1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2019 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa.h> 36 #include <sys/spa_impl.h> 37 #include <sys/bpobj.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/uberblock_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/space_map.h> 46 #include <sys/space_reftree.h> 47 #include <sys/zio.h> 48 #include <sys/zap.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/arc.h> 51 #include <sys/zil.h> 52 #include <sys/dsl_scan.h> 53 #include <sys/abd.h> 54 #include <sys/vdev_initialize.h> 55 #include <sys/vdev_trim.h> 56 57 /* 58 * Virtual device management. 59 */ 60 61 static vdev_ops_t *vdev_ops_table[] = { 62 &vdev_root_ops, 63 &vdev_raidz_ops, 64 &vdev_mirror_ops, 65 &vdev_replacing_ops, 66 &vdev_spare_ops, 67 &vdev_disk_ops, 68 &vdev_file_ops, 69 &vdev_missing_ops, 70 &vdev_hole_ops, 71 &vdev_indirect_ops, 72 NULL 73 }; 74 75 /* maximum scrub/resilver I/O queue per leaf vdev */ 76 int zfs_scrub_limit = 10; 77 78 /* default target for number of metaslabs per top-level vdev */ 79 int zfs_vdev_default_ms_count = 200; 80 81 /* minimum number of metaslabs per top-level vdev */ 82 int zfs_vdev_min_ms_count = 16; 83 84 /* practical upper limit of total metaslabs per top-level vdev */ 85 int zfs_vdev_ms_count_limit = 1ULL << 17; 86 87 /* lower limit for metaslab size (512M) */ 88 int zfs_vdev_default_ms_shift = 29; 89 90 /* upper limit for metaslab size (16G) */ 91 int zfs_vdev_max_ms_shift = 34; 92 93 boolean_t vdev_validate_skip = B_FALSE; 94 95 /* 96 * Since the DTL space map of a vdev is not expected to have a lot of 97 * entries, we default its block size to 4K. 98 */ 99 int zfs_vdev_dtl_sm_blksz = (1 << 12); 100 101 /* 102 * Ignore errors during scrub/resilver. Allows to work around resilver 103 * upon import when there are pool errors. 104 */ 105 int zfs_scan_ignore_errors = 0; 106 107 /* 108 * vdev-wide space maps that have lots of entries written to them at 109 * the end of each transaction can benefit from a higher I/O bandwidth 110 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 111 */ 112 int zfs_vdev_standard_sm_blksz = (1 << 17); 113 114 int zfs_ashift_min; 115 116 /*PRINTFLIKE2*/ 117 void 118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 119 { 120 va_list adx; 121 char buf[256]; 122 123 va_start(adx, fmt); 124 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 125 va_end(adx); 126 127 if (vd->vdev_path != NULL) { 128 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 129 vd->vdev_path, buf); 130 } else { 131 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 132 vd->vdev_ops->vdev_op_type, 133 (u_longlong_t)vd->vdev_id, 134 (u_longlong_t)vd->vdev_guid, buf); 135 } 136 } 137 138 void 139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 140 { 141 char state[20]; 142 143 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 144 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 145 vd->vdev_ops->vdev_op_type); 146 return; 147 } 148 149 switch (vd->vdev_state) { 150 case VDEV_STATE_UNKNOWN: 151 (void) snprintf(state, sizeof (state), "unknown"); 152 break; 153 case VDEV_STATE_CLOSED: 154 (void) snprintf(state, sizeof (state), "closed"); 155 break; 156 case VDEV_STATE_OFFLINE: 157 (void) snprintf(state, sizeof (state), "offline"); 158 break; 159 case VDEV_STATE_REMOVED: 160 (void) snprintf(state, sizeof (state), "removed"); 161 break; 162 case VDEV_STATE_CANT_OPEN: 163 (void) snprintf(state, sizeof (state), "can't open"); 164 break; 165 case VDEV_STATE_FAULTED: 166 (void) snprintf(state, sizeof (state), "faulted"); 167 break; 168 case VDEV_STATE_DEGRADED: 169 (void) snprintf(state, sizeof (state), "degraded"); 170 break; 171 case VDEV_STATE_HEALTHY: 172 (void) snprintf(state, sizeof (state), "healthy"); 173 break; 174 default: 175 (void) snprintf(state, sizeof (state), "<state %u>", 176 (uint_t)vd->vdev_state); 177 } 178 179 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 180 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 181 vd->vdev_islog ? " (log)" : "", 182 (u_longlong_t)vd->vdev_guid, 183 vd->vdev_path ? vd->vdev_path : "N/A", state); 184 185 for (uint64_t i = 0; i < vd->vdev_children; i++) 186 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 187 } 188 189 /* 190 * Given a vdev type, return the appropriate ops vector. 191 */ 192 static vdev_ops_t * 193 vdev_getops(const char *type) 194 { 195 vdev_ops_t *ops, **opspp; 196 197 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 198 if (strcmp(ops->vdev_op_type, type) == 0) 199 break; 200 201 return (ops); 202 } 203 204 /* 205 * Derive the enumerated alloction bias from string input. 206 * String origin is either the per-vdev zap or zpool(1M). 207 */ 208 static vdev_alloc_bias_t 209 vdev_derive_alloc_bias(const char *bias) 210 { 211 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 212 213 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 214 alloc_bias = VDEV_BIAS_LOG; 215 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 216 alloc_bias = VDEV_BIAS_SPECIAL; 217 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 218 alloc_bias = VDEV_BIAS_DEDUP; 219 220 return (alloc_bias); 221 } 222 223 /* ARGSUSED */ 224 void 225 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res) 226 { 227 res->rs_start = in->rs_start; 228 res->rs_end = in->rs_end; 229 } 230 231 /* 232 * Default asize function: return the MAX of psize with the asize of 233 * all children. This is what's used by anything other than RAID-Z. 234 */ 235 uint64_t 236 vdev_default_asize(vdev_t *vd, uint64_t psize) 237 { 238 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 239 uint64_t csize; 240 241 for (int c = 0; c < vd->vdev_children; c++) { 242 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 243 asize = MAX(asize, csize); 244 } 245 246 return (asize); 247 } 248 249 /* 250 * Get the minimum allocatable size. We define the allocatable size as 251 * the vdev's asize rounded to the nearest metaslab. This allows us to 252 * replace or attach devices which don't have the same physical size but 253 * can still satisfy the same number of allocations. 254 */ 255 uint64_t 256 vdev_get_min_asize(vdev_t *vd) 257 { 258 vdev_t *pvd = vd->vdev_parent; 259 260 /* 261 * If our parent is NULL (inactive spare or cache) or is the root, 262 * just return our own asize. 263 */ 264 if (pvd == NULL) 265 return (vd->vdev_asize); 266 267 /* 268 * The top-level vdev just returns the allocatable size rounded 269 * to the nearest metaslab. 270 */ 271 if (vd == vd->vdev_top) 272 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 273 274 /* 275 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 276 * so each child must provide at least 1/Nth of its asize. 277 */ 278 if (pvd->vdev_ops == &vdev_raidz_ops) 279 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 280 pvd->vdev_children); 281 282 return (pvd->vdev_min_asize); 283 } 284 285 void 286 vdev_set_min_asize(vdev_t *vd) 287 { 288 vd->vdev_min_asize = vdev_get_min_asize(vd); 289 290 for (int c = 0; c < vd->vdev_children; c++) 291 vdev_set_min_asize(vd->vdev_child[c]); 292 } 293 294 vdev_t * 295 vdev_lookup_top(spa_t *spa, uint64_t vdev) 296 { 297 vdev_t *rvd = spa->spa_root_vdev; 298 299 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 300 301 if (vdev < rvd->vdev_children) { 302 ASSERT(rvd->vdev_child[vdev] != NULL); 303 return (rvd->vdev_child[vdev]); 304 } 305 306 return (NULL); 307 } 308 309 vdev_t * 310 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 311 { 312 vdev_t *mvd; 313 314 if (vd->vdev_guid == guid) 315 return (vd); 316 317 for (int c = 0; c < vd->vdev_children; c++) 318 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 319 NULL) 320 return (mvd); 321 322 return (NULL); 323 } 324 325 static int 326 vdev_count_leaves_impl(vdev_t *vd) 327 { 328 int n = 0; 329 330 if (vd->vdev_ops->vdev_op_leaf) 331 return (1); 332 333 for (int c = 0; c < vd->vdev_children; c++) 334 n += vdev_count_leaves_impl(vd->vdev_child[c]); 335 336 return (n); 337 } 338 339 int 340 vdev_count_leaves(spa_t *spa) 341 { 342 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 343 } 344 345 void 346 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 347 { 348 size_t oldsize, newsize; 349 uint64_t id = cvd->vdev_id; 350 vdev_t **newchild; 351 spa_t *spa = cvd->vdev_spa; 352 353 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 354 ASSERT(cvd->vdev_parent == NULL); 355 356 cvd->vdev_parent = pvd; 357 358 if (pvd == NULL) 359 return; 360 361 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 362 363 oldsize = pvd->vdev_children * sizeof (vdev_t *); 364 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 365 newsize = pvd->vdev_children * sizeof (vdev_t *); 366 367 newchild = kmem_zalloc(newsize, KM_SLEEP); 368 if (pvd->vdev_child != NULL) { 369 bcopy(pvd->vdev_child, newchild, oldsize); 370 kmem_free(pvd->vdev_child, oldsize); 371 } 372 373 pvd->vdev_child = newchild; 374 pvd->vdev_child[id] = cvd; 375 376 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 377 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 378 379 /* 380 * Walk up all ancestors to update guid sum. 381 */ 382 for (; pvd != NULL; pvd = pvd->vdev_parent) 383 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 384 385 if (cvd->vdev_ops->vdev_op_leaf) { 386 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 387 cvd->vdev_spa->spa_leaf_list_gen++; 388 } 389 } 390 391 void 392 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 393 { 394 int c; 395 uint_t id = cvd->vdev_id; 396 397 ASSERT(cvd->vdev_parent == pvd); 398 399 if (pvd == NULL) 400 return; 401 402 ASSERT(id < pvd->vdev_children); 403 ASSERT(pvd->vdev_child[id] == cvd); 404 405 pvd->vdev_child[id] = NULL; 406 cvd->vdev_parent = NULL; 407 408 for (c = 0; c < pvd->vdev_children; c++) 409 if (pvd->vdev_child[c]) 410 break; 411 412 if (c == pvd->vdev_children) { 413 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 414 pvd->vdev_child = NULL; 415 pvd->vdev_children = 0; 416 } 417 418 if (cvd->vdev_ops->vdev_op_leaf) { 419 spa_t *spa = cvd->vdev_spa; 420 list_remove(&spa->spa_leaf_list, cvd); 421 spa->spa_leaf_list_gen++; 422 } 423 424 /* 425 * Walk up all ancestors to update guid sum. 426 */ 427 for (; pvd != NULL; pvd = pvd->vdev_parent) 428 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 429 } 430 431 /* 432 * Remove any holes in the child array. 433 */ 434 void 435 vdev_compact_children(vdev_t *pvd) 436 { 437 vdev_t **newchild, *cvd; 438 int oldc = pvd->vdev_children; 439 int newc; 440 441 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 442 443 for (int c = newc = 0; c < oldc; c++) 444 if (pvd->vdev_child[c]) 445 newc++; 446 447 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 448 449 for (int c = newc = 0; c < oldc; c++) { 450 if ((cvd = pvd->vdev_child[c]) != NULL) { 451 newchild[newc] = cvd; 452 cvd->vdev_id = newc++; 453 } 454 } 455 456 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 457 pvd->vdev_child = newchild; 458 pvd->vdev_children = newc; 459 } 460 461 /* 462 * Allocate and minimally initialize a vdev_t. 463 */ 464 vdev_t * 465 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 466 { 467 vdev_t *vd; 468 vdev_indirect_config_t *vic; 469 470 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 471 vic = &vd->vdev_indirect_config; 472 473 if (spa->spa_root_vdev == NULL) { 474 ASSERT(ops == &vdev_root_ops); 475 spa->spa_root_vdev = vd; 476 spa->spa_load_guid = spa_generate_guid(NULL); 477 } 478 479 if (guid == 0 && ops != &vdev_hole_ops) { 480 if (spa->spa_root_vdev == vd) { 481 /* 482 * The root vdev's guid will also be the pool guid, 483 * which must be unique among all pools. 484 */ 485 guid = spa_generate_guid(NULL); 486 } else { 487 /* 488 * Any other vdev's guid must be unique within the pool. 489 */ 490 guid = spa_generate_guid(spa); 491 } 492 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 493 } 494 495 vd->vdev_spa = spa; 496 vd->vdev_id = id; 497 vd->vdev_guid = guid; 498 vd->vdev_guid_sum = guid; 499 vd->vdev_ops = ops; 500 vd->vdev_state = VDEV_STATE_CLOSED; 501 vd->vdev_ishole = (ops == &vdev_hole_ops); 502 vic->vic_prev_indirect_vdev = UINT64_MAX; 503 504 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 505 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 506 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 507 0, 0); 508 509 list_link_init(&vd->vdev_initialize_node); 510 list_link_init(&vd->vdev_leaf_node); 511 list_link_init(&vd->vdev_trim_node); 512 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 513 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 514 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 515 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 516 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 517 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 518 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 519 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 520 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 521 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 522 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 523 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 524 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 525 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 526 527 for (int t = 0; t < DTL_TYPES; t++) { 528 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 529 0); 530 } 531 txg_list_create(&vd->vdev_ms_list, spa, 532 offsetof(struct metaslab, ms_txg_node)); 533 txg_list_create(&vd->vdev_dtl_list, spa, 534 offsetof(struct vdev, vdev_dtl_node)); 535 vd->vdev_stat.vs_timestamp = gethrtime(); 536 vdev_queue_init(vd); 537 vdev_cache_init(vd); 538 539 return (vd); 540 } 541 542 /* 543 * Allocate a new vdev. The 'alloctype' is used to control whether we are 544 * creating a new vdev or loading an existing one - the behavior is slightly 545 * different for each case. 546 */ 547 int 548 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 549 int alloctype) 550 { 551 vdev_ops_t *ops; 552 char *type; 553 uint64_t guid = 0, islog, nparity; 554 vdev_t *vd; 555 vdev_indirect_config_t *vic; 556 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 557 boolean_t top_level = (parent && !parent->vdev_parent); 558 559 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 560 561 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 562 return (SET_ERROR(EINVAL)); 563 564 if ((ops = vdev_getops(type)) == NULL) 565 return (SET_ERROR(EINVAL)); 566 567 /* 568 * If this is a load, get the vdev guid from the nvlist. 569 * Otherwise, vdev_alloc_common() will generate one for us. 570 */ 571 if (alloctype == VDEV_ALLOC_LOAD) { 572 uint64_t label_id; 573 574 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 575 label_id != id) 576 return (SET_ERROR(EINVAL)); 577 578 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 579 return (SET_ERROR(EINVAL)); 580 } else if (alloctype == VDEV_ALLOC_SPARE) { 581 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 582 return (SET_ERROR(EINVAL)); 583 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 584 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 585 return (SET_ERROR(EINVAL)); 586 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 587 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 588 return (SET_ERROR(EINVAL)); 589 } 590 591 /* 592 * The first allocated vdev must be of type 'root'. 593 */ 594 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 595 return (SET_ERROR(EINVAL)); 596 597 /* 598 * Determine whether we're a log vdev. 599 */ 600 islog = 0; 601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 602 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 603 return (SET_ERROR(ENOTSUP)); 604 605 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 606 return (SET_ERROR(ENOTSUP)); 607 608 /* 609 * Set the nparity property for RAID-Z vdevs. 610 */ 611 nparity = -1ULL; 612 if (ops == &vdev_raidz_ops) { 613 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 614 &nparity) == 0) { 615 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 616 return (SET_ERROR(EINVAL)); 617 /* 618 * Previous versions could only support 1 or 2 parity 619 * device. 620 */ 621 if (nparity > 1 && 622 spa_version(spa) < SPA_VERSION_RAIDZ2) 623 return (SET_ERROR(ENOTSUP)); 624 if (nparity > 2 && 625 spa_version(spa) < SPA_VERSION_RAIDZ3) 626 return (SET_ERROR(ENOTSUP)); 627 } else { 628 /* 629 * We require the parity to be specified for SPAs that 630 * support multiple parity levels. 631 */ 632 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 633 return (SET_ERROR(EINVAL)); 634 /* 635 * Otherwise, we default to 1 parity device for RAID-Z. 636 */ 637 nparity = 1; 638 } 639 } else { 640 nparity = 0; 641 } 642 ASSERT(nparity != -1ULL); 643 644 /* 645 * If creating a top-level vdev, check for allocation classes input 646 */ 647 if (top_level && alloctype == VDEV_ALLOC_ADD) { 648 char *bias; 649 650 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 651 &bias) == 0) { 652 alloc_bias = vdev_derive_alloc_bias(bias); 653 654 /* spa_vdev_add() expects feature to be enabled */ 655 if (alloc_bias != VDEV_BIAS_LOG && 656 spa->spa_load_state != SPA_LOAD_CREATE && 657 !spa_feature_is_enabled(spa, 658 SPA_FEATURE_ALLOCATION_CLASSES)) { 659 return (SET_ERROR(ENOTSUP)); 660 } 661 } 662 } 663 664 vd = vdev_alloc_common(spa, id, guid, ops); 665 vic = &vd->vdev_indirect_config; 666 667 vd->vdev_islog = islog; 668 vd->vdev_nparity = nparity; 669 if (top_level && alloc_bias != VDEV_BIAS_NONE) 670 vd->vdev_alloc_bias = alloc_bias; 671 672 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 673 vd->vdev_path = spa_strdup(vd->vdev_path); 674 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 675 vd->vdev_devid = spa_strdup(vd->vdev_devid); 676 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 677 &vd->vdev_physpath) == 0) 678 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 679 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 680 vd->vdev_fru = spa_strdup(vd->vdev_fru); 681 682 /* 683 * Set the whole_disk property. If it's not specified, leave the value 684 * as -1. 685 */ 686 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 687 &vd->vdev_wholedisk) != 0) 688 vd->vdev_wholedisk = -1ULL; 689 690 ASSERT0(vic->vic_mapping_object); 691 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 692 &vic->vic_mapping_object); 693 ASSERT0(vic->vic_births_object); 694 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 695 &vic->vic_births_object); 696 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 697 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 698 &vic->vic_prev_indirect_vdev); 699 700 /* 701 * Look for the 'not present' flag. This will only be set if the device 702 * was not present at the time of import. 703 */ 704 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 705 &vd->vdev_not_present); 706 707 /* 708 * Get the alignment requirement. 709 */ 710 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 711 712 /* 713 * Retrieve the vdev creation time. 714 */ 715 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 716 &vd->vdev_crtxg); 717 718 /* 719 * If we're a top-level vdev, try to load the allocation parameters. 720 */ 721 if (top_level && 722 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 723 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 724 &vd->vdev_ms_array); 725 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 726 &vd->vdev_ms_shift); 727 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 728 &vd->vdev_asize); 729 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 730 &vd->vdev_removing); 731 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 732 &vd->vdev_top_zap); 733 } else { 734 ASSERT0(vd->vdev_top_zap); 735 } 736 737 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 738 ASSERT(alloctype == VDEV_ALLOC_LOAD || 739 alloctype == VDEV_ALLOC_ADD || 740 alloctype == VDEV_ALLOC_SPLIT || 741 alloctype == VDEV_ALLOC_ROOTPOOL); 742 /* Note: metaslab_group_create() is now deferred */ 743 } 744 745 if (vd->vdev_ops->vdev_op_leaf && 746 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 747 (void) nvlist_lookup_uint64(nv, 748 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 749 } else { 750 ASSERT0(vd->vdev_leaf_zap); 751 } 752 753 /* 754 * If we're a leaf vdev, try to load the DTL object and other state. 755 */ 756 757 if (vd->vdev_ops->vdev_op_leaf && 758 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 759 alloctype == VDEV_ALLOC_ROOTPOOL)) { 760 if (alloctype == VDEV_ALLOC_LOAD) { 761 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 762 &vd->vdev_dtl_object); 763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 764 &vd->vdev_unspare); 765 } 766 767 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 768 uint64_t spare = 0; 769 770 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 771 &spare) == 0 && spare) 772 spa_spare_add(vd); 773 } 774 775 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 776 &vd->vdev_offline); 777 778 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 779 &vd->vdev_resilver_txg); 780 781 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 782 vdev_defer_resilver(vd); 783 784 /* 785 * When importing a pool, we want to ignore the persistent fault 786 * state, as the diagnosis made on another system may not be 787 * valid in the current context. Local vdevs will 788 * remain in the faulted state. 789 */ 790 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 791 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 792 &vd->vdev_faulted); 793 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 794 &vd->vdev_degraded); 795 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 796 &vd->vdev_removed); 797 798 if (vd->vdev_faulted || vd->vdev_degraded) { 799 char *aux; 800 801 vd->vdev_label_aux = 802 VDEV_AUX_ERR_EXCEEDED; 803 if (nvlist_lookup_string(nv, 804 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 805 strcmp(aux, "external") == 0) 806 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 807 } 808 } 809 } 810 811 /* 812 * Add ourselves to the parent's list of children. 813 */ 814 vdev_add_child(parent, vd); 815 816 *vdp = vd; 817 818 return (0); 819 } 820 821 void 822 vdev_free(vdev_t *vd) 823 { 824 spa_t *spa = vd->vdev_spa; 825 826 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 827 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 828 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 829 830 /* 831 * Scan queues are normally destroyed at the end of a scan. If the 832 * queue exists here, that implies the vdev is being removed while 833 * the scan is still running. 834 */ 835 if (vd->vdev_scan_io_queue != NULL) { 836 mutex_enter(&vd->vdev_scan_io_queue_lock); 837 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 838 vd->vdev_scan_io_queue = NULL; 839 mutex_exit(&vd->vdev_scan_io_queue_lock); 840 } 841 842 /* 843 * vdev_free() implies closing the vdev first. This is simpler than 844 * trying to ensure complicated semantics for all callers. 845 */ 846 vdev_close(vd); 847 848 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 849 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 850 851 /* 852 * Free all children. 853 */ 854 for (int c = 0; c < vd->vdev_children; c++) 855 vdev_free(vd->vdev_child[c]); 856 857 ASSERT(vd->vdev_child == NULL); 858 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 859 860 /* 861 * Discard allocation state. 862 */ 863 if (vd->vdev_mg != NULL) { 864 vdev_metaslab_fini(vd); 865 metaslab_group_destroy(vd->vdev_mg); 866 vd->vdev_mg = NULL; 867 } 868 869 ASSERT0(vd->vdev_stat.vs_space); 870 ASSERT0(vd->vdev_stat.vs_dspace); 871 ASSERT0(vd->vdev_stat.vs_alloc); 872 873 /* 874 * Remove this vdev from its parent's child list. 875 */ 876 vdev_remove_child(vd->vdev_parent, vd); 877 878 ASSERT(vd->vdev_parent == NULL); 879 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 880 881 /* 882 * Clean up vdev structure. 883 */ 884 vdev_queue_fini(vd); 885 vdev_cache_fini(vd); 886 887 if (vd->vdev_path) 888 spa_strfree(vd->vdev_path); 889 if (vd->vdev_devid) 890 spa_strfree(vd->vdev_devid); 891 if (vd->vdev_physpath) 892 spa_strfree(vd->vdev_physpath); 893 if (vd->vdev_fru) 894 spa_strfree(vd->vdev_fru); 895 896 if (vd->vdev_isspare) 897 spa_spare_remove(vd); 898 if (vd->vdev_isl2cache) 899 spa_l2cache_remove(vd); 900 901 txg_list_destroy(&vd->vdev_ms_list); 902 txg_list_destroy(&vd->vdev_dtl_list); 903 904 mutex_enter(&vd->vdev_dtl_lock); 905 space_map_close(vd->vdev_dtl_sm); 906 for (int t = 0; t < DTL_TYPES; t++) { 907 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 908 range_tree_destroy(vd->vdev_dtl[t]); 909 } 910 mutex_exit(&vd->vdev_dtl_lock); 911 912 EQUIV(vd->vdev_indirect_births != NULL, 913 vd->vdev_indirect_mapping != NULL); 914 if (vd->vdev_indirect_births != NULL) { 915 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 916 vdev_indirect_births_close(vd->vdev_indirect_births); 917 } 918 919 if (vd->vdev_obsolete_sm != NULL) { 920 ASSERT(vd->vdev_removing || 921 vd->vdev_ops == &vdev_indirect_ops); 922 space_map_close(vd->vdev_obsolete_sm); 923 vd->vdev_obsolete_sm = NULL; 924 } 925 range_tree_destroy(vd->vdev_obsolete_segments); 926 rw_destroy(&vd->vdev_indirect_rwlock); 927 mutex_destroy(&vd->vdev_obsolete_lock); 928 929 mutex_destroy(&vd->vdev_dtl_lock); 930 mutex_destroy(&vd->vdev_stat_lock); 931 mutex_destroy(&vd->vdev_probe_lock); 932 mutex_destroy(&vd->vdev_scan_io_queue_lock); 933 mutex_destroy(&vd->vdev_initialize_lock); 934 mutex_destroy(&vd->vdev_initialize_io_lock); 935 cv_destroy(&vd->vdev_initialize_io_cv); 936 cv_destroy(&vd->vdev_initialize_cv); 937 mutex_destroy(&vd->vdev_trim_lock); 938 mutex_destroy(&vd->vdev_autotrim_lock); 939 mutex_destroy(&vd->vdev_trim_io_lock); 940 cv_destroy(&vd->vdev_trim_cv); 941 cv_destroy(&vd->vdev_autotrim_cv); 942 cv_destroy(&vd->vdev_trim_io_cv); 943 944 if (vd == spa->spa_root_vdev) 945 spa->spa_root_vdev = NULL; 946 947 kmem_free(vd, sizeof (vdev_t)); 948 } 949 950 /* 951 * Transfer top-level vdev state from svd to tvd. 952 */ 953 static void 954 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 955 { 956 spa_t *spa = svd->vdev_spa; 957 metaslab_t *msp; 958 vdev_t *vd; 959 int t; 960 961 ASSERT(tvd == tvd->vdev_top); 962 963 tvd->vdev_ms_array = svd->vdev_ms_array; 964 tvd->vdev_ms_shift = svd->vdev_ms_shift; 965 tvd->vdev_ms_count = svd->vdev_ms_count; 966 tvd->vdev_top_zap = svd->vdev_top_zap; 967 968 svd->vdev_ms_array = 0; 969 svd->vdev_ms_shift = 0; 970 svd->vdev_ms_count = 0; 971 svd->vdev_top_zap = 0; 972 973 if (tvd->vdev_mg) 974 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 975 tvd->vdev_mg = svd->vdev_mg; 976 tvd->vdev_ms = svd->vdev_ms; 977 978 svd->vdev_mg = NULL; 979 svd->vdev_ms = NULL; 980 981 if (tvd->vdev_mg != NULL) 982 tvd->vdev_mg->mg_vd = tvd; 983 984 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 985 svd->vdev_checkpoint_sm = NULL; 986 987 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 988 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 989 990 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 991 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 992 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 993 994 svd->vdev_stat.vs_alloc = 0; 995 svd->vdev_stat.vs_space = 0; 996 svd->vdev_stat.vs_dspace = 0; 997 998 /* 999 * State which may be set on a top-level vdev that's in the 1000 * process of being removed. 1001 */ 1002 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1003 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1004 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1005 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1006 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1007 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1008 ASSERT0(tvd->vdev_removing); 1009 tvd->vdev_removing = svd->vdev_removing; 1010 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1011 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1012 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1013 range_tree_swap(&svd->vdev_obsolete_segments, 1014 &tvd->vdev_obsolete_segments); 1015 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1016 svd->vdev_indirect_config.vic_mapping_object = 0; 1017 svd->vdev_indirect_config.vic_births_object = 0; 1018 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1019 svd->vdev_indirect_mapping = NULL; 1020 svd->vdev_indirect_births = NULL; 1021 svd->vdev_obsolete_sm = NULL; 1022 svd->vdev_removing = 0; 1023 1024 for (t = 0; t < TXG_SIZE; t++) { 1025 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1026 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1027 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1028 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1029 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1030 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1031 } 1032 1033 if (list_link_active(&svd->vdev_config_dirty_node)) { 1034 vdev_config_clean(svd); 1035 vdev_config_dirty(tvd); 1036 } 1037 1038 if (list_link_active(&svd->vdev_state_dirty_node)) { 1039 vdev_state_clean(svd); 1040 vdev_state_dirty(tvd); 1041 } 1042 1043 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1044 svd->vdev_deflate_ratio = 0; 1045 1046 tvd->vdev_islog = svd->vdev_islog; 1047 svd->vdev_islog = 0; 1048 1049 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1050 } 1051 1052 static void 1053 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1054 { 1055 if (vd == NULL) 1056 return; 1057 1058 vd->vdev_top = tvd; 1059 1060 for (int c = 0; c < vd->vdev_children; c++) 1061 vdev_top_update(tvd, vd->vdev_child[c]); 1062 } 1063 1064 /* 1065 * Add a mirror/replacing vdev above an existing vdev. 1066 */ 1067 vdev_t * 1068 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1069 { 1070 spa_t *spa = cvd->vdev_spa; 1071 vdev_t *pvd = cvd->vdev_parent; 1072 vdev_t *mvd; 1073 1074 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1075 1076 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1077 1078 mvd->vdev_asize = cvd->vdev_asize; 1079 mvd->vdev_min_asize = cvd->vdev_min_asize; 1080 mvd->vdev_max_asize = cvd->vdev_max_asize; 1081 mvd->vdev_psize = cvd->vdev_psize; 1082 mvd->vdev_ashift = cvd->vdev_ashift; 1083 mvd->vdev_state = cvd->vdev_state; 1084 mvd->vdev_crtxg = cvd->vdev_crtxg; 1085 1086 vdev_remove_child(pvd, cvd); 1087 vdev_add_child(pvd, mvd); 1088 cvd->vdev_id = mvd->vdev_children; 1089 vdev_add_child(mvd, cvd); 1090 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1091 1092 if (mvd == mvd->vdev_top) 1093 vdev_top_transfer(cvd, mvd); 1094 1095 return (mvd); 1096 } 1097 1098 /* 1099 * Remove a 1-way mirror/replacing vdev from the tree. 1100 */ 1101 void 1102 vdev_remove_parent(vdev_t *cvd) 1103 { 1104 vdev_t *mvd = cvd->vdev_parent; 1105 vdev_t *pvd = mvd->vdev_parent; 1106 1107 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1108 1109 ASSERT(mvd->vdev_children == 1); 1110 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1111 mvd->vdev_ops == &vdev_replacing_ops || 1112 mvd->vdev_ops == &vdev_spare_ops); 1113 cvd->vdev_ashift = mvd->vdev_ashift; 1114 1115 vdev_remove_child(mvd, cvd); 1116 vdev_remove_child(pvd, mvd); 1117 1118 /* 1119 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1120 * Otherwise, we could have detached an offline device, and when we 1121 * go to import the pool we'll think we have two top-level vdevs, 1122 * instead of a different version of the same top-level vdev. 1123 */ 1124 if (mvd->vdev_top == mvd) { 1125 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1126 cvd->vdev_orig_guid = cvd->vdev_guid; 1127 cvd->vdev_guid += guid_delta; 1128 cvd->vdev_guid_sum += guid_delta; 1129 } 1130 cvd->vdev_id = mvd->vdev_id; 1131 vdev_add_child(pvd, cvd); 1132 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1133 1134 if (cvd == cvd->vdev_top) 1135 vdev_top_transfer(mvd, cvd); 1136 1137 ASSERT(mvd->vdev_children == 0); 1138 vdev_free(mvd); 1139 } 1140 1141 static void 1142 vdev_metaslab_group_create(vdev_t *vd) 1143 { 1144 spa_t *spa = vd->vdev_spa; 1145 1146 /* 1147 * metaslab_group_create was delayed until allocation bias was available 1148 */ 1149 if (vd->vdev_mg == NULL) { 1150 metaslab_class_t *mc; 1151 1152 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1153 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1154 1155 ASSERT3U(vd->vdev_islog, ==, 1156 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1157 1158 switch (vd->vdev_alloc_bias) { 1159 case VDEV_BIAS_LOG: 1160 mc = spa_log_class(spa); 1161 break; 1162 case VDEV_BIAS_SPECIAL: 1163 mc = spa_special_class(spa); 1164 break; 1165 case VDEV_BIAS_DEDUP: 1166 mc = spa_dedup_class(spa); 1167 break; 1168 default: 1169 mc = spa_normal_class(spa); 1170 } 1171 1172 vd->vdev_mg = metaslab_group_create(mc, vd, 1173 spa->spa_alloc_count); 1174 1175 /* 1176 * The spa ashift values currently only reflect the 1177 * general vdev classes. Class destination is late 1178 * binding so ashift checking had to wait until now 1179 */ 1180 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1181 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1182 if (vd->vdev_ashift > spa->spa_max_ashift) 1183 spa->spa_max_ashift = vd->vdev_ashift; 1184 if (vd->vdev_ashift < spa->spa_min_ashift) 1185 spa->spa_min_ashift = vd->vdev_ashift; 1186 } 1187 } 1188 } 1189 1190 int 1191 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1192 { 1193 spa_t *spa = vd->vdev_spa; 1194 objset_t *mos = spa->spa_meta_objset; 1195 uint64_t m; 1196 uint64_t oldc = vd->vdev_ms_count; 1197 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1198 metaslab_t **mspp; 1199 int error; 1200 boolean_t expanding = (oldc != 0); 1201 1202 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1203 1204 /* 1205 * This vdev is not being allocated from yet or is a hole. 1206 */ 1207 if (vd->vdev_ms_shift == 0) 1208 return (0); 1209 1210 ASSERT(!vd->vdev_ishole); 1211 1212 ASSERT(oldc <= newc); 1213 1214 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1215 1216 if (expanding) { 1217 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1218 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1219 } 1220 1221 vd->vdev_ms = mspp; 1222 vd->vdev_ms_count = newc; 1223 for (m = oldc; m < newc; m++) { 1224 uint64_t object = 0; 1225 1226 /* 1227 * vdev_ms_array may be 0 if we are creating the "fake" 1228 * metaslabs for an indirect vdev for zdb's leak detection. 1229 * See zdb_leak_init(). 1230 */ 1231 if (txg == 0 && vd->vdev_ms_array != 0) { 1232 error = dmu_read(mos, vd->vdev_ms_array, 1233 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1234 DMU_READ_PREFETCH); 1235 if (error != 0) { 1236 vdev_dbgmsg(vd, "unable to read the metaslab " 1237 "array [error=%d]", error); 1238 return (error); 1239 } 1240 } 1241 1242 #ifndef _KERNEL 1243 /* 1244 * To accomodate zdb_leak_init() fake indirect 1245 * metaslabs, we allocate a metaslab group for 1246 * indirect vdevs which normally don't have one. 1247 */ 1248 if (vd->vdev_mg == NULL) { 1249 ASSERT0(vdev_is_concrete(vd)); 1250 vdev_metaslab_group_create(vd); 1251 } 1252 #endif 1253 error = metaslab_init(vd->vdev_mg, m, object, txg, 1254 &(vd->vdev_ms[m])); 1255 if (error != 0) { 1256 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1257 error); 1258 return (error); 1259 } 1260 } 1261 1262 if (txg == 0) 1263 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1264 1265 /* 1266 * If the vdev is being removed we don't activate 1267 * the metaslabs since we want to ensure that no new 1268 * allocations are performed on this device. 1269 */ 1270 if (!expanding && !vd->vdev_removing) { 1271 metaslab_group_activate(vd->vdev_mg); 1272 } 1273 1274 if (txg == 0) 1275 spa_config_exit(spa, SCL_ALLOC, FTAG); 1276 1277 /* 1278 * Regardless whether this vdev was just added or it is being 1279 * expanded, the metaslab count has changed. Recalculate the 1280 * block limit. 1281 */ 1282 spa_log_sm_set_blocklimit(spa); 1283 1284 return (0); 1285 } 1286 1287 void 1288 vdev_metaslab_fini(vdev_t *vd) 1289 { 1290 if (vd->vdev_checkpoint_sm != NULL) { 1291 ASSERT(spa_feature_is_active(vd->vdev_spa, 1292 SPA_FEATURE_POOL_CHECKPOINT)); 1293 space_map_close(vd->vdev_checkpoint_sm); 1294 /* 1295 * Even though we close the space map, we need to set its 1296 * pointer to NULL. The reason is that vdev_metaslab_fini() 1297 * may be called multiple times for certain operations 1298 * (i.e. when destroying a pool) so we need to ensure that 1299 * this clause never executes twice. This logic is similar 1300 * to the one used for the vdev_ms clause below. 1301 */ 1302 vd->vdev_checkpoint_sm = NULL; 1303 } 1304 1305 if (vd->vdev_ms != NULL) { 1306 metaslab_group_t *mg = vd->vdev_mg; 1307 metaslab_group_passivate(mg); 1308 1309 uint64_t count = vd->vdev_ms_count; 1310 for (uint64_t m = 0; m < count; m++) { 1311 metaslab_t *msp = vd->vdev_ms[m]; 1312 if (msp != NULL) 1313 metaslab_fini(msp); 1314 } 1315 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1316 vd->vdev_ms = NULL; 1317 1318 vd->vdev_ms_count = 0; 1319 1320 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1321 ASSERT0(mg->mg_histogram[i]); 1322 } 1323 ASSERT0(vd->vdev_ms_count); 1324 } 1325 1326 typedef struct vdev_probe_stats { 1327 boolean_t vps_readable; 1328 boolean_t vps_writeable; 1329 int vps_flags; 1330 } vdev_probe_stats_t; 1331 1332 static void 1333 vdev_probe_done(zio_t *zio) 1334 { 1335 spa_t *spa = zio->io_spa; 1336 vdev_t *vd = zio->io_vd; 1337 vdev_probe_stats_t *vps = zio->io_private; 1338 1339 ASSERT(vd->vdev_probe_zio != NULL); 1340 1341 if (zio->io_type == ZIO_TYPE_READ) { 1342 if (zio->io_error == 0) 1343 vps->vps_readable = 1; 1344 if (zio->io_error == 0 && spa_writeable(spa)) { 1345 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1346 zio->io_offset, zio->io_size, zio->io_abd, 1347 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1348 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1349 } else { 1350 abd_free(zio->io_abd); 1351 } 1352 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1353 if (zio->io_error == 0) 1354 vps->vps_writeable = 1; 1355 abd_free(zio->io_abd); 1356 } else if (zio->io_type == ZIO_TYPE_NULL) { 1357 zio_t *pio; 1358 1359 vd->vdev_cant_read |= !vps->vps_readable; 1360 vd->vdev_cant_write |= !vps->vps_writeable; 1361 1362 if (vdev_readable(vd) && 1363 (vdev_writeable(vd) || !spa_writeable(spa))) { 1364 zio->io_error = 0; 1365 } else { 1366 ASSERT(zio->io_error != 0); 1367 vdev_dbgmsg(vd, "failed probe"); 1368 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1369 spa, vd, NULL, NULL, 0, 0); 1370 zio->io_error = SET_ERROR(ENXIO); 1371 } 1372 1373 mutex_enter(&vd->vdev_probe_lock); 1374 ASSERT(vd->vdev_probe_zio == zio); 1375 vd->vdev_probe_zio = NULL; 1376 mutex_exit(&vd->vdev_probe_lock); 1377 1378 zio_link_t *zl = NULL; 1379 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1380 if (!vdev_accessible(vd, pio)) 1381 pio->io_error = SET_ERROR(ENXIO); 1382 1383 kmem_free(vps, sizeof (*vps)); 1384 } 1385 } 1386 1387 /* 1388 * Determine whether this device is accessible. 1389 * 1390 * Read and write to several known locations: the pad regions of each 1391 * vdev label but the first, which we leave alone in case it contains 1392 * a VTOC. 1393 */ 1394 zio_t * 1395 vdev_probe(vdev_t *vd, zio_t *zio) 1396 { 1397 spa_t *spa = vd->vdev_spa; 1398 vdev_probe_stats_t *vps = NULL; 1399 zio_t *pio; 1400 1401 ASSERT(vd->vdev_ops->vdev_op_leaf); 1402 1403 /* 1404 * Don't probe the probe. 1405 */ 1406 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1407 return (NULL); 1408 1409 /* 1410 * To prevent 'probe storms' when a device fails, we create 1411 * just one probe i/o at a time. All zios that want to probe 1412 * this vdev will become parents of the probe io. 1413 */ 1414 mutex_enter(&vd->vdev_probe_lock); 1415 1416 if ((pio = vd->vdev_probe_zio) == NULL) { 1417 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1418 1419 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1420 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1421 ZIO_FLAG_TRYHARD; 1422 1423 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1424 /* 1425 * vdev_cant_read and vdev_cant_write can only 1426 * transition from TRUE to FALSE when we have the 1427 * SCL_ZIO lock as writer; otherwise they can only 1428 * transition from FALSE to TRUE. This ensures that 1429 * any zio looking at these values can assume that 1430 * failures persist for the life of the I/O. That's 1431 * important because when a device has intermittent 1432 * connectivity problems, we want to ensure that 1433 * they're ascribed to the device (ENXIO) and not 1434 * the zio (EIO). 1435 * 1436 * Since we hold SCL_ZIO as writer here, clear both 1437 * values so the probe can reevaluate from first 1438 * principles. 1439 */ 1440 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1441 vd->vdev_cant_read = B_FALSE; 1442 vd->vdev_cant_write = B_FALSE; 1443 } 1444 1445 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1446 vdev_probe_done, vps, 1447 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1448 1449 /* 1450 * We can't change the vdev state in this context, so we 1451 * kick off an async task to do it on our behalf. 1452 */ 1453 if (zio != NULL) { 1454 vd->vdev_probe_wanted = B_TRUE; 1455 spa_async_request(spa, SPA_ASYNC_PROBE); 1456 } 1457 } 1458 1459 if (zio != NULL) 1460 zio_add_child(zio, pio); 1461 1462 mutex_exit(&vd->vdev_probe_lock); 1463 1464 if (vps == NULL) { 1465 ASSERT(zio != NULL); 1466 return (NULL); 1467 } 1468 1469 for (int l = 1; l < VDEV_LABELS; l++) { 1470 zio_nowait(zio_read_phys(pio, vd, 1471 vdev_label_offset(vd->vdev_psize, l, 1472 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1473 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1474 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1475 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1476 } 1477 1478 if (zio == NULL) 1479 return (pio); 1480 1481 zio_nowait(pio); 1482 return (NULL); 1483 } 1484 1485 static void 1486 vdev_open_child(void *arg) 1487 { 1488 vdev_t *vd = arg; 1489 1490 vd->vdev_open_thread = curthread; 1491 vd->vdev_open_error = vdev_open(vd); 1492 vd->vdev_open_thread = NULL; 1493 } 1494 1495 boolean_t 1496 vdev_uses_zvols(vdev_t *vd) 1497 { 1498 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1499 strlen(ZVOL_DIR)) == 0) 1500 return (B_TRUE); 1501 for (int c = 0; c < vd->vdev_children; c++) 1502 if (vdev_uses_zvols(vd->vdev_child[c])) 1503 return (B_TRUE); 1504 return (B_FALSE); 1505 } 1506 1507 void 1508 vdev_open_children(vdev_t *vd) 1509 { 1510 taskq_t *tq; 1511 int children = vd->vdev_children; 1512 1513 /* 1514 * in order to handle pools on top of zvols, do the opens 1515 * in a single thread so that the same thread holds the 1516 * spa_namespace_lock 1517 */ 1518 if (vdev_uses_zvols(vd)) { 1519 retry_sync: 1520 for (int c = 0; c < children; c++) 1521 vd->vdev_child[c]->vdev_open_error = 1522 vdev_open(vd->vdev_child[c]); 1523 } else { 1524 tq = taskq_create("vdev_open", children, minclsyspri, 1525 children, children, TASKQ_PREPOPULATE); 1526 if (tq == NULL) 1527 goto retry_sync; 1528 1529 for (int c = 0; c < children; c++) 1530 VERIFY(taskq_dispatch(tq, vdev_open_child, 1531 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1532 1533 taskq_destroy(tq); 1534 } 1535 1536 vd->vdev_nonrot = B_TRUE; 1537 1538 for (int c = 0; c < children; c++) 1539 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1540 } 1541 1542 /* 1543 * Compute the raidz-deflation ratio. Note, we hard-code 1544 * in 128k (1 << 17) because it is the "typical" blocksize. 1545 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1546 * otherwise it would inconsistently account for existing bp's. 1547 */ 1548 static void 1549 vdev_set_deflate_ratio(vdev_t *vd) 1550 { 1551 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1552 vd->vdev_deflate_ratio = (1 << 17) / 1553 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1554 } 1555 } 1556 1557 /* 1558 * Prepare a virtual device for access. 1559 */ 1560 int 1561 vdev_open(vdev_t *vd) 1562 { 1563 spa_t *spa = vd->vdev_spa; 1564 int error; 1565 uint64_t osize = 0; 1566 uint64_t max_osize = 0; 1567 uint64_t asize, max_asize, psize; 1568 uint64_t ashift = 0; 1569 1570 ASSERT(vd->vdev_open_thread == curthread || 1571 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1572 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1573 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1574 vd->vdev_state == VDEV_STATE_OFFLINE); 1575 1576 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1577 vd->vdev_cant_read = B_FALSE; 1578 vd->vdev_cant_write = B_FALSE; 1579 vd->vdev_min_asize = vdev_get_min_asize(vd); 1580 1581 /* 1582 * If this vdev is not removed, check its fault status. If it's 1583 * faulted, bail out of the open. 1584 */ 1585 if (!vd->vdev_removed && vd->vdev_faulted) { 1586 ASSERT(vd->vdev_children == 0); 1587 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1588 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1589 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1590 vd->vdev_label_aux); 1591 return (SET_ERROR(ENXIO)); 1592 } else if (vd->vdev_offline) { 1593 ASSERT(vd->vdev_children == 0); 1594 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1595 return (SET_ERROR(ENXIO)); 1596 } 1597 1598 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1599 1600 /* 1601 * Reset the vdev_reopening flag so that we actually close 1602 * the vdev on error. 1603 */ 1604 vd->vdev_reopening = B_FALSE; 1605 if (zio_injection_enabled && error == 0) 1606 error = zio_handle_device_injection(vd, NULL, ENXIO); 1607 1608 if (error) { 1609 if (vd->vdev_removed && 1610 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1611 vd->vdev_removed = B_FALSE; 1612 1613 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1614 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1615 vd->vdev_stat.vs_aux); 1616 } else { 1617 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1618 vd->vdev_stat.vs_aux); 1619 } 1620 return (error); 1621 } 1622 1623 vd->vdev_removed = B_FALSE; 1624 1625 /* 1626 * Recheck the faulted flag now that we have confirmed that 1627 * the vdev is accessible. If we're faulted, bail. 1628 */ 1629 if (vd->vdev_faulted) { 1630 ASSERT(vd->vdev_children == 0); 1631 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1632 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1633 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1634 vd->vdev_label_aux); 1635 return (SET_ERROR(ENXIO)); 1636 } 1637 1638 if (vd->vdev_degraded) { 1639 ASSERT(vd->vdev_children == 0); 1640 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1641 VDEV_AUX_ERR_EXCEEDED); 1642 } else { 1643 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1644 } 1645 1646 /* 1647 * For hole or missing vdevs we just return success. 1648 */ 1649 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1650 return (0); 1651 1652 for (int c = 0; c < vd->vdev_children; c++) { 1653 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1654 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1655 VDEV_AUX_NONE); 1656 break; 1657 } 1658 } 1659 1660 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1661 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1662 1663 if (vd->vdev_children == 0) { 1664 if (osize < SPA_MINDEVSIZE) { 1665 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1666 VDEV_AUX_TOO_SMALL); 1667 return (SET_ERROR(EOVERFLOW)); 1668 } 1669 psize = osize; 1670 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1671 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1672 VDEV_LABEL_END_SIZE); 1673 } else { 1674 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1675 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1676 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1677 VDEV_AUX_TOO_SMALL); 1678 return (SET_ERROR(EOVERFLOW)); 1679 } 1680 psize = 0; 1681 asize = osize; 1682 max_asize = max_osize; 1683 } 1684 1685 vd->vdev_psize = psize; 1686 1687 /* 1688 * Make sure the allocatable size hasn't shrunk too much. 1689 */ 1690 if (asize < vd->vdev_min_asize) { 1691 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1692 VDEV_AUX_BAD_LABEL); 1693 return (SET_ERROR(EINVAL)); 1694 } 1695 1696 if (vd->vdev_asize == 0) { 1697 /* 1698 * This is the first-ever open, so use the computed values. 1699 * For compatibility, a different ashift can be requested. 1700 */ 1701 vd->vdev_asize = asize; 1702 vd->vdev_max_asize = max_asize; 1703 if (vd->vdev_ashift == 0) { 1704 vd->vdev_ashift = ashift; /* use detected value */ 1705 } 1706 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1707 vd->vdev_ashift > ASHIFT_MAX)) { 1708 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1709 VDEV_AUX_BAD_ASHIFT); 1710 return (SET_ERROR(EDOM)); 1711 } 1712 } else { 1713 /* 1714 * Detect if the alignment requirement has increased. 1715 * We don't want to make the pool unavailable, just 1716 * post an event instead. 1717 */ 1718 if (ashift > vd->vdev_top->vdev_ashift && 1719 vd->vdev_ops->vdev_op_leaf) { 1720 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1721 spa, vd, NULL, NULL, 0, 0); 1722 } 1723 1724 vd->vdev_max_asize = max_asize; 1725 } 1726 1727 /* 1728 * If all children are healthy we update asize if either: 1729 * The asize has increased, due to a device expansion caused by dynamic 1730 * LUN growth or vdev replacement, and automatic expansion is enabled; 1731 * making the additional space available. 1732 * 1733 * The asize has decreased, due to a device shrink usually caused by a 1734 * vdev replace with a smaller device. This ensures that calculations 1735 * based of max_asize and asize e.g. esize are always valid. It's safe 1736 * to do this as we've already validated that asize is greater than 1737 * vdev_min_asize. 1738 */ 1739 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1740 ((asize > vd->vdev_asize && 1741 (vd->vdev_expanding || spa->spa_autoexpand)) || 1742 (asize < vd->vdev_asize))) 1743 vd->vdev_asize = asize; 1744 1745 vdev_set_min_asize(vd); 1746 1747 /* 1748 * Ensure we can issue some IO before declaring the 1749 * vdev open for business. 1750 */ 1751 if (vd->vdev_ops->vdev_op_leaf && 1752 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1753 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1754 VDEV_AUX_ERR_EXCEEDED); 1755 return (error); 1756 } 1757 1758 /* 1759 * Track the min and max ashift values for normal data devices. 1760 * 1761 * DJB - TBD these should perhaps be tracked per allocation class 1762 * (e.g. spa_min_ashift is used to round up post compression buffers) 1763 */ 1764 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1765 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1766 vd->vdev_aux == NULL) { 1767 if (vd->vdev_ashift > spa->spa_max_ashift) 1768 spa->spa_max_ashift = vd->vdev_ashift; 1769 if (vd->vdev_ashift < spa->spa_min_ashift) 1770 spa->spa_min_ashift = vd->vdev_ashift; 1771 } 1772 1773 /* 1774 * If this is a leaf vdev, assess whether a resilver is needed. 1775 * But don't do this if we are doing a reopen for a scrub, since 1776 * this would just restart the scrub we are already doing. 1777 */ 1778 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 1779 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 1780 1781 return (0); 1782 } 1783 1784 /* 1785 * Called once the vdevs are all opened, this routine validates the label 1786 * contents. This needs to be done before vdev_load() so that we don't 1787 * inadvertently do repair I/Os to the wrong device. 1788 * 1789 * This function will only return failure if one of the vdevs indicates that it 1790 * has since been destroyed or exported. This is only possible if 1791 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1792 * will be updated but the function will return 0. 1793 */ 1794 int 1795 vdev_validate(vdev_t *vd) 1796 { 1797 spa_t *spa = vd->vdev_spa; 1798 nvlist_t *label; 1799 uint64_t guid = 0, aux_guid = 0, top_guid; 1800 uint64_t state; 1801 nvlist_t *nvl; 1802 uint64_t txg; 1803 1804 if (vdev_validate_skip) 1805 return (0); 1806 1807 for (uint64_t c = 0; c < vd->vdev_children; c++) 1808 if (vdev_validate(vd->vdev_child[c]) != 0) 1809 return (SET_ERROR(EBADF)); 1810 1811 /* 1812 * If the device has already failed, or was marked offline, don't do 1813 * any further validation. Otherwise, label I/O will fail and we will 1814 * overwrite the previous state. 1815 */ 1816 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1817 return (0); 1818 1819 /* 1820 * If we are performing an extreme rewind, we allow for a label that 1821 * was modified at a point after the current txg. 1822 * If config lock is not held do not check for the txg. spa_sync could 1823 * be updating the vdev's label before updating spa_last_synced_txg. 1824 */ 1825 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1826 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1827 txg = UINT64_MAX; 1828 else 1829 txg = spa_last_synced_txg(spa); 1830 1831 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1832 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1833 VDEV_AUX_BAD_LABEL); 1834 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1835 "txg %llu", (u_longlong_t)txg); 1836 return (0); 1837 } 1838 1839 /* 1840 * Determine if this vdev has been split off into another 1841 * pool. If so, then refuse to open it. 1842 */ 1843 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1844 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1845 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1846 VDEV_AUX_SPLIT_POOL); 1847 nvlist_free(label); 1848 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1849 return (0); 1850 } 1851 1852 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1853 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1854 VDEV_AUX_CORRUPT_DATA); 1855 nvlist_free(label); 1856 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1857 ZPOOL_CONFIG_POOL_GUID); 1858 return (0); 1859 } 1860 1861 /* 1862 * If config is not trusted then ignore the spa guid check. This is 1863 * necessary because if the machine crashed during a re-guid the new 1864 * guid might have been written to all of the vdev labels, but not the 1865 * cached config. The check will be performed again once we have the 1866 * trusted config from the MOS. 1867 */ 1868 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1869 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1870 VDEV_AUX_CORRUPT_DATA); 1871 nvlist_free(label); 1872 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1873 "match config (%llu != %llu)", (u_longlong_t)guid, 1874 (u_longlong_t)spa_guid(spa)); 1875 return (0); 1876 } 1877 1878 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1879 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1880 &aux_guid) != 0) 1881 aux_guid = 0; 1882 1883 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1884 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1885 VDEV_AUX_CORRUPT_DATA); 1886 nvlist_free(label); 1887 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1888 ZPOOL_CONFIG_GUID); 1889 return (0); 1890 } 1891 1892 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1893 != 0) { 1894 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1895 VDEV_AUX_CORRUPT_DATA); 1896 nvlist_free(label); 1897 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1898 ZPOOL_CONFIG_TOP_GUID); 1899 return (0); 1900 } 1901 1902 /* 1903 * If this vdev just became a top-level vdev because its sibling was 1904 * detached, it will have adopted the parent's vdev guid -- but the 1905 * label may or may not be on disk yet. Fortunately, either version 1906 * of the label will have the same top guid, so if we're a top-level 1907 * vdev, we can safely compare to that instead. 1908 * However, if the config comes from a cachefile that failed to update 1909 * after the detach, a top-level vdev will appear as a non top-level 1910 * vdev in the config. Also relax the constraints if we perform an 1911 * extreme rewind. 1912 * 1913 * If we split this vdev off instead, then we also check the 1914 * original pool's guid. We don't want to consider the vdev 1915 * corrupt if it is partway through a split operation. 1916 */ 1917 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1918 boolean_t mismatch = B_FALSE; 1919 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1920 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1921 mismatch = B_TRUE; 1922 } else { 1923 if (vd->vdev_guid != top_guid && 1924 vd->vdev_top->vdev_guid != guid) 1925 mismatch = B_TRUE; 1926 } 1927 1928 if (mismatch) { 1929 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1930 VDEV_AUX_CORRUPT_DATA); 1931 nvlist_free(label); 1932 vdev_dbgmsg(vd, "vdev_validate: config guid " 1933 "doesn't match label guid"); 1934 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1935 (u_longlong_t)vd->vdev_guid, 1936 (u_longlong_t)vd->vdev_top->vdev_guid); 1937 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1938 "aux_guid %llu", (u_longlong_t)guid, 1939 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1940 return (0); 1941 } 1942 } 1943 1944 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1945 &state) != 0) { 1946 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1947 VDEV_AUX_CORRUPT_DATA); 1948 nvlist_free(label); 1949 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1950 ZPOOL_CONFIG_POOL_STATE); 1951 return (0); 1952 } 1953 1954 nvlist_free(label); 1955 1956 /* 1957 * If this is a verbatim import, no need to check the 1958 * state of the pool. 1959 */ 1960 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1961 spa_load_state(spa) == SPA_LOAD_OPEN && 1962 state != POOL_STATE_ACTIVE) { 1963 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1964 "for spa %s", (u_longlong_t)state, spa->spa_name); 1965 return (SET_ERROR(EBADF)); 1966 } 1967 1968 /* 1969 * If we were able to open and validate a vdev that was 1970 * previously marked permanently unavailable, clear that state 1971 * now. 1972 */ 1973 if (vd->vdev_not_present) 1974 vd->vdev_not_present = 0; 1975 1976 return (0); 1977 } 1978 1979 static void 1980 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1981 { 1982 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1983 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1984 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1985 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1986 dvd->vdev_path, svd->vdev_path); 1987 spa_strfree(dvd->vdev_path); 1988 dvd->vdev_path = spa_strdup(svd->vdev_path); 1989 } 1990 } else if (svd->vdev_path != NULL) { 1991 dvd->vdev_path = spa_strdup(svd->vdev_path); 1992 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 1993 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 1994 } 1995 } 1996 1997 /* 1998 * Recursively copy vdev paths from one vdev to another. Source and destination 1999 * vdev trees must have same geometry otherwise return error. Intended to copy 2000 * paths from userland config into MOS config. 2001 */ 2002 int 2003 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2004 { 2005 if ((svd->vdev_ops == &vdev_missing_ops) || 2006 (svd->vdev_ishole && dvd->vdev_ishole) || 2007 (dvd->vdev_ops == &vdev_indirect_ops)) 2008 return (0); 2009 2010 if (svd->vdev_ops != dvd->vdev_ops) { 2011 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2012 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2013 return (SET_ERROR(EINVAL)); 2014 } 2015 2016 if (svd->vdev_guid != dvd->vdev_guid) { 2017 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2018 "%llu)", (u_longlong_t)svd->vdev_guid, 2019 (u_longlong_t)dvd->vdev_guid); 2020 return (SET_ERROR(EINVAL)); 2021 } 2022 2023 if (svd->vdev_children != dvd->vdev_children) { 2024 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2025 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2026 (u_longlong_t)dvd->vdev_children); 2027 return (SET_ERROR(EINVAL)); 2028 } 2029 2030 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2031 int error = vdev_copy_path_strict(svd->vdev_child[i], 2032 dvd->vdev_child[i]); 2033 if (error != 0) 2034 return (error); 2035 } 2036 2037 if (svd->vdev_ops->vdev_op_leaf) 2038 vdev_copy_path_impl(svd, dvd); 2039 2040 return (0); 2041 } 2042 2043 static void 2044 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2045 { 2046 ASSERT(stvd->vdev_top == stvd); 2047 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2048 2049 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2050 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2051 } 2052 2053 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2054 return; 2055 2056 /* 2057 * The idea here is that while a vdev can shift positions within 2058 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2059 * step outside of it. 2060 */ 2061 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2062 2063 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2064 return; 2065 2066 ASSERT(vd->vdev_ops->vdev_op_leaf); 2067 2068 vdev_copy_path_impl(vd, dvd); 2069 } 2070 2071 /* 2072 * Recursively copy vdev paths from one root vdev to another. Source and 2073 * destination vdev trees may differ in geometry. For each destination leaf 2074 * vdev, search a vdev with the same guid and top vdev id in the source. 2075 * Intended to copy paths from userland config into MOS config. 2076 */ 2077 void 2078 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2079 { 2080 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2081 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2082 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2083 2084 for (uint64_t i = 0; i < children; i++) { 2085 vdev_copy_path_search(srvd->vdev_child[i], 2086 drvd->vdev_child[i]); 2087 } 2088 } 2089 2090 /* 2091 * Close a virtual device. 2092 */ 2093 void 2094 vdev_close(vdev_t *vd) 2095 { 2096 spa_t *spa = vd->vdev_spa; 2097 vdev_t *pvd = vd->vdev_parent; 2098 2099 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2100 2101 /* 2102 * If our parent is reopening, then we are as well, unless we are 2103 * going offline. 2104 */ 2105 if (pvd != NULL && pvd->vdev_reopening) 2106 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2107 2108 vd->vdev_ops->vdev_op_close(vd); 2109 2110 vdev_cache_purge(vd); 2111 2112 /* 2113 * We record the previous state before we close it, so that if we are 2114 * doing a reopen(), we don't generate FMA ereports if we notice that 2115 * it's still faulted. 2116 */ 2117 vd->vdev_prevstate = vd->vdev_state; 2118 2119 if (vd->vdev_offline) 2120 vd->vdev_state = VDEV_STATE_OFFLINE; 2121 else 2122 vd->vdev_state = VDEV_STATE_CLOSED; 2123 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2124 } 2125 2126 void 2127 vdev_hold(vdev_t *vd) 2128 { 2129 spa_t *spa = vd->vdev_spa; 2130 2131 ASSERT(spa_is_root(spa)); 2132 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2133 return; 2134 2135 for (int c = 0; c < vd->vdev_children; c++) 2136 vdev_hold(vd->vdev_child[c]); 2137 2138 if (vd->vdev_ops->vdev_op_leaf) 2139 vd->vdev_ops->vdev_op_hold(vd); 2140 } 2141 2142 void 2143 vdev_rele(vdev_t *vd) 2144 { 2145 spa_t *spa = vd->vdev_spa; 2146 2147 ASSERT(spa_is_root(spa)); 2148 for (int c = 0; c < vd->vdev_children; c++) 2149 vdev_rele(vd->vdev_child[c]); 2150 2151 if (vd->vdev_ops->vdev_op_leaf) 2152 vd->vdev_ops->vdev_op_rele(vd); 2153 } 2154 2155 /* 2156 * Reopen all interior vdevs and any unopened leaves. We don't actually 2157 * reopen leaf vdevs which had previously been opened as they might deadlock 2158 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2159 * If the leaf has never been opened then open it, as usual. 2160 */ 2161 void 2162 vdev_reopen(vdev_t *vd) 2163 { 2164 spa_t *spa = vd->vdev_spa; 2165 2166 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2167 2168 /* set the reopening flag unless we're taking the vdev offline */ 2169 vd->vdev_reopening = !vd->vdev_offline; 2170 vdev_close(vd); 2171 (void) vdev_open(vd); 2172 2173 /* 2174 * Call vdev_validate() here to make sure we have the same device. 2175 * Otherwise, a device with an invalid label could be successfully 2176 * opened in response to vdev_reopen(). 2177 */ 2178 if (vd->vdev_aux) { 2179 (void) vdev_validate_aux(vd); 2180 if (vdev_readable(vd) && vdev_writeable(vd) && 2181 vd->vdev_aux == &spa->spa_l2cache && 2182 !l2arc_vdev_present(vd)) 2183 l2arc_add_vdev(spa, vd); 2184 } else { 2185 (void) vdev_validate(vd); 2186 } 2187 2188 /* 2189 * Reassess parent vdev's health. 2190 */ 2191 vdev_propagate_state(vd); 2192 } 2193 2194 int 2195 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2196 { 2197 int error; 2198 2199 /* 2200 * Normally, partial opens (e.g. of a mirror) are allowed. 2201 * For a create, however, we want to fail the request if 2202 * there are any components we can't open. 2203 */ 2204 error = vdev_open(vd); 2205 2206 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2207 vdev_close(vd); 2208 return (error ? error : ENXIO); 2209 } 2210 2211 /* 2212 * Recursively load DTLs and initialize all labels. 2213 */ 2214 if ((error = vdev_dtl_load(vd)) != 0 || 2215 (error = vdev_label_init(vd, txg, isreplacing ? 2216 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2217 vdev_close(vd); 2218 return (error); 2219 } 2220 2221 return (0); 2222 } 2223 2224 void 2225 vdev_metaslab_set_size(vdev_t *vd) 2226 { 2227 uint64_t asize = vd->vdev_asize; 2228 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2229 uint64_t ms_shift; 2230 2231 /* BEGIN CSTYLED */ 2232 /* 2233 * There are two dimensions to the metaslab sizing calculation: 2234 * the size of the metaslab and the count of metaslabs per vdev. 2235 * 2236 * The default values used below are a good balance between memory 2237 * usage (larger metaslab size means more memory needed for loaded 2238 * metaslabs; more metaslabs means more memory needed for the 2239 * metaslab_t structs), metaslab load time (larger metaslabs take 2240 * longer to load), and metaslab sync time (more metaslabs means 2241 * more time spent syncing all of them). 2242 * 2243 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2244 * The range of the dimensions are as follows: 2245 * 2246 * 2^29 <= ms_size <= 2^34 2247 * 16 <= ms_count <= 131,072 2248 * 2249 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2250 * at least 512MB (2^29) to minimize fragmentation effects when 2251 * testing with smaller devices. However, the count constraint 2252 * of at least 16 metaslabs will override this minimum size goal. 2253 * 2254 * On the upper end of vdev sizes, we aim for a maximum metaslab 2255 * size of 16GB. However, we will cap the total count to 2^17 2256 * metaslabs to keep our memory footprint in check and let the 2257 * metaslab size grow from there if that limit is hit. 2258 * 2259 * The net effect of applying above constrains is summarized below. 2260 * 2261 * vdev size metaslab count 2262 * --------------|----------------- 2263 * < 8GB ~16 2264 * 8GB - 100GB one per 512MB 2265 * 100GB - 3TB ~200 2266 * 3TB - 2PB one per 16GB 2267 * > 2PB ~131,072 2268 * -------------------------------- 2269 * 2270 * Finally, note that all of the above calculate the initial 2271 * number of metaslabs. Expanding a top-level vdev will result 2272 * in additional metaslabs being allocated making it possible 2273 * to exceed the zfs_vdev_ms_count_limit. 2274 */ 2275 /* END CSTYLED */ 2276 2277 if (ms_count < zfs_vdev_min_ms_count) 2278 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2279 else if (ms_count > zfs_vdev_default_ms_count) 2280 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2281 else 2282 ms_shift = zfs_vdev_default_ms_shift; 2283 2284 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2285 ms_shift = SPA_MAXBLOCKSHIFT; 2286 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2287 ms_shift = zfs_vdev_max_ms_shift; 2288 /* cap the total count to constrain memory footprint */ 2289 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2290 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2291 } 2292 2293 vd->vdev_ms_shift = ms_shift; 2294 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2295 } 2296 2297 void 2298 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2299 { 2300 ASSERT(vd == vd->vdev_top); 2301 /* indirect vdevs don't have metaslabs or dtls */ 2302 ASSERT(vdev_is_concrete(vd) || flags == 0); 2303 ASSERT(ISP2(flags)); 2304 ASSERT(spa_writeable(vd->vdev_spa)); 2305 2306 if (flags & VDD_METASLAB) 2307 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2308 2309 if (flags & VDD_DTL) 2310 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2311 2312 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2313 } 2314 2315 void 2316 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2317 { 2318 for (int c = 0; c < vd->vdev_children; c++) 2319 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2320 2321 if (vd->vdev_ops->vdev_op_leaf) 2322 vdev_dirty(vd->vdev_top, flags, vd, txg); 2323 } 2324 2325 /* 2326 * DTLs. 2327 * 2328 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2329 * the vdev has less than perfect replication. There are four kinds of DTL: 2330 * 2331 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2332 * 2333 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2334 * 2335 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2336 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2337 * txgs that was scrubbed. 2338 * 2339 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2340 * persistent errors or just some device being offline. 2341 * Unlike the other three, the DTL_OUTAGE map is not generally 2342 * maintained; it's only computed when needed, typically to 2343 * determine whether a device can be detached. 2344 * 2345 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2346 * either has the data or it doesn't. 2347 * 2348 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2349 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2350 * if any child is less than fully replicated, then so is its parent. 2351 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2352 * comprising only those txgs which appear in 'maxfaults' or more children; 2353 * those are the txgs we don't have enough replication to read. For example, 2354 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2355 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2356 * two child DTL_MISSING maps. 2357 * 2358 * It should be clear from the above that to compute the DTLs and outage maps 2359 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2360 * Therefore, that is all we keep on disk. When loading the pool, or after 2361 * a configuration change, we generate all other DTLs from first principles. 2362 */ 2363 void 2364 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2365 { 2366 range_tree_t *rt = vd->vdev_dtl[t]; 2367 2368 ASSERT(t < DTL_TYPES); 2369 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2370 ASSERT(spa_writeable(vd->vdev_spa)); 2371 2372 mutex_enter(&vd->vdev_dtl_lock); 2373 if (!range_tree_contains(rt, txg, size)) 2374 range_tree_add(rt, txg, size); 2375 mutex_exit(&vd->vdev_dtl_lock); 2376 } 2377 2378 boolean_t 2379 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2380 { 2381 range_tree_t *rt = vd->vdev_dtl[t]; 2382 boolean_t dirty = B_FALSE; 2383 2384 ASSERT(t < DTL_TYPES); 2385 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2386 2387 /* 2388 * While we are loading the pool, the DTLs have not been loaded yet. 2389 * Ignore the DTLs and try all devices. This avoids a recursive 2390 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2391 * when loading the pool (relying on the checksum to ensure that 2392 * we get the right data -- note that we while loading, we are 2393 * only reading the MOS, which is always checksummed). 2394 */ 2395 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2396 return (B_FALSE); 2397 2398 mutex_enter(&vd->vdev_dtl_lock); 2399 if (!range_tree_is_empty(rt)) 2400 dirty = range_tree_contains(rt, txg, size); 2401 mutex_exit(&vd->vdev_dtl_lock); 2402 2403 return (dirty); 2404 } 2405 2406 boolean_t 2407 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2408 { 2409 range_tree_t *rt = vd->vdev_dtl[t]; 2410 boolean_t empty; 2411 2412 mutex_enter(&vd->vdev_dtl_lock); 2413 empty = range_tree_is_empty(rt); 2414 mutex_exit(&vd->vdev_dtl_lock); 2415 2416 return (empty); 2417 } 2418 2419 /* 2420 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2421 */ 2422 boolean_t 2423 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2424 { 2425 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2426 2427 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2428 vd->vdev_ops->vdev_op_leaf) 2429 return (B_TRUE); 2430 2431 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2432 } 2433 2434 /* 2435 * Returns the lowest txg in the DTL range. 2436 */ 2437 static uint64_t 2438 vdev_dtl_min(vdev_t *vd) 2439 { 2440 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2441 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2442 ASSERT0(vd->vdev_children); 2443 2444 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2445 } 2446 2447 /* 2448 * Returns the highest txg in the DTL. 2449 */ 2450 static uint64_t 2451 vdev_dtl_max(vdev_t *vd) 2452 { 2453 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2454 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2455 ASSERT0(vd->vdev_children); 2456 2457 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2458 } 2459 2460 /* 2461 * Determine if a resilvering vdev should remove any DTL entries from 2462 * its range. If the vdev was resilvering for the entire duration of the 2463 * scan then it should excise that range from its DTLs. Otherwise, this 2464 * vdev is considered partially resilvered and should leave its DTL 2465 * entries intact. The comment in vdev_dtl_reassess() describes how we 2466 * excise the DTLs. 2467 */ 2468 static boolean_t 2469 vdev_dtl_should_excise(vdev_t *vd) 2470 { 2471 spa_t *spa = vd->vdev_spa; 2472 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2473 2474 ASSERT0(vd->vdev_children); 2475 2476 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2477 return (B_FALSE); 2478 2479 if (vd->vdev_resilver_deferred) 2480 return (B_FALSE); 2481 2482 if (vd->vdev_resilver_txg == 0 || 2483 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2484 return (B_TRUE); 2485 2486 /* 2487 * When a resilver is initiated the scan will assign the scn_max_txg 2488 * value to the highest txg value that exists in all DTLs. If this 2489 * device's max DTL is not part of this scan (i.e. it is not in 2490 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2491 * for excision. 2492 */ 2493 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2494 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2495 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2496 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2497 return (B_TRUE); 2498 } 2499 return (B_FALSE); 2500 } 2501 2502 /* 2503 * Reassess DTLs after a config change or scrub completion. 2504 */ 2505 void 2506 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2507 { 2508 spa_t *spa = vd->vdev_spa; 2509 avl_tree_t reftree; 2510 int minref; 2511 2512 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2513 2514 for (int c = 0; c < vd->vdev_children; c++) 2515 vdev_dtl_reassess(vd->vdev_child[c], txg, 2516 scrub_txg, scrub_done); 2517 2518 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2519 return; 2520 2521 if (vd->vdev_ops->vdev_op_leaf) { 2522 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2523 boolean_t wasempty = B_TRUE; 2524 2525 mutex_enter(&vd->vdev_dtl_lock); 2526 2527 /* 2528 * If requested, pretend the scan completed cleanly. 2529 */ 2530 if (zfs_scan_ignore_errors && scn) 2531 scn->scn_phys.scn_errors = 0; 2532 2533 if (scrub_txg != 0 && 2534 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2535 wasempty = B_FALSE; 2536 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2537 "dtl:%llu/%llu errors:%llu", 2538 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2539 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2540 (u_longlong_t)vdev_dtl_min(vd), 2541 (u_longlong_t)vdev_dtl_max(vd), 2542 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2543 } 2544 2545 /* 2546 * If we've completed a scan cleanly then determine 2547 * if this vdev should remove any DTLs. We only want to 2548 * excise regions on vdevs that were available during 2549 * the entire duration of this scan. 2550 */ 2551 if (scrub_txg != 0 && 2552 (spa->spa_scrub_started || 2553 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2554 vdev_dtl_should_excise(vd)) { 2555 /* 2556 * We completed a scrub up to scrub_txg. If we 2557 * did it without rebooting, then the scrub dtl 2558 * will be valid, so excise the old region and 2559 * fold in the scrub dtl. Otherwise, leave the 2560 * dtl as-is if there was an error. 2561 * 2562 * There's little trick here: to excise the beginning 2563 * of the DTL_MISSING map, we put it into a reference 2564 * tree and then add a segment with refcnt -1 that 2565 * covers the range [0, scrub_txg). This means 2566 * that each txg in that range has refcnt -1 or 0. 2567 * We then add DTL_SCRUB with a refcnt of 2, so that 2568 * entries in the range [0, scrub_txg) will have a 2569 * positive refcnt -- either 1 or 2. We then convert 2570 * the reference tree into the new DTL_MISSING map. 2571 */ 2572 space_reftree_create(&reftree); 2573 space_reftree_add_map(&reftree, 2574 vd->vdev_dtl[DTL_MISSING], 1); 2575 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2576 space_reftree_add_map(&reftree, 2577 vd->vdev_dtl[DTL_SCRUB], 2); 2578 space_reftree_generate_map(&reftree, 2579 vd->vdev_dtl[DTL_MISSING], 1); 2580 space_reftree_destroy(&reftree); 2581 2582 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2583 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 2584 (u_longlong_t)vdev_dtl_min(vd), 2585 (u_longlong_t)vdev_dtl_max(vd)); 2586 } else if (!wasempty) { 2587 zfs_dbgmsg("DTL_MISSING is now empty"); 2588 } 2589 } 2590 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2591 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2592 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2593 if (scrub_done) 2594 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2595 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2596 if (!vdev_readable(vd)) 2597 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2598 else 2599 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2600 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2601 2602 /* 2603 * If the vdev was resilvering and no longer has any 2604 * DTLs then reset its resilvering flag. 2605 */ 2606 if (vd->vdev_resilver_txg != 0 && 2607 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2608 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2609 vd->vdev_resilver_txg = 0; 2610 2611 mutex_exit(&vd->vdev_dtl_lock); 2612 2613 if (txg != 0) 2614 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2615 return; 2616 } 2617 2618 mutex_enter(&vd->vdev_dtl_lock); 2619 for (int t = 0; t < DTL_TYPES; t++) { 2620 /* account for child's outage in parent's missing map */ 2621 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2622 if (t == DTL_SCRUB) 2623 continue; /* leaf vdevs only */ 2624 if (t == DTL_PARTIAL) 2625 minref = 1; /* i.e. non-zero */ 2626 else if (vd->vdev_nparity != 0) 2627 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2628 else 2629 minref = vd->vdev_children; /* any kind of mirror */ 2630 space_reftree_create(&reftree); 2631 for (int c = 0; c < vd->vdev_children; c++) { 2632 vdev_t *cvd = vd->vdev_child[c]; 2633 mutex_enter(&cvd->vdev_dtl_lock); 2634 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2635 mutex_exit(&cvd->vdev_dtl_lock); 2636 } 2637 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2638 space_reftree_destroy(&reftree); 2639 } 2640 mutex_exit(&vd->vdev_dtl_lock); 2641 } 2642 2643 int 2644 vdev_dtl_load(vdev_t *vd) 2645 { 2646 spa_t *spa = vd->vdev_spa; 2647 objset_t *mos = spa->spa_meta_objset; 2648 int error = 0; 2649 2650 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2651 ASSERT(vdev_is_concrete(vd)); 2652 2653 error = space_map_open(&vd->vdev_dtl_sm, mos, 2654 vd->vdev_dtl_object, 0, -1ULL, 0); 2655 if (error) 2656 return (error); 2657 ASSERT(vd->vdev_dtl_sm != NULL); 2658 2659 mutex_enter(&vd->vdev_dtl_lock); 2660 error = space_map_load(vd->vdev_dtl_sm, 2661 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2662 mutex_exit(&vd->vdev_dtl_lock); 2663 2664 return (error); 2665 } 2666 2667 for (int c = 0; c < vd->vdev_children; c++) { 2668 error = vdev_dtl_load(vd->vdev_child[c]); 2669 if (error != 0) 2670 break; 2671 } 2672 2673 return (error); 2674 } 2675 2676 static void 2677 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2678 { 2679 spa_t *spa = vd->vdev_spa; 2680 objset_t *mos = spa->spa_meta_objset; 2681 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2682 const char *string; 2683 2684 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2685 2686 string = 2687 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2688 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2689 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2690 2691 ASSERT(string != NULL); 2692 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2693 1, strlen(string) + 1, string, tx)); 2694 2695 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2696 spa_activate_allocation_classes(spa, tx); 2697 } 2698 } 2699 2700 void 2701 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2702 { 2703 spa_t *spa = vd->vdev_spa; 2704 2705 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2706 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2707 zapobj, tx)); 2708 } 2709 2710 uint64_t 2711 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2712 { 2713 spa_t *spa = vd->vdev_spa; 2714 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2715 DMU_OT_NONE, 0, tx); 2716 2717 ASSERT(zap != 0); 2718 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2719 zap, tx)); 2720 2721 return (zap); 2722 } 2723 2724 void 2725 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2726 { 2727 if (vd->vdev_ops != &vdev_hole_ops && 2728 vd->vdev_ops != &vdev_missing_ops && 2729 vd->vdev_ops != &vdev_root_ops && 2730 !vd->vdev_top->vdev_removing) { 2731 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2732 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2733 } 2734 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2735 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2736 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2737 vdev_zap_allocation_data(vd, tx); 2738 } 2739 } 2740 2741 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2742 vdev_construct_zaps(vd->vdev_child[i], tx); 2743 } 2744 } 2745 2746 void 2747 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2748 { 2749 spa_t *spa = vd->vdev_spa; 2750 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2751 objset_t *mos = spa->spa_meta_objset; 2752 range_tree_t *rtsync; 2753 dmu_tx_t *tx; 2754 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2755 2756 ASSERT(vdev_is_concrete(vd)); 2757 ASSERT(vd->vdev_ops->vdev_op_leaf); 2758 2759 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2760 2761 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2762 mutex_enter(&vd->vdev_dtl_lock); 2763 space_map_free(vd->vdev_dtl_sm, tx); 2764 space_map_close(vd->vdev_dtl_sm); 2765 vd->vdev_dtl_sm = NULL; 2766 mutex_exit(&vd->vdev_dtl_lock); 2767 2768 /* 2769 * We only destroy the leaf ZAP for detached leaves or for 2770 * removed log devices. Removed data devices handle leaf ZAP 2771 * cleanup later, once cancellation is no longer possible. 2772 */ 2773 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2774 vd->vdev_top->vdev_islog)) { 2775 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2776 vd->vdev_leaf_zap = 0; 2777 } 2778 2779 dmu_tx_commit(tx); 2780 return; 2781 } 2782 2783 if (vd->vdev_dtl_sm == NULL) { 2784 uint64_t new_object; 2785 2786 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 2787 VERIFY3U(new_object, !=, 0); 2788 2789 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2790 0, -1ULL, 0)); 2791 ASSERT(vd->vdev_dtl_sm != NULL); 2792 } 2793 2794 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 2795 2796 mutex_enter(&vd->vdev_dtl_lock); 2797 range_tree_walk(rt, range_tree_add, rtsync); 2798 mutex_exit(&vd->vdev_dtl_lock); 2799 2800 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 2801 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2802 range_tree_vacate(rtsync, NULL, NULL); 2803 2804 range_tree_destroy(rtsync); 2805 2806 /* 2807 * If the object for the space map has changed then dirty 2808 * the top level so that we update the config. 2809 */ 2810 if (object != space_map_object(vd->vdev_dtl_sm)) { 2811 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2812 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2813 (u_longlong_t)object, 2814 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2815 vdev_config_dirty(vd->vdev_top); 2816 } 2817 2818 dmu_tx_commit(tx); 2819 } 2820 2821 /* 2822 * Determine whether the specified vdev can be offlined/detached/removed 2823 * without losing data. 2824 */ 2825 boolean_t 2826 vdev_dtl_required(vdev_t *vd) 2827 { 2828 spa_t *spa = vd->vdev_spa; 2829 vdev_t *tvd = vd->vdev_top; 2830 uint8_t cant_read = vd->vdev_cant_read; 2831 boolean_t required; 2832 2833 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2834 2835 if (vd == spa->spa_root_vdev || vd == tvd) 2836 return (B_TRUE); 2837 2838 /* 2839 * Temporarily mark the device as unreadable, and then determine 2840 * whether this results in any DTL outages in the top-level vdev. 2841 * If not, we can safely offline/detach/remove the device. 2842 */ 2843 vd->vdev_cant_read = B_TRUE; 2844 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2845 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2846 vd->vdev_cant_read = cant_read; 2847 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2848 2849 if (!required && zio_injection_enabled) 2850 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2851 2852 return (required); 2853 } 2854 2855 /* 2856 * Determine if resilver is needed, and if so the txg range. 2857 */ 2858 boolean_t 2859 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2860 { 2861 boolean_t needed = B_FALSE; 2862 uint64_t thismin = UINT64_MAX; 2863 uint64_t thismax = 0; 2864 2865 if (vd->vdev_children == 0) { 2866 mutex_enter(&vd->vdev_dtl_lock); 2867 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2868 vdev_writeable(vd)) { 2869 2870 thismin = vdev_dtl_min(vd); 2871 thismax = vdev_dtl_max(vd); 2872 needed = B_TRUE; 2873 } 2874 mutex_exit(&vd->vdev_dtl_lock); 2875 } else { 2876 for (int c = 0; c < vd->vdev_children; c++) { 2877 vdev_t *cvd = vd->vdev_child[c]; 2878 uint64_t cmin, cmax; 2879 2880 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2881 thismin = MIN(thismin, cmin); 2882 thismax = MAX(thismax, cmax); 2883 needed = B_TRUE; 2884 } 2885 } 2886 } 2887 2888 if (needed && minp) { 2889 *minp = thismin; 2890 *maxp = thismax; 2891 } 2892 return (needed); 2893 } 2894 2895 /* 2896 * Gets the checkpoint space map object from the vdev's ZAP. 2897 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2898 * or the ZAP doesn't exist yet. 2899 */ 2900 int 2901 vdev_checkpoint_sm_object(vdev_t *vd) 2902 { 2903 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2904 if (vd->vdev_top_zap == 0) { 2905 return (0); 2906 } 2907 2908 uint64_t sm_obj = 0; 2909 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2910 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2911 2912 ASSERT(err == 0 || err == ENOENT); 2913 2914 return (sm_obj); 2915 } 2916 2917 int 2918 vdev_load(vdev_t *vd) 2919 { 2920 int error = 0; 2921 /* 2922 * Recursively load all children. 2923 */ 2924 for (int c = 0; c < vd->vdev_children; c++) { 2925 error = vdev_load(vd->vdev_child[c]); 2926 if (error != 0) { 2927 return (error); 2928 } 2929 } 2930 2931 vdev_set_deflate_ratio(vd); 2932 2933 /* 2934 * On spa_load path, grab the allocation bias from our zap 2935 */ 2936 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2937 spa_t *spa = vd->vdev_spa; 2938 char bias_str[64]; 2939 2940 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2941 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2942 bias_str) == 0) { 2943 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2944 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2945 } 2946 } 2947 2948 /* 2949 * If this is a top-level vdev, initialize its metaslabs. 2950 */ 2951 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2952 vdev_metaslab_group_create(vd); 2953 2954 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2955 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2956 VDEV_AUX_CORRUPT_DATA); 2957 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2958 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2959 (u_longlong_t)vd->vdev_asize); 2960 return (SET_ERROR(ENXIO)); 2961 } 2962 2963 error = vdev_metaslab_init(vd, 0); 2964 if (error != 0) { 2965 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2966 "[error=%d]", error); 2967 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2968 VDEV_AUX_CORRUPT_DATA); 2969 return (error); 2970 } 2971 2972 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2973 if (checkpoint_sm_obj != 0) { 2974 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2975 ASSERT(vd->vdev_asize != 0); 2976 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2977 2978 error = space_map_open(&vd->vdev_checkpoint_sm, 2979 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 2980 vd->vdev_ashift); 2981 if (error != 0) { 2982 vdev_dbgmsg(vd, "vdev_load: space_map_open " 2983 "failed for checkpoint spacemap (obj %llu) " 2984 "[error=%d]", 2985 (u_longlong_t)checkpoint_sm_obj, error); 2986 return (error); 2987 } 2988 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2989 2990 /* 2991 * Since the checkpoint_sm contains free entries 2992 * exclusively we can use space_map_allocated() to 2993 * indicate the cumulative checkpointed space that 2994 * has been freed. 2995 */ 2996 vd->vdev_stat.vs_checkpoint_space = 2997 -space_map_allocated(vd->vdev_checkpoint_sm); 2998 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 2999 vd->vdev_stat.vs_checkpoint_space; 3000 } 3001 } 3002 3003 /* 3004 * If this is a leaf vdev, load its DTL. 3005 */ 3006 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3007 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3008 VDEV_AUX_CORRUPT_DATA); 3009 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3010 "[error=%d]", error); 3011 return (error); 3012 } 3013 3014 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 3015 if (obsolete_sm_object != 0) { 3016 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3017 ASSERT(vd->vdev_asize != 0); 3018 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3019 3020 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3021 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3022 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3023 VDEV_AUX_CORRUPT_DATA); 3024 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3025 "obsolete spacemap (obj %llu) [error=%d]", 3026 (u_longlong_t)obsolete_sm_object, error); 3027 return (error); 3028 } 3029 } 3030 3031 return (0); 3032 } 3033 3034 /* 3035 * The special vdev case is used for hot spares and l2cache devices. Its 3036 * sole purpose it to set the vdev state for the associated vdev. To do this, 3037 * we make sure that we can open the underlying device, then try to read the 3038 * label, and make sure that the label is sane and that it hasn't been 3039 * repurposed to another pool. 3040 */ 3041 int 3042 vdev_validate_aux(vdev_t *vd) 3043 { 3044 nvlist_t *label; 3045 uint64_t guid, version; 3046 uint64_t state; 3047 3048 if (!vdev_readable(vd)) 3049 return (0); 3050 3051 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3052 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3053 VDEV_AUX_CORRUPT_DATA); 3054 return (-1); 3055 } 3056 3057 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3058 !SPA_VERSION_IS_SUPPORTED(version) || 3059 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3060 guid != vd->vdev_guid || 3061 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3062 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3063 VDEV_AUX_CORRUPT_DATA); 3064 nvlist_free(label); 3065 return (-1); 3066 } 3067 3068 /* 3069 * We don't actually check the pool state here. If it's in fact in 3070 * use by another pool, we update this fact on the fly when requested. 3071 */ 3072 nvlist_free(label); 3073 return (0); 3074 } 3075 3076 static void 3077 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3078 { 3079 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3080 3081 if (vd->vdev_top_zap == 0) 3082 return; 3083 3084 uint64_t object = 0; 3085 int err = zap_lookup(mos, vd->vdev_top_zap, 3086 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3087 if (err == ENOENT) 3088 return; 3089 3090 VERIFY0(dmu_object_free(mos, object, tx)); 3091 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3092 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3093 } 3094 3095 /* 3096 * Free the objects used to store this vdev's spacemaps, and the array 3097 * that points to them. 3098 */ 3099 void 3100 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3101 { 3102 if (vd->vdev_ms_array == 0) 3103 return; 3104 3105 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3106 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3107 size_t array_bytes = array_count * sizeof (uint64_t); 3108 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3109 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3110 array_bytes, smobj_array, 0)); 3111 3112 for (uint64_t i = 0; i < array_count; i++) { 3113 uint64_t smobj = smobj_array[i]; 3114 if (smobj == 0) 3115 continue; 3116 3117 space_map_free_obj(mos, smobj, tx); 3118 } 3119 3120 kmem_free(smobj_array, array_bytes); 3121 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3122 vdev_destroy_ms_flush_data(vd, tx); 3123 vd->vdev_ms_array = 0; 3124 } 3125 3126 static void 3127 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3128 { 3129 spa_t *spa = vd->vdev_spa; 3130 3131 ASSERT(vd->vdev_islog); 3132 ASSERT(vd == vd->vdev_top); 3133 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3134 3135 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3136 3137 vdev_destroy_spacemaps(vd, tx); 3138 if (vd->vdev_top_zap != 0) { 3139 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3140 vd->vdev_top_zap = 0; 3141 } 3142 3143 dmu_tx_commit(tx); 3144 } 3145 3146 void 3147 vdev_sync_done(vdev_t *vd, uint64_t txg) 3148 { 3149 metaslab_t *msp; 3150 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3151 3152 ASSERT(vdev_is_concrete(vd)); 3153 3154 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3155 != NULL) 3156 metaslab_sync_done(msp, txg); 3157 3158 if (reassess) 3159 metaslab_sync_reassess(vd->vdev_mg); 3160 } 3161 3162 void 3163 vdev_sync(vdev_t *vd, uint64_t txg) 3164 { 3165 spa_t *spa = vd->vdev_spa; 3166 vdev_t *lvd; 3167 metaslab_t *msp; 3168 3169 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3170 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3171 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3172 ASSERT(vd->vdev_removing || 3173 vd->vdev_ops == &vdev_indirect_ops); 3174 3175 vdev_indirect_sync_obsolete(vd, tx); 3176 3177 /* 3178 * If the vdev is indirect, it can't have dirty 3179 * metaslabs or DTLs. 3180 */ 3181 if (vd->vdev_ops == &vdev_indirect_ops) { 3182 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3183 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3184 dmu_tx_commit(tx); 3185 return; 3186 } 3187 } 3188 3189 ASSERT(vdev_is_concrete(vd)); 3190 3191 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3192 !vd->vdev_removing) { 3193 ASSERT(vd == vd->vdev_top); 3194 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3195 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3196 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3197 ASSERT(vd->vdev_ms_array != 0); 3198 vdev_config_dirty(vd); 3199 } 3200 3201 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3202 metaslab_sync(msp, txg); 3203 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3204 } 3205 3206 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3207 vdev_dtl_sync(lvd, txg); 3208 3209 /* 3210 * If this is an empty log device being removed, destroy the 3211 * metadata associated with it. 3212 */ 3213 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3214 vdev_remove_empty_log(vd, txg); 3215 3216 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3217 dmu_tx_commit(tx); 3218 } 3219 3220 uint64_t 3221 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3222 { 3223 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3224 } 3225 3226 /* 3227 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3228 * not be opened, and no I/O is attempted. 3229 */ 3230 int 3231 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3232 { 3233 vdev_t *vd, *tvd; 3234 3235 spa_vdev_state_enter(spa, SCL_NONE); 3236 3237 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3238 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3239 3240 if (!vd->vdev_ops->vdev_op_leaf) 3241 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3242 3243 tvd = vd->vdev_top; 3244 3245 /* 3246 * We don't directly use the aux state here, but if we do a 3247 * vdev_reopen(), we need this value to be present to remember why we 3248 * were faulted. 3249 */ 3250 vd->vdev_label_aux = aux; 3251 3252 /* 3253 * Faulted state takes precedence over degraded. 3254 */ 3255 vd->vdev_delayed_close = B_FALSE; 3256 vd->vdev_faulted = 1ULL; 3257 vd->vdev_degraded = 0ULL; 3258 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3259 3260 /* 3261 * If this device has the only valid copy of the data, then 3262 * back off and simply mark the vdev as degraded instead. 3263 */ 3264 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3265 vd->vdev_degraded = 1ULL; 3266 vd->vdev_faulted = 0ULL; 3267 3268 /* 3269 * If we reopen the device and it's not dead, only then do we 3270 * mark it degraded. 3271 */ 3272 vdev_reopen(tvd); 3273 3274 if (vdev_readable(vd)) 3275 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3276 } 3277 3278 return (spa_vdev_state_exit(spa, vd, 0)); 3279 } 3280 3281 /* 3282 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3283 * user that something is wrong. The vdev continues to operate as normal as far 3284 * as I/O is concerned. 3285 */ 3286 int 3287 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3288 { 3289 vdev_t *vd; 3290 3291 spa_vdev_state_enter(spa, SCL_NONE); 3292 3293 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3294 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3295 3296 if (!vd->vdev_ops->vdev_op_leaf) 3297 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3298 3299 /* 3300 * If the vdev is already faulted, then don't do anything. 3301 */ 3302 if (vd->vdev_faulted || vd->vdev_degraded) 3303 return (spa_vdev_state_exit(spa, NULL, 0)); 3304 3305 vd->vdev_degraded = 1ULL; 3306 if (!vdev_is_dead(vd)) 3307 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3308 aux); 3309 3310 return (spa_vdev_state_exit(spa, vd, 0)); 3311 } 3312 3313 /* 3314 * Online the given vdev. 3315 * 3316 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3317 * spare device should be detached when the device finishes resilvering. 3318 * Second, the online should be treated like a 'test' online case, so no FMA 3319 * events are generated if the device fails to open. 3320 */ 3321 int 3322 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3323 { 3324 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3325 boolean_t wasoffline; 3326 vdev_state_t oldstate; 3327 3328 spa_vdev_state_enter(spa, SCL_NONE); 3329 3330 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3331 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3332 3333 if (!vd->vdev_ops->vdev_op_leaf) 3334 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3335 3336 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3337 oldstate = vd->vdev_state; 3338 3339 tvd = vd->vdev_top; 3340 vd->vdev_offline = B_FALSE; 3341 vd->vdev_tmpoffline = B_FALSE; 3342 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3343 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3344 3345 /* XXX - L2ARC 1.0 does not support expansion */ 3346 if (!vd->vdev_aux) { 3347 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3348 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3349 } 3350 3351 vdev_reopen(tvd); 3352 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3353 3354 if (!vd->vdev_aux) { 3355 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3356 pvd->vdev_expanding = B_FALSE; 3357 } 3358 3359 if (newstate) 3360 *newstate = vd->vdev_state; 3361 if ((flags & ZFS_ONLINE_UNSPARE) && 3362 !vdev_is_dead(vd) && vd->vdev_parent && 3363 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3364 vd->vdev_parent->vdev_child[0] == vd) 3365 vd->vdev_unspare = B_TRUE; 3366 3367 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3368 3369 /* XXX - L2ARC 1.0 does not support expansion */ 3370 if (vd->vdev_aux) 3371 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3372 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3373 } 3374 3375 /* Restart initializing if necessary */ 3376 mutex_enter(&vd->vdev_initialize_lock); 3377 if (vdev_writeable(vd) && 3378 vd->vdev_initialize_thread == NULL && 3379 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3380 (void) vdev_initialize(vd); 3381 } 3382 mutex_exit(&vd->vdev_initialize_lock); 3383 3384 /* Restart trimming if necessary */ 3385 mutex_enter(&vd->vdev_trim_lock); 3386 if (vdev_writeable(vd) && 3387 vd->vdev_trim_thread == NULL && 3388 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3389 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3390 vd->vdev_trim_secure); 3391 } 3392 mutex_exit(&vd->vdev_trim_lock); 3393 3394 if (wasoffline || 3395 (oldstate < VDEV_STATE_DEGRADED && 3396 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3397 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3398 3399 return (spa_vdev_state_exit(spa, vd, 0)); 3400 } 3401 3402 static int 3403 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3404 { 3405 vdev_t *vd, *tvd; 3406 int error = 0; 3407 uint64_t generation; 3408 metaslab_group_t *mg; 3409 3410 top: 3411 spa_vdev_state_enter(spa, SCL_ALLOC); 3412 3413 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3414 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3415 3416 if (!vd->vdev_ops->vdev_op_leaf) 3417 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3418 3419 tvd = vd->vdev_top; 3420 mg = tvd->vdev_mg; 3421 generation = spa->spa_config_generation + 1; 3422 3423 /* 3424 * If the device isn't already offline, try to offline it. 3425 */ 3426 if (!vd->vdev_offline) { 3427 /* 3428 * If this device has the only valid copy of some data, 3429 * don't allow it to be offlined. Log devices are always 3430 * expendable. 3431 */ 3432 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3433 vdev_dtl_required(vd)) 3434 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3435 3436 /* 3437 * If the top-level is a slog and it has had allocations 3438 * then proceed. We check that the vdev's metaslab group 3439 * is not NULL since it's possible that we may have just 3440 * added this vdev but not yet initialized its metaslabs. 3441 */ 3442 if (tvd->vdev_islog && mg != NULL) { 3443 /* 3444 * Prevent any future allocations. 3445 */ 3446 metaslab_group_passivate(mg); 3447 (void) spa_vdev_state_exit(spa, vd, 0); 3448 3449 error = spa_reset_logs(spa); 3450 3451 /* 3452 * If the log device was successfully reset but has 3453 * checkpointed data, do not offline it. 3454 */ 3455 if (error == 0 && 3456 tvd->vdev_checkpoint_sm != NULL) { 3457 error = ZFS_ERR_CHECKPOINT_EXISTS; 3458 } 3459 3460 spa_vdev_state_enter(spa, SCL_ALLOC); 3461 3462 /* 3463 * Check to see if the config has changed. 3464 */ 3465 if (error || generation != spa->spa_config_generation) { 3466 metaslab_group_activate(mg); 3467 if (error) 3468 return (spa_vdev_state_exit(spa, 3469 vd, error)); 3470 (void) spa_vdev_state_exit(spa, vd, 0); 3471 goto top; 3472 } 3473 ASSERT0(tvd->vdev_stat.vs_alloc); 3474 } 3475 3476 /* 3477 * Offline this device and reopen its top-level vdev. 3478 * If the top-level vdev is a log device then just offline 3479 * it. Otherwise, if this action results in the top-level 3480 * vdev becoming unusable, undo it and fail the request. 3481 */ 3482 vd->vdev_offline = B_TRUE; 3483 vdev_reopen(tvd); 3484 3485 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3486 vdev_is_dead(tvd)) { 3487 vd->vdev_offline = B_FALSE; 3488 vdev_reopen(tvd); 3489 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3490 } 3491 3492 /* 3493 * Add the device back into the metaslab rotor so that 3494 * once we online the device it's open for business. 3495 */ 3496 if (tvd->vdev_islog && mg != NULL) 3497 metaslab_group_activate(mg); 3498 } 3499 3500 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3501 3502 return (spa_vdev_state_exit(spa, vd, 0)); 3503 } 3504 3505 int 3506 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3507 { 3508 int error; 3509 3510 mutex_enter(&spa->spa_vdev_top_lock); 3511 error = vdev_offline_locked(spa, guid, flags); 3512 mutex_exit(&spa->spa_vdev_top_lock); 3513 3514 return (error); 3515 } 3516 3517 /* 3518 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3519 * vdev_offline(), we assume the spa config is locked. We also clear all 3520 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3521 */ 3522 void 3523 vdev_clear(spa_t *spa, vdev_t *vd) 3524 { 3525 vdev_t *rvd = spa->spa_root_vdev; 3526 3527 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3528 3529 if (vd == NULL) 3530 vd = rvd; 3531 3532 vd->vdev_stat.vs_read_errors = 0; 3533 vd->vdev_stat.vs_write_errors = 0; 3534 vd->vdev_stat.vs_checksum_errors = 0; 3535 vd->vdev_stat.vs_slow_ios = 0; 3536 3537 for (int c = 0; c < vd->vdev_children; c++) 3538 vdev_clear(spa, vd->vdev_child[c]); 3539 3540 /* 3541 * It makes no sense to "clear" an indirect vdev. 3542 */ 3543 if (!vdev_is_concrete(vd)) 3544 return; 3545 3546 /* 3547 * If we're in the FAULTED state or have experienced failed I/O, then 3548 * clear the persistent state and attempt to reopen the device. We 3549 * also mark the vdev config dirty, so that the new faulted state is 3550 * written out to disk. 3551 */ 3552 if (vd->vdev_faulted || vd->vdev_degraded || 3553 !vdev_readable(vd) || !vdev_writeable(vd)) { 3554 3555 /* 3556 * When reopening in reponse to a clear event, it may be due to 3557 * a fmadm repair request. In this case, if the device is 3558 * still broken, we want to still post the ereport again. 3559 */ 3560 vd->vdev_forcefault = B_TRUE; 3561 3562 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3563 vd->vdev_cant_read = B_FALSE; 3564 vd->vdev_cant_write = B_FALSE; 3565 3566 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3567 3568 vd->vdev_forcefault = B_FALSE; 3569 3570 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3571 vdev_state_dirty(vd->vdev_top); 3572 3573 /* If a resilver isn't required, check if vdevs can be culled */ 3574 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 3575 !dsl_scan_resilvering(spa->spa_dsl_pool) && 3576 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 3577 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3578 3579 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3580 } 3581 3582 /* 3583 * When clearing a FMA-diagnosed fault, we always want to 3584 * unspare the device, as we assume that the original spare was 3585 * done in response to the FMA fault. 3586 */ 3587 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3588 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3589 vd->vdev_parent->vdev_child[0] == vd) 3590 vd->vdev_unspare = B_TRUE; 3591 } 3592 3593 boolean_t 3594 vdev_is_dead(vdev_t *vd) 3595 { 3596 /* 3597 * Holes and missing devices are always considered "dead". 3598 * This simplifies the code since we don't have to check for 3599 * these types of devices in the various code paths. 3600 * Instead we rely on the fact that we skip over dead devices 3601 * before issuing I/O to them. 3602 */ 3603 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3604 vd->vdev_ops == &vdev_hole_ops || 3605 vd->vdev_ops == &vdev_missing_ops); 3606 } 3607 3608 boolean_t 3609 vdev_readable(vdev_t *vd) 3610 { 3611 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3612 } 3613 3614 boolean_t 3615 vdev_writeable(vdev_t *vd) 3616 { 3617 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3618 vdev_is_concrete(vd)); 3619 } 3620 3621 boolean_t 3622 vdev_allocatable(vdev_t *vd) 3623 { 3624 uint64_t state = vd->vdev_state; 3625 3626 /* 3627 * We currently allow allocations from vdevs which may be in the 3628 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3629 * fails to reopen then we'll catch it later when we're holding 3630 * the proper locks. Note that we have to get the vdev state 3631 * in a local variable because although it changes atomically, 3632 * we're asking two separate questions about it. 3633 */ 3634 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3635 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3636 vd->vdev_mg->mg_initialized); 3637 } 3638 3639 boolean_t 3640 vdev_accessible(vdev_t *vd, zio_t *zio) 3641 { 3642 ASSERT(zio->io_vd == vd); 3643 3644 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3645 return (B_FALSE); 3646 3647 if (zio->io_type == ZIO_TYPE_READ) 3648 return (!vd->vdev_cant_read); 3649 3650 if (zio->io_type == ZIO_TYPE_WRITE) 3651 return (!vd->vdev_cant_write); 3652 3653 return (B_TRUE); 3654 } 3655 3656 static void 3657 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 3658 { 3659 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3660 vs->vs_ops[t] += cvs->vs_ops[t]; 3661 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3662 } 3663 3664 cvs->vs_scan_removing = cvd->vdev_removing; 3665 } 3666 3667 /* 3668 * Get extended stats 3669 */ 3670 static void 3671 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 3672 { 3673 int t, b; 3674 for (t = 0; t < ZIO_TYPES; t++) { 3675 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 3676 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 3677 3678 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 3679 vsx->vsx_total_histo[t][b] += 3680 cvsx->vsx_total_histo[t][b]; 3681 } 3682 } 3683 3684 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 3685 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 3686 vsx->vsx_queue_histo[t][b] += 3687 cvsx->vsx_queue_histo[t][b]; 3688 } 3689 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 3690 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 3691 3692 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 3693 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 3694 3695 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 3696 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 3697 } 3698 3699 } 3700 3701 boolean_t 3702 vdev_is_spacemap_addressable(vdev_t *vd) 3703 { 3704 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3705 return (B_TRUE); 3706 3707 /* 3708 * If double-word space map entries are not enabled we assume 3709 * 47 bits of the space map entry are dedicated to the entry's 3710 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3711 * to calculate the maximum address that can be described by a 3712 * space map entry for the given device. 3713 */ 3714 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3715 3716 if (shift >= 63) /* detect potential overflow */ 3717 return (B_TRUE); 3718 3719 return (vd->vdev_asize < (1ULL << shift)); 3720 } 3721 3722 /* 3723 * Get statistics for the given vdev. 3724 */ 3725 static void 3726 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3727 { 3728 int t; 3729 /* 3730 * If we're getting stats on the root vdev, aggregate the I/O counts 3731 * over all top-level vdevs (i.e. the direct children of the root). 3732 */ 3733 if (!vd->vdev_ops->vdev_op_leaf) { 3734 if (vs) { 3735 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 3736 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 3737 } 3738 if (vsx) 3739 memset(vsx, 0, sizeof (*vsx)); 3740 3741 for (int c = 0; c < vd->vdev_children; c++) { 3742 vdev_t *cvd = vd->vdev_child[c]; 3743 vdev_stat_t *cvs = &cvd->vdev_stat; 3744 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 3745 3746 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 3747 if (vs) 3748 vdev_get_child_stat(cvd, vs, cvs); 3749 if (vsx) 3750 vdev_get_child_stat_ex(cvd, vsx, cvsx); 3751 3752 } 3753 } else { 3754 /* 3755 * We're a leaf. Just copy our ZIO active queue stats in. The 3756 * other leaf stats are updated in vdev_stat_update(). 3757 */ 3758 if (!vsx) 3759 return; 3760 3761 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 3762 3763 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 3764 vsx->vsx_active_queue[t] = 3765 vd->vdev_queue.vq_class[t].vqc_active; 3766 vsx->vsx_pend_queue[t] = avl_numnodes( 3767 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 3768 } 3769 } 3770 } 3771 3772 void 3773 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3774 { 3775 vdev_t *tvd = vd->vdev_top; 3776 mutex_enter(&vd->vdev_stat_lock); 3777 if (vs) { 3778 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3779 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3780 vs->vs_state = vd->vdev_state; 3781 vs->vs_rsize = vdev_get_min_asize(vd); 3782 if (vd->vdev_ops->vdev_op_leaf) { 3783 vs->vs_rsize += VDEV_LABEL_START_SIZE + 3784 VDEV_LABEL_END_SIZE; 3785 /* 3786 * Report initializing progress. Since we don't 3787 * have the initializing locks held, this is only 3788 * an estimate (although a fairly accurate one). 3789 */ 3790 vs->vs_initialize_bytes_done = 3791 vd->vdev_initialize_bytes_done; 3792 vs->vs_initialize_bytes_est = 3793 vd->vdev_initialize_bytes_est; 3794 vs->vs_initialize_state = vd->vdev_initialize_state; 3795 vs->vs_initialize_action_time = 3796 vd->vdev_initialize_action_time; 3797 3798 /* 3799 * Report manual TRIM progress. Since we don't have 3800 * the manual TRIM locks held, this is only an 3801 * estimate (although fairly accurate one). 3802 */ 3803 vs->vs_trim_notsup = !vd->vdev_has_trim; 3804 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 3805 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 3806 vs->vs_trim_state = vd->vdev_trim_state; 3807 vs->vs_trim_action_time = vd->vdev_trim_action_time; 3808 } 3809 /* 3810 * Report expandable space on top-level, non-auxiliary devices 3811 * only. The expandable space is reported in terms of metaslab 3812 * sized units since that determines how much space the pool 3813 * can expand. 3814 */ 3815 if (vd->vdev_aux == NULL && tvd != NULL) { 3816 vs->vs_esize = P2ALIGN( 3817 vd->vdev_max_asize - vd->vdev_asize, 3818 1ULL << tvd->vdev_ms_shift); 3819 } 3820 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3821 vdev_is_concrete(vd)) { 3822 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3823 vd->vdev_mg->mg_fragmentation : 0; 3824 } 3825 if (vd->vdev_ops->vdev_op_leaf) 3826 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 3827 } 3828 3829 vdev_get_stats_ex_impl(vd, vs, vsx); 3830 mutex_exit(&vd->vdev_stat_lock); 3831 } 3832 3833 void 3834 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3835 { 3836 return (vdev_get_stats_ex(vd, vs, NULL)); 3837 } 3838 3839 void 3840 vdev_clear_stats(vdev_t *vd) 3841 { 3842 mutex_enter(&vd->vdev_stat_lock); 3843 vd->vdev_stat.vs_space = 0; 3844 vd->vdev_stat.vs_dspace = 0; 3845 vd->vdev_stat.vs_alloc = 0; 3846 mutex_exit(&vd->vdev_stat_lock); 3847 } 3848 3849 void 3850 vdev_scan_stat_init(vdev_t *vd) 3851 { 3852 vdev_stat_t *vs = &vd->vdev_stat; 3853 3854 for (int c = 0; c < vd->vdev_children; c++) 3855 vdev_scan_stat_init(vd->vdev_child[c]); 3856 3857 mutex_enter(&vd->vdev_stat_lock); 3858 vs->vs_scan_processed = 0; 3859 mutex_exit(&vd->vdev_stat_lock); 3860 } 3861 3862 void 3863 vdev_stat_update(zio_t *zio, uint64_t psize) 3864 { 3865 spa_t *spa = zio->io_spa; 3866 vdev_t *rvd = spa->spa_root_vdev; 3867 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3868 vdev_t *pvd; 3869 uint64_t txg = zio->io_txg; 3870 vdev_stat_t *vs = &vd->vdev_stat; 3871 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 3872 zio_type_t type = zio->io_type; 3873 int flags = zio->io_flags; 3874 3875 /* 3876 * If this i/o is a gang leader, it didn't do any actual work. 3877 */ 3878 if (zio->io_gang_tree) 3879 return; 3880 3881 if (zio->io_error == 0) { 3882 /* 3883 * If this is a root i/o, don't count it -- we've already 3884 * counted the top-level vdevs, and vdev_get_stats() will 3885 * aggregate them when asked. This reduces contention on 3886 * the root vdev_stat_lock and implicitly handles blocks 3887 * that compress away to holes, for which there is no i/o. 3888 * (Holes never create vdev children, so all the counters 3889 * remain zero, which is what we want.) 3890 * 3891 * Note: this only applies to successful i/o (io_error == 0) 3892 * because unlike i/o counts, errors are not additive. 3893 * When reading a ditto block, for example, failure of 3894 * one top-level vdev does not imply a root-level error. 3895 */ 3896 if (vd == rvd) 3897 return; 3898 3899 ASSERT(vd == zio->io_vd); 3900 3901 if (flags & ZIO_FLAG_IO_BYPASS) 3902 return; 3903 3904 mutex_enter(&vd->vdev_stat_lock); 3905 3906 if (flags & ZIO_FLAG_IO_REPAIR) { 3907 if (flags & ZIO_FLAG_SCAN_THREAD) { 3908 dsl_scan_phys_t *scn_phys = 3909 &spa->spa_dsl_pool->dp_scan->scn_phys; 3910 uint64_t *processed = &scn_phys->scn_processed; 3911 3912 /* XXX cleanup? */ 3913 if (vd->vdev_ops->vdev_op_leaf) 3914 atomic_add_64(processed, psize); 3915 vs->vs_scan_processed += psize; 3916 } 3917 3918 if (flags & ZIO_FLAG_SELF_HEAL) 3919 vs->vs_self_healed += psize; 3920 } 3921 3922 /* 3923 * The bytes/ops/histograms are recorded at the leaf level and 3924 * aggregated into the higher level vdevs in vdev_get_stats(). 3925 */ 3926 if (vd->vdev_ops->vdev_op_leaf && 3927 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 3928 zio_type_t vs_type = type; 3929 3930 /* 3931 * TRIM ops and bytes are reported to user space as 3932 * ZIO_TYPE_IOCTL. This is done to preserve the 3933 * vdev_stat_t structure layout for user space. 3934 */ 3935 if (type == ZIO_TYPE_TRIM) 3936 vs_type = ZIO_TYPE_IOCTL; 3937 3938 vs->vs_ops[vs_type]++; 3939 vs->vs_bytes[vs_type] += psize; 3940 3941 if (flags & ZIO_FLAG_DELEGATED) { 3942 vsx->vsx_agg_histo[zio->io_priority] 3943 [RQ_HISTO(zio->io_size)]++; 3944 } else { 3945 vsx->vsx_ind_histo[zio->io_priority] 3946 [RQ_HISTO(zio->io_size)]++; 3947 } 3948 3949 if (zio->io_delta && zio->io_delay) { 3950 vsx->vsx_queue_histo[zio->io_priority] 3951 [L_HISTO(zio->io_delta - zio->io_delay)]++; 3952 vsx->vsx_disk_histo[type] 3953 [L_HISTO(zio->io_delay)]++; 3954 vsx->vsx_total_histo[type] 3955 [L_HISTO(zio->io_delta)]++; 3956 } 3957 } 3958 3959 mutex_exit(&vd->vdev_stat_lock); 3960 return; 3961 } 3962 3963 if (flags & ZIO_FLAG_SPECULATIVE) 3964 return; 3965 3966 /* 3967 * If this is an I/O error that is going to be retried, then ignore the 3968 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3969 * hard errors, when in reality they can happen for any number of 3970 * innocuous reasons (bus resets, MPxIO link failure, etc). 3971 */ 3972 if (zio->io_error == EIO && 3973 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3974 return; 3975 3976 /* 3977 * Intent logs writes won't propagate their error to the root 3978 * I/O so don't mark these types of failures as pool-level 3979 * errors. 3980 */ 3981 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3982 return; 3983 3984 mutex_enter(&vd->vdev_stat_lock); 3985 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3986 if (zio->io_error == ECKSUM) 3987 vs->vs_checksum_errors++; 3988 else 3989 vs->vs_read_errors++; 3990 } 3991 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3992 vs->vs_write_errors++; 3993 mutex_exit(&vd->vdev_stat_lock); 3994 3995 if (spa->spa_load_state == SPA_LOAD_NONE && 3996 type == ZIO_TYPE_WRITE && txg != 0 && 3997 (!(flags & ZIO_FLAG_IO_REPAIR) || 3998 (flags & ZIO_FLAG_SCAN_THREAD) || 3999 spa->spa_claiming)) { 4000 /* 4001 * This is either a normal write (not a repair), or it's 4002 * a repair induced by the scrub thread, or it's a repair 4003 * made by zil_claim() during spa_load() in the first txg. 4004 * In the normal case, we commit the DTL change in the same 4005 * txg as the block was born. In the scrub-induced repair 4006 * case, we know that scrubs run in first-pass syncing context, 4007 * so we commit the DTL change in spa_syncing_txg(spa). 4008 * In the zil_claim() case, we commit in spa_first_txg(spa). 4009 * 4010 * We currently do not make DTL entries for failed spontaneous 4011 * self-healing writes triggered by normal (non-scrubbing) 4012 * reads, because we have no transactional context in which to 4013 * do so -- and it's not clear that it'd be desirable anyway. 4014 */ 4015 if (vd->vdev_ops->vdev_op_leaf) { 4016 uint64_t commit_txg = txg; 4017 if (flags & ZIO_FLAG_SCAN_THREAD) { 4018 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4019 ASSERT(spa_sync_pass(spa) == 1); 4020 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4021 commit_txg = spa_syncing_txg(spa); 4022 } else if (spa->spa_claiming) { 4023 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4024 commit_txg = spa_first_txg(spa); 4025 } 4026 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4027 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4028 return; 4029 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4030 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4031 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4032 } 4033 if (vd != rvd) 4034 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4035 } 4036 } 4037 4038 int64_t 4039 vdev_deflated_space(vdev_t *vd, int64_t space) 4040 { 4041 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4042 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4043 4044 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4045 } 4046 4047 /* 4048 * Update the in-core space usage stats for this vdev, its metaslab class, 4049 * and the root vdev. 4050 */ 4051 void 4052 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4053 int64_t space_delta) 4054 { 4055 int64_t dspace_delta; 4056 spa_t *spa = vd->vdev_spa; 4057 vdev_t *rvd = spa->spa_root_vdev; 4058 4059 ASSERT(vd == vd->vdev_top); 4060 4061 /* 4062 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4063 * factor. We must calculate this here and not at the root vdev 4064 * because the root vdev's psize-to-asize is simply the max of its 4065 * childrens', thus not accurate enough for us. 4066 */ 4067 dspace_delta = vdev_deflated_space(vd, space_delta); 4068 4069 mutex_enter(&vd->vdev_stat_lock); 4070 /* ensure we won't underflow */ 4071 if (alloc_delta < 0) { 4072 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4073 } 4074 4075 vd->vdev_stat.vs_alloc += alloc_delta; 4076 vd->vdev_stat.vs_space += space_delta; 4077 vd->vdev_stat.vs_dspace += dspace_delta; 4078 mutex_exit(&vd->vdev_stat_lock); 4079 4080 /* every class but log contributes to root space stats */ 4081 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4082 ASSERT(!vd->vdev_isl2cache); 4083 mutex_enter(&rvd->vdev_stat_lock); 4084 rvd->vdev_stat.vs_alloc += alloc_delta; 4085 rvd->vdev_stat.vs_space += space_delta; 4086 rvd->vdev_stat.vs_dspace += dspace_delta; 4087 mutex_exit(&rvd->vdev_stat_lock); 4088 } 4089 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4090 } 4091 4092 /* 4093 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4094 * so that it will be written out next time the vdev configuration is synced. 4095 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4096 */ 4097 void 4098 vdev_config_dirty(vdev_t *vd) 4099 { 4100 spa_t *spa = vd->vdev_spa; 4101 vdev_t *rvd = spa->spa_root_vdev; 4102 int c; 4103 4104 ASSERT(spa_writeable(spa)); 4105 4106 /* 4107 * If this is an aux vdev (as with l2cache and spare devices), then we 4108 * update the vdev config manually and set the sync flag. 4109 */ 4110 if (vd->vdev_aux != NULL) { 4111 spa_aux_vdev_t *sav = vd->vdev_aux; 4112 nvlist_t **aux; 4113 uint_t naux; 4114 4115 for (c = 0; c < sav->sav_count; c++) { 4116 if (sav->sav_vdevs[c] == vd) 4117 break; 4118 } 4119 4120 if (c == sav->sav_count) { 4121 /* 4122 * We're being removed. There's nothing more to do. 4123 */ 4124 ASSERT(sav->sav_sync == B_TRUE); 4125 return; 4126 } 4127 4128 sav->sav_sync = B_TRUE; 4129 4130 if (nvlist_lookup_nvlist_array(sav->sav_config, 4131 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4132 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4133 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4134 } 4135 4136 ASSERT(c < naux); 4137 4138 /* 4139 * Setting the nvlist in the middle if the array is a little 4140 * sketchy, but it will work. 4141 */ 4142 nvlist_free(aux[c]); 4143 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4144 4145 return; 4146 } 4147 4148 /* 4149 * The dirty list is protected by the SCL_CONFIG lock. The caller 4150 * must either hold SCL_CONFIG as writer, or must be the sync thread 4151 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4152 * so this is sufficient to ensure mutual exclusion. 4153 */ 4154 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4155 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4156 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4157 4158 if (vd == rvd) { 4159 for (c = 0; c < rvd->vdev_children; c++) 4160 vdev_config_dirty(rvd->vdev_child[c]); 4161 } else { 4162 ASSERT(vd == vd->vdev_top); 4163 4164 if (!list_link_active(&vd->vdev_config_dirty_node) && 4165 vdev_is_concrete(vd)) { 4166 list_insert_head(&spa->spa_config_dirty_list, vd); 4167 } 4168 } 4169 } 4170 4171 void 4172 vdev_config_clean(vdev_t *vd) 4173 { 4174 spa_t *spa = vd->vdev_spa; 4175 4176 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4177 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4178 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4179 4180 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4181 list_remove(&spa->spa_config_dirty_list, vd); 4182 } 4183 4184 /* 4185 * Mark a top-level vdev's state as dirty, so that the next pass of 4186 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4187 * the state changes from larger config changes because they require 4188 * much less locking, and are often needed for administrative actions. 4189 */ 4190 void 4191 vdev_state_dirty(vdev_t *vd) 4192 { 4193 spa_t *spa = vd->vdev_spa; 4194 4195 ASSERT(spa_writeable(spa)); 4196 ASSERT(vd == vd->vdev_top); 4197 4198 /* 4199 * The state list is protected by the SCL_STATE lock. The caller 4200 * must either hold SCL_STATE as writer, or must be the sync thread 4201 * (which holds SCL_STATE as reader). There's only one sync thread, 4202 * so this is sufficient to ensure mutual exclusion. 4203 */ 4204 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4205 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4206 spa_config_held(spa, SCL_STATE, RW_READER))); 4207 4208 if (!list_link_active(&vd->vdev_state_dirty_node) && 4209 vdev_is_concrete(vd)) 4210 list_insert_head(&spa->spa_state_dirty_list, vd); 4211 } 4212 4213 void 4214 vdev_state_clean(vdev_t *vd) 4215 { 4216 spa_t *spa = vd->vdev_spa; 4217 4218 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4219 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4220 spa_config_held(spa, SCL_STATE, RW_READER))); 4221 4222 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4223 list_remove(&spa->spa_state_dirty_list, vd); 4224 } 4225 4226 /* 4227 * Propagate vdev state up from children to parent. 4228 */ 4229 void 4230 vdev_propagate_state(vdev_t *vd) 4231 { 4232 spa_t *spa = vd->vdev_spa; 4233 vdev_t *rvd = spa->spa_root_vdev; 4234 int degraded = 0, faulted = 0; 4235 int corrupted = 0; 4236 vdev_t *child; 4237 4238 if (vd->vdev_children > 0) { 4239 for (int c = 0; c < vd->vdev_children; c++) { 4240 child = vd->vdev_child[c]; 4241 4242 /* 4243 * Don't factor holes or indirect vdevs into the 4244 * decision. 4245 */ 4246 if (!vdev_is_concrete(child)) 4247 continue; 4248 4249 if (!vdev_readable(child) || 4250 (!vdev_writeable(child) && spa_writeable(spa))) { 4251 /* 4252 * Root special: if there is a top-level log 4253 * device, treat the root vdev as if it were 4254 * degraded. 4255 */ 4256 if (child->vdev_islog && vd == rvd) 4257 degraded++; 4258 else 4259 faulted++; 4260 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4261 degraded++; 4262 } 4263 4264 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4265 corrupted++; 4266 } 4267 4268 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4269 4270 /* 4271 * Root special: if there is a top-level vdev that cannot be 4272 * opened due to corrupted metadata, then propagate the root 4273 * vdev's aux state as 'corrupt' rather than 'insufficient 4274 * replicas'. 4275 */ 4276 if (corrupted && vd == rvd && 4277 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4278 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4279 VDEV_AUX_CORRUPT_DATA); 4280 } 4281 4282 if (vd->vdev_parent) 4283 vdev_propagate_state(vd->vdev_parent); 4284 } 4285 4286 /* 4287 * Set a vdev's state. If this is during an open, we don't update the parent 4288 * state, because we're in the process of opening children depth-first. 4289 * Otherwise, we propagate the change to the parent. 4290 * 4291 * If this routine places a device in a faulted state, an appropriate ereport is 4292 * generated. 4293 */ 4294 void 4295 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4296 { 4297 uint64_t save_state; 4298 spa_t *spa = vd->vdev_spa; 4299 4300 if (state == vd->vdev_state) { 4301 vd->vdev_stat.vs_aux = aux; 4302 return; 4303 } 4304 4305 save_state = vd->vdev_state; 4306 4307 vd->vdev_state = state; 4308 vd->vdev_stat.vs_aux = aux; 4309 4310 /* 4311 * If we are setting the vdev state to anything but an open state, then 4312 * always close the underlying device unless the device has requested 4313 * a delayed close (i.e. we're about to remove or fault the device). 4314 * Otherwise, we keep accessible but invalid devices open forever. 4315 * We don't call vdev_close() itself, because that implies some extra 4316 * checks (offline, etc) that we don't want here. This is limited to 4317 * leaf devices, because otherwise closing the device will affect other 4318 * children. 4319 */ 4320 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4321 vd->vdev_ops->vdev_op_leaf) 4322 vd->vdev_ops->vdev_op_close(vd); 4323 4324 /* 4325 * If we have brought this vdev back into service, we need 4326 * to notify fmd so that it can gracefully repair any outstanding 4327 * cases due to a missing device. We do this in all cases, even those 4328 * that probably don't correlate to a repaired fault. This is sure to 4329 * catch all cases, and we let the zfs-retire agent sort it out. If 4330 * this is a transient state it's OK, as the retire agent will 4331 * double-check the state of the vdev before repairing it. 4332 */ 4333 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4334 vd->vdev_prevstate != state) 4335 zfs_post_state_change(spa, vd); 4336 4337 if (vd->vdev_removed && 4338 state == VDEV_STATE_CANT_OPEN && 4339 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4340 /* 4341 * If the previous state is set to VDEV_STATE_REMOVED, then this 4342 * device was previously marked removed and someone attempted to 4343 * reopen it. If this failed due to a nonexistent device, then 4344 * keep the device in the REMOVED state. We also let this be if 4345 * it is one of our special test online cases, which is only 4346 * attempting to online the device and shouldn't generate an FMA 4347 * fault. 4348 */ 4349 vd->vdev_state = VDEV_STATE_REMOVED; 4350 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4351 } else if (state == VDEV_STATE_REMOVED) { 4352 vd->vdev_removed = B_TRUE; 4353 } else if (state == VDEV_STATE_CANT_OPEN) { 4354 /* 4355 * If we fail to open a vdev during an import or recovery, we 4356 * mark it as "not available", which signifies that it was 4357 * never there to begin with. Failure to open such a device 4358 * is not considered an error. 4359 */ 4360 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4361 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4362 vd->vdev_ops->vdev_op_leaf) 4363 vd->vdev_not_present = 1; 4364 4365 /* 4366 * Post the appropriate ereport. If the 'prevstate' field is 4367 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4368 * that this is part of a vdev_reopen(). In this case, we don't 4369 * want to post the ereport if the device was already in the 4370 * CANT_OPEN state beforehand. 4371 * 4372 * If the 'checkremove' flag is set, then this is an attempt to 4373 * online the device in response to an insertion event. If we 4374 * hit this case, then we have detected an insertion event for a 4375 * faulted or offline device that wasn't in the removed state. 4376 * In this scenario, we don't post an ereport because we are 4377 * about to replace the device, or attempt an online with 4378 * vdev_forcefault, which will generate the fault for us. 4379 */ 4380 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4381 !vd->vdev_not_present && !vd->vdev_checkremove && 4382 vd != spa->spa_root_vdev) { 4383 const char *class; 4384 4385 switch (aux) { 4386 case VDEV_AUX_OPEN_FAILED: 4387 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4388 break; 4389 case VDEV_AUX_CORRUPT_DATA: 4390 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4391 break; 4392 case VDEV_AUX_NO_REPLICAS: 4393 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4394 break; 4395 case VDEV_AUX_BAD_GUID_SUM: 4396 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4397 break; 4398 case VDEV_AUX_TOO_SMALL: 4399 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4400 break; 4401 case VDEV_AUX_BAD_LABEL: 4402 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4403 break; 4404 case VDEV_AUX_BAD_ASHIFT: 4405 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4406 break; 4407 default: 4408 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4409 } 4410 4411 zfs_ereport_post(class, spa, vd, NULL, NULL, 4412 save_state, 0); 4413 } 4414 4415 /* Erase any notion of persistent removed state */ 4416 vd->vdev_removed = B_FALSE; 4417 } else { 4418 vd->vdev_removed = B_FALSE; 4419 } 4420 4421 if (!isopen && vd->vdev_parent) 4422 vdev_propagate_state(vd->vdev_parent); 4423 } 4424 4425 boolean_t 4426 vdev_children_are_offline(vdev_t *vd) 4427 { 4428 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4429 4430 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4431 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4432 return (B_FALSE); 4433 } 4434 4435 return (B_TRUE); 4436 } 4437 4438 /* 4439 * Check the vdev configuration to ensure that it's capable of supporting 4440 * a root pool. We do not support partial configuration. 4441 */ 4442 boolean_t 4443 vdev_is_bootable(vdev_t *vd) 4444 { 4445 if (!vd->vdev_ops->vdev_op_leaf) { 4446 char *vdev_type = vd->vdev_ops->vdev_op_type; 4447 4448 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 4449 return (B_FALSE); 4450 } 4451 } 4452 4453 for (int c = 0; c < vd->vdev_children; c++) { 4454 if (!vdev_is_bootable(vd->vdev_child[c])) 4455 return (B_FALSE); 4456 } 4457 return (B_TRUE); 4458 } 4459 4460 boolean_t 4461 vdev_is_concrete(vdev_t *vd) 4462 { 4463 vdev_ops_t *ops = vd->vdev_ops; 4464 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4465 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4466 return (B_FALSE); 4467 } else { 4468 return (B_TRUE); 4469 } 4470 } 4471 4472 /* 4473 * Determine if a log device has valid content. If the vdev was 4474 * removed or faulted in the MOS config then we know that 4475 * the content on the log device has already been written to the pool. 4476 */ 4477 boolean_t 4478 vdev_log_state_valid(vdev_t *vd) 4479 { 4480 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4481 !vd->vdev_removed) 4482 return (B_TRUE); 4483 4484 for (int c = 0; c < vd->vdev_children; c++) 4485 if (vdev_log_state_valid(vd->vdev_child[c])) 4486 return (B_TRUE); 4487 4488 return (B_FALSE); 4489 } 4490 4491 /* 4492 * Expand a vdev if possible. 4493 */ 4494 void 4495 vdev_expand(vdev_t *vd, uint64_t txg) 4496 { 4497 ASSERT(vd->vdev_top == vd); 4498 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4499 ASSERT(vdev_is_concrete(vd)); 4500 4501 vdev_set_deflate_ratio(vd); 4502 4503 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4504 vdev_is_concrete(vd)) { 4505 vdev_metaslab_group_create(vd); 4506 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4507 vdev_config_dirty(vd); 4508 } 4509 } 4510 4511 /* 4512 * Split a vdev. 4513 */ 4514 void 4515 vdev_split(vdev_t *vd) 4516 { 4517 vdev_t *cvd, *pvd = vd->vdev_parent; 4518 4519 vdev_remove_child(pvd, vd); 4520 vdev_compact_children(pvd); 4521 4522 cvd = pvd->vdev_child[0]; 4523 if (pvd->vdev_children == 1) { 4524 vdev_remove_parent(cvd); 4525 cvd->vdev_splitting = B_TRUE; 4526 } 4527 vdev_propagate_state(cvd); 4528 } 4529 4530 void 4531 vdev_deadman(vdev_t *vd) 4532 { 4533 for (int c = 0; c < vd->vdev_children; c++) { 4534 vdev_t *cvd = vd->vdev_child[c]; 4535 4536 vdev_deadman(cvd); 4537 } 4538 4539 if (vd->vdev_ops->vdev_op_leaf) { 4540 vdev_queue_t *vq = &vd->vdev_queue; 4541 4542 mutex_enter(&vq->vq_lock); 4543 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4544 spa_t *spa = vd->vdev_spa; 4545 zio_t *fio; 4546 uint64_t delta; 4547 4548 /* 4549 * Look at the head of all the pending queues, 4550 * if any I/O has been outstanding for longer than 4551 * the spa_deadman_synctime we panic the system. 4552 */ 4553 fio = avl_first(&vq->vq_active_tree); 4554 delta = gethrtime() - fio->io_timestamp; 4555 if (delta > spa_deadman_synctime(spa)) { 4556 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4557 "%lluns, delta %lluns, last io %lluns", 4558 fio->io_timestamp, (u_longlong_t)delta, 4559 vq->vq_io_complete_ts); 4560 fm_panic("I/O to pool '%s' appears to be " 4561 "hung.", spa_name(spa)); 4562 } 4563 } 4564 mutex_exit(&vq->vq_lock); 4565 } 4566 } 4567 4568 void 4569 vdev_defer_resilver(vdev_t *vd) 4570 { 4571 ASSERT(vd->vdev_ops->vdev_op_leaf); 4572 4573 vd->vdev_resilver_deferred = B_TRUE; 4574 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 4575 } 4576 4577 /* 4578 * Clears the resilver deferred flag on all leaf devs under vd. Returns 4579 * B_TRUE if we have devices that need to be resilvered and are available to 4580 * accept resilver I/Os. 4581 */ 4582 boolean_t 4583 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 4584 { 4585 boolean_t resilver_needed = B_FALSE; 4586 spa_t *spa = vd->vdev_spa; 4587 4588 for (int c = 0; c < vd->vdev_children; c++) { 4589 vdev_t *cvd = vd->vdev_child[c]; 4590 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 4591 } 4592 4593 if (vd == spa->spa_root_vdev && 4594 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 4595 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4596 vdev_config_dirty(vd); 4597 spa->spa_resilver_deferred = B_FALSE; 4598 return (resilver_needed); 4599 } 4600 4601 if (!vdev_is_concrete(vd) || vd->vdev_aux || 4602 !vd->vdev_ops->vdev_op_leaf) 4603 return (resilver_needed); 4604 4605 vd->vdev_resilver_deferred = B_FALSE; 4606 4607 return (!vdev_is_dead(vd) && !vd->vdev_offline && 4608 vdev_resilver_needed(vd, NULL, NULL)); 4609 } 4610 4611 /* 4612 * Translate a logical range to the physical range for the specified vdev_t. 4613 * This function is initially called with a leaf vdev and will walk each 4614 * parent vdev until it reaches a top-level vdev. Once the top-level is 4615 * reached the physical range is initialized and the recursive function 4616 * begins to unwind. As it unwinds it calls the parent's vdev specific 4617 * translation function to do the real conversion. 4618 */ 4619 void 4620 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 4621 range_seg64_t *physical_rs) 4622 { 4623 /* 4624 * Walk up the vdev tree 4625 */ 4626 if (vd != vd->vdev_top) { 4627 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 4628 } else { 4629 /* 4630 * We've reached the top-level vdev, initialize the 4631 * physical range to the logical range and start to 4632 * unwind. 4633 */ 4634 physical_rs->rs_start = logical_rs->rs_start; 4635 physical_rs->rs_end = logical_rs->rs_end; 4636 return; 4637 } 4638 4639 vdev_t *pvd = vd->vdev_parent; 4640 ASSERT3P(pvd, !=, NULL); 4641 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 4642 4643 /* 4644 * As this recursive function unwinds, translate the logical 4645 * range into its physical components by calling the 4646 * vdev specific translate function. 4647 */ 4648 range_seg64_t intermediate = { 0 }; 4649 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 4650 4651 physical_rs->rs_start = intermediate.rs_start; 4652 physical_rs->rs_end = intermediate.rs_end; 4653 } 4654