1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_spare_ops, 53 &vdev_disk_ops, 54 &vdev_file_ops, 55 &vdev_missing_ops, 56 NULL 57 }; 58 59 /* maximum scrub/resilver I/O queue per leaf vdev */ 60 int zfs_scrub_limit = 10; 61 62 /* 63 * Given a vdev type, return the appropriate ops vector. 64 */ 65 static vdev_ops_t * 66 vdev_getops(const char *type) 67 { 68 vdev_ops_t *ops, **opspp; 69 70 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 71 if (strcmp(ops->vdev_op_type, type) == 0) 72 break; 73 74 return (ops); 75 } 76 77 /* 78 * Default asize function: return the MAX of psize with the asize of 79 * all children. This is what's used by anything other than RAID-Z. 80 */ 81 uint64_t 82 vdev_default_asize(vdev_t *vd, uint64_t psize) 83 { 84 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 85 uint64_t csize; 86 uint64_t c; 87 88 for (c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the replaceable or attachable device size. 98 * If the parent is a mirror or raidz, the replaceable size is the minimum 99 * psize of all its children. For the rest, just return our own psize. 100 * 101 * e.g. 102 * psize rsize 103 * root - - 104 * mirror/raidz - - 105 * disk1 20g 20g 106 * disk2 40g 20g 107 * disk3 80g 80g 108 */ 109 uint64_t 110 vdev_get_rsize(vdev_t *vd) 111 { 112 vdev_t *pvd, *cvd; 113 uint64_t c, rsize; 114 115 pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL or the root, just return our own psize. 119 */ 120 if (pvd == NULL || pvd->vdev_parent == NULL) 121 return (vd->vdev_psize); 122 123 rsize = 0; 124 125 for (c = 0; c < pvd->vdev_children; c++) { 126 cvd = pvd->vdev_child[c]; 127 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 128 } 129 130 return (rsize); 131 } 132 133 vdev_t * 134 vdev_lookup_top(spa_t *spa, uint64_t vdev) 135 { 136 vdev_t *rvd = spa->spa_root_vdev; 137 138 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 139 140 if (vdev < rvd->vdev_children) { 141 ASSERT(rvd->vdev_child[vdev] != NULL); 142 return (rvd->vdev_child[vdev]); 143 } 144 145 return (NULL); 146 } 147 148 vdev_t * 149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 150 { 151 int c; 152 vdev_t *mvd; 153 154 if (vd->vdev_guid == guid) 155 return (vd); 156 157 for (c = 0; c < vd->vdev_children; c++) 158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 159 NULL) 160 return (mvd); 161 162 return (NULL); 163 } 164 165 void 166 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 167 { 168 size_t oldsize, newsize; 169 uint64_t id = cvd->vdev_id; 170 vdev_t **newchild; 171 172 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 173 ASSERT(cvd->vdev_parent == NULL); 174 175 cvd->vdev_parent = pvd; 176 177 if (pvd == NULL) 178 return; 179 180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 181 182 oldsize = pvd->vdev_children * sizeof (vdev_t *); 183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 184 newsize = pvd->vdev_children * sizeof (vdev_t *); 185 186 newchild = kmem_zalloc(newsize, KM_SLEEP); 187 if (pvd->vdev_child != NULL) { 188 bcopy(pvd->vdev_child, newchild, oldsize); 189 kmem_free(pvd->vdev_child, oldsize); 190 } 191 192 pvd->vdev_child = newchild; 193 pvd->vdev_child[id] = cvd; 194 195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 197 198 /* 199 * Walk up all ancestors to update guid sum. 200 */ 201 for (; pvd != NULL; pvd = pvd->vdev_parent) 202 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 203 204 if (cvd->vdev_ops->vdev_op_leaf) 205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 241 if (cvd->vdev_ops->vdev_op_leaf) 242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 243 } 244 245 /* 246 * Remove any holes in the child array. 247 */ 248 void 249 vdev_compact_children(vdev_t *pvd) 250 { 251 vdev_t **newchild, *cvd; 252 int oldc = pvd->vdev_children; 253 int newc, c; 254 255 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 256 257 for (c = newc = 0; c < oldc; c++) 258 if (pvd->vdev_child[c]) 259 newc++; 260 261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 262 263 for (c = newc = 0; c < oldc; c++) { 264 if ((cvd = pvd->vdev_child[c]) != NULL) { 265 newchild[newc] = cvd; 266 cvd->vdev_id = newc++; 267 } 268 } 269 270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 271 pvd->vdev_child = newchild; 272 pvd->vdev_children = newc; 273 } 274 275 /* 276 * Allocate and minimally initialize a vdev_t. 277 */ 278 static vdev_t * 279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 280 { 281 vdev_t *vd; 282 283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 284 285 if (spa->spa_root_vdev == NULL) { 286 ASSERT(ops == &vdev_root_ops); 287 spa->spa_root_vdev = vd; 288 } 289 290 if (guid == 0) { 291 if (spa->spa_root_vdev == vd) { 292 /* 293 * The root vdev's guid will also be the pool guid, 294 * which must be unique among all pools. 295 */ 296 while (guid == 0 || spa_guid_exists(guid, 0)) 297 guid = spa_get_random(-1ULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 while (guid == 0 || 303 spa_guid_exists(spa_guid(spa), guid)) 304 guid = spa_get_random(-1ULL); 305 } 306 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 307 } 308 309 vd->vdev_spa = spa; 310 vd->vdev_id = id; 311 vd->vdev_guid = guid; 312 vd->vdev_guid_sum = guid; 313 vd->vdev_ops = ops; 314 vd->vdev_state = VDEV_STATE_CLOSED; 315 316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 318 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 319 for (int t = 0; t < DTL_TYPES; t++) { 320 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 321 &vd->vdev_dtl_lock); 322 } 323 txg_list_create(&vd->vdev_ms_list, 324 offsetof(struct metaslab, ms_txg_node)); 325 txg_list_create(&vd->vdev_dtl_list, 326 offsetof(struct vdev, vdev_dtl_node)); 327 vd->vdev_stat.vs_timestamp = gethrtime(); 328 vdev_queue_init(vd); 329 vdev_cache_init(vd); 330 331 return (vd); 332 } 333 334 /* 335 * Allocate a new vdev. The 'alloctype' is used to control whether we are 336 * creating a new vdev or loading an existing one - the behavior is slightly 337 * different for each case. 338 */ 339 int 340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 341 int alloctype) 342 { 343 vdev_ops_t *ops; 344 char *type; 345 uint64_t guid = 0, islog, nparity; 346 vdev_t *vd; 347 348 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 349 350 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 351 return (EINVAL); 352 353 if ((ops = vdev_getops(type)) == NULL) 354 return (EINVAL); 355 356 /* 357 * If this is a load, get the vdev guid from the nvlist. 358 * Otherwise, vdev_alloc_common() will generate one for us. 359 */ 360 if (alloctype == VDEV_ALLOC_LOAD) { 361 uint64_t label_id; 362 363 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 364 label_id != id) 365 return (EINVAL); 366 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 368 return (EINVAL); 369 } else if (alloctype == VDEV_ALLOC_SPARE) { 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (EINVAL); 372 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } 376 377 /* 378 * The first allocated vdev must be of type 'root'. 379 */ 380 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 381 return (EINVAL); 382 383 /* 384 * Determine whether we're a log vdev. 385 */ 386 islog = 0; 387 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 388 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 389 return (ENOTSUP); 390 391 /* 392 * Set the nparity property for RAID-Z vdevs. 393 */ 394 nparity = -1ULL; 395 if (ops == &vdev_raidz_ops) { 396 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 397 &nparity) == 0) { 398 /* 399 * Currently, we can only support 2 parity devices. 400 */ 401 if (nparity == 0 || nparity > 2) 402 return (EINVAL); 403 /* 404 * Older versions can only support 1 parity device. 405 */ 406 if (nparity == 2 && 407 spa_version(spa) < SPA_VERSION_RAID6) 408 return (ENOTSUP); 409 } else { 410 /* 411 * We require the parity to be specified for SPAs that 412 * support multiple parity levels. 413 */ 414 if (spa_version(spa) >= SPA_VERSION_RAID6) 415 return (EINVAL); 416 /* 417 * Otherwise, we default to 1 parity device for RAID-Z. 418 */ 419 nparity = 1; 420 } 421 } else { 422 nparity = 0; 423 } 424 ASSERT(nparity != -1ULL); 425 426 vd = vdev_alloc_common(spa, id, guid, ops); 427 428 vd->vdev_islog = islog; 429 vd->vdev_nparity = nparity; 430 431 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 432 vd->vdev_path = spa_strdup(vd->vdev_path); 433 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 434 vd->vdev_devid = spa_strdup(vd->vdev_devid); 435 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 436 &vd->vdev_physpath) == 0) 437 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 438 439 /* 440 * Set the whole_disk property. If it's not specified, leave the value 441 * as -1. 442 */ 443 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 444 &vd->vdev_wholedisk) != 0) 445 vd->vdev_wholedisk = -1ULL; 446 447 /* 448 * Look for the 'not present' flag. This will only be set if the device 449 * was not present at the time of import. 450 */ 451 if (!spa->spa_import_faulted) 452 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 453 &vd->vdev_not_present); 454 455 /* 456 * Get the alignment requirement. 457 */ 458 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 459 460 /* 461 * If we're a top-level vdev, try to load the allocation parameters. 462 */ 463 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 465 &vd->vdev_ms_array); 466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 467 &vd->vdev_ms_shift); 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 469 &vd->vdev_asize); 470 } 471 472 /* 473 * If we're a leaf vdev, try to load the DTL object and other state. 474 */ 475 if (vd->vdev_ops->vdev_op_leaf && 476 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { 477 if (alloctype == VDEV_ALLOC_LOAD) { 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 479 &vd->vdev_dtl_smo.smo_object); 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 481 &vd->vdev_unspare); 482 } 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 484 &vd->vdev_offline); 485 486 /* 487 * When importing a pool, we want to ignore the persistent fault 488 * state, as the diagnosis made on another system may not be 489 * valid in the current context. 490 */ 491 if (spa->spa_load_state == SPA_LOAD_OPEN) { 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 493 &vd->vdev_faulted); 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 495 &vd->vdev_degraded); 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 497 &vd->vdev_removed); 498 } 499 } 500 501 /* 502 * Add ourselves to the parent's list of children. 503 */ 504 vdev_add_child(parent, vd); 505 506 *vdp = vd; 507 508 return (0); 509 } 510 511 void 512 vdev_free(vdev_t *vd) 513 { 514 int c; 515 spa_t *spa = vd->vdev_spa; 516 517 /* 518 * vdev_free() implies closing the vdev first. This is simpler than 519 * trying to ensure complicated semantics for all callers. 520 */ 521 vdev_close(vd); 522 523 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 524 525 /* 526 * Free all children. 527 */ 528 for (c = 0; c < vd->vdev_children; c++) 529 vdev_free(vd->vdev_child[c]); 530 531 ASSERT(vd->vdev_child == NULL); 532 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 533 534 /* 535 * Discard allocation state. 536 */ 537 if (vd == vd->vdev_top) 538 vdev_metaslab_fini(vd); 539 540 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 541 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 542 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 543 544 /* 545 * Remove this vdev from its parent's child list. 546 */ 547 vdev_remove_child(vd->vdev_parent, vd); 548 549 ASSERT(vd->vdev_parent == NULL); 550 551 /* 552 * Clean up vdev structure. 553 */ 554 vdev_queue_fini(vd); 555 vdev_cache_fini(vd); 556 557 if (vd->vdev_path) 558 spa_strfree(vd->vdev_path); 559 if (vd->vdev_devid) 560 spa_strfree(vd->vdev_devid); 561 if (vd->vdev_physpath) 562 spa_strfree(vd->vdev_physpath); 563 564 if (vd->vdev_isspare) 565 spa_spare_remove(vd); 566 if (vd->vdev_isl2cache) 567 spa_l2cache_remove(vd); 568 569 txg_list_destroy(&vd->vdev_ms_list); 570 txg_list_destroy(&vd->vdev_dtl_list); 571 572 mutex_enter(&vd->vdev_dtl_lock); 573 for (int t = 0; t < DTL_TYPES; t++) { 574 space_map_unload(&vd->vdev_dtl[t]); 575 space_map_destroy(&vd->vdev_dtl[t]); 576 } 577 mutex_exit(&vd->vdev_dtl_lock); 578 579 mutex_destroy(&vd->vdev_dtl_lock); 580 mutex_destroy(&vd->vdev_stat_lock); 581 mutex_destroy(&vd->vdev_probe_lock); 582 583 if (vd == spa->spa_root_vdev) 584 spa->spa_root_vdev = NULL; 585 586 kmem_free(vd, sizeof (vdev_t)); 587 } 588 589 /* 590 * Transfer top-level vdev state from svd to tvd. 591 */ 592 static void 593 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 594 { 595 spa_t *spa = svd->vdev_spa; 596 metaslab_t *msp; 597 vdev_t *vd; 598 int t; 599 600 ASSERT(tvd == tvd->vdev_top); 601 602 tvd->vdev_ms_array = svd->vdev_ms_array; 603 tvd->vdev_ms_shift = svd->vdev_ms_shift; 604 tvd->vdev_ms_count = svd->vdev_ms_count; 605 606 svd->vdev_ms_array = 0; 607 svd->vdev_ms_shift = 0; 608 svd->vdev_ms_count = 0; 609 610 tvd->vdev_mg = svd->vdev_mg; 611 tvd->vdev_ms = svd->vdev_ms; 612 613 svd->vdev_mg = NULL; 614 svd->vdev_ms = NULL; 615 616 if (tvd->vdev_mg != NULL) 617 tvd->vdev_mg->mg_vd = tvd; 618 619 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 620 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 621 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 622 623 svd->vdev_stat.vs_alloc = 0; 624 svd->vdev_stat.vs_space = 0; 625 svd->vdev_stat.vs_dspace = 0; 626 627 for (t = 0; t < TXG_SIZE; t++) { 628 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 629 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 630 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 631 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 632 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 633 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 634 } 635 636 if (list_link_active(&svd->vdev_config_dirty_node)) { 637 vdev_config_clean(svd); 638 vdev_config_dirty(tvd); 639 } 640 641 if (list_link_active(&svd->vdev_state_dirty_node)) { 642 vdev_state_clean(svd); 643 vdev_state_dirty(tvd); 644 } 645 646 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 647 svd->vdev_deflate_ratio = 0; 648 649 tvd->vdev_islog = svd->vdev_islog; 650 svd->vdev_islog = 0; 651 } 652 653 static void 654 vdev_top_update(vdev_t *tvd, vdev_t *vd) 655 { 656 int c; 657 658 if (vd == NULL) 659 return; 660 661 vd->vdev_top = tvd; 662 663 for (c = 0; c < vd->vdev_children; c++) 664 vdev_top_update(tvd, vd->vdev_child[c]); 665 } 666 667 /* 668 * Add a mirror/replacing vdev above an existing vdev. 669 */ 670 vdev_t * 671 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 672 { 673 spa_t *spa = cvd->vdev_spa; 674 vdev_t *pvd = cvd->vdev_parent; 675 vdev_t *mvd; 676 677 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 678 679 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 680 681 mvd->vdev_asize = cvd->vdev_asize; 682 mvd->vdev_ashift = cvd->vdev_ashift; 683 mvd->vdev_state = cvd->vdev_state; 684 685 vdev_remove_child(pvd, cvd); 686 vdev_add_child(pvd, mvd); 687 cvd->vdev_id = mvd->vdev_children; 688 vdev_add_child(mvd, cvd); 689 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 690 691 if (mvd == mvd->vdev_top) 692 vdev_top_transfer(cvd, mvd); 693 694 return (mvd); 695 } 696 697 /* 698 * Remove a 1-way mirror/replacing vdev from the tree. 699 */ 700 void 701 vdev_remove_parent(vdev_t *cvd) 702 { 703 vdev_t *mvd = cvd->vdev_parent; 704 vdev_t *pvd = mvd->vdev_parent; 705 706 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 707 708 ASSERT(mvd->vdev_children == 1); 709 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 710 mvd->vdev_ops == &vdev_replacing_ops || 711 mvd->vdev_ops == &vdev_spare_ops); 712 cvd->vdev_ashift = mvd->vdev_ashift; 713 714 vdev_remove_child(mvd, cvd); 715 vdev_remove_child(pvd, mvd); 716 717 /* 718 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 719 * Otherwise, we could have detached an offline device, and when we 720 * go to import the pool we'll think we have two top-level vdevs, 721 * instead of a different version of the same top-level vdev. 722 */ 723 if (mvd->vdev_top == mvd) { 724 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 725 cvd->vdev_guid += guid_delta; 726 cvd->vdev_guid_sum += guid_delta; 727 } 728 cvd->vdev_id = mvd->vdev_id; 729 vdev_add_child(pvd, cvd); 730 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 731 732 if (cvd == cvd->vdev_top) 733 vdev_top_transfer(mvd, cvd); 734 735 ASSERT(mvd->vdev_children == 0); 736 vdev_free(mvd); 737 } 738 739 int 740 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 741 { 742 spa_t *spa = vd->vdev_spa; 743 objset_t *mos = spa->spa_meta_objset; 744 metaslab_class_t *mc; 745 uint64_t m; 746 uint64_t oldc = vd->vdev_ms_count; 747 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 748 metaslab_t **mspp; 749 int error; 750 751 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 752 return (0); 753 754 ASSERT(oldc <= newc); 755 756 if (vd->vdev_islog) 757 mc = spa->spa_log_class; 758 else 759 mc = spa->spa_normal_class; 760 761 if (vd->vdev_mg == NULL) 762 vd->vdev_mg = metaslab_group_create(mc, vd); 763 764 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 765 766 if (oldc != 0) { 767 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 768 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 769 } 770 771 vd->vdev_ms = mspp; 772 vd->vdev_ms_count = newc; 773 774 for (m = oldc; m < newc; m++) { 775 space_map_obj_t smo = { 0, 0, 0 }; 776 if (txg == 0) { 777 uint64_t object = 0; 778 error = dmu_read(mos, vd->vdev_ms_array, 779 m * sizeof (uint64_t), sizeof (uint64_t), &object); 780 if (error) 781 return (error); 782 if (object != 0) { 783 dmu_buf_t *db; 784 error = dmu_bonus_hold(mos, object, FTAG, &db); 785 if (error) 786 return (error); 787 ASSERT3U(db->db_size, >=, sizeof (smo)); 788 bcopy(db->db_data, &smo, sizeof (smo)); 789 ASSERT3U(smo.smo_object, ==, object); 790 dmu_buf_rele(db, FTAG); 791 } 792 } 793 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 794 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 795 } 796 797 return (0); 798 } 799 800 void 801 vdev_metaslab_fini(vdev_t *vd) 802 { 803 uint64_t m; 804 uint64_t count = vd->vdev_ms_count; 805 806 if (vd->vdev_ms != NULL) { 807 for (m = 0; m < count; m++) 808 if (vd->vdev_ms[m] != NULL) 809 metaslab_fini(vd->vdev_ms[m]); 810 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 811 vd->vdev_ms = NULL; 812 } 813 } 814 815 typedef struct vdev_probe_stats { 816 boolean_t vps_readable; 817 boolean_t vps_writeable; 818 int vps_flags; 819 } vdev_probe_stats_t; 820 821 static void 822 vdev_probe_done(zio_t *zio) 823 { 824 spa_t *spa = zio->io_spa; 825 vdev_t *vd = zio->io_vd; 826 vdev_probe_stats_t *vps = zio->io_private; 827 828 ASSERT(vd->vdev_probe_zio != NULL); 829 830 if (zio->io_type == ZIO_TYPE_READ) { 831 if (zio->io_error == 0) 832 vps->vps_readable = 1; 833 if (zio->io_error == 0 && spa_writeable(spa)) { 834 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 835 zio->io_offset, zio->io_size, zio->io_data, 836 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 837 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 838 } else { 839 zio_buf_free(zio->io_data, zio->io_size); 840 } 841 } else if (zio->io_type == ZIO_TYPE_WRITE) { 842 if (zio->io_error == 0) 843 vps->vps_writeable = 1; 844 zio_buf_free(zio->io_data, zio->io_size); 845 } else if (zio->io_type == ZIO_TYPE_NULL) { 846 zio_t *pio; 847 848 vd->vdev_cant_read |= !vps->vps_readable; 849 vd->vdev_cant_write |= !vps->vps_writeable; 850 851 if (vdev_readable(vd) && 852 (vdev_writeable(vd) || !spa_writeable(spa))) { 853 zio->io_error = 0; 854 } else { 855 ASSERT(zio->io_error != 0); 856 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 857 spa, vd, NULL, 0, 0); 858 zio->io_error = ENXIO; 859 } 860 861 mutex_enter(&vd->vdev_probe_lock); 862 ASSERT(vd->vdev_probe_zio == zio); 863 vd->vdev_probe_zio = NULL; 864 mutex_exit(&vd->vdev_probe_lock); 865 866 while ((pio = zio_walk_parents(zio)) != NULL) 867 if (!vdev_accessible(vd, pio)) 868 pio->io_error = ENXIO; 869 870 kmem_free(vps, sizeof (*vps)); 871 } 872 } 873 874 /* 875 * Determine whether this device is accessible by reading and writing 876 * to several known locations: the pad regions of each vdev label 877 * but the first (which we leave alone in case it contains a VTOC). 878 */ 879 zio_t * 880 vdev_probe(vdev_t *vd, zio_t *zio) 881 { 882 spa_t *spa = vd->vdev_spa; 883 vdev_probe_stats_t *vps = NULL; 884 zio_t *pio; 885 886 ASSERT(vd->vdev_ops->vdev_op_leaf); 887 888 /* 889 * Don't probe the probe. 890 */ 891 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 892 return (NULL); 893 894 /* 895 * To prevent 'probe storms' when a device fails, we create 896 * just one probe i/o at a time. All zios that want to probe 897 * this vdev will become parents of the probe io. 898 */ 899 mutex_enter(&vd->vdev_probe_lock); 900 901 if ((pio = vd->vdev_probe_zio) == NULL) { 902 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 903 904 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 905 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 906 ZIO_FLAG_DONT_RETRY; 907 908 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 909 /* 910 * vdev_cant_read and vdev_cant_write can only 911 * transition from TRUE to FALSE when we have the 912 * SCL_ZIO lock as writer; otherwise they can only 913 * transition from FALSE to TRUE. This ensures that 914 * any zio looking at these values can assume that 915 * failures persist for the life of the I/O. That's 916 * important because when a device has intermittent 917 * connectivity problems, we want to ensure that 918 * they're ascribed to the device (ENXIO) and not 919 * the zio (EIO). 920 * 921 * Since we hold SCL_ZIO as writer here, clear both 922 * values so the probe can reevaluate from first 923 * principles. 924 */ 925 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 926 vd->vdev_cant_read = B_FALSE; 927 vd->vdev_cant_write = B_FALSE; 928 } 929 930 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 931 vdev_probe_done, vps, 932 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 933 934 if (zio != NULL) { 935 vd->vdev_probe_wanted = B_TRUE; 936 spa_async_request(spa, SPA_ASYNC_PROBE); 937 } 938 } 939 940 if (zio != NULL) 941 zio_add_child(zio, pio); 942 943 mutex_exit(&vd->vdev_probe_lock); 944 945 if (vps == NULL) { 946 ASSERT(zio != NULL); 947 return (NULL); 948 } 949 950 for (int l = 1; l < VDEV_LABELS; l++) { 951 zio_nowait(zio_read_phys(pio, vd, 952 vdev_label_offset(vd->vdev_psize, l, 953 offsetof(vdev_label_t, vl_pad2)), 954 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 955 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 956 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 957 } 958 959 if (zio == NULL) 960 return (pio); 961 962 zio_nowait(pio); 963 return (NULL); 964 } 965 966 /* 967 * Prepare a virtual device for access. 968 */ 969 int 970 vdev_open(vdev_t *vd) 971 { 972 spa_t *spa = vd->vdev_spa; 973 int error; 974 int c; 975 uint64_t osize = 0; 976 uint64_t asize, psize; 977 uint64_t ashift = 0; 978 979 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 980 981 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 982 vd->vdev_state == VDEV_STATE_CANT_OPEN || 983 vd->vdev_state == VDEV_STATE_OFFLINE); 984 985 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 986 987 if (!vd->vdev_removed && vd->vdev_faulted) { 988 ASSERT(vd->vdev_children == 0); 989 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 990 VDEV_AUX_ERR_EXCEEDED); 991 return (ENXIO); 992 } else if (vd->vdev_offline) { 993 ASSERT(vd->vdev_children == 0); 994 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 995 return (ENXIO); 996 } 997 998 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 999 1000 if (zio_injection_enabled && error == 0) 1001 error = zio_handle_device_injection(vd, ENXIO); 1002 1003 if (error) { 1004 if (vd->vdev_removed && 1005 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1006 vd->vdev_removed = B_FALSE; 1007 1008 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1009 vd->vdev_stat.vs_aux); 1010 return (error); 1011 } 1012 1013 vd->vdev_removed = B_FALSE; 1014 1015 if (vd->vdev_degraded) { 1016 ASSERT(vd->vdev_children == 0); 1017 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1018 VDEV_AUX_ERR_EXCEEDED); 1019 } else { 1020 vd->vdev_state = VDEV_STATE_HEALTHY; 1021 } 1022 1023 for (c = 0; c < vd->vdev_children; c++) 1024 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1025 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1026 VDEV_AUX_NONE); 1027 break; 1028 } 1029 1030 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1031 1032 if (vd->vdev_children == 0) { 1033 if (osize < SPA_MINDEVSIZE) { 1034 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1035 VDEV_AUX_TOO_SMALL); 1036 return (EOVERFLOW); 1037 } 1038 psize = osize; 1039 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1040 } else { 1041 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1042 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1043 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1044 VDEV_AUX_TOO_SMALL); 1045 return (EOVERFLOW); 1046 } 1047 psize = 0; 1048 asize = osize; 1049 } 1050 1051 vd->vdev_psize = psize; 1052 1053 if (vd->vdev_asize == 0) { 1054 /* 1055 * This is the first-ever open, so use the computed values. 1056 * For testing purposes, a higher ashift can be requested. 1057 */ 1058 vd->vdev_asize = asize; 1059 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1060 } else { 1061 /* 1062 * Make sure the alignment requirement hasn't increased. 1063 */ 1064 if (ashift > vd->vdev_top->vdev_ashift) { 1065 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1066 VDEV_AUX_BAD_LABEL); 1067 return (EINVAL); 1068 } 1069 1070 /* 1071 * Make sure the device hasn't shrunk. 1072 */ 1073 if (asize < vd->vdev_asize) { 1074 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1075 VDEV_AUX_BAD_LABEL); 1076 return (EINVAL); 1077 } 1078 1079 /* 1080 * If all children are healthy and the asize has increased, 1081 * then we've experienced dynamic LUN growth. 1082 */ 1083 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1084 asize > vd->vdev_asize) { 1085 vd->vdev_asize = asize; 1086 } 1087 } 1088 1089 /* 1090 * Ensure we can issue some IO before declaring the 1091 * vdev open for business. 1092 */ 1093 if (vd->vdev_ops->vdev_op_leaf && 1094 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1095 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1096 VDEV_AUX_IO_FAILURE); 1097 return (error); 1098 } 1099 1100 /* 1101 * If this is a top-level vdev, compute the raidz-deflation 1102 * ratio. Note, we hard-code in 128k (1<<17) because it is the 1103 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 1104 * changes, this algorithm must never change, or we will 1105 * inconsistently account for existing bp's. 1106 */ 1107 if (vd->vdev_top == vd) { 1108 vd->vdev_deflate_ratio = (1<<17) / 1109 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 1110 } 1111 1112 /* 1113 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1114 * resilver. But don't do this if we are doing a reopen for a scrub, 1115 * since this would just restart the scrub we are already doing. 1116 */ 1117 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1118 vdev_resilver_needed(vd, NULL, NULL)) 1119 spa_async_request(spa, SPA_ASYNC_RESILVER); 1120 1121 return (0); 1122 } 1123 1124 /* 1125 * Called once the vdevs are all opened, this routine validates the label 1126 * contents. This needs to be done before vdev_load() so that we don't 1127 * inadvertently do repair I/Os to the wrong device. 1128 * 1129 * This function will only return failure if one of the vdevs indicates that it 1130 * has since been destroyed or exported. This is only possible if 1131 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1132 * will be updated but the function will return 0. 1133 */ 1134 int 1135 vdev_validate(vdev_t *vd) 1136 { 1137 spa_t *spa = vd->vdev_spa; 1138 int c; 1139 nvlist_t *label; 1140 uint64_t guid, top_guid; 1141 uint64_t state; 1142 1143 for (c = 0; c < vd->vdev_children; c++) 1144 if (vdev_validate(vd->vdev_child[c]) != 0) 1145 return (EBADF); 1146 1147 /* 1148 * If the device has already failed, or was marked offline, don't do 1149 * any further validation. Otherwise, label I/O will fail and we will 1150 * overwrite the previous state. 1151 */ 1152 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1153 1154 if ((label = vdev_label_read_config(vd)) == NULL) { 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1156 VDEV_AUX_BAD_LABEL); 1157 return (0); 1158 } 1159 1160 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1161 &guid) != 0 || guid != spa_guid(spa)) { 1162 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1163 VDEV_AUX_CORRUPT_DATA); 1164 nvlist_free(label); 1165 return (0); 1166 } 1167 1168 /* 1169 * If this vdev just became a top-level vdev because its 1170 * sibling was detached, it will have adopted the parent's 1171 * vdev guid -- but the label may or may not be on disk yet. 1172 * Fortunately, either version of the label will have the 1173 * same top guid, so if we're a top-level vdev, we can 1174 * safely compare to that instead. 1175 */ 1176 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1177 &guid) != 0 || 1178 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1179 &top_guid) != 0 || 1180 (vd->vdev_guid != guid && 1181 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1182 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1183 VDEV_AUX_CORRUPT_DATA); 1184 nvlist_free(label); 1185 return (0); 1186 } 1187 1188 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1189 &state) != 0) { 1190 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1191 VDEV_AUX_CORRUPT_DATA); 1192 nvlist_free(label); 1193 return (0); 1194 } 1195 1196 nvlist_free(label); 1197 1198 if (spa->spa_load_state == SPA_LOAD_OPEN && 1199 state != POOL_STATE_ACTIVE) 1200 return (EBADF); 1201 1202 /* 1203 * If we were able to open and validate a vdev that was 1204 * previously marked permanently unavailable, clear that state 1205 * now. 1206 */ 1207 if (vd->vdev_not_present) 1208 vd->vdev_not_present = 0; 1209 } 1210 1211 return (0); 1212 } 1213 1214 /* 1215 * Close a virtual device. 1216 */ 1217 void 1218 vdev_close(vdev_t *vd) 1219 { 1220 spa_t *spa = vd->vdev_spa; 1221 1222 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1223 1224 vd->vdev_ops->vdev_op_close(vd); 1225 1226 vdev_cache_purge(vd); 1227 1228 /* 1229 * We record the previous state before we close it, so that if we are 1230 * doing a reopen(), we don't generate FMA ereports if we notice that 1231 * it's still faulted. 1232 */ 1233 vd->vdev_prevstate = vd->vdev_state; 1234 1235 if (vd->vdev_offline) 1236 vd->vdev_state = VDEV_STATE_OFFLINE; 1237 else 1238 vd->vdev_state = VDEV_STATE_CLOSED; 1239 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1240 } 1241 1242 void 1243 vdev_reopen(vdev_t *vd) 1244 { 1245 spa_t *spa = vd->vdev_spa; 1246 1247 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1248 1249 vdev_close(vd); 1250 (void) vdev_open(vd); 1251 1252 /* 1253 * Call vdev_validate() here to make sure we have the same device. 1254 * Otherwise, a device with an invalid label could be successfully 1255 * opened in response to vdev_reopen(). 1256 */ 1257 if (vd->vdev_aux) { 1258 (void) vdev_validate_aux(vd); 1259 if (vdev_readable(vd) && vdev_writeable(vd) && 1260 !l2arc_vdev_present(vd)) { 1261 uint64_t size = vdev_get_rsize(vd); 1262 l2arc_add_vdev(spa, vd, 1263 VDEV_LABEL_START_SIZE, 1264 size - VDEV_LABEL_START_SIZE); 1265 } 1266 } else { 1267 (void) vdev_validate(vd); 1268 } 1269 1270 /* 1271 * Reassess parent vdev's health. 1272 */ 1273 vdev_propagate_state(vd); 1274 } 1275 1276 int 1277 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1278 { 1279 int error; 1280 1281 /* 1282 * Normally, partial opens (e.g. of a mirror) are allowed. 1283 * For a create, however, we want to fail the request if 1284 * there are any components we can't open. 1285 */ 1286 error = vdev_open(vd); 1287 1288 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1289 vdev_close(vd); 1290 return (error ? error : ENXIO); 1291 } 1292 1293 /* 1294 * Recursively initialize all labels. 1295 */ 1296 if ((error = vdev_label_init(vd, txg, isreplacing ? 1297 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1298 vdev_close(vd); 1299 return (error); 1300 } 1301 1302 return (0); 1303 } 1304 1305 /* 1306 * The is the latter half of vdev_create(). It is distinct because it 1307 * involves initiating transactions in order to do metaslab creation. 1308 * For creation, we want to try to create all vdevs at once and then undo it 1309 * if anything fails; this is much harder if we have pending transactions. 1310 */ 1311 void 1312 vdev_init(vdev_t *vd, uint64_t txg) 1313 { 1314 /* 1315 * Aim for roughly 200 metaslabs per vdev. 1316 */ 1317 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1318 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1319 1320 /* 1321 * Initialize the vdev's metaslabs. This can't fail because 1322 * there's nothing to read when creating all new metaslabs. 1323 */ 1324 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1325 } 1326 1327 void 1328 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1329 { 1330 ASSERT(vd == vd->vdev_top); 1331 ASSERT(ISP2(flags)); 1332 1333 if (flags & VDD_METASLAB) 1334 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1335 1336 if (flags & VDD_DTL) 1337 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1338 1339 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1340 } 1341 1342 /* 1343 * DTLs. 1344 * 1345 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1346 * the vdev has less than perfect replication. There are three kinds of DTL: 1347 * 1348 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1349 * 1350 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1351 * 1352 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1353 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1354 * txgs that was scrubbed. 1355 * 1356 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1357 * persistent errors or just some device being offline. 1358 * Unlike the other three, the DTL_OUTAGE map is not generally 1359 * maintained; it's only computed when needed, typically to 1360 * determine whether a device can be detached. 1361 * 1362 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1363 * either has the data or it doesn't. 1364 * 1365 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1366 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1367 * if any child is less than fully replicated, then so is its parent. 1368 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1369 * comprising only those txgs which appear in 'maxfaults' or more children; 1370 * those are the txgs we don't have enough replication to read. For example, 1371 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1372 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1373 * two child DTL_MISSING maps. 1374 * 1375 * It should be clear from the above that to compute the DTLs and outage maps 1376 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1377 * Therefore, that is all we keep on disk. When loading the pool, or after 1378 * a configuration change, we generate all other DTLs from first principles. 1379 */ 1380 void 1381 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1382 { 1383 space_map_t *sm = &vd->vdev_dtl[t]; 1384 1385 ASSERT(t < DTL_TYPES); 1386 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1387 1388 mutex_enter(sm->sm_lock); 1389 if (!space_map_contains(sm, txg, size)) 1390 space_map_add(sm, txg, size); 1391 mutex_exit(sm->sm_lock); 1392 } 1393 1394 boolean_t 1395 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1396 { 1397 space_map_t *sm = &vd->vdev_dtl[t]; 1398 boolean_t dirty = B_FALSE; 1399 1400 ASSERT(t < DTL_TYPES); 1401 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1402 1403 mutex_enter(sm->sm_lock); 1404 if (sm->sm_space != 0) 1405 dirty = space_map_contains(sm, txg, size); 1406 mutex_exit(sm->sm_lock); 1407 1408 return (dirty); 1409 } 1410 1411 boolean_t 1412 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1413 { 1414 space_map_t *sm = &vd->vdev_dtl[t]; 1415 boolean_t empty; 1416 1417 mutex_enter(sm->sm_lock); 1418 empty = (sm->sm_space == 0); 1419 mutex_exit(sm->sm_lock); 1420 1421 return (empty); 1422 } 1423 1424 /* 1425 * Reassess DTLs after a config change or scrub completion. 1426 */ 1427 void 1428 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1429 { 1430 spa_t *spa = vd->vdev_spa; 1431 avl_tree_t reftree; 1432 int minref; 1433 1434 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1435 1436 for (int c = 0; c < vd->vdev_children; c++) 1437 vdev_dtl_reassess(vd->vdev_child[c], txg, 1438 scrub_txg, scrub_done); 1439 1440 if (vd == spa->spa_root_vdev) 1441 return; 1442 1443 if (vd->vdev_ops->vdev_op_leaf) { 1444 mutex_enter(&vd->vdev_dtl_lock); 1445 if (scrub_txg != 0 && 1446 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1447 /* XXX should check scrub_done? */ 1448 /* 1449 * We completed a scrub up to scrub_txg. If we 1450 * did it without rebooting, then the scrub dtl 1451 * will be valid, so excise the old region and 1452 * fold in the scrub dtl. Otherwise, leave the 1453 * dtl as-is if there was an error. 1454 * 1455 * There's little trick here: to excise the beginning 1456 * of the DTL_MISSING map, we put it into a reference 1457 * tree and then add a segment with refcnt -1 that 1458 * covers the range [0, scrub_txg). This means 1459 * that each txg in that range has refcnt -1 or 0. 1460 * We then add DTL_SCRUB with a refcnt of 2, so that 1461 * entries in the range [0, scrub_txg) will have a 1462 * positive refcnt -- either 1 or 2. We then convert 1463 * the reference tree into the new DTL_MISSING map. 1464 */ 1465 space_map_ref_create(&reftree); 1466 space_map_ref_add_map(&reftree, 1467 &vd->vdev_dtl[DTL_MISSING], 1); 1468 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1469 space_map_ref_add_map(&reftree, 1470 &vd->vdev_dtl[DTL_SCRUB], 2); 1471 space_map_ref_generate_map(&reftree, 1472 &vd->vdev_dtl[DTL_MISSING], 1); 1473 space_map_ref_destroy(&reftree); 1474 } 1475 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1476 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1477 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1478 if (scrub_done) 1479 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1480 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1481 if (!vdev_readable(vd)) 1482 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1483 else 1484 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1485 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1486 mutex_exit(&vd->vdev_dtl_lock); 1487 1488 if (txg != 0) 1489 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1490 return; 1491 } 1492 1493 mutex_enter(&vd->vdev_dtl_lock); 1494 for (int t = 0; t < DTL_TYPES; t++) { 1495 if (t == DTL_SCRUB) 1496 continue; /* leaf vdevs only */ 1497 if (t == DTL_PARTIAL) 1498 minref = 1; /* i.e. non-zero */ 1499 else if (vd->vdev_nparity != 0) 1500 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1501 else 1502 minref = vd->vdev_children; /* any kind of mirror */ 1503 space_map_ref_create(&reftree); 1504 for (int c = 0; c < vd->vdev_children; c++) { 1505 vdev_t *cvd = vd->vdev_child[c]; 1506 mutex_enter(&cvd->vdev_dtl_lock); 1507 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1508 mutex_exit(&cvd->vdev_dtl_lock); 1509 } 1510 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1511 space_map_ref_destroy(&reftree); 1512 } 1513 mutex_exit(&vd->vdev_dtl_lock); 1514 } 1515 1516 static int 1517 vdev_dtl_load(vdev_t *vd) 1518 { 1519 spa_t *spa = vd->vdev_spa; 1520 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1521 objset_t *mos = spa->spa_meta_objset; 1522 dmu_buf_t *db; 1523 int error; 1524 1525 ASSERT(vd->vdev_children == 0); 1526 1527 if (smo->smo_object == 0) 1528 return (0); 1529 1530 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1531 return (error); 1532 1533 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1534 bcopy(db->db_data, smo, sizeof (*smo)); 1535 dmu_buf_rele(db, FTAG); 1536 1537 mutex_enter(&vd->vdev_dtl_lock); 1538 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1539 NULL, SM_ALLOC, smo, mos); 1540 mutex_exit(&vd->vdev_dtl_lock); 1541 1542 return (error); 1543 } 1544 1545 void 1546 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1547 { 1548 spa_t *spa = vd->vdev_spa; 1549 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1550 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1551 objset_t *mos = spa->spa_meta_objset; 1552 space_map_t smsync; 1553 kmutex_t smlock; 1554 dmu_buf_t *db; 1555 dmu_tx_t *tx; 1556 1557 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1558 1559 if (vd->vdev_detached) { 1560 if (smo->smo_object != 0) { 1561 int err = dmu_object_free(mos, smo->smo_object, tx); 1562 ASSERT3U(err, ==, 0); 1563 smo->smo_object = 0; 1564 } 1565 dmu_tx_commit(tx); 1566 return; 1567 } 1568 1569 if (smo->smo_object == 0) { 1570 ASSERT(smo->smo_objsize == 0); 1571 ASSERT(smo->smo_alloc == 0); 1572 smo->smo_object = dmu_object_alloc(mos, 1573 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1574 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1575 ASSERT(smo->smo_object != 0); 1576 vdev_config_dirty(vd->vdev_top); 1577 } 1578 1579 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1580 1581 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1582 &smlock); 1583 1584 mutex_enter(&smlock); 1585 1586 mutex_enter(&vd->vdev_dtl_lock); 1587 space_map_walk(sm, space_map_add, &smsync); 1588 mutex_exit(&vd->vdev_dtl_lock); 1589 1590 space_map_truncate(smo, mos, tx); 1591 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1592 1593 space_map_destroy(&smsync); 1594 1595 mutex_exit(&smlock); 1596 mutex_destroy(&smlock); 1597 1598 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1599 dmu_buf_will_dirty(db, tx); 1600 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1601 bcopy(smo, db->db_data, sizeof (*smo)); 1602 dmu_buf_rele(db, FTAG); 1603 1604 dmu_tx_commit(tx); 1605 } 1606 1607 /* 1608 * Determine whether the specified vdev can be offlined/detached/removed 1609 * without losing data. 1610 */ 1611 boolean_t 1612 vdev_dtl_required(vdev_t *vd) 1613 { 1614 spa_t *spa = vd->vdev_spa; 1615 vdev_t *tvd = vd->vdev_top; 1616 uint8_t cant_read = vd->vdev_cant_read; 1617 boolean_t required; 1618 1619 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1620 1621 if (vd == spa->spa_root_vdev || vd == tvd) 1622 return (B_TRUE); 1623 1624 /* 1625 * Temporarily mark the device as unreadable, and then determine 1626 * whether this results in any DTL outages in the top-level vdev. 1627 * If not, we can safely offline/detach/remove the device. 1628 */ 1629 vd->vdev_cant_read = B_TRUE; 1630 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1631 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1632 vd->vdev_cant_read = cant_read; 1633 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1634 1635 return (required); 1636 } 1637 1638 /* 1639 * Determine if resilver is needed, and if so the txg range. 1640 */ 1641 boolean_t 1642 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1643 { 1644 boolean_t needed = B_FALSE; 1645 uint64_t thismin = UINT64_MAX; 1646 uint64_t thismax = 0; 1647 1648 if (vd->vdev_children == 0) { 1649 mutex_enter(&vd->vdev_dtl_lock); 1650 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1651 vdev_writeable(vd)) { 1652 space_seg_t *ss; 1653 1654 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1655 thismin = ss->ss_start - 1; 1656 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1657 thismax = ss->ss_end; 1658 needed = B_TRUE; 1659 } 1660 mutex_exit(&vd->vdev_dtl_lock); 1661 } else { 1662 for (int c = 0; c < vd->vdev_children; c++) { 1663 vdev_t *cvd = vd->vdev_child[c]; 1664 uint64_t cmin, cmax; 1665 1666 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1667 thismin = MIN(thismin, cmin); 1668 thismax = MAX(thismax, cmax); 1669 needed = B_TRUE; 1670 } 1671 } 1672 } 1673 1674 if (needed && minp) { 1675 *minp = thismin; 1676 *maxp = thismax; 1677 } 1678 return (needed); 1679 } 1680 1681 void 1682 vdev_load(vdev_t *vd) 1683 { 1684 /* 1685 * Recursively load all children. 1686 */ 1687 for (int c = 0; c < vd->vdev_children; c++) 1688 vdev_load(vd->vdev_child[c]); 1689 1690 /* 1691 * If this is a top-level vdev, initialize its metaslabs. 1692 */ 1693 if (vd == vd->vdev_top && 1694 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1695 vdev_metaslab_init(vd, 0) != 0)) 1696 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1697 VDEV_AUX_CORRUPT_DATA); 1698 1699 /* 1700 * If this is a leaf vdev, load its DTL. 1701 */ 1702 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1703 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1704 VDEV_AUX_CORRUPT_DATA); 1705 } 1706 1707 /* 1708 * The special vdev case is used for hot spares and l2cache devices. Its 1709 * sole purpose it to set the vdev state for the associated vdev. To do this, 1710 * we make sure that we can open the underlying device, then try to read the 1711 * label, and make sure that the label is sane and that it hasn't been 1712 * repurposed to another pool. 1713 */ 1714 int 1715 vdev_validate_aux(vdev_t *vd) 1716 { 1717 nvlist_t *label; 1718 uint64_t guid, version; 1719 uint64_t state; 1720 1721 if (!vdev_readable(vd)) 1722 return (0); 1723 1724 if ((label = vdev_label_read_config(vd)) == NULL) { 1725 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1726 VDEV_AUX_CORRUPT_DATA); 1727 return (-1); 1728 } 1729 1730 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1731 version > SPA_VERSION || 1732 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1733 guid != vd->vdev_guid || 1734 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1735 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1736 VDEV_AUX_CORRUPT_DATA); 1737 nvlist_free(label); 1738 return (-1); 1739 } 1740 1741 /* 1742 * We don't actually check the pool state here. If it's in fact in 1743 * use by another pool, we update this fact on the fly when requested. 1744 */ 1745 nvlist_free(label); 1746 return (0); 1747 } 1748 1749 void 1750 vdev_sync_done(vdev_t *vd, uint64_t txg) 1751 { 1752 metaslab_t *msp; 1753 1754 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1755 metaslab_sync_done(msp, txg); 1756 } 1757 1758 void 1759 vdev_sync(vdev_t *vd, uint64_t txg) 1760 { 1761 spa_t *spa = vd->vdev_spa; 1762 vdev_t *lvd; 1763 metaslab_t *msp; 1764 dmu_tx_t *tx; 1765 1766 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1767 ASSERT(vd == vd->vdev_top); 1768 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1769 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1770 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1771 ASSERT(vd->vdev_ms_array != 0); 1772 vdev_config_dirty(vd); 1773 dmu_tx_commit(tx); 1774 } 1775 1776 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1777 metaslab_sync(msp, txg); 1778 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1779 } 1780 1781 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1782 vdev_dtl_sync(lvd, txg); 1783 1784 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1785 } 1786 1787 uint64_t 1788 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1789 { 1790 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1791 } 1792 1793 /* 1794 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1795 * not be opened, and no I/O is attempted. 1796 */ 1797 int 1798 vdev_fault(spa_t *spa, uint64_t guid) 1799 { 1800 vdev_t *vd; 1801 1802 spa_vdev_state_enter(spa); 1803 1804 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1805 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1806 1807 if (!vd->vdev_ops->vdev_op_leaf) 1808 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1809 1810 /* 1811 * Faulted state takes precedence over degraded. 1812 */ 1813 vd->vdev_faulted = 1ULL; 1814 vd->vdev_degraded = 0ULL; 1815 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1816 1817 /* 1818 * If marking the vdev as faulted cause the top-level vdev to become 1819 * unavailable, then back off and simply mark the vdev as degraded 1820 * instead. 1821 */ 1822 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1823 vd->vdev_degraded = 1ULL; 1824 vd->vdev_faulted = 0ULL; 1825 1826 /* 1827 * If we reopen the device and it's not dead, only then do we 1828 * mark it degraded. 1829 */ 1830 vdev_reopen(vd); 1831 1832 if (vdev_readable(vd)) { 1833 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1834 VDEV_AUX_ERR_EXCEEDED); 1835 } 1836 } 1837 1838 return (spa_vdev_state_exit(spa, vd, 0)); 1839 } 1840 1841 /* 1842 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1843 * user that something is wrong. The vdev continues to operate as normal as far 1844 * as I/O is concerned. 1845 */ 1846 int 1847 vdev_degrade(spa_t *spa, uint64_t guid) 1848 { 1849 vdev_t *vd; 1850 1851 spa_vdev_state_enter(spa); 1852 1853 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1854 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1855 1856 if (!vd->vdev_ops->vdev_op_leaf) 1857 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1858 1859 /* 1860 * If the vdev is already faulted, then don't do anything. 1861 */ 1862 if (vd->vdev_faulted || vd->vdev_degraded) 1863 return (spa_vdev_state_exit(spa, NULL, 0)); 1864 1865 vd->vdev_degraded = 1ULL; 1866 if (!vdev_is_dead(vd)) 1867 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1868 VDEV_AUX_ERR_EXCEEDED); 1869 1870 return (spa_vdev_state_exit(spa, vd, 0)); 1871 } 1872 1873 /* 1874 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1875 * any attached spare device should be detached when the device finishes 1876 * resilvering. Second, the online should be treated like a 'test' online case, 1877 * so no FMA events are generated if the device fails to open. 1878 */ 1879 int 1880 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1881 { 1882 vdev_t *vd; 1883 1884 spa_vdev_state_enter(spa); 1885 1886 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1887 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1888 1889 if (!vd->vdev_ops->vdev_op_leaf) 1890 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1891 1892 vd->vdev_offline = B_FALSE; 1893 vd->vdev_tmpoffline = B_FALSE; 1894 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1895 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1896 vdev_reopen(vd->vdev_top); 1897 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1898 1899 if (newstate) 1900 *newstate = vd->vdev_state; 1901 if ((flags & ZFS_ONLINE_UNSPARE) && 1902 !vdev_is_dead(vd) && vd->vdev_parent && 1903 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1904 vd->vdev_parent->vdev_child[0] == vd) 1905 vd->vdev_unspare = B_TRUE; 1906 1907 return (spa_vdev_state_exit(spa, vd, 0)); 1908 } 1909 1910 int 1911 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1912 { 1913 vdev_t *vd; 1914 1915 spa_vdev_state_enter(spa); 1916 1917 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1918 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1919 1920 if (!vd->vdev_ops->vdev_op_leaf) 1921 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1922 1923 /* 1924 * If the device isn't already offline, try to offline it. 1925 */ 1926 if (!vd->vdev_offline) { 1927 /* 1928 * If this device has the only valid copy of some data, 1929 * don't allow it to be offlined. 1930 */ 1931 if (vd->vdev_aux == NULL && vdev_dtl_required(vd)) 1932 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1933 1934 /* 1935 * Offline this device and reopen its top-level vdev. 1936 * If this action results in the top-level vdev becoming 1937 * unusable, undo it and fail the request. 1938 */ 1939 vd->vdev_offline = B_TRUE; 1940 vdev_reopen(vd->vdev_top); 1941 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) { 1942 vd->vdev_offline = B_FALSE; 1943 vdev_reopen(vd->vdev_top); 1944 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1945 } 1946 } 1947 1948 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 1949 1950 return (spa_vdev_state_exit(spa, vd, 0)); 1951 } 1952 1953 /* 1954 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1955 * vdev_offline(), we assume the spa config is locked. We also clear all 1956 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1957 */ 1958 void 1959 vdev_clear(spa_t *spa, vdev_t *vd) 1960 { 1961 vdev_t *rvd = spa->spa_root_vdev; 1962 1963 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1964 1965 if (vd == NULL) 1966 vd = rvd; 1967 1968 vd->vdev_stat.vs_read_errors = 0; 1969 vd->vdev_stat.vs_write_errors = 0; 1970 vd->vdev_stat.vs_checksum_errors = 0; 1971 1972 for (int c = 0; c < vd->vdev_children; c++) 1973 vdev_clear(spa, vd->vdev_child[c]); 1974 1975 /* 1976 * If we're in the FAULTED state or have experienced failed I/O, then 1977 * clear the persistent state and attempt to reopen the device. We 1978 * also mark the vdev config dirty, so that the new faulted state is 1979 * written out to disk. 1980 */ 1981 if (vd->vdev_faulted || vd->vdev_degraded || 1982 !vdev_readable(vd) || !vdev_writeable(vd)) { 1983 1984 vd->vdev_faulted = vd->vdev_degraded = 0; 1985 vd->vdev_cant_read = B_FALSE; 1986 vd->vdev_cant_write = B_FALSE; 1987 1988 vdev_reopen(vd); 1989 1990 if (vd != rvd) 1991 vdev_state_dirty(vd->vdev_top); 1992 1993 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 1994 spa_async_request(spa, SPA_ASYNC_RESILVER); 1995 1996 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 1997 } 1998 } 1999 2000 boolean_t 2001 vdev_is_dead(vdev_t *vd) 2002 { 2003 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2004 } 2005 2006 boolean_t 2007 vdev_readable(vdev_t *vd) 2008 { 2009 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2010 } 2011 2012 boolean_t 2013 vdev_writeable(vdev_t *vd) 2014 { 2015 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2016 } 2017 2018 boolean_t 2019 vdev_allocatable(vdev_t *vd) 2020 { 2021 uint64_t state = vd->vdev_state; 2022 2023 /* 2024 * We currently allow allocations from vdevs which may be in the 2025 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2026 * fails to reopen then we'll catch it later when we're holding 2027 * the proper locks. Note that we have to get the vdev state 2028 * in a local variable because although it changes atomically, 2029 * we're asking two separate questions about it. 2030 */ 2031 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2032 !vd->vdev_cant_write); 2033 } 2034 2035 boolean_t 2036 vdev_accessible(vdev_t *vd, zio_t *zio) 2037 { 2038 ASSERT(zio->io_vd == vd); 2039 2040 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2041 return (B_FALSE); 2042 2043 if (zio->io_type == ZIO_TYPE_READ) 2044 return (!vd->vdev_cant_read); 2045 2046 if (zio->io_type == ZIO_TYPE_WRITE) 2047 return (!vd->vdev_cant_write); 2048 2049 return (B_TRUE); 2050 } 2051 2052 /* 2053 * Get statistics for the given vdev. 2054 */ 2055 void 2056 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2057 { 2058 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2059 2060 mutex_enter(&vd->vdev_stat_lock); 2061 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2062 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2063 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2064 vs->vs_state = vd->vdev_state; 2065 vs->vs_rsize = vdev_get_rsize(vd); 2066 mutex_exit(&vd->vdev_stat_lock); 2067 2068 /* 2069 * If we're getting stats on the root vdev, aggregate the I/O counts 2070 * over all top-level vdevs (i.e. the direct children of the root). 2071 */ 2072 if (vd == rvd) { 2073 for (int c = 0; c < rvd->vdev_children; c++) { 2074 vdev_t *cvd = rvd->vdev_child[c]; 2075 vdev_stat_t *cvs = &cvd->vdev_stat; 2076 2077 mutex_enter(&vd->vdev_stat_lock); 2078 for (int t = 0; t < ZIO_TYPES; t++) { 2079 vs->vs_ops[t] += cvs->vs_ops[t]; 2080 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2081 } 2082 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2083 mutex_exit(&vd->vdev_stat_lock); 2084 } 2085 } 2086 } 2087 2088 void 2089 vdev_clear_stats(vdev_t *vd) 2090 { 2091 mutex_enter(&vd->vdev_stat_lock); 2092 vd->vdev_stat.vs_space = 0; 2093 vd->vdev_stat.vs_dspace = 0; 2094 vd->vdev_stat.vs_alloc = 0; 2095 mutex_exit(&vd->vdev_stat_lock); 2096 } 2097 2098 void 2099 vdev_stat_update(zio_t *zio, uint64_t psize) 2100 { 2101 spa_t *spa = zio->io_spa; 2102 vdev_t *rvd = spa->spa_root_vdev; 2103 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2104 vdev_t *pvd; 2105 uint64_t txg = zio->io_txg; 2106 vdev_stat_t *vs = &vd->vdev_stat; 2107 zio_type_t type = zio->io_type; 2108 int flags = zio->io_flags; 2109 2110 /* 2111 * If this i/o is a gang leader, it didn't do any actual work. 2112 */ 2113 if (zio->io_gang_tree) 2114 return; 2115 2116 if (zio->io_error == 0) { 2117 /* 2118 * If this is a root i/o, don't count it -- we've already 2119 * counted the top-level vdevs, and vdev_get_stats() will 2120 * aggregate them when asked. This reduces contention on 2121 * the root vdev_stat_lock and implicitly handles blocks 2122 * that compress away to holes, for which there is no i/o. 2123 * (Holes never create vdev children, so all the counters 2124 * remain zero, which is what we want.) 2125 * 2126 * Note: this only applies to successful i/o (io_error == 0) 2127 * because unlike i/o counts, errors are not additive. 2128 * When reading a ditto block, for example, failure of 2129 * one top-level vdev does not imply a root-level error. 2130 */ 2131 if (vd == rvd) 2132 return; 2133 2134 ASSERT(vd == zio->io_vd); 2135 2136 if (flags & ZIO_FLAG_IO_BYPASS) 2137 return; 2138 2139 mutex_enter(&vd->vdev_stat_lock); 2140 2141 if (flags & ZIO_FLAG_IO_REPAIR) { 2142 if (flags & ZIO_FLAG_SCRUB_THREAD) 2143 vs->vs_scrub_repaired += psize; 2144 if (flags & ZIO_FLAG_SELF_HEAL) 2145 vs->vs_self_healed += psize; 2146 } 2147 2148 vs->vs_ops[type]++; 2149 vs->vs_bytes[type] += psize; 2150 2151 mutex_exit(&vd->vdev_stat_lock); 2152 return; 2153 } 2154 2155 if (flags & ZIO_FLAG_SPECULATIVE) 2156 return; 2157 2158 mutex_enter(&vd->vdev_stat_lock); 2159 if (type == ZIO_TYPE_READ) { 2160 if (zio->io_error == ECKSUM) 2161 vs->vs_checksum_errors++; 2162 else 2163 vs->vs_read_errors++; 2164 } 2165 if (type == ZIO_TYPE_WRITE) 2166 vs->vs_write_errors++; 2167 mutex_exit(&vd->vdev_stat_lock); 2168 2169 if (type == ZIO_TYPE_WRITE && txg != 0 && 2170 (!(flags & ZIO_FLAG_IO_REPAIR) || 2171 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2172 /* 2173 * This is either a normal write (not a repair), or it's a 2174 * repair induced by the scrub thread. In the normal case, 2175 * we commit the DTL change in the same txg as the block 2176 * was born. In the scrub-induced repair case, we know that 2177 * scrubs run in first-pass syncing context, so we commit 2178 * the DTL change in spa->spa_syncing_txg. 2179 * 2180 * We currently do not make DTL entries for failed spontaneous 2181 * self-healing writes triggered by normal (non-scrubbing) 2182 * reads, because we have no transactional context in which to 2183 * do so -- and it's not clear that it'd be desirable anyway. 2184 */ 2185 if (vd->vdev_ops->vdev_op_leaf) { 2186 uint64_t commit_txg = txg; 2187 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2188 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2189 ASSERT(spa_sync_pass(spa) == 1); 2190 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2191 commit_txg = spa->spa_syncing_txg; 2192 } 2193 ASSERT(commit_txg >= spa->spa_syncing_txg); 2194 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2195 return; 2196 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2197 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2198 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2199 } 2200 if (vd != rvd) 2201 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2202 } 2203 } 2204 2205 void 2206 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2207 { 2208 int c; 2209 vdev_stat_t *vs = &vd->vdev_stat; 2210 2211 for (c = 0; c < vd->vdev_children; c++) 2212 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2213 2214 mutex_enter(&vd->vdev_stat_lock); 2215 2216 if (type == POOL_SCRUB_NONE) { 2217 /* 2218 * Update completion and end time. Leave everything else alone 2219 * so we can report what happened during the previous scrub. 2220 */ 2221 vs->vs_scrub_complete = complete; 2222 vs->vs_scrub_end = gethrestime_sec(); 2223 } else { 2224 vs->vs_scrub_type = type; 2225 vs->vs_scrub_complete = 0; 2226 vs->vs_scrub_examined = 0; 2227 vs->vs_scrub_repaired = 0; 2228 vs->vs_scrub_start = gethrestime_sec(); 2229 vs->vs_scrub_end = 0; 2230 } 2231 2232 mutex_exit(&vd->vdev_stat_lock); 2233 } 2234 2235 /* 2236 * Update the in-core space usage stats for this vdev and the root vdev. 2237 */ 2238 void 2239 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2240 boolean_t update_root) 2241 { 2242 int64_t dspace_delta = space_delta; 2243 spa_t *spa = vd->vdev_spa; 2244 vdev_t *rvd = spa->spa_root_vdev; 2245 2246 ASSERT(vd == vd->vdev_top); 2247 2248 /* 2249 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2250 * factor. We must calculate this here and not at the root vdev 2251 * because the root vdev's psize-to-asize is simply the max of its 2252 * childrens', thus not accurate enough for us. 2253 */ 2254 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2255 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2256 vd->vdev_deflate_ratio; 2257 2258 mutex_enter(&vd->vdev_stat_lock); 2259 vd->vdev_stat.vs_space += space_delta; 2260 vd->vdev_stat.vs_alloc += alloc_delta; 2261 vd->vdev_stat.vs_dspace += dspace_delta; 2262 mutex_exit(&vd->vdev_stat_lock); 2263 2264 if (update_root) { 2265 ASSERT(rvd == vd->vdev_parent); 2266 ASSERT(vd->vdev_ms_count != 0); 2267 2268 /* 2269 * Don't count non-normal (e.g. intent log) space as part of 2270 * the pool's capacity. 2271 */ 2272 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2273 return; 2274 2275 mutex_enter(&rvd->vdev_stat_lock); 2276 rvd->vdev_stat.vs_space += space_delta; 2277 rvd->vdev_stat.vs_alloc += alloc_delta; 2278 rvd->vdev_stat.vs_dspace += dspace_delta; 2279 mutex_exit(&rvd->vdev_stat_lock); 2280 } 2281 } 2282 2283 /* 2284 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2285 * so that it will be written out next time the vdev configuration is synced. 2286 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2287 */ 2288 void 2289 vdev_config_dirty(vdev_t *vd) 2290 { 2291 spa_t *spa = vd->vdev_spa; 2292 vdev_t *rvd = spa->spa_root_vdev; 2293 int c; 2294 2295 /* 2296 * If this is an aux vdev (as with l2cache devices), then we update the 2297 * vdev config manually and set the sync flag. 2298 */ 2299 if (vd->vdev_aux != NULL) { 2300 spa_aux_vdev_t *sav = vd->vdev_aux; 2301 nvlist_t **aux; 2302 uint_t naux; 2303 2304 for (c = 0; c < sav->sav_count; c++) { 2305 if (sav->sav_vdevs[c] == vd) 2306 break; 2307 } 2308 2309 if (c == sav->sav_count) { 2310 /* 2311 * We're being removed. There's nothing more to do. 2312 */ 2313 ASSERT(sav->sav_sync == B_TRUE); 2314 return; 2315 } 2316 2317 sav->sav_sync = B_TRUE; 2318 2319 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2320 ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0); 2321 2322 ASSERT(c < naux); 2323 2324 /* 2325 * Setting the nvlist in the middle if the array is a little 2326 * sketchy, but it will work. 2327 */ 2328 nvlist_free(aux[c]); 2329 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2330 2331 return; 2332 } 2333 2334 /* 2335 * The dirty list is protected by the SCL_CONFIG lock. The caller 2336 * must either hold SCL_CONFIG as writer, or must be the sync thread 2337 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2338 * so this is sufficient to ensure mutual exclusion. 2339 */ 2340 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2341 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2342 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2343 2344 if (vd == rvd) { 2345 for (c = 0; c < rvd->vdev_children; c++) 2346 vdev_config_dirty(rvd->vdev_child[c]); 2347 } else { 2348 ASSERT(vd == vd->vdev_top); 2349 2350 if (!list_link_active(&vd->vdev_config_dirty_node)) 2351 list_insert_head(&spa->spa_config_dirty_list, vd); 2352 } 2353 } 2354 2355 void 2356 vdev_config_clean(vdev_t *vd) 2357 { 2358 spa_t *spa = vd->vdev_spa; 2359 2360 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2361 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2362 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2363 2364 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2365 list_remove(&spa->spa_config_dirty_list, vd); 2366 } 2367 2368 /* 2369 * Mark a top-level vdev's state as dirty, so that the next pass of 2370 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2371 * the state changes from larger config changes because they require 2372 * much less locking, and are often needed for administrative actions. 2373 */ 2374 void 2375 vdev_state_dirty(vdev_t *vd) 2376 { 2377 spa_t *spa = vd->vdev_spa; 2378 2379 ASSERT(vd == vd->vdev_top); 2380 2381 /* 2382 * The state list is protected by the SCL_STATE lock. The caller 2383 * must either hold SCL_STATE as writer, or must be the sync thread 2384 * (which holds SCL_STATE as reader). There's only one sync thread, 2385 * so this is sufficient to ensure mutual exclusion. 2386 */ 2387 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2388 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2389 spa_config_held(spa, SCL_STATE, RW_READER))); 2390 2391 if (!list_link_active(&vd->vdev_state_dirty_node)) 2392 list_insert_head(&spa->spa_state_dirty_list, vd); 2393 } 2394 2395 void 2396 vdev_state_clean(vdev_t *vd) 2397 { 2398 spa_t *spa = vd->vdev_spa; 2399 2400 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2401 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2402 spa_config_held(spa, SCL_STATE, RW_READER))); 2403 2404 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2405 list_remove(&spa->spa_state_dirty_list, vd); 2406 } 2407 2408 /* 2409 * Propagate vdev state up from children to parent. 2410 */ 2411 void 2412 vdev_propagate_state(vdev_t *vd) 2413 { 2414 spa_t *spa = vd->vdev_spa; 2415 vdev_t *rvd = spa->spa_root_vdev; 2416 int degraded = 0, faulted = 0; 2417 int corrupted = 0; 2418 int c; 2419 vdev_t *child; 2420 2421 if (vd->vdev_children > 0) { 2422 for (c = 0; c < vd->vdev_children; c++) { 2423 child = vd->vdev_child[c]; 2424 2425 if (!vdev_readable(child) || 2426 (!vdev_writeable(child) && spa_writeable(spa))) { 2427 /* 2428 * Root special: if there is a top-level log 2429 * device, treat the root vdev as if it were 2430 * degraded. 2431 */ 2432 if (child->vdev_islog && vd == rvd) 2433 degraded++; 2434 else 2435 faulted++; 2436 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2437 degraded++; 2438 } 2439 2440 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2441 corrupted++; 2442 } 2443 2444 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2445 2446 /* 2447 * Root special: if there is a top-level vdev that cannot be 2448 * opened due to corrupted metadata, then propagate the root 2449 * vdev's aux state as 'corrupt' rather than 'insufficient 2450 * replicas'. 2451 */ 2452 if (corrupted && vd == rvd && 2453 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2454 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2455 VDEV_AUX_CORRUPT_DATA); 2456 } 2457 2458 if (vd->vdev_parent) 2459 vdev_propagate_state(vd->vdev_parent); 2460 } 2461 2462 /* 2463 * Set a vdev's state. If this is during an open, we don't update the parent 2464 * state, because we're in the process of opening children depth-first. 2465 * Otherwise, we propagate the change to the parent. 2466 * 2467 * If this routine places a device in a faulted state, an appropriate ereport is 2468 * generated. 2469 */ 2470 void 2471 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2472 { 2473 uint64_t save_state; 2474 spa_t *spa = vd->vdev_spa; 2475 2476 if (state == vd->vdev_state) { 2477 vd->vdev_stat.vs_aux = aux; 2478 return; 2479 } 2480 2481 save_state = vd->vdev_state; 2482 2483 vd->vdev_state = state; 2484 vd->vdev_stat.vs_aux = aux; 2485 2486 /* 2487 * If we are setting the vdev state to anything but an open state, then 2488 * always close the underlying device. Otherwise, we keep accessible 2489 * but invalid devices open forever. We don't call vdev_close() itself, 2490 * because that implies some extra checks (offline, etc) that we don't 2491 * want here. This is limited to leaf devices, because otherwise 2492 * closing the device will affect other children. 2493 */ 2494 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2495 vd->vdev_ops->vdev_op_close(vd); 2496 2497 if (vd->vdev_removed && 2498 state == VDEV_STATE_CANT_OPEN && 2499 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2500 /* 2501 * If the previous state is set to VDEV_STATE_REMOVED, then this 2502 * device was previously marked removed and someone attempted to 2503 * reopen it. If this failed due to a nonexistent device, then 2504 * keep the device in the REMOVED state. We also let this be if 2505 * it is one of our special test online cases, which is only 2506 * attempting to online the device and shouldn't generate an FMA 2507 * fault. 2508 */ 2509 vd->vdev_state = VDEV_STATE_REMOVED; 2510 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2511 } else if (state == VDEV_STATE_REMOVED) { 2512 /* 2513 * Indicate to the ZFS DE that this device has been removed, and 2514 * any recent errors should be ignored. 2515 */ 2516 zfs_post_remove(spa, vd); 2517 vd->vdev_removed = B_TRUE; 2518 } else if (state == VDEV_STATE_CANT_OPEN) { 2519 /* 2520 * If we fail to open a vdev during an import, we mark it as 2521 * "not available", which signifies that it was never there to 2522 * begin with. Failure to open such a device is not considered 2523 * an error. 2524 */ 2525 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2526 !spa->spa_import_faulted && 2527 vd->vdev_ops->vdev_op_leaf) 2528 vd->vdev_not_present = 1; 2529 2530 /* 2531 * Post the appropriate ereport. If the 'prevstate' field is 2532 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2533 * that this is part of a vdev_reopen(). In this case, we don't 2534 * want to post the ereport if the device was already in the 2535 * CANT_OPEN state beforehand. 2536 * 2537 * If the 'checkremove' flag is set, then this is an attempt to 2538 * online the device in response to an insertion event. If we 2539 * hit this case, then we have detected an insertion event for a 2540 * faulted or offline device that wasn't in the removed state. 2541 * In this scenario, we don't post an ereport because we are 2542 * about to replace the device, or attempt an online with 2543 * vdev_forcefault, which will generate the fault for us. 2544 */ 2545 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2546 !vd->vdev_not_present && !vd->vdev_checkremove && 2547 vd != spa->spa_root_vdev) { 2548 const char *class; 2549 2550 switch (aux) { 2551 case VDEV_AUX_OPEN_FAILED: 2552 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2553 break; 2554 case VDEV_AUX_CORRUPT_DATA: 2555 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2556 break; 2557 case VDEV_AUX_NO_REPLICAS: 2558 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2559 break; 2560 case VDEV_AUX_BAD_GUID_SUM: 2561 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2562 break; 2563 case VDEV_AUX_TOO_SMALL: 2564 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2565 break; 2566 case VDEV_AUX_BAD_LABEL: 2567 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2568 break; 2569 case VDEV_AUX_IO_FAILURE: 2570 class = FM_EREPORT_ZFS_IO_FAILURE; 2571 break; 2572 default: 2573 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2574 } 2575 2576 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2577 } 2578 2579 /* Erase any notion of persistent removed state */ 2580 vd->vdev_removed = B_FALSE; 2581 } else { 2582 vd->vdev_removed = B_FALSE; 2583 } 2584 2585 if (!isopen) 2586 vdev_propagate_state(vd); 2587 } 2588 2589 /* 2590 * Check the vdev configuration to ensure that it's capable of supporting 2591 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2592 * In addition, only a single top-level vdev is allowed and none of the leaves 2593 * can be wholedisks. 2594 */ 2595 boolean_t 2596 vdev_is_bootable(vdev_t *vd) 2597 { 2598 int c; 2599 2600 if (!vd->vdev_ops->vdev_op_leaf) { 2601 char *vdev_type = vd->vdev_ops->vdev_op_type; 2602 2603 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2604 vd->vdev_children > 1) { 2605 return (B_FALSE); 2606 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2607 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2608 return (B_FALSE); 2609 } 2610 } else if (vd->vdev_wholedisk == 1) { 2611 return (B_FALSE); 2612 } 2613 2614 for (c = 0; c < vd->vdev_children; c++) { 2615 if (!vdev_is_bootable(vd->vdev_child[c])) 2616 return (B_FALSE); 2617 } 2618 return (B_TRUE); 2619 } 2620