2986 } 2987 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 2988 vdev_is_concrete(vd)) { 2989 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2990 } 2991 2992 /* 2993 * If we're getting stats on the root vdev, aggregate the I/O counts 2994 * over all top-level vdevs (i.e. the direct children of the root). 2995 */ 2996 if (vd == rvd) { 2997 for (int c = 0; c < rvd->vdev_children; c++) { 2998 vdev_t *cvd = rvd->vdev_child[c]; 2999 vdev_stat_t *cvs = &cvd->vdev_stat; 3000 3001 for (int t = 0; t < ZIO_TYPES; t++) { 3002 vs->vs_ops[t] += cvs->vs_ops[t]; 3003 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3004 } 3005 cvs->vs_scan_removing = cvd->vdev_removing; 3006 } 3007 } 3008 mutex_exit(&vd->vdev_stat_lock); 3009 } 3010 3011 void 3012 vdev_clear_stats(vdev_t *vd) 3013 { 3014 mutex_enter(&vd->vdev_stat_lock); 3015 vd->vdev_stat.vs_space = 0; 3016 vd->vdev_stat.vs_dspace = 0; 3017 vd->vdev_stat.vs_alloc = 0; 3018 mutex_exit(&vd->vdev_stat_lock); 3019 } 3020 3021 void 3022 vdev_scan_stat_init(vdev_t *vd) 3023 { 3024 vdev_stat_t *vs = &vd->vdev_stat; 3025 3026 for (int c = 0; c < vd->vdev_children; c++) 3027 vdev_scan_stat_init(vd->vdev_child[c]); 3028 3029 mutex_enter(&vd->vdev_stat_lock); 3030 vs->vs_scan_processed = 0; 3031 mutex_exit(&vd->vdev_stat_lock); 3032 } 3033 3034 void 3035 vdev_stat_update(zio_t *zio, uint64_t psize) 3036 { 3037 spa_t *spa = zio->io_spa; 3038 vdev_t *rvd = spa->spa_root_vdev; 3039 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3040 vdev_t *pvd; 3041 uint64_t txg = zio->io_txg; 3042 vdev_stat_t *vs = &vd->vdev_stat; 3043 zio_type_t type = zio->io_type; 3044 int flags = zio->io_flags; 3045 3046 /* 3047 * If this i/o is a gang leader, it didn't do any actual work. 3048 */ 3049 if (zio->io_gang_tree) 3050 return; 3051 3052 if (zio->io_error == 0) { 3053 /* 3054 * If this is a root i/o, don't count it -- we've already 3055 * counted the top-level vdevs, and vdev_get_stats() will 3056 * aggregate them when asked. This reduces contention on 3057 * the root vdev_stat_lock and implicitly handles blocks 3058 * that compress away to holes, for which there is no i/o. 3059 * (Holes never create vdev children, so all the counters 3060 * remain zero, which is what we want.) 3061 * 3062 * Note: this only applies to successful i/o (io_error == 0) 3063 * because unlike i/o counts, errors are not additive. 3064 * When reading a ditto block, for example, failure of 3065 * one top-level vdev does not imply a root-level error. 3066 */ 3067 if (vd == rvd) 3068 return; 3069 3070 ASSERT(vd == zio->io_vd); 3071 3072 if (flags & ZIO_FLAG_IO_BYPASS) 3073 return; 3074 3075 mutex_enter(&vd->vdev_stat_lock); 3076 3077 if (flags & ZIO_FLAG_IO_REPAIR) { 3078 if (flags & ZIO_FLAG_SCAN_THREAD) { 3079 dsl_scan_phys_t *scn_phys = 3080 &spa->spa_dsl_pool->dp_scan->scn_phys; 3081 uint64_t *processed = &scn_phys->scn_processed; 3082 3083 /* XXX cleanup? */ 3084 if (vd->vdev_ops->vdev_op_leaf) 3085 atomic_add_64(processed, psize); 3086 vs->vs_scan_processed += psize; 3087 } 3088 3089 if (flags & ZIO_FLAG_SELF_HEAL) 3090 vs->vs_self_healed += psize; 3091 } 3092 3093 vs->vs_ops[type]++; 3094 vs->vs_bytes[type] += psize; 3095 3096 mutex_exit(&vd->vdev_stat_lock); 3097 return; 3098 } 3099 3100 if (flags & ZIO_FLAG_SPECULATIVE) 3101 return; 3102 3103 /* 3104 * If this is an I/O error that is going to be retried, then ignore the 3105 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3106 * hard errors, when in reality they can happen for any number of 3107 * innocuous reasons (bus resets, MPxIO link failure, etc). 3108 */ 3109 if (zio->io_error == EIO && 3110 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3111 return; 3112 3113 /* 3114 * Intent logs writes won't propagate their error to the root 3115 * I/O so don't mark these types of failures as pool-level 3116 * errors. 3117 */ 3118 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3119 return; 3120 3121 mutex_enter(&vd->vdev_stat_lock); 3122 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3123 if (zio->io_error == ECKSUM) 3124 vs->vs_checksum_errors++; 3125 else 3126 vs->vs_read_errors++; 3127 } 3128 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3129 vs->vs_write_errors++; 3130 mutex_exit(&vd->vdev_stat_lock); 3131 3132 if (spa->spa_load_state == SPA_LOAD_NONE && 3133 type == ZIO_TYPE_WRITE && txg != 0 && 3134 (!(flags & ZIO_FLAG_IO_REPAIR) || 3135 (flags & ZIO_FLAG_SCAN_THREAD) || 3136 spa->spa_claiming)) { 3137 /* 3138 * This is either a normal write (not a repair), or it's 3139 * a repair induced by the scrub thread, or it's a repair 3140 * made by zil_claim() during spa_load() in the first txg. 3141 * In the normal case, we commit the DTL change in the same 3142 * txg as the block was born. In the scrub-induced repair 3143 * case, we know that scrubs run in first-pass syncing context, 3144 * so we commit the DTL change in spa_syncing_txg(spa). 3145 * In the zil_claim() case, we commit in spa_first_txg(spa). 3146 * 3147 * We currently do not make DTL entries for failed spontaneous 3148 * self-healing writes triggered by normal (non-scrubbing) 3149 * reads, because we have no transactional context in which to 3150 * do so -- and it's not clear that it'd be desirable anyway. 3151 */ 3152 if (vd->vdev_ops->vdev_op_leaf) { 3153 uint64_t commit_txg = txg; 3154 if (flags & ZIO_FLAG_SCAN_THREAD) { 3155 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3156 ASSERT(spa_sync_pass(spa) == 1); 3157 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3158 commit_txg = spa_syncing_txg(spa); 3159 } else if (spa->spa_claiming) { 3160 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3161 commit_txg = spa_first_txg(spa); 3162 } 3163 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3164 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3165 return; 3166 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3167 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3168 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3169 } 3170 if (vd != rvd) 3171 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3172 } 3173 } 3174 3175 /* 3176 * Update the in-core space usage stats for this vdev, its metaslab class, 3177 * and the root vdev. 3178 */ 3179 void 3180 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3181 int64_t space_delta) 3182 { 3183 int64_t dspace_delta = space_delta; 3184 spa_t *spa = vd->vdev_spa; 3185 vdev_t *rvd = spa->spa_root_vdev; 3186 metaslab_group_t *mg = vd->vdev_mg; 3187 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 3188 3189 ASSERT(vd == vd->vdev_top); 3190 3191 /* 3192 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3193 * factor. We must calculate this here and not at the root vdev 3194 * because the root vdev's psize-to-asize is simply the max of its 3195 * childrens', thus not accurate enough for us. 3196 */ 3197 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 3198 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3199 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 3200 vd->vdev_deflate_ratio; 3201 3202 mutex_enter(&vd->vdev_stat_lock); 3203 vd->vdev_stat.vs_alloc += alloc_delta; 3204 vd->vdev_stat.vs_space += space_delta; 3205 vd->vdev_stat.vs_dspace += dspace_delta; 3206 mutex_exit(&vd->vdev_stat_lock); 3207 3208 if (mc == spa_normal_class(spa)) { 3209 mutex_enter(&rvd->vdev_stat_lock); 3210 rvd->vdev_stat.vs_alloc += alloc_delta; 3211 rvd->vdev_stat.vs_space += space_delta; 3212 rvd->vdev_stat.vs_dspace += dspace_delta; 3213 mutex_exit(&rvd->vdev_stat_lock); 3214 } 3215 3216 if (mc != NULL) { 3217 ASSERT(rvd == vd->vdev_parent); 3218 ASSERT(vd->vdev_ms_count != 0); 3219 3220 metaslab_class_space_update(mc, 3221 alloc_delta, defer_delta, space_delta, dspace_delta); 3222 } 3223 } 3224 3225 /* 3226 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3227 * so that it will be written out next time the vdev configuration is synced. 3228 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3229 */ 3230 void 3231 vdev_config_dirty(vdev_t *vd) 3232 { 3233 spa_t *spa = vd->vdev_spa; 3234 vdev_t *rvd = spa->spa_root_vdev; 3235 int c; 3236 3237 ASSERT(spa_writeable(spa)); 3238 3239 /* 3240 * If this is an aux vdev (as with l2cache and spare devices), then we 3241 * update the vdev config manually and set the sync flag. 3242 */ 3243 if (vd->vdev_aux != NULL) { 3244 spa_aux_vdev_t *sav = vd->vdev_aux; 3245 nvlist_t **aux; 3246 uint_t naux; 3247 3248 for (c = 0; c < sav->sav_count; c++) { 3249 if (sav->sav_vdevs[c] == vd) 3250 break; 3251 } 3252 3253 if (c == sav->sav_count) { 3254 /* 3255 * We're being removed. There's nothing more to do. 3256 */ 3257 ASSERT(sav->sav_sync == B_TRUE); 3258 return; 3259 } 3260 3261 sav->sav_sync = B_TRUE; 3262 3263 if (nvlist_lookup_nvlist_array(sav->sav_config, 3264 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3265 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3266 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3267 } 3268 3269 ASSERT(c < naux); 3270 3271 /* 3272 * Setting the nvlist in the middle if the array is a little 3273 * sketchy, but it will work. 3274 */ 3275 nvlist_free(aux[c]); 3276 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3277 3278 return; 3279 } 3280 3281 /* 3282 * The dirty list is protected by the SCL_CONFIG lock. The caller 3283 * must either hold SCL_CONFIG as writer, or must be the sync thread 3284 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3285 * so this is sufficient to ensure mutual exclusion. 3286 */ 3287 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3288 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3289 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3290 3291 if (vd == rvd) { 3292 for (c = 0; c < rvd->vdev_children; c++) 3293 vdev_config_dirty(rvd->vdev_child[c]); 3294 } else { 3295 ASSERT(vd == vd->vdev_top); 3296 3297 if (!list_link_active(&vd->vdev_config_dirty_node) && 3298 vdev_is_concrete(vd)) { 3299 list_insert_head(&spa->spa_config_dirty_list, vd); 3300 } 3301 } 3302 } 3303 3304 void 3305 vdev_config_clean(vdev_t *vd) 3306 { 3307 spa_t *spa = vd->vdev_spa; 3308 3309 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3310 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3311 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3312 3313 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3314 list_remove(&spa->spa_config_dirty_list, vd); 3315 } 3316 3317 /* 3318 * Mark a top-level vdev's state as dirty, so that the next pass of 3319 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3320 * the state changes from larger config changes because they require 3321 * much less locking, and are often needed for administrative actions. 3322 */ 3323 void 3324 vdev_state_dirty(vdev_t *vd) 3325 { 3326 spa_t *spa = vd->vdev_spa; 3327 3328 ASSERT(spa_writeable(spa)); 3329 ASSERT(vd == vd->vdev_top); 3330 3331 /* 3332 * The state list is protected by the SCL_STATE lock. The caller 3333 * must either hold SCL_STATE as writer, or must be the sync thread 3334 * (which holds SCL_STATE as reader). There's only one sync thread, 3335 * so this is sufficient to ensure mutual exclusion. 3336 */ 3337 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3338 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3339 spa_config_held(spa, SCL_STATE, RW_READER))); 3340 3341 if (!list_link_active(&vd->vdev_state_dirty_node) && 3342 vdev_is_concrete(vd)) 3343 list_insert_head(&spa->spa_state_dirty_list, vd); 3344 } 3345 3346 void 3347 vdev_state_clean(vdev_t *vd) 3348 { 3349 spa_t *spa = vd->vdev_spa; 3350 3351 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3352 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3353 spa_config_held(spa, SCL_STATE, RW_READER))); 3354 3355 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3356 list_remove(&spa->spa_state_dirty_list, vd); 3357 } 3358 3359 /* 3360 * Propagate vdev state up from children to parent. 3361 */ 3362 void 3363 vdev_propagate_state(vdev_t *vd) 3364 { 3365 spa_t *spa = vd->vdev_spa; 3366 vdev_t *rvd = spa->spa_root_vdev; 3367 int degraded = 0, faulted = 0; 3368 int corrupted = 0; 3369 vdev_t *child; 3370 3371 if (vd->vdev_children > 0) { 3372 for (int c = 0; c < vd->vdev_children; c++) { 3373 child = vd->vdev_child[c]; 3374 3375 /* 3376 * Don't factor holes or indirect vdevs into the 3377 * decision. 3378 */ 3379 if (!vdev_is_concrete(child)) 3380 continue; 3381 3382 if (!vdev_readable(child) || 3383 (!vdev_writeable(child) && spa_writeable(spa))) { 3384 /* 3385 * Root special: if there is a top-level log 3386 * device, treat the root vdev as if it were 3387 * degraded. 3388 */ 3389 if (child->vdev_islog && vd == rvd) 3390 degraded++; 3391 else 3392 faulted++; 3393 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3394 degraded++; 3395 } 3396 3397 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3398 corrupted++; 3399 } 3400 3401 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3402 3403 /* 3404 * Root special: if there is a top-level vdev that cannot be 3405 * opened due to corrupted metadata, then propagate the root 3406 * vdev's aux state as 'corrupt' rather than 'insufficient 3407 * replicas'. 3408 */ 3409 if (corrupted && vd == rvd && 3410 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3411 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3412 VDEV_AUX_CORRUPT_DATA); 3413 } 3414 3415 if (vd->vdev_parent) 3416 vdev_propagate_state(vd->vdev_parent); 3417 } 3418 3419 /* 3420 * Set a vdev's state. If this is during an open, we don't update the parent 3421 * state, because we're in the process of opening children depth-first. 3422 * Otherwise, we propagate the change to the parent. 3423 * 3424 * If this routine places a device in a faulted state, an appropriate ereport is 3425 * generated. 3426 */ 3427 void 3428 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3429 { 3430 uint64_t save_state; 3431 spa_t *spa = vd->vdev_spa; 3432 3433 if (state == vd->vdev_state) { 3434 vd->vdev_stat.vs_aux = aux; 3435 return; 3436 } 3437 3438 save_state = vd->vdev_state; 3439 3440 vd->vdev_state = state; 3441 vd->vdev_stat.vs_aux = aux; 3442 3443 /* 3444 * If we are setting the vdev state to anything but an open state, then 3445 * always close the underlying device unless the device has requested 3446 * a delayed close (i.e. we're about to remove or fault the device). 3447 * Otherwise, we keep accessible but invalid devices open forever. 3448 * We don't call vdev_close() itself, because that implies some extra 3449 * checks (offline, etc) that we don't want here. This is limited to 3450 * leaf devices, because otherwise closing the device will affect other 3451 * children. 3452 */ 3453 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3454 vd->vdev_ops->vdev_op_leaf) 3455 vd->vdev_ops->vdev_op_close(vd); 3456 3457 /* 3458 * If we have brought this vdev back into service, we need 3459 * to notify fmd so that it can gracefully repair any outstanding 3460 * cases due to a missing device. We do this in all cases, even those 3461 * that probably don't correlate to a repaired fault. This is sure to 3462 * catch all cases, and we let the zfs-retire agent sort it out. If 3463 * this is a transient state it's OK, as the retire agent will 3464 * double-check the state of the vdev before repairing it. 3465 */ 3466 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3467 vd->vdev_prevstate != state) 3468 zfs_post_state_change(spa, vd); 3469 3470 if (vd->vdev_removed && 3471 state == VDEV_STATE_CANT_OPEN && 3472 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3473 /* 3474 * If the previous state is set to VDEV_STATE_REMOVED, then this 3475 * device was previously marked removed and someone attempted to 3476 * reopen it. If this failed due to a nonexistent device, then 3477 * keep the device in the REMOVED state. We also let this be if 3478 * it is one of our special test online cases, which is only 3479 * attempting to online the device and shouldn't generate an FMA 3480 * fault. 3481 */ 3482 vd->vdev_state = VDEV_STATE_REMOVED; 3483 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3484 } else if (state == VDEV_STATE_REMOVED) { 3485 vd->vdev_removed = B_TRUE; 3486 } else if (state == VDEV_STATE_CANT_OPEN) { 3487 /* 3488 * If we fail to open a vdev during an import or recovery, we 3489 * mark it as "not available", which signifies that it was 3490 * never there to begin with. Failure to open such a device 3491 * is not considered an error. 3492 */ 3493 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3494 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3495 vd->vdev_ops->vdev_op_leaf) 3496 vd->vdev_not_present = 1; 3497 3498 /* 3499 * Post the appropriate ereport. If the 'prevstate' field is 3500 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3501 * that this is part of a vdev_reopen(). In this case, we don't 3502 * want to post the ereport if the device was already in the 3503 * CANT_OPEN state beforehand. 3504 * 3505 * If the 'checkremove' flag is set, then this is an attempt to 3506 * online the device in response to an insertion event. If we 3507 * hit this case, then we have detected an insertion event for a 3508 * faulted or offline device that wasn't in the removed state. 3509 * In this scenario, we don't post an ereport because we are 3510 * about to replace the device, or attempt an online with 3511 * vdev_forcefault, which will generate the fault for us. 3512 */ 3513 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3514 !vd->vdev_not_present && !vd->vdev_checkremove && 3515 vd != spa->spa_root_vdev) { 3516 const char *class; 3517 3518 switch (aux) { 3519 case VDEV_AUX_OPEN_FAILED: 3520 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3521 break; 3522 case VDEV_AUX_CORRUPT_DATA: 3523 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3524 break; 3525 case VDEV_AUX_NO_REPLICAS: 3526 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3527 break; 3528 case VDEV_AUX_BAD_GUID_SUM: 3529 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3530 break; 3531 case VDEV_AUX_TOO_SMALL: 3532 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3533 break; 3534 case VDEV_AUX_BAD_LABEL: 3535 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3536 break; 3537 default: 3538 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3539 } 3540 3541 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3542 } 3543 3544 /* Erase any notion of persistent removed state */ 3545 vd->vdev_removed = B_FALSE; 3546 } else { 3547 vd->vdev_removed = B_FALSE; 3548 } 3549 3550 if (!isopen && vd->vdev_parent) 3551 vdev_propagate_state(vd->vdev_parent); 3552 } 3553 3554 /* 3555 * Check the vdev configuration to ensure that it's capable of supporting 3556 * a root pool. We do not support partial configuration. 3557 * In addition, only a single top-level vdev is allowed. 3558 */ 3559 boolean_t 3560 vdev_is_bootable(vdev_t *vd) 3561 { 3562 if (!vd->vdev_ops->vdev_op_leaf) { 3563 char *vdev_type = vd->vdev_ops->vdev_op_type; 3564 3565 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3566 vd->vdev_children > 1) { 3567 return (B_FALSE); 3568 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 3569 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 3570 return (B_FALSE); 3571 } 3572 } 3573 3574 for (int c = 0; c < vd->vdev_children; c++) { 3575 if (!vdev_is_bootable(vd->vdev_child[c])) 3576 return (B_FALSE); 3577 } 3578 return (B_TRUE); 3579 } 3580 3581 boolean_t 3582 vdev_is_concrete(vdev_t *vd) 3583 { 3584 vdev_ops_t *ops = vd->vdev_ops; 3585 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 3586 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 3587 return (B_FALSE); 3588 } else { 3589 return (B_TRUE); 3590 } 3591 } 3592 3593 /* 3594 * Load the state from the original vdev tree (ovd) which 3595 * we've retrieved from the MOS config object. If the original 3596 * vdev was offline or faulted then we transfer that state to the 3597 * device in the current vdev tree (nvd). 3598 */ 3599 void 3600 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3601 { 3602 spa_t *spa = nvd->vdev_spa; 3603 3604 ASSERT(nvd->vdev_top->vdev_islog); 3605 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3606 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3607 3608 for (int c = 0; c < nvd->vdev_children; c++) 3609 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3610 3611 if (nvd->vdev_ops->vdev_op_leaf) { 3612 /* 3613 * Restore the persistent vdev state 3614 */ 3615 nvd->vdev_offline = ovd->vdev_offline; 3616 nvd->vdev_faulted = ovd->vdev_faulted; 3617 nvd->vdev_degraded = ovd->vdev_degraded; 3618 nvd->vdev_removed = ovd->vdev_removed; 3619 } 3620 } 3621 3622 /* 3623 * Determine if a log device has valid content. If the vdev was 3624 * removed or faulted in the MOS config then we know that 3625 * the content on the log device has already been written to the pool. 3626 */ 3627 boolean_t 3628 vdev_log_state_valid(vdev_t *vd) 3629 { 3630 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3631 !vd->vdev_removed) 3632 return (B_TRUE); 3633 3634 for (int c = 0; c < vd->vdev_children; c++) 3635 if (vdev_log_state_valid(vd->vdev_child[c])) 3636 return (B_TRUE); 3637 3638 return (B_FALSE); 3639 } 3640 3641 /* 3642 * Expand a vdev if possible. 3643 */ 3644 void 3645 vdev_expand(vdev_t *vd, uint64_t txg) 3646 { 3647 ASSERT(vd->vdev_top == vd); 3648 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3649 3650 vdev_set_deflate_ratio(vd); 3651 3652 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 3653 vdev_is_concrete(vd)) { 3654 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3655 vdev_config_dirty(vd); 3656 } 3657 } 3658 3659 /* 3660 * Split a vdev. 3661 */ 3662 void 3663 vdev_split(vdev_t *vd) 3664 { 3665 vdev_t *cvd, *pvd = vd->vdev_parent; 3666 3667 vdev_remove_child(pvd, vd); 3668 vdev_compact_children(pvd); 3669 3670 cvd = pvd->vdev_child[0]; 3671 if (pvd->vdev_children == 1) { 3672 vdev_remove_parent(cvd); 3673 cvd->vdev_splitting = B_TRUE; 3674 } 3675 vdev_propagate_state(cvd); 3676 } 3677 3678 void 3679 vdev_deadman(vdev_t *vd) 3680 { 3681 for (int c = 0; c < vd->vdev_children; c++) { 3682 vdev_t *cvd = vd->vdev_child[c]; 3683 3684 vdev_deadman(cvd); 3685 } 3686 3687 if (vd->vdev_ops->vdev_op_leaf) { 3688 vdev_queue_t *vq = &vd->vdev_queue; 3689 3690 mutex_enter(&vq->vq_lock); 3691 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3692 spa_t *spa = vd->vdev_spa; 3693 zio_t *fio; 3694 uint64_t delta; 3695 3696 /* 3697 * Look at the head of all the pending queues, 3698 * if any I/O has been outstanding for longer than 3699 * the spa_deadman_synctime we panic the system. 3700 */ 3701 fio = avl_first(&vq->vq_active_tree); 3702 delta = gethrtime() - fio->io_timestamp; 3703 if (delta > spa_deadman_synctime(spa)) { 3704 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 3705 "%lluns, delta %lluns, last io %lluns", 3706 fio->io_timestamp, (u_longlong_t)delta, 3707 vq->vq_io_complete_ts); 3708 fm_panic("I/O to pool '%s' appears to be " 3709 "hung.", spa_name(spa)); 3710 } 3711 } 3712 mutex_exit(&vq->vq_lock); 3713 } 3714 } 3715