xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 85723e5eec42f46dbfdb4c09b9e1ed66501d1ccf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 
53 /*
54  * Virtual device management.
55  */
56 
57 static vdev_ops_t *vdev_ops_table[] = {
58 	&vdev_root_ops,
59 	&vdev_raidz_ops,
60 	&vdev_mirror_ops,
61 	&vdev_replacing_ops,
62 	&vdev_spare_ops,
63 	&vdev_disk_ops,
64 	&vdev_file_ops,
65 	&vdev_missing_ops,
66 	&vdev_hole_ops,
67 	&vdev_indirect_ops,
68 	NULL
69 };
70 
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
73 
74 /*
75  * When a vdev is added, it will be divided into approximately (but no
76  * more than) this number of metaslabs.
77  */
78 int metaslabs_per_vdev = 200;
79 
80 /*PRINTFLIKE2*/
81 void
82 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
83 {
84 	va_list adx;
85 	char buf[256];
86 
87 	va_start(adx, fmt);
88 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
89 	va_end(adx);
90 
91 	if (vd->vdev_path != NULL) {
92 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
93 		    vd->vdev_path, buf);
94 	} else {
95 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
96 		    vd->vdev_ops->vdev_op_type,
97 		    (u_longlong_t)vd->vdev_id,
98 		    (u_longlong_t)vd->vdev_guid, buf);
99 	}
100 }
101 
102 /*
103  * Given a vdev type, return the appropriate ops vector.
104  */
105 static vdev_ops_t *
106 vdev_getops(const char *type)
107 {
108 	vdev_ops_t *ops, **opspp;
109 
110 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
111 		if (strcmp(ops->vdev_op_type, type) == 0)
112 			break;
113 
114 	return (ops);
115 }
116 
117 /*
118  * Default asize function: return the MAX of psize with the asize of
119  * all children.  This is what's used by anything other than RAID-Z.
120  */
121 uint64_t
122 vdev_default_asize(vdev_t *vd, uint64_t psize)
123 {
124 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
125 	uint64_t csize;
126 
127 	for (int c = 0; c < vd->vdev_children; c++) {
128 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
129 		asize = MAX(asize, csize);
130 	}
131 
132 	return (asize);
133 }
134 
135 /*
136  * Get the minimum allocatable size. We define the allocatable size as
137  * the vdev's asize rounded to the nearest metaslab. This allows us to
138  * replace or attach devices which don't have the same physical size but
139  * can still satisfy the same number of allocations.
140  */
141 uint64_t
142 vdev_get_min_asize(vdev_t *vd)
143 {
144 	vdev_t *pvd = vd->vdev_parent;
145 
146 	/*
147 	 * If our parent is NULL (inactive spare or cache) or is the root,
148 	 * just return our own asize.
149 	 */
150 	if (pvd == NULL)
151 		return (vd->vdev_asize);
152 
153 	/*
154 	 * The top-level vdev just returns the allocatable size rounded
155 	 * to the nearest metaslab.
156 	 */
157 	if (vd == vd->vdev_top)
158 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
159 
160 	/*
161 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
162 	 * so each child must provide at least 1/Nth of its asize.
163 	 */
164 	if (pvd->vdev_ops == &vdev_raidz_ops)
165 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
166 		    pvd->vdev_children);
167 
168 	return (pvd->vdev_min_asize);
169 }
170 
171 void
172 vdev_set_min_asize(vdev_t *vd)
173 {
174 	vd->vdev_min_asize = vdev_get_min_asize(vd);
175 
176 	for (int c = 0; c < vd->vdev_children; c++)
177 		vdev_set_min_asize(vd->vdev_child[c]);
178 }
179 
180 vdev_t *
181 vdev_lookup_top(spa_t *spa, uint64_t vdev)
182 {
183 	vdev_t *rvd = spa->spa_root_vdev;
184 
185 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
186 
187 	if (vdev < rvd->vdev_children) {
188 		ASSERT(rvd->vdev_child[vdev] != NULL);
189 		return (rvd->vdev_child[vdev]);
190 	}
191 
192 	return (NULL);
193 }
194 
195 vdev_t *
196 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
197 {
198 	vdev_t *mvd;
199 
200 	if (vd->vdev_guid == guid)
201 		return (vd);
202 
203 	for (int c = 0; c < vd->vdev_children; c++)
204 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
205 		    NULL)
206 			return (mvd);
207 
208 	return (NULL);
209 }
210 
211 static int
212 vdev_count_leaves_impl(vdev_t *vd)
213 {
214 	int n = 0;
215 
216 	if (vd->vdev_ops->vdev_op_leaf)
217 		return (1);
218 
219 	for (int c = 0; c < vd->vdev_children; c++)
220 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
221 
222 	return (n);
223 }
224 
225 int
226 vdev_count_leaves(spa_t *spa)
227 {
228 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
229 }
230 
231 void
232 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
233 {
234 	size_t oldsize, newsize;
235 	uint64_t id = cvd->vdev_id;
236 	vdev_t **newchild;
237 	spa_t *spa = cvd->vdev_spa;
238 
239 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
240 	ASSERT(cvd->vdev_parent == NULL);
241 
242 	cvd->vdev_parent = pvd;
243 
244 	if (pvd == NULL)
245 		return;
246 
247 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
248 
249 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
250 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
251 	newsize = pvd->vdev_children * sizeof (vdev_t *);
252 
253 	newchild = kmem_zalloc(newsize, KM_SLEEP);
254 	if (pvd->vdev_child != NULL) {
255 		bcopy(pvd->vdev_child, newchild, oldsize);
256 		kmem_free(pvd->vdev_child, oldsize);
257 	}
258 
259 	pvd->vdev_child = newchild;
260 	pvd->vdev_child[id] = cvd;
261 
262 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
263 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
264 
265 	/*
266 	 * Walk up all ancestors to update guid sum.
267 	 */
268 	for (; pvd != NULL; pvd = pvd->vdev_parent)
269 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
270 }
271 
272 void
273 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
274 {
275 	int c;
276 	uint_t id = cvd->vdev_id;
277 
278 	ASSERT(cvd->vdev_parent == pvd);
279 
280 	if (pvd == NULL)
281 		return;
282 
283 	ASSERT(id < pvd->vdev_children);
284 	ASSERT(pvd->vdev_child[id] == cvd);
285 
286 	pvd->vdev_child[id] = NULL;
287 	cvd->vdev_parent = NULL;
288 
289 	for (c = 0; c < pvd->vdev_children; c++)
290 		if (pvd->vdev_child[c])
291 			break;
292 
293 	if (c == pvd->vdev_children) {
294 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
295 		pvd->vdev_child = NULL;
296 		pvd->vdev_children = 0;
297 	}
298 
299 	/*
300 	 * Walk up all ancestors to update guid sum.
301 	 */
302 	for (; pvd != NULL; pvd = pvd->vdev_parent)
303 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
304 }
305 
306 /*
307  * Remove any holes in the child array.
308  */
309 void
310 vdev_compact_children(vdev_t *pvd)
311 {
312 	vdev_t **newchild, *cvd;
313 	int oldc = pvd->vdev_children;
314 	int newc;
315 
316 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
317 
318 	for (int c = newc = 0; c < oldc; c++)
319 		if (pvd->vdev_child[c])
320 			newc++;
321 
322 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
323 
324 	for (int c = newc = 0; c < oldc; c++) {
325 		if ((cvd = pvd->vdev_child[c]) != NULL) {
326 			newchild[newc] = cvd;
327 			cvd->vdev_id = newc++;
328 		}
329 	}
330 
331 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
332 	pvd->vdev_child = newchild;
333 	pvd->vdev_children = newc;
334 }
335 
336 /*
337  * Allocate and minimally initialize a vdev_t.
338  */
339 vdev_t *
340 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
341 {
342 	vdev_t *vd;
343 	vdev_indirect_config_t *vic;
344 
345 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
346 	vic = &vd->vdev_indirect_config;
347 
348 	if (spa->spa_root_vdev == NULL) {
349 		ASSERT(ops == &vdev_root_ops);
350 		spa->spa_root_vdev = vd;
351 		spa->spa_load_guid = spa_generate_guid(NULL);
352 	}
353 
354 	if (guid == 0 && ops != &vdev_hole_ops) {
355 		if (spa->spa_root_vdev == vd) {
356 			/*
357 			 * The root vdev's guid will also be the pool guid,
358 			 * which must be unique among all pools.
359 			 */
360 			guid = spa_generate_guid(NULL);
361 		} else {
362 			/*
363 			 * Any other vdev's guid must be unique within the pool.
364 			 */
365 			guid = spa_generate_guid(spa);
366 		}
367 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
368 	}
369 
370 	vd->vdev_spa = spa;
371 	vd->vdev_id = id;
372 	vd->vdev_guid = guid;
373 	vd->vdev_guid_sum = guid;
374 	vd->vdev_ops = ops;
375 	vd->vdev_state = VDEV_STATE_CLOSED;
376 	vd->vdev_ishole = (ops == &vdev_hole_ops);
377 	vic->vic_prev_indirect_vdev = UINT64_MAX;
378 
379 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
380 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
381 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
382 
383 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
384 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
385 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
386 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
387 	for (int t = 0; t < DTL_TYPES; t++) {
388 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
389 	}
390 	txg_list_create(&vd->vdev_ms_list, spa,
391 	    offsetof(struct metaslab, ms_txg_node));
392 	txg_list_create(&vd->vdev_dtl_list, spa,
393 	    offsetof(struct vdev, vdev_dtl_node));
394 	vd->vdev_stat.vs_timestamp = gethrtime();
395 	vdev_queue_init(vd);
396 	vdev_cache_init(vd);
397 
398 	return (vd);
399 }
400 
401 /*
402  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
403  * creating a new vdev or loading an existing one - the behavior is slightly
404  * different for each case.
405  */
406 int
407 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
408     int alloctype)
409 {
410 	vdev_ops_t *ops;
411 	char *type;
412 	uint64_t guid = 0, islog, nparity;
413 	vdev_t *vd;
414 	vdev_indirect_config_t *vic;
415 
416 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
417 
418 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
419 		return (SET_ERROR(EINVAL));
420 
421 	if ((ops = vdev_getops(type)) == NULL)
422 		return (SET_ERROR(EINVAL));
423 
424 	/*
425 	 * If this is a load, get the vdev guid from the nvlist.
426 	 * Otherwise, vdev_alloc_common() will generate one for us.
427 	 */
428 	if (alloctype == VDEV_ALLOC_LOAD) {
429 		uint64_t label_id;
430 
431 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
432 		    label_id != id)
433 			return (SET_ERROR(EINVAL));
434 
435 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
436 			return (SET_ERROR(EINVAL));
437 	} else if (alloctype == VDEV_ALLOC_SPARE) {
438 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
439 			return (SET_ERROR(EINVAL));
440 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
441 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
442 			return (SET_ERROR(EINVAL));
443 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
444 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
445 			return (SET_ERROR(EINVAL));
446 	}
447 
448 	/*
449 	 * The first allocated vdev must be of type 'root'.
450 	 */
451 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
452 		return (SET_ERROR(EINVAL));
453 
454 	/*
455 	 * Determine whether we're a log vdev.
456 	 */
457 	islog = 0;
458 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
459 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
460 		return (SET_ERROR(ENOTSUP));
461 
462 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
463 		return (SET_ERROR(ENOTSUP));
464 
465 	/*
466 	 * Set the nparity property for RAID-Z vdevs.
467 	 */
468 	nparity = -1ULL;
469 	if (ops == &vdev_raidz_ops) {
470 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
471 		    &nparity) == 0) {
472 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
473 				return (SET_ERROR(EINVAL));
474 			/*
475 			 * Previous versions could only support 1 or 2 parity
476 			 * device.
477 			 */
478 			if (nparity > 1 &&
479 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
480 				return (SET_ERROR(ENOTSUP));
481 			if (nparity > 2 &&
482 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
483 				return (SET_ERROR(ENOTSUP));
484 		} else {
485 			/*
486 			 * We require the parity to be specified for SPAs that
487 			 * support multiple parity levels.
488 			 */
489 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
490 				return (SET_ERROR(EINVAL));
491 			/*
492 			 * Otherwise, we default to 1 parity device for RAID-Z.
493 			 */
494 			nparity = 1;
495 		}
496 	} else {
497 		nparity = 0;
498 	}
499 	ASSERT(nparity != -1ULL);
500 
501 	vd = vdev_alloc_common(spa, id, guid, ops);
502 	vic = &vd->vdev_indirect_config;
503 
504 	vd->vdev_islog = islog;
505 	vd->vdev_nparity = nparity;
506 
507 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
508 		vd->vdev_path = spa_strdup(vd->vdev_path);
509 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
510 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
511 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
512 	    &vd->vdev_physpath) == 0)
513 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
514 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
515 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
516 
517 	/*
518 	 * Set the whole_disk property.  If it's not specified, leave the value
519 	 * as -1.
520 	 */
521 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
522 	    &vd->vdev_wholedisk) != 0)
523 		vd->vdev_wholedisk = -1ULL;
524 
525 	ASSERT0(vic->vic_mapping_object);
526 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
527 	    &vic->vic_mapping_object);
528 	ASSERT0(vic->vic_births_object);
529 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
530 	    &vic->vic_births_object);
531 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
532 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
533 	    &vic->vic_prev_indirect_vdev);
534 
535 	/*
536 	 * Look for the 'not present' flag.  This will only be set if the device
537 	 * was not present at the time of import.
538 	 */
539 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
540 	    &vd->vdev_not_present);
541 
542 	/*
543 	 * Get the alignment requirement.
544 	 */
545 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
546 
547 	/*
548 	 * Retrieve the vdev creation time.
549 	 */
550 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
551 	    &vd->vdev_crtxg);
552 
553 	/*
554 	 * If we're a top-level vdev, try to load the allocation parameters.
555 	 */
556 	if (parent && !parent->vdev_parent &&
557 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
558 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
559 		    &vd->vdev_ms_array);
560 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
561 		    &vd->vdev_ms_shift);
562 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
563 		    &vd->vdev_asize);
564 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
565 		    &vd->vdev_removing);
566 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
567 		    &vd->vdev_top_zap);
568 	} else {
569 		ASSERT0(vd->vdev_top_zap);
570 	}
571 
572 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
573 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
574 		    alloctype == VDEV_ALLOC_ADD ||
575 		    alloctype == VDEV_ALLOC_SPLIT ||
576 		    alloctype == VDEV_ALLOC_ROOTPOOL);
577 		vd->vdev_mg = metaslab_group_create(islog ?
578 		    spa_log_class(spa) : spa_normal_class(spa), vd);
579 	}
580 
581 	if (vd->vdev_ops->vdev_op_leaf &&
582 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
583 		(void) nvlist_lookup_uint64(nv,
584 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
585 	} else {
586 		ASSERT0(vd->vdev_leaf_zap);
587 	}
588 
589 	/*
590 	 * If we're a leaf vdev, try to load the DTL object and other state.
591 	 */
592 
593 	if (vd->vdev_ops->vdev_op_leaf &&
594 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
595 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
596 		if (alloctype == VDEV_ALLOC_LOAD) {
597 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
598 			    &vd->vdev_dtl_object);
599 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
600 			    &vd->vdev_unspare);
601 		}
602 
603 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
604 			uint64_t spare = 0;
605 
606 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
607 			    &spare) == 0 && spare)
608 				spa_spare_add(vd);
609 		}
610 
611 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
612 		    &vd->vdev_offline);
613 
614 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
615 		    &vd->vdev_resilver_txg);
616 
617 		/*
618 		 * When importing a pool, we want to ignore the persistent fault
619 		 * state, as the diagnosis made on another system may not be
620 		 * valid in the current context.  Local vdevs will
621 		 * remain in the faulted state.
622 		 */
623 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
624 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
625 			    &vd->vdev_faulted);
626 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
627 			    &vd->vdev_degraded);
628 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
629 			    &vd->vdev_removed);
630 
631 			if (vd->vdev_faulted || vd->vdev_degraded) {
632 				char *aux;
633 
634 				vd->vdev_label_aux =
635 				    VDEV_AUX_ERR_EXCEEDED;
636 				if (nvlist_lookup_string(nv,
637 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
638 				    strcmp(aux, "external") == 0)
639 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
640 			}
641 		}
642 	}
643 
644 	/*
645 	 * Add ourselves to the parent's list of children.
646 	 */
647 	vdev_add_child(parent, vd);
648 
649 	*vdp = vd;
650 
651 	return (0);
652 }
653 
654 void
655 vdev_free(vdev_t *vd)
656 {
657 	spa_t *spa = vd->vdev_spa;
658 
659 	/*
660 	 * vdev_free() implies closing the vdev first.  This is simpler than
661 	 * trying to ensure complicated semantics for all callers.
662 	 */
663 	vdev_close(vd);
664 
665 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
666 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
667 
668 	/*
669 	 * Free all children.
670 	 */
671 	for (int c = 0; c < vd->vdev_children; c++)
672 		vdev_free(vd->vdev_child[c]);
673 
674 	ASSERT(vd->vdev_child == NULL);
675 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
676 
677 	/*
678 	 * Discard allocation state.
679 	 */
680 	if (vd->vdev_mg != NULL) {
681 		vdev_metaslab_fini(vd);
682 		metaslab_group_destroy(vd->vdev_mg);
683 	}
684 
685 	ASSERT0(vd->vdev_stat.vs_space);
686 	ASSERT0(vd->vdev_stat.vs_dspace);
687 	ASSERT0(vd->vdev_stat.vs_alloc);
688 
689 	/*
690 	 * Remove this vdev from its parent's child list.
691 	 */
692 	vdev_remove_child(vd->vdev_parent, vd);
693 
694 	ASSERT(vd->vdev_parent == NULL);
695 
696 	/*
697 	 * Clean up vdev structure.
698 	 */
699 	vdev_queue_fini(vd);
700 	vdev_cache_fini(vd);
701 
702 	if (vd->vdev_path)
703 		spa_strfree(vd->vdev_path);
704 	if (vd->vdev_devid)
705 		spa_strfree(vd->vdev_devid);
706 	if (vd->vdev_physpath)
707 		spa_strfree(vd->vdev_physpath);
708 	if (vd->vdev_fru)
709 		spa_strfree(vd->vdev_fru);
710 
711 	if (vd->vdev_isspare)
712 		spa_spare_remove(vd);
713 	if (vd->vdev_isl2cache)
714 		spa_l2cache_remove(vd);
715 
716 	txg_list_destroy(&vd->vdev_ms_list);
717 	txg_list_destroy(&vd->vdev_dtl_list);
718 
719 	mutex_enter(&vd->vdev_dtl_lock);
720 	space_map_close(vd->vdev_dtl_sm);
721 	for (int t = 0; t < DTL_TYPES; t++) {
722 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
723 		range_tree_destroy(vd->vdev_dtl[t]);
724 	}
725 	mutex_exit(&vd->vdev_dtl_lock);
726 
727 	EQUIV(vd->vdev_indirect_births != NULL,
728 	    vd->vdev_indirect_mapping != NULL);
729 	if (vd->vdev_indirect_births != NULL) {
730 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
731 		vdev_indirect_births_close(vd->vdev_indirect_births);
732 	}
733 
734 	if (vd->vdev_obsolete_sm != NULL) {
735 		ASSERT(vd->vdev_removing ||
736 		    vd->vdev_ops == &vdev_indirect_ops);
737 		space_map_close(vd->vdev_obsolete_sm);
738 		vd->vdev_obsolete_sm = NULL;
739 	}
740 	range_tree_destroy(vd->vdev_obsolete_segments);
741 	rw_destroy(&vd->vdev_indirect_rwlock);
742 	mutex_destroy(&vd->vdev_obsolete_lock);
743 
744 	mutex_destroy(&vd->vdev_queue_lock);
745 	mutex_destroy(&vd->vdev_dtl_lock);
746 	mutex_destroy(&vd->vdev_stat_lock);
747 	mutex_destroy(&vd->vdev_probe_lock);
748 
749 	if (vd == spa->spa_root_vdev)
750 		spa->spa_root_vdev = NULL;
751 
752 	kmem_free(vd, sizeof (vdev_t));
753 }
754 
755 /*
756  * Transfer top-level vdev state from svd to tvd.
757  */
758 static void
759 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
760 {
761 	spa_t *spa = svd->vdev_spa;
762 	metaslab_t *msp;
763 	vdev_t *vd;
764 	int t;
765 
766 	ASSERT(tvd == tvd->vdev_top);
767 
768 	tvd->vdev_ms_array = svd->vdev_ms_array;
769 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
770 	tvd->vdev_ms_count = svd->vdev_ms_count;
771 	tvd->vdev_top_zap = svd->vdev_top_zap;
772 
773 	svd->vdev_ms_array = 0;
774 	svd->vdev_ms_shift = 0;
775 	svd->vdev_ms_count = 0;
776 	svd->vdev_top_zap = 0;
777 
778 	if (tvd->vdev_mg)
779 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
780 	tvd->vdev_mg = svd->vdev_mg;
781 	tvd->vdev_ms = svd->vdev_ms;
782 
783 	svd->vdev_mg = NULL;
784 	svd->vdev_ms = NULL;
785 
786 	if (tvd->vdev_mg != NULL)
787 		tvd->vdev_mg->mg_vd = tvd;
788 
789 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
790 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
791 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
792 
793 	svd->vdev_stat.vs_alloc = 0;
794 	svd->vdev_stat.vs_space = 0;
795 	svd->vdev_stat.vs_dspace = 0;
796 
797 	for (t = 0; t < TXG_SIZE; t++) {
798 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
799 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
800 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
801 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
802 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
803 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
804 	}
805 
806 	if (list_link_active(&svd->vdev_config_dirty_node)) {
807 		vdev_config_clean(svd);
808 		vdev_config_dirty(tvd);
809 	}
810 
811 	if (list_link_active(&svd->vdev_state_dirty_node)) {
812 		vdev_state_clean(svd);
813 		vdev_state_dirty(tvd);
814 	}
815 
816 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
817 	svd->vdev_deflate_ratio = 0;
818 
819 	tvd->vdev_islog = svd->vdev_islog;
820 	svd->vdev_islog = 0;
821 }
822 
823 static void
824 vdev_top_update(vdev_t *tvd, vdev_t *vd)
825 {
826 	if (vd == NULL)
827 		return;
828 
829 	vd->vdev_top = tvd;
830 
831 	for (int c = 0; c < vd->vdev_children; c++)
832 		vdev_top_update(tvd, vd->vdev_child[c]);
833 }
834 
835 /*
836  * Add a mirror/replacing vdev above an existing vdev.
837  */
838 vdev_t *
839 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
840 {
841 	spa_t *spa = cvd->vdev_spa;
842 	vdev_t *pvd = cvd->vdev_parent;
843 	vdev_t *mvd;
844 
845 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
846 
847 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
848 
849 	mvd->vdev_asize = cvd->vdev_asize;
850 	mvd->vdev_min_asize = cvd->vdev_min_asize;
851 	mvd->vdev_max_asize = cvd->vdev_max_asize;
852 	mvd->vdev_psize = cvd->vdev_psize;
853 	mvd->vdev_ashift = cvd->vdev_ashift;
854 	mvd->vdev_state = cvd->vdev_state;
855 	mvd->vdev_crtxg = cvd->vdev_crtxg;
856 
857 	vdev_remove_child(pvd, cvd);
858 	vdev_add_child(pvd, mvd);
859 	cvd->vdev_id = mvd->vdev_children;
860 	vdev_add_child(mvd, cvd);
861 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
862 
863 	if (mvd == mvd->vdev_top)
864 		vdev_top_transfer(cvd, mvd);
865 
866 	return (mvd);
867 }
868 
869 /*
870  * Remove a 1-way mirror/replacing vdev from the tree.
871  */
872 void
873 vdev_remove_parent(vdev_t *cvd)
874 {
875 	vdev_t *mvd = cvd->vdev_parent;
876 	vdev_t *pvd = mvd->vdev_parent;
877 
878 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
879 
880 	ASSERT(mvd->vdev_children == 1);
881 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
882 	    mvd->vdev_ops == &vdev_replacing_ops ||
883 	    mvd->vdev_ops == &vdev_spare_ops);
884 	cvd->vdev_ashift = mvd->vdev_ashift;
885 
886 	vdev_remove_child(mvd, cvd);
887 	vdev_remove_child(pvd, mvd);
888 
889 	/*
890 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
891 	 * Otherwise, we could have detached an offline device, and when we
892 	 * go to import the pool we'll think we have two top-level vdevs,
893 	 * instead of a different version of the same top-level vdev.
894 	 */
895 	if (mvd->vdev_top == mvd) {
896 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
897 		cvd->vdev_orig_guid = cvd->vdev_guid;
898 		cvd->vdev_guid += guid_delta;
899 		cvd->vdev_guid_sum += guid_delta;
900 	}
901 	cvd->vdev_id = mvd->vdev_id;
902 	vdev_add_child(pvd, cvd);
903 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
904 
905 	if (cvd == cvd->vdev_top)
906 		vdev_top_transfer(mvd, cvd);
907 
908 	ASSERT(mvd->vdev_children == 0);
909 	vdev_free(mvd);
910 }
911 
912 int
913 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
914 {
915 	spa_t *spa = vd->vdev_spa;
916 	objset_t *mos = spa->spa_meta_objset;
917 	uint64_t m;
918 	uint64_t oldc = vd->vdev_ms_count;
919 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
920 	metaslab_t **mspp;
921 	int error;
922 
923 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
924 
925 	/*
926 	 * This vdev is not being allocated from yet or is a hole.
927 	 */
928 	if (vd->vdev_ms_shift == 0)
929 		return (0);
930 
931 	ASSERT(!vd->vdev_ishole);
932 
933 	ASSERT(oldc <= newc);
934 
935 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
936 
937 	if (oldc != 0) {
938 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
939 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
940 	}
941 
942 	vd->vdev_ms = mspp;
943 	vd->vdev_ms_count = newc;
944 
945 	for (m = oldc; m < newc; m++) {
946 		uint64_t object = 0;
947 
948 		/*
949 		 * vdev_ms_array may be 0 if we are creating the "fake"
950 		 * metaslabs for an indirect vdev for zdb's leak detection.
951 		 * See zdb_leak_init().
952 		 */
953 		if (txg == 0 && vd->vdev_ms_array != 0) {
954 			error = dmu_read(mos, vd->vdev_ms_array,
955 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
956 			    DMU_READ_PREFETCH);
957 			if (error != 0) {
958 				vdev_dbgmsg(vd, "unable to read the metaslab "
959 				    "array [error=%d]", error);
960 				return (error);
961 			}
962 		}
963 
964 		error = metaslab_init(vd->vdev_mg, m, object, txg,
965 		    &(vd->vdev_ms[m]));
966 		if (error != 0) {
967 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
968 			    error);
969 			return (error);
970 		}
971 	}
972 
973 	if (txg == 0)
974 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
975 
976 	/*
977 	 * If the vdev is being removed we don't activate
978 	 * the metaslabs since we want to ensure that no new
979 	 * allocations are performed on this device.
980 	 */
981 	if (oldc == 0 && !vd->vdev_removing)
982 		metaslab_group_activate(vd->vdev_mg);
983 
984 	if (txg == 0)
985 		spa_config_exit(spa, SCL_ALLOC, FTAG);
986 
987 	return (0);
988 }
989 
990 void
991 vdev_metaslab_fini(vdev_t *vd)
992 {
993 	if (vd->vdev_ms != NULL) {
994 		uint64_t count = vd->vdev_ms_count;
995 
996 		metaslab_group_passivate(vd->vdev_mg);
997 		for (uint64_t m = 0; m < count; m++) {
998 			metaslab_t *msp = vd->vdev_ms[m];
999 
1000 			if (msp != NULL)
1001 				metaslab_fini(msp);
1002 		}
1003 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1004 		vd->vdev_ms = NULL;
1005 
1006 		vd->vdev_ms_count = 0;
1007 	}
1008 	ASSERT0(vd->vdev_ms_count);
1009 }
1010 
1011 typedef struct vdev_probe_stats {
1012 	boolean_t	vps_readable;
1013 	boolean_t	vps_writeable;
1014 	int		vps_flags;
1015 } vdev_probe_stats_t;
1016 
1017 static void
1018 vdev_probe_done(zio_t *zio)
1019 {
1020 	spa_t *spa = zio->io_spa;
1021 	vdev_t *vd = zio->io_vd;
1022 	vdev_probe_stats_t *vps = zio->io_private;
1023 
1024 	ASSERT(vd->vdev_probe_zio != NULL);
1025 
1026 	if (zio->io_type == ZIO_TYPE_READ) {
1027 		if (zio->io_error == 0)
1028 			vps->vps_readable = 1;
1029 		if (zio->io_error == 0 && spa_writeable(spa)) {
1030 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1031 			    zio->io_offset, zio->io_size, zio->io_abd,
1032 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1033 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1034 		} else {
1035 			abd_free(zio->io_abd);
1036 		}
1037 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1038 		if (zio->io_error == 0)
1039 			vps->vps_writeable = 1;
1040 		abd_free(zio->io_abd);
1041 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1042 		zio_t *pio;
1043 
1044 		vd->vdev_cant_read |= !vps->vps_readable;
1045 		vd->vdev_cant_write |= !vps->vps_writeable;
1046 
1047 		if (vdev_readable(vd) &&
1048 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1049 			zio->io_error = 0;
1050 		} else {
1051 			ASSERT(zio->io_error != 0);
1052 			vdev_dbgmsg(vd, "failed probe");
1053 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1054 			    spa, vd, NULL, 0, 0);
1055 			zio->io_error = SET_ERROR(ENXIO);
1056 		}
1057 
1058 		mutex_enter(&vd->vdev_probe_lock);
1059 		ASSERT(vd->vdev_probe_zio == zio);
1060 		vd->vdev_probe_zio = NULL;
1061 		mutex_exit(&vd->vdev_probe_lock);
1062 
1063 		zio_link_t *zl = NULL;
1064 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1065 			if (!vdev_accessible(vd, pio))
1066 				pio->io_error = SET_ERROR(ENXIO);
1067 
1068 		kmem_free(vps, sizeof (*vps));
1069 	}
1070 }
1071 
1072 /*
1073  * Determine whether this device is accessible.
1074  *
1075  * Read and write to several known locations: the pad regions of each
1076  * vdev label but the first, which we leave alone in case it contains
1077  * a VTOC.
1078  */
1079 zio_t *
1080 vdev_probe(vdev_t *vd, zio_t *zio)
1081 {
1082 	spa_t *spa = vd->vdev_spa;
1083 	vdev_probe_stats_t *vps = NULL;
1084 	zio_t *pio;
1085 
1086 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1087 
1088 	/*
1089 	 * Don't probe the probe.
1090 	 */
1091 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1092 		return (NULL);
1093 
1094 	/*
1095 	 * To prevent 'probe storms' when a device fails, we create
1096 	 * just one probe i/o at a time.  All zios that want to probe
1097 	 * this vdev will become parents of the probe io.
1098 	 */
1099 	mutex_enter(&vd->vdev_probe_lock);
1100 
1101 	if ((pio = vd->vdev_probe_zio) == NULL) {
1102 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1103 
1104 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1105 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1106 		    ZIO_FLAG_TRYHARD;
1107 
1108 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1109 			/*
1110 			 * vdev_cant_read and vdev_cant_write can only
1111 			 * transition from TRUE to FALSE when we have the
1112 			 * SCL_ZIO lock as writer; otherwise they can only
1113 			 * transition from FALSE to TRUE.  This ensures that
1114 			 * any zio looking at these values can assume that
1115 			 * failures persist for the life of the I/O.  That's
1116 			 * important because when a device has intermittent
1117 			 * connectivity problems, we want to ensure that
1118 			 * they're ascribed to the device (ENXIO) and not
1119 			 * the zio (EIO).
1120 			 *
1121 			 * Since we hold SCL_ZIO as writer here, clear both
1122 			 * values so the probe can reevaluate from first
1123 			 * principles.
1124 			 */
1125 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1126 			vd->vdev_cant_read = B_FALSE;
1127 			vd->vdev_cant_write = B_FALSE;
1128 		}
1129 
1130 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1131 		    vdev_probe_done, vps,
1132 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1133 
1134 		/*
1135 		 * We can't change the vdev state in this context, so we
1136 		 * kick off an async task to do it on our behalf.
1137 		 */
1138 		if (zio != NULL) {
1139 			vd->vdev_probe_wanted = B_TRUE;
1140 			spa_async_request(spa, SPA_ASYNC_PROBE);
1141 		}
1142 	}
1143 
1144 	if (zio != NULL)
1145 		zio_add_child(zio, pio);
1146 
1147 	mutex_exit(&vd->vdev_probe_lock);
1148 
1149 	if (vps == NULL) {
1150 		ASSERT(zio != NULL);
1151 		return (NULL);
1152 	}
1153 
1154 	for (int l = 1; l < VDEV_LABELS; l++) {
1155 		zio_nowait(zio_read_phys(pio, vd,
1156 		    vdev_label_offset(vd->vdev_psize, l,
1157 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1158 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1159 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1160 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1161 	}
1162 
1163 	if (zio == NULL)
1164 		return (pio);
1165 
1166 	zio_nowait(pio);
1167 	return (NULL);
1168 }
1169 
1170 static void
1171 vdev_open_child(void *arg)
1172 {
1173 	vdev_t *vd = arg;
1174 
1175 	vd->vdev_open_thread = curthread;
1176 	vd->vdev_open_error = vdev_open(vd);
1177 	vd->vdev_open_thread = NULL;
1178 }
1179 
1180 boolean_t
1181 vdev_uses_zvols(vdev_t *vd)
1182 {
1183 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1184 	    strlen(ZVOL_DIR)) == 0)
1185 		return (B_TRUE);
1186 	for (int c = 0; c < vd->vdev_children; c++)
1187 		if (vdev_uses_zvols(vd->vdev_child[c]))
1188 			return (B_TRUE);
1189 	return (B_FALSE);
1190 }
1191 
1192 void
1193 vdev_open_children(vdev_t *vd)
1194 {
1195 	taskq_t *tq;
1196 	int children = vd->vdev_children;
1197 
1198 	/*
1199 	 * in order to handle pools on top of zvols, do the opens
1200 	 * in a single thread so that the same thread holds the
1201 	 * spa_namespace_lock
1202 	 */
1203 	if (vdev_uses_zvols(vd)) {
1204 		for (int c = 0; c < children; c++)
1205 			vd->vdev_child[c]->vdev_open_error =
1206 			    vdev_open(vd->vdev_child[c]);
1207 		return;
1208 	}
1209 	tq = taskq_create("vdev_open", children, minclsyspri,
1210 	    children, children, TASKQ_PREPOPULATE);
1211 
1212 	for (int c = 0; c < children; c++)
1213 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1214 		    TQ_SLEEP) != NULL);
1215 
1216 	taskq_destroy(tq);
1217 }
1218 
1219 /*
1220  * Compute the raidz-deflation ratio.  Note, we hard-code
1221  * in 128k (1 << 17) because it is the "typical" blocksize.
1222  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1223  * otherwise it would inconsistently account for existing bp's.
1224  */
1225 static void
1226 vdev_set_deflate_ratio(vdev_t *vd)
1227 {
1228 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1229 		vd->vdev_deflate_ratio = (1 << 17) /
1230 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1231 	}
1232 }
1233 
1234 /*
1235  * Prepare a virtual device for access.
1236  */
1237 int
1238 vdev_open(vdev_t *vd)
1239 {
1240 	spa_t *spa = vd->vdev_spa;
1241 	int error;
1242 	uint64_t osize = 0;
1243 	uint64_t max_osize = 0;
1244 	uint64_t asize, max_asize, psize;
1245 	uint64_t ashift = 0;
1246 
1247 	ASSERT(vd->vdev_open_thread == curthread ||
1248 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1249 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1250 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1251 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1252 
1253 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1254 	vd->vdev_cant_read = B_FALSE;
1255 	vd->vdev_cant_write = B_FALSE;
1256 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1257 
1258 	/*
1259 	 * If this vdev is not removed, check its fault status.  If it's
1260 	 * faulted, bail out of the open.
1261 	 */
1262 	if (!vd->vdev_removed && vd->vdev_faulted) {
1263 		ASSERT(vd->vdev_children == 0);
1264 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1265 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1266 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1267 		    vd->vdev_label_aux);
1268 		return (SET_ERROR(ENXIO));
1269 	} else if (vd->vdev_offline) {
1270 		ASSERT(vd->vdev_children == 0);
1271 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1272 		return (SET_ERROR(ENXIO));
1273 	}
1274 
1275 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1276 
1277 	/*
1278 	 * Reset the vdev_reopening flag so that we actually close
1279 	 * the vdev on error.
1280 	 */
1281 	vd->vdev_reopening = B_FALSE;
1282 	if (zio_injection_enabled && error == 0)
1283 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1284 
1285 	if (error) {
1286 		if (vd->vdev_removed &&
1287 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1288 			vd->vdev_removed = B_FALSE;
1289 
1290 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1291 		    vd->vdev_stat.vs_aux);
1292 		return (error);
1293 	}
1294 
1295 	vd->vdev_removed = B_FALSE;
1296 
1297 	/*
1298 	 * Recheck the faulted flag now that we have confirmed that
1299 	 * the vdev is accessible.  If we're faulted, bail.
1300 	 */
1301 	if (vd->vdev_faulted) {
1302 		ASSERT(vd->vdev_children == 0);
1303 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1304 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1305 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1306 		    vd->vdev_label_aux);
1307 		return (SET_ERROR(ENXIO));
1308 	}
1309 
1310 	if (vd->vdev_degraded) {
1311 		ASSERT(vd->vdev_children == 0);
1312 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1313 		    VDEV_AUX_ERR_EXCEEDED);
1314 	} else {
1315 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1316 	}
1317 
1318 	/*
1319 	 * For hole or missing vdevs we just return success.
1320 	 */
1321 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1322 		return (0);
1323 
1324 	for (int c = 0; c < vd->vdev_children; c++) {
1325 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1326 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1327 			    VDEV_AUX_NONE);
1328 			break;
1329 		}
1330 	}
1331 
1332 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1333 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1334 
1335 	if (vd->vdev_children == 0) {
1336 		if (osize < SPA_MINDEVSIZE) {
1337 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1338 			    VDEV_AUX_TOO_SMALL);
1339 			return (SET_ERROR(EOVERFLOW));
1340 		}
1341 		psize = osize;
1342 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1343 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1344 		    VDEV_LABEL_END_SIZE);
1345 	} else {
1346 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1347 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1348 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1349 			    VDEV_AUX_TOO_SMALL);
1350 			return (SET_ERROR(EOVERFLOW));
1351 		}
1352 		psize = 0;
1353 		asize = osize;
1354 		max_asize = max_osize;
1355 	}
1356 
1357 	vd->vdev_psize = psize;
1358 
1359 	/*
1360 	 * Make sure the allocatable size hasn't shrunk too much.
1361 	 */
1362 	if (asize < vd->vdev_min_asize) {
1363 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364 		    VDEV_AUX_BAD_LABEL);
1365 		return (SET_ERROR(EINVAL));
1366 	}
1367 
1368 	if (vd->vdev_asize == 0) {
1369 		/*
1370 		 * This is the first-ever open, so use the computed values.
1371 		 * For testing purposes, a higher ashift can be requested.
1372 		 */
1373 		vd->vdev_asize = asize;
1374 		vd->vdev_max_asize = max_asize;
1375 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1376 	} else {
1377 		/*
1378 		 * Detect if the alignment requirement has increased.
1379 		 * We don't want to make the pool unavailable, just
1380 		 * issue a warning instead.
1381 		 */
1382 		if (ashift > vd->vdev_top->vdev_ashift &&
1383 		    vd->vdev_ops->vdev_op_leaf) {
1384 			cmn_err(CE_WARN,
1385 			    "Disk, '%s', has a block alignment that is "
1386 			    "larger than the pool's alignment\n",
1387 			    vd->vdev_path);
1388 		}
1389 		vd->vdev_max_asize = max_asize;
1390 	}
1391 
1392 	/*
1393 	 * If all children are healthy we update asize if either:
1394 	 * The asize has increased, due to a device expansion caused by dynamic
1395 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1396 	 * making the additional space available.
1397 	 *
1398 	 * The asize has decreased, due to a device shrink usually caused by a
1399 	 * vdev replace with a smaller device. This ensures that calculations
1400 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1401 	 * to do this as we've already validated that asize is greater than
1402 	 * vdev_min_asize.
1403 	 */
1404 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1405 	    ((asize > vd->vdev_asize &&
1406 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1407 	    (asize < vd->vdev_asize)))
1408 		vd->vdev_asize = asize;
1409 
1410 	vdev_set_min_asize(vd);
1411 
1412 	/*
1413 	 * Ensure we can issue some IO before declaring the
1414 	 * vdev open for business.
1415 	 */
1416 	if (vd->vdev_ops->vdev_op_leaf &&
1417 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1418 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1419 		    VDEV_AUX_ERR_EXCEEDED);
1420 		return (error);
1421 	}
1422 
1423 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1424 	    !vd->vdev_isl2cache && !vd->vdev_islog) {
1425 		if (vd->vdev_ashift > spa->spa_max_ashift)
1426 			spa->spa_max_ashift = vd->vdev_ashift;
1427 		if (vd->vdev_ashift < spa->spa_min_ashift)
1428 			spa->spa_min_ashift = vd->vdev_ashift;
1429 	}
1430 
1431 	/*
1432 	 * Track the min and max ashift values for normal data devices.
1433 	 */
1434 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1435 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1436 		if (vd->vdev_ashift > spa->spa_max_ashift)
1437 			spa->spa_max_ashift = vd->vdev_ashift;
1438 		if (vd->vdev_ashift < spa->spa_min_ashift)
1439 			spa->spa_min_ashift = vd->vdev_ashift;
1440 	}
1441 
1442 	/*
1443 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1444 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1445 	 * since this would just restart the scrub we are already doing.
1446 	 */
1447 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1448 	    vdev_resilver_needed(vd, NULL, NULL))
1449 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1450 
1451 	return (0);
1452 }
1453 
1454 /*
1455  * Called once the vdevs are all opened, this routine validates the label
1456  * contents.  This needs to be done before vdev_load() so that we don't
1457  * inadvertently do repair I/Os to the wrong device.
1458  *
1459  * If 'strict' is false ignore the spa guid check. This is necessary because
1460  * if the machine crashed during a re-guid the new guid might have been written
1461  * to all of the vdev labels, but not the cached config. The strict check
1462  * will be performed when the pool is opened again using the mos config.
1463  *
1464  * This function will only return failure if one of the vdevs indicates that it
1465  * has since been destroyed or exported.  This is only possible if
1466  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1467  * will be updated but the function will return 0.
1468  */
1469 int
1470 vdev_validate(vdev_t *vd, boolean_t strict)
1471 {
1472 	spa_t *spa = vd->vdev_spa;
1473 	nvlist_t *label;
1474 	uint64_t guid = 0, top_guid;
1475 	uint64_t state;
1476 
1477 	for (int c = 0; c < vd->vdev_children; c++)
1478 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1479 			return (SET_ERROR(EBADF));
1480 
1481 	/*
1482 	 * If the device has already failed, or was marked offline, don't do
1483 	 * any further validation.  Otherwise, label I/O will fail and we will
1484 	 * overwrite the previous state.
1485 	 */
1486 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1487 		uint64_t aux_guid = 0;
1488 		nvlist_t *nvl;
1489 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1490 		    spa_last_synced_txg(spa) : -1ULL;
1491 
1492 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1493 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1494 			    VDEV_AUX_BAD_LABEL);
1495 			vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1496 			return (0);
1497 		}
1498 
1499 		/*
1500 		 * Determine if this vdev has been split off into another
1501 		 * pool.  If so, then refuse to open it.
1502 		 */
1503 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1504 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1505 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1506 			    VDEV_AUX_SPLIT_POOL);
1507 			nvlist_free(label);
1508 			vdev_dbgmsg(vd, "vdev_validate: vdev split into other "
1509 			    "pool");
1510 			return (0);
1511 		}
1512 
1513 		if (strict && (nvlist_lookup_uint64(label,
1514 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1515 		    guid != spa_guid(spa))) {
1516 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1517 			    VDEV_AUX_CORRUPT_DATA);
1518 			nvlist_free(label);
1519 			vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid "
1520 			    "doesn't match config (%llu != %llu)",
1521 			    (u_longlong_t)guid,
1522 			    (u_longlong_t)spa_guid(spa));
1523 			return (0);
1524 		}
1525 
1526 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1527 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1528 		    &aux_guid) != 0)
1529 			aux_guid = 0;
1530 
1531 		/*
1532 		 * If this vdev just became a top-level vdev because its
1533 		 * sibling was detached, it will have adopted the parent's
1534 		 * vdev guid -- but the label may or may not be on disk yet.
1535 		 * Fortunately, either version of the label will have the
1536 		 * same top guid, so if we're a top-level vdev, we can
1537 		 * safely compare to that instead.
1538 		 *
1539 		 * If we split this vdev off instead, then we also check the
1540 		 * original pool's guid.  We don't want to consider the vdev
1541 		 * corrupt if it is partway through a split operation.
1542 		 */
1543 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1544 		    &guid) != 0 ||
1545 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1546 		    &top_guid) != 0 ||
1547 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1548 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1549 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1550 			    VDEV_AUX_CORRUPT_DATA);
1551 			nvlist_free(label);
1552 			vdev_dbgmsg(vd, "vdev_validate: config guid doesn't "
1553 			    "match label guid (%llu != %llu)",
1554 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)guid);
1555 			return (0);
1556 		}
1557 
1558 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1559 		    &state) != 0) {
1560 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1561 			    VDEV_AUX_CORRUPT_DATA);
1562 			nvlist_free(label);
1563 			vdev_dbgmsg(vd, "vdev_validate: '%s' missing",
1564 			    ZPOOL_CONFIG_POOL_STATE);
1565 			return (0);
1566 		}
1567 
1568 		nvlist_free(label);
1569 
1570 		/*
1571 		 * If this is a verbatim import, no need to check the
1572 		 * state of the pool.
1573 		 */
1574 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1575 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1576 		    state != POOL_STATE_ACTIVE) {
1577 			vdev_dbgmsg(vd, "vdev_validate: invalid pool state "
1578 			    "(%llu) for spa %s", (u_longlong_t)state,
1579 			    spa->spa_name);
1580 			return (SET_ERROR(EBADF));
1581 		}
1582 
1583 		/*
1584 		 * If we were able to open and validate a vdev that was
1585 		 * previously marked permanently unavailable, clear that state
1586 		 * now.
1587 		 */
1588 		if (vd->vdev_not_present)
1589 			vd->vdev_not_present = 0;
1590 	}
1591 
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Close a virtual device.
1597  */
1598 void
1599 vdev_close(vdev_t *vd)
1600 {
1601 	spa_t *spa = vd->vdev_spa;
1602 	vdev_t *pvd = vd->vdev_parent;
1603 
1604 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1605 
1606 	/*
1607 	 * If our parent is reopening, then we are as well, unless we are
1608 	 * going offline.
1609 	 */
1610 	if (pvd != NULL && pvd->vdev_reopening)
1611 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1612 
1613 	vd->vdev_ops->vdev_op_close(vd);
1614 
1615 	vdev_cache_purge(vd);
1616 
1617 	/*
1618 	 * We record the previous state before we close it, so that if we are
1619 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1620 	 * it's still faulted.
1621 	 */
1622 	vd->vdev_prevstate = vd->vdev_state;
1623 
1624 	if (vd->vdev_offline)
1625 		vd->vdev_state = VDEV_STATE_OFFLINE;
1626 	else
1627 		vd->vdev_state = VDEV_STATE_CLOSED;
1628 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1629 }
1630 
1631 void
1632 vdev_hold(vdev_t *vd)
1633 {
1634 	spa_t *spa = vd->vdev_spa;
1635 
1636 	ASSERT(spa_is_root(spa));
1637 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1638 		return;
1639 
1640 	for (int c = 0; c < vd->vdev_children; c++)
1641 		vdev_hold(vd->vdev_child[c]);
1642 
1643 	if (vd->vdev_ops->vdev_op_leaf)
1644 		vd->vdev_ops->vdev_op_hold(vd);
1645 }
1646 
1647 void
1648 vdev_rele(vdev_t *vd)
1649 {
1650 	spa_t *spa = vd->vdev_spa;
1651 
1652 	ASSERT(spa_is_root(spa));
1653 	for (int c = 0; c < vd->vdev_children; c++)
1654 		vdev_rele(vd->vdev_child[c]);
1655 
1656 	if (vd->vdev_ops->vdev_op_leaf)
1657 		vd->vdev_ops->vdev_op_rele(vd);
1658 }
1659 
1660 /*
1661  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1662  * reopen leaf vdevs which had previously been opened as they might deadlock
1663  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1664  * If the leaf has never been opened then open it, as usual.
1665  */
1666 void
1667 vdev_reopen(vdev_t *vd)
1668 {
1669 	spa_t *spa = vd->vdev_spa;
1670 
1671 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1672 
1673 	/* set the reopening flag unless we're taking the vdev offline */
1674 	vd->vdev_reopening = !vd->vdev_offline;
1675 	vdev_close(vd);
1676 	(void) vdev_open(vd);
1677 
1678 	/*
1679 	 * Call vdev_validate() here to make sure we have the same device.
1680 	 * Otherwise, a device with an invalid label could be successfully
1681 	 * opened in response to vdev_reopen().
1682 	 */
1683 	if (vd->vdev_aux) {
1684 		(void) vdev_validate_aux(vd);
1685 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1686 		    vd->vdev_aux == &spa->spa_l2cache &&
1687 		    !l2arc_vdev_present(vd))
1688 			l2arc_add_vdev(spa, vd);
1689 	} else {
1690 		(void) vdev_validate(vd, B_TRUE);
1691 	}
1692 
1693 	/*
1694 	 * Reassess parent vdev's health.
1695 	 */
1696 	vdev_propagate_state(vd);
1697 }
1698 
1699 int
1700 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1701 {
1702 	int error;
1703 
1704 	/*
1705 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1706 	 * For a create, however, we want to fail the request if
1707 	 * there are any components we can't open.
1708 	 */
1709 	error = vdev_open(vd);
1710 
1711 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1712 		vdev_close(vd);
1713 		return (error ? error : ENXIO);
1714 	}
1715 
1716 	/*
1717 	 * Recursively load DTLs and initialize all labels.
1718 	 */
1719 	if ((error = vdev_dtl_load(vd)) != 0 ||
1720 	    (error = vdev_label_init(vd, txg, isreplacing ?
1721 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1722 		vdev_close(vd);
1723 		return (error);
1724 	}
1725 
1726 	return (0);
1727 }
1728 
1729 void
1730 vdev_metaslab_set_size(vdev_t *vd)
1731 {
1732 	/*
1733 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1734 	 */
1735 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1736 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1737 }
1738 
1739 void
1740 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1741 {
1742 	ASSERT(vd == vd->vdev_top);
1743 	/* indirect vdevs don't have metaslabs or dtls */
1744 	ASSERT(vdev_is_concrete(vd) || flags == 0);
1745 	ASSERT(ISP2(flags));
1746 	ASSERT(spa_writeable(vd->vdev_spa));
1747 
1748 	if (flags & VDD_METASLAB)
1749 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1750 
1751 	if (flags & VDD_DTL)
1752 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1753 
1754 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1755 }
1756 
1757 void
1758 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1759 {
1760 	for (int c = 0; c < vd->vdev_children; c++)
1761 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1762 
1763 	if (vd->vdev_ops->vdev_op_leaf)
1764 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1765 }
1766 
1767 /*
1768  * DTLs.
1769  *
1770  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1771  * the vdev has less than perfect replication.  There are four kinds of DTL:
1772  *
1773  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1774  *
1775  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1776  *
1777  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1778  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1779  *	txgs that was scrubbed.
1780  *
1781  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1782  *	persistent errors or just some device being offline.
1783  *	Unlike the other three, the DTL_OUTAGE map is not generally
1784  *	maintained; it's only computed when needed, typically to
1785  *	determine whether a device can be detached.
1786  *
1787  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1788  * either has the data or it doesn't.
1789  *
1790  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1791  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1792  * if any child is less than fully replicated, then so is its parent.
1793  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1794  * comprising only those txgs which appear in 'maxfaults' or more children;
1795  * those are the txgs we don't have enough replication to read.  For example,
1796  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1797  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1798  * two child DTL_MISSING maps.
1799  *
1800  * It should be clear from the above that to compute the DTLs and outage maps
1801  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1802  * Therefore, that is all we keep on disk.  When loading the pool, or after
1803  * a configuration change, we generate all other DTLs from first principles.
1804  */
1805 void
1806 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1807 {
1808 	range_tree_t *rt = vd->vdev_dtl[t];
1809 
1810 	ASSERT(t < DTL_TYPES);
1811 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1812 	ASSERT(spa_writeable(vd->vdev_spa));
1813 
1814 	mutex_enter(&vd->vdev_dtl_lock);
1815 	if (!range_tree_contains(rt, txg, size))
1816 		range_tree_add(rt, txg, size);
1817 	mutex_exit(&vd->vdev_dtl_lock);
1818 }
1819 
1820 boolean_t
1821 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1822 {
1823 	range_tree_t *rt = vd->vdev_dtl[t];
1824 	boolean_t dirty = B_FALSE;
1825 
1826 	ASSERT(t < DTL_TYPES);
1827 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1828 
1829 	/*
1830 	 * While we are loading the pool, the DTLs have not been loaded yet.
1831 	 * Ignore the DTLs and try all devices.  This avoids a recursive
1832 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
1833 	 * when loading the pool (relying on the checksum to ensure that
1834 	 * we get the right data -- note that we while loading, we are
1835 	 * only reading the MOS, which is always checksummed).
1836 	 */
1837 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1838 		return (B_FALSE);
1839 
1840 	mutex_enter(&vd->vdev_dtl_lock);
1841 	if (range_tree_space(rt) != 0)
1842 		dirty = range_tree_contains(rt, txg, size);
1843 	mutex_exit(&vd->vdev_dtl_lock);
1844 
1845 	return (dirty);
1846 }
1847 
1848 boolean_t
1849 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1850 {
1851 	range_tree_t *rt = vd->vdev_dtl[t];
1852 	boolean_t empty;
1853 
1854 	mutex_enter(&vd->vdev_dtl_lock);
1855 	empty = (range_tree_space(rt) == 0);
1856 	mutex_exit(&vd->vdev_dtl_lock);
1857 
1858 	return (empty);
1859 }
1860 
1861 /*
1862  * Returns the lowest txg in the DTL range.
1863  */
1864 static uint64_t
1865 vdev_dtl_min(vdev_t *vd)
1866 {
1867 	range_seg_t *rs;
1868 
1869 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1870 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1871 	ASSERT0(vd->vdev_children);
1872 
1873 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1874 	return (rs->rs_start - 1);
1875 }
1876 
1877 /*
1878  * Returns the highest txg in the DTL.
1879  */
1880 static uint64_t
1881 vdev_dtl_max(vdev_t *vd)
1882 {
1883 	range_seg_t *rs;
1884 
1885 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1886 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1887 	ASSERT0(vd->vdev_children);
1888 
1889 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1890 	return (rs->rs_end);
1891 }
1892 
1893 /*
1894  * Determine if a resilvering vdev should remove any DTL entries from
1895  * its range. If the vdev was resilvering for the entire duration of the
1896  * scan then it should excise that range from its DTLs. Otherwise, this
1897  * vdev is considered partially resilvered and should leave its DTL
1898  * entries intact. The comment in vdev_dtl_reassess() describes how we
1899  * excise the DTLs.
1900  */
1901 static boolean_t
1902 vdev_dtl_should_excise(vdev_t *vd)
1903 {
1904 	spa_t *spa = vd->vdev_spa;
1905 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1906 
1907 	ASSERT0(scn->scn_phys.scn_errors);
1908 	ASSERT0(vd->vdev_children);
1909 
1910 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
1911 		return (B_FALSE);
1912 
1913 	if (vd->vdev_resilver_txg == 0 ||
1914 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1915 		return (B_TRUE);
1916 
1917 	/*
1918 	 * When a resilver is initiated the scan will assign the scn_max_txg
1919 	 * value to the highest txg value that exists in all DTLs. If this
1920 	 * device's max DTL is not part of this scan (i.e. it is not in
1921 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1922 	 * for excision.
1923 	 */
1924 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1925 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1926 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1927 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1928 		return (B_TRUE);
1929 	}
1930 	return (B_FALSE);
1931 }
1932 
1933 /*
1934  * Reassess DTLs after a config change or scrub completion.
1935  */
1936 void
1937 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1938 {
1939 	spa_t *spa = vd->vdev_spa;
1940 	avl_tree_t reftree;
1941 	int minref;
1942 
1943 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1944 
1945 	for (int c = 0; c < vd->vdev_children; c++)
1946 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1947 		    scrub_txg, scrub_done);
1948 
1949 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
1950 		return;
1951 
1952 	if (vd->vdev_ops->vdev_op_leaf) {
1953 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1954 
1955 		mutex_enter(&vd->vdev_dtl_lock);
1956 
1957 		/*
1958 		 * If we've completed a scan cleanly then determine
1959 		 * if this vdev should remove any DTLs. We only want to
1960 		 * excise regions on vdevs that were available during
1961 		 * the entire duration of this scan.
1962 		 */
1963 		if (scrub_txg != 0 &&
1964 		    (spa->spa_scrub_started ||
1965 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1966 		    vdev_dtl_should_excise(vd)) {
1967 			/*
1968 			 * We completed a scrub up to scrub_txg.  If we
1969 			 * did it without rebooting, then the scrub dtl
1970 			 * will be valid, so excise the old region and
1971 			 * fold in the scrub dtl.  Otherwise, leave the
1972 			 * dtl as-is if there was an error.
1973 			 *
1974 			 * There's little trick here: to excise the beginning
1975 			 * of the DTL_MISSING map, we put it into a reference
1976 			 * tree and then add a segment with refcnt -1 that
1977 			 * covers the range [0, scrub_txg).  This means
1978 			 * that each txg in that range has refcnt -1 or 0.
1979 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1980 			 * entries in the range [0, scrub_txg) will have a
1981 			 * positive refcnt -- either 1 or 2.  We then convert
1982 			 * the reference tree into the new DTL_MISSING map.
1983 			 */
1984 			space_reftree_create(&reftree);
1985 			space_reftree_add_map(&reftree,
1986 			    vd->vdev_dtl[DTL_MISSING], 1);
1987 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1988 			space_reftree_add_map(&reftree,
1989 			    vd->vdev_dtl[DTL_SCRUB], 2);
1990 			space_reftree_generate_map(&reftree,
1991 			    vd->vdev_dtl[DTL_MISSING], 1);
1992 			space_reftree_destroy(&reftree);
1993 		}
1994 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1995 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1996 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1997 		if (scrub_done)
1998 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1999 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2000 		if (!vdev_readable(vd))
2001 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2002 		else
2003 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2004 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2005 
2006 		/*
2007 		 * If the vdev was resilvering and no longer has any
2008 		 * DTLs then reset its resilvering flag.
2009 		 */
2010 		if (vd->vdev_resilver_txg != 0 &&
2011 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2012 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
2013 			vd->vdev_resilver_txg = 0;
2014 
2015 		mutex_exit(&vd->vdev_dtl_lock);
2016 
2017 		if (txg != 0)
2018 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2019 		return;
2020 	}
2021 
2022 	mutex_enter(&vd->vdev_dtl_lock);
2023 	for (int t = 0; t < DTL_TYPES; t++) {
2024 		/* account for child's outage in parent's missing map */
2025 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2026 		if (t == DTL_SCRUB)
2027 			continue;			/* leaf vdevs only */
2028 		if (t == DTL_PARTIAL)
2029 			minref = 1;			/* i.e. non-zero */
2030 		else if (vd->vdev_nparity != 0)
2031 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2032 		else
2033 			minref = vd->vdev_children;	/* any kind of mirror */
2034 		space_reftree_create(&reftree);
2035 		for (int c = 0; c < vd->vdev_children; c++) {
2036 			vdev_t *cvd = vd->vdev_child[c];
2037 			mutex_enter(&cvd->vdev_dtl_lock);
2038 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2039 			mutex_exit(&cvd->vdev_dtl_lock);
2040 		}
2041 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2042 		space_reftree_destroy(&reftree);
2043 	}
2044 	mutex_exit(&vd->vdev_dtl_lock);
2045 }
2046 
2047 int
2048 vdev_dtl_load(vdev_t *vd)
2049 {
2050 	spa_t *spa = vd->vdev_spa;
2051 	objset_t *mos = spa->spa_meta_objset;
2052 	int error = 0;
2053 
2054 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2055 		ASSERT(vdev_is_concrete(vd));
2056 
2057 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2058 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2059 		if (error)
2060 			return (error);
2061 		ASSERT(vd->vdev_dtl_sm != NULL);
2062 
2063 		mutex_enter(&vd->vdev_dtl_lock);
2064 
2065 		/*
2066 		 * Now that we've opened the space_map we need to update
2067 		 * the in-core DTL.
2068 		 */
2069 		space_map_update(vd->vdev_dtl_sm);
2070 
2071 		error = space_map_load(vd->vdev_dtl_sm,
2072 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2073 		mutex_exit(&vd->vdev_dtl_lock);
2074 
2075 		return (error);
2076 	}
2077 
2078 	for (int c = 0; c < vd->vdev_children; c++) {
2079 		error = vdev_dtl_load(vd->vdev_child[c]);
2080 		if (error != 0)
2081 			break;
2082 	}
2083 
2084 	return (error);
2085 }
2086 
2087 void
2088 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2089 {
2090 	spa_t *spa = vd->vdev_spa;
2091 
2092 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2093 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2094 	    zapobj, tx));
2095 }
2096 
2097 uint64_t
2098 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2099 {
2100 	spa_t *spa = vd->vdev_spa;
2101 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2102 	    DMU_OT_NONE, 0, tx);
2103 
2104 	ASSERT(zap != 0);
2105 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2106 	    zap, tx));
2107 
2108 	return (zap);
2109 }
2110 
2111 void
2112 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2113 {
2114 	if (vd->vdev_ops != &vdev_hole_ops &&
2115 	    vd->vdev_ops != &vdev_missing_ops &&
2116 	    vd->vdev_ops != &vdev_root_ops &&
2117 	    !vd->vdev_top->vdev_removing) {
2118 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2119 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2120 		}
2121 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2122 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2123 		}
2124 	}
2125 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2126 		vdev_construct_zaps(vd->vdev_child[i], tx);
2127 	}
2128 }
2129 
2130 void
2131 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2132 {
2133 	spa_t *spa = vd->vdev_spa;
2134 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2135 	objset_t *mos = spa->spa_meta_objset;
2136 	range_tree_t *rtsync;
2137 	dmu_tx_t *tx;
2138 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2139 
2140 	ASSERT(vdev_is_concrete(vd));
2141 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2142 
2143 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2144 
2145 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2146 		mutex_enter(&vd->vdev_dtl_lock);
2147 		space_map_free(vd->vdev_dtl_sm, tx);
2148 		space_map_close(vd->vdev_dtl_sm);
2149 		vd->vdev_dtl_sm = NULL;
2150 		mutex_exit(&vd->vdev_dtl_lock);
2151 
2152 		/*
2153 		 * We only destroy the leaf ZAP for detached leaves or for
2154 		 * removed log devices. Removed data devices handle leaf ZAP
2155 		 * cleanup later, once cancellation is no longer possible.
2156 		 */
2157 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2158 		    vd->vdev_top->vdev_islog)) {
2159 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2160 			vd->vdev_leaf_zap = 0;
2161 		}
2162 
2163 		dmu_tx_commit(tx);
2164 		return;
2165 	}
2166 
2167 	if (vd->vdev_dtl_sm == NULL) {
2168 		uint64_t new_object;
2169 
2170 		new_object = space_map_alloc(mos, tx);
2171 		VERIFY3U(new_object, !=, 0);
2172 
2173 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2174 		    0, -1ULL, 0));
2175 		ASSERT(vd->vdev_dtl_sm != NULL);
2176 	}
2177 
2178 	rtsync = range_tree_create(NULL, NULL);
2179 
2180 	mutex_enter(&vd->vdev_dtl_lock);
2181 	range_tree_walk(rt, range_tree_add, rtsync);
2182 	mutex_exit(&vd->vdev_dtl_lock);
2183 
2184 	space_map_truncate(vd->vdev_dtl_sm, tx);
2185 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2186 	range_tree_vacate(rtsync, NULL, NULL);
2187 
2188 	range_tree_destroy(rtsync);
2189 
2190 	/*
2191 	 * If the object for the space map has changed then dirty
2192 	 * the top level so that we update the config.
2193 	 */
2194 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2195 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2196 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2197 		    (u_longlong_t)object,
2198 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2199 		vdev_config_dirty(vd->vdev_top);
2200 	}
2201 
2202 	dmu_tx_commit(tx);
2203 
2204 	mutex_enter(&vd->vdev_dtl_lock);
2205 	space_map_update(vd->vdev_dtl_sm);
2206 	mutex_exit(&vd->vdev_dtl_lock);
2207 }
2208 
2209 /*
2210  * Determine whether the specified vdev can be offlined/detached/removed
2211  * without losing data.
2212  */
2213 boolean_t
2214 vdev_dtl_required(vdev_t *vd)
2215 {
2216 	spa_t *spa = vd->vdev_spa;
2217 	vdev_t *tvd = vd->vdev_top;
2218 	uint8_t cant_read = vd->vdev_cant_read;
2219 	boolean_t required;
2220 
2221 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2222 
2223 	if (vd == spa->spa_root_vdev || vd == tvd)
2224 		return (B_TRUE);
2225 
2226 	/*
2227 	 * Temporarily mark the device as unreadable, and then determine
2228 	 * whether this results in any DTL outages in the top-level vdev.
2229 	 * If not, we can safely offline/detach/remove the device.
2230 	 */
2231 	vd->vdev_cant_read = B_TRUE;
2232 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2233 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2234 	vd->vdev_cant_read = cant_read;
2235 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2236 
2237 	if (!required && zio_injection_enabled)
2238 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2239 
2240 	return (required);
2241 }
2242 
2243 /*
2244  * Determine if resilver is needed, and if so the txg range.
2245  */
2246 boolean_t
2247 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2248 {
2249 	boolean_t needed = B_FALSE;
2250 	uint64_t thismin = UINT64_MAX;
2251 	uint64_t thismax = 0;
2252 
2253 	if (vd->vdev_children == 0) {
2254 		mutex_enter(&vd->vdev_dtl_lock);
2255 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2256 		    vdev_writeable(vd)) {
2257 
2258 			thismin = vdev_dtl_min(vd);
2259 			thismax = vdev_dtl_max(vd);
2260 			needed = B_TRUE;
2261 		}
2262 		mutex_exit(&vd->vdev_dtl_lock);
2263 	} else {
2264 		for (int c = 0; c < vd->vdev_children; c++) {
2265 			vdev_t *cvd = vd->vdev_child[c];
2266 			uint64_t cmin, cmax;
2267 
2268 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2269 				thismin = MIN(thismin, cmin);
2270 				thismax = MAX(thismax, cmax);
2271 				needed = B_TRUE;
2272 			}
2273 		}
2274 	}
2275 
2276 	if (needed && minp) {
2277 		*minp = thismin;
2278 		*maxp = thismax;
2279 	}
2280 	return (needed);
2281 }
2282 
2283 int
2284 vdev_load(vdev_t *vd)
2285 {
2286 	int error = 0;
2287 	/*
2288 	 * Recursively load all children.
2289 	 */
2290 	for (int c = 0; c < vd->vdev_children; c++) {
2291 		error = vdev_load(vd->vdev_child[c]);
2292 		if (error != 0) {
2293 			return (error);
2294 		}
2295 	}
2296 
2297 	vdev_set_deflate_ratio(vd);
2298 
2299 	/*
2300 	 * If this is a top-level vdev, initialize its metaslabs.
2301 	 */
2302 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2303 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2304 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2305 			    VDEV_AUX_CORRUPT_DATA);
2306 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2307 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2308 			    (u_longlong_t)vd->vdev_asize);
2309 			return (SET_ERROR(ENXIO));
2310 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2311 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2312 			    "[error=%d]", error);
2313 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2314 			    VDEV_AUX_CORRUPT_DATA);
2315 			return (error);
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * If this is a leaf vdev, load its DTL.
2321 	 */
2322 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2323 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2324 		    VDEV_AUX_CORRUPT_DATA);
2325 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2326 		    "[error=%d]", error);
2327 		return (error);
2328 	}
2329 
2330 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2331 	if (obsolete_sm_object != 0) {
2332 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2333 		ASSERT(vd->vdev_asize != 0);
2334 		ASSERT(vd->vdev_obsolete_sm == NULL);
2335 
2336 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2337 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2338 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2339 			    VDEV_AUX_CORRUPT_DATA);
2340 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2341 			    "obsolete spacemap (obj %llu) [error=%d]",
2342 			    (u_longlong_t)obsolete_sm_object, error);
2343 			return (error);
2344 		}
2345 		space_map_update(vd->vdev_obsolete_sm);
2346 	}
2347 
2348 	return (0);
2349 }
2350 
2351 /*
2352  * The special vdev case is used for hot spares and l2cache devices.  Its
2353  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2354  * we make sure that we can open the underlying device, then try to read the
2355  * label, and make sure that the label is sane and that it hasn't been
2356  * repurposed to another pool.
2357  */
2358 int
2359 vdev_validate_aux(vdev_t *vd)
2360 {
2361 	nvlist_t *label;
2362 	uint64_t guid, version;
2363 	uint64_t state;
2364 
2365 	if (!vdev_readable(vd))
2366 		return (0);
2367 
2368 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2369 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2370 		    VDEV_AUX_CORRUPT_DATA);
2371 		return (-1);
2372 	}
2373 
2374 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2375 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2376 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2377 	    guid != vd->vdev_guid ||
2378 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2379 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2380 		    VDEV_AUX_CORRUPT_DATA);
2381 		nvlist_free(label);
2382 		return (-1);
2383 	}
2384 
2385 	/*
2386 	 * We don't actually check the pool state here.  If it's in fact in
2387 	 * use by another pool, we update this fact on the fly when requested.
2388 	 */
2389 	nvlist_free(label);
2390 	return (0);
2391 }
2392 
2393 /*
2394  * Free the objects used to store this vdev's spacemaps, and the array
2395  * that points to them.
2396  */
2397 void
2398 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2399 {
2400 	if (vd->vdev_ms_array == 0)
2401 		return;
2402 
2403 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2404 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2405 	size_t array_bytes = array_count * sizeof (uint64_t);
2406 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2407 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2408 	    array_bytes, smobj_array, 0));
2409 
2410 	for (uint64_t i = 0; i < array_count; i++) {
2411 		uint64_t smobj = smobj_array[i];
2412 		if (smobj == 0)
2413 			continue;
2414 
2415 		space_map_free_obj(mos, smobj, tx);
2416 	}
2417 
2418 	kmem_free(smobj_array, array_bytes);
2419 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2420 	vd->vdev_ms_array = 0;
2421 }
2422 
2423 static void
2424 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2425 {
2426 	spa_t *spa = vd->vdev_spa;
2427 	dmu_tx_t *tx;
2428 
2429 	ASSERT(vd == vd->vdev_top);
2430 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2431 
2432 	if (vd->vdev_ms != NULL) {
2433 		metaslab_group_t *mg = vd->vdev_mg;
2434 
2435 		metaslab_group_histogram_verify(mg);
2436 		metaslab_class_histogram_verify(mg->mg_class);
2437 
2438 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2439 			metaslab_t *msp = vd->vdev_ms[m];
2440 
2441 			if (msp == NULL || msp->ms_sm == NULL)
2442 				continue;
2443 
2444 			mutex_enter(&msp->ms_lock);
2445 			/*
2446 			 * If the metaslab was not loaded when the vdev
2447 			 * was removed then the histogram accounting may
2448 			 * not be accurate. Update the histogram information
2449 			 * here so that we ensure that the metaslab group
2450 			 * and metaslab class are up-to-date.
2451 			 */
2452 			metaslab_group_histogram_remove(mg, msp);
2453 
2454 			VERIFY0(space_map_allocated(msp->ms_sm));
2455 			space_map_close(msp->ms_sm);
2456 			msp->ms_sm = NULL;
2457 			mutex_exit(&msp->ms_lock);
2458 		}
2459 
2460 		metaslab_group_histogram_verify(mg);
2461 		metaslab_class_histogram_verify(mg->mg_class);
2462 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2463 			ASSERT0(mg->mg_histogram[i]);
2464 	}
2465 
2466 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2467 	vdev_destroy_spacemaps(vd, tx);
2468 
2469 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2470 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2471 		vd->vdev_top_zap = 0;
2472 	}
2473 	dmu_tx_commit(tx);
2474 }
2475 
2476 void
2477 vdev_sync_done(vdev_t *vd, uint64_t txg)
2478 {
2479 	metaslab_t *msp;
2480 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2481 
2482 	ASSERT(vdev_is_concrete(vd));
2483 
2484 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2485 		metaslab_sync_done(msp, txg);
2486 
2487 	if (reassess)
2488 		metaslab_sync_reassess(vd->vdev_mg);
2489 }
2490 
2491 void
2492 vdev_sync(vdev_t *vd, uint64_t txg)
2493 {
2494 	spa_t *spa = vd->vdev_spa;
2495 	vdev_t *lvd;
2496 	metaslab_t *msp;
2497 	dmu_tx_t *tx;
2498 
2499 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2500 		dmu_tx_t *tx;
2501 
2502 		ASSERT(vd->vdev_removing ||
2503 		    vd->vdev_ops == &vdev_indirect_ops);
2504 
2505 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2506 		vdev_indirect_sync_obsolete(vd, tx);
2507 		dmu_tx_commit(tx);
2508 
2509 		/*
2510 		 * If the vdev is indirect, it can't have dirty
2511 		 * metaslabs or DTLs.
2512 		 */
2513 		if (vd->vdev_ops == &vdev_indirect_ops) {
2514 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2515 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2516 			return;
2517 		}
2518 	}
2519 
2520 	ASSERT(vdev_is_concrete(vd));
2521 
2522 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2523 	    !vd->vdev_removing) {
2524 		ASSERT(vd == vd->vdev_top);
2525 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2526 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2527 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2528 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2529 		ASSERT(vd->vdev_ms_array != 0);
2530 		vdev_config_dirty(vd);
2531 		dmu_tx_commit(tx);
2532 	}
2533 
2534 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2535 		metaslab_sync(msp, txg);
2536 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2537 	}
2538 
2539 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2540 		vdev_dtl_sync(lvd, txg);
2541 
2542 	/*
2543 	 * Remove the metadata associated with this vdev once it's empty.
2544 	 * Note that this is typically used for log/cache device removal;
2545 	 * we don't empty toplevel vdevs when removing them.  But if
2546 	 * a toplevel happens to be emptied, this is not harmful.
2547 	 */
2548 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2549 		vdev_remove_empty(vd, txg);
2550 	}
2551 
2552 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2553 }
2554 
2555 uint64_t
2556 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2557 {
2558 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2559 }
2560 
2561 /*
2562  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2563  * not be opened, and no I/O is attempted.
2564  */
2565 int
2566 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2567 {
2568 	vdev_t *vd, *tvd;
2569 
2570 	spa_vdev_state_enter(spa, SCL_NONE);
2571 
2572 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2573 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2574 
2575 	if (!vd->vdev_ops->vdev_op_leaf)
2576 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2577 
2578 	tvd = vd->vdev_top;
2579 
2580 	/*
2581 	 * We don't directly use the aux state here, but if we do a
2582 	 * vdev_reopen(), we need this value to be present to remember why we
2583 	 * were faulted.
2584 	 */
2585 	vd->vdev_label_aux = aux;
2586 
2587 	/*
2588 	 * Faulted state takes precedence over degraded.
2589 	 */
2590 	vd->vdev_delayed_close = B_FALSE;
2591 	vd->vdev_faulted = 1ULL;
2592 	vd->vdev_degraded = 0ULL;
2593 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2594 
2595 	/*
2596 	 * If this device has the only valid copy of the data, then
2597 	 * back off and simply mark the vdev as degraded instead.
2598 	 */
2599 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2600 		vd->vdev_degraded = 1ULL;
2601 		vd->vdev_faulted = 0ULL;
2602 
2603 		/*
2604 		 * If we reopen the device and it's not dead, only then do we
2605 		 * mark it degraded.
2606 		 */
2607 		vdev_reopen(tvd);
2608 
2609 		if (vdev_readable(vd))
2610 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2611 	}
2612 
2613 	return (spa_vdev_state_exit(spa, vd, 0));
2614 }
2615 
2616 /*
2617  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2618  * user that something is wrong.  The vdev continues to operate as normal as far
2619  * as I/O is concerned.
2620  */
2621 int
2622 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2623 {
2624 	vdev_t *vd;
2625 
2626 	spa_vdev_state_enter(spa, SCL_NONE);
2627 
2628 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2629 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2630 
2631 	if (!vd->vdev_ops->vdev_op_leaf)
2632 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2633 
2634 	/*
2635 	 * If the vdev is already faulted, then don't do anything.
2636 	 */
2637 	if (vd->vdev_faulted || vd->vdev_degraded)
2638 		return (spa_vdev_state_exit(spa, NULL, 0));
2639 
2640 	vd->vdev_degraded = 1ULL;
2641 	if (!vdev_is_dead(vd))
2642 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2643 		    aux);
2644 
2645 	return (spa_vdev_state_exit(spa, vd, 0));
2646 }
2647 
2648 /*
2649  * Online the given vdev.
2650  *
2651  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2652  * spare device should be detached when the device finishes resilvering.
2653  * Second, the online should be treated like a 'test' online case, so no FMA
2654  * events are generated if the device fails to open.
2655  */
2656 int
2657 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2658 {
2659 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2660 	boolean_t wasoffline;
2661 	vdev_state_t oldstate;
2662 
2663 	spa_vdev_state_enter(spa, SCL_NONE);
2664 
2665 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2666 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2667 
2668 	if (!vd->vdev_ops->vdev_op_leaf)
2669 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2670 
2671 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2672 	oldstate = vd->vdev_state;
2673 
2674 	tvd = vd->vdev_top;
2675 	vd->vdev_offline = B_FALSE;
2676 	vd->vdev_tmpoffline = B_FALSE;
2677 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2678 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2679 
2680 	/* XXX - L2ARC 1.0 does not support expansion */
2681 	if (!vd->vdev_aux) {
2682 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2683 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2684 	}
2685 
2686 	vdev_reopen(tvd);
2687 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2688 
2689 	if (!vd->vdev_aux) {
2690 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2691 			pvd->vdev_expanding = B_FALSE;
2692 	}
2693 
2694 	if (newstate)
2695 		*newstate = vd->vdev_state;
2696 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2697 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2698 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2699 	    vd->vdev_parent->vdev_child[0] == vd)
2700 		vd->vdev_unspare = B_TRUE;
2701 
2702 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2703 
2704 		/* XXX - L2ARC 1.0 does not support expansion */
2705 		if (vd->vdev_aux)
2706 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2707 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2708 	}
2709 
2710 	if (wasoffline ||
2711 	    (oldstate < VDEV_STATE_DEGRADED &&
2712 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
2713 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2714 
2715 	return (spa_vdev_state_exit(spa, vd, 0));
2716 }
2717 
2718 static int
2719 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2720 {
2721 	vdev_t *vd, *tvd;
2722 	int error = 0;
2723 	uint64_t generation;
2724 	metaslab_group_t *mg;
2725 
2726 top:
2727 	spa_vdev_state_enter(spa, SCL_ALLOC);
2728 
2729 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2730 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2731 
2732 	if (!vd->vdev_ops->vdev_op_leaf)
2733 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2734 
2735 	tvd = vd->vdev_top;
2736 	mg = tvd->vdev_mg;
2737 	generation = spa->spa_config_generation + 1;
2738 
2739 	/*
2740 	 * If the device isn't already offline, try to offline it.
2741 	 */
2742 	if (!vd->vdev_offline) {
2743 		/*
2744 		 * If this device has the only valid copy of some data,
2745 		 * don't allow it to be offlined. Log devices are always
2746 		 * expendable.
2747 		 */
2748 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2749 		    vdev_dtl_required(vd))
2750 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2751 
2752 		/*
2753 		 * If the top-level is a slog and it has had allocations
2754 		 * then proceed.  We check that the vdev's metaslab group
2755 		 * is not NULL since it's possible that we may have just
2756 		 * added this vdev but not yet initialized its metaslabs.
2757 		 */
2758 		if (tvd->vdev_islog && mg != NULL) {
2759 			/*
2760 			 * Prevent any future allocations.
2761 			 */
2762 			metaslab_group_passivate(mg);
2763 			(void) spa_vdev_state_exit(spa, vd, 0);
2764 
2765 			error = spa_reset_logs(spa);
2766 
2767 			spa_vdev_state_enter(spa, SCL_ALLOC);
2768 
2769 			/*
2770 			 * Check to see if the config has changed.
2771 			 */
2772 			if (error || generation != spa->spa_config_generation) {
2773 				metaslab_group_activate(mg);
2774 				if (error)
2775 					return (spa_vdev_state_exit(spa,
2776 					    vd, error));
2777 				(void) spa_vdev_state_exit(spa, vd, 0);
2778 				goto top;
2779 			}
2780 			ASSERT0(tvd->vdev_stat.vs_alloc);
2781 		}
2782 
2783 		/*
2784 		 * Offline this device and reopen its top-level vdev.
2785 		 * If the top-level vdev is a log device then just offline
2786 		 * it. Otherwise, if this action results in the top-level
2787 		 * vdev becoming unusable, undo it and fail the request.
2788 		 */
2789 		vd->vdev_offline = B_TRUE;
2790 		vdev_reopen(tvd);
2791 
2792 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2793 		    vdev_is_dead(tvd)) {
2794 			vd->vdev_offline = B_FALSE;
2795 			vdev_reopen(tvd);
2796 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2797 		}
2798 
2799 		/*
2800 		 * Add the device back into the metaslab rotor so that
2801 		 * once we online the device it's open for business.
2802 		 */
2803 		if (tvd->vdev_islog && mg != NULL)
2804 			metaslab_group_activate(mg);
2805 	}
2806 
2807 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2808 
2809 	return (spa_vdev_state_exit(spa, vd, 0));
2810 }
2811 
2812 int
2813 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2814 {
2815 	int error;
2816 
2817 	mutex_enter(&spa->spa_vdev_top_lock);
2818 	error = vdev_offline_locked(spa, guid, flags);
2819 	mutex_exit(&spa->spa_vdev_top_lock);
2820 
2821 	return (error);
2822 }
2823 
2824 /*
2825  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2826  * vdev_offline(), we assume the spa config is locked.  We also clear all
2827  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2828  */
2829 void
2830 vdev_clear(spa_t *spa, vdev_t *vd)
2831 {
2832 	vdev_t *rvd = spa->spa_root_vdev;
2833 
2834 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2835 
2836 	if (vd == NULL)
2837 		vd = rvd;
2838 
2839 	vd->vdev_stat.vs_read_errors = 0;
2840 	vd->vdev_stat.vs_write_errors = 0;
2841 	vd->vdev_stat.vs_checksum_errors = 0;
2842 
2843 	for (int c = 0; c < vd->vdev_children; c++)
2844 		vdev_clear(spa, vd->vdev_child[c]);
2845 
2846 	/*
2847 	 * It makes no sense to "clear" an indirect vdev.
2848 	 */
2849 	if (!vdev_is_concrete(vd))
2850 		return;
2851 
2852 	/*
2853 	 * If we're in the FAULTED state or have experienced failed I/O, then
2854 	 * clear the persistent state and attempt to reopen the device.  We
2855 	 * also mark the vdev config dirty, so that the new faulted state is
2856 	 * written out to disk.
2857 	 */
2858 	if (vd->vdev_faulted || vd->vdev_degraded ||
2859 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2860 
2861 		/*
2862 		 * When reopening in reponse to a clear event, it may be due to
2863 		 * a fmadm repair request.  In this case, if the device is
2864 		 * still broken, we want to still post the ereport again.
2865 		 */
2866 		vd->vdev_forcefault = B_TRUE;
2867 
2868 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2869 		vd->vdev_cant_read = B_FALSE;
2870 		vd->vdev_cant_write = B_FALSE;
2871 
2872 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2873 
2874 		vd->vdev_forcefault = B_FALSE;
2875 
2876 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2877 			vdev_state_dirty(vd->vdev_top);
2878 
2879 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2880 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2881 
2882 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2883 	}
2884 
2885 	/*
2886 	 * When clearing a FMA-diagnosed fault, we always want to
2887 	 * unspare the device, as we assume that the original spare was
2888 	 * done in response to the FMA fault.
2889 	 */
2890 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2891 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2892 	    vd->vdev_parent->vdev_child[0] == vd)
2893 		vd->vdev_unspare = B_TRUE;
2894 }
2895 
2896 boolean_t
2897 vdev_is_dead(vdev_t *vd)
2898 {
2899 	/*
2900 	 * Holes and missing devices are always considered "dead".
2901 	 * This simplifies the code since we don't have to check for
2902 	 * these types of devices in the various code paths.
2903 	 * Instead we rely on the fact that we skip over dead devices
2904 	 * before issuing I/O to them.
2905 	 */
2906 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
2907 	    vd->vdev_ops == &vdev_hole_ops ||
2908 	    vd->vdev_ops == &vdev_missing_ops);
2909 }
2910 
2911 boolean_t
2912 vdev_readable(vdev_t *vd)
2913 {
2914 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2915 }
2916 
2917 boolean_t
2918 vdev_writeable(vdev_t *vd)
2919 {
2920 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
2921 	    vdev_is_concrete(vd));
2922 }
2923 
2924 boolean_t
2925 vdev_allocatable(vdev_t *vd)
2926 {
2927 	uint64_t state = vd->vdev_state;
2928 
2929 	/*
2930 	 * We currently allow allocations from vdevs which may be in the
2931 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2932 	 * fails to reopen then we'll catch it later when we're holding
2933 	 * the proper locks.  Note that we have to get the vdev state
2934 	 * in a local variable because although it changes atomically,
2935 	 * we're asking two separate questions about it.
2936 	 */
2937 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2938 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
2939 	    vd->vdev_mg->mg_initialized);
2940 }
2941 
2942 boolean_t
2943 vdev_accessible(vdev_t *vd, zio_t *zio)
2944 {
2945 	ASSERT(zio->io_vd == vd);
2946 
2947 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2948 		return (B_FALSE);
2949 
2950 	if (zio->io_type == ZIO_TYPE_READ)
2951 		return (!vd->vdev_cant_read);
2952 
2953 	if (zio->io_type == ZIO_TYPE_WRITE)
2954 		return (!vd->vdev_cant_write);
2955 
2956 	return (B_TRUE);
2957 }
2958 
2959 /*
2960  * Get statistics for the given vdev.
2961  */
2962 void
2963 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2964 {
2965 	spa_t *spa = vd->vdev_spa;
2966 	vdev_t *rvd = spa->spa_root_vdev;
2967 	vdev_t *tvd = vd->vdev_top;
2968 
2969 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2970 
2971 	mutex_enter(&vd->vdev_stat_lock);
2972 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2973 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2974 	vs->vs_state = vd->vdev_state;
2975 	vs->vs_rsize = vdev_get_min_asize(vd);
2976 	if (vd->vdev_ops->vdev_op_leaf)
2977 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2978 	/*
2979 	 * Report expandable space on top-level, non-auxillary devices only.
2980 	 * The expandable space is reported in terms of metaslab sized units
2981 	 * since that determines how much space the pool can expand.
2982 	 */
2983 	if (vd->vdev_aux == NULL && tvd != NULL) {
2984 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2985 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2986 	}
2987 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2988 	    vdev_is_concrete(vd)) {
2989 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2990 	}
2991 
2992 	/*
2993 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2994 	 * over all top-level vdevs (i.e. the direct children of the root).
2995 	 */
2996 	if (vd == rvd) {
2997 		for (int c = 0; c < rvd->vdev_children; c++) {
2998 			vdev_t *cvd = rvd->vdev_child[c];
2999 			vdev_stat_t *cvs = &cvd->vdev_stat;
3000 
3001 			for (int t = 0; t < ZIO_TYPES; t++) {
3002 				vs->vs_ops[t] += cvs->vs_ops[t];
3003 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3004 			}
3005 			cvs->vs_scan_removing = cvd->vdev_removing;
3006 		}
3007 	}
3008 	mutex_exit(&vd->vdev_stat_lock);
3009 }
3010 
3011 void
3012 vdev_clear_stats(vdev_t *vd)
3013 {
3014 	mutex_enter(&vd->vdev_stat_lock);
3015 	vd->vdev_stat.vs_space = 0;
3016 	vd->vdev_stat.vs_dspace = 0;
3017 	vd->vdev_stat.vs_alloc = 0;
3018 	mutex_exit(&vd->vdev_stat_lock);
3019 }
3020 
3021 void
3022 vdev_scan_stat_init(vdev_t *vd)
3023 {
3024 	vdev_stat_t *vs = &vd->vdev_stat;
3025 
3026 	for (int c = 0; c < vd->vdev_children; c++)
3027 		vdev_scan_stat_init(vd->vdev_child[c]);
3028 
3029 	mutex_enter(&vd->vdev_stat_lock);
3030 	vs->vs_scan_processed = 0;
3031 	mutex_exit(&vd->vdev_stat_lock);
3032 }
3033 
3034 void
3035 vdev_stat_update(zio_t *zio, uint64_t psize)
3036 {
3037 	spa_t *spa = zio->io_spa;
3038 	vdev_t *rvd = spa->spa_root_vdev;
3039 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3040 	vdev_t *pvd;
3041 	uint64_t txg = zio->io_txg;
3042 	vdev_stat_t *vs = &vd->vdev_stat;
3043 	zio_type_t type = zio->io_type;
3044 	int flags = zio->io_flags;
3045 
3046 	/*
3047 	 * If this i/o is a gang leader, it didn't do any actual work.
3048 	 */
3049 	if (zio->io_gang_tree)
3050 		return;
3051 
3052 	if (zio->io_error == 0) {
3053 		/*
3054 		 * If this is a root i/o, don't count it -- we've already
3055 		 * counted the top-level vdevs, and vdev_get_stats() will
3056 		 * aggregate them when asked.  This reduces contention on
3057 		 * the root vdev_stat_lock and implicitly handles blocks
3058 		 * that compress away to holes, for which there is no i/o.
3059 		 * (Holes never create vdev children, so all the counters
3060 		 * remain zero, which is what we want.)
3061 		 *
3062 		 * Note: this only applies to successful i/o (io_error == 0)
3063 		 * because unlike i/o counts, errors are not additive.
3064 		 * When reading a ditto block, for example, failure of
3065 		 * one top-level vdev does not imply a root-level error.
3066 		 */
3067 		if (vd == rvd)
3068 			return;
3069 
3070 		ASSERT(vd == zio->io_vd);
3071 
3072 		if (flags & ZIO_FLAG_IO_BYPASS)
3073 			return;
3074 
3075 		mutex_enter(&vd->vdev_stat_lock);
3076 
3077 		if (flags & ZIO_FLAG_IO_REPAIR) {
3078 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3079 				dsl_scan_phys_t *scn_phys =
3080 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3081 				uint64_t *processed = &scn_phys->scn_processed;
3082 
3083 				/* XXX cleanup? */
3084 				if (vd->vdev_ops->vdev_op_leaf)
3085 					atomic_add_64(processed, psize);
3086 				vs->vs_scan_processed += psize;
3087 			}
3088 
3089 			if (flags & ZIO_FLAG_SELF_HEAL)
3090 				vs->vs_self_healed += psize;
3091 		}
3092 
3093 		vs->vs_ops[type]++;
3094 		vs->vs_bytes[type] += psize;
3095 
3096 		mutex_exit(&vd->vdev_stat_lock);
3097 		return;
3098 	}
3099 
3100 	if (flags & ZIO_FLAG_SPECULATIVE)
3101 		return;
3102 
3103 	/*
3104 	 * If this is an I/O error that is going to be retried, then ignore the
3105 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3106 	 * hard errors, when in reality they can happen for any number of
3107 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3108 	 */
3109 	if (zio->io_error == EIO &&
3110 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3111 		return;
3112 
3113 	/*
3114 	 * Intent logs writes won't propagate their error to the root
3115 	 * I/O so don't mark these types of failures as pool-level
3116 	 * errors.
3117 	 */
3118 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3119 		return;
3120 
3121 	mutex_enter(&vd->vdev_stat_lock);
3122 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3123 		if (zio->io_error == ECKSUM)
3124 			vs->vs_checksum_errors++;
3125 		else
3126 			vs->vs_read_errors++;
3127 	}
3128 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3129 		vs->vs_write_errors++;
3130 	mutex_exit(&vd->vdev_stat_lock);
3131 
3132 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3133 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3134 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3135 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3136 	    spa->spa_claiming)) {
3137 		/*
3138 		 * This is either a normal write (not a repair), or it's
3139 		 * a repair induced by the scrub thread, or it's a repair
3140 		 * made by zil_claim() during spa_load() in the first txg.
3141 		 * In the normal case, we commit the DTL change in the same
3142 		 * txg as the block was born.  In the scrub-induced repair
3143 		 * case, we know that scrubs run in first-pass syncing context,
3144 		 * so we commit the DTL change in spa_syncing_txg(spa).
3145 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3146 		 *
3147 		 * We currently do not make DTL entries for failed spontaneous
3148 		 * self-healing writes triggered by normal (non-scrubbing)
3149 		 * reads, because we have no transactional context in which to
3150 		 * do so -- and it's not clear that it'd be desirable anyway.
3151 		 */
3152 		if (vd->vdev_ops->vdev_op_leaf) {
3153 			uint64_t commit_txg = txg;
3154 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3155 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3156 				ASSERT(spa_sync_pass(spa) == 1);
3157 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3158 				commit_txg = spa_syncing_txg(spa);
3159 			} else if (spa->spa_claiming) {
3160 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3161 				commit_txg = spa_first_txg(spa);
3162 			}
3163 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3164 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3165 				return;
3166 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3167 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3168 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3169 		}
3170 		if (vd != rvd)
3171 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3172 	}
3173 }
3174 
3175 /*
3176  * Update the in-core space usage stats for this vdev, its metaslab class,
3177  * and the root vdev.
3178  */
3179 void
3180 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3181     int64_t space_delta)
3182 {
3183 	int64_t dspace_delta = space_delta;
3184 	spa_t *spa = vd->vdev_spa;
3185 	vdev_t *rvd = spa->spa_root_vdev;
3186 	metaslab_group_t *mg = vd->vdev_mg;
3187 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3188 
3189 	ASSERT(vd == vd->vdev_top);
3190 
3191 	/*
3192 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3193 	 * factor.  We must calculate this here and not at the root vdev
3194 	 * because the root vdev's psize-to-asize is simply the max of its
3195 	 * childrens', thus not accurate enough for us.
3196 	 */
3197 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3198 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3199 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3200 	    vd->vdev_deflate_ratio;
3201 
3202 	mutex_enter(&vd->vdev_stat_lock);
3203 	vd->vdev_stat.vs_alloc += alloc_delta;
3204 	vd->vdev_stat.vs_space += space_delta;
3205 	vd->vdev_stat.vs_dspace += dspace_delta;
3206 	mutex_exit(&vd->vdev_stat_lock);
3207 
3208 	if (mc == spa_normal_class(spa)) {
3209 		mutex_enter(&rvd->vdev_stat_lock);
3210 		rvd->vdev_stat.vs_alloc += alloc_delta;
3211 		rvd->vdev_stat.vs_space += space_delta;
3212 		rvd->vdev_stat.vs_dspace += dspace_delta;
3213 		mutex_exit(&rvd->vdev_stat_lock);
3214 	}
3215 
3216 	if (mc != NULL) {
3217 		ASSERT(rvd == vd->vdev_parent);
3218 		ASSERT(vd->vdev_ms_count != 0);
3219 
3220 		metaslab_class_space_update(mc,
3221 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3222 	}
3223 }
3224 
3225 /*
3226  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3227  * so that it will be written out next time the vdev configuration is synced.
3228  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3229  */
3230 void
3231 vdev_config_dirty(vdev_t *vd)
3232 {
3233 	spa_t *spa = vd->vdev_spa;
3234 	vdev_t *rvd = spa->spa_root_vdev;
3235 	int c;
3236 
3237 	ASSERT(spa_writeable(spa));
3238 
3239 	/*
3240 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3241 	 * update the vdev config manually and set the sync flag.
3242 	 */
3243 	if (vd->vdev_aux != NULL) {
3244 		spa_aux_vdev_t *sav = vd->vdev_aux;
3245 		nvlist_t **aux;
3246 		uint_t naux;
3247 
3248 		for (c = 0; c < sav->sav_count; c++) {
3249 			if (sav->sav_vdevs[c] == vd)
3250 				break;
3251 		}
3252 
3253 		if (c == sav->sav_count) {
3254 			/*
3255 			 * We're being removed.  There's nothing more to do.
3256 			 */
3257 			ASSERT(sav->sav_sync == B_TRUE);
3258 			return;
3259 		}
3260 
3261 		sav->sav_sync = B_TRUE;
3262 
3263 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3264 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3265 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3266 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3267 		}
3268 
3269 		ASSERT(c < naux);
3270 
3271 		/*
3272 		 * Setting the nvlist in the middle if the array is a little
3273 		 * sketchy, but it will work.
3274 		 */
3275 		nvlist_free(aux[c]);
3276 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3277 
3278 		return;
3279 	}
3280 
3281 	/*
3282 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3283 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3284 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3285 	 * so this is sufficient to ensure mutual exclusion.
3286 	 */
3287 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3288 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3289 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3290 
3291 	if (vd == rvd) {
3292 		for (c = 0; c < rvd->vdev_children; c++)
3293 			vdev_config_dirty(rvd->vdev_child[c]);
3294 	} else {
3295 		ASSERT(vd == vd->vdev_top);
3296 
3297 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3298 		    vdev_is_concrete(vd)) {
3299 			list_insert_head(&spa->spa_config_dirty_list, vd);
3300 		}
3301 	}
3302 }
3303 
3304 void
3305 vdev_config_clean(vdev_t *vd)
3306 {
3307 	spa_t *spa = vd->vdev_spa;
3308 
3309 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3310 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3311 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3312 
3313 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3314 	list_remove(&spa->spa_config_dirty_list, vd);
3315 }
3316 
3317 /*
3318  * Mark a top-level vdev's state as dirty, so that the next pass of
3319  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3320  * the state changes from larger config changes because they require
3321  * much less locking, and are often needed for administrative actions.
3322  */
3323 void
3324 vdev_state_dirty(vdev_t *vd)
3325 {
3326 	spa_t *spa = vd->vdev_spa;
3327 
3328 	ASSERT(spa_writeable(spa));
3329 	ASSERT(vd == vd->vdev_top);
3330 
3331 	/*
3332 	 * The state list is protected by the SCL_STATE lock.  The caller
3333 	 * must either hold SCL_STATE as writer, or must be the sync thread
3334 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3335 	 * so this is sufficient to ensure mutual exclusion.
3336 	 */
3337 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3338 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3339 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3340 
3341 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3342 	    vdev_is_concrete(vd))
3343 		list_insert_head(&spa->spa_state_dirty_list, vd);
3344 }
3345 
3346 void
3347 vdev_state_clean(vdev_t *vd)
3348 {
3349 	spa_t *spa = vd->vdev_spa;
3350 
3351 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3352 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3353 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3354 
3355 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3356 	list_remove(&spa->spa_state_dirty_list, vd);
3357 }
3358 
3359 /*
3360  * Propagate vdev state up from children to parent.
3361  */
3362 void
3363 vdev_propagate_state(vdev_t *vd)
3364 {
3365 	spa_t *spa = vd->vdev_spa;
3366 	vdev_t *rvd = spa->spa_root_vdev;
3367 	int degraded = 0, faulted = 0;
3368 	int corrupted = 0;
3369 	vdev_t *child;
3370 
3371 	if (vd->vdev_children > 0) {
3372 		for (int c = 0; c < vd->vdev_children; c++) {
3373 			child = vd->vdev_child[c];
3374 
3375 			/*
3376 			 * Don't factor holes or indirect vdevs into the
3377 			 * decision.
3378 			 */
3379 			if (!vdev_is_concrete(child))
3380 				continue;
3381 
3382 			if (!vdev_readable(child) ||
3383 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3384 				/*
3385 				 * Root special: if there is a top-level log
3386 				 * device, treat the root vdev as if it were
3387 				 * degraded.
3388 				 */
3389 				if (child->vdev_islog && vd == rvd)
3390 					degraded++;
3391 				else
3392 					faulted++;
3393 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3394 				degraded++;
3395 			}
3396 
3397 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3398 				corrupted++;
3399 		}
3400 
3401 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3402 
3403 		/*
3404 		 * Root special: if there is a top-level vdev that cannot be
3405 		 * opened due to corrupted metadata, then propagate the root
3406 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3407 		 * replicas'.
3408 		 */
3409 		if (corrupted && vd == rvd &&
3410 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3411 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3412 			    VDEV_AUX_CORRUPT_DATA);
3413 	}
3414 
3415 	if (vd->vdev_parent)
3416 		vdev_propagate_state(vd->vdev_parent);
3417 }
3418 
3419 /*
3420  * Set a vdev's state.  If this is during an open, we don't update the parent
3421  * state, because we're in the process of opening children depth-first.
3422  * Otherwise, we propagate the change to the parent.
3423  *
3424  * If this routine places a device in a faulted state, an appropriate ereport is
3425  * generated.
3426  */
3427 void
3428 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3429 {
3430 	uint64_t save_state;
3431 	spa_t *spa = vd->vdev_spa;
3432 
3433 	if (state == vd->vdev_state) {
3434 		vd->vdev_stat.vs_aux = aux;
3435 		return;
3436 	}
3437 
3438 	save_state = vd->vdev_state;
3439 
3440 	vd->vdev_state = state;
3441 	vd->vdev_stat.vs_aux = aux;
3442 
3443 	/*
3444 	 * If we are setting the vdev state to anything but an open state, then
3445 	 * always close the underlying device unless the device has requested
3446 	 * a delayed close (i.e. we're about to remove or fault the device).
3447 	 * Otherwise, we keep accessible but invalid devices open forever.
3448 	 * We don't call vdev_close() itself, because that implies some extra
3449 	 * checks (offline, etc) that we don't want here.  This is limited to
3450 	 * leaf devices, because otherwise closing the device will affect other
3451 	 * children.
3452 	 */
3453 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3454 	    vd->vdev_ops->vdev_op_leaf)
3455 		vd->vdev_ops->vdev_op_close(vd);
3456 
3457 	/*
3458 	 * If we have brought this vdev back into service, we need
3459 	 * to notify fmd so that it can gracefully repair any outstanding
3460 	 * cases due to a missing device.  We do this in all cases, even those
3461 	 * that probably don't correlate to a repaired fault.  This is sure to
3462 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3463 	 * this is a transient state it's OK, as the retire agent will
3464 	 * double-check the state of the vdev before repairing it.
3465 	 */
3466 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3467 	    vd->vdev_prevstate != state)
3468 		zfs_post_state_change(spa, vd);
3469 
3470 	if (vd->vdev_removed &&
3471 	    state == VDEV_STATE_CANT_OPEN &&
3472 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3473 		/*
3474 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3475 		 * device was previously marked removed and someone attempted to
3476 		 * reopen it.  If this failed due to a nonexistent device, then
3477 		 * keep the device in the REMOVED state.  We also let this be if
3478 		 * it is one of our special test online cases, which is only
3479 		 * attempting to online the device and shouldn't generate an FMA
3480 		 * fault.
3481 		 */
3482 		vd->vdev_state = VDEV_STATE_REMOVED;
3483 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3484 	} else if (state == VDEV_STATE_REMOVED) {
3485 		vd->vdev_removed = B_TRUE;
3486 	} else if (state == VDEV_STATE_CANT_OPEN) {
3487 		/*
3488 		 * If we fail to open a vdev during an import or recovery, we
3489 		 * mark it as "not available", which signifies that it was
3490 		 * never there to begin with.  Failure to open such a device
3491 		 * is not considered an error.
3492 		 */
3493 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3494 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3495 		    vd->vdev_ops->vdev_op_leaf)
3496 			vd->vdev_not_present = 1;
3497 
3498 		/*
3499 		 * Post the appropriate ereport.  If the 'prevstate' field is
3500 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3501 		 * that this is part of a vdev_reopen().  In this case, we don't
3502 		 * want to post the ereport if the device was already in the
3503 		 * CANT_OPEN state beforehand.
3504 		 *
3505 		 * If the 'checkremove' flag is set, then this is an attempt to
3506 		 * online the device in response to an insertion event.  If we
3507 		 * hit this case, then we have detected an insertion event for a
3508 		 * faulted or offline device that wasn't in the removed state.
3509 		 * In this scenario, we don't post an ereport because we are
3510 		 * about to replace the device, or attempt an online with
3511 		 * vdev_forcefault, which will generate the fault for us.
3512 		 */
3513 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3514 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3515 		    vd != spa->spa_root_vdev) {
3516 			const char *class;
3517 
3518 			switch (aux) {
3519 			case VDEV_AUX_OPEN_FAILED:
3520 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3521 				break;
3522 			case VDEV_AUX_CORRUPT_DATA:
3523 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3524 				break;
3525 			case VDEV_AUX_NO_REPLICAS:
3526 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3527 				break;
3528 			case VDEV_AUX_BAD_GUID_SUM:
3529 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3530 				break;
3531 			case VDEV_AUX_TOO_SMALL:
3532 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3533 				break;
3534 			case VDEV_AUX_BAD_LABEL:
3535 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3536 				break;
3537 			default:
3538 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3539 			}
3540 
3541 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3542 		}
3543 
3544 		/* Erase any notion of persistent removed state */
3545 		vd->vdev_removed = B_FALSE;
3546 	} else {
3547 		vd->vdev_removed = B_FALSE;
3548 	}
3549 
3550 	if (!isopen && vd->vdev_parent)
3551 		vdev_propagate_state(vd->vdev_parent);
3552 }
3553 
3554 /*
3555  * Check the vdev configuration to ensure that it's capable of supporting
3556  * a root pool. We do not support partial configuration.
3557  * In addition, only a single top-level vdev is allowed.
3558  */
3559 boolean_t
3560 vdev_is_bootable(vdev_t *vd)
3561 {
3562 	if (!vd->vdev_ops->vdev_op_leaf) {
3563 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3564 
3565 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3566 		    vd->vdev_children > 1) {
3567 			return (B_FALSE);
3568 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3569 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3570 			return (B_FALSE);
3571 		}
3572 	}
3573 
3574 	for (int c = 0; c < vd->vdev_children; c++) {
3575 		if (!vdev_is_bootable(vd->vdev_child[c]))
3576 			return (B_FALSE);
3577 	}
3578 	return (B_TRUE);
3579 }
3580 
3581 boolean_t
3582 vdev_is_concrete(vdev_t *vd)
3583 {
3584 	vdev_ops_t *ops = vd->vdev_ops;
3585 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3586 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3587 		return (B_FALSE);
3588 	} else {
3589 		return (B_TRUE);
3590 	}
3591 }
3592 
3593 /*
3594  * Load the state from the original vdev tree (ovd) which
3595  * we've retrieved from the MOS config object. If the original
3596  * vdev was offline or faulted then we transfer that state to the
3597  * device in the current vdev tree (nvd).
3598  */
3599 void
3600 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3601 {
3602 	spa_t *spa = nvd->vdev_spa;
3603 
3604 	ASSERT(nvd->vdev_top->vdev_islog);
3605 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3606 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3607 
3608 	for (int c = 0; c < nvd->vdev_children; c++)
3609 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3610 
3611 	if (nvd->vdev_ops->vdev_op_leaf) {
3612 		/*
3613 		 * Restore the persistent vdev state
3614 		 */
3615 		nvd->vdev_offline = ovd->vdev_offline;
3616 		nvd->vdev_faulted = ovd->vdev_faulted;
3617 		nvd->vdev_degraded = ovd->vdev_degraded;
3618 		nvd->vdev_removed = ovd->vdev_removed;
3619 	}
3620 }
3621 
3622 /*
3623  * Determine if a log device has valid content.  If the vdev was
3624  * removed or faulted in the MOS config then we know that
3625  * the content on the log device has already been written to the pool.
3626  */
3627 boolean_t
3628 vdev_log_state_valid(vdev_t *vd)
3629 {
3630 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3631 	    !vd->vdev_removed)
3632 		return (B_TRUE);
3633 
3634 	for (int c = 0; c < vd->vdev_children; c++)
3635 		if (vdev_log_state_valid(vd->vdev_child[c]))
3636 			return (B_TRUE);
3637 
3638 	return (B_FALSE);
3639 }
3640 
3641 /*
3642  * Expand a vdev if possible.
3643  */
3644 void
3645 vdev_expand(vdev_t *vd, uint64_t txg)
3646 {
3647 	ASSERT(vd->vdev_top == vd);
3648 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3649 
3650 	vdev_set_deflate_ratio(vd);
3651 
3652 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3653 	    vdev_is_concrete(vd)) {
3654 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3655 		vdev_config_dirty(vd);
3656 	}
3657 }
3658 
3659 /*
3660  * Split a vdev.
3661  */
3662 void
3663 vdev_split(vdev_t *vd)
3664 {
3665 	vdev_t *cvd, *pvd = vd->vdev_parent;
3666 
3667 	vdev_remove_child(pvd, vd);
3668 	vdev_compact_children(pvd);
3669 
3670 	cvd = pvd->vdev_child[0];
3671 	if (pvd->vdev_children == 1) {
3672 		vdev_remove_parent(cvd);
3673 		cvd->vdev_splitting = B_TRUE;
3674 	}
3675 	vdev_propagate_state(cvd);
3676 }
3677 
3678 void
3679 vdev_deadman(vdev_t *vd)
3680 {
3681 	for (int c = 0; c < vd->vdev_children; c++) {
3682 		vdev_t *cvd = vd->vdev_child[c];
3683 
3684 		vdev_deadman(cvd);
3685 	}
3686 
3687 	if (vd->vdev_ops->vdev_op_leaf) {
3688 		vdev_queue_t *vq = &vd->vdev_queue;
3689 
3690 		mutex_enter(&vq->vq_lock);
3691 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3692 			spa_t *spa = vd->vdev_spa;
3693 			zio_t *fio;
3694 			uint64_t delta;
3695 
3696 			/*
3697 			 * Look at the head of all the pending queues,
3698 			 * if any I/O has been outstanding for longer than
3699 			 * the spa_deadman_synctime we panic the system.
3700 			 */
3701 			fio = avl_first(&vq->vq_active_tree);
3702 			delta = gethrtime() - fio->io_timestamp;
3703 			if (delta > spa_deadman_synctime(spa)) {
3704 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
3705 				    "%lluns, delta %lluns, last io %lluns",
3706 				    fio->io_timestamp, (u_longlong_t)delta,
3707 				    vq->vq_io_complete_ts);
3708 				fm_panic("I/O to pool '%s' appears to be "
3709 				    "hung.", spa_name(spa));
3710 			}
3711 		}
3712 		mutex_exit(&vq->vq_lock);
3713 	}
3714 }
3715