xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 80309ff2cfc900b5f6acfe1d7f72cf67baf81fbe)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 
48 /*
49  * Virtual device management.
50  */
51 
52 static vdev_ops_t *vdev_ops_table[] = {
53 	&vdev_root_ops,
54 	&vdev_raidz_ops,
55 	&vdev_mirror_ops,
56 	&vdev_replacing_ops,
57 	&vdev_spare_ops,
58 	&vdev_disk_ops,
59 	&vdev_file_ops,
60 	&vdev_missing_ops,
61 	&vdev_hole_ops,
62 	NULL
63 };
64 
65 /* maximum scrub/resilver I/O queue per leaf vdev */
66 int zfs_scrub_limit = 10;
67 
68 /*
69  * When a vdev is added, it will be divided into approximately (but no
70  * more than) this number of metaslabs.
71  */
72 int metaslabs_per_vdev = 200;
73 
74 /*
75  * Given a vdev type, return the appropriate ops vector.
76  */
77 static vdev_ops_t *
78 vdev_getops(const char *type)
79 {
80 	vdev_ops_t *ops, **opspp;
81 
82 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
83 		if (strcmp(ops->vdev_op_type, type) == 0)
84 			break;
85 
86 	return (ops);
87 }
88 
89 /*
90  * Default asize function: return the MAX of psize with the asize of
91  * all children.  This is what's used by anything other than RAID-Z.
92  */
93 uint64_t
94 vdev_default_asize(vdev_t *vd, uint64_t psize)
95 {
96 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
97 	uint64_t csize;
98 
99 	for (int c = 0; c < vd->vdev_children; c++) {
100 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 		asize = MAX(asize, csize);
102 	}
103 
104 	return (asize);
105 }
106 
107 /*
108  * Get the minimum allocatable size. We define the allocatable size as
109  * the vdev's asize rounded to the nearest metaslab. This allows us to
110  * replace or attach devices which don't have the same physical size but
111  * can still satisfy the same number of allocations.
112  */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116 	vdev_t *pvd = vd->vdev_parent;
117 
118 	/*
119 	 * If our parent is NULL (inactive spare or cache) or is the root,
120 	 * just return our own asize.
121 	 */
122 	if (pvd == NULL)
123 		return (vd->vdev_asize);
124 
125 	/*
126 	 * The top-level vdev just returns the allocatable size rounded
127 	 * to the nearest metaslab.
128 	 */
129 	if (vd == vd->vdev_top)
130 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131 
132 	/*
133 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 	 * so each child must provide at least 1/Nth of its asize.
135 	 */
136 	if (pvd->vdev_ops == &vdev_raidz_ops)
137 		return (pvd->vdev_min_asize / pvd->vdev_children);
138 
139 	return (pvd->vdev_min_asize);
140 }
141 
142 void
143 vdev_set_min_asize(vdev_t *vd)
144 {
145 	vd->vdev_min_asize = vdev_get_min_asize(vd);
146 
147 	for (int c = 0; c < vd->vdev_children; c++)
148 		vdev_set_min_asize(vd->vdev_child[c]);
149 }
150 
151 vdev_t *
152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 	vdev_t *rvd = spa->spa_root_vdev;
155 
156 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157 
158 	if (vdev < rvd->vdev_children) {
159 		ASSERT(rvd->vdev_child[vdev] != NULL);
160 		return (rvd->vdev_child[vdev]);
161 	}
162 
163 	return (NULL);
164 }
165 
166 vdev_t *
167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 	vdev_t *mvd;
170 
171 	if (vd->vdev_guid == guid)
172 		return (vd);
173 
174 	for (int c = 0; c < vd->vdev_children; c++)
175 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 		    NULL)
177 			return (mvd);
178 
179 	return (NULL);
180 }
181 
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 	int n = 0;
186 
187 	if (vd->vdev_ops->vdev_op_leaf)
188 		return (1);
189 
190 	for (int c = 0; c < vd->vdev_children; c++)
191 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
192 
193 	return (n);
194 }
195 
196 int
197 vdev_count_leaves(spa_t *spa)
198 {
199 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
200 }
201 
202 void
203 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
204 {
205 	size_t oldsize, newsize;
206 	uint64_t id = cvd->vdev_id;
207 	vdev_t **newchild;
208 	spa_t *spa = cvd->vdev_spa;
209 
210 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 	ASSERT(cvd->vdev_parent == NULL);
212 
213 	cvd->vdev_parent = pvd;
214 
215 	if (pvd == NULL)
216 		return;
217 
218 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219 
220 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 	newsize = pvd->vdev_children * sizeof (vdev_t *);
223 
224 	newchild = kmem_zalloc(newsize, KM_SLEEP);
225 	if (pvd->vdev_child != NULL) {
226 		bcopy(pvd->vdev_child, newchild, oldsize);
227 		kmem_free(pvd->vdev_child, oldsize);
228 	}
229 
230 	pvd->vdev_child = newchild;
231 	pvd->vdev_child[id] = cvd;
232 
233 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235 
236 	/*
237 	 * Walk up all ancestors to update guid sum.
238 	 */
239 	for (; pvd != NULL; pvd = pvd->vdev_parent)
240 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242 
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 	int c;
247 	uint_t id = cvd->vdev_id;
248 
249 	ASSERT(cvd->vdev_parent == pvd);
250 
251 	if (pvd == NULL)
252 		return;
253 
254 	ASSERT(id < pvd->vdev_children);
255 	ASSERT(pvd->vdev_child[id] == cvd);
256 
257 	pvd->vdev_child[id] = NULL;
258 	cvd->vdev_parent = NULL;
259 
260 	for (c = 0; c < pvd->vdev_children; c++)
261 		if (pvd->vdev_child[c])
262 			break;
263 
264 	if (c == pvd->vdev_children) {
265 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 		pvd->vdev_child = NULL;
267 		pvd->vdev_children = 0;
268 	}
269 
270 	/*
271 	 * Walk up all ancestors to update guid sum.
272 	 */
273 	for (; pvd != NULL; pvd = pvd->vdev_parent)
274 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276 
277 /*
278  * Remove any holes in the child array.
279  */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283 	vdev_t **newchild, *cvd;
284 	int oldc = pvd->vdev_children;
285 	int newc;
286 
287 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
288 
289 	for (int c = newc = 0; c < oldc; c++)
290 		if (pvd->vdev_child[c])
291 			newc++;
292 
293 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
294 
295 	for (int c = newc = 0; c < oldc; c++) {
296 		if ((cvd = pvd->vdev_child[c]) != NULL) {
297 			newchild[newc] = cvd;
298 			cvd->vdev_id = newc++;
299 		}
300 	}
301 
302 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
303 	pvd->vdev_child = newchild;
304 	pvd->vdev_children = newc;
305 }
306 
307 /*
308  * Allocate and minimally initialize a vdev_t.
309  */
310 vdev_t *
311 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
312 {
313 	vdev_t *vd;
314 
315 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
316 
317 	if (spa->spa_root_vdev == NULL) {
318 		ASSERT(ops == &vdev_root_ops);
319 		spa->spa_root_vdev = vd;
320 		spa->spa_load_guid = spa_generate_guid(NULL);
321 	}
322 
323 	if (guid == 0 && ops != &vdev_hole_ops) {
324 		if (spa->spa_root_vdev == vd) {
325 			/*
326 			 * The root vdev's guid will also be the pool guid,
327 			 * which must be unique among all pools.
328 			 */
329 			guid = spa_generate_guid(NULL);
330 		} else {
331 			/*
332 			 * Any other vdev's guid must be unique within the pool.
333 			 */
334 			guid = spa_generate_guid(spa);
335 		}
336 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
337 	}
338 
339 	vd->vdev_spa = spa;
340 	vd->vdev_id = id;
341 	vd->vdev_guid = guid;
342 	vd->vdev_guid_sum = guid;
343 	vd->vdev_ops = ops;
344 	vd->vdev_state = VDEV_STATE_CLOSED;
345 	vd->vdev_ishole = (ops == &vdev_hole_ops);
346 
347 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
348 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
349 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
350 	for (int t = 0; t < DTL_TYPES; t++) {
351 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
352 		    &vd->vdev_dtl_lock);
353 	}
354 	txg_list_create(&vd->vdev_ms_list,
355 	    offsetof(struct metaslab, ms_txg_node));
356 	txg_list_create(&vd->vdev_dtl_list,
357 	    offsetof(struct vdev, vdev_dtl_node));
358 	vd->vdev_stat.vs_timestamp = gethrtime();
359 	vdev_queue_init(vd);
360 	vdev_cache_init(vd);
361 
362 	return (vd);
363 }
364 
365 /*
366  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
367  * creating a new vdev or loading an existing one - the behavior is slightly
368  * different for each case.
369  */
370 int
371 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
372     int alloctype)
373 {
374 	vdev_ops_t *ops;
375 	char *type;
376 	uint64_t guid = 0, islog, nparity;
377 	vdev_t *vd;
378 
379 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
380 
381 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
382 		return (SET_ERROR(EINVAL));
383 
384 	if ((ops = vdev_getops(type)) == NULL)
385 		return (SET_ERROR(EINVAL));
386 
387 	/*
388 	 * If this is a load, get the vdev guid from the nvlist.
389 	 * Otherwise, vdev_alloc_common() will generate one for us.
390 	 */
391 	if (alloctype == VDEV_ALLOC_LOAD) {
392 		uint64_t label_id;
393 
394 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
395 		    label_id != id)
396 			return (SET_ERROR(EINVAL));
397 
398 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
399 			return (SET_ERROR(EINVAL));
400 	} else if (alloctype == VDEV_ALLOC_SPARE) {
401 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
402 			return (SET_ERROR(EINVAL));
403 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
404 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
405 			return (SET_ERROR(EINVAL));
406 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
407 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
408 			return (SET_ERROR(EINVAL));
409 	}
410 
411 	/*
412 	 * The first allocated vdev must be of type 'root'.
413 	 */
414 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
415 		return (SET_ERROR(EINVAL));
416 
417 	/*
418 	 * Determine whether we're a log vdev.
419 	 */
420 	islog = 0;
421 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
422 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
423 		return (SET_ERROR(ENOTSUP));
424 
425 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
426 		return (SET_ERROR(ENOTSUP));
427 
428 	/*
429 	 * Set the nparity property for RAID-Z vdevs.
430 	 */
431 	nparity = -1ULL;
432 	if (ops == &vdev_raidz_ops) {
433 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
434 		    &nparity) == 0) {
435 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
436 				return (SET_ERROR(EINVAL));
437 			/*
438 			 * Previous versions could only support 1 or 2 parity
439 			 * device.
440 			 */
441 			if (nparity > 1 &&
442 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
443 				return (SET_ERROR(ENOTSUP));
444 			if (nparity > 2 &&
445 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
446 				return (SET_ERROR(ENOTSUP));
447 		} else {
448 			/*
449 			 * We require the parity to be specified for SPAs that
450 			 * support multiple parity levels.
451 			 */
452 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
453 				return (SET_ERROR(EINVAL));
454 			/*
455 			 * Otherwise, we default to 1 parity device for RAID-Z.
456 			 */
457 			nparity = 1;
458 		}
459 	} else {
460 		nparity = 0;
461 	}
462 	ASSERT(nparity != -1ULL);
463 
464 	vd = vdev_alloc_common(spa, id, guid, ops);
465 
466 	vd->vdev_islog = islog;
467 	vd->vdev_nparity = nparity;
468 
469 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
470 		vd->vdev_path = spa_strdup(vd->vdev_path);
471 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
472 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
473 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
474 	    &vd->vdev_physpath) == 0)
475 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
476 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
477 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
478 
479 	/*
480 	 * Set the whole_disk property.  If it's not specified, leave the value
481 	 * as -1.
482 	 */
483 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
484 	    &vd->vdev_wholedisk) != 0)
485 		vd->vdev_wholedisk = -1ULL;
486 
487 	/*
488 	 * Look for the 'not present' flag.  This will only be set if the device
489 	 * was not present at the time of import.
490 	 */
491 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
492 	    &vd->vdev_not_present);
493 
494 	/*
495 	 * Get the alignment requirement.
496 	 */
497 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
498 
499 	/*
500 	 * Retrieve the vdev creation time.
501 	 */
502 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
503 	    &vd->vdev_crtxg);
504 
505 	/*
506 	 * If we're a top-level vdev, try to load the allocation parameters.
507 	 */
508 	if (parent && !parent->vdev_parent &&
509 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
510 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
511 		    &vd->vdev_ms_array);
512 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
513 		    &vd->vdev_ms_shift);
514 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
515 		    &vd->vdev_asize);
516 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
517 		    &vd->vdev_removing);
518 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
519 		    &vd->vdev_top_zap);
520 	} else {
521 		ASSERT0(vd->vdev_top_zap);
522 	}
523 
524 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
525 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
526 		    alloctype == VDEV_ALLOC_ADD ||
527 		    alloctype == VDEV_ALLOC_SPLIT ||
528 		    alloctype == VDEV_ALLOC_ROOTPOOL);
529 		vd->vdev_mg = metaslab_group_create(islog ?
530 		    spa_log_class(spa) : spa_normal_class(spa), vd);
531 	}
532 
533 	if (vd->vdev_ops->vdev_op_leaf &&
534 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
535 		(void) nvlist_lookup_uint64(nv,
536 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
537 	} else {
538 		ASSERT0(vd->vdev_leaf_zap);
539 	}
540 
541 	/*
542 	 * If we're a leaf vdev, try to load the DTL object and other state.
543 	 */
544 
545 	if (vd->vdev_ops->vdev_op_leaf &&
546 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
547 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
548 		if (alloctype == VDEV_ALLOC_LOAD) {
549 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
550 			    &vd->vdev_dtl_object);
551 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
552 			    &vd->vdev_unspare);
553 		}
554 
555 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
556 			uint64_t spare = 0;
557 
558 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
559 			    &spare) == 0 && spare)
560 				spa_spare_add(vd);
561 		}
562 
563 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
564 		    &vd->vdev_offline);
565 
566 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
567 		    &vd->vdev_resilver_txg);
568 
569 		/*
570 		 * When importing a pool, we want to ignore the persistent fault
571 		 * state, as the diagnosis made on another system may not be
572 		 * valid in the current context.  Local vdevs will
573 		 * remain in the faulted state.
574 		 */
575 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
576 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
577 			    &vd->vdev_faulted);
578 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
579 			    &vd->vdev_degraded);
580 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
581 			    &vd->vdev_removed);
582 
583 			if (vd->vdev_faulted || vd->vdev_degraded) {
584 				char *aux;
585 
586 				vd->vdev_label_aux =
587 				    VDEV_AUX_ERR_EXCEEDED;
588 				if (nvlist_lookup_string(nv,
589 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
590 				    strcmp(aux, "external") == 0)
591 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
592 			}
593 		}
594 	}
595 
596 	/*
597 	 * Add ourselves to the parent's list of children.
598 	 */
599 	vdev_add_child(parent, vd);
600 
601 	*vdp = vd;
602 
603 	return (0);
604 }
605 
606 void
607 vdev_free(vdev_t *vd)
608 {
609 	spa_t *spa = vd->vdev_spa;
610 
611 	/*
612 	 * vdev_free() implies closing the vdev first.  This is simpler than
613 	 * trying to ensure complicated semantics for all callers.
614 	 */
615 	vdev_close(vd);
616 
617 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
618 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
619 
620 	/*
621 	 * Free all children.
622 	 */
623 	for (int c = 0; c < vd->vdev_children; c++)
624 		vdev_free(vd->vdev_child[c]);
625 
626 	ASSERT(vd->vdev_child == NULL);
627 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
628 
629 	/*
630 	 * Discard allocation state.
631 	 */
632 	if (vd->vdev_mg != NULL) {
633 		vdev_metaslab_fini(vd);
634 		metaslab_group_destroy(vd->vdev_mg);
635 	}
636 
637 	ASSERT0(vd->vdev_stat.vs_space);
638 	ASSERT0(vd->vdev_stat.vs_dspace);
639 	ASSERT0(vd->vdev_stat.vs_alloc);
640 
641 	/*
642 	 * Remove this vdev from its parent's child list.
643 	 */
644 	vdev_remove_child(vd->vdev_parent, vd);
645 
646 	ASSERT(vd->vdev_parent == NULL);
647 
648 	/*
649 	 * Clean up vdev structure.
650 	 */
651 	vdev_queue_fini(vd);
652 	vdev_cache_fini(vd);
653 
654 	if (vd->vdev_path)
655 		spa_strfree(vd->vdev_path);
656 	if (vd->vdev_devid)
657 		spa_strfree(vd->vdev_devid);
658 	if (vd->vdev_physpath)
659 		spa_strfree(vd->vdev_physpath);
660 	if (vd->vdev_fru)
661 		spa_strfree(vd->vdev_fru);
662 
663 	if (vd->vdev_isspare)
664 		spa_spare_remove(vd);
665 	if (vd->vdev_isl2cache)
666 		spa_l2cache_remove(vd);
667 
668 	txg_list_destroy(&vd->vdev_ms_list);
669 	txg_list_destroy(&vd->vdev_dtl_list);
670 
671 	mutex_enter(&vd->vdev_dtl_lock);
672 	space_map_close(vd->vdev_dtl_sm);
673 	for (int t = 0; t < DTL_TYPES; t++) {
674 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
675 		range_tree_destroy(vd->vdev_dtl[t]);
676 	}
677 	mutex_exit(&vd->vdev_dtl_lock);
678 
679 	mutex_destroy(&vd->vdev_dtl_lock);
680 	mutex_destroy(&vd->vdev_stat_lock);
681 	mutex_destroy(&vd->vdev_probe_lock);
682 
683 	if (vd == spa->spa_root_vdev)
684 		spa->spa_root_vdev = NULL;
685 
686 	kmem_free(vd, sizeof (vdev_t));
687 }
688 
689 /*
690  * Transfer top-level vdev state from svd to tvd.
691  */
692 static void
693 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
694 {
695 	spa_t *spa = svd->vdev_spa;
696 	metaslab_t *msp;
697 	vdev_t *vd;
698 	int t;
699 
700 	ASSERT(tvd == tvd->vdev_top);
701 
702 	tvd->vdev_ms_array = svd->vdev_ms_array;
703 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
704 	tvd->vdev_ms_count = svd->vdev_ms_count;
705 	tvd->vdev_top_zap = svd->vdev_top_zap;
706 
707 	svd->vdev_ms_array = 0;
708 	svd->vdev_ms_shift = 0;
709 	svd->vdev_ms_count = 0;
710 	svd->vdev_top_zap = 0;
711 
712 	if (tvd->vdev_mg)
713 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
714 	tvd->vdev_mg = svd->vdev_mg;
715 	tvd->vdev_ms = svd->vdev_ms;
716 
717 	svd->vdev_mg = NULL;
718 	svd->vdev_ms = NULL;
719 
720 	if (tvd->vdev_mg != NULL)
721 		tvd->vdev_mg->mg_vd = tvd;
722 
723 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
724 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
725 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
726 
727 	svd->vdev_stat.vs_alloc = 0;
728 	svd->vdev_stat.vs_space = 0;
729 	svd->vdev_stat.vs_dspace = 0;
730 
731 	for (t = 0; t < TXG_SIZE; t++) {
732 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
733 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
734 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
735 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
736 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
737 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
738 	}
739 
740 	if (list_link_active(&svd->vdev_config_dirty_node)) {
741 		vdev_config_clean(svd);
742 		vdev_config_dirty(tvd);
743 	}
744 
745 	if (list_link_active(&svd->vdev_state_dirty_node)) {
746 		vdev_state_clean(svd);
747 		vdev_state_dirty(tvd);
748 	}
749 
750 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
751 	svd->vdev_deflate_ratio = 0;
752 
753 	tvd->vdev_islog = svd->vdev_islog;
754 	svd->vdev_islog = 0;
755 }
756 
757 static void
758 vdev_top_update(vdev_t *tvd, vdev_t *vd)
759 {
760 	if (vd == NULL)
761 		return;
762 
763 	vd->vdev_top = tvd;
764 
765 	for (int c = 0; c < vd->vdev_children; c++)
766 		vdev_top_update(tvd, vd->vdev_child[c]);
767 }
768 
769 /*
770  * Add a mirror/replacing vdev above an existing vdev.
771  */
772 vdev_t *
773 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
774 {
775 	spa_t *spa = cvd->vdev_spa;
776 	vdev_t *pvd = cvd->vdev_parent;
777 	vdev_t *mvd;
778 
779 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
780 
781 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
782 
783 	mvd->vdev_asize = cvd->vdev_asize;
784 	mvd->vdev_min_asize = cvd->vdev_min_asize;
785 	mvd->vdev_max_asize = cvd->vdev_max_asize;
786 	mvd->vdev_ashift = cvd->vdev_ashift;
787 	mvd->vdev_state = cvd->vdev_state;
788 	mvd->vdev_crtxg = cvd->vdev_crtxg;
789 
790 	vdev_remove_child(pvd, cvd);
791 	vdev_add_child(pvd, mvd);
792 	cvd->vdev_id = mvd->vdev_children;
793 	vdev_add_child(mvd, cvd);
794 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
795 
796 	if (mvd == mvd->vdev_top)
797 		vdev_top_transfer(cvd, mvd);
798 
799 	return (mvd);
800 }
801 
802 /*
803  * Remove a 1-way mirror/replacing vdev from the tree.
804  */
805 void
806 vdev_remove_parent(vdev_t *cvd)
807 {
808 	vdev_t *mvd = cvd->vdev_parent;
809 	vdev_t *pvd = mvd->vdev_parent;
810 
811 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
812 
813 	ASSERT(mvd->vdev_children == 1);
814 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
815 	    mvd->vdev_ops == &vdev_replacing_ops ||
816 	    mvd->vdev_ops == &vdev_spare_ops);
817 	cvd->vdev_ashift = mvd->vdev_ashift;
818 
819 	vdev_remove_child(mvd, cvd);
820 	vdev_remove_child(pvd, mvd);
821 
822 	/*
823 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
824 	 * Otherwise, we could have detached an offline device, and when we
825 	 * go to import the pool we'll think we have two top-level vdevs,
826 	 * instead of a different version of the same top-level vdev.
827 	 */
828 	if (mvd->vdev_top == mvd) {
829 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
830 		cvd->vdev_orig_guid = cvd->vdev_guid;
831 		cvd->vdev_guid += guid_delta;
832 		cvd->vdev_guid_sum += guid_delta;
833 	}
834 	cvd->vdev_id = mvd->vdev_id;
835 	vdev_add_child(pvd, cvd);
836 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
837 
838 	if (cvd == cvd->vdev_top)
839 		vdev_top_transfer(mvd, cvd);
840 
841 	ASSERT(mvd->vdev_children == 0);
842 	vdev_free(mvd);
843 }
844 
845 int
846 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
847 {
848 	spa_t *spa = vd->vdev_spa;
849 	objset_t *mos = spa->spa_meta_objset;
850 	uint64_t m;
851 	uint64_t oldc = vd->vdev_ms_count;
852 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
853 	metaslab_t **mspp;
854 	int error;
855 
856 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
857 
858 	/*
859 	 * This vdev is not being allocated from yet or is a hole.
860 	 */
861 	if (vd->vdev_ms_shift == 0)
862 		return (0);
863 
864 	ASSERT(!vd->vdev_ishole);
865 
866 	/*
867 	 * Compute the raidz-deflation ratio.  Note, we hard-code
868 	 * in 128k (1 << 17) because it is the "typical" blocksize.
869 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
870 	 * otherwise it would inconsistently account for existing bp's.
871 	 */
872 	vd->vdev_deflate_ratio = (1 << 17) /
873 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
874 
875 	ASSERT(oldc <= newc);
876 
877 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
878 
879 	if (oldc != 0) {
880 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
881 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
882 	}
883 
884 	vd->vdev_ms = mspp;
885 	vd->vdev_ms_count = newc;
886 
887 	for (m = oldc; m < newc; m++) {
888 		uint64_t object = 0;
889 
890 		if (txg == 0) {
891 			error = dmu_read(mos, vd->vdev_ms_array,
892 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
893 			    DMU_READ_PREFETCH);
894 			if (error)
895 				return (error);
896 		}
897 
898 		error = metaslab_init(vd->vdev_mg, m, object, txg,
899 		    &(vd->vdev_ms[m]));
900 		if (error)
901 			return (error);
902 	}
903 
904 	if (txg == 0)
905 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
906 
907 	/*
908 	 * If the vdev is being removed we don't activate
909 	 * the metaslabs since we want to ensure that no new
910 	 * allocations are performed on this device.
911 	 */
912 	if (oldc == 0 && !vd->vdev_removing)
913 		metaslab_group_activate(vd->vdev_mg);
914 
915 	if (txg == 0)
916 		spa_config_exit(spa, SCL_ALLOC, FTAG);
917 
918 	return (0);
919 }
920 
921 void
922 vdev_metaslab_fini(vdev_t *vd)
923 {
924 	uint64_t m;
925 	uint64_t count = vd->vdev_ms_count;
926 
927 	if (vd->vdev_ms != NULL) {
928 		metaslab_group_passivate(vd->vdev_mg);
929 		for (m = 0; m < count; m++) {
930 			metaslab_t *msp = vd->vdev_ms[m];
931 
932 			if (msp != NULL)
933 				metaslab_fini(msp);
934 		}
935 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
936 		vd->vdev_ms = NULL;
937 	}
938 }
939 
940 typedef struct vdev_probe_stats {
941 	boolean_t	vps_readable;
942 	boolean_t	vps_writeable;
943 	int		vps_flags;
944 } vdev_probe_stats_t;
945 
946 static void
947 vdev_probe_done(zio_t *zio)
948 {
949 	spa_t *spa = zio->io_spa;
950 	vdev_t *vd = zio->io_vd;
951 	vdev_probe_stats_t *vps = zio->io_private;
952 
953 	ASSERT(vd->vdev_probe_zio != NULL);
954 
955 	if (zio->io_type == ZIO_TYPE_READ) {
956 		if (zio->io_error == 0)
957 			vps->vps_readable = 1;
958 		if (zio->io_error == 0 && spa_writeable(spa)) {
959 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
960 			    zio->io_offset, zio->io_size, zio->io_data,
961 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
962 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
963 		} else {
964 			zio_buf_free(zio->io_data, zio->io_size);
965 		}
966 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
967 		if (zio->io_error == 0)
968 			vps->vps_writeable = 1;
969 		zio_buf_free(zio->io_data, zio->io_size);
970 	} else if (zio->io_type == ZIO_TYPE_NULL) {
971 		zio_t *pio;
972 
973 		vd->vdev_cant_read |= !vps->vps_readable;
974 		vd->vdev_cant_write |= !vps->vps_writeable;
975 
976 		if (vdev_readable(vd) &&
977 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
978 			zio->io_error = 0;
979 		} else {
980 			ASSERT(zio->io_error != 0);
981 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
982 			    spa, vd, NULL, 0, 0);
983 			zio->io_error = SET_ERROR(ENXIO);
984 		}
985 
986 		mutex_enter(&vd->vdev_probe_lock);
987 		ASSERT(vd->vdev_probe_zio == zio);
988 		vd->vdev_probe_zio = NULL;
989 		mutex_exit(&vd->vdev_probe_lock);
990 
991 		while ((pio = zio_walk_parents(zio)) != NULL)
992 			if (!vdev_accessible(vd, pio))
993 				pio->io_error = SET_ERROR(ENXIO);
994 
995 		kmem_free(vps, sizeof (*vps));
996 	}
997 }
998 
999 /*
1000  * Determine whether this device is accessible.
1001  *
1002  * Read and write to several known locations: the pad regions of each
1003  * vdev label but the first, which we leave alone in case it contains
1004  * a VTOC.
1005  */
1006 zio_t *
1007 vdev_probe(vdev_t *vd, zio_t *zio)
1008 {
1009 	spa_t *spa = vd->vdev_spa;
1010 	vdev_probe_stats_t *vps = NULL;
1011 	zio_t *pio;
1012 
1013 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1014 
1015 	/*
1016 	 * Don't probe the probe.
1017 	 */
1018 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1019 		return (NULL);
1020 
1021 	/*
1022 	 * To prevent 'probe storms' when a device fails, we create
1023 	 * just one probe i/o at a time.  All zios that want to probe
1024 	 * this vdev will become parents of the probe io.
1025 	 */
1026 	mutex_enter(&vd->vdev_probe_lock);
1027 
1028 	if ((pio = vd->vdev_probe_zio) == NULL) {
1029 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1030 
1031 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1032 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1033 		    ZIO_FLAG_TRYHARD;
1034 
1035 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1036 			/*
1037 			 * vdev_cant_read and vdev_cant_write can only
1038 			 * transition from TRUE to FALSE when we have the
1039 			 * SCL_ZIO lock as writer; otherwise they can only
1040 			 * transition from FALSE to TRUE.  This ensures that
1041 			 * any zio looking at these values can assume that
1042 			 * failures persist for the life of the I/O.  That's
1043 			 * important because when a device has intermittent
1044 			 * connectivity problems, we want to ensure that
1045 			 * they're ascribed to the device (ENXIO) and not
1046 			 * the zio (EIO).
1047 			 *
1048 			 * Since we hold SCL_ZIO as writer here, clear both
1049 			 * values so the probe can reevaluate from first
1050 			 * principles.
1051 			 */
1052 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1053 			vd->vdev_cant_read = B_FALSE;
1054 			vd->vdev_cant_write = B_FALSE;
1055 		}
1056 
1057 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1058 		    vdev_probe_done, vps,
1059 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1060 
1061 		/*
1062 		 * We can't change the vdev state in this context, so we
1063 		 * kick off an async task to do it on our behalf.
1064 		 */
1065 		if (zio != NULL) {
1066 			vd->vdev_probe_wanted = B_TRUE;
1067 			spa_async_request(spa, SPA_ASYNC_PROBE);
1068 		}
1069 	}
1070 
1071 	if (zio != NULL)
1072 		zio_add_child(zio, pio);
1073 
1074 	mutex_exit(&vd->vdev_probe_lock);
1075 
1076 	if (vps == NULL) {
1077 		ASSERT(zio != NULL);
1078 		return (NULL);
1079 	}
1080 
1081 	for (int l = 1; l < VDEV_LABELS; l++) {
1082 		zio_nowait(zio_read_phys(pio, vd,
1083 		    vdev_label_offset(vd->vdev_psize, l,
1084 		    offsetof(vdev_label_t, vl_pad2)),
1085 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1086 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1087 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1088 	}
1089 
1090 	if (zio == NULL)
1091 		return (pio);
1092 
1093 	zio_nowait(pio);
1094 	return (NULL);
1095 }
1096 
1097 static void
1098 vdev_open_child(void *arg)
1099 {
1100 	vdev_t *vd = arg;
1101 
1102 	vd->vdev_open_thread = curthread;
1103 	vd->vdev_open_error = vdev_open(vd);
1104 	vd->vdev_open_thread = NULL;
1105 }
1106 
1107 boolean_t
1108 vdev_uses_zvols(vdev_t *vd)
1109 {
1110 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1111 	    strlen(ZVOL_DIR)) == 0)
1112 		return (B_TRUE);
1113 	for (int c = 0; c < vd->vdev_children; c++)
1114 		if (vdev_uses_zvols(vd->vdev_child[c]))
1115 			return (B_TRUE);
1116 	return (B_FALSE);
1117 }
1118 
1119 void
1120 vdev_open_children(vdev_t *vd)
1121 {
1122 	taskq_t *tq;
1123 	int children = vd->vdev_children;
1124 
1125 	/*
1126 	 * in order to handle pools on top of zvols, do the opens
1127 	 * in a single thread so that the same thread holds the
1128 	 * spa_namespace_lock
1129 	 */
1130 	if (vdev_uses_zvols(vd)) {
1131 		for (int c = 0; c < children; c++)
1132 			vd->vdev_child[c]->vdev_open_error =
1133 			    vdev_open(vd->vdev_child[c]);
1134 		return;
1135 	}
1136 	tq = taskq_create("vdev_open", children, minclsyspri,
1137 	    children, children, TASKQ_PREPOPULATE);
1138 
1139 	for (int c = 0; c < children; c++)
1140 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1141 		    TQ_SLEEP) != NULL);
1142 
1143 	taskq_destroy(tq);
1144 }
1145 
1146 /*
1147  * Prepare a virtual device for access.
1148  */
1149 int
1150 vdev_open(vdev_t *vd)
1151 {
1152 	spa_t *spa = vd->vdev_spa;
1153 	int error;
1154 	uint64_t osize = 0;
1155 	uint64_t max_osize = 0;
1156 	uint64_t asize, max_asize, psize;
1157 	uint64_t ashift = 0;
1158 
1159 	ASSERT(vd->vdev_open_thread == curthread ||
1160 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1161 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1162 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1163 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1164 
1165 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1166 	vd->vdev_cant_read = B_FALSE;
1167 	vd->vdev_cant_write = B_FALSE;
1168 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1169 
1170 	/*
1171 	 * If this vdev is not removed, check its fault status.  If it's
1172 	 * faulted, bail out of the open.
1173 	 */
1174 	if (!vd->vdev_removed && vd->vdev_faulted) {
1175 		ASSERT(vd->vdev_children == 0);
1176 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1177 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1178 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1179 		    vd->vdev_label_aux);
1180 		return (SET_ERROR(ENXIO));
1181 	} else if (vd->vdev_offline) {
1182 		ASSERT(vd->vdev_children == 0);
1183 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1184 		return (SET_ERROR(ENXIO));
1185 	}
1186 
1187 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1188 
1189 	/*
1190 	 * Reset the vdev_reopening flag so that we actually close
1191 	 * the vdev on error.
1192 	 */
1193 	vd->vdev_reopening = B_FALSE;
1194 	if (zio_injection_enabled && error == 0)
1195 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1196 
1197 	if (error) {
1198 		if (vd->vdev_removed &&
1199 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1200 			vd->vdev_removed = B_FALSE;
1201 
1202 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203 		    vd->vdev_stat.vs_aux);
1204 		return (error);
1205 	}
1206 
1207 	vd->vdev_removed = B_FALSE;
1208 
1209 	/*
1210 	 * Recheck the faulted flag now that we have confirmed that
1211 	 * the vdev is accessible.  If we're faulted, bail.
1212 	 */
1213 	if (vd->vdev_faulted) {
1214 		ASSERT(vd->vdev_children == 0);
1215 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1216 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1217 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1218 		    vd->vdev_label_aux);
1219 		return (SET_ERROR(ENXIO));
1220 	}
1221 
1222 	if (vd->vdev_degraded) {
1223 		ASSERT(vd->vdev_children == 0);
1224 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1225 		    VDEV_AUX_ERR_EXCEEDED);
1226 	} else {
1227 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1228 	}
1229 
1230 	/*
1231 	 * For hole or missing vdevs we just return success.
1232 	 */
1233 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1234 		return (0);
1235 
1236 	for (int c = 0; c < vd->vdev_children; c++) {
1237 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1238 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1239 			    VDEV_AUX_NONE);
1240 			break;
1241 		}
1242 	}
1243 
1244 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1245 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1246 
1247 	if (vd->vdev_children == 0) {
1248 		if (osize < SPA_MINDEVSIZE) {
1249 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1250 			    VDEV_AUX_TOO_SMALL);
1251 			return (SET_ERROR(EOVERFLOW));
1252 		}
1253 		psize = osize;
1254 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1255 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1256 		    VDEV_LABEL_END_SIZE);
1257 	} else {
1258 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1259 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1260 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1261 			    VDEV_AUX_TOO_SMALL);
1262 			return (SET_ERROR(EOVERFLOW));
1263 		}
1264 		psize = 0;
1265 		asize = osize;
1266 		max_asize = max_osize;
1267 	}
1268 
1269 	vd->vdev_psize = psize;
1270 
1271 	/*
1272 	 * Make sure the allocatable size hasn't shrunk.
1273 	 */
1274 	if (asize < vd->vdev_min_asize) {
1275 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1276 		    VDEV_AUX_BAD_LABEL);
1277 		return (SET_ERROR(EINVAL));
1278 	}
1279 
1280 	if (vd->vdev_asize == 0) {
1281 		/*
1282 		 * This is the first-ever open, so use the computed values.
1283 		 * For testing purposes, a higher ashift can be requested.
1284 		 */
1285 		vd->vdev_asize = asize;
1286 		vd->vdev_max_asize = max_asize;
1287 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1288 	} else {
1289 		/*
1290 		 * Detect if the alignment requirement has increased.
1291 		 * We don't want to make the pool unavailable, just
1292 		 * issue a warning instead.
1293 		 */
1294 		if (ashift > vd->vdev_top->vdev_ashift &&
1295 		    vd->vdev_ops->vdev_op_leaf) {
1296 			cmn_err(CE_WARN,
1297 			    "Disk, '%s', has a block alignment that is "
1298 			    "larger than the pool's alignment\n",
1299 			    vd->vdev_path);
1300 		}
1301 		vd->vdev_max_asize = max_asize;
1302 	}
1303 
1304 	/*
1305 	 * If all children are healthy and the asize has increased,
1306 	 * then we've experienced dynamic LUN growth.  If automatic
1307 	 * expansion is enabled then use the additional space.
1308 	 */
1309 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1310 	    (vd->vdev_expanding || spa->spa_autoexpand))
1311 		vd->vdev_asize = asize;
1312 
1313 	vdev_set_min_asize(vd);
1314 
1315 	/*
1316 	 * Ensure we can issue some IO before declaring the
1317 	 * vdev open for business.
1318 	 */
1319 	if (vd->vdev_ops->vdev_op_leaf &&
1320 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1321 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1322 		    VDEV_AUX_ERR_EXCEEDED);
1323 		return (error);
1324 	}
1325 
1326 	/*
1327 	 * Track the min and max ashift values for normal data devices.
1328 	 */
1329 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1330 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1331 		if (vd->vdev_ashift > spa->spa_max_ashift)
1332 			spa->spa_max_ashift = vd->vdev_ashift;
1333 		if (vd->vdev_ashift < spa->spa_min_ashift)
1334 			spa->spa_min_ashift = vd->vdev_ashift;
1335 	}
1336 
1337 	/*
1338 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1339 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1340 	 * since this would just restart the scrub we are already doing.
1341 	 */
1342 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1343 	    vdev_resilver_needed(vd, NULL, NULL))
1344 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1345 
1346 	return (0);
1347 }
1348 
1349 /*
1350  * Called once the vdevs are all opened, this routine validates the label
1351  * contents.  This needs to be done before vdev_load() so that we don't
1352  * inadvertently do repair I/Os to the wrong device.
1353  *
1354  * If 'strict' is false ignore the spa guid check. This is necessary because
1355  * if the machine crashed during a re-guid the new guid might have been written
1356  * to all of the vdev labels, but not the cached config. The strict check
1357  * will be performed when the pool is opened again using the mos config.
1358  *
1359  * This function will only return failure if one of the vdevs indicates that it
1360  * has since been destroyed or exported.  This is only possible if
1361  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1362  * will be updated but the function will return 0.
1363  */
1364 int
1365 vdev_validate(vdev_t *vd, boolean_t strict)
1366 {
1367 	spa_t *spa = vd->vdev_spa;
1368 	nvlist_t *label;
1369 	uint64_t guid = 0, top_guid;
1370 	uint64_t state;
1371 
1372 	for (int c = 0; c < vd->vdev_children; c++)
1373 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1374 			return (SET_ERROR(EBADF));
1375 
1376 	/*
1377 	 * If the device has already failed, or was marked offline, don't do
1378 	 * any further validation.  Otherwise, label I/O will fail and we will
1379 	 * overwrite the previous state.
1380 	 */
1381 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1382 		uint64_t aux_guid = 0;
1383 		nvlist_t *nvl;
1384 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1385 		    spa_last_synced_txg(spa) : -1ULL;
1386 
1387 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1388 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389 			    VDEV_AUX_BAD_LABEL);
1390 			return (0);
1391 		}
1392 
1393 		/*
1394 		 * Determine if this vdev has been split off into another
1395 		 * pool.  If so, then refuse to open it.
1396 		 */
1397 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1398 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1399 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1400 			    VDEV_AUX_SPLIT_POOL);
1401 			nvlist_free(label);
1402 			return (0);
1403 		}
1404 
1405 		if (strict && (nvlist_lookup_uint64(label,
1406 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1407 		    guid != spa_guid(spa))) {
1408 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1409 			    VDEV_AUX_CORRUPT_DATA);
1410 			nvlist_free(label);
1411 			return (0);
1412 		}
1413 
1414 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1415 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1416 		    &aux_guid) != 0)
1417 			aux_guid = 0;
1418 
1419 		/*
1420 		 * If this vdev just became a top-level vdev because its
1421 		 * sibling was detached, it will have adopted the parent's
1422 		 * vdev guid -- but the label may or may not be on disk yet.
1423 		 * Fortunately, either version of the label will have the
1424 		 * same top guid, so if we're a top-level vdev, we can
1425 		 * safely compare to that instead.
1426 		 *
1427 		 * If we split this vdev off instead, then we also check the
1428 		 * original pool's guid.  We don't want to consider the vdev
1429 		 * corrupt if it is partway through a split operation.
1430 		 */
1431 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1432 		    &guid) != 0 ||
1433 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1434 		    &top_guid) != 0 ||
1435 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1436 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1437 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1438 			    VDEV_AUX_CORRUPT_DATA);
1439 			nvlist_free(label);
1440 			return (0);
1441 		}
1442 
1443 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1444 		    &state) != 0) {
1445 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1446 			    VDEV_AUX_CORRUPT_DATA);
1447 			nvlist_free(label);
1448 			return (0);
1449 		}
1450 
1451 		nvlist_free(label);
1452 
1453 		/*
1454 		 * If this is a verbatim import, no need to check the
1455 		 * state of the pool.
1456 		 */
1457 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1458 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1459 		    state != POOL_STATE_ACTIVE)
1460 			return (SET_ERROR(EBADF));
1461 
1462 		/*
1463 		 * If we were able to open and validate a vdev that was
1464 		 * previously marked permanently unavailable, clear that state
1465 		 * now.
1466 		 */
1467 		if (vd->vdev_not_present)
1468 			vd->vdev_not_present = 0;
1469 	}
1470 
1471 	return (0);
1472 }
1473 
1474 /*
1475  * Close a virtual device.
1476  */
1477 void
1478 vdev_close(vdev_t *vd)
1479 {
1480 	spa_t *spa = vd->vdev_spa;
1481 	vdev_t *pvd = vd->vdev_parent;
1482 
1483 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1484 
1485 	/*
1486 	 * If our parent is reopening, then we are as well, unless we are
1487 	 * going offline.
1488 	 */
1489 	if (pvd != NULL && pvd->vdev_reopening)
1490 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1491 
1492 	vd->vdev_ops->vdev_op_close(vd);
1493 
1494 	vdev_cache_purge(vd);
1495 
1496 	/*
1497 	 * We record the previous state before we close it, so that if we are
1498 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1499 	 * it's still faulted.
1500 	 */
1501 	vd->vdev_prevstate = vd->vdev_state;
1502 
1503 	if (vd->vdev_offline)
1504 		vd->vdev_state = VDEV_STATE_OFFLINE;
1505 	else
1506 		vd->vdev_state = VDEV_STATE_CLOSED;
1507 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1508 }
1509 
1510 void
1511 vdev_hold(vdev_t *vd)
1512 {
1513 	spa_t *spa = vd->vdev_spa;
1514 
1515 	ASSERT(spa_is_root(spa));
1516 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1517 		return;
1518 
1519 	for (int c = 0; c < vd->vdev_children; c++)
1520 		vdev_hold(vd->vdev_child[c]);
1521 
1522 	if (vd->vdev_ops->vdev_op_leaf)
1523 		vd->vdev_ops->vdev_op_hold(vd);
1524 }
1525 
1526 void
1527 vdev_rele(vdev_t *vd)
1528 {
1529 	spa_t *spa = vd->vdev_spa;
1530 
1531 	ASSERT(spa_is_root(spa));
1532 	for (int c = 0; c < vd->vdev_children; c++)
1533 		vdev_rele(vd->vdev_child[c]);
1534 
1535 	if (vd->vdev_ops->vdev_op_leaf)
1536 		vd->vdev_ops->vdev_op_rele(vd);
1537 }
1538 
1539 /*
1540  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1541  * reopen leaf vdevs which had previously been opened as they might deadlock
1542  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1543  * If the leaf has never been opened then open it, as usual.
1544  */
1545 void
1546 vdev_reopen(vdev_t *vd)
1547 {
1548 	spa_t *spa = vd->vdev_spa;
1549 
1550 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1551 
1552 	/* set the reopening flag unless we're taking the vdev offline */
1553 	vd->vdev_reopening = !vd->vdev_offline;
1554 	vdev_close(vd);
1555 	(void) vdev_open(vd);
1556 
1557 	/*
1558 	 * Call vdev_validate() here to make sure we have the same device.
1559 	 * Otherwise, a device with an invalid label could be successfully
1560 	 * opened in response to vdev_reopen().
1561 	 */
1562 	if (vd->vdev_aux) {
1563 		(void) vdev_validate_aux(vd);
1564 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1565 		    vd->vdev_aux == &spa->spa_l2cache &&
1566 		    !l2arc_vdev_present(vd))
1567 			l2arc_add_vdev(spa, vd);
1568 	} else {
1569 		(void) vdev_validate(vd, B_TRUE);
1570 	}
1571 
1572 	/*
1573 	 * Reassess parent vdev's health.
1574 	 */
1575 	vdev_propagate_state(vd);
1576 }
1577 
1578 int
1579 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1580 {
1581 	int error;
1582 
1583 	/*
1584 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1585 	 * For a create, however, we want to fail the request if
1586 	 * there are any components we can't open.
1587 	 */
1588 	error = vdev_open(vd);
1589 
1590 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1591 		vdev_close(vd);
1592 		return (error ? error : ENXIO);
1593 	}
1594 
1595 	/*
1596 	 * Recursively load DTLs and initialize all labels.
1597 	 */
1598 	if ((error = vdev_dtl_load(vd)) != 0 ||
1599 	    (error = vdev_label_init(vd, txg, isreplacing ?
1600 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1601 		vdev_close(vd);
1602 		return (error);
1603 	}
1604 
1605 	return (0);
1606 }
1607 
1608 void
1609 vdev_metaslab_set_size(vdev_t *vd)
1610 {
1611 	/*
1612 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1613 	 */
1614 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1615 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1616 }
1617 
1618 void
1619 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1620 {
1621 	ASSERT(vd == vd->vdev_top);
1622 	ASSERT(!vd->vdev_ishole);
1623 	ASSERT(ISP2(flags));
1624 	ASSERT(spa_writeable(vd->vdev_spa));
1625 
1626 	if (flags & VDD_METASLAB)
1627 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1628 
1629 	if (flags & VDD_DTL)
1630 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1631 
1632 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1633 }
1634 
1635 void
1636 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1637 {
1638 	for (int c = 0; c < vd->vdev_children; c++)
1639 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1640 
1641 	if (vd->vdev_ops->vdev_op_leaf)
1642 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1643 }
1644 
1645 /*
1646  * DTLs.
1647  *
1648  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1649  * the vdev has less than perfect replication.  There are four kinds of DTL:
1650  *
1651  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1652  *
1653  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1654  *
1655  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1656  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1657  *	txgs that was scrubbed.
1658  *
1659  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1660  *	persistent errors or just some device being offline.
1661  *	Unlike the other three, the DTL_OUTAGE map is not generally
1662  *	maintained; it's only computed when needed, typically to
1663  *	determine whether a device can be detached.
1664  *
1665  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1666  * either has the data or it doesn't.
1667  *
1668  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1669  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1670  * if any child is less than fully replicated, then so is its parent.
1671  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1672  * comprising only those txgs which appear in 'maxfaults' or more children;
1673  * those are the txgs we don't have enough replication to read.  For example,
1674  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1675  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1676  * two child DTL_MISSING maps.
1677  *
1678  * It should be clear from the above that to compute the DTLs and outage maps
1679  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1680  * Therefore, that is all we keep on disk.  When loading the pool, or after
1681  * a configuration change, we generate all other DTLs from first principles.
1682  */
1683 void
1684 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1685 {
1686 	range_tree_t *rt = vd->vdev_dtl[t];
1687 
1688 	ASSERT(t < DTL_TYPES);
1689 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1690 	ASSERT(spa_writeable(vd->vdev_spa));
1691 
1692 	mutex_enter(rt->rt_lock);
1693 	if (!range_tree_contains(rt, txg, size))
1694 		range_tree_add(rt, txg, size);
1695 	mutex_exit(rt->rt_lock);
1696 }
1697 
1698 boolean_t
1699 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1700 {
1701 	range_tree_t *rt = vd->vdev_dtl[t];
1702 	boolean_t dirty = B_FALSE;
1703 
1704 	ASSERT(t < DTL_TYPES);
1705 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1706 
1707 	mutex_enter(rt->rt_lock);
1708 	if (range_tree_space(rt) != 0)
1709 		dirty = range_tree_contains(rt, txg, size);
1710 	mutex_exit(rt->rt_lock);
1711 
1712 	return (dirty);
1713 }
1714 
1715 boolean_t
1716 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1717 {
1718 	range_tree_t *rt = vd->vdev_dtl[t];
1719 	boolean_t empty;
1720 
1721 	mutex_enter(rt->rt_lock);
1722 	empty = (range_tree_space(rt) == 0);
1723 	mutex_exit(rt->rt_lock);
1724 
1725 	return (empty);
1726 }
1727 
1728 /*
1729  * Returns the lowest txg in the DTL range.
1730  */
1731 static uint64_t
1732 vdev_dtl_min(vdev_t *vd)
1733 {
1734 	range_seg_t *rs;
1735 
1736 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1737 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1738 	ASSERT0(vd->vdev_children);
1739 
1740 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1741 	return (rs->rs_start - 1);
1742 }
1743 
1744 /*
1745  * Returns the highest txg in the DTL.
1746  */
1747 static uint64_t
1748 vdev_dtl_max(vdev_t *vd)
1749 {
1750 	range_seg_t *rs;
1751 
1752 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1753 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1754 	ASSERT0(vd->vdev_children);
1755 
1756 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1757 	return (rs->rs_end);
1758 }
1759 
1760 /*
1761  * Determine if a resilvering vdev should remove any DTL entries from
1762  * its range. If the vdev was resilvering for the entire duration of the
1763  * scan then it should excise that range from its DTLs. Otherwise, this
1764  * vdev is considered partially resilvered and should leave its DTL
1765  * entries intact. The comment in vdev_dtl_reassess() describes how we
1766  * excise the DTLs.
1767  */
1768 static boolean_t
1769 vdev_dtl_should_excise(vdev_t *vd)
1770 {
1771 	spa_t *spa = vd->vdev_spa;
1772 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1773 
1774 	ASSERT0(scn->scn_phys.scn_errors);
1775 	ASSERT0(vd->vdev_children);
1776 
1777 	if (vd->vdev_resilver_txg == 0 ||
1778 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1779 		return (B_TRUE);
1780 
1781 	/*
1782 	 * When a resilver is initiated the scan will assign the scn_max_txg
1783 	 * value to the highest txg value that exists in all DTLs. If this
1784 	 * device's max DTL is not part of this scan (i.e. it is not in
1785 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1786 	 * for excision.
1787 	 */
1788 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1789 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1790 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1791 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1792 		return (B_TRUE);
1793 	}
1794 	return (B_FALSE);
1795 }
1796 
1797 /*
1798  * Reassess DTLs after a config change or scrub completion.
1799  */
1800 void
1801 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1802 {
1803 	spa_t *spa = vd->vdev_spa;
1804 	avl_tree_t reftree;
1805 	int minref;
1806 
1807 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1808 
1809 	for (int c = 0; c < vd->vdev_children; c++)
1810 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1811 		    scrub_txg, scrub_done);
1812 
1813 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1814 		return;
1815 
1816 	if (vd->vdev_ops->vdev_op_leaf) {
1817 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1818 
1819 		mutex_enter(&vd->vdev_dtl_lock);
1820 
1821 		/*
1822 		 * If we've completed a scan cleanly then determine
1823 		 * if this vdev should remove any DTLs. We only want to
1824 		 * excise regions on vdevs that were available during
1825 		 * the entire duration of this scan.
1826 		 */
1827 		if (scrub_txg != 0 &&
1828 		    (spa->spa_scrub_started ||
1829 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1830 		    vdev_dtl_should_excise(vd)) {
1831 			/*
1832 			 * We completed a scrub up to scrub_txg.  If we
1833 			 * did it without rebooting, then the scrub dtl
1834 			 * will be valid, so excise the old region and
1835 			 * fold in the scrub dtl.  Otherwise, leave the
1836 			 * dtl as-is if there was an error.
1837 			 *
1838 			 * There's little trick here: to excise the beginning
1839 			 * of the DTL_MISSING map, we put it into a reference
1840 			 * tree and then add a segment with refcnt -1 that
1841 			 * covers the range [0, scrub_txg).  This means
1842 			 * that each txg in that range has refcnt -1 or 0.
1843 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1844 			 * entries in the range [0, scrub_txg) will have a
1845 			 * positive refcnt -- either 1 or 2.  We then convert
1846 			 * the reference tree into the new DTL_MISSING map.
1847 			 */
1848 			space_reftree_create(&reftree);
1849 			space_reftree_add_map(&reftree,
1850 			    vd->vdev_dtl[DTL_MISSING], 1);
1851 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1852 			space_reftree_add_map(&reftree,
1853 			    vd->vdev_dtl[DTL_SCRUB], 2);
1854 			space_reftree_generate_map(&reftree,
1855 			    vd->vdev_dtl[DTL_MISSING], 1);
1856 			space_reftree_destroy(&reftree);
1857 		}
1858 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1859 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1860 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1861 		if (scrub_done)
1862 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1863 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1864 		if (!vdev_readable(vd))
1865 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1866 		else
1867 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1868 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1869 
1870 		/*
1871 		 * If the vdev was resilvering and no longer has any
1872 		 * DTLs then reset its resilvering flag.
1873 		 */
1874 		if (vd->vdev_resilver_txg != 0 &&
1875 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1876 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1877 			vd->vdev_resilver_txg = 0;
1878 
1879 		mutex_exit(&vd->vdev_dtl_lock);
1880 
1881 		if (txg != 0)
1882 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1883 		return;
1884 	}
1885 
1886 	mutex_enter(&vd->vdev_dtl_lock);
1887 	for (int t = 0; t < DTL_TYPES; t++) {
1888 		/* account for child's outage in parent's missing map */
1889 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1890 		if (t == DTL_SCRUB)
1891 			continue;			/* leaf vdevs only */
1892 		if (t == DTL_PARTIAL)
1893 			minref = 1;			/* i.e. non-zero */
1894 		else if (vd->vdev_nparity != 0)
1895 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1896 		else
1897 			minref = vd->vdev_children;	/* any kind of mirror */
1898 		space_reftree_create(&reftree);
1899 		for (int c = 0; c < vd->vdev_children; c++) {
1900 			vdev_t *cvd = vd->vdev_child[c];
1901 			mutex_enter(&cvd->vdev_dtl_lock);
1902 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1903 			mutex_exit(&cvd->vdev_dtl_lock);
1904 		}
1905 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1906 		space_reftree_destroy(&reftree);
1907 	}
1908 	mutex_exit(&vd->vdev_dtl_lock);
1909 }
1910 
1911 int
1912 vdev_dtl_load(vdev_t *vd)
1913 {
1914 	spa_t *spa = vd->vdev_spa;
1915 	objset_t *mos = spa->spa_meta_objset;
1916 	int error = 0;
1917 
1918 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1919 		ASSERT(!vd->vdev_ishole);
1920 
1921 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1922 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1923 		if (error)
1924 			return (error);
1925 		ASSERT(vd->vdev_dtl_sm != NULL);
1926 
1927 		mutex_enter(&vd->vdev_dtl_lock);
1928 
1929 		/*
1930 		 * Now that we've opened the space_map we need to update
1931 		 * the in-core DTL.
1932 		 */
1933 		space_map_update(vd->vdev_dtl_sm);
1934 
1935 		error = space_map_load(vd->vdev_dtl_sm,
1936 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1937 		mutex_exit(&vd->vdev_dtl_lock);
1938 
1939 		return (error);
1940 	}
1941 
1942 	for (int c = 0; c < vd->vdev_children; c++) {
1943 		error = vdev_dtl_load(vd->vdev_child[c]);
1944 		if (error != 0)
1945 			break;
1946 	}
1947 
1948 	return (error);
1949 }
1950 
1951 void
1952 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1953 {
1954 	spa_t *spa = vd->vdev_spa;
1955 
1956 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1957 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1958 	    zapobj, tx));
1959 }
1960 
1961 uint64_t
1962 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1963 {
1964 	spa_t *spa = vd->vdev_spa;
1965 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1966 	    DMU_OT_NONE, 0, tx);
1967 
1968 	ASSERT(zap != 0);
1969 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1970 	    zap, tx));
1971 
1972 	return (zap);
1973 }
1974 
1975 void
1976 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1977 {
1978 	if (vd->vdev_ops != &vdev_hole_ops &&
1979 	    vd->vdev_ops != &vdev_missing_ops &&
1980 	    vd->vdev_ops != &vdev_root_ops &&
1981 	    !vd->vdev_top->vdev_removing) {
1982 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
1983 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
1984 		}
1985 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
1986 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
1987 		}
1988 	}
1989 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1990 		vdev_construct_zaps(vd->vdev_child[i], tx);
1991 	}
1992 }
1993 
1994 void
1995 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1996 {
1997 	spa_t *spa = vd->vdev_spa;
1998 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1999 	objset_t *mos = spa->spa_meta_objset;
2000 	range_tree_t *rtsync;
2001 	kmutex_t rtlock;
2002 	dmu_tx_t *tx;
2003 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2004 
2005 	ASSERT(!vd->vdev_ishole);
2006 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2007 
2008 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2009 
2010 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2011 		mutex_enter(&vd->vdev_dtl_lock);
2012 		space_map_free(vd->vdev_dtl_sm, tx);
2013 		space_map_close(vd->vdev_dtl_sm);
2014 		vd->vdev_dtl_sm = NULL;
2015 		mutex_exit(&vd->vdev_dtl_lock);
2016 
2017 		/*
2018 		 * We only destroy the leaf ZAP for detached leaves or for
2019 		 * removed log devices. Removed data devices handle leaf ZAP
2020 		 * cleanup later, once cancellation is no longer possible.
2021 		 */
2022 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2023 		    vd->vdev_top->vdev_islog)) {
2024 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2025 			vd->vdev_leaf_zap = 0;
2026 		}
2027 
2028 		dmu_tx_commit(tx);
2029 		return;
2030 	}
2031 
2032 	if (vd->vdev_dtl_sm == NULL) {
2033 		uint64_t new_object;
2034 
2035 		new_object = space_map_alloc(mos, tx);
2036 		VERIFY3U(new_object, !=, 0);
2037 
2038 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2039 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2040 		ASSERT(vd->vdev_dtl_sm != NULL);
2041 	}
2042 
2043 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2044 
2045 	rtsync = range_tree_create(NULL, NULL, &rtlock);
2046 
2047 	mutex_enter(&rtlock);
2048 
2049 	mutex_enter(&vd->vdev_dtl_lock);
2050 	range_tree_walk(rt, range_tree_add, rtsync);
2051 	mutex_exit(&vd->vdev_dtl_lock);
2052 
2053 	space_map_truncate(vd->vdev_dtl_sm, tx);
2054 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2055 	range_tree_vacate(rtsync, NULL, NULL);
2056 
2057 	range_tree_destroy(rtsync);
2058 
2059 	mutex_exit(&rtlock);
2060 	mutex_destroy(&rtlock);
2061 
2062 	/*
2063 	 * If the object for the space map has changed then dirty
2064 	 * the top level so that we update the config.
2065 	 */
2066 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2067 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2068 		    "new object %llu", txg, spa_name(spa), object,
2069 		    space_map_object(vd->vdev_dtl_sm));
2070 		vdev_config_dirty(vd->vdev_top);
2071 	}
2072 
2073 	dmu_tx_commit(tx);
2074 
2075 	mutex_enter(&vd->vdev_dtl_lock);
2076 	space_map_update(vd->vdev_dtl_sm);
2077 	mutex_exit(&vd->vdev_dtl_lock);
2078 }
2079 
2080 /*
2081  * Determine whether the specified vdev can be offlined/detached/removed
2082  * without losing data.
2083  */
2084 boolean_t
2085 vdev_dtl_required(vdev_t *vd)
2086 {
2087 	spa_t *spa = vd->vdev_spa;
2088 	vdev_t *tvd = vd->vdev_top;
2089 	uint8_t cant_read = vd->vdev_cant_read;
2090 	boolean_t required;
2091 
2092 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2093 
2094 	if (vd == spa->spa_root_vdev || vd == tvd)
2095 		return (B_TRUE);
2096 
2097 	/*
2098 	 * Temporarily mark the device as unreadable, and then determine
2099 	 * whether this results in any DTL outages in the top-level vdev.
2100 	 * If not, we can safely offline/detach/remove the device.
2101 	 */
2102 	vd->vdev_cant_read = B_TRUE;
2103 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2104 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2105 	vd->vdev_cant_read = cant_read;
2106 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2107 
2108 	if (!required && zio_injection_enabled)
2109 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2110 
2111 	return (required);
2112 }
2113 
2114 /*
2115  * Determine if resilver is needed, and if so the txg range.
2116  */
2117 boolean_t
2118 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2119 {
2120 	boolean_t needed = B_FALSE;
2121 	uint64_t thismin = UINT64_MAX;
2122 	uint64_t thismax = 0;
2123 
2124 	if (vd->vdev_children == 0) {
2125 		mutex_enter(&vd->vdev_dtl_lock);
2126 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2127 		    vdev_writeable(vd)) {
2128 
2129 			thismin = vdev_dtl_min(vd);
2130 			thismax = vdev_dtl_max(vd);
2131 			needed = B_TRUE;
2132 		}
2133 		mutex_exit(&vd->vdev_dtl_lock);
2134 	} else {
2135 		for (int c = 0; c < vd->vdev_children; c++) {
2136 			vdev_t *cvd = vd->vdev_child[c];
2137 			uint64_t cmin, cmax;
2138 
2139 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2140 				thismin = MIN(thismin, cmin);
2141 				thismax = MAX(thismax, cmax);
2142 				needed = B_TRUE;
2143 			}
2144 		}
2145 	}
2146 
2147 	if (needed && minp) {
2148 		*minp = thismin;
2149 		*maxp = thismax;
2150 	}
2151 	return (needed);
2152 }
2153 
2154 void
2155 vdev_load(vdev_t *vd)
2156 {
2157 	/*
2158 	 * Recursively load all children.
2159 	 */
2160 	for (int c = 0; c < vd->vdev_children; c++)
2161 		vdev_load(vd->vdev_child[c]);
2162 
2163 	/*
2164 	 * If this is a top-level vdev, initialize its metaslabs.
2165 	 */
2166 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2167 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2168 	    vdev_metaslab_init(vd, 0) != 0))
2169 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2170 		    VDEV_AUX_CORRUPT_DATA);
2171 
2172 	/*
2173 	 * If this is a leaf vdev, load its DTL.
2174 	 */
2175 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2176 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2177 		    VDEV_AUX_CORRUPT_DATA);
2178 }
2179 
2180 /*
2181  * The special vdev case is used for hot spares and l2cache devices.  Its
2182  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2183  * we make sure that we can open the underlying device, then try to read the
2184  * label, and make sure that the label is sane and that it hasn't been
2185  * repurposed to another pool.
2186  */
2187 int
2188 vdev_validate_aux(vdev_t *vd)
2189 {
2190 	nvlist_t *label;
2191 	uint64_t guid, version;
2192 	uint64_t state;
2193 
2194 	if (!vdev_readable(vd))
2195 		return (0);
2196 
2197 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2198 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2199 		    VDEV_AUX_CORRUPT_DATA);
2200 		return (-1);
2201 	}
2202 
2203 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2204 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2205 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2206 	    guid != vd->vdev_guid ||
2207 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2208 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2209 		    VDEV_AUX_CORRUPT_DATA);
2210 		nvlist_free(label);
2211 		return (-1);
2212 	}
2213 
2214 	/*
2215 	 * We don't actually check the pool state here.  If it's in fact in
2216 	 * use by another pool, we update this fact on the fly when requested.
2217 	 */
2218 	nvlist_free(label);
2219 	return (0);
2220 }
2221 
2222 void
2223 vdev_remove(vdev_t *vd, uint64_t txg)
2224 {
2225 	spa_t *spa = vd->vdev_spa;
2226 	objset_t *mos = spa->spa_meta_objset;
2227 	dmu_tx_t *tx;
2228 
2229 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2230 	ASSERT(vd == vd->vdev_top);
2231 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2232 
2233 	if (vd->vdev_ms != NULL) {
2234 		metaslab_group_t *mg = vd->vdev_mg;
2235 
2236 		metaslab_group_histogram_verify(mg);
2237 		metaslab_class_histogram_verify(mg->mg_class);
2238 
2239 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2240 			metaslab_t *msp = vd->vdev_ms[m];
2241 
2242 			if (msp == NULL || msp->ms_sm == NULL)
2243 				continue;
2244 
2245 			mutex_enter(&msp->ms_lock);
2246 			/*
2247 			 * If the metaslab was not loaded when the vdev
2248 			 * was removed then the histogram accounting may
2249 			 * not be accurate. Update the histogram information
2250 			 * here so that we ensure that the metaslab group
2251 			 * and metaslab class are up-to-date.
2252 			 */
2253 			metaslab_group_histogram_remove(mg, msp);
2254 
2255 			VERIFY0(space_map_allocated(msp->ms_sm));
2256 			space_map_free(msp->ms_sm, tx);
2257 			space_map_close(msp->ms_sm);
2258 			msp->ms_sm = NULL;
2259 			mutex_exit(&msp->ms_lock);
2260 		}
2261 
2262 		metaslab_group_histogram_verify(mg);
2263 		metaslab_class_histogram_verify(mg->mg_class);
2264 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2265 			ASSERT0(mg->mg_histogram[i]);
2266 
2267 	}
2268 
2269 	if (vd->vdev_ms_array) {
2270 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2271 		vd->vdev_ms_array = 0;
2272 	}
2273 
2274 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2275 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2276 		vd->vdev_top_zap = 0;
2277 	}
2278 	dmu_tx_commit(tx);
2279 }
2280 
2281 void
2282 vdev_sync_done(vdev_t *vd, uint64_t txg)
2283 {
2284 	metaslab_t *msp;
2285 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2286 
2287 	ASSERT(!vd->vdev_ishole);
2288 
2289 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2290 		metaslab_sync_done(msp, txg);
2291 
2292 	if (reassess)
2293 		metaslab_sync_reassess(vd->vdev_mg);
2294 }
2295 
2296 void
2297 vdev_sync(vdev_t *vd, uint64_t txg)
2298 {
2299 	spa_t *spa = vd->vdev_spa;
2300 	vdev_t *lvd;
2301 	metaslab_t *msp;
2302 	dmu_tx_t *tx;
2303 
2304 	ASSERT(!vd->vdev_ishole);
2305 
2306 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2307 		ASSERT(vd == vd->vdev_top);
2308 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2309 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2310 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2311 		ASSERT(vd->vdev_ms_array != 0);
2312 		vdev_config_dirty(vd);
2313 		dmu_tx_commit(tx);
2314 	}
2315 
2316 	/*
2317 	 * Remove the metadata associated with this vdev once it's empty.
2318 	 */
2319 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2320 		vdev_remove(vd, txg);
2321 
2322 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2323 		metaslab_sync(msp, txg);
2324 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2325 	}
2326 
2327 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2328 		vdev_dtl_sync(lvd, txg);
2329 
2330 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2331 }
2332 
2333 uint64_t
2334 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2335 {
2336 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2337 }
2338 
2339 /*
2340  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2341  * not be opened, and no I/O is attempted.
2342  */
2343 int
2344 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2345 {
2346 	vdev_t *vd, *tvd;
2347 
2348 	spa_vdev_state_enter(spa, SCL_NONE);
2349 
2350 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2351 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2352 
2353 	if (!vd->vdev_ops->vdev_op_leaf)
2354 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2355 
2356 	tvd = vd->vdev_top;
2357 
2358 	/*
2359 	 * We don't directly use the aux state here, but if we do a
2360 	 * vdev_reopen(), we need this value to be present to remember why we
2361 	 * were faulted.
2362 	 */
2363 	vd->vdev_label_aux = aux;
2364 
2365 	/*
2366 	 * Faulted state takes precedence over degraded.
2367 	 */
2368 	vd->vdev_delayed_close = B_FALSE;
2369 	vd->vdev_faulted = 1ULL;
2370 	vd->vdev_degraded = 0ULL;
2371 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2372 
2373 	/*
2374 	 * If this device has the only valid copy of the data, then
2375 	 * back off and simply mark the vdev as degraded instead.
2376 	 */
2377 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2378 		vd->vdev_degraded = 1ULL;
2379 		vd->vdev_faulted = 0ULL;
2380 
2381 		/*
2382 		 * If we reopen the device and it's not dead, only then do we
2383 		 * mark it degraded.
2384 		 */
2385 		vdev_reopen(tvd);
2386 
2387 		if (vdev_readable(vd))
2388 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2389 	}
2390 
2391 	return (spa_vdev_state_exit(spa, vd, 0));
2392 }
2393 
2394 /*
2395  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2396  * user that something is wrong.  The vdev continues to operate as normal as far
2397  * as I/O is concerned.
2398  */
2399 int
2400 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2401 {
2402 	vdev_t *vd;
2403 
2404 	spa_vdev_state_enter(spa, SCL_NONE);
2405 
2406 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2407 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2408 
2409 	if (!vd->vdev_ops->vdev_op_leaf)
2410 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2411 
2412 	/*
2413 	 * If the vdev is already faulted, then don't do anything.
2414 	 */
2415 	if (vd->vdev_faulted || vd->vdev_degraded)
2416 		return (spa_vdev_state_exit(spa, NULL, 0));
2417 
2418 	vd->vdev_degraded = 1ULL;
2419 	if (!vdev_is_dead(vd))
2420 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2421 		    aux);
2422 
2423 	return (spa_vdev_state_exit(spa, vd, 0));
2424 }
2425 
2426 /*
2427  * Online the given vdev.
2428  *
2429  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2430  * spare device should be detached when the device finishes resilvering.
2431  * Second, the online should be treated like a 'test' online case, so no FMA
2432  * events are generated if the device fails to open.
2433  */
2434 int
2435 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2436 {
2437 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2438 	boolean_t postevent = B_FALSE;
2439 
2440 	spa_vdev_state_enter(spa, SCL_NONE);
2441 
2442 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2443 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2444 
2445 	if (!vd->vdev_ops->vdev_op_leaf)
2446 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2447 
2448 	postevent =
2449 	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2450 	    B_TRUE : B_FALSE;
2451 
2452 	tvd = vd->vdev_top;
2453 	vd->vdev_offline = B_FALSE;
2454 	vd->vdev_tmpoffline = B_FALSE;
2455 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2456 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2457 
2458 	/* XXX - L2ARC 1.0 does not support expansion */
2459 	if (!vd->vdev_aux) {
2460 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2461 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2462 	}
2463 
2464 	vdev_reopen(tvd);
2465 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2466 
2467 	if (!vd->vdev_aux) {
2468 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2469 			pvd->vdev_expanding = B_FALSE;
2470 	}
2471 
2472 	if (newstate)
2473 		*newstate = vd->vdev_state;
2474 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2475 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2476 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2477 	    vd->vdev_parent->vdev_child[0] == vd)
2478 		vd->vdev_unspare = B_TRUE;
2479 
2480 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2481 
2482 		/* XXX - L2ARC 1.0 does not support expansion */
2483 		if (vd->vdev_aux)
2484 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2485 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2486 	}
2487 
2488 	if (postevent)
2489 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2490 
2491 	return (spa_vdev_state_exit(spa, vd, 0));
2492 }
2493 
2494 static int
2495 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2496 {
2497 	vdev_t *vd, *tvd;
2498 	int error = 0;
2499 	uint64_t generation;
2500 	metaslab_group_t *mg;
2501 
2502 top:
2503 	spa_vdev_state_enter(spa, SCL_ALLOC);
2504 
2505 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2506 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2507 
2508 	if (!vd->vdev_ops->vdev_op_leaf)
2509 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2510 
2511 	tvd = vd->vdev_top;
2512 	mg = tvd->vdev_mg;
2513 	generation = spa->spa_config_generation + 1;
2514 
2515 	/*
2516 	 * If the device isn't already offline, try to offline it.
2517 	 */
2518 	if (!vd->vdev_offline) {
2519 		/*
2520 		 * If this device has the only valid copy of some data,
2521 		 * don't allow it to be offlined. Log devices are always
2522 		 * expendable.
2523 		 */
2524 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2525 		    vdev_dtl_required(vd))
2526 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2527 
2528 		/*
2529 		 * If the top-level is a slog and it has had allocations
2530 		 * then proceed.  We check that the vdev's metaslab group
2531 		 * is not NULL since it's possible that we may have just
2532 		 * added this vdev but not yet initialized its metaslabs.
2533 		 */
2534 		if (tvd->vdev_islog && mg != NULL) {
2535 			/*
2536 			 * Prevent any future allocations.
2537 			 */
2538 			metaslab_group_passivate(mg);
2539 			(void) spa_vdev_state_exit(spa, vd, 0);
2540 
2541 			error = spa_offline_log(spa);
2542 
2543 			spa_vdev_state_enter(spa, SCL_ALLOC);
2544 
2545 			/*
2546 			 * Check to see if the config has changed.
2547 			 */
2548 			if (error || generation != spa->spa_config_generation) {
2549 				metaslab_group_activate(mg);
2550 				if (error)
2551 					return (spa_vdev_state_exit(spa,
2552 					    vd, error));
2553 				(void) spa_vdev_state_exit(spa, vd, 0);
2554 				goto top;
2555 			}
2556 			ASSERT0(tvd->vdev_stat.vs_alloc);
2557 		}
2558 
2559 		/*
2560 		 * Offline this device and reopen its top-level vdev.
2561 		 * If the top-level vdev is a log device then just offline
2562 		 * it. Otherwise, if this action results in the top-level
2563 		 * vdev becoming unusable, undo it and fail the request.
2564 		 */
2565 		vd->vdev_offline = B_TRUE;
2566 		vdev_reopen(tvd);
2567 
2568 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2569 		    vdev_is_dead(tvd)) {
2570 			vd->vdev_offline = B_FALSE;
2571 			vdev_reopen(tvd);
2572 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2573 		}
2574 
2575 		/*
2576 		 * Add the device back into the metaslab rotor so that
2577 		 * once we online the device it's open for business.
2578 		 */
2579 		if (tvd->vdev_islog && mg != NULL)
2580 			metaslab_group_activate(mg);
2581 	}
2582 
2583 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2584 
2585 	return (spa_vdev_state_exit(spa, vd, 0));
2586 }
2587 
2588 int
2589 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2590 {
2591 	int error;
2592 
2593 	mutex_enter(&spa->spa_vdev_top_lock);
2594 	error = vdev_offline_locked(spa, guid, flags);
2595 	mutex_exit(&spa->spa_vdev_top_lock);
2596 
2597 	return (error);
2598 }
2599 
2600 /*
2601  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2602  * vdev_offline(), we assume the spa config is locked.  We also clear all
2603  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2604  */
2605 void
2606 vdev_clear(spa_t *spa, vdev_t *vd)
2607 {
2608 	vdev_t *rvd = spa->spa_root_vdev;
2609 
2610 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2611 
2612 	if (vd == NULL)
2613 		vd = rvd;
2614 
2615 	vd->vdev_stat.vs_read_errors = 0;
2616 	vd->vdev_stat.vs_write_errors = 0;
2617 	vd->vdev_stat.vs_checksum_errors = 0;
2618 
2619 	for (int c = 0; c < vd->vdev_children; c++)
2620 		vdev_clear(spa, vd->vdev_child[c]);
2621 
2622 	/*
2623 	 * If we're in the FAULTED state or have experienced failed I/O, then
2624 	 * clear the persistent state and attempt to reopen the device.  We
2625 	 * also mark the vdev config dirty, so that the new faulted state is
2626 	 * written out to disk.
2627 	 */
2628 	if (vd->vdev_faulted || vd->vdev_degraded ||
2629 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2630 
2631 		/*
2632 		 * When reopening in reponse to a clear event, it may be due to
2633 		 * a fmadm repair request.  In this case, if the device is
2634 		 * still broken, we want to still post the ereport again.
2635 		 */
2636 		vd->vdev_forcefault = B_TRUE;
2637 
2638 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2639 		vd->vdev_cant_read = B_FALSE;
2640 		vd->vdev_cant_write = B_FALSE;
2641 
2642 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2643 
2644 		vd->vdev_forcefault = B_FALSE;
2645 
2646 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2647 			vdev_state_dirty(vd->vdev_top);
2648 
2649 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2650 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2651 
2652 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2653 	}
2654 
2655 	/*
2656 	 * When clearing a FMA-diagnosed fault, we always want to
2657 	 * unspare the device, as we assume that the original spare was
2658 	 * done in response to the FMA fault.
2659 	 */
2660 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2661 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2662 	    vd->vdev_parent->vdev_child[0] == vd)
2663 		vd->vdev_unspare = B_TRUE;
2664 }
2665 
2666 boolean_t
2667 vdev_is_dead(vdev_t *vd)
2668 {
2669 	/*
2670 	 * Holes and missing devices are always considered "dead".
2671 	 * This simplifies the code since we don't have to check for
2672 	 * these types of devices in the various code paths.
2673 	 * Instead we rely on the fact that we skip over dead devices
2674 	 * before issuing I/O to them.
2675 	 */
2676 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2677 	    vd->vdev_ops == &vdev_missing_ops);
2678 }
2679 
2680 boolean_t
2681 vdev_readable(vdev_t *vd)
2682 {
2683 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2684 }
2685 
2686 boolean_t
2687 vdev_writeable(vdev_t *vd)
2688 {
2689 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2690 }
2691 
2692 boolean_t
2693 vdev_allocatable(vdev_t *vd)
2694 {
2695 	uint64_t state = vd->vdev_state;
2696 
2697 	/*
2698 	 * We currently allow allocations from vdevs which may be in the
2699 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2700 	 * fails to reopen then we'll catch it later when we're holding
2701 	 * the proper locks.  Note that we have to get the vdev state
2702 	 * in a local variable because although it changes atomically,
2703 	 * we're asking two separate questions about it.
2704 	 */
2705 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2706 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2707 }
2708 
2709 boolean_t
2710 vdev_accessible(vdev_t *vd, zio_t *zio)
2711 {
2712 	ASSERT(zio->io_vd == vd);
2713 
2714 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2715 		return (B_FALSE);
2716 
2717 	if (zio->io_type == ZIO_TYPE_READ)
2718 		return (!vd->vdev_cant_read);
2719 
2720 	if (zio->io_type == ZIO_TYPE_WRITE)
2721 		return (!vd->vdev_cant_write);
2722 
2723 	return (B_TRUE);
2724 }
2725 
2726 /*
2727  * Get statistics for the given vdev.
2728  */
2729 void
2730 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2731 {
2732 	spa_t *spa = vd->vdev_spa;
2733 	vdev_t *rvd = spa->spa_root_vdev;
2734 
2735 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2736 
2737 	mutex_enter(&vd->vdev_stat_lock);
2738 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2739 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2740 	vs->vs_state = vd->vdev_state;
2741 	vs->vs_rsize = vdev_get_min_asize(vd);
2742 	if (vd->vdev_ops->vdev_op_leaf)
2743 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2744 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2745 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2746 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2747 	}
2748 
2749 	/*
2750 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2751 	 * over all top-level vdevs (i.e. the direct children of the root).
2752 	 */
2753 	if (vd == rvd) {
2754 		for (int c = 0; c < rvd->vdev_children; c++) {
2755 			vdev_t *cvd = rvd->vdev_child[c];
2756 			vdev_stat_t *cvs = &cvd->vdev_stat;
2757 
2758 			for (int t = 0; t < ZIO_TYPES; t++) {
2759 				vs->vs_ops[t] += cvs->vs_ops[t];
2760 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2761 			}
2762 			cvs->vs_scan_removing = cvd->vdev_removing;
2763 		}
2764 	}
2765 	mutex_exit(&vd->vdev_stat_lock);
2766 }
2767 
2768 void
2769 vdev_clear_stats(vdev_t *vd)
2770 {
2771 	mutex_enter(&vd->vdev_stat_lock);
2772 	vd->vdev_stat.vs_space = 0;
2773 	vd->vdev_stat.vs_dspace = 0;
2774 	vd->vdev_stat.vs_alloc = 0;
2775 	mutex_exit(&vd->vdev_stat_lock);
2776 }
2777 
2778 void
2779 vdev_scan_stat_init(vdev_t *vd)
2780 {
2781 	vdev_stat_t *vs = &vd->vdev_stat;
2782 
2783 	for (int c = 0; c < vd->vdev_children; c++)
2784 		vdev_scan_stat_init(vd->vdev_child[c]);
2785 
2786 	mutex_enter(&vd->vdev_stat_lock);
2787 	vs->vs_scan_processed = 0;
2788 	mutex_exit(&vd->vdev_stat_lock);
2789 }
2790 
2791 void
2792 vdev_stat_update(zio_t *zio, uint64_t psize)
2793 {
2794 	spa_t *spa = zio->io_spa;
2795 	vdev_t *rvd = spa->spa_root_vdev;
2796 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2797 	vdev_t *pvd;
2798 	uint64_t txg = zio->io_txg;
2799 	vdev_stat_t *vs = &vd->vdev_stat;
2800 	zio_type_t type = zio->io_type;
2801 	int flags = zio->io_flags;
2802 
2803 	/*
2804 	 * If this i/o is a gang leader, it didn't do any actual work.
2805 	 */
2806 	if (zio->io_gang_tree)
2807 		return;
2808 
2809 	if (zio->io_error == 0) {
2810 		/*
2811 		 * If this is a root i/o, don't count it -- we've already
2812 		 * counted the top-level vdevs, and vdev_get_stats() will
2813 		 * aggregate them when asked.  This reduces contention on
2814 		 * the root vdev_stat_lock and implicitly handles blocks
2815 		 * that compress away to holes, for which there is no i/o.
2816 		 * (Holes never create vdev children, so all the counters
2817 		 * remain zero, which is what we want.)
2818 		 *
2819 		 * Note: this only applies to successful i/o (io_error == 0)
2820 		 * because unlike i/o counts, errors are not additive.
2821 		 * When reading a ditto block, for example, failure of
2822 		 * one top-level vdev does not imply a root-level error.
2823 		 */
2824 		if (vd == rvd)
2825 			return;
2826 
2827 		ASSERT(vd == zio->io_vd);
2828 
2829 		if (flags & ZIO_FLAG_IO_BYPASS)
2830 			return;
2831 
2832 		mutex_enter(&vd->vdev_stat_lock);
2833 
2834 		if (flags & ZIO_FLAG_IO_REPAIR) {
2835 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2836 				dsl_scan_phys_t *scn_phys =
2837 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2838 				uint64_t *processed = &scn_phys->scn_processed;
2839 
2840 				/* XXX cleanup? */
2841 				if (vd->vdev_ops->vdev_op_leaf)
2842 					atomic_add_64(processed, psize);
2843 				vs->vs_scan_processed += psize;
2844 			}
2845 
2846 			if (flags & ZIO_FLAG_SELF_HEAL)
2847 				vs->vs_self_healed += psize;
2848 		}
2849 
2850 		vs->vs_ops[type]++;
2851 		vs->vs_bytes[type] += psize;
2852 
2853 		mutex_exit(&vd->vdev_stat_lock);
2854 		return;
2855 	}
2856 
2857 	if (flags & ZIO_FLAG_SPECULATIVE)
2858 		return;
2859 
2860 	/*
2861 	 * If this is an I/O error that is going to be retried, then ignore the
2862 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2863 	 * hard errors, when in reality they can happen for any number of
2864 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2865 	 */
2866 	if (zio->io_error == EIO &&
2867 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2868 		return;
2869 
2870 	/*
2871 	 * Intent logs writes won't propagate their error to the root
2872 	 * I/O so don't mark these types of failures as pool-level
2873 	 * errors.
2874 	 */
2875 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2876 		return;
2877 
2878 	mutex_enter(&vd->vdev_stat_lock);
2879 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2880 		if (zio->io_error == ECKSUM)
2881 			vs->vs_checksum_errors++;
2882 		else
2883 			vs->vs_read_errors++;
2884 	}
2885 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2886 		vs->vs_write_errors++;
2887 	mutex_exit(&vd->vdev_stat_lock);
2888 
2889 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2890 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2891 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2892 	    spa->spa_claiming)) {
2893 		/*
2894 		 * This is either a normal write (not a repair), or it's
2895 		 * a repair induced by the scrub thread, or it's a repair
2896 		 * made by zil_claim() during spa_load() in the first txg.
2897 		 * In the normal case, we commit the DTL change in the same
2898 		 * txg as the block was born.  In the scrub-induced repair
2899 		 * case, we know that scrubs run in first-pass syncing context,
2900 		 * so we commit the DTL change in spa_syncing_txg(spa).
2901 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2902 		 *
2903 		 * We currently do not make DTL entries for failed spontaneous
2904 		 * self-healing writes triggered by normal (non-scrubbing)
2905 		 * reads, because we have no transactional context in which to
2906 		 * do so -- and it's not clear that it'd be desirable anyway.
2907 		 */
2908 		if (vd->vdev_ops->vdev_op_leaf) {
2909 			uint64_t commit_txg = txg;
2910 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2911 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2912 				ASSERT(spa_sync_pass(spa) == 1);
2913 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2914 				commit_txg = spa_syncing_txg(spa);
2915 			} else if (spa->spa_claiming) {
2916 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2917 				commit_txg = spa_first_txg(spa);
2918 			}
2919 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2920 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2921 				return;
2922 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2923 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2924 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2925 		}
2926 		if (vd != rvd)
2927 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2928 	}
2929 }
2930 
2931 /*
2932  * Update the in-core space usage stats for this vdev, its metaslab class,
2933  * and the root vdev.
2934  */
2935 void
2936 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2937     int64_t space_delta)
2938 {
2939 	int64_t dspace_delta = space_delta;
2940 	spa_t *spa = vd->vdev_spa;
2941 	vdev_t *rvd = spa->spa_root_vdev;
2942 	metaslab_group_t *mg = vd->vdev_mg;
2943 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2944 
2945 	ASSERT(vd == vd->vdev_top);
2946 
2947 	/*
2948 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2949 	 * factor.  We must calculate this here and not at the root vdev
2950 	 * because the root vdev's psize-to-asize is simply the max of its
2951 	 * childrens', thus not accurate enough for us.
2952 	 */
2953 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2954 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2955 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2956 	    vd->vdev_deflate_ratio;
2957 
2958 	mutex_enter(&vd->vdev_stat_lock);
2959 	vd->vdev_stat.vs_alloc += alloc_delta;
2960 	vd->vdev_stat.vs_space += space_delta;
2961 	vd->vdev_stat.vs_dspace += dspace_delta;
2962 	mutex_exit(&vd->vdev_stat_lock);
2963 
2964 	if (mc == spa_normal_class(spa)) {
2965 		mutex_enter(&rvd->vdev_stat_lock);
2966 		rvd->vdev_stat.vs_alloc += alloc_delta;
2967 		rvd->vdev_stat.vs_space += space_delta;
2968 		rvd->vdev_stat.vs_dspace += dspace_delta;
2969 		mutex_exit(&rvd->vdev_stat_lock);
2970 	}
2971 
2972 	if (mc != NULL) {
2973 		ASSERT(rvd == vd->vdev_parent);
2974 		ASSERT(vd->vdev_ms_count != 0);
2975 
2976 		metaslab_class_space_update(mc,
2977 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2978 	}
2979 }
2980 
2981 /*
2982  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2983  * so that it will be written out next time the vdev configuration is synced.
2984  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2985  */
2986 void
2987 vdev_config_dirty(vdev_t *vd)
2988 {
2989 	spa_t *spa = vd->vdev_spa;
2990 	vdev_t *rvd = spa->spa_root_vdev;
2991 	int c;
2992 
2993 	ASSERT(spa_writeable(spa));
2994 
2995 	/*
2996 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2997 	 * update the vdev config manually and set the sync flag.
2998 	 */
2999 	if (vd->vdev_aux != NULL) {
3000 		spa_aux_vdev_t *sav = vd->vdev_aux;
3001 		nvlist_t **aux;
3002 		uint_t naux;
3003 
3004 		for (c = 0; c < sav->sav_count; c++) {
3005 			if (sav->sav_vdevs[c] == vd)
3006 				break;
3007 		}
3008 
3009 		if (c == sav->sav_count) {
3010 			/*
3011 			 * We're being removed.  There's nothing more to do.
3012 			 */
3013 			ASSERT(sav->sav_sync == B_TRUE);
3014 			return;
3015 		}
3016 
3017 		sav->sav_sync = B_TRUE;
3018 
3019 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3020 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3021 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3022 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3023 		}
3024 
3025 		ASSERT(c < naux);
3026 
3027 		/*
3028 		 * Setting the nvlist in the middle if the array is a little
3029 		 * sketchy, but it will work.
3030 		 */
3031 		nvlist_free(aux[c]);
3032 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3033 
3034 		return;
3035 	}
3036 
3037 	/*
3038 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3039 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3040 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3041 	 * so this is sufficient to ensure mutual exclusion.
3042 	 */
3043 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3044 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3045 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3046 
3047 	if (vd == rvd) {
3048 		for (c = 0; c < rvd->vdev_children; c++)
3049 			vdev_config_dirty(rvd->vdev_child[c]);
3050 	} else {
3051 		ASSERT(vd == vd->vdev_top);
3052 
3053 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3054 		    !vd->vdev_ishole)
3055 			list_insert_head(&spa->spa_config_dirty_list, vd);
3056 	}
3057 }
3058 
3059 void
3060 vdev_config_clean(vdev_t *vd)
3061 {
3062 	spa_t *spa = vd->vdev_spa;
3063 
3064 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3065 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3066 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3067 
3068 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3069 	list_remove(&spa->spa_config_dirty_list, vd);
3070 }
3071 
3072 /*
3073  * Mark a top-level vdev's state as dirty, so that the next pass of
3074  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3075  * the state changes from larger config changes because they require
3076  * much less locking, and are often needed for administrative actions.
3077  */
3078 void
3079 vdev_state_dirty(vdev_t *vd)
3080 {
3081 	spa_t *spa = vd->vdev_spa;
3082 
3083 	ASSERT(spa_writeable(spa));
3084 	ASSERT(vd == vd->vdev_top);
3085 
3086 	/*
3087 	 * The state list is protected by the SCL_STATE lock.  The caller
3088 	 * must either hold SCL_STATE as writer, or must be the sync thread
3089 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3090 	 * so this is sufficient to ensure mutual exclusion.
3091 	 */
3092 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3093 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3094 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3095 
3096 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3097 		list_insert_head(&spa->spa_state_dirty_list, vd);
3098 }
3099 
3100 void
3101 vdev_state_clean(vdev_t *vd)
3102 {
3103 	spa_t *spa = vd->vdev_spa;
3104 
3105 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3106 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3107 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3108 
3109 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3110 	list_remove(&spa->spa_state_dirty_list, vd);
3111 }
3112 
3113 /*
3114  * Propagate vdev state up from children to parent.
3115  */
3116 void
3117 vdev_propagate_state(vdev_t *vd)
3118 {
3119 	spa_t *spa = vd->vdev_spa;
3120 	vdev_t *rvd = spa->spa_root_vdev;
3121 	int degraded = 0, faulted = 0;
3122 	int corrupted = 0;
3123 	vdev_t *child;
3124 
3125 	if (vd->vdev_children > 0) {
3126 		for (int c = 0; c < vd->vdev_children; c++) {
3127 			child = vd->vdev_child[c];
3128 
3129 			/*
3130 			 * Don't factor holes into the decision.
3131 			 */
3132 			if (child->vdev_ishole)
3133 				continue;
3134 
3135 			if (!vdev_readable(child) ||
3136 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3137 				/*
3138 				 * Root special: if there is a top-level log
3139 				 * device, treat the root vdev as if it were
3140 				 * degraded.
3141 				 */
3142 				if (child->vdev_islog && vd == rvd)
3143 					degraded++;
3144 				else
3145 					faulted++;
3146 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3147 				degraded++;
3148 			}
3149 
3150 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3151 				corrupted++;
3152 		}
3153 
3154 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3155 
3156 		/*
3157 		 * Root special: if there is a top-level vdev that cannot be
3158 		 * opened due to corrupted metadata, then propagate the root
3159 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3160 		 * replicas'.
3161 		 */
3162 		if (corrupted && vd == rvd &&
3163 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3164 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3165 			    VDEV_AUX_CORRUPT_DATA);
3166 	}
3167 
3168 	if (vd->vdev_parent)
3169 		vdev_propagate_state(vd->vdev_parent);
3170 }
3171 
3172 /*
3173  * Set a vdev's state.  If this is during an open, we don't update the parent
3174  * state, because we're in the process of opening children depth-first.
3175  * Otherwise, we propagate the change to the parent.
3176  *
3177  * If this routine places a device in a faulted state, an appropriate ereport is
3178  * generated.
3179  */
3180 void
3181 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3182 {
3183 	uint64_t save_state;
3184 	spa_t *spa = vd->vdev_spa;
3185 
3186 	if (state == vd->vdev_state) {
3187 		vd->vdev_stat.vs_aux = aux;
3188 		return;
3189 	}
3190 
3191 	save_state = vd->vdev_state;
3192 
3193 	vd->vdev_state = state;
3194 	vd->vdev_stat.vs_aux = aux;
3195 
3196 	/*
3197 	 * If we are setting the vdev state to anything but an open state, then
3198 	 * always close the underlying device unless the device has requested
3199 	 * a delayed close (i.e. we're about to remove or fault the device).
3200 	 * Otherwise, we keep accessible but invalid devices open forever.
3201 	 * We don't call vdev_close() itself, because that implies some extra
3202 	 * checks (offline, etc) that we don't want here.  This is limited to
3203 	 * leaf devices, because otherwise closing the device will affect other
3204 	 * children.
3205 	 */
3206 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3207 	    vd->vdev_ops->vdev_op_leaf)
3208 		vd->vdev_ops->vdev_op_close(vd);
3209 
3210 	/*
3211 	 * If we have brought this vdev back into service, we need
3212 	 * to notify fmd so that it can gracefully repair any outstanding
3213 	 * cases due to a missing device.  We do this in all cases, even those
3214 	 * that probably don't correlate to a repaired fault.  This is sure to
3215 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3216 	 * this is a transient state it's OK, as the retire agent will
3217 	 * double-check the state of the vdev before repairing it.
3218 	 */
3219 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3220 	    vd->vdev_prevstate != state)
3221 		zfs_post_state_change(spa, vd);
3222 
3223 	if (vd->vdev_removed &&
3224 	    state == VDEV_STATE_CANT_OPEN &&
3225 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3226 		/*
3227 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3228 		 * device was previously marked removed and someone attempted to
3229 		 * reopen it.  If this failed due to a nonexistent device, then
3230 		 * keep the device in the REMOVED state.  We also let this be if
3231 		 * it is one of our special test online cases, which is only
3232 		 * attempting to online the device and shouldn't generate an FMA
3233 		 * fault.
3234 		 */
3235 		vd->vdev_state = VDEV_STATE_REMOVED;
3236 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3237 	} else if (state == VDEV_STATE_REMOVED) {
3238 		vd->vdev_removed = B_TRUE;
3239 	} else if (state == VDEV_STATE_CANT_OPEN) {
3240 		/*
3241 		 * If we fail to open a vdev during an import or recovery, we
3242 		 * mark it as "not available", which signifies that it was
3243 		 * never there to begin with.  Failure to open such a device
3244 		 * is not considered an error.
3245 		 */
3246 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3247 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3248 		    vd->vdev_ops->vdev_op_leaf)
3249 			vd->vdev_not_present = 1;
3250 
3251 		/*
3252 		 * Post the appropriate ereport.  If the 'prevstate' field is
3253 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3254 		 * that this is part of a vdev_reopen().  In this case, we don't
3255 		 * want to post the ereport if the device was already in the
3256 		 * CANT_OPEN state beforehand.
3257 		 *
3258 		 * If the 'checkremove' flag is set, then this is an attempt to
3259 		 * online the device in response to an insertion event.  If we
3260 		 * hit this case, then we have detected an insertion event for a
3261 		 * faulted or offline device that wasn't in the removed state.
3262 		 * In this scenario, we don't post an ereport because we are
3263 		 * about to replace the device, or attempt an online with
3264 		 * vdev_forcefault, which will generate the fault for us.
3265 		 */
3266 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3267 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3268 		    vd != spa->spa_root_vdev) {
3269 			const char *class;
3270 
3271 			switch (aux) {
3272 			case VDEV_AUX_OPEN_FAILED:
3273 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3274 				break;
3275 			case VDEV_AUX_CORRUPT_DATA:
3276 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3277 				break;
3278 			case VDEV_AUX_NO_REPLICAS:
3279 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3280 				break;
3281 			case VDEV_AUX_BAD_GUID_SUM:
3282 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3283 				break;
3284 			case VDEV_AUX_TOO_SMALL:
3285 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3286 				break;
3287 			case VDEV_AUX_BAD_LABEL:
3288 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3289 				break;
3290 			default:
3291 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3292 			}
3293 
3294 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3295 		}
3296 
3297 		/* Erase any notion of persistent removed state */
3298 		vd->vdev_removed = B_FALSE;
3299 	} else {
3300 		vd->vdev_removed = B_FALSE;
3301 	}
3302 
3303 	if (!isopen && vd->vdev_parent)
3304 		vdev_propagate_state(vd->vdev_parent);
3305 }
3306 
3307 /*
3308  * Check the vdev configuration to ensure that it's capable of supporting
3309  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3310  * In addition, only a single top-level vdev is allowed and none of the leaves
3311  * can be wholedisks.
3312  */
3313 boolean_t
3314 vdev_is_bootable(vdev_t *vd)
3315 {
3316 	if (!vd->vdev_ops->vdev_op_leaf) {
3317 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3318 
3319 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3320 		    vd->vdev_children > 1) {
3321 			return (B_FALSE);
3322 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3323 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3324 			return (B_FALSE);
3325 		}
3326 	}
3327 
3328 	for (int c = 0; c < vd->vdev_children; c++) {
3329 		if (!vdev_is_bootable(vd->vdev_child[c]))
3330 			return (B_FALSE);
3331 	}
3332 	return (B_TRUE);
3333 }
3334 
3335 /*
3336  * Load the state from the original vdev tree (ovd) which
3337  * we've retrieved from the MOS config object. If the original
3338  * vdev was offline or faulted then we transfer that state to the
3339  * device in the current vdev tree (nvd).
3340  */
3341 void
3342 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3343 {
3344 	spa_t *spa = nvd->vdev_spa;
3345 
3346 	ASSERT(nvd->vdev_top->vdev_islog);
3347 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3348 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3349 
3350 	for (int c = 0; c < nvd->vdev_children; c++)
3351 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3352 
3353 	if (nvd->vdev_ops->vdev_op_leaf) {
3354 		/*
3355 		 * Restore the persistent vdev state
3356 		 */
3357 		nvd->vdev_offline = ovd->vdev_offline;
3358 		nvd->vdev_faulted = ovd->vdev_faulted;
3359 		nvd->vdev_degraded = ovd->vdev_degraded;
3360 		nvd->vdev_removed = ovd->vdev_removed;
3361 	}
3362 }
3363 
3364 /*
3365  * Determine if a log device has valid content.  If the vdev was
3366  * removed or faulted in the MOS config then we know that
3367  * the content on the log device has already been written to the pool.
3368  */
3369 boolean_t
3370 vdev_log_state_valid(vdev_t *vd)
3371 {
3372 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3373 	    !vd->vdev_removed)
3374 		return (B_TRUE);
3375 
3376 	for (int c = 0; c < vd->vdev_children; c++)
3377 		if (vdev_log_state_valid(vd->vdev_child[c]))
3378 			return (B_TRUE);
3379 
3380 	return (B_FALSE);
3381 }
3382 
3383 /*
3384  * Expand a vdev if possible.
3385  */
3386 void
3387 vdev_expand(vdev_t *vd, uint64_t txg)
3388 {
3389 	ASSERT(vd->vdev_top == vd);
3390 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3391 
3392 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3393 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3394 		vdev_config_dirty(vd);
3395 	}
3396 }
3397 
3398 /*
3399  * Split a vdev.
3400  */
3401 void
3402 vdev_split(vdev_t *vd)
3403 {
3404 	vdev_t *cvd, *pvd = vd->vdev_parent;
3405 
3406 	vdev_remove_child(pvd, vd);
3407 	vdev_compact_children(pvd);
3408 
3409 	cvd = pvd->vdev_child[0];
3410 	if (pvd->vdev_children == 1) {
3411 		vdev_remove_parent(cvd);
3412 		cvd->vdev_splitting = B_TRUE;
3413 	}
3414 	vdev_propagate_state(cvd);
3415 }
3416 
3417 void
3418 vdev_deadman(vdev_t *vd)
3419 {
3420 	for (int c = 0; c < vd->vdev_children; c++) {
3421 		vdev_t *cvd = vd->vdev_child[c];
3422 
3423 		vdev_deadman(cvd);
3424 	}
3425 
3426 	if (vd->vdev_ops->vdev_op_leaf) {
3427 		vdev_queue_t *vq = &vd->vdev_queue;
3428 
3429 		mutex_enter(&vq->vq_lock);
3430 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3431 			spa_t *spa = vd->vdev_spa;
3432 			zio_t *fio;
3433 			uint64_t delta;
3434 
3435 			/*
3436 			 * Look at the head of all the pending queues,
3437 			 * if any I/O has been outstanding for longer than
3438 			 * the spa_deadman_synctime we panic the system.
3439 			 */
3440 			fio = avl_first(&vq->vq_active_tree);
3441 			delta = gethrtime() - fio->io_timestamp;
3442 			if (delta > spa_deadman_synctime(spa)) {
3443 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3444 				    "delta %lluns, last io %lluns",
3445 				    fio->io_timestamp, delta,
3446 				    vq->vq_io_complete_ts);
3447 				fm_panic("I/O to pool '%s' appears to be "
3448 				    "hung.", spa_name(spa));
3449 			}
3450 		}
3451 		mutex_exit(&vq->vq_lock);
3452 	}
3453 }
3454