xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 842eec28b3c46588c5c38236a54676d763329c1d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_spare_ops,
53 	&vdev_disk_ops,
54 	&vdev_file_ops,
55 	&vdev_missing_ops,
56 	NULL
57 };
58 
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
61 
62 /*
63  * Given a vdev type, return the appropriate ops vector.
64  */
65 static vdev_ops_t *
66 vdev_getops(const char *type)
67 {
68 	vdev_ops_t *ops, **opspp;
69 
70 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71 		if (strcmp(ops->vdev_op_type, type) == 0)
72 			break;
73 
74 	return (ops);
75 }
76 
77 /*
78  * Default asize function: return the MAX of psize with the asize of
79  * all children.  This is what's used by anything other than RAID-Z.
80  */
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
83 {
84 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85 	uint64_t csize;
86 	uint64_t c;
87 
88 	for (c = 0; c < vd->vdev_children; c++) {
89 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 		asize = MAX(asize, csize);
91 	}
92 
93 	return (asize);
94 }
95 
96 /*
97  * Get the replaceable or attachable device size.
98  * If the parent is a mirror or raidz, the replaceable size is the minimum
99  * psize of all its children. For the rest, just return our own psize.
100  *
101  * e.g.
102  *			psize	rsize
103  * root			-	-
104  *	mirror/raidz	-	-
105  *	    disk1	20g	20g
106  *	    disk2 	40g	20g
107  *	disk3 		80g	80g
108  */
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
111 {
112 	vdev_t *pvd, *cvd;
113 	uint64_t c, rsize;
114 
115 	pvd = vd->vdev_parent;
116 
117 	/*
118 	 * If our parent is NULL or the root, just return our own psize.
119 	 */
120 	if (pvd == NULL || pvd->vdev_parent == NULL)
121 		return (vd->vdev_psize);
122 
123 	rsize = 0;
124 
125 	for (c = 0; c < pvd->vdev_children; c++) {
126 		cvd = pvd->vdev_child[c];
127 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
128 	}
129 
130 	return (rsize);
131 }
132 
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
135 {
136 	vdev_t *rvd = spa->spa_root_vdev;
137 
138 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
139 
140 	if (vdev < rvd->vdev_children) {
141 		ASSERT(rvd->vdev_child[vdev] != NULL);
142 		return (rvd->vdev_child[vdev]);
143 	}
144 
145 	return (NULL);
146 }
147 
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151 	int c;
152 	vdev_t *mvd;
153 
154 	if (vd->vdev_guid == guid)
155 		return (vd);
156 
157 	for (c = 0; c < vd->vdev_children; c++)
158 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159 		    NULL)
160 			return (mvd);
161 
162 	return (NULL);
163 }
164 
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168 	size_t oldsize, newsize;
169 	uint64_t id = cvd->vdev_id;
170 	vdev_t **newchild;
171 
172 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173 	ASSERT(cvd->vdev_parent == NULL);
174 
175 	cvd->vdev_parent = pvd;
176 
177 	if (pvd == NULL)
178 		return;
179 
180 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181 
182 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
183 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184 	newsize = pvd->vdev_children * sizeof (vdev_t *);
185 
186 	newchild = kmem_zalloc(newsize, KM_SLEEP);
187 	if (pvd->vdev_child != NULL) {
188 		bcopy(pvd->vdev_child, newchild, oldsize);
189 		kmem_free(pvd->vdev_child, oldsize);
190 	}
191 
192 	pvd->vdev_child = newchild;
193 	pvd->vdev_child[id] = cvd;
194 
195 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197 
198 	/*
199 	 * Walk up all ancestors to update guid sum.
200 	 */
201 	for (; pvd != NULL; pvd = pvd->vdev_parent)
202 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203 
204 	if (cvd->vdev_ops->vdev_op_leaf)
205 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207 
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211 	int c;
212 	uint_t id = cvd->vdev_id;
213 
214 	ASSERT(cvd->vdev_parent == pvd);
215 
216 	if (pvd == NULL)
217 		return;
218 
219 	ASSERT(id < pvd->vdev_children);
220 	ASSERT(pvd->vdev_child[id] == cvd);
221 
222 	pvd->vdev_child[id] = NULL;
223 	cvd->vdev_parent = NULL;
224 
225 	for (c = 0; c < pvd->vdev_children; c++)
226 		if (pvd->vdev_child[c])
227 			break;
228 
229 	if (c == pvd->vdev_children) {
230 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231 		pvd->vdev_child = NULL;
232 		pvd->vdev_children = 0;
233 	}
234 
235 	/*
236 	 * Walk up all ancestors to update guid sum.
237 	 */
238 	for (; pvd != NULL; pvd = pvd->vdev_parent)
239 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240 
241 	if (cvd->vdev_ops->vdev_op_leaf)
242 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244 
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251 	vdev_t **newchild, *cvd;
252 	int oldc = pvd->vdev_children;
253 	int newc, c;
254 
255 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
256 
257 	for (c = newc = 0; c < oldc; c++)
258 		if (pvd->vdev_child[c])
259 			newc++;
260 
261 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262 
263 	for (c = newc = 0; c < oldc; c++) {
264 		if ((cvd = pvd->vdev_child[c]) != NULL) {
265 			newchild[newc] = cvd;
266 			cvd->vdev_id = newc++;
267 		}
268 	}
269 
270 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271 	pvd->vdev_child = newchild;
272 	pvd->vdev_children = newc;
273 }
274 
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281 	vdev_t *vd;
282 
283 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284 
285 	if (spa->spa_root_vdev == NULL) {
286 		ASSERT(ops == &vdev_root_ops);
287 		spa->spa_root_vdev = vd;
288 	}
289 
290 	if (guid == 0) {
291 		if (spa->spa_root_vdev == vd) {
292 			/*
293 			 * The root vdev's guid will also be the pool guid,
294 			 * which must be unique among all pools.
295 			 */
296 			while (guid == 0 || spa_guid_exists(guid, 0))
297 				guid = spa_get_random(-1ULL);
298 		} else {
299 			/*
300 			 * Any other vdev's guid must be unique within the pool.
301 			 */
302 			while (guid == 0 ||
303 			    spa_guid_exists(spa_guid(spa), guid))
304 				guid = spa_get_random(-1ULL);
305 		}
306 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307 	}
308 
309 	vd->vdev_spa = spa;
310 	vd->vdev_id = id;
311 	vd->vdev_guid = guid;
312 	vd->vdev_guid_sum = guid;
313 	vd->vdev_ops = ops;
314 	vd->vdev_state = VDEV_STATE_CLOSED;
315 
316 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319 	for (int t = 0; t < DTL_TYPES; t++) {
320 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
321 		    &vd->vdev_dtl_lock);
322 	}
323 	txg_list_create(&vd->vdev_ms_list,
324 	    offsetof(struct metaslab, ms_txg_node));
325 	txg_list_create(&vd->vdev_dtl_list,
326 	    offsetof(struct vdev, vdev_dtl_node));
327 	vd->vdev_stat.vs_timestamp = gethrtime();
328 	vdev_queue_init(vd);
329 	vdev_cache_init(vd);
330 
331 	return (vd);
332 }
333 
334 /*
335  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
336  * creating a new vdev or loading an existing one - the behavior is slightly
337  * different for each case.
338  */
339 int
340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
341     int alloctype)
342 {
343 	vdev_ops_t *ops;
344 	char *type;
345 	uint64_t guid = 0, islog, nparity;
346 	vdev_t *vd;
347 
348 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
349 
350 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
351 		return (EINVAL);
352 
353 	if ((ops = vdev_getops(type)) == NULL)
354 		return (EINVAL);
355 
356 	/*
357 	 * If this is a load, get the vdev guid from the nvlist.
358 	 * Otherwise, vdev_alloc_common() will generate one for us.
359 	 */
360 	if (alloctype == VDEV_ALLOC_LOAD) {
361 		uint64_t label_id;
362 
363 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
364 		    label_id != id)
365 			return (EINVAL);
366 
367 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
368 			return (EINVAL);
369 	} else if (alloctype == VDEV_ALLOC_SPARE) {
370 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371 			return (EINVAL);
372 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 			return (EINVAL);
375 	}
376 
377 	/*
378 	 * The first allocated vdev must be of type 'root'.
379 	 */
380 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
381 		return (EINVAL);
382 
383 	/*
384 	 * Determine whether we're a log vdev.
385 	 */
386 	islog = 0;
387 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
388 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
389 		return (ENOTSUP);
390 
391 	/*
392 	 * Set the nparity property for RAID-Z vdevs.
393 	 */
394 	nparity = -1ULL;
395 	if (ops == &vdev_raidz_ops) {
396 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
397 		    &nparity) == 0) {
398 			/*
399 			 * Currently, we can only support 2 parity devices.
400 			 */
401 			if (nparity == 0 || nparity > 2)
402 				return (EINVAL);
403 			/*
404 			 * Older versions can only support 1 parity device.
405 			 */
406 			if (nparity == 2 &&
407 			    spa_version(spa) < SPA_VERSION_RAID6)
408 				return (ENOTSUP);
409 		} else {
410 			/*
411 			 * We require the parity to be specified for SPAs that
412 			 * support multiple parity levels.
413 			 */
414 			if (spa_version(spa) >= SPA_VERSION_RAID6)
415 				return (EINVAL);
416 			/*
417 			 * Otherwise, we default to 1 parity device for RAID-Z.
418 			 */
419 			nparity = 1;
420 		}
421 	} else {
422 		nparity = 0;
423 	}
424 	ASSERT(nparity != -1ULL);
425 
426 	vd = vdev_alloc_common(spa, id, guid, ops);
427 
428 	vd->vdev_islog = islog;
429 	vd->vdev_nparity = nparity;
430 
431 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
432 		vd->vdev_path = spa_strdup(vd->vdev_path);
433 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
434 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
435 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
436 	    &vd->vdev_physpath) == 0)
437 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
438 
439 	/*
440 	 * Set the whole_disk property.  If it's not specified, leave the value
441 	 * as -1.
442 	 */
443 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
444 	    &vd->vdev_wholedisk) != 0)
445 		vd->vdev_wholedisk = -1ULL;
446 
447 	/*
448 	 * Look for the 'not present' flag.  This will only be set if the device
449 	 * was not present at the time of import.
450 	 */
451 	if (!spa->spa_import_faulted)
452 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
453 		    &vd->vdev_not_present);
454 
455 	/*
456 	 * Get the alignment requirement.
457 	 */
458 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
459 
460 	/*
461 	 * If we're a top-level vdev, try to load the allocation parameters.
462 	 */
463 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
464 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
465 		    &vd->vdev_ms_array);
466 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
467 		    &vd->vdev_ms_shift);
468 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
469 		    &vd->vdev_asize);
470 	}
471 
472 	/*
473 	 * If we're a leaf vdev, try to load the DTL object and other state.
474 	 */
475 	if (vd->vdev_ops->vdev_op_leaf &&
476 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
477 		if (alloctype == VDEV_ALLOC_LOAD) {
478 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
479 			    &vd->vdev_dtl_smo.smo_object);
480 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
481 			    &vd->vdev_unspare);
482 		}
483 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
484 		    &vd->vdev_offline);
485 
486 		/*
487 		 * When importing a pool, we want to ignore the persistent fault
488 		 * state, as the diagnosis made on another system may not be
489 		 * valid in the current context.
490 		 */
491 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
492 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
493 			    &vd->vdev_faulted);
494 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
495 			    &vd->vdev_degraded);
496 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
497 			    &vd->vdev_removed);
498 		}
499 	}
500 
501 	/*
502 	 * Add ourselves to the parent's list of children.
503 	 */
504 	vdev_add_child(parent, vd);
505 
506 	*vdp = vd;
507 
508 	return (0);
509 }
510 
511 void
512 vdev_free(vdev_t *vd)
513 {
514 	int c;
515 	spa_t *spa = vd->vdev_spa;
516 
517 	/*
518 	 * vdev_free() implies closing the vdev first.  This is simpler than
519 	 * trying to ensure complicated semantics for all callers.
520 	 */
521 	vdev_close(vd);
522 
523 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
524 
525 	/*
526 	 * Free all children.
527 	 */
528 	for (c = 0; c < vd->vdev_children; c++)
529 		vdev_free(vd->vdev_child[c]);
530 
531 	ASSERT(vd->vdev_child == NULL);
532 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533 
534 	/*
535 	 * Discard allocation state.
536 	 */
537 	if (vd == vd->vdev_top)
538 		vdev_metaslab_fini(vd);
539 
540 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
541 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543 
544 	/*
545 	 * Remove this vdev from its parent's child list.
546 	 */
547 	vdev_remove_child(vd->vdev_parent, vd);
548 
549 	ASSERT(vd->vdev_parent == NULL);
550 
551 	/*
552 	 * Clean up vdev structure.
553 	 */
554 	vdev_queue_fini(vd);
555 	vdev_cache_fini(vd);
556 
557 	if (vd->vdev_path)
558 		spa_strfree(vd->vdev_path);
559 	if (vd->vdev_devid)
560 		spa_strfree(vd->vdev_devid);
561 	if (vd->vdev_physpath)
562 		spa_strfree(vd->vdev_physpath);
563 
564 	if (vd->vdev_isspare)
565 		spa_spare_remove(vd);
566 	if (vd->vdev_isl2cache)
567 		spa_l2cache_remove(vd);
568 
569 	txg_list_destroy(&vd->vdev_ms_list);
570 	txg_list_destroy(&vd->vdev_dtl_list);
571 
572 	mutex_enter(&vd->vdev_dtl_lock);
573 	for (int t = 0; t < DTL_TYPES; t++) {
574 		space_map_unload(&vd->vdev_dtl[t]);
575 		space_map_destroy(&vd->vdev_dtl[t]);
576 	}
577 	mutex_exit(&vd->vdev_dtl_lock);
578 
579 	mutex_destroy(&vd->vdev_dtl_lock);
580 	mutex_destroy(&vd->vdev_stat_lock);
581 	mutex_destroy(&vd->vdev_probe_lock);
582 
583 	if (vd == spa->spa_root_vdev)
584 		spa->spa_root_vdev = NULL;
585 
586 	kmem_free(vd, sizeof (vdev_t));
587 }
588 
589 /*
590  * Transfer top-level vdev state from svd to tvd.
591  */
592 static void
593 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
594 {
595 	spa_t *spa = svd->vdev_spa;
596 	metaslab_t *msp;
597 	vdev_t *vd;
598 	int t;
599 
600 	ASSERT(tvd == tvd->vdev_top);
601 
602 	tvd->vdev_ms_array = svd->vdev_ms_array;
603 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
604 	tvd->vdev_ms_count = svd->vdev_ms_count;
605 
606 	svd->vdev_ms_array = 0;
607 	svd->vdev_ms_shift = 0;
608 	svd->vdev_ms_count = 0;
609 
610 	tvd->vdev_mg = svd->vdev_mg;
611 	tvd->vdev_ms = svd->vdev_ms;
612 
613 	svd->vdev_mg = NULL;
614 	svd->vdev_ms = NULL;
615 
616 	if (tvd->vdev_mg != NULL)
617 		tvd->vdev_mg->mg_vd = tvd;
618 
619 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
620 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
621 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
622 
623 	svd->vdev_stat.vs_alloc = 0;
624 	svd->vdev_stat.vs_space = 0;
625 	svd->vdev_stat.vs_dspace = 0;
626 
627 	for (t = 0; t < TXG_SIZE; t++) {
628 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
629 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
630 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
631 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
632 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
633 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
634 	}
635 
636 	if (list_link_active(&svd->vdev_config_dirty_node)) {
637 		vdev_config_clean(svd);
638 		vdev_config_dirty(tvd);
639 	}
640 
641 	if (list_link_active(&svd->vdev_state_dirty_node)) {
642 		vdev_state_clean(svd);
643 		vdev_state_dirty(tvd);
644 	}
645 
646 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
647 	svd->vdev_deflate_ratio = 0;
648 
649 	tvd->vdev_islog = svd->vdev_islog;
650 	svd->vdev_islog = 0;
651 }
652 
653 static void
654 vdev_top_update(vdev_t *tvd, vdev_t *vd)
655 {
656 	int c;
657 
658 	if (vd == NULL)
659 		return;
660 
661 	vd->vdev_top = tvd;
662 
663 	for (c = 0; c < vd->vdev_children; c++)
664 		vdev_top_update(tvd, vd->vdev_child[c]);
665 }
666 
667 /*
668  * Add a mirror/replacing vdev above an existing vdev.
669  */
670 vdev_t *
671 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
672 {
673 	spa_t *spa = cvd->vdev_spa;
674 	vdev_t *pvd = cvd->vdev_parent;
675 	vdev_t *mvd;
676 
677 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
678 
679 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
680 
681 	mvd->vdev_asize = cvd->vdev_asize;
682 	mvd->vdev_ashift = cvd->vdev_ashift;
683 	mvd->vdev_state = cvd->vdev_state;
684 
685 	vdev_remove_child(pvd, cvd);
686 	vdev_add_child(pvd, mvd);
687 	cvd->vdev_id = mvd->vdev_children;
688 	vdev_add_child(mvd, cvd);
689 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
690 
691 	if (mvd == mvd->vdev_top)
692 		vdev_top_transfer(cvd, mvd);
693 
694 	return (mvd);
695 }
696 
697 /*
698  * Remove a 1-way mirror/replacing vdev from the tree.
699  */
700 void
701 vdev_remove_parent(vdev_t *cvd)
702 {
703 	vdev_t *mvd = cvd->vdev_parent;
704 	vdev_t *pvd = mvd->vdev_parent;
705 
706 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
707 
708 	ASSERT(mvd->vdev_children == 1);
709 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
710 	    mvd->vdev_ops == &vdev_replacing_ops ||
711 	    mvd->vdev_ops == &vdev_spare_ops);
712 	cvd->vdev_ashift = mvd->vdev_ashift;
713 
714 	vdev_remove_child(mvd, cvd);
715 	vdev_remove_child(pvd, mvd);
716 
717 	/*
718 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
719 	 * Otherwise, we could have detached an offline device, and when we
720 	 * go to import the pool we'll think we have two top-level vdevs,
721 	 * instead of a different version of the same top-level vdev.
722 	 */
723 	if (mvd->vdev_top == mvd) {
724 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
725 		cvd->vdev_guid += guid_delta;
726 		cvd->vdev_guid_sum += guid_delta;
727 	}
728 	cvd->vdev_id = mvd->vdev_id;
729 	vdev_add_child(pvd, cvd);
730 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
731 
732 	if (cvd == cvd->vdev_top)
733 		vdev_top_transfer(mvd, cvd);
734 
735 	ASSERT(mvd->vdev_children == 0);
736 	vdev_free(mvd);
737 }
738 
739 int
740 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
741 {
742 	spa_t *spa = vd->vdev_spa;
743 	objset_t *mos = spa->spa_meta_objset;
744 	metaslab_class_t *mc;
745 	uint64_t m;
746 	uint64_t oldc = vd->vdev_ms_count;
747 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
748 	metaslab_t **mspp;
749 	int error;
750 
751 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
752 		return (0);
753 
754 	ASSERT(oldc <= newc);
755 
756 	if (vd->vdev_islog)
757 		mc = spa->spa_log_class;
758 	else
759 		mc = spa->spa_normal_class;
760 
761 	if (vd->vdev_mg == NULL)
762 		vd->vdev_mg = metaslab_group_create(mc, vd);
763 
764 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
765 
766 	if (oldc != 0) {
767 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
768 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
769 	}
770 
771 	vd->vdev_ms = mspp;
772 	vd->vdev_ms_count = newc;
773 
774 	for (m = oldc; m < newc; m++) {
775 		space_map_obj_t smo = { 0, 0, 0 };
776 		if (txg == 0) {
777 			uint64_t object = 0;
778 			error = dmu_read(mos, vd->vdev_ms_array,
779 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
780 			if (error)
781 				return (error);
782 			if (object != 0) {
783 				dmu_buf_t *db;
784 				error = dmu_bonus_hold(mos, object, FTAG, &db);
785 				if (error)
786 					return (error);
787 				ASSERT3U(db->db_size, >=, sizeof (smo));
788 				bcopy(db->db_data, &smo, sizeof (smo));
789 				ASSERT3U(smo.smo_object, ==, object);
790 				dmu_buf_rele(db, FTAG);
791 			}
792 		}
793 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
794 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
795 	}
796 
797 	return (0);
798 }
799 
800 void
801 vdev_metaslab_fini(vdev_t *vd)
802 {
803 	uint64_t m;
804 	uint64_t count = vd->vdev_ms_count;
805 
806 	if (vd->vdev_ms != NULL) {
807 		for (m = 0; m < count; m++)
808 			if (vd->vdev_ms[m] != NULL)
809 				metaslab_fini(vd->vdev_ms[m]);
810 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
811 		vd->vdev_ms = NULL;
812 	}
813 }
814 
815 typedef struct vdev_probe_stats {
816 	boolean_t	vps_readable;
817 	boolean_t	vps_writeable;
818 	int		vps_flags;
819 } vdev_probe_stats_t;
820 
821 static void
822 vdev_probe_done(zio_t *zio)
823 {
824 	spa_t *spa = zio->io_spa;
825 	vdev_t *vd = zio->io_vd;
826 	vdev_probe_stats_t *vps = zio->io_private;
827 
828 	ASSERT(vd->vdev_probe_zio != NULL);
829 
830 	if (zio->io_type == ZIO_TYPE_READ) {
831 		if (zio->io_error == 0)
832 			vps->vps_readable = 1;
833 		if (zio->io_error == 0 && spa_writeable(spa)) {
834 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
835 			    zio->io_offset, zio->io_size, zio->io_data,
836 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
837 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
838 		} else {
839 			zio_buf_free(zio->io_data, zio->io_size);
840 		}
841 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
842 		if (zio->io_error == 0)
843 			vps->vps_writeable = 1;
844 		zio_buf_free(zio->io_data, zio->io_size);
845 	} else if (zio->io_type == ZIO_TYPE_NULL) {
846 		zio_t *pio;
847 
848 		vd->vdev_cant_read |= !vps->vps_readable;
849 		vd->vdev_cant_write |= !vps->vps_writeable;
850 
851 		if (vdev_readable(vd) &&
852 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
853 			zio->io_error = 0;
854 		} else {
855 			ASSERT(zio->io_error != 0);
856 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
857 			    spa, vd, NULL, 0, 0);
858 			zio->io_error = ENXIO;
859 		}
860 
861 		mutex_enter(&vd->vdev_probe_lock);
862 		ASSERT(vd->vdev_probe_zio == zio);
863 		vd->vdev_probe_zio = NULL;
864 		mutex_exit(&vd->vdev_probe_lock);
865 
866 		while ((pio = zio_walk_parents(zio)) != NULL)
867 			if (!vdev_accessible(vd, pio))
868 				pio->io_error = ENXIO;
869 
870 		kmem_free(vps, sizeof (*vps));
871 	}
872 }
873 
874 /*
875  * Determine whether this device is accessible by reading and writing
876  * to several known locations: the pad regions of each vdev label
877  * but the first (which we leave alone in case it contains a VTOC).
878  */
879 zio_t *
880 vdev_probe(vdev_t *vd, zio_t *zio)
881 {
882 	spa_t *spa = vd->vdev_spa;
883 	vdev_probe_stats_t *vps = NULL;
884 	zio_t *pio;
885 
886 	ASSERT(vd->vdev_ops->vdev_op_leaf);
887 
888 	/*
889 	 * Don't probe the probe.
890 	 */
891 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
892 		return (NULL);
893 
894 	/*
895 	 * To prevent 'probe storms' when a device fails, we create
896 	 * just one probe i/o at a time.  All zios that want to probe
897 	 * this vdev will become parents of the probe io.
898 	 */
899 	mutex_enter(&vd->vdev_probe_lock);
900 
901 	if ((pio = vd->vdev_probe_zio) == NULL) {
902 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
903 
904 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
905 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
906 		    ZIO_FLAG_DONT_RETRY;
907 
908 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
909 			/*
910 			 * vdev_cant_read and vdev_cant_write can only
911 			 * transition from TRUE to FALSE when we have the
912 			 * SCL_ZIO lock as writer; otherwise they can only
913 			 * transition from FALSE to TRUE.  This ensures that
914 			 * any zio looking at these values can assume that
915 			 * failures persist for the life of the I/O.  That's
916 			 * important because when a device has intermittent
917 			 * connectivity problems, we want to ensure that
918 			 * they're ascribed to the device (ENXIO) and not
919 			 * the zio (EIO).
920 			 *
921 			 * Since we hold SCL_ZIO as writer here, clear both
922 			 * values so the probe can reevaluate from first
923 			 * principles.
924 			 */
925 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
926 			vd->vdev_cant_read = B_FALSE;
927 			vd->vdev_cant_write = B_FALSE;
928 		}
929 
930 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
931 		    vdev_probe_done, vps,
932 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
933 
934 		if (zio != NULL) {
935 			vd->vdev_probe_wanted = B_TRUE;
936 			spa_async_request(spa, SPA_ASYNC_PROBE);
937 		}
938 	}
939 
940 	if (zio != NULL)
941 		zio_add_child(zio, pio);
942 
943 	mutex_exit(&vd->vdev_probe_lock);
944 
945 	if (vps == NULL) {
946 		ASSERT(zio != NULL);
947 		return (NULL);
948 	}
949 
950 	for (int l = 1; l < VDEV_LABELS; l++) {
951 		zio_nowait(zio_read_phys(pio, vd,
952 		    vdev_label_offset(vd->vdev_psize, l,
953 		    offsetof(vdev_label_t, vl_pad2)),
954 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
955 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
956 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
957 	}
958 
959 	if (zio == NULL)
960 		return (pio);
961 
962 	zio_nowait(pio);
963 	return (NULL);
964 }
965 
966 /*
967  * Prepare a virtual device for access.
968  */
969 int
970 vdev_open(vdev_t *vd)
971 {
972 	spa_t *spa = vd->vdev_spa;
973 	int error;
974 	int c;
975 	uint64_t osize = 0;
976 	uint64_t asize, psize;
977 	uint64_t ashift = 0;
978 
979 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
980 
981 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
982 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
983 	    vd->vdev_state == VDEV_STATE_OFFLINE);
984 
985 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
986 
987 	if (!vd->vdev_removed && vd->vdev_faulted) {
988 		ASSERT(vd->vdev_children == 0);
989 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
990 		    VDEV_AUX_ERR_EXCEEDED);
991 		return (ENXIO);
992 	} else if (vd->vdev_offline) {
993 		ASSERT(vd->vdev_children == 0);
994 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
995 		return (ENXIO);
996 	}
997 
998 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
999 
1000 	if (zio_injection_enabled && error == 0)
1001 		error = zio_handle_device_injection(vd, ENXIO);
1002 
1003 	if (error) {
1004 		if (vd->vdev_removed &&
1005 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1006 			vd->vdev_removed = B_FALSE;
1007 
1008 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1009 		    vd->vdev_stat.vs_aux);
1010 		return (error);
1011 	}
1012 
1013 	vd->vdev_removed = B_FALSE;
1014 
1015 	if (vd->vdev_degraded) {
1016 		ASSERT(vd->vdev_children == 0);
1017 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1018 		    VDEV_AUX_ERR_EXCEEDED);
1019 	} else {
1020 		vd->vdev_state = VDEV_STATE_HEALTHY;
1021 	}
1022 
1023 	for (c = 0; c < vd->vdev_children; c++)
1024 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1025 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1026 			    VDEV_AUX_NONE);
1027 			break;
1028 		}
1029 
1030 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1031 
1032 	if (vd->vdev_children == 0) {
1033 		if (osize < SPA_MINDEVSIZE) {
1034 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1035 			    VDEV_AUX_TOO_SMALL);
1036 			return (EOVERFLOW);
1037 		}
1038 		psize = osize;
1039 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1040 	} else {
1041 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1042 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1043 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1044 			    VDEV_AUX_TOO_SMALL);
1045 			return (EOVERFLOW);
1046 		}
1047 		psize = 0;
1048 		asize = osize;
1049 	}
1050 
1051 	vd->vdev_psize = psize;
1052 
1053 	if (vd->vdev_asize == 0) {
1054 		/*
1055 		 * This is the first-ever open, so use the computed values.
1056 		 * For testing purposes, a higher ashift can be requested.
1057 		 */
1058 		vd->vdev_asize = asize;
1059 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1060 	} else {
1061 		/*
1062 		 * Make sure the alignment requirement hasn't increased.
1063 		 */
1064 		if (ashift > vd->vdev_top->vdev_ashift) {
1065 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1066 			    VDEV_AUX_BAD_LABEL);
1067 			return (EINVAL);
1068 		}
1069 
1070 		/*
1071 		 * Make sure the device hasn't shrunk.
1072 		 */
1073 		if (asize < vd->vdev_asize) {
1074 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1075 			    VDEV_AUX_BAD_LABEL);
1076 			return (EINVAL);
1077 		}
1078 
1079 		/*
1080 		 * If all children are healthy and the asize has increased,
1081 		 * then we've experienced dynamic LUN growth.
1082 		 */
1083 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1084 		    asize > vd->vdev_asize) {
1085 			vd->vdev_asize = asize;
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Ensure we can issue some IO before declaring the
1091 	 * vdev open for business.
1092 	 */
1093 	if (vd->vdev_ops->vdev_op_leaf &&
1094 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1095 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1096 		    VDEV_AUX_IO_FAILURE);
1097 		return (error);
1098 	}
1099 
1100 	/*
1101 	 * If this is a top-level vdev, compute the raidz-deflation
1102 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1103 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1104 	 * changes, this algorithm must never change, or we will
1105 	 * inconsistently account for existing bp's.
1106 	 */
1107 	if (vd->vdev_top == vd) {
1108 		vd->vdev_deflate_ratio = (1<<17) /
1109 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1110 	}
1111 
1112 	/*
1113 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1114 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1115 	 * since this would just restart the scrub we are already doing.
1116 	 */
1117 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1118 	    vdev_resilver_needed(vd, NULL, NULL))
1119 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1120 
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Called once the vdevs are all opened, this routine validates the label
1126  * contents.  This needs to be done before vdev_load() so that we don't
1127  * inadvertently do repair I/Os to the wrong device.
1128  *
1129  * This function will only return failure if one of the vdevs indicates that it
1130  * has since been destroyed or exported.  This is only possible if
1131  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1132  * will be updated but the function will return 0.
1133  */
1134 int
1135 vdev_validate(vdev_t *vd)
1136 {
1137 	spa_t *spa = vd->vdev_spa;
1138 	int c;
1139 	nvlist_t *label;
1140 	uint64_t guid, top_guid;
1141 	uint64_t state;
1142 
1143 	for (c = 0; c < vd->vdev_children; c++)
1144 		if (vdev_validate(vd->vdev_child[c]) != 0)
1145 			return (EBADF);
1146 
1147 	/*
1148 	 * If the device has already failed, or was marked offline, don't do
1149 	 * any further validation.  Otherwise, label I/O will fail and we will
1150 	 * overwrite the previous state.
1151 	 */
1152 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1153 
1154 		if ((label = vdev_label_read_config(vd)) == NULL) {
1155 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156 			    VDEV_AUX_BAD_LABEL);
1157 			return (0);
1158 		}
1159 
1160 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1161 		    &guid) != 0 || guid != spa_guid(spa)) {
1162 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1163 			    VDEV_AUX_CORRUPT_DATA);
1164 			nvlist_free(label);
1165 			return (0);
1166 		}
1167 
1168 		/*
1169 		 * If this vdev just became a top-level vdev because its
1170 		 * sibling was detached, it will have adopted the parent's
1171 		 * vdev guid -- but the label may or may not be on disk yet.
1172 		 * Fortunately, either version of the label will have the
1173 		 * same top guid, so if we're a top-level vdev, we can
1174 		 * safely compare to that instead.
1175 		 */
1176 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1177 		    &guid) != 0 ||
1178 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1179 		    &top_guid) != 0 ||
1180 		    (vd->vdev_guid != guid &&
1181 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1182 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1183 			    VDEV_AUX_CORRUPT_DATA);
1184 			nvlist_free(label);
1185 			return (0);
1186 		}
1187 
1188 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1189 		    &state) != 0) {
1190 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1191 			    VDEV_AUX_CORRUPT_DATA);
1192 			nvlist_free(label);
1193 			return (0);
1194 		}
1195 
1196 		nvlist_free(label);
1197 
1198 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1199 		    state != POOL_STATE_ACTIVE)
1200 			return (EBADF);
1201 
1202 		/*
1203 		 * If we were able to open and validate a vdev that was
1204 		 * previously marked permanently unavailable, clear that state
1205 		 * now.
1206 		 */
1207 		if (vd->vdev_not_present)
1208 			vd->vdev_not_present = 0;
1209 	}
1210 
1211 	return (0);
1212 }
1213 
1214 /*
1215  * Close a virtual device.
1216  */
1217 void
1218 vdev_close(vdev_t *vd)
1219 {
1220 	spa_t *spa = vd->vdev_spa;
1221 
1222 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1223 
1224 	vd->vdev_ops->vdev_op_close(vd);
1225 
1226 	vdev_cache_purge(vd);
1227 
1228 	/*
1229 	 * We record the previous state before we close it, so  that if we are
1230 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1231 	 * it's still faulted.
1232 	 */
1233 	vd->vdev_prevstate = vd->vdev_state;
1234 
1235 	if (vd->vdev_offline)
1236 		vd->vdev_state = VDEV_STATE_OFFLINE;
1237 	else
1238 		vd->vdev_state = VDEV_STATE_CLOSED;
1239 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1240 }
1241 
1242 void
1243 vdev_reopen(vdev_t *vd)
1244 {
1245 	spa_t *spa = vd->vdev_spa;
1246 
1247 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1248 
1249 	vdev_close(vd);
1250 	(void) vdev_open(vd);
1251 
1252 	/*
1253 	 * Call vdev_validate() here to make sure we have the same device.
1254 	 * Otherwise, a device with an invalid label could be successfully
1255 	 * opened in response to vdev_reopen().
1256 	 */
1257 	if (vd->vdev_aux) {
1258 		(void) vdev_validate_aux(vd);
1259 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1260 		    !l2arc_vdev_present(vd)) {
1261 			uint64_t size = vdev_get_rsize(vd);
1262 			l2arc_add_vdev(spa, vd,
1263 			    VDEV_LABEL_START_SIZE,
1264 			    size - VDEV_LABEL_START_SIZE);
1265 		}
1266 	} else {
1267 		(void) vdev_validate(vd);
1268 	}
1269 
1270 	/*
1271 	 * Reassess parent vdev's health.
1272 	 */
1273 	vdev_propagate_state(vd);
1274 }
1275 
1276 int
1277 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1278 {
1279 	int error;
1280 
1281 	/*
1282 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1283 	 * For a create, however, we want to fail the request if
1284 	 * there are any components we can't open.
1285 	 */
1286 	error = vdev_open(vd);
1287 
1288 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1289 		vdev_close(vd);
1290 		return (error ? error : ENXIO);
1291 	}
1292 
1293 	/*
1294 	 * Recursively initialize all labels.
1295 	 */
1296 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1297 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1298 		vdev_close(vd);
1299 		return (error);
1300 	}
1301 
1302 	return (0);
1303 }
1304 
1305 /*
1306  * The is the latter half of vdev_create().  It is distinct because it
1307  * involves initiating transactions in order to do metaslab creation.
1308  * For creation, we want to try to create all vdevs at once and then undo it
1309  * if anything fails; this is much harder if we have pending transactions.
1310  */
1311 void
1312 vdev_init(vdev_t *vd, uint64_t txg)
1313 {
1314 	/*
1315 	 * Aim for roughly 200 metaslabs per vdev.
1316 	 */
1317 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1318 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1319 
1320 	/*
1321 	 * Initialize the vdev's metaslabs.  This can't fail because
1322 	 * there's nothing to read when creating all new metaslabs.
1323 	 */
1324 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1325 }
1326 
1327 void
1328 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1329 {
1330 	ASSERT(vd == vd->vdev_top);
1331 	ASSERT(ISP2(flags));
1332 
1333 	if (flags & VDD_METASLAB)
1334 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1335 
1336 	if (flags & VDD_DTL)
1337 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1338 
1339 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1340 }
1341 
1342 /*
1343  * DTLs.
1344  *
1345  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1346  * the vdev has less than perfect replication.  There are three kinds of DTL:
1347  *
1348  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1349  *
1350  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1351  *
1352  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1353  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1354  *	txgs that was scrubbed.
1355  *
1356  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1357  *	persistent errors or just some device being offline.
1358  *	Unlike the other three, the DTL_OUTAGE map is not generally
1359  *	maintained; it's only computed when needed, typically to
1360  *	determine whether a device can be detached.
1361  *
1362  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1363  * either has the data or it doesn't.
1364  *
1365  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1366  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1367  * if any child is less than fully replicated, then so is its parent.
1368  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1369  * comprising only those txgs which appear in 'maxfaults' or more children;
1370  * those are the txgs we don't have enough replication to read.  For example,
1371  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1372  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1373  * two child DTL_MISSING maps.
1374  *
1375  * It should be clear from the above that to compute the DTLs and outage maps
1376  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1377  * Therefore, that is all we keep on disk.  When loading the pool, or after
1378  * a configuration change, we generate all other DTLs from first principles.
1379  */
1380 void
1381 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1382 {
1383 	space_map_t *sm = &vd->vdev_dtl[t];
1384 
1385 	ASSERT(t < DTL_TYPES);
1386 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1387 
1388 	mutex_enter(sm->sm_lock);
1389 	if (!space_map_contains(sm, txg, size))
1390 		space_map_add(sm, txg, size);
1391 	mutex_exit(sm->sm_lock);
1392 }
1393 
1394 boolean_t
1395 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1396 {
1397 	space_map_t *sm = &vd->vdev_dtl[t];
1398 	boolean_t dirty = B_FALSE;
1399 
1400 	ASSERT(t < DTL_TYPES);
1401 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1402 
1403 	mutex_enter(sm->sm_lock);
1404 	if (sm->sm_space != 0)
1405 		dirty = space_map_contains(sm, txg, size);
1406 	mutex_exit(sm->sm_lock);
1407 
1408 	return (dirty);
1409 }
1410 
1411 boolean_t
1412 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1413 {
1414 	space_map_t *sm = &vd->vdev_dtl[t];
1415 	boolean_t empty;
1416 
1417 	mutex_enter(sm->sm_lock);
1418 	empty = (sm->sm_space == 0);
1419 	mutex_exit(sm->sm_lock);
1420 
1421 	return (empty);
1422 }
1423 
1424 /*
1425  * Reassess DTLs after a config change or scrub completion.
1426  */
1427 void
1428 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1429 {
1430 	spa_t *spa = vd->vdev_spa;
1431 	avl_tree_t reftree;
1432 	int minref;
1433 
1434 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1435 
1436 	for (int c = 0; c < vd->vdev_children; c++)
1437 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1438 		    scrub_txg, scrub_done);
1439 
1440 	if (vd == spa->spa_root_vdev)
1441 		return;
1442 
1443 	if (vd->vdev_ops->vdev_op_leaf) {
1444 		mutex_enter(&vd->vdev_dtl_lock);
1445 		if (scrub_txg != 0 &&
1446 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1447 			/* XXX should check scrub_done? */
1448 			/*
1449 			 * We completed a scrub up to scrub_txg.  If we
1450 			 * did it without rebooting, then the scrub dtl
1451 			 * will be valid, so excise the old region and
1452 			 * fold in the scrub dtl.  Otherwise, leave the
1453 			 * dtl as-is if there was an error.
1454 			 *
1455 			 * There's little trick here: to excise the beginning
1456 			 * of the DTL_MISSING map, we put it into a reference
1457 			 * tree and then add a segment with refcnt -1 that
1458 			 * covers the range [0, scrub_txg).  This means
1459 			 * that each txg in that range has refcnt -1 or 0.
1460 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1461 			 * entries in the range [0, scrub_txg) will have a
1462 			 * positive refcnt -- either 1 or 2.  We then convert
1463 			 * the reference tree into the new DTL_MISSING map.
1464 			 */
1465 			space_map_ref_create(&reftree);
1466 			space_map_ref_add_map(&reftree,
1467 			    &vd->vdev_dtl[DTL_MISSING], 1);
1468 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1469 			space_map_ref_add_map(&reftree,
1470 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1471 			space_map_ref_generate_map(&reftree,
1472 			    &vd->vdev_dtl[DTL_MISSING], 1);
1473 			space_map_ref_destroy(&reftree);
1474 		}
1475 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1476 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1477 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1478 		if (scrub_done)
1479 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1480 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1481 		if (!vdev_readable(vd))
1482 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1483 		else
1484 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1485 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1486 		mutex_exit(&vd->vdev_dtl_lock);
1487 
1488 		if (txg != 0)
1489 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1490 		return;
1491 	}
1492 
1493 	mutex_enter(&vd->vdev_dtl_lock);
1494 	for (int t = 0; t < DTL_TYPES; t++) {
1495 		if (t == DTL_SCRUB)
1496 			continue;			/* leaf vdevs only */
1497 		if (t == DTL_PARTIAL)
1498 			minref = 1;			/* i.e. non-zero */
1499 		else if (vd->vdev_nparity != 0)
1500 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1501 		else
1502 			minref = vd->vdev_children;	/* any kind of mirror */
1503 		space_map_ref_create(&reftree);
1504 		for (int c = 0; c < vd->vdev_children; c++) {
1505 			vdev_t *cvd = vd->vdev_child[c];
1506 			mutex_enter(&cvd->vdev_dtl_lock);
1507 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1508 			mutex_exit(&cvd->vdev_dtl_lock);
1509 		}
1510 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1511 		space_map_ref_destroy(&reftree);
1512 	}
1513 	mutex_exit(&vd->vdev_dtl_lock);
1514 }
1515 
1516 static int
1517 vdev_dtl_load(vdev_t *vd)
1518 {
1519 	spa_t *spa = vd->vdev_spa;
1520 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1521 	objset_t *mos = spa->spa_meta_objset;
1522 	dmu_buf_t *db;
1523 	int error;
1524 
1525 	ASSERT(vd->vdev_children == 0);
1526 
1527 	if (smo->smo_object == 0)
1528 		return (0);
1529 
1530 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1531 		return (error);
1532 
1533 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1534 	bcopy(db->db_data, smo, sizeof (*smo));
1535 	dmu_buf_rele(db, FTAG);
1536 
1537 	mutex_enter(&vd->vdev_dtl_lock);
1538 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1539 	    NULL, SM_ALLOC, smo, mos);
1540 	mutex_exit(&vd->vdev_dtl_lock);
1541 
1542 	return (error);
1543 }
1544 
1545 void
1546 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1547 {
1548 	spa_t *spa = vd->vdev_spa;
1549 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1550 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1551 	objset_t *mos = spa->spa_meta_objset;
1552 	space_map_t smsync;
1553 	kmutex_t smlock;
1554 	dmu_buf_t *db;
1555 	dmu_tx_t *tx;
1556 
1557 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1558 
1559 	if (vd->vdev_detached) {
1560 		if (smo->smo_object != 0) {
1561 			int err = dmu_object_free(mos, smo->smo_object, tx);
1562 			ASSERT3U(err, ==, 0);
1563 			smo->smo_object = 0;
1564 		}
1565 		dmu_tx_commit(tx);
1566 		return;
1567 	}
1568 
1569 	if (smo->smo_object == 0) {
1570 		ASSERT(smo->smo_objsize == 0);
1571 		ASSERT(smo->smo_alloc == 0);
1572 		smo->smo_object = dmu_object_alloc(mos,
1573 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1574 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1575 		ASSERT(smo->smo_object != 0);
1576 		vdev_config_dirty(vd->vdev_top);
1577 	}
1578 
1579 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1580 
1581 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1582 	    &smlock);
1583 
1584 	mutex_enter(&smlock);
1585 
1586 	mutex_enter(&vd->vdev_dtl_lock);
1587 	space_map_walk(sm, space_map_add, &smsync);
1588 	mutex_exit(&vd->vdev_dtl_lock);
1589 
1590 	space_map_truncate(smo, mos, tx);
1591 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1592 
1593 	space_map_destroy(&smsync);
1594 
1595 	mutex_exit(&smlock);
1596 	mutex_destroy(&smlock);
1597 
1598 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1599 	dmu_buf_will_dirty(db, tx);
1600 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1601 	bcopy(smo, db->db_data, sizeof (*smo));
1602 	dmu_buf_rele(db, FTAG);
1603 
1604 	dmu_tx_commit(tx);
1605 }
1606 
1607 /*
1608  * Determine whether the specified vdev can be offlined/detached/removed
1609  * without losing data.
1610  */
1611 boolean_t
1612 vdev_dtl_required(vdev_t *vd)
1613 {
1614 	spa_t *spa = vd->vdev_spa;
1615 	vdev_t *tvd = vd->vdev_top;
1616 	uint8_t cant_read = vd->vdev_cant_read;
1617 	boolean_t required;
1618 
1619 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1620 
1621 	if (vd == spa->spa_root_vdev || vd == tvd)
1622 		return (B_TRUE);
1623 
1624 	/*
1625 	 * Temporarily mark the device as unreadable, and then determine
1626 	 * whether this results in any DTL outages in the top-level vdev.
1627 	 * If not, we can safely offline/detach/remove the device.
1628 	 */
1629 	vd->vdev_cant_read = B_TRUE;
1630 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1631 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1632 	vd->vdev_cant_read = cant_read;
1633 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1634 
1635 	return (required);
1636 }
1637 
1638 /*
1639  * Determine if resilver is needed, and if so the txg range.
1640  */
1641 boolean_t
1642 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1643 {
1644 	boolean_t needed = B_FALSE;
1645 	uint64_t thismin = UINT64_MAX;
1646 	uint64_t thismax = 0;
1647 
1648 	if (vd->vdev_children == 0) {
1649 		mutex_enter(&vd->vdev_dtl_lock);
1650 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1651 		    vdev_writeable(vd)) {
1652 			space_seg_t *ss;
1653 
1654 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1655 			thismin = ss->ss_start - 1;
1656 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1657 			thismax = ss->ss_end;
1658 			needed = B_TRUE;
1659 		}
1660 		mutex_exit(&vd->vdev_dtl_lock);
1661 	} else {
1662 		for (int c = 0; c < vd->vdev_children; c++) {
1663 			vdev_t *cvd = vd->vdev_child[c];
1664 			uint64_t cmin, cmax;
1665 
1666 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1667 				thismin = MIN(thismin, cmin);
1668 				thismax = MAX(thismax, cmax);
1669 				needed = B_TRUE;
1670 			}
1671 		}
1672 	}
1673 
1674 	if (needed && minp) {
1675 		*minp = thismin;
1676 		*maxp = thismax;
1677 	}
1678 	return (needed);
1679 }
1680 
1681 void
1682 vdev_load(vdev_t *vd)
1683 {
1684 	/*
1685 	 * Recursively load all children.
1686 	 */
1687 	for (int c = 0; c < vd->vdev_children; c++)
1688 		vdev_load(vd->vdev_child[c]);
1689 
1690 	/*
1691 	 * If this is a top-level vdev, initialize its metaslabs.
1692 	 */
1693 	if (vd == vd->vdev_top &&
1694 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1695 	    vdev_metaslab_init(vd, 0) != 0))
1696 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1697 		    VDEV_AUX_CORRUPT_DATA);
1698 
1699 	/*
1700 	 * If this is a leaf vdev, load its DTL.
1701 	 */
1702 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1703 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1704 		    VDEV_AUX_CORRUPT_DATA);
1705 }
1706 
1707 /*
1708  * The special vdev case is used for hot spares and l2cache devices.  Its
1709  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1710  * we make sure that we can open the underlying device, then try to read the
1711  * label, and make sure that the label is sane and that it hasn't been
1712  * repurposed to another pool.
1713  */
1714 int
1715 vdev_validate_aux(vdev_t *vd)
1716 {
1717 	nvlist_t *label;
1718 	uint64_t guid, version;
1719 	uint64_t state;
1720 
1721 	if (!vdev_readable(vd))
1722 		return (0);
1723 
1724 	if ((label = vdev_label_read_config(vd)) == NULL) {
1725 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1726 		    VDEV_AUX_CORRUPT_DATA);
1727 		return (-1);
1728 	}
1729 
1730 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1731 	    version > SPA_VERSION ||
1732 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1733 	    guid != vd->vdev_guid ||
1734 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1735 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1736 		    VDEV_AUX_CORRUPT_DATA);
1737 		nvlist_free(label);
1738 		return (-1);
1739 	}
1740 
1741 	/*
1742 	 * We don't actually check the pool state here.  If it's in fact in
1743 	 * use by another pool, we update this fact on the fly when requested.
1744 	 */
1745 	nvlist_free(label);
1746 	return (0);
1747 }
1748 
1749 void
1750 vdev_sync_done(vdev_t *vd, uint64_t txg)
1751 {
1752 	metaslab_t *msp;
1753 
1754 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1755 		metaslab_sync_done(msp, txg);
1756 }
1757 
1758 void
1759 vdev_sync(vdev_t *vd, uint64_t txg)
1760 {
1761 	spa_t *spa = vd->vdev_spa;
1762 	vdev_t *lvd;
1763 	metaslab_t *msp;
1764 	dmu_tx_t *tx;
1765 
1766 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1767 		ASSERT(vd == vd->vdev_top);
1768 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1769 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1770 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1771 		ASSERT(vd->vdev_ms_array != 0);
1772 		vdev_config_dirty(vd);
1773 		dmu_tx_commit(tx);
1774 	}
1775 
1776 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1777 		metaslab_sync(msp, txg);
1778 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1779 	}
1780 
1781 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1782 		vdev_dtl_sync(lvd, txg);
1783 
1784 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1785 }
1786 
1787 uint64_t
1788 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1789 {
1790 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1791 }
1792 
1793 /*
1794  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1795  * not be opened, and no I/O is attempted.
1796  */
1797 int
1798 vdev_fault(spa_t *spa, uint64_t guid)
1799 {
1800 	vdev_t *vd;
1801 
1802 	spa_vdev_state_enter(spa);
1803 
1804 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1805 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1806 
1807 	if (!vd->vdev_ops->vdev_op_leaf)
1808 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1809 
1810 	/*
1811 	 * Faulted state takes precedence over degraded.
1812 	 */
1813 	vd->vdev_faulted = 1ULL;
1814 	vd->vdev_degraded = 0ULL;
1815 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1816 
1817 	/*
1818 	 * If marking the vdev as faulted cause the top-level vdev to become
1819 	 * unavailable, then back off and simply mark the vdev as degraded
1820 	 * instead.
1821 	 */
1822 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1823 		vd->vdev_degraded = 1ULL;
1824 		vd->vdev_faulted = 0ULL;
1825 
1826 		/*
1827 		 * If we reopen the device and it's not dead, only then do we
1828 		 * mark it degraded.
1829 		 */
1830 		vdev_reopen(vd);
1831 
1832 		if (vdev_readable(vd)) {
1833 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1834 			    VDEV_AUX_ERR_EXCEEDED);
1835 		}
1836 	}
1837 
1838 	return (spa_vdev_state_exit(spa, vd, 0));
1839 }
1840 
1841 /*
1842  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1843  * user that something is wrong.  The vdev continues to operate as normal as far
1844  * as I/O is concerned.
1845  */
1846 int
1847 vdev_degrade(spa_t *spa, uint64_t guid)
1848 {
1849 	vdev_t *vd;
1850 
1851 	spa_vdev_state_enter(spa);
1852 
1853 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1854 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1855 
1856 	if (!vd->vdev_ops->vdev_op_leaf)
1857 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1858 
1859 	/*
1860 	 * If the vdev is already faulted, then don't do anything.
1861 	 */
1862 	if (vd->vdev_faulted || vd->vdev_degraded)
1863 		return (spa_vdev_state_exit(spa, NULL, 0));
1864 
1865 	vd->vdev_degraded = 1ULL;
1866 	if (!vdev_is_dead(vd))
1867 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1868 		    VDEV_AUX_ERR_EXCEEDED);
1869 
1870 	return (spa_vdev_state_exit(spa, vd, 0));
1871 }
1872 
1873 /*
1874  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1875  * any attached spare device should be detached when the device finishes
1876  * resilvering.  Second, the online should be treated like a 'test' online case,
1877  * so no FMA events are generated if the device fails to open.
1878  */
1879 int
1880 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1881 {
1882 	vdev_t *vd;
1883 
1884 	spa_vdev_state_enter(spa);
1885 
1886 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1887 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1888 
1889 	if (!vd->vdev_ops->vdev_op_leaf)
1890 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1891 
1892 	vd->vdev_offline = B_FALSE;
1893 	vd->vdev_tmpoffline = B_FALSE;
1894 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1895 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1896 	vdev_reopen(vd->vdev_top);
1897 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1898 
1899 	if (newstate)
1900 		*newstate = vd->vdev_state;
1901 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1902 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1903 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1904 	    vd->vdev_parent->vdev_child[0] == vd)
1905 		vd->vdev_unspare = B_TRUE;
1906 
1907 	return (spa_vdev_state_exit(spa, vd, 0));
1908 }
1909 
1910 int
1911 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1912 {
1913 	vdev_t *vd;
1914 
1915 	spa_vdev_state_enter(spa);
1916 
1917 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1918 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1919 
1920 	if (!vd->vdev_ops->vdev_op_leaf)
1921 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1922 
1923 	/*
1924 	 * If the device isn't already offline, try to offline it.
1925 	 */
1926 	if (!vd->vdev_offline) {
1927 		/*
1928 		 * If this device has the only valid copy of some data,
1929 		 * don't allow it to be offlined.
1930 		 */
1931 		if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1932 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1933 
1934 		/*
1935 		 * Offline this device and reopen its top-level vdev.
1936 		 * If this action results in the top-level vdev becoming
1937 		 * unusable, undo it and fail the request.
1938 		 */
1939 		vd->vdev_offline = B_TRUE;
1940 		vdev_reopen(vd->vdev_top);
1941 		if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1942 			vd->vdev_offline = B_FALSE;
1943 			vdev_reopen(vd->vdev_top);
1944 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1945 		}
1946 	}
1947 
1948 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1949 
1950 	return (spa_vdev_state_exit(spa, vd, 0));
1951 }
1952 
1953 /*
1954  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1955  * vdev_offline(), we assume the spa config is locked.  We also clear all
1956  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1957  */
1958 void
1959 vdev_clear(spa_t *spa, vdev_t *vd)
1960 {
1961 	vdev_t *rvd = spa->spa_root_vdev;
1962 
1963 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1964 
1965 	if (vd == NULL)
1966 		vd = rvd;
1967 
1968 	vd->vdev_stat.vs_read_errors = 0;
1969 	vd->vdev_stat.vs_write_errors = 0;
1970 	vd->vdev_stat.vs_checksum_errors = 0;
1971 
1972 	for (int c = 0; c < vd->vdev_children; c++)
1973 		vdev_clear(spa, vd->vdev_child[c]);
1974 
1975 	/*
1976 	 * If we're in the FAULTED state or have experienced failed I/O, then
1977 	 * clear the persistent state and attempt to reopen the device.  We
1978 	 * also mark the vdev config dirty, so that the new faulted state is
1979 	 * written out to disk.
1980 	 */
1981 	if (vd->vdev_faulted || vd->vdev_degraded ||
1982 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
1983 
1984 		vd->vdev_faulted = vd->vdev_degraded = 0;
1985 		vd->vdev_cant_read = B_FALSE;
1986 		vd->vdev_cant_write = B_FALSE;
1987 
1988 		vdev_reopen(vd);
1989 
1990 		if (vd != rvd)
1991 			vdev_state_dirty(vd->vdev_top);
1992 
1993 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1994 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1995 
1996 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1997 	}
1998 }
1999 
2000 boolean_t
2001 vdev_is_dead(vdev_t *vd)
2002 {
2003 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
2004 }
2005 
2006 boolean_t
2007 vdev_readable(vdev_t *vd)
2008 {
2009 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2010 }
2011 
2012 boolean_t
2013 vdev_writeable(vdev_t *vd)
2014 {
2015 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2016 }
2017 
2018 boolean_t
2019 vdev_allocatable(vdev_t *vd)
2020 {
2021 	uint64_t state = vd->vdev_state;
2022 
2023 	/*
2024 	 * We currently allow allocations from vdevs which may be in the
2025 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2026 	 * fails to reopen then we'll catch it later when we're holding
2027 	 * the proper locks.  Note that we have to get the vdev state
2028 	 * in a local variable because although it changes atomically,
2029 	 * we're asking two separate questions about it.
2030 	 */
2031 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2032 	    !vd->vdev_cant_write);
2033 }
2034 
2035 boolean_t
2036 vdev_accessible(vdev_t *vd, zio_t *zio)
2037 {
2038 	ASSERT(zio->io_vd == vd);
2039 
2040 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2041 		return (B_FALSE);
2042 
2043 	if (zio->io_type == ZIO_TYPE_READ)
2044 		return (!vd->vdev_cant_read);
2045 
2046 	if (zio->io_type == ZIO_TYPE_WRITE)
2047 		return (!vd->vdev_cant_write);
2048 
2049 	return (B_TRUE);
2050 }
2051 
2052 /*
2053  * Get statistics for the given vdev.
2054  */
2055 void
2056 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2057 {
2058 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2059 
2060 	mutex_enter(&vd->vdev_stat_lock);
2061 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2062 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2063 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2064 	vs->vs_state = vd->vdev_state;
2065 	vs->vs_rsize = vdev_get_rsize(vd);
2066 	mutex_exit(&vd->vdev_stat_lock);
2067 
2068 	/*
2069 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2070 	 * over all top-level vdevs (i.e. the direct children of the root).
2071 	 */
2072 	if (vd == rvd) {
2073 		for (int c = 0; c < rvd->vdev_children; c++) {
2074 			vdev_t *cvd = rvd->vdev_child[c];
2075 			vdev_stat_t *cvs = &cvd->vdev_stat;
2076 
2077 			mutex_enter(&vd->vdev_stat_lock);
2078 			for (int t = 0; t < ZIO_TYPES; t++) {
2079 				vs->vs_ops[t] += cvs->vs_ops[t];
2080 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2081 			}
2082 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2083 			mutex_exit(&vd->vdev_stat_lock);
2084 		}
2085 	}
2086 }
2087 
2088 void
2089 vdev_clear_stats(vdev_t *vd)
2090 {
2091 	mutex_enter(&vd->vdev_stat_lock);
2092 	vd->vdev_stat.vs_space = 0;
2093 	vd->vdev_stat.vs_dspace = 0;
2094 	vd->vdev_stat.vs_alloc = 0;
2095 	mutex_exit(&vd->vdev_stat_lock);
2096 }
2097 
2098 void
2099 vdev_stat_update(zio_t *zio, uint64_t psize)
2100 {
2101 	spa_t *spa = zio->io_spa;
2102 	vdev_t *rvd = spa->spa_root_vdev;
2103 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2104 	vdev_t *pvd;
2105 	uint64_t txg = zio->io_txg;
2106 	vdev_stat_t *vs = &vd->vdev_stat;
2107 	zio_type_t type = zio->io_type;
2108 	int flags = zio->io_flags;
2109 
2110 	/*
2111 	 * If this i/o is a gang leader, it didn't do any actual work.
2112 	 */
2113 	if (zio->io_gang_tree)
2114 		return;
2115 
2116 	if (zio->io_error == 0) {
2117 		/*
2118 		 * If this is a root i/o, don't count it -- we've already
2119 		 * counted the top-level vdevs, and vdev_get_stats() will
2120 		 * aggregate them when asked.  This reduces contention on
2121 		 * the root vdev_stat_lock and implicitly handles blocks
2122 		 * that compress away to holes, for which there is no i/o.
2123 		 * (Holes never create vdev children, so all the counters
2124 		 * remain zero, which is what we want.)
2125 		 *
2126 		 * Note: this only applies to successful i/o (io_error == 0)
2127 		 * because unlike i/o counts, errors are not additive.
2128 		 * When reading a ditto block, for example, failure of
2129 		 * one top-level vdev does not imply a root-level error.
2130 		 */
2131 		if (vd == rvd)
2132 			return;
2133 
2134 		ASSERT(vd == zio->io_vd);
2135 
2136 		if (flags & ZIO_FLAG_IO_BYPASS)
2137 			return;
2138 
2139 		mutex_enter(&vd->vdev_stat_lock);
2140 
2141 		if (flags & ZIO_FLAG_IO_REPAIR) {
2142 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2143 				vs->vs_scrub_repaired += psize;
2144 			if (flags & ZIO_FLAG_SELF_HEAL)
2145 				vs->vs_self_healed += psize;
2146 		}
2147 
2148 		vs->vs_ops[type]++;
2149 		vs->vs_bytes[type] += psize;
2150 
2151 		mutex_exit(&vd->vdev_stat_lock);
2152 		return;
2153 	}
2154 
2155 	if (flags & ZIO_FLAG_SPECULATIVE)
2156 		return;
2157 
2158 	mutex_enter(&vd->vdev_stat_lock);
2159 	if (type == ZIO_TYPE_READ) {
2160 		if (zio->io_error == ECKSUM)
2161 			vs->vs_checksum_errors++;
2162 		else
2163 			vs->vs_read_errors++;
2164 	}
2165 	if (type == ZIO_TYPE_WRITE)
2166 		vs->vs_write_errors++;
2167 	mutex_exit(&vd->vdev_stat_lock);
2168 
2169 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2170 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2171 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2172 		/*
2173 		 * This is either a normal write (not a repair), or it's a
2174 		 * repair induced by the scrub thread.  In the normal case,
2175 		 * we commit the DTL change in the same txg as the block
2176 		 * was born.  In the scrub-induced repair case, we know that
2177 		 * scrubs run in first-pass syncing context, so we commit
2178 		 * the DTL change in spa->spa_syncing_txg.
2179 		 *
2180 		 * We currently do not make DTL entries for failed spontaneous
2181 		 * self-healing writes triggered by normal (non-scrubbing)
2182 		 * reads, because we have no transactional context in which to
2183 		 * do so -- and it's not clear that it'd be desirable anyway.
2184 		 */
2185 		if (vd->vdev_ops->vdev_op_leaf) {
2186 			uint64_t commit_txg = txg;
2187 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2188 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2189 				ASSERT(spa_sync_pass(spa) == 1);
2190 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2191 				commit_txg = spa->spa_syncing_txg;
2192 			}
2193 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2194 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2195 				return;
2196 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2197 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2198 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2199 		}
2200 		if (vd != rvd)
2201 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2202 	}
2203 }
2204 
2205 void
2206 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2207 {
2208 	int c;
2209 	vdev_stat_t *vs = &vd->vdev_stat;
2210 
2211 	for (c = 0; c < vd->vdev_children; c++)
2212 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2213 
2214 	mutex_enter(&vd->vdev_stat_lock);
2215 
2216 	if (type == POOL_SCRUB_NONE) {
2217 		/*
2218 		 * Update completion and end time.  Leave everything else alone
2219 		 * so we can report what happened during the previous scrub.
2220 		 */
2221 		vs->vs_scrub_complete = complete;
2222 		vs->vs_scrub_end = gethrestime_sec();
2223 	} else {
2224 		vs->vs_scrub_type = type;
2225 		vs->vs_scrub_complete = 0;
2226 		vs->vs_scrub_examined = 0;
2227 		vs->vs_scrub_repaired = 0;
2228 		vs->vs_scrub_start = gethrestime_sec();
2229 		vs->vs_scrub_end = 0;
2230 	}
2231 
2232 	mutex_exit(&vd->vdev_stat_lock);
2233 }
2234 
2235 /*
2236  * Update the in-core space usage stats for this vdev and the root vdev.
2237  */
2238 void
2239 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2240     boolean_t update_root)
2241 {
2242 	int64_t dspace_delta = space_delta;
2243 	spa_t *spa = vd->vdev_spa;
2244 	vdev_t *rvd = spa->spa_root_vdev;
2245 
2246 	ASSERT(vd == vd->vdev_top);
2247 
2248 	/*
2249 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2250 	 * factor.  We must calculate this here and not at the root vdev
2251 	 * because the root vdev's psize-to-asize is simply the max of its
2252 	 * childrens', thus not accurate enough for us.
2253 	 */
2254 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2255 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2256 	    vd->vdev_deflate_ratio;
2257 
2258 	mutex_enter(&vd->vdev_stat_lock);
2259 	vd->vdev_stat.vs_space += space_delta;
2260 	vd->vdev_stat.vs_alloc += alloc_delta;
2261 	vd->vdev_stat.vs_dspace += dspace_delta;
2262 	mutex_exit(&vd->vdev_stat_lock);
2263 
2264 	if (update_root) {
2265 		ASSERT(rvd == vd->vdev_parent);
2266 		ASSERT(vd->vdev_ms_count != 0);
2267 
2268 		/*
2269 		 * Don't count non-normal (e.g. intent log) space as part of
2270 		 * the pool's capacity.
2271 		 */
2272 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2273 			return;
2274 
2275 		mutex_enter(&rvd->vdev_stat_lock);
2276 		rvd->vdev_stat.vs_space += space_delta;
2277 		rvd->vdev_stat.vs_alloc += alloc_delta;
2278 		rvd->vdev_stat.vs_dspace += dspace_delta;
2279 		mutex_exit(&rvd->vdev_stat_lock);
2280 	}
2281 }
2282 
2283 /*
2284  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2285  * so that it will be written out next time the vdev configuration is synced.
2286  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2287  */
2288 void
2289 vdev_config_dirty(vdev_t *vd)
2290 {
2291 	spa_t *spa = vd->vdev_spa;
2292 	vdev_t *rvd = spa->spa_root_vdev;
2293 	int c;
2294 
2295 	/*
2296 	 * If this is an aux vdev (as with l2cache devices), then we update the
2297 	 * vdev config manually and set the sync flag.
2298 	 */
2299 	if (vd->vdev_aux != NULL) {
2300 		spa_aux_vdev_t *sav = vd->vdev_aux;
2301 		nvlist_t **aux;
2302 		uint_t naux;
2303 
2304 		for (c = 0; c < sav->sav_count; c++) {
2305 			if (sav->sav_vdevs[c] == vd)
2306 				break;
2307 		}
2308 
2309 		if (c == sav->sav_count) {
2310 			/*
2311 			 * We're being removed.  There's nothing more to do.
2312 			 */
2313 			ASSERT(sav->sav_sync == B_TRUE);
2314 			return;
2315 		}
2316 
2317 		sav->sav_sync = B_TRUE;
2318 
2319 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2320 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2321 
2322 		ASSERT(c < naux);
2323 
2324 		/*
2325 		 * Setting the nvlist in the middle if the array is a little
2326 		 * sketchy, but it will work.
2327 		 */
2328 		nvlist_free(aux[c]);
2329 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2330 
2331 		return;
2332 	}
2333 
2334 	/*
2335 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2336 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2337 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2338 	 * so this is sufficient to ensure mutual exclusion.
2339 	 */
2340 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2341 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2342 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2343 
2344 	if (vd == rvd) {
2345 		for (c = 0; c < rvd->vdev_children; c++)
2346 			vdev_config_dirty(rvd->vdev_child[c]);
2347 	} else {
2348 		ASSERT(vd == vd->vdev_top);
2349 
2350 		if (!list_link_active(&vd->vdev_config_dirty_node))
2351 			list_insert_head(&spa->spa_config_dirty_list, vd);
2352 	}
2353 }
2354 
2355 void
2356 vdev_config_clean(vdev_t *vd)
2357 {
2358 	spa_t *spa = vd->vdev_spa;
2359 
2360 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2361 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2362 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2363 
2364 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2365 	list_remove(&spa->spa_config_dirty_list, vd);
2366 }
2367 
2368 /*
2369  * Mark a top-level vdev's state as dirty, so that the next pass of
2370  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2371  * the state changes from larger config changes because they require
2372  * much less locking, and are often needed for administrative actions.
2373  */
2374 void
2375 vdev_state_dirty(vdev_t *vd)
2376 {
2377 	spa_t *spa = vd->vdev_spa;
2378 
2379 	ASSERT(vd == vd->vdev_top);
2380 
2381 	/*
2382 	 * The state list is protected by the SCL_STATE lock.  The caller
2383 	 * must either hold SCL_STATE as writer, or must be the sync thread
2384 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2385 	 * so this is sufficient to ensure mutual exclusion.
2386 	 */
2387 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2388 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2389 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2390 
2391 	if (!list_link_active(&vd->vdev_state_dirty_node))
2392 		list_insert_head(&spa->spa_state_dirty_list, vd);
2393 }
2394 
2395 void
2396 vdev_state_clean(vdev_t *vd)
2397 {
2398 	spa_t *spa = vd->vdev_spa;
2399 
2400 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2401 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2402 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2403 
2404 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2405 	list_remove(&spa->spa_state_dirty_list, vd);
2406 }
2407 
2408 /*
2409  * Propagate vdev state up from children to parent.
2410  */
2411 void
2412 vdev_propagate_state(vdev_t *vd)
2413 {
2414 	spa_t *spa = vd->vdev_spa;
2415 	vdev_t *rvd = spa->spa_root_vdev;
2416 	int degraded = 0, faulted = 0;
2417 	int corrupted = 0;
2418 	int c;
2419 	vdev_t *child;
2420 
2421 	if (vd->vdev_children > 0) {
2422 		for (c = 0; c < vd->vdev_children; c++) {
2423 			child = vd->vdev_child[c];
2424 
2425 			if (!vdev_readable(child) ||
2426 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2427 				/*
2428 				 * Root special: if there is a top-level log
2429 				 * device, treat the root vdev as if it were
2430 				 * degraded.
2431 				 */
2432 				if (child->vdev_islog && vd == rvd)
2433 					degraded++;
2434 				else
2435 					faulted++;
2436 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2437 				degraded++;
2438 			}
2439 
2440 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2441 				corrupted++;
2442 		}
2443 
2444 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2445 
2446 		/*
2447 		 * Root special: if there is a top-level vdev that cannot be
2448 		 * opened due to corrupted metadata, then propagate the root
2449 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2450 		 * replicas'.
2451 		 */
2452 		if (corrupted && vd == rvd &&
2453 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2454 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2455 			    VDEV_AUX_CORRUPT_DATA);
2456 	}
2457 
2458 	if (vd->vdev_parent)
2459 		vdev_propagate_state(vd->vdev_parent);
2460 }
2461 
2462 /*
2463  * Set a vdev's state.  If this is during an open, we don't update the parent
2464  * state, because we're in the process of opening children depth-first.
2465  * Otherwise, we propagate the change to the parent.
2466  *
2467  * If this routine places a device in a faulted state, an appropriate ereport is
2468  * generated.
2469  */
2470 void
2471 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2472 {
2473 	uint64_t save_state;
2474 	spa_t *spa = vd->vdev_spa;
2475 
2476 	if (state == vd->vdev_state) {
2477 		vd->vdev_stat.vs_aux = aux;
2478 		return;
2479 	}
2480 
2481 	save_state = vd->vdev_state;
2482 
2483 	vd->vdev_state = state;
2484 	vd->vdev_stat.vs_aux = aux;
2485 
2486 	/*
2487 	 * If we are setting the vdev state to anything but an open state, then
2488 	 * always close the underlying device.  Otherwise, we keep accessible
2489 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2490 	 * because that implies some extra checks (offline, etc) that we don't
2491 	 * want here.  This is limited to leaf devices, because otherwise
2492 	 * closing the device will affect other children.
2493 	 */
2494 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2495 		vd->vdev_ops->vdev_op_close(vd);
2496 
2497 	if (vd->vdev_removed &&
2498 	    state == VDEV_STATE_CANT_OPEN &&
2499 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2500 		/*
2501 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2502 		 * device was previously marked removed and someone attempted to
2503 		 * reopen it.  If this failed due to a nonexistent device, then
2504 		 * keep the device in the REMOVED state.  We also let this be if
2505 		 * it is one of our special test online cases, which is only
2506 		 * attempting to online the device and shouldn't generate an FMA
2507 		 * fault.
2508 		 */
2509 		vd->vdev_state = VDEV_STATE_REMOVED;
2510 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2511 	} else if (state == VDEV_STATE_REMOVED) {
2512 		/*
2513 		 * Indicate to the ZFS DE that this device has been removed, and
2514 		 * any recent errors should be ignored.
2515 		 */
2516 		zfs_post_remove(spa, vd);
2517 		vd->vdev_removed = B_TRUE;
2518 	} else if (state == VDEV_STATE_CANT_OPEN) {
2519 		/*
2520 		 * If we fail to open a vdev during an import, we mark it as
2521 		 * "not available", which signifies that it was never there to
2522 		 * begin with.  Failure to open such a device is not considered
2523 		 * an error.
2524 		 */
2525 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2526 		    !spa->spa_import_faulted &&
2527 		    vd->vdev_ops->vdev_op_leaf)
2528 			vd->vdev_not_present = 1;
2529 
2530 		/*
2531 		 * Post the appropriate ereport.  If the 'prevstate' field is
2532 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2533 		 * that this is part of a vdev_reopen().  In this case, we don't
2534 		 * want to post the ereport if the device was already in the
2535 		 * CANT_OPEN state beforehand.
2536 		 *
2537 		 * If the 'checkremove' flag is set, then this is an attempt to
2538 		 * online the device in response to an insertion event.  If we
2539 		 * hit this case, then we have detected an insertion event for a
2540 		 * faulted or offline device that wasn't in the removed state.
2541 		 * In this scenario, we don't post an ereport because we are
2542 		 * about to replace the device, or attempt an online with
2543 		 * vdev_forcefault, which will generate the fault for us.
2544 		 */
2545 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2546 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2547 		    vd != spa->spa_root_vdev) {
2548 			const char *class;
2549 
2550 			switch (aux) {
2551 			case VDEV_AUX_OPEN_FAILED:
2552 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2553 				break;
2554 			case VDEV_AUX_CORRUPT_DATA:
2555 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2556 				break;
2557 			case VDEV_AUX_NO_REPLICAS:
2558 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2559 				break;
2560 			case VDEV_AUX_BAD_GUID_SUM:
2561 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2562 				break;
2563 			case VDEV_AUX_TOO_SMALL:
2564 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2565 				break;
2566 			case VDEV_AUX_BAD_LABEL:
2567 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2568 				break;
2569 			case VDEV_AUX_IO_FAILURE:
2570 				class = FM_EREPORT_ZFS_IO_FAILURE;
2571 				break;
2572 			default:
2573 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2574 			}
2575 
2576 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2577 		}
2578 
2579 		/* Erase any notion of persistent removed state */
2580 		vd->vdev_removed = B_FALSE;
2581 	} else {
2582 		vd->vdev_removed = B_FALSE;
2583 	}
2584 
2585 	if (!isopen)
2586 		vdev_propagate_state(vd);
2587 }
2588 
2589 /*
2590  * Check the vdev configuration to ensure that it's capable of supporting
2591  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2592  * In addition, only a single top-level vdev is allowed and none of the leaves
2593  * can be wholedisks.
2594  */
2595 boolean_t
2596 vdev_is_bootable(vdev_t *vd)
2597 {
2598 	int c;
2599 
2600 	if (!vd->vdev_ops->vdev_op_leaf) {
2601 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2602 
2603 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2604 		    vd->vdev_children > 1) {
2605 			return (B_FALSE);
2606 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2607 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2608 			return (B_FALSE);
2609 		}
2610 	} else if (vd->vdev_wholedisk == 1) {
2611 		return (B_FALSE);
2612 	}
2613 
2614 	for (c = 0; c < vd->vdev_children; c++) {
2615 		if (!vdev_is_bootable(vd->vdev_child[c]))
2616 			return (B_FALSE);
2617 	}
2618 	return (B_TRUE);
2619 }
2620