1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2019 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa.h> 36 #include <sys/spa_impl.h> 37 #include <sys/bpobj.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/uberblock_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/space_map.h> 46 #include <sys/space_reftree.h> 47 #include <sys/zio.h> 48 #include <sys/zap.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/arc.h> 51 #include <sys/zil.h> 52 #include <sys/dsl_scan.h> 53 #include <sys/abd.h> 54 #include <sys/vdev_initialize.h> 55 #include <sys/vdev_trim.h> 56 57 /* 58 * Virtual device management. 59 */ 60 61 static vdev_ops_t *vdev_ops_table[] = { 62 &vdev_root_ops, 63 &vdev_raidz_ops, 64 &vdev_mirror_ops, 65 &vdev_replacing_ops, 66 &vdev_spare_ops, 67 &vdev_disk_ops, 68 &vdev_file_ops, 69 &vdev_missing_ops, 70 &vdev_hole_ops, 71 &vdev_indirect_ops, 72 NULL 73 }; 74 75 /* maximum scrub/resilver I/O queue per leaf vdev */ 76 int zfs_scrub_limit = 10; 77 78 /* default target for number of metaslabs per top-level vdev */ 79 int zfs_vdev_default_ms_count = 200; 80 81 /* minimum number of metaslabs per top-level vdev */ 82 int zfs_vdev_min_ms_count = 16; 83 84 /* practical upper limit of total metaslabs per top-level vdev */ 85 int zfs_vdev_ms_count_limit = 1ULL << 17; 86 87 /* lower limit for metaslab size (512M) */ 88 int zfs_vdev_default_ms_shift = 29; 89 90 /* upper limit for metaslab size (16G) */ 91 int zfs_vdev_max_ms_shift = 34; 92 93 boolean_t vdev_validate_skip = B_FALSE; 94 95 /* 96 * Since the DTL space map of a vdev is not expected to have a lot of 97 * entries, we default its block size to 4K. 98 */ 99 int zfs_vdev_dtl_sm_blksz = (1 << 12); 100 101 /* 102 * Ignore errors during scrub/resilver. Allows to work around resilver 103 * upon import when there are pool errors. 104 */ 105 int zfs_scan_ignore_errors = 0; 106 107 /* 108 * vdev-wide space maps that have lots of entries written to them at 109 * the end of each transaction can benefit from a higher I/O bandwidth 110 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 111 */ 112 int zfs_vdev_standard_sm_blksz = (1 << 17); 113 114 int zfs_ashift_min; 115 116 /*PRINTFLIKE2*/ 117 void 118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 119 { 120 va_list adx; 121 char buf[256]; 122 123 va_start(adx, fmt); 124 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 125 va_end(adx); 126 127 if (vd->vdev_path != NULL) { 128 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 129 vd->vdev_path, buf); 130 } else { 131 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 132 vd->vdev_ops->vdev_op_type, 133 (u_longlong_t)vd->vdev_id, 134 (u_longlong_t)vd->vdev_guid, buf); 135 } 136 } 137 138 void 139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 140 { 141 char state[20]; 142 143 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 144 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 145 vd->vdev_ops->vdev_op_type); 146 return; 147 } 148 149 switch (vd->vdev_state) { 150 case VDEV_STATE_UNKNOWN: 151 (void) snprintf(state, sizeof (state), "unknown"); 152 break; 153 case VDEV_STATE_CLOSED: 154 (void) snprintf(state, sizeof (state), "closed"); 155 break; 156 case VDEV_STATE_OFFLINE: 157 (void) snprintf(state, sizeof (state), "offline"); 158 break; 159 case VDEV_STATE_REMOVED: 160 (void) snprintf(state, sizeof (state), "removed"); 161 break; 162 case VDEV_STATE_CANT_OPEN: 163 (void) snprintf(state, sizeof (state), "can't open"); 164 break; 165 case VDEV_STATE_FAULTED: 166 (void) snprintf(state, sizeof (state), "faulted"); 167 break; 168 case VDEV_STATE_DEGRADED: 169 (void) snprintf(state, sizeof (state), "degraded"); 170 break; 171 case VDEV_STATE_HEALTHY: 172 (void) snprintf(state, sizeof (state), "healthy"); 173 break; 174 default: 175 (void) snprintf(state, sizeof (state), "<state %u>", 176 (uint_t)vd->vdev_state); 177 } 178 179 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 180 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 181 vd->vdev_islog ? " (log)" : "", 182 (u_longlong_t)vd->vdev_guid, 183 vd->vdev_path ? vd->vdev_path : "N/A", state); 184 185 for (uint64_t i = 0; i < vd->vdev_children; i++) 186 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 187 } 188 189 /* 190 * Given a vdev type, return the appropriate ops vector. 191 */ 192 static vdev_ops_t * 193 vdev_getops(const char *type) 194 { 195 vdev_ops_t *ops, **opspp; 196 197 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 198 if (strcmp(ops->vdev_op_type, type) == 0) 199 break; 200 201 return (ops); 202 } 203 204 /* 205 * Derive the enumerated alloction bias from string input. 206 * String origin is either the per-vdev zap or zpool(8). 207 */ 208 static vdev_alloc_bias_t 209 vdev_derive_alloc_bias(const char *bias) 210 { 211 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 212 213 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 214 alloc_bias = VDEV_BIAS_LOG; 215 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 216 alloc_bias = VDEV_BIAS_SPECIAL; 217 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 218 alloc_bias = VDEV_BIAS_DEDUP; 219 220 return (alloc_bias); 221 } 222 223 /* ARGSUSED */ 224 void 225 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res) 226 { 227 res->rs_start = in->rs_start; 228 res->rs_end = in->rs_end; 229 } 230 231 /* 232 * Default asize function: return the MAX of psize with the asize of 233 * all children. This is what's used by anything other than RAID-Z. 234 */ 235 uint64_t 236 vdev_default_asize(vdev_t *vd, uint64_t psize) 237 { 238 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 239 uint64_t csize; 240 241 for (int c = 0; c < vd->vdev_children; c++) { 242 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 243 asize = MAX(asize, csize); 244 } 245 246 return (asize); 247 } 248 249 /* 250 * Get the minimum allocatable size. We define the allocatable size as 251 * the vdev's asize rounded to the nearest metaslab. This allows us to 252 * replace or attach devices which don't have the same physical size but 253 * can still satisfy the same number of allocations. 254 */ 255 uint64_t 256 vdev_get_min_asize(vdev_t *vd) 257 { 258 vdev_t *pvd = vd->vdev_parent; 259 260 /* 261 * If our parent is NULL (inactive spare or cache) or is the root, 262 * just return our own asize. 263 */ 264 if (pvd == NULL) 265 return (vd->vdev_asize); 266 267 /* 268 * The top-level vdev just returns the allocatable size rounded 269 * to the nearest metaslab. 270 */ 271 if (vd == vd->vdev_top) 272 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 273 274 /* 275 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 276 * so each child must provide at least 1/Nth of its asize. 277 */ 278 if (pvd->vdev_ops == &vdev_raidz_ops) 279 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 280 pvd->vdev_children); 281 282 return (pvd->vdev_min_asize); 283 } 284 285 void 286 vdev_set_min_asize(vdev_t *vd) 287 { 288 vd->vdev_min_asize = vdev_get_min_asize(vd); 289 290 for (int c = 0; c < vd->vdev_children; c++) 291 vdev_set_min_asize(vd->vdev_child[c]); 292 } 293 294 vdev_t * 295 vdev_lookup_top(spa_t *spa, uint64_t vdev) 296 { 297 vdev_t *rvd = spa->spa_root_vdev; 298 299 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 300 301 if (vdev < rvd->vdev_children) { 302 ASSERT(rvd->vdev_child[vdev] != NULL); 303 return (rvd->vdev_child[vdev]); 304 } 305 306 return (NULL); 307 } 308 309 vdev_t * 310 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 311 { 312 vdev_t *mvd; 313 314 if (vd->vdev_guid == guid) 315 return (vd); 316 317 for (int c = 0; c < vd->vdev_children; c++) 318 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 319 NULL) 320 return (mvd); 321 322 return (NULL); 323 } 324 325 static int 326 vdev_count_leaves_impl(vdev_t *vd) 327 { 328 int n = 0; 329 330 if (vd->vdev_ops->vdev_op_leaf) 331 return (1); 332 333 for (int c = 0; c < vd->vdev_children; c++) 334 n += vdev_count_leaves_impl(vd->vdev_child[c]); 335 336 return (n); 337 } 338 339 int 340 vdev_count_leaves(spa_t *spa) 341 { 342 int rc; 343 344 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 345 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 346 spa_config_exit(spa, SCL_VDEV, FTAG); 347 348 return (rc); 349 } 350 351 void 352 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 353 { 354 size_t oldsize, newsize; 355 uint64_t id = cvd->vdev_id; 356 vdev_t **newchild; 357 spa_t *spa = cvd->vdev_spa; 358 359 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 360 ASSERT(cvd->vdev_parent == NULL); 361 362 cvd->vdev_parent = pvd; 363 364 if (pvd == NULL) 365 return; 366 367 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 368 369 oldsize = pvd->vdev_children * sizeof (vdev_t *); 370 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 371 newsize = pvd->vdev_children * sizeof (vdev_t *); 372 373 newchild = kmem_zalloc(newsize, KM_SLEEP); 374 if (pvd->vdev_child != NULL) { 375 bcopy(pvd->vdev_child, newchild, oldsize); 376 kmem_free(pvd->vdev_child, oldsize); 377 } 378 379 pvd->vdev_child = newchild; 380 pvd->vdev_child[id] = cvd; 381 382 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 383 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 384 385 /* 386 * Walk up all ancestors to update guid sum. 387 */ 388 for (; pvd != NULL; pvd = pvd->vdev_parent) 389 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 390 391 if (cvd->vdev_ops->vdev_op_leaf) { 392 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 393 cvd->vdev_spa->spa_leaf_list_gen++; 394 } 395 } 396 397 void 398 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 399 { 400 int c; 401 uint_t id = cvd->vdev_id; 402 403 ASSERT(cvd->vdev_parent == pvd); 404 405 if (pvd == NULL) 406 return; 407 408 ASSERT(id < pvd->vdev_children); 409 ASSERT(pvd->vdev_child[id] == cvd); 410 411 pvd->vdev_child[id] = NULL; 412 cvd->vdev_parent = NULL; 413 414 for (c = 0; c < pvd->vdev_children; c++) 415 if (pvd->vdev_child[c]) 416 break; 417 418 if (c == pvd->vdev_children) { 419 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 420 pvd->vdev_child = NULL; 421 pvd->vdev_children = 0; 422 } 423 424 if (cvd->vdev_ops->vdev_op_leaf) { 425 spa_t *spa = cvd->vdev_spa; 426 list_remove(&spa->spa_leaf_list, cvd); 427 spa->spa_leaf_list_gen++; 428 } 429 430 /* 431 * Walk up all ancestors to update guid sum. 432 */ 433 for (; pvd != NULL; pvd = pvd->vdev_parent) 434 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 435 } 436 437 /* 438 * Remove any holes in the child array. 439 */ 440 void 441 vdev_compact_children(vdev_t *pvd) 442 { 443 vdev_t **newchild, *cvd; 444 int oldc = pvd->vdev_children; 445 int newc; 446 447 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 448 449 for (int c = newc = 0; c < oldc; c++) 450 if (pvd->vdev_child[c]) 451 newc++; 452 453 /* 454 * If there are no remaining children (possible if this is an indirect 455 * vdev) just free the old child array and return to avoid a pointless 456 * zero-byte alloc. 457 */ 458 if (newc == 0) { 459 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 460 pvd->vdev_child = NULL; 461 pvd->vdev_children = newc; 462 return; 463 } 464 465 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 466 467 for (int c = newc = 0; c < oldc; c++) { 468 if ((cvd = pvd->vdev_child[c]) != NULL) { 469 newchild[newc] = cvd; 470 cvd->vdev_id = newc++; 471 } 472 } 473 474 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 475 pvd->vdev_child = newchild; 476 pvd->vdev_children = newc; 477 } 478 479 /* 480 * Allocate and minimally initialize a vdev_t. 481 */ 482 vdev_t * 483 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 484 { 485 vdev_t *vd; 486 vdev_indirect_config_t *vic; 487 488 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 489 vic = &vd->vdev_indirect_config; 490 491 if (spa->spa_root_vdev == NULL) { 492 ASSERT(ops == &vdev_root_ops); 493 spa->spa_root_vdev = vd; 494 spa->spa_load_guid = spa_generate_guid(NULL); 495 } 496 497 if (guid == 0 && ops != &vdev_hole_ops) { 498 if (spa->spa_root_vdev == vd) { 499 /* 500 * The root vdev's guid will also be the pool guid, 501 * which must be unique among all pools. 502 */ 503 guid = spa_generate_guid(NULL); 504 } else { 505 /* 506 * Any other vdev's guid must be unique within the pool. 507 */ 508 guid = spa_generate_guid(spa); 509 } 510 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 511 } 512 513 vd->vdev_spa = spa; 514 vd->vdev_id = id; 515 vd->vdev_guid = guid; 516 vd->vdev_guid_sum = guid; 517 vd->vdev_ops = ops; 518 vd->vdev_state = VDEV_STATE_CLOSED; 519 vd->vdev_ishole = (ops == &vdev_hole_ops); 520 vic->vic_prev_indirect_vdev = UINT64_MAX; 521 522 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 523 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 524 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 525 0, 0); 526 527 list_link_init(&vd->vdev_initialize_node); 528 list_link_init(&vd->vdev_leaf_node); 529 list_link_init(&vd->vdev_trim_node); 530 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 531 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 532 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 533 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 534 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 535 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 536 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 537 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 538 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 539 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 540 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 541 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 542 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 543 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 544 545 for (int t = 0; t < DTL_TYPES; t++) { 546 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 547 0); 548 } 549 txg_list_create(&vd->vdev_ms_list, spa, 550 offsetof(struct metaslab, ms_txg_node)); 551 txg_list_create(&vd->vdev_dtl_list, spa, 552 offsetof(struct vdev, vdev_dtl_node)); 553 vd->vdev_stat.vs_timestamp = gethrtime(); 554 vdev_queue_init(vd); 555 vdev_cache_init(vd); 556 557 return (vd); 558 } 559 560 /* 561 * Allocate a new vdev. The 'alloctype' is used to control whether we are 562 * creating a new vdev or loading an existing one - the behavior is slightly 563 * different for each case. 564 */ 565 int 566 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 567 int alloctype) 568 { 569 vdev_ops_t *ops; 570 char *type; 571 uint64_t guid = 0, islog, nparity; 572 vdev_t *vd; 573 vdev_indirect_config_t *vic; 574 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 575 boolean_t top_level = (parent && !parent->vdev_parent); 576 577 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 578 579 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 580 return (SET_ERROR(EINVAL)); 581 582 if ((ops = vdev_getops(type)) == NULL) 583 return (SET_ERROR(EINVAL)); 584 585 /* 586 * If this is a load, get the vdev guid from the nvlist. 587 * Otherwise, vdev_alloc_common() will generate one for us. 588 */ 589 if (alloctype == VDEV_ALLOC_LOAD) { 590 uint64_t label_id; 591 592 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 593 label_id != id) 594 return (SET_ERROR(EINVAL)); 595 596 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 597 return (SET_ERROR(EINVAL)); 598 } else if (alloctype == VDEV_ALLOC_SPARE) { 599 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 600 return (SET_ERROR(EINVAL)); 601 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 602 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 603 return (SET_ERROR(EINVAL)); 604 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 605 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 606 return (SET_ERROR(EINVAL)); 607 } 608 609 /* 610 * The first allocated vdev must be of type 'root'. 611 */ 612 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 613 return (SET_ERROR(EINVAL)); 614 615 /* 616 * Determine whether we're a log vdev. 617 */ 618 islog = 0; 619 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 620 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 621 return (SET_ERROR(ENOTSUP)); 622 623 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 624 return (SET_ERROR(ENOTSUP)); 625 626 /* 627 * Set the nparity property for RAID-Z vdevs. 628 */ 629 nparity = -1ULL; 630 if (ops == &vdev_raidz_ops) { 631 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 632 &nparity) == 0) { 633 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 634 return (SET_ERROR(EINVAL)); 635 /* 636 * Previous versions could only support 1 or 2 parity 637 * device. 638 */ 639 if (nparity > 1 && 640 spa_version(spa) < SPA_VERSION_RAIDZ2) 641 return (SET_ERROR(ENOTSUP)); 642 if (nparity > 2 && 643 spa_version(spa) < SPA_VERSION_RAIDZ3) 644 return (SET_ERROR(ENOTSUP)); 645 } else { 646 /* 647 * We require the parity to be specified for SPAs that 648 * support multiple parity levels. 649 */ 650 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 651 return (SET_ERROR(EINVAL)); 652 /* 653 * Otherwise, we default to 1 parity device for RAID-Z. 654 */ 655 nparity = 1; 656 } 657 } else { 658 nparity = 0; 659 } 660 ASSERT(nparity != -1ULL); 661 662 /* 663 * If creating a top-level vdev, check for allocation classes input 664 */ 665 if (top_level && alloctype == VDEV_ALLOC_ADD) { 666 char *bias; 667 668 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 669 &bias) == 0) { 670 alloc_bias = vdev_derive_alloc_bias(bias); 671 672 /* spa_vdev_add() expects feature to be enabled */ 673 if (alloc_bias != VDEV_BIAS_LOG && 674 spa->spa_load_state != SPA_LOAD_CREATE && 675 !spa_feature_is_enabled(spa, 676 SPA_FEATURE_ALLOCATION_CLASSES)) { 677 return (SET_ERROR(ENOTSUP)); 678 } 679 } 680 } 681 682 vd = vdev_alloc_common(spa, id, guid, ops); 683 vic = &vd->vdev_indirect_config; 684 685 vd->vdev_islog = islog; 686 vd->vdev_nparity = nparity; 687 if (top_level && alloc_bias != VDEV_BIAS_NONE) 688 vd->vdev_alloc_bias = alloc_bias; 689 690 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 691 vd->vdev_path = spa_strdup(vd->vdev_path); 692 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 693 vd->vdev_devid = spa_strdup(vd->vdev_devid); 694 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 695 &vd->vdev_physpath) == 0) 696 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 697 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 698 vd->vdev_fru = spa_strdup(vd->vdev_fru); 699 700 /* 701 * Set the whole_disk property. If it's not specified, leave the value 702 * as -1. 703 */ 704 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 705 &vd->vdev_wholedisk) != 0) 706 vd->vdev_wholedisk = -1ULL; 707 708 ASSERT0(vic->vic_mapping_object); 709 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 710 &vic->vic_mapping_object); 711 ASSERT0(vic->vic_births_object); 712 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 713 &vic->vic_births_object); 714 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 715 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 716 &vic->vic_prev_indirect_vdev); 717 718 /* 719 * Look for the 'not present' flag. This will only be set if the device 720 * was not present at the time of import. 721 */ 722 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 723 &vd->vdev_not_present); 724 725 /* 726 * Get the alignment requirement. 727 */ 728 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 729 730 /* 731 * Retrieve the vdev creation time. 732 */ 733 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 734 &vd->vdev_crtxg); 735 736 /* 737 * If we're a top-level vdev, try to load the allocation parameters. 738 */ 739 if (top_level && 740 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 741 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 742 &vd->vdev_ms_array); 743 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 744 &vd->vdev_ms_shift); 745 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 746 &vd->vdev_asize); 747 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 748 &vd->vdev_removing); 749 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 750 &vd->vdev_top_zap); 751 } else { 752 ASSERT0(vd->vdev_top_zap); 753 } 754 755 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 756 ASSERT(alloctype == VDEV_ALLOC_LOAD || 757 alloctype == VDEV_ALLOC_ADD || 758 alloctype == VDEV_ALLOC_SPLIT || 759 alloctype == VDEV_ALLOC_ROOTPOOL); 760 /* Note: metaslab_group_create() is now deferred */ 761 } 762 763 if (vd->vdev_ops->vdev_op_leaf && 764 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 765 (void) nvlist_lookup_uint64(nv, 766 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 767 } else { 768 ASSERT0(vd->vdev_leaf_zap); 769 } 770 771 /* 772 * If we're a leaf vdev, try to load the DTL object and other state. 773 */ 774 775 if (vd->vdev_ops->vdev_op_leaf && 776 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 777 alloctype == VDEV_ALLOC_ROOTPOOL)) { 778 if (alloctype == VDEV_ALLOC_LOAD) { 779 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 780 &vd->vdev_dtl_object); 781 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 782 &vd->vdev_unspare); 783 } 784 785 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 786 uint64_t spare = 0; 787 788 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 789 &spare) == 0 && spare) 790 spa_spare_add(vd); 791 } 792 793 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 794 &vd->vdev_offline); 795 796 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 797 &vd->vdev_resilver_txg); 798 799 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 800 vdev_defer_resilver(vd); 801 802 /* 803 * When importing a pool, we want to ignore the persistent fault 804 * state, as the diagnosis made on another system may not be 805 * valid in the current context. Local vdevs will 806 * remain in the faulted state. 807 */ 808 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 809 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 810 &vd->vdev_faulted); 811 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 812 &vd->vdev_degraded); 813 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 814 &vd->vdev_removed); 815 816 if (vd->vdev_faulted || vd->vdev_degraded) { 817 char *aux; 818 819 vd->vdev_label_aux = 820 VDEV_AUX_ERR_EXCEEDED; 821 if (nvlist_lookup_string(nv, 822 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 823 strcmp(aux, "external") == 0) 824 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 825 } 826 } 827 } 828 829 /* 830 * Add ourselves to the parent's list of children. 831 */ 832 vdev_add_child(parent, vd); 833 834 *vdp = vd; 835 836 return (0); 837 } 838 839 void 840 vdev_free(vdev_t *vd) 841 { 842 spa_t *spa = vd->vdev_spa; 843 844 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 845 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 846 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 847 848 /* 849 * Scan queues are normally destroyed at the end of a scan. If the 850 * queue exists here, that implies the vdev is being removed while 851 * the scan is still running. 852 */ 853 if (vd->vdev_scan_io_queue != NULL) { 854 mutex_enter(&vd->vdev_scan_io_queue_lock); 855 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 856 vd->vdev_scan_io_queue = NULL; 857 mutex_exit(&vd->vdev_scan_io_queue_lock); 858 } 859 860 /* 861 * vdev_free() implies closing the vdev first. This is simpler than 862 * trying to ensure complicated semantics for all callers. 863 */ 864 vdev_close(vd); 865 866 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 867 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 868 869 /* 870 * Free all children. 871 */ 872 for (int c = 0; c < vd->vdev_children; c++) 873 vdev_free(vd->vdev_child[c]); 874 875 ASSERT(vd->vdev_child == NULL); 876 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 877 878 /* 879 * Discard allocation state. 880 */ 881 if (vd->vdev_mg != NULL) { 882 vdev_metaslab_fini(vd); 883 metaslab_group_destroy(vd->vdev_mg); 884 vd->vdev_mg = NULL; 885 } 886 887 ASSERT0(vd->vdev_stat.vs_space); 888 ASSERT0(vd->vdev_stat.vs_dspace); 889 ASSERT0(vd->vdev_stat.vs_alloc); 890 891 /* 892 * Remove this vdev from its parent's child list. 893 */ 894 vdev_remove_child(vd->vdev_parent, vd); 895 896 ASSERT(vd->vdev_parent == NULL); 897 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 898 899 /* 900 * Clean up vdev structure. 901 */ 902 vdev_queue_fini(vd); 903 vdev_cache_fini(vd); 904 905 if (vd->vdev_path) 906 spa_strfree(vd->vdev_path); 907 if (vd->vdev_devid) 908 spa_strfree(vd->vdev_devid); 909 if (vd->vdev_physpath) 910 spa_strfree(vd->vdev_physpath); 911 if (vd->vdev_fru) 912 spa_strfree(vd->vdev_fru); 913 914 if (vd->vdev_isspare) 915 spa_spare_remove(vd); 916 if (vd->vdev_isl2cache) 917 spa_l2cache_remove(vd); 918 919 txg_list_destroy(&vd->vdev_ms_list); 920 txg_list_destroy(&vd->vdev_dtl_list); 921 922 mutex_enter(&vd->vdev_dtl_lock); 923 space_map_close(vd->vdev_dtl_sm); 924 for (int t = 0; t < DTL_TYPES; t++) { 925 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 926 range_tree_destroy(vd->vdev_dtl[t]); 927 } 928 mutex_exit(&vd->vdev_dtl_lock); 929 930 EQUIV(vd->vdev_indirect_births != NULL, 931 vd->vdev_indirect_mapping != NULL); 932 if (vd->vdev_indirect_births != NULL) { 933 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 934 vdev_indirect_births_close(vd->vdev_indirect_births); 935 } 936 937 if (vd->vdev_obsolete_sm != NULL) { 938 ASSERT(vd->vdev_removing || 939 vd->vdev_ops == &vdev_indirect_ops); 940 space_map_close(vd->vdev_obsolete_sm); 941 vd->vdev_obsolete_sm = NULL; 942 } 943 range_tree_destroy(vd->vdev_obsolete_segments); 944 rw_destroy(&vd->vdev_indirect_rwlock); 945 mutex_destroy(&vd->vdev_obsolete_lock); 946 947 mutex_destroy(&vd->vdev_dtl_lock); 948 mutex_destroy(&vd->vdev_stat_lock); 949 mutex_destroy(&vd->vdev_probe_lock); 950 mutex_destroy(&vd->vdev_scan_io_queue_lock); 951 mutex_destroy(&vd->vdev_initialize_lock); 952 mutex_destroy(&vd->vdev_initialize_io_lock); 953 cv_destroy(&vd->vdev_initialize_io_cv); 954 cv_destroy(&vd->vdev_initialize_cv); 955 mutex_destroy(&vd->vdev_trim_lock); 956 mutex_destroy(&vd->vdev_autotrim_lock); 957 mutex_destroy(&vd->vdev_trim_io_lock); 958 cv_destroy(&vd->vdev_trim_cv); 959 cv_destroy(&vd->vdev_autotrim_cv); 960 cv_destroy(&vd->vdev_trim_io_cv); 961 962 if (vd == spa->spa_root_vdev) 963 spa->spa_root_vdev = NULL; 964 965 kmem_free(vd, sizeof (vdev_t)); 966 } 967 968 /* 969 * Transfer top-level vdev state from svd to tvd. 970 */ 971 static void 972 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 973 { 974 spa_t *spa = svd->vdev_spa; 975 metaslab_t *msp; 976 vdev_t *vd; 977 int t; 978 979 ASSERT(tvd == tvd->vdev_top); 980 981 tvd->vdev_ms_array = svd->vdev_ms_array; 982 tvd->vdev_ms_shift = svd->vdev_ms_shift; 983 tvd->vdev_ms_count = svd->vdev_ms_count; 984 tvd->vdev_top_zap = svd->vdev_top_zap; 985 986 svd->vdev_ms_array = 0; 987 svd->vdev_ms_shift = 0; 988 svd->vdev_ms_count = 0; 989 svd->vdev_top_zap = 0; 990 991 if (tvd->vdev_mg) 992 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 993 tvd->vdev_mg = svd->vdev_mg; 994 tvd->vdev_ms = svd->vdev_ms; 995 996 svd->vdev_mg = NULL; 997 svd->vdev_ms = NULL; 998 999 if (tvd->vdev_mg != NULL) 1000 tvd->vdev_mg->mg_vd = tvd; 1001 1002 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1003 svd->vdev_checkpoint_sm = NULL; 1004 1005 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1006 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1007 1008 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1009 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1010 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1011 1012 svd->vdev_stat.vs_alloc = 0; 1013 svd->vdev_stat.vs_space = 0; 1014 svd->vdev_stat.vs_dspace = 0; 1015 1016 /* 1017 * State which may be set on a top-level vdev that's in the 1018 * process of being removed. 1019 */ 1020 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1021 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1022 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1023 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1024 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1025 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1026 ASSERT0(tvd->vdev_removing); 1027 tvd->vdev_removing = svd->vdev_removing; 1028 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1029 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1030 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1031 range_tree_swap(&svd->vdev_obsolete_segments, 1032 &tvd->vdev_obsolete_segments); 1033 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1034 svd->vdev_indirect_config.vic_mapping_object = 0; 1035 svd->vdev_indirect_config.vic_births_object = 0; 1036 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1037 svd->vdev_indirect_mapping = NULL; 1038 svd->vdev_indirect_births = NULL; 1039 svd->vdev_obsolete_sm = NULL; 1040 svd->vdev_removing = 0; 1041 1042 for (t = 0; t < TXG_SIZE; t++) { 1043 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1044 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1045 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1046 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1047 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1048 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1049 } 1050 1051 if (list_link_active(&svd->vdev_config_dirty_node)) { 1052 vdev_config_clean(svd); 1053 vdev_config_dirty(tvd); 1054 } 1055 1056 if (list_link_active(&svd->vdev_state_dirty_node)) { 1057 vdev_state_clean(svd); 1058 vdev_state_dirty(tvd); 1059 } 1060 1061 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1062 svd->vdev_deflate_ratio = 0; 1063 1064 tvd->vdev_islog = svd->vdev_islog; 1065 svd->vdev_islog = 0; 1066 1067 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1068 } 1069 1070 static void 1071 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1072 { 1073 if (vd == NULL) 1074 return; 1075 1076 vd->vdev_top = tvd; 1077 1078 for (int c = 0; c < vd->vdev_children; c++) 1079 vdev_top_update(tvd, vd->vdev_child[c]); 1080 } 1081 1082 /* 1083 * Add a mirror/replacing vdev above an existing vdev. 1084 */ 1085 vdev_t * 1086 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1087 { 1088 spa_t *spa = cvd->vdev_spa; 1089 vdev_t *pvd = cvd->vdev_parent; 1090 vdev_t *mvd; 1091 1092 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1093 1094 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1095 1096 mvd->vdev_asize = cvd->vdev_asize; 1097 mvd->vdev_min_asize = cvd->vdev_min_asize; 1098 mvd->vdev_max_asize = cvd->vdev_max_asize; 1099 mvd->vdev_psize = cvd->vdev_psize; 1100 mvd->vdev_ashift = cvd->vdev_ashift; 1101 mvd->vdev_state = cvd->vdev_state; 1102 mvd->vdev_crtxg = cvd->vdev_crtxg; 1103 1104 vdev_remove_child(pvd, cvd); 1105 vdev_add_child(pvd, mvd); 1106 cvd->vdev_id = mvd->vdev_children; 1107 vdev_add_child(mvd, cvd); 1108 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1109 1110 if (mvd == mvd->vdev_top) 1111 vdev_top_transfer(cvd, mvd); 1112 1113 return (mvd); 1114 } 1115 1116 /* 1117 * Remove a 1-way mirror/replacing vdev from the tree. 1118 */ 1119 void 1120 vdev_remove_parent(vdev_t *cvd) 1121 { 1122 vdev_t *mvd = cvd->vdev_parent; 1123 vdev_t *pvd = mvd->vdev_parent; 1124 1125 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1126 1127 ASSERT(mvd->vdev_children == 1); 1128 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1129 mvd->vdev_ops == &vdev_replacing_ops || 1130 mvd->vdev_ops == &vdev_spare_ops); 1131 cvd->vdev_ashift = mvd->vdev_ashift; 1132 1133 vdev_remove_child(mvd, cvd); 1134 vdev_remove_child(pvd, mvd); 1135 1136 /* 1137 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1138 * Otherwise, we could have detached an offline device, and when we 1139 * go to import the pool we'll think we have two top-level vdevs, 1140 * instead of a different version of the same top-level vdev. 1141 */ 1142 if (mvd->vdev_top == mvd) { 1143 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1144 cvd->vdev_orig_guid = cvd->vdev_guid; 1145 cvd->vdev_guid += guid_delta; 1146 cvd->vdev_guid_sum += guid_delta; 1147 } 1148 cvd->vdev_id = mvd->vdev_id; 1149 vdev_add_child(pvd, cvd); 1150 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1151 1152 if (cvd == cvd->vdev_top) 1153 vdev_top_transfer(mvd, cvd); 1154 1155 ASSERT(mvd->vdev_children == 0); 1156 vdev_free(mvd); 1157 } 1158 1159 static void 1160 vdev_metaslab_group_create(vdev_t *vd) 1161 { 1162 spa_t *spa = vd->vdev_spa; 1163 1164 /* 1165 * metaslab_group_create was delayed until allocation bias was available 1166 */ 1167 if (vd->vdev_mg == NULL) { 1168 metaslab_class_t *mc; 1169 1170 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1171 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1172 1173 ASSERT3U(vd->vdev_islog, ==, 1174 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1175 1176 switch (vd->vdev_alloc_bias) { 1177 case VDEV_BIAS_LOG: 1178 mc = spa_log_class(spa); 1179 break; 1180 case VDEV_BIAS_SPECIAL: 1181 mc = spa_special_class(spa); 1182 break; 1183 case VDEV_BIAS_DEDUP: 1184 mc = spa_dedup_class(spa); 1185 break; 1186 default: 1187 mc = spa_normal_class(spa); 1188 } 1189 1190 vd->vdev_mg = metaslab_group_create(mc, vd, 1191 spa->spa_alloc_count); 1192 1193 /* 1194 * The spa ashift values currently only reflect the 1195 * general vdev classes. Class destination is late 1196 * binding so ashift checking had to wait until now 1197 */ 1198 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1199 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1200 if (vd->vdev_ashift > spa->spa_max_ashift) 1201 spa->spa_max_ashift = vd->vdev_ashift; 1202 if (vd->vdev_ashift < spa->spa_min_ashift) 1203 spa->spa_min_ashift = vd->vdev_ashift; 1204 } 1205 } 1206 } 1207 1208 int 1209 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1210 { 1211 spa_t *spa = vd->vdev_spa; 1212 objset_t *mos = spa->spa_meta_objset; 1213 uint64_t m; 1214 uint64_t oldc = vd->vdev_ms_count; 1215 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1216 metaslab_t **mspp; 1217 int error; 1218 boolean_t expanding = (oldc != 0); 1219 1220 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1221 1222 /* 1223 * This vdev is not being allocated from yet or is a hole. 1224 */ 1225 if (vd->vdev_ms_shift == 0) 1226 return (0); 1227 1228 ASSERT(!vd->vdev_ishole); 1229 1230 ASSERT(oldc <= newc); 1231 1232 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1233 1234 if (expanding) { 1235 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1236 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1237 } 1238 1239 vd->vdev_ms = mspp; 1240 vd->vdev_ms_count = newc; 1241 for (m = oldc; m < newc; m++) { 1242 uint64_t object = 0; 1243 1244 /* 1245 * vdev_ms_array may be 0 if we are creating the "fake" 1246 * metaslabs for an indirect vdev for zdb's leak detection. 1247 * See zdb_leak_init(). 1248 */ 1249 if (txg == 0 && vd->vdev_ms_array != 0) { 1250 error = dmu_read(mos, vd->vdev_ms_array, 1251 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1252 DMU_READ_PREFETCH); 1253 if (error != 0) { 1254 vdev_dbgmsg(vd, "unable to read the metaslab " 1255 "array [error=%d]", error); 1256 return (error); 1257 } 1258 } 1259 1260 #ifndef _KERNEL 1261 /* 1262 * To accomodate zdb_leak_init() fake indirect 1263 * metaslabs, we allocate a metaslab group for 1264 * indirect vdevs which normally don't have one. 1265 */ 1266 if (vd->vdev_mg == NULL) { 1267 ASSERT0(vdev_is_concrete(vd)); 1268 vdev_metaslab_group_create(vd); 1269 } 1270 #endif 1271 error = metaslab_init(vd->vdev_mg, m, object, txg, 1272 &(vd->vdev_ms[m])); 1273 if (error != 0) { 1274 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1275 error); 1276 return (error); 1277 } 1278 } 1279 1280 if (txg == 0) 1281 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1282 1283 /* 1284 * If the vdev is being removed we don't activate 1285 * the metaslabs since we want to ensure that no new 1286 * allocations are performed on this device. 1287 */ 1288 if (!expanding && !vd->vdev_removing) { 1289 metaslab_group_activate(vd->vdev_mg); 1290 } 1291 1292 if (txg == 0) 1293 spa_config_exit(spa, SCL_ALLOC, FTAG); 1294 1295 /* 1296 * Regardless whether this vdev was just added or it is being 1297 * expanded, the metaslab count has changed. Recalculate the 1298 * block limit. 1299 */ 1300 spa_log_sm_set_blocklimit(spa); 1301 1302 return (0); 1303 } 1304 1305 void 1306 vdev_metaslab_fini(vdev_t *vd) 1307 { 1308 if (vd->vdev_checkpoint_sm != NULL) { 1309 ASSERT(spa_feature_is_active(vd->vdev_spa, 1310 SPA_FEATURE_POOL_CHECKPOINT)); 1311 space_map_close(vd->vdev_checkpoint_sm); 1312 /* 1313 * Even though we close the space map, we need to set its 1314 * pointer to NULL. The reason is that vdev_metaslab_fini() 1315 * may be called multiple times for certain operations 1316 * (i.e. when destroying a pool) so we need to ensure that 1317 * this clause never executes twice. This logic is similar 1318 * to the one used for the vdev_ms clause below. 1319 */ 1320 vd->vdev_checkpoint_sm = NULL; 1321 } 1322 1323 if (vd->vdev_ms != NULL) { 1324 metaslab_group_t *mg = vd->vdev_mg; 1325 metaslab_group_passivate(mg); 1326 1327 uint64_t count = vd->vdev_ms_count; 1328 for (uint64_t m = 0; m < count; m++) { 1329 metaslab_t *msp = vd->vdev_ms[m]; 1330 if (msp != NULL) 1331 metaslab_fini(msp); 1332 } 1333 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1334 vd->vdev_ms = NULL; 1335 1336 vd->vdev_ms_count = 0; 1337 1338 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1339 ASSERT0(mg->mg_histogram[i]); 1340 } 1341 ASSERT0(vd->vdev_ms_count); 1342 } 1343 1344 typedef struct vdev_probe_stats { 1345 boolean_t vps_readable; 1346 boolean_t vps_writeable; 1347 int vps_flags; 1348 } vdev_probe_stats_t; 1349 1350 static void 1351 vdev_probe_done(zio_t *zio) 1352 { 1353 spa_t *spa = zio->io_spa; 1354 vdev_t *vd = zio->io_vd; 1355 vdev_probe_stats_t *vps = zio->io_private; 1356 1357 ASSERT(vd->vdev_probe_zio != NULL); 1358 1359 if (zio->io_type == ZIO_TYPE_READ) { 1360 if (zio->io_error == 0) 1361 vps->vps_readable = 1; 1362 if (zio->io_error == 0 && spa_writeable(spa)) { 1363 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1364 zio->io_offset, zio->io_size, zio->io_abd, 1365 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1366 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1367 } else { 1368 abd_free(zio->io_abd); 1369 } 1370 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1371 if (zio->io_error == 0) 1372 vps->vps_writeable = 1; 1373 abd_free(zio->io_abd); 1374 } else if (zio->io_type == ZIO_TYPE_NULL) { 1375 zio_t *pio; 1376 1377 vd->vdev_cant_read |= !vps->vps_readable; 1378 vd->vdev_cant_write |= !vps->vps_writeable; 1379 1380 if (vdev_readable(vd) && 1381 (vdev_writeable(vd) || !spa_writeable(spa))) { 1382 zio->io_error = 0; 1383 } else { 1384 ASSERT(zio->io_error != 0); 1385 vdev_dbgmsg(vd, "failed probe"); 1386 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1387 spa, vd, NULL, NULL, 0, 0); 1388 zio->io_error = SET_ERROR(ENXIO); 1389 } 1390 1391 mutex_enter(&vd->vdev_probe_lock); 1392 ASSERT(vd->vdev_probe_zio == zio); 1393 vd->vdev_probe_zio = NULL; 1394 mutex_exit(&vd->vdev_probe_lock); 1395 1396 zio_link_t *zl = NULL; 1397 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1398 if (!vdev_accessible(vd, pio)) 1399 pio->io_error = SET_ERROR(ENXIO); 1400 1401 kmem_free(vps, sizeof (*vps)); 1402 } 1403 } 1404 1405 /* 1406 * Determine whether this device is accessible. 1407 * 1408 * Read and write to several known locations: the pad regions of each 1409 * vdev label but the first, which we leave alone in case it contains 1410 * a VTOC. 1411 */ 1412 zio_t * 1413 vdev_probe(vdev_t *vd, zio_t *zio) 1414 { 1415 spa_t *spa = vd->vdev_spa; 1416 vdev_probe_stats_t *vps = NULL; 1417 zio_t *pio; 1418 1419 ASSERT(vd->vdev_ops->vdev_op_leaf); 1420 1421 /* 1422 * Don't probe the probe. 1423 */ 1424 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1425 return (NULL); 1426 1427 /* 1428 * To prevent 'probe storms' when a device fails, we create 1429 * just one probe i/o at a time. All zios that want to probe 1430 * this vdev will become parents of the probe io. 1431 */ 1432 mutex_enter(&vd->vdev_probe_lock); 1433 1434 if ((pio = vd->vdev_probe_zio) == NULL) { 1435 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1436 1437 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1438 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1439 ZIO_FLAG_TRYHARD; 1440 1441 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1442 /* 1443 * vdev_cant_read and vdev_cant_write can only 1444 * transition from TRUE to FALSE when we have the 1445 * SCL_ZIO lock as writer; otherwise they can only 1446 * transition from FALSE to TRUE. This ensures that 1447 * any zio looking at these values can assume that 1448 * failures persist for the life of the I/O. That's 1449 * important because when a device has intermittent 1450 * connectivity problems, we want to ensure that 1451 * they're ascribed to the device (ENXIO) and not 1452 * the zio (EIO). 1453 * 1454 * Since we hold SCL_ZIO as writer here, clear both 1455 * values so the probe can reevaluate from first 1456 * principles. 1457 */ 1458 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1459 vd->vdev_cant_read = B_FALSE; 1460 vd->vdev_cant_write = B_FALSE; 1461 } 1462 1463 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1464 vdev_probe_done, vps, 1465 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1466 1467 /* 1468 * We can't change the vdev state in this context, so we 1469 * kick off an async task to do it on our behalf. 1470 */ 1471 if (zio != NULL) { 1472 vd->vdev_probe_wanted = B_TRUE; 1473 spa_async_request(spa, SPA_ASYNC_PROBE); 1474 } 1475 } 1476 1477 if (zio != NULL) 1478 zio_add_child(zio, pio); 1479 1480 mutex_exit(&vd->vdev_probe_lock); 1481 1482 if (vps == NULL) { 1483 ASSERT(zio != NULL); 1484 return (NULL); 1485 } 1486 1487 for (int l = 1; l < VDEV_LABELS; l++) { 1488 zio_nowait(zio_read_phys(pio, vd, 1489 vdev_label_offset(vd->vdev_psize, l, 1490 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1491 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1492 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1493 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1494 } 1495 1496 if (zio == NULL) 1497 return (pio); 1498 1499 zio_nowait(pio); 1500 return (NULL); 1501 } 1502 1503 static void 1504 vdev_open_child(void *arg) 1505 { 1506 vdev_t *vd = arg; 1507 1508 vd->vdev_open_thread = curthread; 1509 vd->vdev_open_error = vdev_open(vd); 1510 vd->vdev_open_thread = NULL; 1511 } 1512 1513 boolean_t 1514 vdev_uses_zvols(vdev_t *vd) 1515 { 1516 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1517 strlen(ZVOL_DIR)) == 0) 1518 return (B_TRUE); 1519 for (int c = 0; c < vd->vdev_children; c++) 1520 if (vdev_uses_zvols(vd->vdev_child[c])) 1521 return (B_TRUE); 1522 return (B_FALSE); 1523 } 1524 1525 void 1526 vdev_open_children(vdev_t *vd) 1527 { 1528 taskq_t *tq; 1529 int children = vd->vdev_children; 1530 1531 /* 1532 * in order to handle pools on top of zvols, do the opens 1533 * in a single thread so that the same thread holds the 1534 * spa_namespace_lock 1535 */ 1536 if (vdev_uses_zvols(vd)) { 1537 retry_sync: 1538 for (int c = 0; c < children; c++) 1539 vd->vdev_child[c]->vdev_open_error = 1540 vdev_open(vd->vdev_child[c]); 1541 } else { 1542 tq = taskq_create("vdev_open", children, minclsyspri, 1543 children, children, TASKQ_PREPOPULATE); 1544 if (tq == NULL) 1545 goto retry_sync; 1546 1547 for (int c = 0; c < children; c++) 1548 VERIFY(taskq_dispatch(tq, vdev_open_child, 1549 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1550 1551 taskq_destroy(tq); 1552 } 1553 1554 vd->vdev_nonrot = B_TRUE; 1555 1556 for (int c = 0; c < children; c++) 1557 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1558 } 1559 1560 /* 1561 * Compute the raidz-deflation ratio. Note, we hard-code 1562 * in 128k (1 << 17) because it is the "typical" blocksize. 1563 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1564 * otherwise it would inconsistently account for existing bp's. 1565 */ 1566 static void 1567 vdev_set_deflate_ratio(vdev_t *vd) 1568 { 1569 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1570 vd->vdev_deflate_ratio = (1 << 17) / 1571 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1572 } 1573 } 1574 1575 /* 1576 * Prepare a virtual device for access. 1577 */ 1578 int 1579 vdev_open(vdev_t *vd) 1580 { 1581 spa_t *spa = vd->vdev_spa; 1582 int error; 1583 uint64_t osize = 0; 1584 uint64_t max_osize = 0; 1585 uint64_t asize, max_asize, psize; 1586 uint64_t ashift = 0; 1587 1588 ASSERT(vd->vdev_open_thread == curthread || 1589 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1590 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1591 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1592 vd->vdev_state == VDEV_STATE_OFFLINE); 1593 1594 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1595 vd->vdev_cant_read = B_FALSE; 1596 vd->vdev_cant_write = B_FALSE; 1597 vd->vdev_min_asize = vdev_get_min_asize(vd); 1598 1599 /* 1600 * If this vdev is not removed, check its fault status. If it's 1601 * faulted, bail out of the open. 1602 */ 1603 if (!vd->vdev_removed && vd->vdev_faulted) { 1604 ASSERT(vd->vdev_children == 0); 1605 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1606 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1607 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1608 vd->vdev_label_aux); 1609 return (SET_ERROR(ENXIO)); 1610 } else if (vd->vdev_offline) { 1611 ASSERT(vd->vdev_children == 0); 1612 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1613 return (SET_ERROR(ENXIO)); 1614 } 1615 1616 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1617 1618 /* 1619 * Reset the vdev_reopening flag so that we actually close 1620 * the vdev on error. 1621 */ 1622 vd->vdev_reopening = B_FALSE; 1623 if (zio_injection_enabled && error == 0) 1624 error = zio_handle_device_injection(vd, NULL, ENXIO); 1625 1626 if (error) { 1627 if (vd->vdev_removed && 1628 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1629 vd->vdev_removed = B_FALSE; 1630 1631 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1632 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1633 vd->vdev_stat.vs_aux); 1634 } else { 1635 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1636 vd->vdev_stat.vs_aux); 1637 } 1638 return (error); 1639 } 1640 1641 vd->vdev_removed = B_FALSE; 1642 1643 /* 1644 * Recheck the faulted flag now that we have confirmed that 1645 * the vdev is accessible. If we're faulted, bail. 1646 */ 1647 if (vd->vdev_faulted) { 1648 ASSERT(vd->vdev_children == 0); 1649 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1650 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1651 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1652 vd->vdev_label_aux); 1653 return (SET_ERROR(ENXIO)); 1654 } 1655 1656 if (vd->vdev_degraded) { 1657 ASSERT(vd->vdev_children == 0); 1658 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1659 VDEV_AUX_ERR_EXCEEDED); 1660 } else { 1661 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1662 } 1663 1664 /* 1665 * For hole or missing vdevs we just return success. 1666 */ 1667 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1668 return (0); 1669 1670 for (int c = 0; c < vd->vdev_children; c++) { 1671 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1672 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1673 VDEV_AUX_NONE); 1674 break; 1675 } 1676 } 1677 1678 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1679 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1680 1681 if (vd->vdev_children == 0) { 1682 if (osize < SPA_MINDEVSIZE) { 1683 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1684 VDEV_AUX_TOO_SMALL); 1685 return (SET_ERROR(EOVERFLOW)); 1686 } 1687 psize = osize; 1688 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1689 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1690 VDEV_LABEL_END_SIZE); 1691 } else { 1692 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1693 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1694 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1695 VDEV_AUX_TOO_SMALL); 1696 return (SET_ERROR(EOVERFLOW)); 1697 } 1698 psize = 0; 1699 asize = osize; 1700 max_asize = max_osize; 1701 } 1702 1703 vd->vdev_psize = psize; 1704 1705 /* 1706 * Make sure the allocatable size hasn't shrunk too much. 1707 */ 1708 if (asize < vd->vdev_min_asize) { 1709 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1710 VDEV_AUX_BAD_LABEL); 1711 return (SET_ERROR(EINVAL)); 1712 } 1713 1714 if (vd->vdev_asize == 0) { 1715 /* 1716 * This is the first-ever open, so use the computed values. 1717 * For compatibility, a different ashift can be requested. 1718 */ 1719 vd->vdev_asize = asize; 1720 vd->vdev_max_asize = max_asize; 1721 if (vd->vdev_ashift == 0) { 1722 vd->vdev_ashift = ashift; /* use detected value */ 1723 } 1724 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1725 vd->vdev_ashift > ASHIFT_MAX)) { 1726 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1727 VDEV_AUX_BAD_ASHIFT); 1728 return (SET_ERROR(EDOM)); 1729 } 1730 } else { 1731 /* 1732 * Detect if the alignment requirement has increased. 1733 * We don't want to make the pool unavailable, just 1734 * post an event instead. 1735 */ 1736 if (ashift > vd->vdev_top->vdev_ashift && 1737 vd->vdev_ops->vdev_op_leaf) { 1738 (void) zfs_ereport_post( 1739 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1740 spa, vd, NULL, NULL, 0, 0); 1741 } 1742 1743 vd->vdev_max_asize = max_asize; 1744 } 1745 1746 /* 1747 * If all children are healthy we update asize if either: 1748 * The asize has increased, due to a device expansion caused by dynamic 1749 * LUN growth or vdev replacement, and automatic expansion is enabled; 1750 * making the additional space available. 1751 * 1752 * The asize has decreased, due to a device shrink usually caused by a 1753 * vdev replace with a smaller device. This ensures that calculations 1754 * based of max_asize and asize e.g. esize are always valid. It's safe 1755 * to do this as we've already validated that asize is greater than 1756 * vdev_min_asize. 1757 */ 1758 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1759 ((asize > vd->vdev_asize && 1760 (vd->vdev_expanding || spa->spa_autoexpand)) || 1761 (asize < vd->vdev_asize))) 1762 vd->vdev_asize = asize; 1763 1764 vdev_set_min_asize(vd); 1765 1766 /* 1767 * Ensure we can issue some IO before declaring the 1768 * vdev open for business. 1769 */ 1770 if (vd->vdev_ops->vdev_op_leaf && 1771 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1772 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1773 VDEV_AUX_ERR_EXCEEDED); 1774 return (error); 1775 } 1776 1777 /* 1778 * Track the min and max ashift values for normal data devices. 1779 * 1780 * DJB - TBD these should perhaps be tracked per allocation class 1781 * (e.g. spa_min_ashift is used to round up post compression buffers) 1782 */ 1783 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1784 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1785 vd->vdev_aux == NULL) { 1786 if (vd->vdev_ashift > spa->spa_max_ashift) 1787 spa->spa_max_ashift = vd->vdev_ashift; 1788 if (vd->vdev_ashift < spa->spa_min_ashift) 1789 spa->spa_min_ashift = vd->vdev_ashift; 1790 } 1791 1792 /* 1793 * If this is a leaf vdev, assess whether a resilver is needed. 1794 * But don't do this if we are doing a reopen for a scrub, since 1795 * this would just restart the scrub we are already doing. 1796 */ 1797 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 1798 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 1799 1800 return (0); 1801 } 1802 1803 /* 1804 * Called once the vdevs are all opened, this routine validates the label 1805 * contents. This needs to be done before vdev_load() so that we don't 1806 * inadvertently do repair I/Os to the wrong device. 1807 * 1808 * This function will only return failure if one of the vdevs indicates that it 1809 * has since been destroyed or exported. This is only possible if 1810 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1811 * will be updated but the function will return 0. 1812 */ 1813 int 1814 vdev_validate(vdev_t *vd) 1815 { 1816 spa_t *spa = vd->vdev_spa; 1817 nvlist_t *label; 1818 uint64_t guid = 0, aux_guid = 0, top_guid; 1819 uint64_t state; 1820 nvlist_t *nvl; 1821 uint64_t txg; 1822 1823 if (vdev_validate_skip) 1824 return (0); 1825 1826 for (uint64_t c = 0; c < vd->vdev_children; c++) 1827 if (vdev_validate(vd->vdev_child[c]) != 0) 1828 return (SET_ERROR(EBADF)); 1829 1830 /* 1831 * If the device has already failed, or was marked offline, don't do 1832 * any further validation. Otherwise, label I/O will fail and we will 1833 * overwrite the previous state. 1834 */ 1835 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1836 return (0); 1837 1838 /* 1839 * If we are performing an extreme rewind, we allow for a label that 1840 * was modified at a point after the current txg. 1841 * If config lock is not held do not check for the txg. spa_sync could 1842 * be updating the vdev's label before updating spa_last_synced_txg. 1843 */ 1844 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1845 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1846 txg = UINT64_MAX; 1847 else 1848 txg = spa_last_synced_txg(spa); 1849 1850 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1851 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1852 VDEV_AUX_BAD_LABEL); 1853 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1854 "txg %llu", (u_longlong_t)txg); 1855 return (0); 1856 } 1857 1858 /* 1859 * Determine if this vdev has been split off into another 1860 * pool. If so, then refuse to open it. 1861 */ 1862 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1863 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1864 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1865 VDEV_AUX_SPLIT_POOL); 1866 nvlist_free(label); 1867 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1868 return (0); 1869 } 1870 1871 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1872 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1873 VDEV_AUX_CORRUPT_DATA); 1874 nvlist_free(label); 1875 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1876 ZPOOL_CONFIG_POOL_GUID); 1877 return (0); 1878 } 1879 1880 /* 1881 * If config is not trusted then ignore the spa guid check. This is 1882 * necessary because if the machine crashed during a re-guid the new 1883 * guid might have been written to all of the vdev labels, but not the 1884 * cached config. The check will be performed again once we have the 1885 * trusted config from the MOS. 1886 */ 1887 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1888 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1889 VDEV_AUX_CORRUPT_DATA); 1890 nvlist_free(label); 1891 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1892 "match config (%llu != %llu)", (u_longlong_t)guid, 1893 (u_longlong_t)spa_guid(spa)); 1894 return (0); 1895 } 1896 1897 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1898 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1899 &aux_guid) != 0) 1900 aux_guid = 0; 1901 1902 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1903 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1904 VDEV_AUX_CORRUPT_DATA); 1905 nvlist_free(label); 1906 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1907 ZPOOL_CONFIG_GUID); 1908 return (0); 1909 } 1910 1911 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1912 != 0) { 1913 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1914 VDEV_AUX_CORRUPT_DATA); 1915 nvlist_free(label); 1916 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1917 ZPOOL_CONFIG_TOP_GUID); 1918 return (0); 1919 } 1920 1921 /* 1922 * If this vdev just became a top-level vdev because its sibling was 1923 * detached, it will have adopted the parent's vdev guid -- but the 1924 * label may or may not be on disk yet. Fortunately, either version 1925 * of the label will have the same top guid, so if we're a top-level 1926 * vdev, we can safely compare to that instead. 1927 * However, if the config comes from a cachefile that failed to update 1928 * after the detach, a top-level vdev will appear as a non top-level 1929 * vdev in the config. Also relax the constraints if we perform an 1930 * extreme rewind. 1931 * 1932 * If we split this vdev off instead, then we also check the 1933 * original pool's guid. We don't want to consider the vdev 1934 * corrupt if it is partway through a split operation. 1935 */ 1936 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1937 boolean_t mismatch = B_FALSE; 1938 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1939 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1940 mismatch = B_TRUE; 1941 } else { 1942 if (vd->vdev_guid != top_guid && 1943 vd->vdev_top->vdev_guid != guid) 1944 mismatch = B_TRUE; 1945 } 1946 1947 if (mismatch) { 1948 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1949 VDEV_AUX_CORRUPT_DATA); 1950 nvlist_free(label); 1951 vdev_dbgmsg(vd, "vdev_validate: config guid " 1952 "doesn't match label guid"); 1953 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1954 (u_longlong_t)vd->vdev_guid, 1955 (u_longlong_t)vd->vdev_top->vdev_guid); 1956 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1957 "aux_guid %llu", (u_longlong_t)guid, 1958 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1959 return (0); 1960 } 1961 } 1962 1963 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1964 &state) != 0) { 1965 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1966 VDEV_AUX_CORRUPT_DATA); 1967 nvlist_free(label); 1968 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1969 ZPOOL_CONFIG_POOL_STATE); 1970 return (0); 1971 } 1972 1973 nvlist_free(label); 1974 1975 /* 1976 * If this is a verbatim import, no need to check the 1977 * state of the pool. 1978 */ 1979 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1980 spa_load_state(spa) == SPA_LOAD_OPEN && 1981 state != POOL_STATE_ACTIVE) { 1982 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1983 "for spa %s", (u_longlong_t)state, spa->spa_name); 1984 return (SET_ERROR(EBADF)); 1985 } 1986 1987 /* 1988 * If we were able to open and validate a vdev that was 1989 * previously marked permanently unavailable, clear that state 1990 * now. 1991 */ 1992 if (vd->vdev_not_present) 1993 vd->vdev_not_present = 0; 1994 1995 return (0); 1996 } 1997 1998 static void 1999 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2000 { 2001 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2002 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2003 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2004 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2005 dvd->vdev_path, svd->vdev_path); 2006 spa_strfree(dvd->vdev_path); 2007 dvd->vdev_path = spa_strdup(svd->vdev_path); 2008 } 2009 } else if (svd->vdev_path != NULL) { 2010 dvd->vdev_path = spa_strdup(svd->vdev_path); 2011 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2012 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2013 } 2014 } 2015 2016 /* 2017 * Recursively copy vdev paths from one vdev to another. Source and destination 2018 * vdev trees must have same geometry otherwise return error. Intended to copy 2019 * paths from userland config into MOS config. 2020 */ 2021 int 2022 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2023 { 2024 if ((svd->vdev_ops == &vdev_missing_ops) || 2025 (svd->vdev_ishole && dvd->vdev_ishole) || 2026 (dvd->vdev_ops == &vdev_indirect_ops)) 2027 return (0); 2028 2029 if (svd->vdev_ops != dvd->vdev_ops) { 2030 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2031 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2032 return (SET_ERROR(EINVAL)); 2033 } 2034 2035 if (svd->vdev_guid != dvd->vdev_guid) { 2036 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2037 "%llu)", (u_longlong_t)svd->vdev_guid, 2038 (u_longlong_t)dvd->vdev_guid); 2039 return (SET_ERROR(EINVAL)); 2040 } 2041 2042 if (svd->vdev_children != dvd->vdev_children) { 2043 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2044 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2045 (u_longlong_t)dvd->vdev_children); 2046 return (SET_ERROR(EINVAL)); 2047 } 2048 2049 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2050 int error = vdev_copy_path_strict(svd->vdev_child[i], 2051 dvd->vdev_child[i]); 2052 if (error != 0) 2053 return (error); 2054 } 2055 2056 if (svd->vdev_ops->vdev_op_leaf) 2057 vdev_copy_path_impl(svd, dvd); 2058 2059 return (0); 2060 } 2061 2062 static void 2063 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2064 { 2065 ASSERT(stvd->vdev_top == stvd); 2066 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2067 2068 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2069 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2070 } 2071 2072 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2073 return; 2074 2075 /* 2076 * The idea here is that while a vdev can shift positions within 2077 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2078 * step outside of it. 2079 */ 2080 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2081 2082 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2083 return; 2084 2085 ASSERT(vd->vdev_ops->vdev_op_leaf); 2086 2087 vdev_copy_path_impl(vd, dvd); 2088 } 2089 2090 /* 2091 * Recursively copy vdev paths from one root vdev to another. Source and 2092 * destination vdev trees may differ in geometry. For each destination leaf 2093 * vdev, search a vdev with the same guid and top vdev id in the source. 2094 * Intended to copy paths from userland config into MOS config. 2095 */ 2096 void 2097 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2098 { 2099 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2100 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2101 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2102 2103 for (uint64_t i = 0; i < children; i++) { 2104 vdev_copy_path_search(srvd->vdev_child[i], 2105 drvd->vdev_child[i]); 2106 } 2107 } 2108 2109 /* 2110 * Close a virtual device. 2111 */ 2112 void 2113 vdev_close(vdev_t *vd) 2114 { 2115 spa_t *spa = vd->vdev_spa; 2116 vdev_t *pvd = vd->vdev_parent; 2117 2118 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2119 2120 /* 2121 * If our parent is reopening, then we are as well, unless we are 2122 * going offline. 2123 */ 2124 if (pvd != NULL && pvd->vdev_reopening) 2125 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2126 2127 vd->vdev_ops->vdev_op_close(vd); 2128 2129 vdev_cache_purge(vd); 2130 2131 /* 2132 * We record the previous state before we close it, so that if we are 2133 * doing a reopen(), we don't generate FMA ereports if we notice that 2134 * it's still faulted. 2135 */ 2136 vd->vdev_prevstate = vd->vdev_state; 2137 2138 if (vd->vdev_offline) 2139 vd->vdev_state = VDEV_STATE_OFFLINE; 2140 else 2141 vd->vdev_state = VDEV_STATE_CLOSED; 2142 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2143 } 2144 2145 void 2146 vdev_hold(vdev_t *vd) 2147 { 2148 spa_t *spa = vd->vdev_spa; 2149 2150 ASSERT(spa_is_root(spa)); 2151 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2152 return; 2153 2154 for (int c = 0; c < vd->vdev_children; c++) 2155 vdev_hold(vd->vdev_child[c]); 2156 2157 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2158 vd->vdev_ops->vdev_op_hold(vd); 2159 } 2160 2161 void 2162 vdev_rele(vdev_t *vd) 2163 { 2164 spa_t *spa = vd->vdev_spa; 2165 2166 ASSERT(spa_is_root(spa)); 2167 for (int c = 0; c < vd->vdev_children; c++) 2168 vdev_rele(vd->vdev_child[c]); 2169 2170 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2171 vd->vdev_ops->vdev_op_rele(vd); 2172 } 2173 2174 /* 2175 * Reopen all interior vdevs and any unopened leaves. We don't actually 2176 * reopen leaf vdevs which had previously been opened as they might deadlock 2177 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2178 * If the leaf has never been opened then open it, as usual. 2179 */ 2180 void 2181 vdev_reopen(vdev_t *vd) 2182 { 2183 spa_t *spa = vd->vdev_spa; 2184 2185 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2186 2187 /* set the reopening flag unless we're taking the vdev offline */ 2188 vd->vdev_reopening = !vd->vdev_offline; 2189 vdev_close(vd); 2190 (void) vdev_open(vd); 2191 2192 /* 2193 * Call vdev_validate() here to make sure we have the same device. 2194 * Otherwise, a device with an invalid label could be successfully 2195 * opened in response to vdev_reopen(). 2196 */ 2197 if (vd->vdev_aux) { 2198 (void) vdev_validate_aux(vd); 2199 if (vdev_readable(vd) && vdev_writeable(vd) && 2200 vd->vdev_aux == &spa->spa_l2cache) { 2201 /* 2202 * When reopening we can assume the device label has 2203 * already the attribute l2cache_persistent, since we've 2204 * opened the device in the past and updated the label. 2205 * In case the vdev is present we should evict all ARC 2206 * buffers and pointers to log blocks and reclaim their 2207 * space before restoring its contents to L2ARC. 2208 */ 2209 if (l2arc_vdev_present(vd)) { 2210 l2arc_rebuild_vdev(vd, B_TRUE); 2211 } else { 2212 l2arc_add_vdev(spa, vd); 2213 } 2214 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2215 } 2216 } else { 2217 (void) vdev_validate(vd); 2218 } 2219 2220 /* 2221 * Reassess parent vdev's health. 2222 */ 2223 vdev_propagate_state(vd); 2224 } 2225 2226 int 2227 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2228 { 2229 int error; 2230 2231 /* 2232 * Normally, partial opens (e.g. of a mirror) are allowed. 2233 * For a create, however, we want to fail the request if 2234 * there are any components we can't open. 2235 */ 2236 error = vdev_open(vd); 2237 2238 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2239 vdev_close(vd); 2240 return (error ? error : ENXIO); 2241 } 2242 2243 /* 2244 * Recursively load DTLs and initialize all labels. 2245 */ 2246 if ((error = vdev_dtl_load(vd)) != 0 || 2247 (error = vdev_label_init(vd, txg, isreplacing ? 2248 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2249 vdev_close(vd); 2250 return (error); 2251 } 2252 2253 return (0); 2254 } 2255 2256 void 2257 vdev_metaslab_set_size(vdev_t *vd) 2258 { 2259 uint64_t asize = vd->vdev_asize; 2260 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2261 uint64_t ms_shift; 2262 2263 /* BEGIN CSTYLED */ 2264 /* 2265 * There are two dimensions to the metaslab sizing calculation: 2266 * the size of the metaslab and the count of metaslabs per vdev. 2267 * 2268 * The default values used below are a good balance between memory 2269 * usage (larger metaslab size means more memory needed for loaded 2270 * metaslabs; more metaslabs means more memory needed for the 2271 * metaslab_t structs), metaslab load time (larger metaslabs take 2272 * longer to load), and metaslab sync time (more metaslabs means 2273 * more time spent syncing all of them). 2274 * 2275 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2276 * The range of the dimensions are as follows: 2277 * 2278 * 2^29 <= ms_size <= 2^34 2279 * 16 <= ms_count <= 131,072 2280 * 2281 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2282 * at least 512MB (2^29) to minimize fragmentation effects when 2283 * testing with smaller devices. However, the count constraint 2284 * of at least 16 metaslabs will override this minimum size goal. 2285 * 2286 * On the upper end of vdev sizes, we aim for a maximum metaslab 2287 * size of 16GB. However, we will cap the total count to 2^17 2288 * metaslabs to keep our memory footprint in check and let the 2289 * metaslab size grow from there if that limit is hit. 2290 * 2291 * The net effect of applying above constrains is summarized below. 2292 * 2293 * vdev size metaslab count 2294 * --------------|----------------- 2295 * < 8GB ~16 2296 * 8GB - 100GB one per 512MB 2297 * 100GB - 3TB ~200 2298 * 3TB - 2PB one per 16GB 2299 * > 2PB ~131,072 2300 * -------------------------------- 2301 * 2302 * Finally, note that all of the above calculate the initial 2303 * number of metaslabs. Expanding a top-level vdev will result 2304 * in additional metaslabs being allocated making it possible 2305 * to exceed the zfs_vdev_ms_count_limit. 2306 */ 2307 /* END CSTYLED */ 2308 2309 if (ms_count < zfs_vdev_min_ms_count) 2310 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2311 else if (ms_count > zfs_vdev_default_ms_count) 2312 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2313 else 2314 ms_shift = zfs_vdev_default_ms_shift; 2315 2316 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2317 ms_shift = SPA_MAXBLOCKSHIFT; 2318 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2319 ms_shift = zfs_vdev_max_ms_shift; 2320 /* cap the total count to constrain memory footprint */ 2321 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2322 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2323 } 2324 2325 vd->vdev_ms_shift = ms_shift; 2326 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2327 } 2328 2329 void 2330 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2331 { 2332 ASSERT(vd == vd->vdev_top); 2333 /* indirect vdevs don't have metaslabs or dtls */ 2334 ASSERT(vdev_is_concrete(vd) || flags == 0); 2335 ASSERT(ISP2(flags)); 2336 ASSERT(spa_writeable(vd->vdev_spa)); 2337 2338 if (flags & VDD_METASLAB) 2339 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2340 2341 if (flags & VDD_DTL) 2342 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2343 2344 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2345 } 2346 2347 void 2348 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2349 { 2350 for (int c = 0; c < vd->vdev_children; c++) 2351 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2352 2353 if (vd->vdev_ops->vdev_op_leaf) 2354 vdev_dirty(vd->vdev_top, flags, vd, txg); 2355 } 2356 2357 /* 2358 * DTLs. 2359 * 2360 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2361 * the vdev has less than perfect replication. There are four kinds of DTL: 2362 * 2363 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2364 * 2365 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2366 * 2367 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2368 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2369 * txgs that was scrubbed. 2370 * 2371 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2372 * persistent errors or just some device being offline. 2373 * Unlike the other three, the DTL_OUTAGE map is not generally 2374 * maintained; it's only computed when needed, typically to 2375 * determine whether a device can be detached. 2376 * 2377 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2378 * either has the data or it doesn't. 2379 * 2380 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2381 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2382 * if any child is less than fully replicated, then so is its parent. 2383 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2384 * comprising only those txgs which appear in 'maxfaults' or more children; 2385 * those are the txgs we don't have enough replication to read. For example, 2386 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2387 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2388 * two child DTL_MISSING maps. 2389 * 2390 * It should be clear from the above that to compute the DTLs and outage maps 2391 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2392 * Therefore, that is all we keep on disk. When loading the pool, or after 2393 * a configuration change, we generate all other DTLs from first principles. 2394 */ 2395 void 2396 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2397 { 2398 range_tree_t *rt = vd->vdev_dtl[t]; 2399 2400 ASSERT(t < DTL_TYPES); 2401 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2402 ASSERT(spa_writeable(vd->vdev_spa)); 2403 2404 mutex_enter(&vd->vdev_dtl_lock); 2405 if (!range_tree_contains(rt, txg, size)) 2406 range_tree_add(rt, txg, size); 2407 mutex_exit(&vd->vdev_dtl_lock); 2408 } 2409 2410 boolean_t 2411 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2412 { 2413 range_tree_t *rt = vd->vdev_dtl[t]; 2414 boolean_t dirty = B_FALSE; 2415 2416 ASSERT(t < DTL_TYPES); 2417 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2418 2419 /* 2420 * While we are loading the pool, the DTLs have not been loaded yet. 2421 * Ignore the DTLs and try all devices. This avoids a recursive 2422 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2423 * when loading the pool (relying on the checksum to ensure that 2424 * we get the right data -- note that we while loading, we are 2425 * only reading the MOS, which is always checksummed). 2426 */ 2427 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2428 return (B_FALSE); 2429 2430 mutex_enter(&vd->vdev_dtl_lock); 2431 if (!range_tree_is_empty(rt)) 2432 dirty = range_tree_contains(rt, txg, size); 2433 mutex_exit(&vd->vdev_dtl_lock); 2434 2435 return (dirty); 2436 } 2437 2438 boolean_t 2439 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2440 { 2441 range_tree_t *rt = vd->vdev_dtl[t]; 2442 boolean_t empty; 2443 2444 mutex_enter(&vd->vdev_dtl_lock); 2445 empty = range_tree_is_empty(rt); 2446 mutex_exit(&vd->vdev_dtl_lock); 2447 2448 return (empty); 2449 } 2450 2451 /* 2452 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2453 */ 2454 boolean_t 2455 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2456 { 2457 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2458 2459 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2460 vd->vdev_ops->vdev_op_leaf) 2461 return (B_TRUE); 2462 2463 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2464 } 2465 2466 /* 2467 * Returns the lowest txg in the DTL range. 2468 */ 2469 static uint64_t 2470 vdev_dtl_min(vdev_t *vd) 2471 { 2472 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2473 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2474 ASSERT0(vd->vdev_children); 2475 2476 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2477 } 2478 2479 /* 2480 * Returns the highest txg in the DTL. 2481 */ 2482 static uint64_t 2483 vdev_dtl_max(vdev_t *vd) 2484 { 2485 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2486 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2487 ASSERT0(vd->vdev_children); 2488 2489 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2490 } 2491 2492 /* 2493 * Determine if a resilvering vdev should remove any DTL entries from 2494 * its range. If the vdev was resilvering for the entire duration of the 2495 * scan then it should excise that range from its DTLs. Otherwise, this 2496 * vdev is considered partially resilvered and should leave its DTL 2497 * entries intact. The comment in vdev_dtl_reassess() describes how we 2498 * excise the DTLs. 2499 */ 2500 static boolean_t 2501 vdev_dtl_should_excise(vdev_t *vd) 2502 { 2503 spa_t *spa = vd->vdev_spa; 2504 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2505 2506 ASSERT0(vd->vdev_children); 2507 2508 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2509 return (B_FALSE); 2510 2511 if (vd->vdev_resilver_deferred) 2512 return (B_FALSE); 2513 2514 if (vd->vdev_resilver_txg == 0 || 2515 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2516 return (B_TRUE); 2517 2518 /* 2519 * When a resilver is initiated the scan will assign the scn_max_txg 2520 * value to the highest txg value that exists in all DTLs. If this 2521 * device's max DTL is not part of this scan (i.e. it is not in 2522 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2523 * for excision. 2524 */ 2525 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2526 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2527 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2528 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2529 return (B_TRUE); 2530 } 2531 return (B_FALSE); 2532 } 2533 2534 /* 2535 * Reassess DTLs after a config change or scrub completion. 2536 */ 2537 void 2538 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2539 { 2540 spa_t *spa = vd->vdev_spa; 2541 avl_tree_t reftree; 2542 int minref; 2543 2544 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2545 2546 for (int c = 0; c < vd->vdev_children; c++) 2547 vdev_dtl_reassess(vd->vdev_child[c], txg, 2548 scrub_txg, scrub_done); 2549 2550 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2551 return; 2552 2553 if (vd->vdev_ops->vdev_op_leaf) { 2554 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2555 boolean_t wasempty = B_TRUE; 2556 2557 mutex_enter(&vd->vdev_dtl_lock); 2558 2559 /* 2560 * If requested, pretend the scan completed cleanly. 2561 */ 2562 if (zfs_scan_ignore_errors && scn) 2563 scn->scn_phys.scn_errors = 0; 2564 2565 if (scrub_txg != 0 && 2566 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2567 wasempty = B_FALSE; 2568 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2569 "dtl:%llu/%llu errors:%llu", 2570 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2571 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2572 (u_longlong_t)vdev_dtl_min(vd), 2573 (u_longlong_t)vdev_dtl_max(vd), 2574 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2575 } 2576 2577 /* 2578 * If we've completed a scan cleanly then determine 2579 * if this vdev should remove any DTLs. We only want to 2580 * excise regions on vdevs that were available during 2581 * the entire duration of this scan. 2582 */ 2583 if (scrub_txg != 0 && 2584 (spa->spa_scrub_started || 2585 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2586 vdev_dtl_should_excise(vd)) { 2587 /* 2588 * We completed a scrub up to scrub_txg. If we 2589 * did it without rebooting, then the scrub dtl 2590 * will be valid, so excise the old region and 2591 * fold in the scrub dtl. Otherwise, leave the 2592 * dtl as-is if there was an error. 2593 * 2594 * There's little trick here: to excise the beginning 2595 * of the DTL_MISSING map, we put it into a reference 2596 * tree and then add a segment with refcnt -1 that 2597 * covers the range [0, scrub_txg). This means 2598 * that each txg in that range has refcnt -1 or 0. 2599 * We then add DTL_SCRUB with a refcnt of 2, so that 2600 * entries in the range [0, scrub_txg) will have a 2601 * positive refcnt -- either 1 or 2. We then convert 2602 * the reference tree into the new DTL_MISSING map. 2603 */ 2604 space_reftree_create(&reftree); 2605 space_reftree_add_map(&reftree, 2606 vd->vdev_dtl[DTL_MISSING], 1); 2607 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2608 space_reftree_add_map(&reftree, 2609 vd->vdev_dtl[DTL_SCRUB], 2); 2610 space_reftree_generate_map(&reftree, 2611 vd->vdev_dtl[DTL_MISSING], 1); 2612 space_reftree_destroy(&reftree); 2613 2614 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2615 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 2616 (u_longlong_t)vdev_dtl_min(vd), 2617 (u_longlong_t)vdev_dtl_max(vd)); 2618 } else if (!wasempty) { 2619 zfs_dbgmsg("DTL_MISSING is now empty"); 2620 } 2621 } 2622 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2623 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2624 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2625 if (scrub_done) 2626 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2627 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2628 if (!vdev_readable(vd)) 2629 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2630 else 2631 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2632 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2633 2634 /* 2635 * If the vdev was resilvering and no longer has any 2636 * DTLs then reset its resilvering flag. 2637 */ 2638 if (vd->vdev_resilver_txg != 0 && 2639 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2640 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2641 vd->vdev_resilver_txg = 0; 2642 2643 mutex_exit(&vd->vdev_dtl_lock); 2644 2645 if (txg != 0) 2646 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2647 return; 2648 } 2649 2650 mutex_enter(&vd->vdev_dtl_lock); 2651 for (int t = 0; t < DTL_TYPES; t++) { 2652 /* account for child's outage in parent's missing map */ 2653 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2654 if (t == DTL_SCRUB) 2655 continue; /* leaf vdevs only */ 2656 if (t == DTL_PARTIAL) 2657 minref = 1; /* i.e. non-zero */ 2658 else if (vd->vdev_nparity != 0) 2659 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2660 else 2661 minref = vd->vdev_children; /* any kind of mirror */ 2662 space_reftree_create(&reftree); 2663 for (int c = 0; c < vd->vdev_children; c++) { 2664 vdev_t *cvd = vd->vdev_child[c]; 2665 mutex_enter(&cvd->vdev_dtl_lock); 2666 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2667 mutex_exit(&cvd->vdev_dtl_lock); 2668 } 2669 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2670 space_reftree_destroy(&reftree); 2671 } 2672 mutex_exit(&vd->vdev_dtl_lock); 2673 } 2674 2675 int 2676 vdev_dtl_load(vdev_t *vd) 2677 { 2678 spa_t *spa = vd->vdev_spa; 2679 objset_t *mos = spa->spa_meta_objset; 2680 int error = 0; 2681 2682 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2683 ASSERT(vdev_is_concrete(vd)); 2684 2685 error = space_map_open(&vd->vdev_dtl_sm, mos, 2686 vd->vdev_dtl_object, 0, -1ULL, 0); 2687 if (error) 2688 return (error); 2689 ASSERT(vd->vdev_dtl_sm != NULL); 2690 2691 mutex_enter(&vd->vdev_dtl_lock); 2692 error = space_map_load(vd->vdev_dtl_sm, 2693 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2694 mutex_exit(&vd->vdev_dtl_lock); 2695 2696 return (error); 2697 } 2698 2699 for (int c = 0; c < vd->vdev_children; c++) { 2700 error = vdev_dtl_load(vd->vdev_child[c]); 2701 if (error != 0) 2702 break; 2703 } 2704 2705 return (error); 2706 } 2707 2708 static void 2709 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2710 { 2711 spa_t *spa = vd->vdev_spa; 2712 objset_t *mos = spa->spa_meta_objset; 2713 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2714 const char *string; 2715 2716 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2717 2718 string = 2719 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2720 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2721 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2722 2723 ASSERT(string != NULL); 2724 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2725 1, strlen(string) + 1, string, tx)); 2726 2727 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2728 spa_activate_allocation_classes(spa, tx); 2729 } 2730 } 2731 2732 void 2733 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2734 { 2735 spa_t *spa = vd->vdev_spa; 2736 2737 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2738 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2739 zapobj, tx)); 2740 } 2741 2742 uint64_t 2743 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2744 { 2745 spa_t *spa = vd->vdev_spa; 2746 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2747 DMU_OT_NONE, 0, tx); 2748 2749 ASSERT(zap != 0); 2750 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2751 zap, tx)); 2752 2753 return (zap); 2754 } 2755 2756 void 2757 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2758 { 2759 if (vd->vdev_ops != &vdev_hole_ops && 2760 vd->vdev_ops != &vdev_missing_ops && 2761 vd->vdev_ops != &vdev_root_ops && 2762 !vd->vdev_top->vdev_removing) { 2763 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2764 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2765 } 2766 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2767 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2768 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2769 vdev_zap_allocation_data(vd, tx); 2770 } 2771 } 2772 2773 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2774 vdev_construct_zaps(vd->vdev_child[i], tx); 2775 } 2776 } 2777 2778 void 2779 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2780 { 2781 spa_t *spa = vd->vdev_spa; 2782 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2783 objset_t *mos = spa->spa_meta_objset; 2784 range_tree_t *rtsync; 2785 dmu_tx_t *tx; 2786 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2787 2788 ASSERT(vdev_is_concrete(vd)); 2789 ASSERT(vd->vdev_ops->vdev_op_leaf); 2790 2791 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2792 2793 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2794 mutex_enter(&vd->vdev_dtl_lock); 2795 space_map_free(vd->vdev_dtl_sm, tx); 2796 space_map_close(vd->vdev_dtl_sm); 2797 vd->vdev_dtl_sm = NULL; 2798 mutex_exit(&vd->vdev_dtl_lock); 2799 2800 /* 2801 * We only destroy the leaf ZAP for detached leaves or for 2802 * removed log devices. Removed data devices handle leaf ZAP 2803 * cleanup later, once cancellation is no longer possible. 2804 */ 2805 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2806 vd->vdev_top->vdev_islog)) { 2807 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2808 vd->vdev_leaf_zap = 0; 2809 } 2810 2811 dmu_tx_commit(tx); 2812 return; 2813 } 2814 2815 if (vd->vdev_dtl_sm == NULL) { 2816 uint64_t new_object; 2817 2818 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 2819 VERIFY3U(new_object, !=, 0); 2820 2821 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2822 0, -1ULL, 0)); 2823 ASSERT(vd->vdev_dtl_sm != NULL); 2824 } 2825 2826 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 2827 2828 mutex_enter(&vd->vdev_dtl_lock); 2829 range_tree_walk(rt, range_tree_add, rtsync); 2830 mutex_exit(&vd->vdev_dtl_lock); 2831 2832 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 2833 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2834 range_tree_vacate(rtsync, NULL, NULL); 2835 2836 range_tree_destroy(rtsync); 2837 2838 /* 2839 * If the object for the space map has changed then dirty 2840 * the top level so that we update the config. 2841 */ 2842 if (object != space_map_object(vd->vdev_dtl_sm)) { 2843 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2844 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2845 (u_longlong_t)object, 2846 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2847 vdev_config_dirty(vd->vdev_top); 2848 } 2849 2850 dmu_tx_commit(tx); 2851 } 2852 2853 /* 2854 * Determine whether the specified vdev can be offlined/detached/removed 2855 * without losing data. 2856 */ 2857 boolean_t 2858 vdev_dtl_required(vdev_t *vd) 2859 { 2860 spa_t *spa = vd->vdev_spa; 2861 vdev_t *tvd = vd->vdev_top; 2862 uint8_t cant_read = vd->vdev_cant_read; 2863 boolean_t required; 2864 2865 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2866 2867 if (vd == spa->spa_root_vdev || vd == tvd) 2868 return (B_TRUE); 2869 2870 /* 2871 * Temporarily mark the device as unreadable, and then determine 2872 * whether this results in any DTL outages in the top-level vdev. 2873 * If not, we can safely offline/detach/remove the device. 2874 */ 2875 vd->vdev_cant_read = B_TRUE; 2876 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2877 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2878 vd->vdev_cant_read = cant_read; 2879 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2880 2881 if (!required && zio_injection_enabled) 2882 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2883 2884 return (required); 2885 } 2886 2887 /* 2888 * Determine if resilver is needed, and if so the txg range. 2889 */ 2890 boolean_t 2891 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2892 { 2893 boolean_t needed = B_FALSE; 2894 uint64_t thismin = UINT64_MAX; 2895 uint64_t thismax = 0; 2896 2897 if (vd->vdev_children == 0) { 2898 mutex_enter(&vd->vdev_dtl_lock); 2899 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2900 vdev_writeable(vd)) { 2901 2902 thismin = vdev_dtl_min(vd); 2903 thismax = vdev_dtl_max(vd); 2904 needed = B_TRUE; 2905 } 2906 mutex_exit(&vd->vdev_dtl_lock); 2907 } else { 2908 for (int c = 0; c < vd->vdev_children; c++) { 2909 vdev_t *cvd = vd->vdev_child[c]; 2910 uint64_t cmin, cmax; 2911 2912 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2913 thismin = MIN(thismin, cmin); 2914 thismax = MAX(thismax, cmax); 2915 needed = B_TRUE; 2916 } 2917 } 2918 } 2919 2920 if (needed && minp) { 2921 *minp = thismin; 2922 *maxp = thismax; 2923 } 2924 return (needed); 2925 } 2926 2927 /* 2928 * Gets the checkpoint space map object from the vdev's ZAP. 2929 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2930 * or the ZAP doesn't exist yet. 2931 */ 2932 int 2933 vdev_checkpoint_sm_object(vdev_t *vd) 2934 { 2935 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2936 if (vd->vdev_top_zap == 0) { 2937 return (0); 2938 } 2939 2940 uint64_t sm_obj = 0; 2941 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2942 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2943 2944 ASSERT(err == 0 || err == ENOENT); 2945 2946 return (sm_obj); 2947 } 2948 2949 int 2950 vdev_load(vdev_t *vd) 2951 { 2952 int error = 0; 2953 /* 2954 * Recursively load all children. 2955 */ 2956 for (int c = 0; c < vd->vdev_children; c++) { 2957 error = vdev_load(vd->vdev_child[c]); 2958 if (error != 0) { 2959 return (error); 2960 } 2961 } 2962 2963 vdev_set_deflate_ratio(vd); 2964 2965 /* 2966 * On spa_load path, grab the allocation bias from our zap 2967 */ 2968 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2969 spa_t *spa = vd->vdev_spa; 2970 char bias_str[64]; 2971 2972 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2973 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2974 bias_str) == 0) { 2975 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2976 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2977 } 2978 } 2979 2980 /* 2981 * If this is a top-level vdev, initialize its metaslabs. 2982 */ 2983 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2984 vdev_metaslab_group_create(vd); 2985 2986 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2988 VDEV_AUX_CORRUPT_DATA); 2989 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2990 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2991 (u_longlong_t)vd->vdev_asize); 2992 return (SET_ERROR(ENXIO)); 2993 } 2994 2995 error = vdev_metaslab_init(vd, 0); 2996 if (error != 0) { 2997 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2998 "[error=%d]", error); 2999 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3000 VDEV_AUX_CORRUPT_DATA); 3001 return (error); 3002 } 3003 3004 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 3005 if (checkpoint_sm_obj != 0) { 3006 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3007 ASSERT(vd->vdev_asize != 0); 3008 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3009 3010 error = space_map_open(&vd->vdev_checkpoint_sm, 3011 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3012 vd->vdev_ashift); 3013 if (error != 0) { 3014 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3015 "failed for checkpoint spacemap (obj %llu) " 3016 "[error=%d]", 3017 (u_longlong_t)checkpoint_sm_obj, error); 3018 return (error); 3019 } 3020 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3021 3022 /* 3023 * Since the checkpoint_sm contains free entries 3024 * exclusively we can use space_map_allocated() to 3025 * indicate the cumulative checkpointed space that 3026 * has been freed. 3027 */ 3028 vd->vdev_stat.vs_checkpoint_space = 3029 -space_map_allocated(vd->vdev_checkpoint_sm); 3030 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3031 vd->vdev_stat.vs_checkpoint_space; 3032 } 3033 } 3034 3035 /* 3036 * If this is a leaf vdev, load its DTL. 3037 */ 3038 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3039 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3040 VDEV_AUX_CORRUPT_DATA); 3041 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3042 "[error=%d]", error); 3043 return (error); 3044 } 3045 3046 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 3047 if (obsolete_sm_object != 0) { 3048 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3049 ASSERT(vd->vdev_asize != 0); 3050 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3051 3052 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3053 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3054 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3055 VDEV_AUX_CORRUPT_DATA); 3056 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3057 "obsolete spacemap (obj %llu) [error=%d]", 3058 (u_longlong_t)obsolete_sm_object, error); 3059 return (error); 3060 } 3061 } 3062 3063 return (0); 3064 } 3065 3066 /* 3067 * The special vdev case is used for hot spares and l2cache devices. Its 3068 * sole purpose it to set the vdev state for the associated vdev. To do this, 3069 * we make sure that we can open the underlying device, then try to read the 3070 * label, and make sure that the label is sane and that it hasn't been 3071 * repurposed to another pool. 3072 */ 3073 int 3074 vdev_validate_aux(vdev_t *vd) 3075 { 3076 nvlist_t *label; 3077 uint64_t guid, version; 3078 uint64_t state; 3079 3080 if (!vdev_readable(vd)) 3081 return (0); 3082 3083 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3084 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3085 VDEV_AUX_CORRUPT_DATA); 3086 return (-1); 3087 } 3088 3089 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3090 !SPA_VERSION_IS_SUPPORTED(version) || 3091 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3092 guid != vd->vdev_guid || 3093 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3094 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3095 VDEV_AUX_CORRUPT_DATA); 3096 nvlist_free(label); 3097 return (-1); 3098 } 3099 3100 /* 3101 * We don't actually check the pool state here. If it's in fact in 3102 * use by another pool, we update this fact on the fly when requested. 3103 */ 3104 nvlist_free(label); 3105 return (0); 3106 } 3107 3108 static void 3109 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3110 { 3111 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3112 3113 if (vd->vdev_top_zap == 0) 3114 return; 3115 3116 uint64_t object = 0; 3117 int err = zap_lookup(mos, vd->vdev_top_zap, 3118 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3119 if (err == ENOENT) 3120 return; 3121 3122 VERIFY0(dmu_object_free(mos, object, tx)); 3123 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3124 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3125 } 3126 3127 /* 3128 * Free the objects used to store this vdev's spacemaps, and the array 3129 * that points to them. 3130 */ 3131 void 3132 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3133 { 3134 if (vd->vdev_ms_array == 0) 3135 return; 3136 3137 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3138 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3139 size_t array_bytes = array_count * sizeof (uint64_t); 3140 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3141 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3142 array_bytes, smobj_array, 0)); 3143 3144 for (uint64_t i = 0; i < array_count; i++) { 3145 uint64_t smobj = smobj_array[i]; 3146 if (smobj == 0) 3147 continue; 3148 3149 space_map_free_obj(mos, smobj, tx); 3150 } 3151 3152 kmem_free(smobj_array, array_bytes); 3153 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3154 vdev_destroy_ms_flush_data(vd, tx); 3155 vd->vdev_ms_array = 0; 3156 } 3157 3158 static void 3159 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3160 { 3161 spa_t *spa = vd->vdev_spa; 3162 3163 ASSERT(vd->vdev_islog); 3164 ASSERT(vd == vd->vdev_top); 3165 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3166 3167 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3168 3169 vdev_destroy_spacemaps(vd, tx); 3170 if (vd->vdev_top_zap != 0) { 3171 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3172 vd->vdev_top_zap = 0; 3173 } 3174 3175 dmu_tx_commit(tx); 3176 } 3177 3178 void 3179 vdev_sync_done(vdev_t *vd, uint64_t txg) 3180 { 3181 metaslab_t *msp; 3182 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3183 3184 ASSERT(vdev_is_concrete(vd)); 3185 3186 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3187 != NULL) 3188 metaslab_sync_done(msp, txg); 3189 3190 if (reassess) 3191 metaslab_sync_reassess(vd->vdev_mg); 3192 } 3193 3194 void 3195 vdev_sync(vdev_t *vd, uint64_t txg) 3196 { 3197 spa_t *spa = vd->vdev_spa; 3198 vdev_t *lvd; 3199 metaslab_t *msp; 3200 3201 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3202 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3203 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3204 ASSERT(vd->vdev_removing || 3205 vd->vdev_ops == &vdev_indirect_ops); 3206 3207 vdev_indirect_sync_obsolete(vd, tx); 3208 3209 /* 3210 * If the vdev is indirect, it can't have dirty 3211 * metaslabs or DTLs. 3212 */ 3213 if (vd->vdev_ops == &vdev_indirect_ops) { 3214 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3215 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3216 dmu_tx_commit(tx); 3217 return; 3218 } 3219 } 3220 3221 ASSERT(vdev_is_concrete(vd)); 3222 3223 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3224 !vd->vdev_removing) { 3225 ASSERT(vd == vd->vdev_top); 3226 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3227 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3228 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3229 ASSERT(vd->vdev_ms_array != 0); 3230 vdev_config_dirty(vd); 3231 } 3232 3233 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3234 metaslab_sync(msp, txg); 3235 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3236 } 3237 3238 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3239 vdev_dtl_sync(lvd, txg); 3240 3241 /* 3242 * If this is an empty log device being removed, destroy the 3243 * metadata associated with it. 3244 */ 3245 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3246 vdev_remove_empty_log(vd, txg); 3247 3248 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3249 dmu_tx_commit(tx); 3250 } 3251 3252 uint64_t 3253 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3254 { 3255 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3256 } 3257 3258 /* 3259 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3260 * not be opened, and no I/O is attempted. 3261 */ 3262 int 3263 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3264 { 3265 vdev_t *vd, *tvd; 3266 3267 spa_vdev_state_enter(spa, SCL_NONE); 3268 3269 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3270 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3271 3272 if (!vd->vdev_ops->vdev_op_leaf) 3273 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3274 3275 tvd = vd->vdev_top; 3276 3277 /* 3278 * We don't directly use the aux state here, but if we do a 3279 * vdev_reopen(), we need this value to be present to remember why we 3280 * were faulted. 3281 */ 3282 vd->vdev_label_aux = aux; 3283 3284 /* 3285 * Faulted state takes precedence over degraded. 3286 */ 3287 vd->vdev_delayed_close = B_FALSE; 3288 vd->vdev_faulted = 1ULL; 3289 vd->vdev_degraded = 0ULL; 3290 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3291 3292 /* 3293 * If this device has the only valid copy of the data, then 3294 * back off and simply mark the vdev as degraded instead. 3295 */ 3296 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3297 vd->vdev_degraded = 1ULL; 3298 vd->vdev_faulted = 0ULL; 3299 3300 /* 3301 * If we reopen the device and it's not dead, only then do we 3302 * mark it degraded. 3303 */ 3304 vdev_reopen(tvd); 3305 3306 if (vdev_readable(vd)) 3307 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3308 } 3309 3310 return (spa_vdev_state_exit(spa, vd, 0)); 3311 } 3312 3313 /* 3314 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3315 * user that something is wrong. The vdev continues to operate as normal as far 3316 * as I/O is concerned. 3317 */ 3318 int 3319 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3320 { 3321 vdev_t *vd; 3322 3323 spa_vdev_state_enter(spa, SCL_NONE); 3324 3325 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3326 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3327 3328 if (!vd->vdev_ops->vdev_op_leaf) 3329 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3330 3331 /* 3332 * If the vdev is already faulted, then don't do anything. 3333 */ 3334 if (vd->vdev_faulted || vd->vdev_degraded) 3335 return (spa_vdev_state_exit(spa, NULL, 0)); 3336 3337 vd->vdev_degraded = 1ULL; 3338 if (!vdev_is_dead(vd)) 3339 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3340 aux); 3341 3342 return (spa_vdev_state_exit(spa, vd, 0)); 3343 } 3344 3345 /* 3346 * Online the given vdev. 3347 * 3348 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3349 * spare device should be detached when the device finishes resilvering. 3350 * Second, the online should be treated like a 'test' online case, so no FMA 3351 * events are generated if the device fails to open. 3352 */ 3353 int 3354 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3355 { 3356 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3357 boolean_t wasoffline; 3358 vdev_state_t oldstate; 3359 3360 spa_vdev_state_enter(spa, SCL_NONE); 3361 3362 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3363 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3364 3365 if (!vd->vdev_ops->vdev_op_leaf) 3366 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3367 3368 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3369 oldstate = vd->vdev_state; 3370 3371 tvd = vd->vdev_top; 3372 vd->vdev_offline = B_FALSE; 3373 vd->vdev_tmpoffline = B_FALSE; 3374 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3375 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3376 3377 /* XXX - L2ARC 1.0 does not support expansion */ 3378 if (!vd->vdev_aux) { 3379 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3380 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3381 } 3382 3383 vdev_reopen(tvd); 3384 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3385 3386 if (!vd->vdev_aux) { 3387 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3388 pvd->vdev_expanding = B_FALSE; 3389 } 3390 3391 if (newstate) 3392 *newstate = vd->vdev_state; 3393 if ((flags & ZFS_ONLINE_UNSPARE) && 3394 !vdev_is_dead(vd) && vd->vdev_parent && 3395 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3396 vd->vdev_parent->vdev_child[0] == vd) 3397 vd->vdev_unspare = B_TRUE; 3398 3399 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3400 3401 /* XXX - L2ARC 1.0 does not support expansion */ 3402 if (vd->vdev_aux) 3403 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3404 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3405 } 3406 3407 /* Restart initializing if necessary */ 3408 mutex_enter(&vd->vdev_initialize_lock); 3409 if (vdev_writeable(vd) && 3410 vd->vdev_initialize_thread == NULL && 3411 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3412 (void) vdev_initialize(vd); 3413 } 3414 mutex_exit(&vd->vdev_initialize_lock); 3415 3416 /* Restart trimming if necessary */ 3417 mutex_enter(&vd->vdev_trim_lock); 3418 if (vdev_writeable(vd) && 3419 vd->vdev_trim_thread == NULL && 3420 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3421 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3422 vd->vdev_trim_secure); 3423 } 3424 mutex_exit(&vd->vdev_trim_lock); 3425 3426 if (wasoffline || 3427 (oldstate < VDEV_STATE_DEGRADED && 3428 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3429 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3430 3431 return (spa_vdev_state_exit(spa, vd, 0)); 3432 } 3433 3434 static int 3435 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3436 { 3437 vdev_t *vd, *tvd; 3438 int error = 0; 3439 uint64_t generation; 3440 metaslab_group_t *mg; 3441 3442 top: 3443 spa_vdev_state_enter(spa, SCL_ALLOC); 3444 3445 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3446 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3447 3448 if (!vd->vdev_ops->vdev_op_leaf) 3449 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3450 3451 tvd = vd->vdev_top; 3452 mg = tvd->vdev_mg; 3453 generation = spa->spa_config_generation + 1; 3454 3455 /* 3456 * If the device isn't already offline, try to offline it. 3457 */ 3458 if (!vd->vdev_offline) { 3459 /* 3460 * If this device has the only valid copy of some data, 3461 * don't allow it to be offlined. Log devices are always 3462 * expendable. 3463 */ 3464 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3465 vdev_dtl_required(vd)) 3466 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3467 3468 /* 3469 * If the top-level is a slog and it has had allocations 3470 * then proceed. We check that the vdev's metaslab group 3471 * is not NULL since it's possible that we may have just 3472 * added this vdev but not yet initialized its metaslabs. 3473 */ 3474 if (tvd->vdev_islog && mg != NULL) { 3475 /* 3476 * Prevent any future allocations. 3477 */ 3478 metaslab_group_passivate(mg); 3479 (void) spa_vdev_state_exit(spa, vd, 0); 3480 3481 error = spa_reset_logs(spa); 3482 3483 /* 3484 * If the log device was successfully reset but has 3485 * checkpointed data, do not offline it. 3486 */ 3487 if (error == 0 && 3488 tvd->vdev_checkpoint_sm != NULL) { 3489 error = ZFS_ERR_CHECKPOINT_EXISTS; 3490 } 3491 3492 spa_vdev_state_enter(spa, SCL_ALLOC); 3493 3494 /* 3495 * Check to see if the config has changed. 3496 */ 3497 if (error || generation != spa->spa_config_generation) { 3498 metaslab_group_activate(mg); 3499 if (error) 3500 return (spa_vdev_state_exit(spa, 3501 vd, error)); 3502 (void) spa_vdev_state_exit(spa, vd, 0); 3503 goto top; 3504 } 3505 ASSERT0(tvd->vdev_stat.vs_alloc); 3506 } 3507 3508 /* 3509 * Offline this device and reopen its top-level vdev. 3510 * If the top-level vdev is a log device then just offline 3511 * it. Otherwise, if this action results in the top-level 3512 * vdev becoming unusable, undo it and fail the request. 3513 */ 3514 vd->vdev_offline = B_TRUE; 3515 vdev_reopen(tvd); 3516 3517 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3518 vdev_is_dead(tvd)) { 3519 vd->vdev_offline = B_FALSE; 3520 vdev_reopen(tvd); 3521 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3522 } 3523 3524 /* 3525 * Add the device back into the metaslab rotor so that 3526 * once we online the device it's open for business. 3527 */ 3528 if (tvd->vdev_islog && mg != NULL) 3529 metaslab_group_activate(mg); 3530 } 3531 3532 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3533 3534 return (spa_vdev_state_exit(spa, vd, 0)); 3535 } 3536 3537 int 3538 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3539 { 3540 int error; 3541 3542 mutex_enter(&spa->spa_vdev_top_lock); 3543 error = vdev_offline_locked(spa, guid, flags); 3544 mutex_exit(&spa->spa_vdev_top_lock); 3545 3546 return (error); 3547 } 3548 3549 /* 3550 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3551 * vdev_offline(), we assume the spa config is locked. We also clear all 3552 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3553 */ 3554 void 3555 vdev_clear(spa_t *spa, vdev_t *vd) 3556 { 3557 vdev_t *rvd = spa->spa_root_vdev; 3558 3559 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3560 3561 if (vd == NULL) 3562 vd = rvd; 3563 3564 vd->vdev_stat.vs_read_errors = 0; 3565 vd->vdev_stat.vs_write_errors = 0; 3566 vd->vdev_stat.vs_checksum_errors = 0; 3567 vd->vdev_stat.vs_slow_ios = 0; 3568 3569 for (int c = 0; c < vd->vdev_children; c++) 3570 vdev_clear(spa, vd->vdev_child[c]); 3571 3572 /* 3573 * It makes no sense to "clear" an indirect vdev. 3574 */ 3575 if (!vdev_is_concrete(vd)) 3576 return; 3577 3578 /* 3579 * If we're in the FAULTED state or have experienced failed I/O, then 3580 * clear the persistent state and attempt to reopen the device. We 3581 * also mark the vdev config dirty, so that the new faulted state is 3582 * written out to disk. 3583 */ 3584 if (vd->vdev_faulted || vd->vdev_degraded || 3585 !vdev_readable(vd) || !vdev_writeable(vd)) { 3586 3587 /* 3588 * When reopening in reponse to a clear event, it may be due to 3589 * a fmadm repair request. In this case, if the device is 3590 * still broken, we want to still post the ereport again. 3591 */ 3592 vd->vdev_forcefault = B_TRUE; 3593 3594 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3595 vd->vdev_cant_read = B_FALSE; 3596 vd->vdev_cant_write = B_FALSE; 3597 3598 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3599 3600 vd->vdev_forcefault = B_FALSE; 3601 3602 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3603 vdev_state_dirty(vd->vdev_top); 3604 3605 /* If a resilver isn't required, check if vdevs can be culled */ 3606 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 3607 !dsl_scan_resilvering(spa->spa_dsl_pool) && 3608 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 3609 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3610 3611 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3612 } 3613 3614 /* 3615 * When clearing a FMA-diagnosed fault, we always want to 3616 * unspare the device, as we assume that the original spare was 3617 * done in response to the FMA fault. 3618 */ 3619 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3620 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3621 vd->vdev_parent->vdev_child[0] == vd) 3622 vd->vdev_unspare = B_TRUE; 3623 } 3624 3625 boolean_t 3626 vdev_is_dead(vdev_t *vd) 3627 { 3628 /* 3629 * Holes and missing devices are always considered "dead". 3630 * This simplifies the code since we don't have to check for 3631 * these types of devices in the various code paths. 3632 * Instead we rely on the fact that we skip over dead devices 3633 * before issuing I/O to them. 3634 */ 3635 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3636 vd->vdev_ops == &vdev_hole_ops || 3637 vd->vdev_ops == &vdev_missing_ops); 3638 } 3639 3640 boolean_t 3641 vdev_readable(vdev_t *vd) 3642 { 3643 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3644 } 3645 3646 boolean_t 3647 vdev_writeable(vdev_t *vd) 3648 { 3649 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3650 vdev_is_concrete(vd)); 3651 } 3652 3653 boolean_t 3654 vdev_allocatable(vdev_t *vd) 3655 { 3656 uint64_t state = vd->vdev_state; 3657 3658 /* 3659 * We currently allow allocations from vdevs which may be in the 3660 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3661 * fails to reopen then we'll catch it later when we're holding 3662 * the proper locks. Note that we have to get the vdev state 3663 * in a local variable because although it changes atomically, 3664 * we're asking two separate questions about it. 3665 */ 3666 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3667 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3668 vd->vdev_mg->mg_initialized); 3669 } 3670 3671 boolean_t 3672 vdev_accessible(vdev_t *vd, zio_t *zio) 3673 { 3674 ASSERT(zio->io_vd == vd); 3675 3676 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3677 return (B_FALSE); 3678 3679 if (zio->io_type == ZIO_TYPE_READ) 3680 return (!vd->vdev_cant_read); 3681 3682 if (zio->io_type == ZIO_TYPE_WRITE) 3683 return (!vd->vdev_cant_write); 3684 3685 return (B_TRUE); 3686 } 3687 3688 static void 3689 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 3690 { 3691 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3692 vs->vs_ops[t] += cvs->vs_ops[t]; 3693 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3694 } 3695 3696 cvs->vs_scan_removing = cvd->vdev_removing; 3697 } 3698 3699 /* 3700 * Get extended stats 3701 */ 3702 static void 3703 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 3704 { 3705 int t, b; 3706 for (t = 0; t < ZIO_TYPES; t++) { 3707 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 3708 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 3709 3710 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 3711 vsx->vsx_total_histo[t][b] += 3712 cvsx->vsx_total_histo[t][b]; 3713 } 3714 } 3715 3716 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 3717 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 3718 vsx->vsx_queue_histo[t][b] += 3719 cvsx->vsx_queue_histo[t][b]; 3720 } 3721 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 3722 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 3723 3724 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 3725 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 3726 3727 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 3728 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 3729 } 3730 3731 } 3732 3733 boolean_t 3734 vdev_is_spacemap_addressable(vdev_t *vd) 3735 { 3736 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3737 return (B_TRUE); 3738 3739 /* 3740 * If double-word space map entries are not enabled we assume 3741 * 47 bits of the space map entry are dedicated to the entry's 3742 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3743 * to calculate the maximum address that can be described by a 3744 * space map entry for the given device. 3745 */ 3746 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3747 3748 if (shift >= 63) /* detect potential overflow */ 3749 return (B_TRUE); 3750 3751 return (vd->vdev_asize < (1ULL << shift)); 3752 } 3753 3754 /* 3755 * Get statistics for the given vdev. 3756 */ 3757 static void 3758 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3759 { 3760 int t; 3761 /* 3762 * If we're getting stats on the root vdev, aggregate the I/O counts 3763 * over all top-level vdevs (i.e. the direct children of the root). 3764 */ 3765 if (!vd->vdev_ops->vdev_op_leaf) { 3766 if (vs) { 3767 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 3768 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 3769 } 3770 if (vsx) 3771 memset(vsx, 0, sizeof (*vsx)); 3772 3773 for (int c = 0; c < vd->vdev_children; c++) { 3774 vdev_t *cvd = vd->vdev_child[c]; 3775 vdev_stat_t *cvs = &cvd->vdev_stat; 3776 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 3777 3778 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 3779 if (vs) 3780 vdev_get_child_stat(cvd, vs, cvs); 3781 if (vsx) 3782 vdev_get_child_stat_ex(cvd, vsx, cvsx); 3783 3784 } 3785 } else { 3786 /* 3787 * We're a leaf. Just copy our ZIO active queue stats in. The 3788 * other leaf stats are updated in vdev_stat_update(). 3789 */ 3790 if (!vsx) 3791 return; 3792 3793 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 3794 3795 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 3796 vsx->vsx_active_queue[t] = 3797 vd->vdev_queue.vq_class[t].vqc_active; 3798 vsx->vsx_pend_queue[t] = avl_numnodes( 3799 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 3800 } 3801 } 3802 } 3803 3804 void 3805 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3806 { 3807 vdev_t *tvd = vd->vdev_top; 3808 spa_t *spa = vd->vdev_spa; 3809 3810 mutex_enter(&vd->vdev_stat_lock); 3811 if (vs) { 3812 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3813 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3814 vs->vs_state = vd->vdev_state; 3815 vs->vs_rsize = vdev_get_min_asize(vd); 3816 if (vd->vdev_ops->vdev_op_leaf) { 3817 vs->vs_rsize += VDEV_LABEL_START_SIZE + 3818 VDEV_LABEL_END_SIZE; 3819 /* 3820 * Report initializing progress. Since we don't 3821 * have the initializing locks held, this is only 3822 * an estimate (although a fairly accurate one). 3823 */ 3824 vs->vs_initialize_bytes_done = 3825 vd->vdev_initialize_bytes_done; 3826 vs->vs_initialize_bytes_est = 3827 vd->vdev_initialize_bytes_est; 3828 vs->vs_initialize_state = vd->vdev_initialize_state; 3829 vs->vs_initialize_action_time = 3830 vd->vdev_initialize_action_time; 3831 3832 /* 3833 * Report manual TRIM progress. Since we don't have 3834 * the manual TRIM locks held, this is only an 3835 * estimate (although fairly accurate one). 3836 */ 3837 vs->vs_trim_notsup = !vd->vdev_has_trim; 3838 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 3839 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 3840 vs->vs_trim_state = vd->vdev_trim_state; 3841 vs->vs_trim_action_time = vd->vdev_trim_action_time; 3842 } 3843 /* 3844 * Report expandable space on top-level, non-auxiliary devices 3845 * only. The expandable space is reported in terms of metaslab 3846 * sized units since that determines how much space the pool 3847 * can expand. 3848 */ 3849 if (vd->vdev_aux == NULL && tvd != NULL) { 3850 vs->vs_esize = P2ALIGN( 3851 vd->vdev_max_asize - vd->vdev_asize - 3852 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3853 } 3854 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3855 vdev_is_concrete(vd)) { 3856 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3857 vd->vdev_mg->mg_fragmentation : 0; 3858 } 3859 if (vd->vdev_ops->vdev_op_leaf) 3860 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 3861 } 3862 3863 vdev_get_stats_ex_impl(vd, vs, vsx); 3864 mutex_exit(&vd->vdev_stat_lock); 3865 } 3866 3867 void 3868 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3869 { 3870 return (vdev_get_stats_ex(vd, vs, NULL)); 3871 } 3872 3873 void 3874 vdev_clear_stats(vdev_t *vd) 3875 { 3876 mutex_enter(&vd->vdev_stat_lock); 3877 vd->vdev_stat.vs_space = 0; 3878 vd->vdev_stat.vs_dspace = 0; 3879 vd->vdev_stat.vs_alloc = 0; 3880 mutex_exit(&vd->vdev_stat_lock); 3881 } 3882 3883 void 3884 vdev_scan_stat_init(vdev_t *vd) 3885 { 3886 vdev_stat_t *vs = &vd->vdev_stat; 3887 3888 for (int c = 0; c < vd->vdev_children; c++) 3889 vdev_scan_stat_init(vd->vdev_child[c]); 3890 3891 mutex_enter(&vd->vdev_stat_lock); 3892 vs->vs_scan_processed = 0; 3893 mutex_exit(&vd->vdev_stat_lock); 3894 } 3895 3896 void 3897 vdev_stat_update(zio_t *zio, uint64_t psize) 3898 { 3899 spa_t *spa = zio->io_spa; 3900 vdev_t *rvd = spa->spa_root_vdev; 3901 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3902 vdev_t *pvd; 3903 uint64_t txg = zio->io_txg; 3904 vdev_stat_t *vs = &vd->vdev_stat; 3905 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 3906 zio_type_t type = zio->io_type; 3907 int flags = zio->io_flags; 3908 3909 /* 3910 * If this i/o is a gang leader, it didn't do any actual work. 3911 */ 3912 if (zio->io_gang_tree) 3913 return; 3914 3915 if (zio->io_error == 0) { 3916 /* 3917 * If this is a root i/o, don't count it -- we've already 3918 * counted the top-level vdevs, and vdev_get_stats() will 3919 * aggregate them when asked. This reduces contention on 3920 * the root vdev_stat_lock and implicitly handles blocks 3921 * that compress away to holes, for which there is no i/o. 3922 * (Holes never create vdev children, so all the counters 3923 * remain zero, which is what we want.) 3924 * 3925 * Note: this only applies to successful i/o (io_error == 0) 3926 * because unlike i/o counts, errors are not additive. 3927 * When reading a ditto block, for example, failure of 3928 * one top-level vdev does not imply a root-level error. 3929 */ 3930 if (vd == rvd) 3931 return; 3932 3933 ASSERT(vd == zio->io_vd); 3934 3935 if (flags & ZIO_FLAG_IO_BYPASS) 3936 return; 3937 3938 mutex_enter(&vd->vdev_stat_lock); 3939 3940 if (flags & ZIO_FLAG_IO_REPAIR) { 3941 if (flags & ZIO_FLAG_SCAN_THREAD) { 3942 dsl_scan_phys_t *scn_phys = 3943 &spa->spa_dsl_pool->dp_scan->scn_phys; 3944 uint64_t *processed = &scn_phys->scn_processed; 3945 3946 /* XXX cleanup? */ 3947 if (vd->vdev_ops->vdev_op_leaf) 3948 atomic_add_64(processed, psize); 3949 vs->vs_scan_processed += psize; 3950 } 3951 3952 if (flags & ZIO_FLAG_SELF_HEAL) 3953 vs->vs_self_healed += psize; 3954 } 3955 3956 /* 3957 * The bytes/ops/histograms are recorded at the leaf level and 3958 * aggregated into the higher level vdevs in vdev_get_stats(). 3959 */ 3960 if (vd->vdev_ops->vdev_op_leaf && 3961 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 3962 zio_type_t vs_type = type; 3963 3964 /* 3965 * TRIM ops and bytes are reported to user space as 3966 * ZIO_TYPE_IOCTL. This is done to preserve the 3967 * vdev_stat_t structure layout for user space. 3968 */ 3969 if (type == ZIO_TYPE_TRIM) 3970 vs_type = ZIO_TYPE_IOCTL; 3971 3972 vs->vs_ops[vs_type]++; 3973 vs->vs_bytes[vs_type] += psize; 3974 3975 if (flags & ZIO_FLAG_DELEGATED) { 3976 vsx->vsx_agg_histo[zio->io_priority] 3977 [RQ_HISTO(zio->io_size)]++; 3978 } else { 3979 vsx->vsx_ind_histo[zio->io_priority] 3980 [RQ_HISTO(zio->io_size)]++; 3981 } 3982 3983 if (zio->io_delta && zio->io_delay) { 3984 vsx->vsx_queue_histo[zio->io_priority] 3985 [L_HISTO(zio->io_delta - zio->io_delay)]++; 3986 vsx->vsx_disk_histo[type] 3987 [L_HISTO(zio->io_delay)]++; 3988 vsx->vsx_total_histo[type] 3989 [L_HISTO(zio->io_delta)]++; 3990 } 3991 } 3992 3993 mutex_exit(&vd->vdev_stat_lock); 3994 return; 3995 } 3996 3997 if (flags & ZIO_FLAG_SPECULATIVE) 3998 return; 3999 4000 /* 4001 * If this is an I/O error that is going to be retried, then ignore the 4002 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4003 * hard errors, when in reality they can happen for any number of 4004 * innocuous reasons (bus resets, MPxIO link failure, etc). 4005 */ 4006 if (zio->io_error == EIO && 4007 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4008 return; 4009 4010 /* 4011 * Intent logs writes won't propagate their error to the root 4012 * I/O so don't mark these types of failures as pool-level 4013 * errors. 4014 */ 4015 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4016 return; 4017 4018 mutex_enter(&vd->vdev_stat_lock); 4019 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 4020 if (zio->io_error == ECKSUM) 4021 vs->vs_checksum_errors++; 4022 else 4023 vs->vs_read_errors++; 4024 } 4025 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 4026 vs->vs_write_errors++; 4027 mutex_exit(&vd->vdev_stat_lock); 4028 4029 if (spa->spa_load_state == SPA_LOAD_NONE && 4030 type == ZIO_TYPE_WRITE && txg != 0 && 4031 (!(flags & ZIO_FLAG_IO_REPAIR) || 4032 (flags & ZIO_FLAG_SCAN_THREAD) || 4033 spa->spa_claiming)) { 4034 /* 4035 * This is either a normal write (not a repair), or it's 4036 * a repair induced by the scrub thread, or it's a repair 4037 * made by zil_claim() during spa_load() in the first txg. 4038 * In the normal case, we commit the DTL change in the same 4039 * txg as the block was born. In the scrub-induced repair 4040 * case, we know that scrubs run in first-pass syncing context, 4041 * so we commit the DTL change in spa_syncing_txg(spa). 4042 * In the zil_claim() case, we commit in spa_first_txg(spa). 4043 * 4044 * We currently do not make DTL entries for failed spontaneous 4045 * self-healing writes triggered by normal (non-scrubbing) 4046 * reads, because we have no transactional context in which to 4047 * do so -- and it's not clear that it'd be desirable anyway. 4048 */ 4049 if (vd->vdev_ops->vdev_op_leaf) { 4050 uint64_t commit_txg = txg; 4051 if (flags & ZIO_FLAG_SCAN_THREAD) { 4052 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4053 ASSERT(spa_sync_pass(spa) == 1); 4054 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4055 commit_txg = spa_syncing_txg(spa); 4056 } else if (spa->spa_claiming) { 4057 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4058 commit_txg = spa_first_txg(spa); 4059 } 4060 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4061 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4062 return; 4063 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4064 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4065 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4066 } 4067 if (vd != rvd) 4068 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4069 } 4070 } 4071 4072 int64_t 4073 vdev_deflated_space(vdev_t *vd, int64_t space) 4074 { 4075 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4076 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4077 4078 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4079 } 4080 4081 /* 4082 * Update the in-core space usage stats for this vdev, its metaslab class, 4083 * and the root vdev. 4084 */ 4085 void 4086 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4087 int64_t space_delta) 4088 { 4089 int64_t dspace_delta; 4090 spa_t *spa = vd->vdev_spa; 4091 vdev_t *rvd = spa->spa_root_vdev; 4092 4093 ASSERT(vd == vd->vdev_top); 4094 4095 /* 4096 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4097 * factor. We must calculate this here and not at the root vdev 4098 * because the root vdev's psize-to-asize is simply the max of its 4099 * childrens', thus not accurate enough for us. 4100 */ 4101 dspace_delta = vdev_deflated_space(vd, space_delta); 4102 4103 mutex_enter(&vd->vdev_stat_lock); 4104 /* ensure we won't underflow */ 4105 if (alloc_delta < 0) { 4106 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4107 } 4108 4109 vd->vdev_stat.vs_alloc += alloc_delta; 4110 vd->vdev_stat.vs_space += space_delta; 4111 vd->vdev_stat.vs_dspace += dspace_delta; 4112 mutex_exit(&vd->vdev_stat_lock); 4113 4114 /* every class but log contributes to root space stats */ 4115 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4116 ASSERT(!vd->vdev_isl2cache); 4117 mutex_enter(&rvd->vdev_stat_lock); 4118 rvd->vdev_stat.vs_alloc += alloc_delta; 4119 rvd->vdev_stat.vs_space += space_delta; 4120 rvd->vdev_stat.vs_dspace += dspace_delta; 4121 mutex_exit(&rvd->vdev_stat_lock); 4122 } 4123 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4124 } 4125 4126 /* 4127 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4128 * so that it will be written out next time the vdev configuration is synced. 4129 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4130 */ 4131 void 4132 vdev_config_dirty(vdev_t *vd) 4133 { 4134 spa_t *spa = vd->vdev_spa; 4135 vdev_t *rvd = spa->spa_root_vdev; 4136 int c; 4137 4138 ASSERT(spa_writeable(spa)); 4139 4140 /* 4141 * If this is an aux vdev (as with l2cache and spare devices), then we 4142 * update the vdev config manually and set the sync flag. 4143 */ 4144 if (vd->vdev_aux != NULL) { 4145 spa_aux_vdev_t *sav = vd->vdev_aux; 4146 nvlist_t **aux; 4147 uint_t naux; 4148 4149 for (c = 0; c < sav->sav_count; c++) { 4150 if (sav->sav_vdevs[c] == vd) 4151 break; 4152 } 4153 4154 if (c == sav->sav_count) { 4155 /* 4156 * We're being removed. There's nothing more to do. 4157 */ 4158 ASSERT(sav->sav_sync == B_TRUE); 4159 return; 4160 } 4161 4162 sav->sav_sync = B_TRUE; 4163 4164 if (nvlist_lookup_nvlist_array(sav->sav_config, 4165 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4166 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4167 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4168 } 4169 4170 ASSERT(c < naux); 4171 4172 /* 4173 * Setting the nvlist in the middle if the array is a little 4174 * sketchy, but it will work. 4175 */ 4176 nvlist_free(aux[c]); 4177 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4178 4179 return; 4180 } 4181 4182 /* 4183 * The dirty list is protected by the SCL_CONFIG lock. The caller 4184 * must either hold SCL_CONFIG as writer, or must be the sync thread 4185 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4186 * so this is sufficient to ensure mutual exclusion. 4187 */ 4188 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4189 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4190 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4191 4192 if (vd == rvd) { 4193 for (c = 0; c < rvd->vdev_children; c++) 4194 vdev_config_dirty(rvd->vdev_child[c]); 4195 } else { 4196 ASSERT(vd == vd->vdev_top); 4197 4198 if (!list_link_active(&vd->vdev_config_dirty_node) && 4199 vdev_is_concrete(vd)) { 4200 list_insert_head(&spa->spa_config_dirty_list, vd); 4201 } 4202 } 4203 } 4204 4205 void 4206 vdev_config_clean(vdev_t *vd) 4207 { 4208 spa_t *spa = vd->vdev_spa; 4209 4210 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4211 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4212 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4213 4214 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4215 list_remove(&spa->spa_config_dirty_list, vd); 4216 } 4217 4218 /* 4219 * Mark a top-level vdev's state as dirty, so that the next pass of 4220 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4221 * the state changes from larger config changes because they require 4222 * much less locking, and are often needed for administrative actions. 4223 */ 4224 void 4225 vdev_state_dirty(vdev_t *vd) 4226 { 4227 spa_t *spa = vd->vdev_spa; 4228 4229 ASSERT(spa_writeable(spa)); 4230 ASSERT(vd == vd->vdev_top); 4231 4232 /* 4233 * The state list is protected by the SCL_STATE lock. The caller 4234 * must either hold SCL_STATE as writer, or must be the sync thread 4235 * (which holds SCL_STATE as reader). There's only one sync thread, 4236 * so this is sufficient to ensure mutual exclusion. 4237 */ 4238 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4239 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4240 spa_config_held(spa, SCL_STATE, RW_READER))); 4241 4242 if (!list_link_active(&vd->vdev_state_dirty_node) && 4243 vdev_is_concrete(vd)) 4244 list_insert_head(&spa->spa_state_dirty_list, vd); 4245 } 4246 4247 void 4248 vdev_state_clean(vdev_t *vd) 4249 { 4250 spa_t *spa = vd->vdev_spa; 4251 4252 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4253 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4254 spa_config_held(spa, SCL_STATE, RW_READER))); 4255 4256 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4257 list_remove(&spa->spa_state_dirty_list, vd); 4258 } 4259 4260 /* 4261 * Propagate vdev state up from children to parent. 4262 */ 4263 void 4264 vdev_propagate_state(vdev_t *vd) 4265 { 4266 spa_t *spa = vd->vdev_spa; 4267 vdev_t *rvd = spa->spa_root_vdev; 4268 int degraded = 0, faulted = 0; 4269 int corrupted = 0; 4270 vdev_t *child; 4271 4272 if (vd->vdev_children > 0) { 4273 for (int c = 0; c < vd->vdev_children; c++) { 4274 child = vd->vdev_child[c]; 4275 4276 /* 4277 * Don't factor holes or indirect vdevs into the 4278 * decision. 4279 */ 4280 if (!vdev_is_concrete(child)) 4281 continue; 4282 4283 if (!vdev_readable(child) || 4284 (!vdev_writeable(child) && spa_writeable(spa))) { 4285 /* 4286 * Root special: if there is a top-level log 4287 * device, treat the root vdev as if it were 4288 * degraded. 4289 */ 4290 if (child->vdev_islog && vd == rvd) 4291 degraded++; 4292 else 4293 faulted++; 4294 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4295 degraded++; 4296 } 4297 4298 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4299 corrupted++; 4300 } 4301 4302 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4303 4304 /* 4305 * Root special: if there is a top-level vdev that cannot be 4306 * opened due to corrupted metadata, then propagate the root 4307 * vdev's aux state as 'corrupt' rather than 'insufficient 4308 * replicas'. 4309 */ 4310 if (corrupted && vd == rvd && 4311 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4312 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4313 VDEV_AUX_CORRUPT_DATA); 4314 } 4315 4316 if (vd->vdev_parent) 4317 vdev_propagate_state(vd->vdev_parent); 4318 } 4319 4320 /* 4321 * Set a vdev's state. If this is during an open, we don't update the parent 4322 * state, because we're in the process of opening children depth-first. 4323 * Otherwise, we propagate the change to the parent. 4324 * 4325 * If this routine places a device in a faulted state, an appropriate ereport is 4326 * generated. 4327 */ 4328 void 4329 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4330 { 4331 uint64_t save_state; 4332 spa_t *spa = vd->vdev_spa; 4333 4334 if (state == vd->vdev_state) { 4335 vd->vdev_stat.vs_aux = aux; 4336 return; 4337 } 4338 4339 save_state = vd->vdev_state; 4340 4341 vd->vdev_state = state; 4342 vd->vdev_stat.vs_aux = aux; 4343 4344 /* 4345 * If we are setting the vdev state to anything but an open state, then 4346 * always close the underlying device unless the device has requested 4347 * a delayed close (i.e. we're about to remove or fault the device). 4348 * Otherwise, we keep accessible but invalid devices open forever. 4349 * We don't call vdev_close() itself, because that implies some extra 4350 * checks (offline, etc) that we don't want here. This is limited to 4351 * leaf devices, because otherwise closing the device will affect other 4352 * children. 4353 */ 4354 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4355 vd->vdev_ops->vdev_op_leaf) 4356 vd->vdev_ops->vdev_op_close(vd); 4357 4358 /* 4359 * If we have brought this vdev back into service, we need 4360 * to notify fmd so that it can gracefully repair any outstanding 4361 * cases due to a missing device. We do this in all cases, even those 4362 * that probably don't correlate to a repaired fault. This is sure to 4363 * catch all cases, and we let the zfs-retire agent sort it out. If 4364 * this is a transient state it's OK, as the retire agent will 4365 * double-check the state of the vdev before repairing it. 4366 */ 4367 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4368 vd->vdev_prevstate != state) 4369 zfs_post_state_change(spa, vd); 4370 4371 if (vd->vdev_removed && 4372 state == VDEV_STATE_CANT_OPEN && 4373 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4374 /* 4375 * If the previous state is set to VDEV_STATE_REMOVED, then this 4376 * device was previously marked removed and someone attempted to 4377 * reopen it. If this failed due to a nonexistent device, then 4378 * keep the device in the REMOVED state. We also let this be if 4379 * it is one of our special test online cases, which is only 4380 * attempting to online the device and shouldn't generate an FMA 4381 * fault. 4382 */ 4383 vd->vdev_state = VDEV_STATE_REMOVED; 4384 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4385 } else if (state == VDEV_STATE_REMOVED) { 4386 vd->vdev_removed = B_TRUE; 4387 } else if (state == VDEV_STATE_CANT_OPEN) { 4388 /* 4389 * If we fail to open a vdev during an import or recovery, we 4390 * mark it as "not available", which signifies that it was 4391 * never there to begin with. Failure to open such a device 4392 * is not considered an error. 4393 */ 4394 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4395 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4396 vd->vdev_ops->vdev_op_leaf) 4397 vd->vdev_not_present = 1; 4398 4399 /* 4400 * Post the appropriate ereport. If the 'prevstate' field is 4401 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4402 * that this is part of a vdev_reopen(). In this case, we don't 4403 * want to post the ereport if the device was already in the 4404 * CANT_OPEN state beforehand. 4405 * 4406 * If the 'checkremove' flag is set, then this is an attempt to 4407 * online the device in response to an insertion event. If we 4408 * hit this case, then we have detected an insertion event for a 4409 * faulted or offline device that wasn't in the removed state. 4410 * In this scenario, we don't post an ereport because we are 4411 * about to replace the device, or attempt an online with 4412 * vdev_forcefault, which will generate the fault for us. 4413 */ 4414 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4415 !vd->vdev_not_present && !vd->vdev_checkremove && 4416 vd != spa->spa_root_vdev) { 4417 const char *class; 4418 4419 switch (aux) { 4420 case VDEV_AUX_OPEN_FAILED: 4421 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4422 break; 4423 case VDEV_AUX_CORRUPT_DATA: 4424 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4425 break; 4426 case VDEV_AUX_NO_REPLICAS: 4427 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4428 break; 4429 case VDEV_AUX_BAD_GUID_SUM: 4430 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4431 break; 4432 case VDEV_AUX_TOO_SMALL: 4433 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4434 break; 4435 case VDEV_AUX_BAD_LABEL: 4436 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4437 break; 4438 case VDEV_AUX_BAD_ASHIFT: 4439 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4440 break; 4441 default: 4442 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4443 } 4444 4445 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 4446 save_state, 0); 4447 } 4448 4449 /* Erase any notion of persistent removed state */ 4450 vd->vdev_removed = B_FALSE; 4451 } else { 4452 vd->vdev_removed = B_FALSE; 4453 } 4454 4455 if (!isopen && vd->vdev_parent) 4456 vdev_propagate_state(vd->vdev_parent); 4457 } 4458 4459 boolean_t 4460 vdev_children_are_offline(vdev_t *vd) 4461 { 4462 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4463 4464 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4465 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4466 return (B_FALSE); 4467 } 4468 4469 return (B_TRUE); 4470 } 4471 4472 /* 4473 * Check the vdev configuration to ensure that it's capable of supporting 4474 * a root pool. We do not support partial configuration. 4475 */ 4476 boolean_t 4477 vdev_is_bootable(vdev_t *vd) 4478 { 4479 if (!vd->vdev_ops->vdev_op_leaf) { 4480 char *vdev_type = vd->vdev_ops->vdev_op_type; 4481 4482 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 4483 return (B_FALSE); 4484 } 4485 } 4486 4487 for (int c = 0; c < vd->vdev_children; c++) { 4488 if (!vdev_is_bootable(vd->vdev_child[c])) 4489 return (B_FALSE); 4490 } 4491 return (B_TRUE); 4492 } 4493 4494 boolean_t 4495 vdev_is_concrete(vdev_t *vd) 4496 { 4497 vdev_ops_t *ops = vd->vdev_ops; 4498 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4499 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4500 return (B_FALSE); 4501 } else { 4502 return (B_TRUE); 4503 } 4504 } 4505 4506 /* 4507 * Determine if a log device has valid content. If the vdev was 4508 * removed or faulted in the MOS config then we know that 4509 * the content on the log device has already been written to the pool. 4510 */ 4511 boolean_t 4512 vdev_log_state_valid(vdev_t *vd) 4513 { 4514 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4515 !vd->vdev_removed) 4516 return (B_TRUE); 4517 4518 for (int c = 0; c < vd->vdev_children; c++) 4519 if (vdev_log_state_valid(vd->vdev_child[c])) 4520 return (B_TRUE); 4521 4522 return (B_FALSE); 4523 } 4524 4525 /* 4526 * Expand a vdev if possible. 4527 */ 4528 void 4529 vdev_expand(vdev_t *vd, uint64_t txg) 4530 { 4531 ASSERT(vd->vdev_top == vd); 4532 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4533 ASSERT(vdev_is_concrete(vd)); 4534 4535 vdev_set_deflate_ratio(vd); 4536 4537 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4538 vdev_is_concrete(vd)) { 4539 vdev_metaslab_group_create(vd); 4540 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4541 vdev_config_dirty(vd); 4542 } 4543 } 4544 4545 /* 4546 * Split a vdev. 4547 */ 4548 void 4549 vdev_split(vdev_t *vd) 4550 { 4551 vdev_t *cvd, *pvd = vd->vdev_parent; 4552 4553 vdev_remove_child(pvd, vd); 4554 vdev_compact_children(pvd); 4555 4556 cvd = pvd->vdev_child[0]; 4557 if (pvd->vdev_children == 1) { 4558 vdev_remove_parent(cvd); 4559 cvd->vdev_splitting = B_TRUE; 4560 } 4561 vdev_propagate_state(cvd); 4562 } 4563 4564 void 4565 vdev_deadman(vdev_t *vd) 4566 { 4567 for (int c = 0; c < vd->vdev_children; c++) { 4568 vdev_t *cvd = vd->vdev_child[c]; 4569 4570 vdev_deadman(cvd); 4571 } 4572 4573 if (vd->vdev_ops->vdev_op_leaf) { 4574 vdev_queue_t *vq = &vd->vdev_queue; 4575 4576 mutex_enter(&vq->vq_lock); 4577 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4578 spa_t *spa = vd->vdev_spa; 4579 zio_t *fio; 4580 uint64_t delta; 4581 4582 /* 4583 * Look at the head of all the pending queues, 4584 * if any I/O has been outstanding for longer than 4585 * the spa_deadman_synctime we panic the system. 4586 */ 4587 fio = avl_first(&vq->vq_active_tree); 4588 delta = gethrtime() - fio->io_timestamp; 4589 if (delta > spa_deadman_synctime(spa)) { 4590 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4591 "%lluns, delta %lluns, last io %lluns", 4592 fio->io_timestamp, (u_longlong_t)delta, 4593 vq->vq_io_complete_ts); 4594 fm_panic("I/O to pool '%s' appears to be " 4595 "hung.", spa_name(spa)); 4596 } 4597 } 4598 mutex_exit(&vq->vq_lock); 4599 } 4600 } 4601 4602 void 4603 vdev_defer_resilver(vdev_t *vd) 4604 { 4605 ASSERT(vd->vdev_ops->vdev_op_leaf); 4606 4607 vd->vdev_resilver_deferred = B_TRUE; 4608 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 4609 } 4610 4611 /* 4612 * Clears the resilver deferred flag on all leaf devs under vd. Returns 4613 * B_TRUE if we have devices that need to be resilvered and are available to 4614 * accept resilver I/Os. 4615 */ 4616 boolean_t 4617 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 4618 { 4619 boolean_t resilver_needed = B_FALSE; 4620 spa_t *spa = vd->vdev_spa; 4621 4622 for (int c = 0; c < vd->vdev_children; c++) { 4623 vdev_t *cvd = vd->vdev_child[c]; 4624 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 4625 } 4626 4627 if (vd == spa->spa_root_vdev && 4628 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 4629 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4630 vdev_config_dirty(vd); 4631 spa->spa_resilver_deferred = B_FALSE; 4632 return (resilver_needed); 4633 } 4634 4635 if (!vdev_is_concrete(vd) || vd->vdev_aux || 4636 !vd->vdev_ops->vdev_op_leaf) 4637 return (resilver_needed); 4638 4639 vd->vdev_resilver_deferred = B_FALSE; 4640 4641 return (!vdev_is_dead(vd) && !vd->vdev_offline && 4642 vdev_resilver_needed(vd, NULL, NULL)); 4643 } 4644 4645 /* 4646 * Translate a logical range to the physical range for the specified vdev_t. 4647 * This function is initially called with a leaf vdev and will walk each 4648 * parent vdev until it reaches a top-level vdev. Once the top-level is 4649 * reached the physical range is initialized and the recursive function 4650 * begins to unwind. As it unwinds it calls the parent's vdev specific 4651 * translation function to do the real conversion. 4652 */ 4653 void 4654 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 4655 range_seg64_t *physical_rs) 4656 { 4657 /* 4658 * Walk up the vdev tree 4659 */ 4660 if (vd != vd->vdev_top) { 4661 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 4662 } else { 4663 /* 4664 * We've reached the top-level vdev, initialize the 4665 * physical range to the logical range and start to 4666 * unwind. 4667 */ 4668 physical_rs->rs_start = logical_rs->rs_start; 4669 physical_rs->rs_end = logical_rs->rs_end; 4670 return; 4671 } 4672 4673 vdev_t *pvd = vd->vdev_parent; 4674 ASSERT3P(pvd, !=, NULL); 4675 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 4676 4677 /* 4678 * As this recursive function unwinds, translate the logical 4679 * range into its physical components by calling the 4680 * vdev specific translate function. 4681 */ 4682 range_seg64_t intermediate = { 0 }; 4683 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 4684 4685 physical_rs->rs_start = intermediate.rs_start; 4686 physical_rs->rs_end = intermediate.rs_end; 4687 } 4688