1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/space_reftree.h> 41 #include <sys/zio.h> 42 #include <sys/zap.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/arc.h> 45 #include <sys/zil.h> 46 #include <sys/dsl_scan.h> 47 48 /* 49 * Virtual device management. 50 */ 51 52 static vdev_ops_t *vdev_ops_table[] = { 53 &vdev_root_ops, 54 &vdev_raidz_ops, 55 &vdev_mirror_ops, 56 &vdev_replacing_ops, 57 &vdev_spare_ops, 58 &vdev_disk_ops, 59 &vdev_file_ops, 60 &vdev_missing_ops, 61 &vdev_hole_ops, 62 NULL 63 }; 64 65 /* maximum scrub/resilver I/O queue per leaf vdev */ 66 int zfs_scrub_limit = 10; 67 68 /* 69 * When a vdev is added, it will be divided into approximately (but no 70 * more than) this number of metaslabs. 71 */ 72 int metaslabs_per_vdev = 200; 73 74 /* 75 * Given a vdev type, return the appropriate ops vector. 76 */ 77 static vdev_ops_t * 78 vdev_getops(const char *type) 79 { 80 vdev_ops_t *ops, **opspp; 81 82 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 83 if (strcmp(ops->vdev_op_type, type) == 0) 84 break; 85 86 return (ops); 87 } 88 89 /* 90 * Default asize function: return the MAX of psize with the asize of 91 * all children. This is what's used by anything other than RAID-Z. 92 */ 93 uint64_t 94 vdev_default_asize(vdev_t *vd, uint64_t psize) 95 { 96 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 97 uint64_t csize; 98 99 for (int c = 0; c < vd->vdev_children; c++) { 100 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 101 asize = MAX(asize, csize); 102 } 103 104 return (asize); 105 } 106 107 /* 108 * Get the minimum allocatable size. We define the allocatable size as 109 * the vdev's asize rounded to the nearest metaslab. This allows us to 110 * replace or attach devices which don't have the same physical size but 111 * can still satisfy the same number of allocations. 112 */ 113 uint64_t 114 vdev_get_min_asize(vdev_t *vd) 115 { 116 vdev_t *pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL (inactive spare or cache) or is the root, 120 * just return our own asize. 121 */ 122 if (pvd == NULL) 123 return (vd->vdev_asize); 124 125 /* 126 * The top-level vdev just returns the allocatable size rounded 127 * to the nearest metaslab. 128 */ 129 if (vd == vd->vdev_top) 130 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 131 132 /* 133 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 134 * so each child must provide at least 1/Nth of its asize. 135 */ 136 if (pvd->vdev_ops == &vdev_raidz_ops) 137 return (pvd->vdev_min_asize / pvd->vdev_children); 138 139 return (pvd->vdev_min_asize); 140 } 141 142 void 143 vdev_set_min_asize(vdev_t *vd) 144 { 145 vd->vdev_min_asize = vdev_get_min_asize(vd); 146 147 for (int c = 0; c < vd->vdev_children; c++) 148 vdev_set_min_asize(vd->vdev_child[c]); 149 } 150 151 vdev_t * 152 vdev_lookup_top(spa_t *spa, uint64_t vdev) 153 { 154 vdev_t *rvd = spa->spa_root_vdev; 155 156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 157 158 if (vdev < rvd->vdev_children) { 159 ASSERT(rvd->vdev_child[vdev] != NULL); 160 return (rvd->vdev_child[vdev]); 161 } 162 163 return (NULL); 164 } 165 166 vdev_t * 167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 168 { 169 vdev_t *mvd; 170 171 if (vd->vdev_guid == guid) 172 return (vd); 173 174 for (int c = 0; c < vd->vdev_children; c++) 175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 176 NULL) 177 return (mvd); 178 179 return (NULL); 180 } 181 182 static int 183 vdev_count_leaves_impl(vdev_t *vd) 184 { 185 int n = 0; 186 187 if (vd->vdev_ops->vdev_op_leaf) 188 return (1); 189 190 for (int c = 0; c < vd->vdev_children; c++) 191 n += vdev_count_leaves_impl(vd->vdev_child[c]); 192 193 return (n); 194 } 195 196 int 197 vdev_count_leaves(spa_t *spa) 198 { 199 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 200 } 201 202 void 203 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 204 { 205 size_t oldsize, newsize; 206 uint64_t id = cvd->vdev_id; 207 vdev_t **newchild; 208 spa_t *spa = cvd->vdev_spa; 209 210 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 211 ASSERT(cvd->vdev_parent == NULL); 212 213 cvd->vdev_parent = pvd; 214 215 if (pvd == NULL) 216 return; 217 218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 219 220 oldsize = pvd->vdev_children * sizeof (vdev_t *); 221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 222 newsize = pvd->vdev_children * sizeof (vdev_t *); 223 224 newchild = kmem_zalloc(newsize, KM_SLEEP); 225 if (pvd->vdev_child != NULL) { 226 bcopy(pvd->vdev_child, newchild, oldsize); 227 kmem_free(pvd->vdev_child, oldsize); 228 } 229 230 pvd->vdev_child = newchild; 231 pvd->vdev_child[id] = cvd; 232 233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 235 236 /* 237 * Walk up all ancestors to update guid sum. 238 */ 239 for (; pvd != NULL; pvd = pvd->vdev_parent) 240 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 241 } 242 243 void 244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 245 { 246 int c; 247 uint_t id = cvd->vdev_id; 248 249 ASSERT(cvd->vdev_parent == pvd); 250 251 if (pvd == NULL) 252 return; 253 254 ASSERT(id < pvd->vdev_children); 255 ASSERT(pvd->vdev_child[id] == cvd); 256 257 pvd->vdev_child[id] = NULL; 258 cvd->vdev_parent = NULL; 259 260 for (c = 0; c < pvd->vdev_children; c++) 261 if (pvd->vdev_child[c]) 262 break; 263 264 if (c == pvd->vdev_children) { 265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 266 pvd->vdev_child = NULL; 267 pvd->vdev_children = 0; 268 } 269 270 /* 271 * Walk up all ancestors to update guid sum. 272 */ 273 for (; pvd != NULL; pvd = pvd->vdev_parent) 274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 275 } 276 277 /* 278 * Remove any holes in the child array. 279 */ 280 void 281 vdev_compact_children(vdev_t *pvd) 282 { 283 vdev_t **newchild, *cvd; 284 int oldc = pvd->vdev_children; 285 int newc; 286 287 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 288 289 for (int c = newc = 0; c < oldc; c++) 290 if (pvd->vdev_child[c]) 291 newc++; 292 293 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 294 295 for (int c = newc = 0; c < oldc; c++) { 296 if ((cvd = pvd->vdev_child[c]) != NULL) { 297 newchild[newc] = cvd; 298 cvd->vdev_id = newc++; 299 } 300 } 301 302 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 303 pvd->vdev_child = newchild; 304 pvd->vdev_children = newc; 305 } 306 307 /* 308 * Allocate and minimally initialize a vdev_t. 309 */ 310 vdev_t * 311 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 312 { 313 vdev_t *vd; 314 315 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 316 317 if (spa->spa_root_vdev == NULL) { 318 ASSERT(ops == &vdev_root_ops); 319 spa->spa_root_vdev = vd; 320 spa->spa_load_guid = spa_generate_guid(NULL); 321 } 322 323 if (guid == 0 && ops != &vdev_hole_ops) { 324 if (spa->spa_root_vdev == vd) { 325 /* 326 * The root vdev's guid will also be the pool guid, 327 * which must be unique among all pools. 328 */ 329 guid = spa_generate_guid(NULL); 330 } else { 331 /* 332 * Any other vdev's guid must be unique within the pool. 333 */ 334 guid = spa_generate_guid(spa); 335 } 336 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 337 } 338 339 vd->vdev_spa = spa; 340 vd->vdev_id = id; 341 vd->vdev_guid = guid; 342 vd->vdev_guid_sum = guid; 343 vd->vdev_ops = ops; 344 vd->vdev_state = VDEV_STATE_CLOSED; 345 vd->vdev_ishole = (ops == &vdev_hole_ops); 346 347 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 348 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 350 for (int t = 0; t < DTL_TYPES; t++) { 351 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 352 &vd->vdev_dtl_lock); 353 } 354 txg_list_create(&vd->vdev_ms_list, 355 offsetof(struct metaslab, ms_txg_node)); 356 txg_list_create(&vd->vdev_dtl_list, 357 offsetof(struct vdev, vdev_dtl_node)); 358 vd->vdev_stat.vs_timestamp = gethrtime(); 359 vdev_queue_init(vd); 360 vdev_cache_init(vd); 361 362 return (vd); 363 } 364 365 /* 366 * Allocate a new vdev. The 'alloctype' is used to control whether we are 367 * creating a new vdev or loading an existing one - the behavior is slightly 368 * different for each case. 369 */ 370 int 371 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 372 int alloctype) 373 { 374 vdev_ops_t *ops; 375 char *type; 376 uint64_t guid = 0, islog, nparity; 377 vdev_t *vd; 378 379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 380 381 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 382 return (SET_ERROR(EINVAL)); 383 384 if ((ops = vdev_getops(type)) == NULL) 385 return (SET_ERROR(EINVAL)); 386 387 /* 388 * If this is a load, get the vdev guid from the nvlist. 389 * Otherwise, vdev_alloc_common() will generate one for us. 390 */ 391 if (alloctype == VDEV_ALLOC_LOAD) { 392 uint64_t label_id; 393 394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 395 label_id != id) 396 return (SET_ERROR(EINVAL)); 397 398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 399 return (SET_ERROR(EINVAL)); 400 } else if (alloctype == VDEV_ALLOC_SPARE) { 401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 402 return (SET_ERROR(EINVAL)); 403 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 405 return (SET_ERROR(EINVAL)); 406 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 408 return (SET_ERROR(EINVAL)); 409 } 410 411 /* 412 * The first allocated vdev must be of type 'root'. 413 */ 414 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 415 return (SET_ERROR(EINVAL)); 416 417 /* 418 * Determine whether we're a log vdev. 419 */ 420 islog = 0; 421 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 422 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 423 return (SET_ERROR(ENOTSUP)); 424 425 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 426 return (SET_ERROR(ENOTSUP)); 427 428 /* 429 * Set the nparity property for RAID-Z vdevs. 430 */ 431 nparity = -1ULL; 432 if (ops == &vdev_raidz_ops) { 433 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 434 &nparity) == 0) { 435 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 436 return (SET_ERROR(EINVAL)); 437 /* 438 * Previous versions could only support 1 or 2 parity 439 * device. 440 */ 441 if (nparity > 1 && 442 spa_version(spa) < SPA_VERSION_RAIDZ2) 443 return (SET_ERROR(ENOTSUP)); 444 if (nparity > 2 && 445 spa_version(spa) < SPA_VERSION_RAIDZ3) 446 return (SET_ERROR(ENOTSUP)); 447 } else { 448 /* 449 * We require the parity to be specified for SPAs that 450 * support multiple parity levels. 451 */ 452 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 453 return (SET_ERROR(EINVAL)); 454 /* 455 * Otherwise, we default to 1 parity device for RAID-Z. 456 */ 457 nparity = 1; 458 } 459 } else { 460 nparity = 0; 461 } 462 ASSERT(nparity != -1ULL); 463 464 vd = vdev_alloc_common(spa, id, guid, ops); 465 466 vd->vdev_islog = islog; 467 vd->vdev_nparity = nparity; 468 469 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 470 vd->vdev_path = spa_strdup(vd->vdev_path); 471 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 472 vd->vdev_devid = spa_strdup(vd->vdev_devid); 473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 474 &vd->vdev_physpath) == 0) 475 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 476 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 477 vd->vdev_fru = spa_strdup(vd->vdev_fru); 478 479 /* 480 * Set the whole_disk property. If it's not specified, leave the value 481 * as -1. 482 */ 483 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 484 &vd->vdev_wholedisk) != 0) 485 vd->vdev_wholedisk = -1ULL; 486 487 /* 488 * Look for the 'not present' flag. This will only be set if the device 489 * was not present at the time of import. 490 */ 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 492 &vd->vdev_not_present); 493 494 /* 495 * Get the alignment requirement. 496 */ 497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 498 499 /* 500 * Retrieve the vdev creation time. 501 */ 502 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 503 &vd->vdev_crtxg); 504 505 /* 506 * If we're a top-level vdev, try to load the allocation parameters. 507 */ 508 if (parent && !parent->vdev_parent && 509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 511 &vd->vdev_ms_array); 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 513 &vd->vdev_ms_shift); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 515 &vd->vdev_asize); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 517 &vd->vdev_removing); 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 519 &vd->vdev_top_zap); 520 } else { 521 ASSERT0(vd->vdev_top_zap); 522 } 523 524 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 525 ASSERT(alloctype == VDEV_ALLOC_LOAD || 526 alloctype == VDEV_ALLOC_ADD || 527 alloctype == VDEV_ALLOC_SPLIT || 528 alloctype == VDEV_ALLOC_ROOTPOOL); 529 vd->vdev_mg = metaslab_group_create(islog ? 530 spa_log_class(spa) : spa_normal_class(spa), vd); 531 } 532 533 if (vd->vdev_ops->vdev_op_leaf && 534 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 535 (void) nvlist_lookup_uint64(nv, 536 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 537 } else { 538 ASSERT0(vd->vdev_leaf_zap); 539 } 540 541 /* 542 * If we're a leaf vdev, try to load the DTL object and other state. 543 */ 544 545 if (vd->vdev_ops->vdev_op_leaf && 546 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 547 alloctype == VDEV_ALLOC_ROOTPOOL)) { 548 if (alloctype == VDEV_ALLOC_LOAD) { 549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 550 &vd->vdev_dtl_object); 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 552 &vd->vdev_unspare); 553 } 554 555 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 556 uint64_t spare = 0; 557 558 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 559 &spare) == 0 && spare) 560 spa_spare_add(vd); 561 } 562 563 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 564 &vd->vdev_offline); 565 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 567 &vd->vdev_resilver_txg); 568 569 /* 570 * When importing a pool, we want to ignore the persistent fault 571 * state, as the diagnosis made on another system may not be 572 * valid in the current context. Local vdevs will 573 * remain in the faulted state. 574 */ 575 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 576 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 577 &vd->vdev_faulted); 578 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 579 &vd->vdev_degraded); 580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 581 &vd->vdev_removed); 582 583 if (vd->vdev_faulted || vd->vdev_degraded) { 584 char *aux; 585 586 vd->vdev_label_aux = 587 VDEV_AUX_ERR_EXCEEDED; 588 if (nvlist_lookup_string(nv, 589 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 590 strcmp(aux, "external") == 0) 591 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 592 } 593 } 594 } 595 596 /* 597 * Add ourselves to the parent's list of children. 598 */ 599 vdev_add_child(parent, vd); 600 601 *vdp = vd; 602 603 return (0); 604 } 605 606 void 607 vdev_free(vdev_t *vd) 608 { 609 spa_t *spa = vd->vdev_spa; 610 611 /* 612 * vdev_free() implies closing the vdev first. This is simpler than 613 * trying to ensure complicated semantics for all callers. 614 */ 615 vdev_close(vd); 616 617 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 618 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 619 620 /* 621 * Free all children. 622 */ 623 for (int c = 0; c < vd->vdev_children; c++) 624 vdev_free(vd->vdev_child[c]); 625 626 ASSERT(vd->vdev_child == NULL); 627 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 628 629 /* 630 * Discard allocation state. 631 */ 632 if (vd->vdev_mg != NULL) { 633 vdev_metaslab_fini(vd); 634 metaslab_group_destroy(vd->vdev_mg); 635 } 636 637 ASSERT0(vd->vdev_stat.vs_space); 638 ASSERT0(vd->vdev_stat.vs_dspace); 639 ASSERT0(vd->vdev_stat.vs_alloc); 640 641 /* 642 * Remove this vdev from its parent's child list. 643 */ 644 vdev_remove_child(vd->vdev_parent, vd); 645 646 ASSERT(vd->vdev_parent == NULL); 647 648 /* 649 * Clean up vdev structure. 650 */ 651 vdev_queue_fini(vd); 652 vdev_cache_fini(vd); 653 654 if (vd->vdev_path) 655 spa_strfree(vd->vdev_path); 656 if (vd->vdev_devid) 657 spa_strfree(vd->vdev_devid); 658 if (vd->vdev_physpath) 659 spa_strfree(vd->vdev_physpath); 660 if (vd->vdev_fru) 661 spa_strfree(vd->vdev_fru); 662 663 if (vd->vdev_isspare) 664 spa_spare_remove(vd); 665 if (vd->vdev_isl2cache) 666 spa_l2cache_remove(vd); 667 668 txg_list_destroy(&vd->vdev_ms_list); 669 txg_list_destroy(&vd->vdev_dtl_list); 670 671 mutex_enter(&vd->vdev_dtl_lock); 672 space_map_close(vd->vdev_dtl_sm); 673 for (int t = 0; t < DTL_TYPES; t++) { 674 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 675 range_tree_destroy(vd->vdev_dtl[t]); 676 } 677 mutex_exit(&vd->vdev_dtl_lock); 678 679 mutex_destroy(&vd->vdev_dtl_lock); 680 mutex_destroy(&vd->vdev_stat_lock); 681 mutex_destroy(&vd->vdev_probe_lock); 682 683 if (vd == spa->spa_root_vdev) 684 spa->spa_root_vdev = NULL; 685 686 kmem_free(vd, sizeof (vdev_t)); 687 } 688 689 /* 690 * Transfer top-level vdev state from svd to tvd. 691 */ 692 static void 693 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 694 { 695 spa_t *spa = svd->vdev_spa; 696 metaslab_t *msp; 697 vdev_t *vd; 698 int t; 699 700 ASSERT(tvd == tvd->vdev_top); 701 702 tvd->vdev_ms_array = svd->vdev_ms_array; 703 tvd->vdev_ms_shift = svd->vdev_ms_shift; 704 tvd->vdev_ms_count = svd->vdev_ms_count; 705 tvd->vdev_top_zap = svd->vdev_top_zap; 706 707 svd->vdev_ms_array = 0; 708 svd->vdev_ms_shift = 0; 709 svd->vdev_ms_count = 0; 710 svd->vdev_top_zap = 0; 711 712 if (tvd->vdev_mg) 713 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 714 tvd->vdev_mg = svd->vdev_mg; 715 tvd->vdev_ms = svd->vdev_ms; 716 717 svd->vdev_mg = NULL; 718 svd->vdev_ms = NULL; 719 720 if (tvd->vdev_mg != NULL) 721 tvd->vdev_mg->mg_vd = tvd; 722 723 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 724 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 725 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 726 727 svd->vdev_stat.vs_alloc = 0; 728 svd->vdev_stat.vs_space = 0; 729 svd->vdev_stat.vs_dspace = 0; 730 731 for (t = 0; t < TXG_SIZE; t++) { 732 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 733 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 734 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 735 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 736 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 737 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 738 } 739 740 if (list_link_active(&svd->vdev_config_dirty_node)) { 741 vdev_config_clean(svd); 742 vdev_config_dirty(tvd); 743 } 744 745 if (list_link_active(&svd->vdev_state_dirty_node)) { 746 vdev_state_clean(svd); 747 vdev_state_dirty(tvd); 748 } 749 750 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 751 svd->vdev_deflate_ratio = 0; 752 753 tvd->vdev_islog = svd->vdev_islog; 754 svd->vdev_islog = 0; 755 } 756 757 static void 758 vdev_top_update(vdev_t *tvd, vdev_t *vd) 759 { 760 if (vd == NULL) 761 return; 762 763 vd->vdev_top = tvd; 764 765 for (int c = 0; c < vd->vdev_children; c++) 766 vdev_top_update(tvd, vd->vdev_child[c]); 767 } 768 769 /* 770 * Add a mirror/replacing vdev above an existing vdev. 771 */ 772 vdev_t * 773 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 774 { 775 spa_t *spa = cvd->vdev_spa; 776 vdev_t *pvd = cvd->vdev_parent; 777 vdev_t *mvd; 778 779 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 780 781 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 782 783 mvd->vdev_asize = cvd->vdev_asize; 784 mvd->vdev_min_asize = cvd->vdev_min_asize; 785 mvd->vdev_max_asize = cvd->vdev_max_asize; 786 mvd->vdev_ashift = cvd->vdev_ashift; 787 mvd->vdev_state = cvd->vdev_state; 788 mvd->vdev_crtxg = cvd->vdev_crtxg; 789 790 vdev_remove_child(pvd, cvd); 791 vdev_add_child(pvd, mvd); 792 cvd->vdev_id = mvd->vdev_children; 793 vdev_add_child(mvd, cvd); 794 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 795 796 if (mvd == mvd->vdev_top) 797 vdev_top_transfer(cvd, mvd); 798 799 return (mvd); 800 } 801 802 /* 803 * Remove a 1-way mirror/replacing vdev from the tree. 804 */ 805 void 806 vdev_remove_parent(vdev_t *cvd) 807 { 808 vdev_t *mvd = cvd->vdev_parent; 809 vdev_t *pvd = mvd->vdev_parent; 810 811 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 812 813 ASSERT(mvd->vdev_children == 1); 814 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 815 mvd->vdev_ops == &vdev_replacing_ops || 816 mvd->vdev_ops == &vdev_spare_ops); 817 cvd->vdev_ashift = mvd->vdev_ashift; 818 819 vdev_remove_child(mvd, cvd); 820 vdev_remove_child(pvd, mvd); 821 822 /* 823 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 824 * Otherwise, we could have detached an offline device, and when we 825 * go to import the pool we'll think we have two top-level vdevs, 826 * instead of a different version of the same top-level vdev. 827 */ 828 if (mvd->vdev_top == mvd) { 829 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 830 cvd->vdev_orig_guid = cvd->vdev_guid; 831 cvd->vdev_guid += guid_delta; 832 cvd->vdev_guid_sum += guid_delta; 833 } 834 cvd->vdev_id = mvd->vdev_id; 835 vdev_add_child(pvd, cvd); 836 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 837 838 if (cvd == cvd->vdev_top) 839 vdev_top_transfer(mvd, cvd); 840 841 ASSERT(mvd->vdev_children == 0); 842 vdev_free(mvd); 843 } 844 845 int 846 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 847 { 848 spa_t *spa = vd->vdev_spa; 849 objset_t *mos = spa->spa_meta_objset; 850 uint64_t m; 851 uint64_t oldc = vd->vdev_ms_count; 852 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 853 metaslab_t **mspp; 854 int error; 855 856 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 857 858 /* 859 * This vdev is not being allocated from yet or is a hole. 860 */ 861 if (vd->vdev_ms_shift == 0) 862 return (0); 863 864 ASSERT(!vd->vdev_ishole); 865 866 /* 867 * Compute the raidz-deflation ratio. Note, we hard-code 868 * in 128k (1 << 17) because it is the "typical" blocksize. 869 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 870 * otherwise it would inconsistently account for existing bp's. 871 */ 872 vd->vdev_deflate_ratio = (1 << 17) / 873 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 874 875 ASSERT(oldc <= newc); 876 877 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 878 879 if (oldc != 0) { 880 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 881 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 882 } 883 884 vd->vdev_ms = mspp; 885 vd->vdev_ms_count = newc; 886 887 for (m = oldc; m < newc; m++) { 888 uint64_t object = 0; 889 890 if (txg == 0) { 891 error = dmu_read(mos, vd->vdev_ms_array, 892 m * sizeof (uint64_t), sizeof (uint64_t), &object, 893 DMU_READ_PREFETCH); 894 if (error) 895 return (error); 896 } 897 898 error = metaslab_init(vd->vdev_mg, m, object, txg, 899 &(vd->vdev_ms[m])); 900 if (error) 901 return (error); 902 } 903 904 if (txg == 0) 905 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 906 907 /* 908 * If the vdev is being removed we don't activate 909 * the metaslabs since we want to ensure that no new 910 * allocations are performed on this device. 911 */ 912 if (oldc == 0 && !vd->vdev_removing) 913 metaslab_group_activate(vd->vdev_mg); 914 915 if (txg == 0) 916 spa_config_exit(spa, SCL_ALLOC, FTAG); 917 918 return (0); 919 } 920 921 void 922 vdev_metaslab_fini(vdev_t *vd) 923 { 924 uint64_t m; 925 uint64_t count = vd->vdev_ms_count; 926 927 if (vd->vdev_ms != NULL) { 928 metaslab_group_passivate(vd->vdev_mg); 929 for (m = 0; m < count; m++) { 930 metaslab_t *msp = vd->vdev_ms[m]; 931 932 if (msp != NULL) 933 metaslab_fini(msp); 934 } 935 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 936 vd->vdev_ms = NULL; 937 } 938 } 939 940 typedef struct vdev_probe_stats { 941 boolean_t vps_readable; 942 boolean_t vps_writeable; 943 int vps_flags; 944 } vdev_probe_stats_t; 945 946 static void 947 vdev_probe_done(zio_t *zio) 948 { 949 spa_t *spa = zio->io_spa; 950 vdev_t *vd = zio->io_vd; 951 vdev_probe_stats_t *vps = zio->io_private; 952 953 ASSERT(vd->vdev_probe_zio != NULL); 954 955 if (zio->io_type == ZIO_TYPE_READ) { 956 if (zio->io_error == 0) 957 vps->vps_readable = 1; 958 if (zio->io_error == 0 && spa_writeable(spa)) { 959 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 960 zio->io_offset, zio->io_size, zio->io_data, 961 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 962 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 963 } else { 964 zio_buf_free(zio->io_data, zio->io_size); 965 } 966 } else if (zio->io_type == ZIO_TYPE_WRITE) { 967 if (zio->io_error == 0) 968 vps->vps_writeable = 1; 969 zio_buf_free(zio->io_data, zio->io_size); 970 } else if (zio->io_type == ZIO_TYPE_NULL) { 971 zio_t *pio; 972 973 vd->vdev_cant_read |= !vps->vps_readable; 974 vd->vdev_cant_write |= !vps->vps_writeable; 975 976 if (vdev_readable(vd) && 977 (vdev_writeable(vd) || !spa_writeable(spa))) { 978 zio->io_error = 0; 979 } else { 980 ASSERT(zio->io_error != 0); 981 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 982 spa, vd, NULL, 0, 0); 983 zio->io_error = SET_ERROR(ENXIO); 984 } 985 986 mutex_enter(&vd->vdev_probe_lock); 987 ASSERT(vd->vdev_probe_zio == zio); 988 vd->vdev_probe_zio = NULL; 989 mutex_exit(&vd->vdev_probe_lock); 990 991 while ((pio = zio_walk_parents(zio)) != NULL) 992 if (!vdev_accessible(vd, pio)) 993 pio->io_error = SET_ERROR(ENXIO); 994 995 kmem_free(vps, sizeof (*vps)); 996 } 997 } 998 999 /* 1000 * Determine whether this device is accessible. 1001 * 1002 * Read and write to several known locations: the pad regions of each 1003 * vdev label but the first, which we leave alone in case it contains 1004 * a VTOC. 1005 */ 1006 zio_t * 1007 vdev_probe(vdev_t *vd, zio_t *zio) 1008 { 1009 spa_t *spa = vd->vdev_spa; 1010 vdev_probe_stats_t *vps = NULL; 1011 zio_t *pio; 1012 1013 ASSERT(vd->vdev_ops->vdev_op_leaf); 1014 1015 /* 1016 * Don't probe the probe. 1017 */ 1018 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1019 return (NULL); 1020 1021 /* 1022 * To prevent 'probe storms' when a device fails, we create 1023 * just one probe i/o at a time. All zios that want to probe 1024 * this vdev will become parents of the probe io. 1025 */ 1026 mutex_enter(&vd->vdev_probe_lock); 1027 1028 if ((pio = vd->vdev_probe_zio) == NULL) { 1029 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1030 1031 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1032 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1033 ZIO_FLAG_TRYHARD; 1034 1035 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1036 /* 1037 * vdev_cant_read and vdev_cant_write can only 1038 * transition from TRUE to FALSE when we have the 1039 * SCL_ZIO lock as writer; otherwise they can only 1040 * transition from FALSE to TRUE. This ensures that 1041 * any zio looking at these values can assume that 1042 * failures persist for the life of the I/O. That's 1043 * important because when a device has intermittent 1044 * connectivity problems, we want to ensure that 1045 * they're ascribed to the device (ENXIO) and not 1046 * the zio (EIO). 1047 * 1048 * Since we hold SCL_ZIO as writer here, clear both 1049 * values so the probe can reevaluate from first 1050 * principles. 1051 */ 1052 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1053 vd->vdev_cant_read = B_FALSE; 1054 vd->vdev_cant_write = B_FALSE; 1055 } 1056 1057 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1058 vdev_probe_done, vps, 1059 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1060 1061 /* 1062 * We can't change the vdev state in this context, so we 1063 * kick off an async task to do it on our behalf. 1064 */ 1065 if (zio != NULL) { 1066 vd->vdev_probe_wanted = B_TRUE; 1067 spa_async_request(spa, SPA_ASYNC_PROBE); 1068 } 1069 } 1070 1071 if (zio != NULL) 1072 zio_add_child(zio, pio); 1073 1074 mutex_exit(&vd->vdev_probe_lock); 1075 1076 if (vps == NULL) { 1077 ASSERT(zio != NULL); 1078 return (NULL); 1079 } 1080 1081 for (int l = 1; l < VDEV_LABELS; l++) { 1082 zio_nowait(zio_read_phys(pio, vd, 1083 vdev_label_offset(vd->vdev_psize, l, 1084 offsetof(vdev_label_t, vl_pad2)), 1085 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1086 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1087 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1088 } 1089 1090 if (zio == NULL) 1091 return (pio); 1092 1093 zio_nowait(pio); 1094 return (NULL); 1095 } 1096 1097 static void 1098 vdev_open_child(void *arg) 1099 { 1100 vdev_t *vd = arg; 1101 1102 vd->vdev_open_thread = curthread; 1103 vd->vdev_open_error = vdev_open(vd); 1104 vd->vdev_open_thread = NULL; 1105 } 1106 1107 boolean_t 1108 vdev_uses_zvols(vdev_t *vd) 1109 { 1110 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1111 strlen(ZVOL_DIR)) == 0) 1112 return (B_TRUE); 1113 for (int c = 0; c < vd->vdev_children; c++) 1114 if (vdev_uses_zvols(vd->vdev_child[c])) 1115 return (B_TRUE); 1116 return (B_FALSE); 1117 } 1118 1119 void 1120 vdev_open_children(vdev_t *vd) 1121 { 1122 taskq_t *tq; 1123 int children = vd->vdev_children; 1124 1125 /* 1126 * in order to handle pools on top of zvols, do the opens 1127 * in a single thread so that the same thread holds the 1128 * spa_namespace_lock 1129 */ 1130 if (vdev_uses_zvols(vd)) { 1131 for (int c = 0; c < children; c++) 1132 vd->vdev_child[c]->vdev_open_error = 1133 vdev_open(vd->vdev_child[c]); 1134 return; 1135 } 1136 tq = taskq_create("vdev_open", children, minclsyspri, 1137 children, children, TASKQ_PREPOPULATE); 1138 1139 for (int c = 0; c < children; c++) 1140 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1141 TQ_SLEEP) != NULL); 1142 1143 taskq_destroy(tq); 1144 } 1145 1146 /* 1147 * Prepare a virtual device for access. 1148 */ 1149 int 1150 vdev_open(vdev_t *vd) 1151 { 1152 spa_t *spa = vd->vdev_spa; 1153 int error; 1154 uint64_t osize = 0; 1155 uint64_t max_osize = 0; 1156 uint64_t asize, max_asize, psize; 1157 uint64_t ashift = 0; 1158 1159 ASSERT(vd->vdev_open_thread == curthread || 1160 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1161 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1162 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1163 vd->vdev_state == VDEV_STATE_OFFLINE); 1164 1165 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1166 vd->vdev_cant_read = B_FALSE; 1167 vd->vdev_cant_write = B_FALSE; 1168 vd->vdev_min_asize = vdev_get_min_asize(vd); 1169 1170 /* 1171 * If this vdev is not removed, check its fault status. If it's 1172 * faulted, bail out of the open. 1173 */ 1174 if (!vd->vdev_removed && vd->vdev_faulted) { 1175 ASSERT(vd->vdev_children == 0); 1176 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1177 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1178 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1179 vd->vdev_label_aux); 1180 return (SET_ERROR(ENXIO)); 1181 } else if (vd->vdev_offline) { 1182 ASSERT(vd->vdev_children == 0); 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1184 return (SET_ERROR(ENXIO)); 1185 } 1186 1187 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1188 1189 /* 1190 * Reset the vdev_reopening flag so that we actually close 1191 * the vdev on error. 1192 */ 1193 vd->vdev_reopening = B_FALSE; 1194 if (zio_injection_enabled && error == 0) 1195 error = zio_handle_device_injection(vd, NULL, ENXIO); 1196 1197 if (error) { 1198 if (vd->vdev_removed && 1199 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1200 vd->vdev_removed = B_FALSE; 1201 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1203 vd->vdev_stat.vs_aux); 1204 return (error); 1205 } 1206 1207 vd->vdev_removed = B_FALSE; 1208 1209 /* 1210 * Recheck the faulted flag now that we have confirmed that 1211 * the vdev is accessible. If we're faulted, bail. 1212 */ 1213 if (vd->vdev_faulted) { 1214 ASSERT(vd->vdev_children == 0); 1215 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1216 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1218 vd->vdev_label_aux); 1219 return (SET_ERROR(ENXIO)); 1220 } 1221 1222 if (vd->vdev_degraded) { 1223 ASSERT(vd->vdev_children == 0); 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1225 VDEV_AUX_ERR_EXCEEDED); 1226 } else { 1227 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1228 } 1229 1230 /* 1231 * For hole or missing vdevs we just return success. 1232 */ 1233 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1234 return (0); 1235 1236 for (int c = 0; c < vd->vdev_children; c++) { 1237 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1239 VDEV_AUX_NONE); 1240 break; 1241 } 1242 } 1243 1244 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1245 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1246 1247 if (vd->vdev_children == 0) { 1248 if (osize < SPA_MINDEVSIZE) { 1249 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1250 VDEV_AUX_TOO_SMALL); 1251 return (SET_ERROR(EOVERFLOW)); 1252 } 1253 psize = osize; 1254 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1255 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1256 VDEV_LABEL_END_SIZE); 1257 } else { 1258 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1259 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1260 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1261 VDEV_AUX_TOO_SMALL); 1262 return (SET_ERROR(EOVERFLOW)); 1263 } 1264 psize = 0; 1265 asize = osize; 1266 max_asize = max_osize; 1267 } 1268 1269 vd->vdev_psize = psize; 1270 1271 /* 1272 * Make sure the allocatable size hasn't shrunk. 1273 */ 1274 if (asize < vd->vdev_min_asize) { 1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1276 VDEV_AUX_BAD_LABEL); 1277 return (SET_ERROR(EINVAL)); 1278 } 1279 1280 if (vd->vdev_asize == 0) { 1281 /* 1282 * This is the first-ever open, so use the computed values. 1283 * For testing purposes, a higher ashift can be requested. 1284 */ 1285 vd->vdev_asize = asize; 1286 vd->vdev_max_asize = max_asize; 1287 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1288 } else { 1289 /* 1290 * Detect if the alignment requirement has increased. 1291 * We don't want to make the pool unavailable, just 1292 * issue a warning instead. 1293 */ 1294 if (ashift > vd->vdev_top->vdev_ashift && 1295 vd->vdev_ops->vdev_op_leaf) { 1296 cmn_err(CE_WARN, 1297 "Disk, '%s', has a block alignment that is " 1298 "larger than the pool's alignment\n", 1299 vd->vdev_path); 1300 } 1301 vd->vdev_max_asize = max_asize; 1302 } 1303 1304 /* 1305 * If all children are healthy and the asize has increased, 1306 * then we've experienced dynamic LUN growth. If automatic 1307 * expansion is enabled then use the additional space. 1308 */ 1309 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1310 (vd->vdev_expanding || spa->spa_autoexpand)) 1311 vd->vdev_asize = asize; 1312 1313 vdev_set_min_asize(vd); 1314 1315 /* 1316 * Ensure we can issue some IO before declaring the 1317 * vdev open for business. 1318 */ 1319 if (vd->vdev_ops->vdev_op_leaf && 1320 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1321 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1322 VDEV_AUX_ERR_EXCEEDED); 1323 return (error); 1324 } 1325 1326 /* 1327 * Track the min and max ashift values for normal data devices. 1328 */ 1329 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1330 !vd->vdev_islog && vd->vdev_aux == NULL) { 1331 if (vd->vdev_ashift > spa->spa_max_ashift) 1332 spa->spa_max_ashift = vd->vdev_ashift; 1333 if (vd->vdev_ashift < spa->spa_min_ashift) 1334 spa->spa_min_ashift = vd->vdev_ashift; 1335 } 1336 1337 /* 1338 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1339 * resilver. But don't do this if we are doing a reopen for a scrub, 1340 * since this would just restart the scrub we are already doing. 1341 */ 1342 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1343 vdev_resilver_needed(vd, NULL, NULL)) 1344 spa_async_request(spa, SPA_ASYNC_RESILVER); 1345 1346 return (0); 1347 } 1348 1349 /* 1350 * Called once the vdevs are all opened, this routine validates the label 1351 * contents. This needs to be done before vdev_load() so that we don't 1352 * inadvertently do repair I/Os to the wrong device. 1353 * 1354 * If 'strict' is false ignore the spa guid check. This is necessary because 1355 * if the machine crashed during a re-guid the new guid might have been written 1356 * to all of the vdev labels, but not the cached config. The strict check 1357 * will be performed when the pool is opened again using the mos config. 1358 * 1359 * This function will only return failure if one of the vdevs indicates that it 1360 * has since been destroyed or exported. This is only possible if 1361 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1362 * will be updated but the function will return 0. 1363 */ 1364 int 1365 vdev_validate(vdev_t *vd, boolean_t strict) 1366 { 1367 spa_t *spa = vd->vdev_spa; 1368 nvlist_t *label; 1369 uint64_t guid = 0, top_guid; 1370 uint64_t state; 1371 1372 for (int c = 0; c < vd->vdev_children; c++) 1373 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1374 return (SET_ERROR(EBADF)); 1375 1376 /* 1377 * If the device has already failed, or was marked offline, don't do 1378 * any further validation. Otherwise, label I/O will fail and we will 1379 * overwrite the previous state. 1380 */ 1381 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1382 uint64_t aux_guid = 0; 1383 nvlist_t *nvl; 1384 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1385 spa_last_synced_txg(spa) : -1ULL; 1386 1387 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1388 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1389 VDEV_AUX_BAD_LABEL); 1390 return (0); 1391 } 1392 1393 /* 1394 * Determine if this vdev has been split off into another 1395 * pool. If so, then refuse to open it. 1396 */ 1397 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1398 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1399 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1400 VDEV_AUX_SPLIT_POOL); 1401 nvlist_free(label); 1402 return (0); 1403 } 1404 1405 if (strict && (nvlist_lookup_uint64(label, 1406 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1407 guid != spa_guid(spa))) { 1408 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1409 VDEV_AUX_CORRUPT_DATA); 1410 nvlist_free(label); 1411 return (0); 1412 } 1413 1414 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1415 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1416 &aux_guid) != 0) 1417 aux_guid = 0; 1418 1419 /* 1420 * If this vdev just became a top-level vdev because its 1421 * sibling was detached, it will have adopted the parent's 1422 * vdev guid -- but the label may or may not be on disk yet. 1423 * Fortunately, either version of the label will have the 1424 * same top guid, so if we're a top-level vdev, we can 1425 * safely compare to that instead. 1426 * 1427 * If we split this vdev off instead, then we also check the 1428 * original pool's guid. We don't want to consider the vdev 1429 * corrupt if it is partway through a split operation. 1430 */ 1431 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1432 &guid) != 0 || 1433 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1434 &top_guid) != 0 || 1435 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1436 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1438 VDEV_AUX_CORRUPT_DATA); 1439 nvlist_free(label); 1440 return (0); 1441 } 1442 1443 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1444 &state) != 0) { 1445 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1446 VDEV_AUX_CORRUPT_DATA); 1447 nvlist_free(label); 1448 return (0); 1449 } 1450 1451 nvlist_free(label); 1452 1453 /* 1454 * If this is a verbatim import, no need to check the 1455 * state of the pool. 1456 */ 1457 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1458 spa_load_state(spa) == SPA_LOAD_OPEN && 1459 state != POOL_STATE_ACTIVE) 1460 return (SET_ERROR(EBADF)); 1461 1462 /* 1463 * If we were able to open and validate a vdev that was 1464 * previously marked permanently unavailable, clear that state 1465 * now. 1466 */ 1467 if (vd->vdev_not_present) 1468 vd->vdev_not_present = 0; 1469 } 1470 1471 return (0); 1472 } 1473 1474 /* 1475 * Close a virtual device. 1476 */ 1477 void 1478 vdev_close(vdev_t *vd) 1479 { 1480 spa_t *spa = vd->vdev_spa; 1481 vdev_t *pvd = vd->vdev_parent; 1482 1483 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1484 1485 /* 1486 * If our parent is reopening, then we are as well, unless we are 1487 * going offline. 1488 */ 1489 if (pvd != NULL && pvd->vdev_reopening) 1490 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1491 1492 vd->vdev_ops->vdev_op_close(vd); 1493 1494 vdev_cache_purge(vd); 1495 1496 /* 1497 * We record the previous state before we close it, so that if we are 1498 * doing a reopen(), we don't generate FMA ereports if we notice that 1499 * it's still faulted. 1500 */ 1501 vd->vdev_prevstate = vd->vdev_state; 1502 1503 if (vd->vdev_offline) 1504 vd->vdev_state = VDEV_STATE_OFFLINE; 1505 else 1506 vd->vdev_state = VDEV_STATE_CLOSED; 1507 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1508 } 1509 1510 void 1511 vdev_hold(vdev_t *vd) 1512 { 1513 spa_t *spa = vd->vdev_spa; 1514 1515 ASSERT(spa_is_root(spa)); 1516 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1517 return; 1518 1519 for (int c = 0; c < vd->vdev_children; c++) 1520 vdev_hold(vd->vdev_child[c]); 1521 1522 if (vd->vdev_ops->vdev_op_leaf) 1523 vd->vdev_ops->vdev_op_hold(vd); 1524 } 1525 1526 void 1527 vdev_rele(vdev_t *vd) 1528 { 1529 spa_t *spa = vd->vdev_spa; 1530 1531 ASSERT(spa_is_root(spa)); 1532 for (int c = 0; c < vd->vdev_children; c++) 1533 vdev_rele(vd->vdev_child[c]); 1534 1535 if (vd->vdev_ops->vdev_op_leaf) 1536 vd->vdev_ops->vdev_op_rele(vd); 1537 } 1538 1539 /* 1540 * Reopen all interior vdevs and any unopened leaves. We don't actually 1541 * reopen leaf vdevs which had previously been opened as they might deadlock 1542 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1543 * If the leaf has never been opened then open it, as usual. 1544 */ 1545 void 1546 vdev_reopen(vdev_t *vd) 1547 { 1548 spa_t *spa = vd->vdev_spa; 1549 1550 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1551 1552 /* set the reopening flag unless we're taking the vdev offline */ 1553 vd->vdev_reopening = !vd->vdev_offline; 1554 vdev_close(vd); 1555 (void) vdev_open(vd); 1556 1557 /* 1558 * Call vdev_validate() here to make sure we have the same device. 1559 * Otherwise, a device with an invalid label could be successfully 1560 * opened in response to vdev_reopen(). 1561 */ 1562 if (vd->vdev_aux) { 1563 (void) vdev_validate_aux(vd); 1564 if (vdev_readable(vd) && vdev_writeable(vd) && 1565 vd->vdev_aux == &spa->spa_l2cache && 1566 !l2arc_vdev_present(vd)) 1567 l2arc_add_vdev(spa, vd); 1568 } else { 1569 (void) vdev_validate(vd, B_TRUE); 1570 } 1571 1572 /* 1573 * Reassess parent vdev's health. 1574 */ 1575 vdev_propagate_state(vd); 1576 } 1577 1578 int 1579 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1580 { 1581 int error; 1582 1583 /* 1584 * Normally, partial opens (e.g. of a mirror) are allowed. 1585 * For a create, however, we want to fail the request if 1586 * there are any components we can't open. 1587 */ 1588 error = vdev_open(vd); 1589 1590 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1591 vdev_close(vd); 1592 return (error ? error : ENXIO); 1593 } 1594 1595 /* 1596 * Recursively load DTLs and initialize all labels. 1597 */ 1598 if ((error = vdev_dtl_load(vd)) != 0 || 1599 (error = vdev_label_init(vd, txg, isreplacing ? 1600 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1601 vdev_close(vd); 1602 return (error); 1603 } 1604 1605 return (0); 1606 } 1607 1608 void 1609 vdev_metaslab_set_size(vdev_t *vd) 1610 { 1611 /* 1612 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1613 */ 1614 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1615 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1616 } 1617 1618 void 1619 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1620 { 1621 ASSERT(vd == vd->vdev_top); 1622 ASSERT(!vd->vdev_ishole); 1623 ASSERT(ISP2(flags)); 1624 ASSERT(spa_writeable(vd->vdev_spa)); 1625 1626 if (flags & VDD_METASLAB) 1627 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1628 1629 if (flags & VDD_DTL) 1630 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1631 1632 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1633 } 1634 1635 void 1636 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1637 { 1638 for (int c = 0; c < vd->vdev_children; c++) 1639 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1640 1641 if (vd->vdev_ops->vdev_op_leaf) 1642 vdev_dirty(vd->vdev_top, flags, vd, txg); 1643 } 1644 1645 /* 1646 * DTLs. 1647 * 1648 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1649 * the vdev has less than perfect replication. There are four kinds of DTL: 1650 * 1651 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1652 * 1653 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1654 * 1655 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1656 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1657 * txgs that was scrubbed. 1658 * 1659 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1660 * persistent errors or just some device being offline. 1661 * Unlike the other three, the DTL_OUTAGE map is not generally 1662 * maintained; it's only computed when needed, typically to 1663 * determine whether a device can be detached. 1664 * 1665 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1666 * either has the data or it doesn't. 1667 * 1668 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1669 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1670 * if any child is less than fully replicated, then so is its parent. 1671 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1672 * comprising only those txgs which appear in 'maxfaults' or more children; 1673 * those are the txgs we don't have enough replication to read. For example, 1674 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1675 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1676 * two child DTL_MISSING maps. 1677 * 1678 * It should be clear from the above that to compute the DTLs and outage maps 1679 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1680 * Therefore, that is all we keep on disk. When loading the pool, or after 1681 * a configuration change, we generate all other DTLs from first principles. 1682 */ 1683 void 1684 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1685 { 1686 range_tree_t *rt = vd->vdev_dtl[t]; 1687 1688 ASSERT(t < DTL_TYPES); 1689 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1690 ASSERT(spa_writeable(vd->vdev_spa)); 1691 1692 mutex_enter(rt->rt_lock); 1693 if (!range_tree_contains(rt, txg, size)) 1694 range_tree_add(rt, txg, size); 1695 mutex_exit(rt->rt_lock); 1696 } 1697 1698 boolean_t 1699 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1700 { 1701 range_tree_t *rt = vd->vdev_dtl[t]; 1702 boolean_t dirty = B_FALSE; 1703 1704 ASSERT(t < DTL_TYPES); 1705 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1706 1707 mutex_enter(rt->rt_lock); 1708 if (range_tree_space(rt) != 0) 1709 dirty = range_tree_contains(rt, txg, size); 1710 mutex_exit(rt->rt_lock); 1711 1712 return (dirty); 1713 } 1714 1715 boolean_t 1716 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1717 { 1718 range_tree_t *rt = vd->vdev_dtl[t]; 1719 boolean_t empty; 1720 1721 mutex_enter(rt->rt_lock); 1722 empty = (range_tree_space(rt) == 0); 1723 mutex_exit(rt->rt_lock); 1724 1725 return (empty); 1726 } 1727 1728 /* 1729 * Returns the lowest txg in the DTL range. 1730 */ 1731 static uint64_t 1732 vdev_dtl_min(vdev_t *vd) 1733 { 1734 range_seg_t *rs; 1735 1736 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1737 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1738 ASSERT0(vd->vdev_children); 1739 1740 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1741 return (rs->rs_start - 1); 1742 } 1743 1744 /* 1745 * Returns the highest txg in the DTL. 1746 */ 1747 static uint64_t 1748 vdev_dtl_max(vdev_t *vd) 1749 { 1750 range_seg_t *rs; 1751 1752 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1753 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1754 ASSERT0(vd->vdev_children); 1755 1756 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1757 return (rs->rs_end); 1758 } 1759 1760 /* 1761 * Determine if a resilvering vdev should remove any DTL entries from 1762 * its range. If the vdev was resilvering for the entire duration of the 1763 * scan then it should excise that range from its DTLs. Otherwise, this 1764 * vdev is considered partially resilvered and should leave its DTL 1765 * entries intact. The comment in vdev_dtl_reassess() describes how we 1766 * excise the DTLs. 1767 */ 1768 static boolean_t 1769 vdev_dtl_should_excise(vdev_t *vd) 1770 { 1771 spa_t *spa = vd->vdev_spa; 1772 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1773 1774 ASSERT0(scn->scn_phys.scn_errors); 1775 ASSERT0(vd->vdev_children); 1776 1777 if (vd->vdev_resilver_txg == 0 || 1778 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1779 return (B_TRUE); 1780 1781 /* 1782 * When a resilver is initiated the scan will assign the scn_max_txg 1783 * value to the highest txg value that exists in all DTLs. If this 1784 * device's max DTL is not part of this scan (i.e. it is not in 1785 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1786 * for excision. 1787 */ 1788 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1789 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1790 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1791 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1792 return (B_TRUE); 1793 } 1794 return (B_FALSE); 1795 } 1796 1797 /* 1798 * Reassess DTLs after a config change or scrub completion. 1799 */ 1800 void 1801 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1802 { 1803 spa_t *spa = vd->vdev_spa; 1804 avl_tree_t reftree; 1805 int minref; 1806 1807 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1808 1809 for (int c = 0; c < vd->vdev_children; c++) 1810 vdev_dtl_reassess(vd->vdev_child[c], txg, 1811 scrub_txg, scrub_done); 1812 1813 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1814 return; 1815 1816 if (vd->vdev_ops->vdev_op_leaf) { 1817 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1818 1819 mutex_enter(&vd->vdev_dtl_lock); 1820 1821 /* 1822 * If we've completed a scan cleanly then determine 1823 * if this vdev should remove any DTLs. We only want to 1824 * excise regions on vdevs that were available during 1825 * the entire duration of this scan. 1826 */ 1827 if (scrub_txg != 0 && 1828 (spa->spa_scrub_started || 1829 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1830 vdev_dtl_should_excise(vd)) { 1831 /* 1832 * We completed a scrub up to scrub_txg. If we 1833 * did it without rebooting, then the scrub dtl 1834 * will be valid, so excise the old region and 1835 * fold in the scrub dtl. Otherwise, leave the 1836 * dtl as-is if there was an error. 1837 * 1838 * There's little trick here: to excise the beginning 1839 * of the DTL_MISSING map, we put it into a reference 1840 * tree and then add a segment with refcnt -1 that 1841 * covers the range [0, scrub_txg). This means 1842 * that each txg in that range has refcnt -1 or 0. 1843 * We then add DTL_SCRUB with a refcnt of 2, so that 1844 * entries in the range [0, scrub_txg) will have a 1845 * positive refcnt -- either 1 or 2. We then convert 1846 * the reference tree into the new DTL_MISSING map. 1847 */ 1848 space_reftree_create(&reftree); 1849 space_reftree_add_map(&reftree, 1850 vd->vdev_dtl[DTL_MISSING], 1); 1851 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1852 space_reftree_add_map(&reftree, 1853 vd->vdev_dtl[DTL_SCRUB], 2); 1854 space_reftree_generate_map(&reftree, 1855 vd->vdev_dtl[DTL_MISSING], 1); 1856 space_reftree_destroy(&reftree); 1857 } 1858 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1859 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1860 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1861 if (scrub_done) 1862 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1863 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1864 if (!vdev_readable(vd)) 1865 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1866 else 1867 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1868 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1869 1870 /* 1871 * If the vdev was resilvering and no longer has any 1872 * DTLs then reset its resilvering flag. 1873 */ 1874 if (vd->vdev_resilver_txg != 0 && 1875 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1876 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1877 vd->vdev_resilver_txg = 0; 1878 1879 mutex_exit(&vd->vdev_dtl_lock); 1880 1881 if (txg != 0) 1882 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1883 return; 1884 } 1885 1886 mutex_enter(&vd->vdev_dtl_lock); 1887 for (int t = 0; t < DTL_TYPES; t++) { 1888 /* account for child's outage in parent's missing map */ 1889 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1890 if (t == DTL_SCRUB) 1891 continue; /* leaf vdevs only */ 1892 if (t == DTL_PARTIAL) 1893 minref = 1; /* i.e. non-zero */ 1894 else if (vd->vdev_nparity != 0) 1895 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1896 else 1897 minref = vd->vdev_children; /* any kind of mirror */ 1898 space_reftree_create(&reftree); 1899 for (int c = 0; c < vd->vdev_children; c++) { 1900 vdev_t *cvd = vd->vdev_child[c]; 1901 mutex_enter(&cvd->vdev_dtl_lock); 1902 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1903 mutex_exit(&cvd->vdev_dtl_lock); 1904 } 1905 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1906 space_reftree_destroy(&reftree); 1907 } 1908 mutex_exit(&vd->vdev_dtl_lock); 1909 } 1910 1911 int 1912 vdev_dtl_load(vdev_t *vd) 1913 { 1914 spa_t *spa = vd->vdev_spa; 1915 objset_t *mos = spa->spa_meta_objset; 1916 int error = 0; 1917 1918 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1919 ASSERT(!vd->vdev_ishole); 1920 1921 error = space_map_open(&vd->vdev_dtl_sm, mos, 1922 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1923 if (error) 1924 return (error); 1925 ASSERT(vd->vdev_dtl_sm != NULL); 1926 1927 mutex_enter(&vd->vdev_dtl_lock); 1928 1929 /* 1930 * Now that we've opened the space_map we need to update 1931 * the in-core DTL. 1932 */ 1933 space_map_update(vd->vdev_dtl_sm); 1934 1935 error = space_map_load(vd->vdev_dtl_sm, 1936 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1937 mutex_exit(&vd->vdev_dtl_lock); 1938 1939 return (error); 1940 } 1941 1942 for (int c = 0; c < vd->vdev_children; c++) { 1943 error = vdev_dtl_load(vd->vdev_child[c]); 1944 if (error != 0) 1945 break; 1946 } 1947 1948 return (error); 1949 } 1950 1951 void 1952 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 1953 { 1954 spa_t *spa = vd->vdev_spa; 1955 1956 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 1957 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1958 zapobj, tx)); 1959 } 1960 1961 uint64_t 1962 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 1963 { 1964 spa_t *spa = vd->vdev_spa; 1965 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 1966 DMU_OT_NONE, 0, tx); 1967 1968 ASSERT(zap != 0); 1969 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 1970 zap, tx)); 1971 1972 return (zap); 1973 } 1974 1975 void 1976 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 1977 { 1978 if (vd->vdev_ops != &vdev_hole_ops && 1979 vd->vdev_ops != &vdev_missing_ops && 1980 vd->vdev_ops != &vdev_root_ops && 1981 !vd->vdev_top->vdev_removing) { 1982 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 1983 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 1984 } 1985 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 1986 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 1987 } 1988 } 1989 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1990 vdev_construct_zaps(vd->vdev_child[i], tx); 1991 } 1992 } 1993 1994 void 1995 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1996 { 1997 spa_t *spa = vd->vdev_spa; 1998 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1999 objset_t *mos = spa->spa_meta_objset; 2000 range_tree_t *rtsync; 2001 kmutex_t rtlock; 2002 dmu_tx_t *tx; 2003 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2004 2005 ASSERT(!vd->vdev_ishole); 2006 ASSERT(vd->vdev_ops->vdev_op_leaf); 2007 2008 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2009 2010 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2011 mutex_enter(&vd->vdev_dtl_lock); 2012 space_map_free(vd->vdev_dtl_sm, tx); 2013 space_map_close(vd->vdev_dtl_sm); 2014 vd->vdev_dtl_sm = NULL; 2015 mutex_exit(&vd->vdev_dtl_lock); 2016 2017 /* 2018 * We only destroy the leaf ZAP for detached leaves or for 2019 * removed log devices. Removed data devices handle leaf ZAP 2020 * cleanup later, once cancellation is no longer possible. 2021 */ 2022 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2023 vd->vdev_top->vdev_islog)) { 2024 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2025 vd->vdev_leaf_zap = 0; 2026 } 2027 2028 dmu_tx_commit(tx); 2029 return; 2030 } 2031 2032 if (vd->vdev_dtl_sm == NULL) { 2033 uint64_t new_object; 2034 2035 new_object = space_map_alloc(mos, tx); 2036 VERIFY3U(new_object, !=, 0); 2037 2038 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2039 0, -1ULL, 0, &vd->vdev_dtl_lock)); 2040 ASSERT(vd->vdev_dtl_sm != NULL); 2041 } 2042 2043 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 2044 2045 rtsync = range_tree_create(NULL, NULL, &rtlock); 2046 2047 mutex_enter(&rtlock); 2048 2049 mutex_enter(&vd->vdev_dtl_lock); 2050 range_tree_walk(rt, range_tree_add, rtsync); 2051 mutex_exit(&vd->vdev_dtl_lock); 2052 2053 space_map_truncate(vd->vdev_dtl_sm, tx); 2054 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 2055 range_tree_vacate(rtsync, NULL, NULL); 2056 2057 range_tree_destroy(rtsync); 2058 2059 mutex_exit(&rtlock); 2060 mutex_destroy(&rtlock); 2061 2062 /* 2063 * If the object for the space map has changed then dirty 2064 * the top level so that we update the config. 2065 */ 2066 if (object != space_map_object(vd->vdev_dtl_sm)) { 2067 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2068 "new object %llu", txg, spa_name(spa), object, 2069 space_map_object(vd->vdev_dtl_sm)); 2070 vdev_config_dirty(vd->vdev_top); 2071 } 2072 2073 dmu_tx_commit(tx); 2074 2075 mutex_enter(&vd->vdev_dtl_lock); 2076 space_map_update(vd->vdev_dtl_sm); 2077 mutex_exit(&vd->vdev_dtl_lock); 2078 } 2079 2080 /* 2081 * Determine whether the specified vdev can be offlined/detached/removed 2082 * without losing data. 2083 */ 2084 boolean_t 2085 vdev_dtl_required(vdev_t *vd) 2086 { 2087 spa_t *spa = vd->vdev_spa; 2088 vdev_t *tvd = vd->vdev_top; 2089 uint8_t cant_read = vd->vdev_cant_read; 2090 boolean_t required; 2091 2092 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2093 2094 if (vd == spa->spa_root_vdev || vd == tvd) 2095 return (B_TRUE); 2096 2097 /* 2098 * Temporarily mark the device as unreadable, and then determine 2099 * whether this results in any DTL outages in the top-level vdev. 2100 * If not, we can safely offline/detach/remove the device. 2101 */ 2102 vd->vdev_cant_read = B_TRUE; 2103 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2104 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2105 vd->vdev_cant_read = cant_read; 2106 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2107 2108 if (!required && zio_injection_enabled) 2109 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2110 2111 return (required); 2112 } 2113 2114 /* 2115 * Determine if resilver is needed, and if so the txg range. 2116 */ 2117 boolean_t 2118 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2119 { 2120 boolean_t needed = B_FALSE; 2121 uint64_t thismin = UINT64_MAX; 2122 uint64_t thismax = 0; 2123 2124 if (vd->vdev_children == 0) { 2125 mutex_enter(&vd->vdev_dtl_lock); 2126 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2127 vdev_writeable(vd)) { 2128 2129 thismin = vdev_dtl_min(vd); 2130 thismax = vdev_dtl_max(vd); 2131 needed = B_TRUE; 2132 } 2133 mutex_exit(&vd->vdev_dtl_lock); 2134 } else { 2135 for (int c = 0; c < vd->vdev_children; c++) { 2136 vdev_t *cvd = vd->vdev_child[c]; 2137 uint64_t cmin, cmax; 2138 2139 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2140 thismin = MIN(thismin, cmin); 2141 thismax = MAX(thismax, cmax); 2142 needed = B_TRUE; 2143 } 2144 } 2145 } 2146 2147 if (needed && minp) { 2148 *minp = thismin; 2149 *maxp = thismax; 2150 } 2151 return (needed); 2152 } 2153 2154 void 2155 vdev_load(vdev_t *vd) 2156 { 2157 /* 2158 * Recursively load all children. 2159 */ 2160 for (int c = 0; c < vd->vdev_children; c++) 2161 vdev_load(vd->vdev_child[c]); 2162 2163 /* 2164 * If this is a top-level vdev, initialize its metaslabs. 2165 */ 2166 if (vd == vd->vdev_top && !vd->vdev_ishole && 2167 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2168 vdev_metaslab_init(vd, 0) != 0)) 2169 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2170 VDEV_AUX_CORRUPT_DATA); 2171 2172 /* 2173 * If this is a leaf vdev, load its DTL. 2174 */ 2175 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2176 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2177 VDEV_AUX_CORRUPT_DATA); 2178 } 2179 2180 /* 2181 * The special vdev case is used for hot spares and l2cache devices. Its 2182 * sole purpose it to set the vdev state for the associated vdev. To do this, 2183 * we make sure that we can open the underlying device, then try to read the 2184 * label, and make sure that the label is sane and that it hasn't been 2185 * repurposed to another pool. 2186 */ 2187 int 2188 vdev_validate_aux(vdev_t *vd) 2189 { 2190 nvlist_t *label; 2191 uint64_t guid, version; 2192 uint64_t state; 2193 2194 if (!vdev_readable(vd)) 2195 return (0); 2196 2197 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2198 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2199 VDEV_AUX_CORRUPT_DATA); 2200 return (-1); 2201 } 2202 2203 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2204 !SPA_VERSION_IS_SUPPORTED(version) || 2205 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2206 guid != vd->vdev_guid || 2207 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2209 VDEV_AUX_CORRUPT_DATA); 2210 nvlist_free(label); 2211 return (-1); 2212 } 2213 2214 /* 2215 * We don't actually check the pool state here. If it's in fact in 2216 * use by another pool, we update this fact on the fly when requested. 2217 */ 2218 nvlist_free(label); 2219 return (0); 2220 } 2221 2222 void 2223 vdev_remove(vdev_t *vd, uint64_t txg) 2224 { 2225 spa_t *spa = vd->vdev_spa; 2226 objset_t *mos = spa->spa_meta_objset; 2227 dmu_tx_t *tx; 2228 2229 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2230 ASSERT(vd == vd->vdev_top); 2231 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2232 2233 if (vd->vdev_ms != NULL) { 2234 metaslab_group_t *mg = vd->vdev_mg; 2235 2236 metaslab_group_histogram_verify(mg); 2237 metaslab_class_histogram_verify(mg->mg_class); 2238 2239 for (int m = 0; m < vd->vdev_ms_count; m++) { 2240 metaslab_t *msp = vd->vdev_ms[m]; 2241 2242 if (msp == NULL || msp->ms_sm == NULL) 2243 continue; 2244 2245 mutex_enter(&msp->ms_lock); 2246 /* 2247 * If the metaslab was not loaded when the vdev 2248 * was removed then the histogram accounting may 2249 * not be accurate. Update the histogram information 2250 * here so that we ensure that the metaslab group 2251 * and metaslab class are up-to-date. 2252 */ 2253 metaslab_group_histogram_remove(mg, msp); 2254 2255 VERIFY0(space_map_allocated(msp->ms_sm)); 2256 space_map_free(msp->ms_sm, tx); 2257 space_map_close(msp->ms_sm); 2258 msp->ms_sm = NULL; 2259 mutex_exit(&msp->ms_lock); 2260 } 2261 2262 metaslab_group_histogram_verify(mg); 2263 metaslab_class_histogram_verify(mg->mg_class); 2264 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2265 ASSERT0(mg->mg_histogram[i]); 2266 2267 } 2268 2269 if (vd->vdev_ms_array) { 2270 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2271 vd->vdev_ms_array = 0; 2272 } 2273 2274 if (vd->vdev_islog && vd->vdev_top_zap != 0) { 2275 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2276 vd->vdev_top_zap = 0; 2277 } 2278 dmu_tx_commit(tx); 2279 } 2280 2281 void 2282 vdev_sync_done(vdev_t *vd, uint64_t txg) 2283 { 2284 metaslab_t *msp; 2285 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2286 2287 ASSERT(!vd->vdev_ishole); 2288 2289 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2290 metaslab_sync_done(msp, txg); 2291 2292 if (reassess) 2293 metaslab_sync_reassess(vd->vdev_mg); 2294 } 2295 2296 void 2297 vdev_sync(vdev_t *vd, uint64_t txg) 2298 { 2299 spa_t *spa = vd->vdev_spa; 2300 vdev_t *lvd; 2301 metaslab_t *msp; 2302 dmu_tx_t *tx; 2303 2304 ASSERT(!vd->vdev_ishole); 2305 2306 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2307 ASSERT(vd == vd->vdev_top); 2308 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2309 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2310 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2311 ASSERT(vd->vdev_ms_array != 0); 2312 vdev_config_dirty(vd); 2313 dmu_tx_commit(tx); 2314 } 2315 2316 /* 2317 * Remove the metadata associated with this vdev once it's empty. 2318 */ 2319 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2320 vdev_remove(vd, txg); 2321 2322 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2323 metaslab_sync(msp, txg); 2324 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2325 } 2326 2327 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2328 vdev_dtl_sync(lvd, txg); 2329 2330 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2331 } 2332 2333 uint64_t 2334 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2335 { 2336 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2337 } 2338 2339 /* 2340 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2341 * not be opened, and no I/O is attempted. 2342 */ 2343 int 2344 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2345 { 2346 vdev_t *vd, *tvd; 2347 2348 spa_vdev_state_enter(spa, SCL_NONE); 2349 2350 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2351 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2352 2353 if (!vd->vdev_ops->vdev_op_leaf) 2354 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2355 2356 tvd = vd->vdev_top; 2357 2358 /* 2359 * We don't directly use the aux state here, but if we do a 2360 * vdev_reopen(), we need this value to be present to remember why we 2361 * were faulted. 2362 */ 2363 vd->vdev_label_aux = aux; 2364 2365 /* 2366 * Faulted state takes precedence over degraded. 2367 */ 2368 vd->vdev_delayed_close = B_FALSE; 2369 vd->vdev_faulted = 1ULL; 2370 vd->vdev_degraded = 0ULL; 2371 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2372 2373 /* 2374 * If this device has the only valid copy of the data, then 2375 * back off and simply mark the vdev as degraded instead. 2376 */ 2377 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2378 vd->vdev_degraded = 1ULL; 2379 vd->vdev_faulted = 0ULL; 2380 2381 /* 2382 * If we reopen the device and it's not dead, only then do we 2383 * mark it degraded. 2384 */ 2385 vdev_reopen(tvd); 2386 2387 if (vdev_readable(vd)) 2388 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2389 } 2390 2391 return (spa_vdev_state_exit(spa, vd, 0)); 2392 } 2393 2394 /* 2395 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2396 * user that something is wrong. The vdev continues to operate as normal as far 2397 * as I/O is concerned. 2398 */ 2399 int 2400 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2401 { 2402 vdev_t *vd; 2403 2404 spa_vdev_state_enter(spa, SCL_NONE); 2405 2406 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2407 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2408 2409 if (!vd->vdev_ops->vdev_op_leaf) 2410 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2411 2412 /* 2413 * If the vdev is already faulted, then don't do anything. 2414 */ 2415 if (vd->vdev_faulted || vd->vdev_degraded) 2416 return (spa_vdev_state_exit(spa, NULL, 0)); 2417 2418 vd->vdev_degraded = 1ULL; 2419 if (!vdev_is_dead(vd)) 2420 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2421 aux); 2422 2423 return (spa_vdev_state_exit(spa, vd, 0)); 2424 } 2425 2426 /* 2427 * Online the given vdev. 2428 * 2429 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2430 * spare device should be detached when the device finishes resilvering. 2431 * Second, the online should be treated like a 'test' online case, so no FMA 2432 * events are generated if the device fails to open. 2433 */ 2434 int 2435 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2436 { 2437 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2438 boolean_t postevent = B_FALSE; 2439 2440 spa_vdev_state_enter(spa, SCL_NONE); 2441 2442 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2443 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2444 2445 if (!vd->vdev_ops->vdev_op_leaf) 2446 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2447 2448 postevent = 2449 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2450 B_TRUE : B_FALSE; 2451 2452 tvd = vd->vdev_top; 2453 vd->vdev_offline = B_FALSE; 2454 vd->vdev_tmpoffline = B_FALSE; 2455 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2456 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2457 2458 /* XXX - L2ARC 1.0 does not support expansion */ 2459 if (!vd->vdev_aux) { 2460 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2461 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2462 } 2463 2464 vdev_reopen(tvd); 2465 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2466 2467 if (!vd->vdev_aux) { 2468 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2469 pvd->vdev_expanding = B_FALSE; 2470 } 2471 2472 if (newstate) 2473 *newstate = vd->vdev_state; 2474 if ((flags & ZFS_ONLINE_UNSPARE) && 2475 !vdev_is_dead(vd) && vd->vdev_parent && 2476 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2477 vd->vdev_parent->vdev_child[0] == vd) 2478 vd->vdev_unspare = B_TRUE; 2479 2480 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2481 2482 /* XXX - L2ARC 1.0 does not support expansion */ 2483 if (vd->vdev_aux) 2484 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2485 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2486 } 2487 2488 if (postevent) 2489 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2490 2491 return (spa_vdev_state_exit(spa, vd, 0)); 2492 } 2493 2494 static int 2495 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2496 { 2497 vdev_t *vd, *tvd; 2498 int error = 0; 2499 uint64_t generation; 2500 metaslab_group_t *mg; 2501 2502 top: 2503 spa_vdev_state_enter(spa, SCL_ALLOC); 2504 2505 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2506 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2507 2508 if (!vd->vdev_ops->vdev_op_leaf) 2509 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2510 2511 tvd = vd->vdev_top; 2512 mg = tvd->vdev_mg; 2513 generation = spa->spa_config_generation + 1; 2514 2515 /* 2516 * If the device isn't already offline, try to offline it. 2517 */ 2518 if (!vd->vdev_offline) { 2519 /* 2520 * If this device has the only valid copy of some data, 2521 * don't allow it to be offlined. Log devices are always 2522 * expendable. 2523 */ 2524 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2525 vdev_dtl_required(vd)) 2526 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2527 2528 /* 2529 * If the top-level is a slog and it has had allocations 2530 * then proceed. We check that the vdev's metaslab group 2531 * is not NULL since it's possible that we may have just 2532 * added this vdev but not yet initialized its metaslabs. 2533 */ 2534 if (tvd->vdev_islog && mg != NULL) { 2535 /* 2536 * Prevent any future allocations. 2537 */ 2538 metaslab_group_passivate(mg); 2539 (void) spa_vdev_state_exit(spa, vd, 0); 2540 2541 error = spa_offline_log(spa); 2542 2543 spa_vdev_state_enter(spa, SCL_ALLOC); 2544 2545 /* 2546 * Check to see if the config has changed. 2547 */ 2548 if (error || generation != spa->spa_config_generation) { 2549 metaslab_group_activate(mg); 2550 if (error) 2551 return (spa_vdev_state_exit(spa, 2552 vd, error)); 2553 (void) spa_vdev_state_exit(spa, vd, 0); 2554 goto top; 2555 } 2556 ASSERT0(tvd->vdev_stat.vs_alloc); 2557 } 2558 2559 /* 2560 * Offline this device and reopen its top-level vdev. 2561 * If the top-level vdev is a log device then just offline 2562 * it. Otherwise, if this action results in the top-level 2563 * vdev becoming unusable, undo it and fail the request. 2564 */ 2565 vd->vdev_offline = B_TRUE; 2566 vdev_reopen(tvd); 2567 2568 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2569 vdev_is_dead(tvd)) { 2570 vd->vdev_offline = B_FALSE; 2571 vdev_reopen(tvd); 2572 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2573 } 2574 2575 /* 2576 * Add the device back into the metaslab rotor so that 2577 * once we online the device it's open for business. 2578 */ 2579 if (tvd->vdev_islog && mg != NULL) 2580 metaslab_group_activate(mg); 2581 } 2582 2583 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2584 2585 return (spa_vdev_state_exit(spa, vd, 0)); 2586 } 2587 2588 int 2589 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2590 { 2591 int error; 2592 2593 mutex_enter(&spa->spa_vdev_top_lock); 2594 error = vdev_offline_locked(spa, guid, flags); 2595 mutex_exit(&spa->spa_vdev_top_lock); 2596 2597 return (error); 2598 } 2599 2600 /* 2601 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2602 * vdev_offline(), we assume the spa config is locked. We also clear all 2603 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2604 */ 2605 void 2606 vdev_clear(spa_t *spa, vdev_t *vd) 2607 { 2608 vdev_t *rvd = spa->spa_root_vdev; 2609 2610 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2611 2612 if (vd == NULL) 2613 vd = rvd; 2614 2615 vd->vdev_stat.vs_read_errors = 0; 2616 vd->vdev_stat.vs_write_errors = 0; 2617 vd->vdev_stat.vs_checksum_errors = 0; 2618 2619 for (int c = 0; c < vd->vdev_children; c++) 2620 vdev_clear(spa, vd->vdev_child[c]); 2621 2622 /* 2623 * If we're in the FAULTED state or have experienced failed I/O, then 2624 * clear the persistent state and attempt to reopen the device. We 2625 * also mark the vdev config dirty, so that the new faulted state is 2626 * written out to disk. 2627 */ 2628 if (vd->vdev_faulted || vd->vdev_degraded || 2629 !vdev_readable(vd) || !vdev_writeable(vd)) { 2630 2631 /* 2632 * When reopening in reponse to a clear event, it may be due to 2633 * a fmadm repair request. In this case, if the device is 2634 * still broken, we want to still post the ereport again. 2635 */ 2636 vd->vdev_forcefault = B_TRUE; 2637 2638 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2639 vd->vdev_cant_read = B_FALSE; 2640 vd->vdev_cant_write = B_FALSE; 2641 2642 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2643 2644 vd->vdev_forcefault = B_FALSE; 2645 2646 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2647 vdev_state_dirty(vd->vdev_top); 2648 2649 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2650 spa_async_request(spa, SPA_ASYNC_RESILVER); 2651 2652 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2653 } 2654 2655 /* 2656 * When clearing a FMA-diagnosed fault, we always want to 2657 * unspare the device, as we assume that the original spare was 2658 * done in response to the FMA fault. 2659 */ 2660 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2661 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2662 vd->vdev_parent->vdev_child[0] == vd) 2663 vd->vdev_unspare = B_TRUE; 2664 } 2665 2666 boolean_t 2667 vdev_is_dead(vdev_t *vd) 2668 { 2669 /* 2670 * Holes and missing devices are always considered "dead". 2671 * This simplifies the code since we don't have to check for 2672 * these types of devices in the various code paths. 2673 * Instead we rely on the fact that we skip over dead devices 2674 * before issuing I/O to them. 2675 */ 2676 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2677 vd->vdev_ops == &vdev_missing_ops); 2678 } 2679 2680 boolean_t 2681 vdev_readable(vdev_t *vd) 2682 { 2683 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2684 } 2685 2686 boolean_t 2687 vdev_writeable(vdev_t *vd) 2688 { 2689 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2690 } 2691 2692 boolean_t 2693 vdev_allocatable(vdev_t *vd) 2694 { 2695 uint64_t state = vd->vdev_state; 2696 2697 /* 2698 * We currently allow allocations from vdevs which may be in the 2699 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2700 * fails to reopen then we'll catch it later when we're holding 2701 * the proper locks. Note that we have to get the vdev state 2702 * in a local variable because although it changes atomically, 2703 * we're asking two separate questions about it. 2704 */ 2705 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2706 !vd->vdev_cant_write && !vd->vdev_ishole); 2707 } 2708 2709 boolean_t 2710 vdev_accessible(vdev_t *vd, zio_t *zio) 2711 { 2712 ASSERT(zio->io_vd == vd); 2713 2714 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2715 return (B_FALSE); 2716 2717 if (zio->io_type == ZIO_TYPE_READ) 2718 return (!vd->vdev_cant_read); 2719 2720 if (zio->io_type == ZIO_TYPE_WRITE) 2721 return (!vd->vdev_cant_write); 2722 2723 return (B_TRUE); 2724 } 2725 2726 /* 2727 * Get statistics for the given vdev. 2728 */ 2729 void 2730 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2731 { 2732 spa_t *spa = vd->vdev_spa; 2733 vdev_t *rvd = spa->spa_root_vdev; 2734 2735 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2736 2737 mutex_enter(&vd->vdev_stat_lock); 2738 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2739 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2740 vs->vs_state = vd->vdev_state; 2741 vs->vs_rsize = vdev_get_min_asize(vd); 2742 if (vd->vdev_ops->vdev_op_leaf) 2743 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2744 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2745 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2746 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2747 } 2748 2749 /* 2750 * If we're getting stats on the root vdev, aggregate the I/O counts 2751 * over all top-level vdevs (i.e. the direct children of the root). 2752 */ 2753 if (vd == rvd) { 2754 for (int c = 0; c < rvd->vdev_children; c++) { 2755 vdev_t *cvd = rvd->vdev_child[c]; 2756 vdev_stat_t *cvs = &cvd->vdev_stat; 2757 2758 for (int t = 0; t < ZIO_TYPES; t++) { 2759 vs->vs_ops[t] += cvs->vs_ops[t]; 2760 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2761 } 2762 cvs->vs_scan_removing = cvd->vdev_removing; 2763 } 2764 } 2765 mutex_exit(&vd->vdev_stat_lock); 2766 } 2767 2768 void 2769 vdev_clear_stats(vdev_t *vd) 2770 { 2771 mutex_enter(&vd->vdev_stat_lock); 2772 vd->vdev_stat.vs_space = 0; 2773 vd->vdev_stat.vs_dspace = 0; 2774 vd->vdev_stat.vs_alloc = 0; 2775 mutex_exit(&vd->vdev_stat_lock); 2776 } 2777 2778 void 2779 vdev_scan_stat_init(vdev_t *vd) 2780 { 2781 vdev_stat_t *vs = &vd->vdev_stat; 2782 2783 for (int c = 0; c < vd->vdev_children; c++) 2784 vdev_scan_stat_init(vd->vdev_child[c]); 2785 2786 mutex_enter(&vd->vdev_stat_lock); 2787 vs->vs_scan_processed = 0; 2788 mutex_exit(&vd->vdev_stat_lock); 2789 } 2790 2791 void 2792 vdev_stat_update(zio_t *zio, uint64_t psize) 2793 { 2794 spa_t *spa = zio->io_spa; 2795 vdev_t *rvd = spa->spa_root_vdev; 2796 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2797 vdev_t *pvd; 2798 uint64_t txg = zio->io_txg; 2799 vdev_stat_t *vs = &vd->vdev_stat; 2800 zio_type_t type = zio->io_type; 2801 int flags = zio->io_flags; 2802 2803 /* 2804 * If this i/o is a gang leader, it didn't do any actual work. 2805 */ 2806 if (zio->io_gang_tree) 2807 return; 2808 2809 if (zio->io_error == 0) { 2810 /* 2811 * If this is a root i/o, don't count it -- we've already 2812 * counted the top-level vdevs, and vdev_get_stats() will 2813 * aggregate them when asked. This reduces contention on 2814 * the root vdev_stat_lock and implicitly handles blocks 2815 * that compress away to holes, for which there is no i/o. 2816 * (Holes never create vdev children, so all the counters 2817 * remain zero, which is what we want.) 2818 * 2819 * Note: this only applies to successful i/o (io_error == 0) 2820 * because unlike i/o counts, errors are not additive. 2821 * When reading a ditto block, for example, failure of 2822 * one top-level vdev does not imply a root-level error. 2823 */ 2824 if (vd == rvd) 2825 return; 2826 2827 ASSERT(vd == zio->io_vd); 2828 2829 if (flags & ZIO_FLAG_IO_BYPASS) 2830 return; 2831 2832 mutex_enter(&vd->vdev_stat_lock); 2833 2834 if (flags & ZIO_FLAG_IO_REPAIR) { 2835 if (flags & ZIO_FLAG_SCAN_THREAD) { 2836 dsl_scan_phys_t *scn_phys = 2837 &spa->spa_dsl_pool->dp_scan->scn_phys; 2838 uint64_t *processed = &scn_phys->scn_processed; 2839 2840 /* XXX cleanup? */ 2841 if (vd->vdev_ops->vdev_op_leaf) 2842 atomic_add_64(processed, psize); 2843 vs->vs_scan_processed += psize; 2844 } 2845 2846 if (flags & ZIO_FLAG_SELF_HEAL) 2847 vs->vs_self_healed += psize; 2848 } 2849 2850 vs->vs_ops[type]++; 2851 vs->vs_bytes[type] += psize; 2852 2853 mutex_exit(&vd->vdev_stat_lock); 2854 return; 2855 } 2856 2857 if (flags & ZIO_FLAG_SPECULATIVE) 2858 return; 2859 2860 /* 2861 * If this is an I/O error that is going to be retried, then ignore the 2862 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2863 * hard errors, when in reality they can happen for any number of 2864 * innocuous reasons (bus resets, MPxIO link failure, etc). 2865 */ 2866 if (zio->io_error == EIO && 2867 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2868 return; 2869 2870 /* 2871 * Intent logs writes won't propagate their error to the root 2872 * I/O so don't mark these types of failures as pool-level 2873 * errors. 2874 */ 2875 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2876 return; 2877 2878 mutex_enter(&vd->vdev_stat_lock); 2879 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2880 if (zio->io_error == ECKSUM) 2881 vs->vs_checksum_errors++; 2882 else 2883 vs->vs_read_errors++; 2884 } 2885 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2886 vs->vs_write_errors++; 2887 mutex_exit(&vd->vdev_stat_lock); 2888 2889 if (type == ZIO_TYPE_WRITE && txg != 0 && 2890 (!(flags & ZIO_FLAG_IO_REPAIR) || 2891 (flags & ZIO_FLAG_SCAN_THREAD) || 2892 spa->spa_claiming)) { 2893 /* 2894 * This is either a normal write (not a repair), or it's 2895 * a repair induced by the scrub thread, or it's a repair 2896 * made by zil_claim() during spa_load() in the first txg. 2897 * In the normal case, we commit the DTL change in the same 2898 * txg as the block was born. In the scrub-induced repair 2899 * case, we know that scrubs run in first-pass syncing context, 2900 * so we commit the DTL change in spa_syncing_txg(spa). 2901 * In the zil_claim() case, we commit in spa_first_txg(spa). 2902 * 2903 * We currently do not make DTL entries for failed spontaneous 2904 * self-healing writes triggered by normal (non-scrubbing) 2905 * reads, because we have no transactional context in which to 2906 * do so -- and it's not clear that it'd be desirable anyway. 2907 */ 2908 if (vd->vdev_ops->vdev_op_leaf) { 2909 uint64_t commit_txg = txg; 2910 if (flags & ZIO_FLAG_SCAN_THREAD) { 2911 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2912 ASSERT(spa_sync_pass(spa) == 1); 2913 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2914 commit_txg = spa_syncing_txg(spa); 2915 } else if (spa->spa_claiming) { 2916 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2917 commit_txg = spa_first_txg(spa); 2918 } 2919 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2920 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2921 return; 2922 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2923 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2924 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2925 } 2926 if (vd != rvd) 2927 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2928 } 2929 } 2930 2931 /* 2932 * Update the in-core space usage stats for this vdev, its metaslab class, 2933 * and the root vdev. 2934 */ 2935 void 2936 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2937 int64_t space_delta) 2938 { 2939 int64_t dspace_delta = space_delta; 2940 spa_t *spa = vd->vdev_spa; 2941 vdev_t *rvd = spa->spa_root_vdev; 2942 metaslab_group_t *mg = vd->vdev_mg; 2943 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2944 2945 ASSERT(vd == vd->vdev_top); 2946 2947 /* 2948 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2949 * factor. We must calculate this here and not at the root vdev 2950 * because the root vdev's psize-to-asize is simply the max of its 2951 * childrens', thus not accurate enough for us. 2952 */ 2953 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2954 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2955 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2956 vd->vdev_deflate_ratio; 2957 2958 mutex_enter(&vd->vdev_stat_lock); 2959 vd->vdev_stat.vs_alloc += alloc_delta; 2960 vd->vdev_stat.vs_space += space_delta; 2961 vd->vdev_stat.vs_dspace += dspace_delta; 2962 mutex_exit(&vd->vdev_stat_lock); 2963 2964 if (mc == spa_normal_class(spa)) { 2965 mutex_enter(&rvd->vdev_stat_lock); 2966 rvd->vdev_stat.vs_alloc += alloc_delta; 2967 rvd->vdev_stat.vs_space += space_delta; 2968 rvd->vdev_stat.vs_dspace += dspace_delta; 2969 mutex_exit(&rvd->vdev_stat_lock); 2970 } 2971 2972 if (mc != NULL) { 2973 ASSERT(rvd == vd->vdev_parent); 2974 ASSERT(vd->vdev_ms_count != 0); 2975 2976 metaslab_class_space_update(mc, 2977 alloc_delta, defer_delta, space_delta, dspace_delta); 2978 } 2979 } 2980 2981 /* 2982 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2983 * so that it will be written out next time the vdev configuration is synced. 2984 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2985 */ 2986 void 2987 vdev_config_dirty(vdev_t *vd) 2988 { 2989 spa_t *spa = vd->vdev_spa; 2990 vdev_t *rvd = spa->spa_root_vdev; 2991 int c; 2992 2993 ASSERT(spa_writeable(spa)); 2994 2995 /* 2996 * If this is an aux vdev (as with l2cache and spare devices), then we 2997 * update the vdev config manually and set the sync flag. 2998 */ 2999 if (vd->vdev_aux != NULL) { 3000 spa_aux_vdev_t *sav = vd->vdev_aux; 3001 nvlist_t **aux; 3002 uint_t naux; 3003 3004 for (c = 0; c < sav->sav_count; c++) { 3005 if (sav->sav_vdevs[c] == vd) 3006 break; 3007 } 3008 3009 if (c == sav->sav_count) { 3010 /* 3011 * We're being removed. There's nothing more to do. 3012 */ 3013 ASSERT(sav->sav_sync == B_TRUE); 3014 return; 3015 } 3016 3017 sav->sav_sync = B_TRUE; 3018 3019 if (nvlist_lookup_nvlist_array(sav->sav_config, 3020 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3021 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3022 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3023 } 3024 3025 ASSERT(c < naux); 3026 3027 /* 3028 * Setting the nvlist in the middle if the array is a little 3029 * sketchy, but it will work. 3030 */ 3031 nvlist_free(aux[c]); 3032 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3033 3034 return; 3035 } 3036 3037 /* 3038 * The dirty list is protected by the SCL_CONFIG lock. The caller 3039 * must either hold SCL_CONFIG as writer, or must be the sync thread 3040 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3041 * so this is sufficient to ensure mutual exclusion. 3042 */ 3043 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3044 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3045 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3046 3047 if (vd == rvd) { 3048 for (c = 0; c < rvd->vdev_children; c++) 3049 vdev_config_dirty(rvd->vdev_child[c]); 3050 } else { 3051 ASSERT(vd == vd->vdev_top); 3052 3053 if (!list_link_active(&vd->vdev_config_dirty_node) && 3054 !vd->vdev_ishole) 3055 list_insert_head(&spa->spa_config_dirty_list, vd); 3056 } 3057 } 3058 3059 void 3060 vdev_config_clean(vdev_t *vd) 3061 { 3062 spa_t *spa = vd->vdev_spa; 3063 3064 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3065 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3066 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3067 3068 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3069 list_remove(&spa->spa_config_dirty_list, vd); 3070 } 3071 3072 /* 3073 * Mark a top-level vdev's state as dirty, so that the next pass of 3074 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3075 * the state changes from larger config changes because they require 3076 * much less locking, and are often needed for administrative actions. 3077 */ 3078 void 3079 vdev_state_dirty(vdev_t *vd) 3080 { 3081 spa_t *spa = vd->vdev_spa; 3082 3083 ASSERT(spa_writeable(spa)); 3084 ASSERT(vd == vd->vdev_top); 3085 3086 /* 3087 * The state list is protected by the SCL_STATE lock. The caller 3088 * must either hold SCL_STATE as writer, or must be the sync thread 3089 * (which holds SCL_STATE as reader). There's only one sync thread, 3090 * so this is sufficient to ensure mutual exclusion. 3091 */ 3092 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3093 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3094 spa_config_held(spa, SCL_STATE, RW_READER))); 3095 3096 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3097 list_insert_head(&spa->spa_state_dirty_list, vd); 3098 } 3099 3100 void 3101 vdev_state_clean(vdev_t *vd) 3102 { 3103 spa_t *spa = vd->vdev_spa; 3104 3105 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3106 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3107 spa_config_held(spa, SCL_STATE, RW_READER))); 3108 3109 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3110 list_remove(&spa->spa_state_dirty_list, vd); 3111 } 3112 3113 /* 3114 * Propagate vdev state up from children to parent. 3115 */ 3116 void 3117 vdev_propagate_state(vdev_t *vd) 3118 { 3119 spa_t *spa = vd->vdev_spa; 3120 vdev_t *rvd = spa->spa_root_vdev; 3121 int degraded = 0, faulted = 0; 3122 int corrupted = 0; 3123 vdev_t *child; 3124 3125 if (vd->vdev_children > 0) { 3126 for (int c = 0; c < vd->vdev_children; c++) { 3127 child = vd->vdev_child[c]; 3128 3129 /* 3130 * Don't factor holes into the decision. 3131 */ 3132 if (child->vdev_ishole) 3133 continue; 3134 3135 if (!vdev_readable(child) || 3136 (!vdev_writeable(child) && spa_writeable(spa))) { 3137 /* 3138 * Root special: if there is a top-level log 3139 * device, treat the root vdev as if it were 3140 * degraded. 3141 */ 3142 if (child->vdev_islog && vd == rvd) 3143 degraded++; 3144 else 3145 faulted++; 3146 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3147 degraded++; 3148 } 3149 3150 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3151 corrupted++; 3152 } 3153 3154 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3155 3156 /* 3157 * Root special: if there is a top-level vdev that cannot be 3158 * opened due to corrupted metadata, then propagate the root 3159 * vdev's aux state as 'corrupt' rather than 'insufficient 3160 * replicas'. 3161 */ 3162 if (corrupted && vd == rvd && 3163 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3164 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3165 VDEV_AUX_CORRUPT_DATA); 3166 } 3167 3168 if (vd->vdev_parent) 3169 vdev_propagate_state(vd->vdev_parent); 3170 } 3171 3172 /* 3173 * Set a vdev's state. If this is during an open, we don't update the parent 3174 * state, because we're in the process of opening children depth-first. 3175 * Otherwise, we propagate the change to the parent. 3176 * 3177 * If this routine places a device in a faulted state, an appropriate ereport is 3178 * generated. 3179 */ 3180 void 3181 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3182 { 3183 uint64_t save_state; 3184 spa_t *spa = vd->vdev_spa; 3185 3186 if (state == vd->vdev_state) { 3187 vd->vdev_stat.vs_aux = aux; 3188 return; 3189 } 3190 3191 save_state = vd->vdev_state; 3192 3193 vd->vdev_state = state; 3194 vd->vdev_stat.vs_aux = aux; 3195 3196 /* 3197 * If we are setting the vdev state to anything but an open state, then 3198 * always close the underlying device unless the device has requested 3199 * a delayed close (i.e. we're about to remove or fault the device). 3200 * Otherwise, we keep accessible but invalid devices open forever. 3201 * We don't call vdev_close() itself, because that implies some extra 3202 * checks (offline, etc) that we don't want here. This is limited to 3203 * leaf devices, because otherwise closing the device will affect other 3204 * children. 3205 */ 3206 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3207 vd->vdev_ops->vdev_op_leaf) 3208 vd->vdev_ops->vdev_op_close(vd); 3209 3210 /* 3211 * If we have brought this vdev back into service, we need 3212 * to notify fmd so that it can gracefully repair any outstanding 3213 * cases due to a missing device. We do this in all cases, even those 3214 * that probably don't correlate to a repaired fault. This is sure to 3215 * catch all cases, and we let the zfs-retire agent sort it out. If 3216 * this is a transient state it's OK, as the retire agent will 3217 * double-check the state of the vdev before repairing it. 3218 */ 3219 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3220 vd->vdev_prevstate != state) 3221 zfs_post_state_change(spa, vd); 3222 3223 if (vd->vdev_removed && 3224 state == VDEV_STATE_CANT_OPEN && 3225 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3226 /* 3227 * If the previous state is set to VDEV_STATE_REMOVED, then this 3228 * device was previously marked removed and someone attempted to 3229 * reopen it. If this failed due to a nonexistent device, then 3230 * keep the device in the REMOVED state. We also let this be if 3231 * it is one of our special test online cases, which is only 3232 * attempting to online the device and shouldn't generate an FMA 3233 * fault. 3234 */ 3235 vd->vdev_state = VDEV_STATE_REMOVED; 3236 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3237 } else if (state == VDEV_STATE_REMOVED) { 3238 vd->vdev_removed = B_TRUE; 3239 } else if (state == VDEV_STATE_CANT_OPEN) { 3240 /* 3241 * If we fail to open a vdev during an import or recovery, we 3242 * mark it as "not available", which signifies that it was 3243 * never there to begin with. Failure to open such a device 3244 * is not considered an error. 3245 */ 3246 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3247 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3248 vd->vdev_ops->vdev_op_leaf) 3249 vd->vdev_not_present = 1; 3250 3251 /* 3252 * Post the appropriate ereport. If the 'prevstate' field is 3253 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3254 * that this is part of a vdev_reopen(). In this case, we don't 3255 * want to post the ereport if the device was already in the 3256 * CANT_OPEN state beforehand. 3257 * 3258 * If the 'checkremove' flag is set, then this is an attempt to 3259 * online the device in response to an insertion event. If we 3260 * hit this case, then we have detected an insertion event for a 3261 * faulted or offline device that wasn't in the removed state. 3262 * In this scenario, we don't post an ereport because we are 3263 * about to replace the device, or attempt an online with 3264 * vdev_forcefault, which will generate the fault for us. 3265 */ 3266 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3267 !vd->vdev_not_present && !vd->vdev_checkremove && 3268 vd != spa->spa_root_vdev) { 3269 const char *class; 3270 3271 switch (aux) { 3272 case VDEV_AUX_OPEN_FAILED: 3273 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3274 break; 3275 case VDEV_AUX_CORRUPT_DATA: 3276 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3277 break; 3278 case VDEV_AUX_NO_REPLICAS: 3279 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3280 break; 3281 case VDEV_AUX_BAD_GUID_SUM: 3282 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3283 break; 3284 case VDEV_AUX_TOO_SMALL: 3285 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3286 break; 3287 case VDEV_AUX_BAD_LABEL: 3288 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3289 break; 3290 default: 3291 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3292 } 3293 3294 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3295 } 3296 3297 /* Erase any notion of persistent removed state */ 3298 vd->vdev_removed = B_FALSE; 3299 } else { 3300 vd->vdev_removed = B_FALSE; 3301 } 3302 3303 if (!isopen && vd->vdev_parent) 3304 vdev_propagate_state(vd->vdev_parent); 3305 } 3306 3307 /* 3308 * Check the vdev configuration to ensure that it's capable of supporting 3309 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3310 * In addition, only a single top-level vdev is allowed and none of the leaves 3311 * can be wholedisks. 3312 */ 3313 boolean_t 3314 vdev_is_bootable(vdev_t *vd) 3315 { 3316 if (!vd->vdev_ops->vdev_op_leaf) { 3317 char *vdev_type = vd->vdev_ops->vdev_op_type; 3318 3319 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3320 vd->vdev_children > 1) { 3321 return (B_FALSE); 3322 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3323 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3324 return (B_FALSE); 3325 } 3326 } 3327 3328 for (int c = 0; c < vd->vdev_children; c++) { 3329 if (!vdev_is_bootable(vd->vdev_child[c])) 3330 return (B_FALSE); 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * Load the state from the original vdev tree (ovd) which 3337 * we've retrieved from the MOS config object. If the original 3338 * vdev was offline or faulted then we transfer that state to the 3339 * device in the current vdev tree (nvd). 3340 */ 3341 void 3342 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3343 { 3344 spa_t *spa = nvd->vdev_spa; 3345 3346 ASSERT(nvd->vdev_top->vdev_islog); 3347 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3348 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3349 3350 for (int c = 0; c < nvd->vdev_children; c++) 3351 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3352 3353 if (nvd->vdev_ops->vdev_op_leaf) { 3354 /* 3355 * Restore the persistent vdev state 3356 */ 3357 nvd->vdev_offline = ovd->vdev_offline; 3358 nvd->vdev_faulted = ovd->vdev_faulted; 3359 nvd->vdev_degraded = ovd->vdev_degraded; 3360 nvd->vdev_removed = ovd->vdev_removed; 3361 } 3362 } 3363 3364 /* 3365 * Determine if a log device has valid content. If the vdev was 3366 * removed or faulted in the MOS config then we know that 3367 * the content on the log device has already been written to the pool. 3368 */ 3369 boolean_t 3370 vdev_log_state_valid(vdev_t *vd) 3371 { 3372 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3373 !vd->vdev_removed) 3374 return (B_TRUE); 3375 3376 for (int c = 0; c < vd->vdev_children; c++) 3377 if (vdev_log_state_valid(vd->vdev_child[c])) 3378 return (B_TRUE); 3379 3380 return (B_FALSE); 3381 } 3382 3383 /* 3384 * Expand a vdev if possible. 3385 */ 3386 void 3387 vdev_expand(vdev_t *vd, uint64_t txg) 3388 { 3389 ASSERT(vd->vdev_top == vd); 3390 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3391 3392 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3393 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3394 vdev_config_dirty(vd); 3395 } 3396 } 3397 3398 /* 3399 * Split a vdev. 3400 */ 3401 void 3402 vdev_split(vdev_t *vd) 3403 { 3404 vdev_t *cvd, *pvd = vd->vdev_parent; 3405 3406 vdev_remove_child(pvd, vd); 3407 vdev_compact_children(pvd); 3408 3409 cvd = pvd->vdev_child[0]; 3410 if (pvd->vdev_children == 1) { 3411 vdev_remove_parent(cvd); 3412 cvd->vdev_splitting = B_TRUE; 3413 } 3414 vdev_propagate_state(cvd); 3415 } 3416 3417 void 3418 vdev_deadman(vdev_t *vd) 3419 { 3420 for (int c = 0; c < vd->vdev_children; c++) { 3421 vdev_t *cvd = vd->vdev_child[c]; 3422 3423 vdev_deadman(cvd); 3424 } 3425 3426 if (vd->vdev_ops->vdev_op_leaf) { 3427 vdev_queue_t *vq = &vd->vdev_queue; 3428 3429 mutex_enter(&vq->vq_lock); 3430 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3431 spa_t *spa = vd->vdev_spa; 3432 zio_t *fio; 3433 uint64_t delta; 3434 3435 /* 3436 * Look at the head of all the pending queues, 3437 * if any I/O has been outstanding for longer than 3438 * the spa_deadman_synctime we panic the system. 3439 */ 3440 fio = avl_first(&vq->vq_active_tree); 3441 delta = gethrtime() - fio->io_timestamp; 3442 if (delta > spa_deadman_synctime(spa)) { 3443 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3444 "delta %lluns, last io %lluns", 3445 fio->io_timestamp, delta, 3446 vq->vq_io_complete_ts); 3447 fm_panic("I/O to pool '%s' appears to be " 3448 "hung.", spa_name(spa)); 3449 } 3450 } 3451 mutex_exit(&vq->vq_lock); 3452 } 3453 } 3454