xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 6aa4fc89ec1cf2cdf7d7c3b9ec059802ac9abe65)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 
47 /*
48  * Virtual device management.
49  */
50 
51 static vdev_ops_t *vdev_ops_table[] = {
52 	&vdev_root_ops,
53 	&vdev_raidz_ops,
54 	&vdev_mirror_ops,
55 	&vdev_replacing_ops,
56 	&vdev_spare_ops,
57 	&vdev_disk_ops,
58 	&vdev_file_ops,
59 	&vdev_missing_ops,
60 	&vdev_hole_ops,
61 	NULL
62 };
63 
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66 
67 /*
68  * When a vdev is added, it will be divided into approximately (but no
69  * more than) this number of metaslabs.
70  */
71 int metaslabs_per_vdev = 200;
72 
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79 	vdev_ops_t *ops, **opspp;
80 
81 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82 		if (strcmp(ops->vdev_op_type, type) == 0)
83 			break;
84 
85 	return (ops);
86 }
87 
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96 	uint64_t csize;
97 
98 	for (int c = 0; c < vd->vdev_children; c++) {
99 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 		asize = MAX(asize, csize);
101 	}
102 
103 	return (asize);
104 }
105 
106 /*
107  * Get the minimum allocatable size. We define the allocatable size as
108  * the vdev's asize rounded to the nearest metaslab. This allows us to
109  * replace or attach devices which don't have the same physical size but
110  * can still satisfy the same number of allocations.
111  */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 	vdev_t *pvd = vd->vdev_parent;
116 
117 	/*
118 	 * If our parent is NULL (inactive spare or cache) or is the root,
119 	 * just return our own asize.
120 	 */
121 	if (pvd == NULL)
122 		return (vd->vdev_asize);
123 
124 	/*
125 	 * The top-level vdev just returns the allocatable size rounded
126 	 * to the nearest metaslab.
127 	 */
128 	if (vd == vd->vdev_top)
129 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130 
131 	/*
132 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 	 * so each child must provide at least 1/Nth of its asize.
134 	 */
135 	if (pvd->vdev_ops == &vdev_raidz_ops)
136 		return (pvd->vdev_min_asize / pvd->vdev_children);
137 
138 	return (pvd->vdev_min_asize);
139 }
140 
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 	vd->vdev_min_asize = vdev_get_min_asize(vd);
145 
146 	for (int c = 0; c < vd->vdev_children; c++)
147 		vdev_set_min_asize(vd->vdev_child[c]);
148 }
149 
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 	vdev_t *rvd = spa->spa_root_vdev;
154 
155 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156 
157 	if (vdev < rvd->vdev_children) {
158 		ASSERT(rvd->vdev_child[vdev] != NULL);
159 		return (rvd->vdev_child[vdev]);
160 	}
161 
162 	return (NULL);
163 }
164 
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 	vdev_t *mvd;
169 
170 	if (vd->vdev_guid == guid)
171 		return (vd);
172 
173 	for (int c = 0; c < vd->vdev_children; c++)
174 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
175 		    NULL)
176 			return (mvd);
177 
178 	return (NULL);
179 }
180 
181 void
182 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
183 {
184 	size_t oldsize, newsize;
185 	uint64_t id = cvd->vdev_id;
186 	vdev_t **newchild;
187 
188 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
189 	ASSERT(cvd->vdev_parent == NULL);
190 
191 	cvd->vdev_parent = pvd;
192 
193 	if (pvd == NULL)
194 		return;
195 
196 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
197 
198 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
199 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
200 	newsize = pvd->vdev_children * sizeof (vdev_t *);
201 
202 	newchild = kmem_zalloc(newsize, KM_SLEEP);
203 	if (pvd->vdev_child != NULL) {
204 		bcopy(pvd->vdev_child, newchild, oldsize);
205 		kmem_free(pvd->vdev_child, oldsize);
206 	}
207 
208 	pvd->vdev_child = newchild;
209 	pvd->vdev_child[id] = cvd;
210 
211 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
212 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
213 
214 	/*
215 	 * Walk up all ancestors to update guid sum.
216 	 */
217 	for (; pvd != NULL; pvd = pvd->vdev_parent)
218 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
219 }
220 
221 void
222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
223 {
224 	int c;
225 	uint_t id = cvd->vdev_id;
226 
227 	ASSERT(cvd->vdev_parent == pvd);
228 
229 	if (pvd == NULL)
230 		return;
231 
232 	ASSERT(id < pvd->vdev_children);
233 	ASSERT(pvd->vdev_child[id] == cvd);
234 
235 	pvd->vdev_child[id] = NULL;
236 	cvd->vdev_parent = NULL;
237 
238 	for (c = 0; c < pvd->vdev_children; c++)
239 		if (pvd->vdev_child[c])
240 			break;
241 
242 	if (c == pvd->vdev_children) {
243 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
244 		pvd->vdev_child = NULL;
245 		pvd->vdev_children = 0;
246 	}
247 
248 	/*
249 	 * Walk up all ancestors to update guid sum.
250 	 */
251 	for (; pvd != NULL; pvd = pvd->vdev_parent)
252 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
253 }
254 
255 /*
256  * Remove any holes in the child array.
257  */
258 void
259 vdev_compact_children(vdev_t *pvd)
260 {
261 	vdev_t **newchild, *cvd;
262 	int oldc = pvd->vdev_children;
263 	int newc;
264 
265 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
266 
267 	for (int c = newc = 0; c < oldc; c++)
268 		if (pvd->vdev_child[c])
269 			newc++;
270 
271 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
272 
273 	for (int c = newc = 0; c < oldc; c++) {
274 		if ((cvd = pvd->vdev_child[c]) != NULL) {
275 			newchild[newc] = cvd;
276 			cvd->vdev_id = newc++;
277 		}
278 	}
279 
280 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
281 	pvd->vdev_child = newchild;
282 	pvd->vdev_children = newc;
283 }
284 
285 /*
286  * Allocate and minimally initialize a vdev_t.
287  */
288 vdev_t *
289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
290 {
291 	vdev_t *vd;
292 
293 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
294 
295 	if (spa->spa_root_vdev == NULL) {
296 		ASSERT(ops == &vdev_root_ops);
297 		spa->spa_root_vdev = vd;
298 		spa->spa_load_guid = spa_generate_guid(NULL);
299 	}
300 
301 	if (guid == 0 && ops != &vdev_hole_ops) {
302 		if (spa->spa_root_vdev == vd) {
303 			/*
304 			 * The root vdev's guid will also be the pool guid,
305 			 * which must be unique among all pools.
306 			 */
307 			guid = spa_generate_guid(NULL);
308 		} else {
309 			/*
310 			 * Any other vdev's guid must be unique within the pool.
311 			 */
312 			guid = spa_generate_guid(spa);
313 		}
314 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
315 	}
316 
317 	vd->vdev_spa = spa;
318 	vd->vdev_id = id;
319 	vd->vdev_guid = guid;
320 	vd->vdev_guid_sum = guid;
321 	vd->vdev_ops = ops;
322 	vd->vdev_state = VDEV_STATE_CLOSED;
323 	vd->vdev_ishole = (ops == &vdev_hole_ops);
324 
325 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
327 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
328 	for (int t = 0; t < DTL_TYPES; t++) {
329 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
330 		    &vd->vdev_dtl_lock);
331 	}
332 	txg_list_create(&vd->vdev_ms_list,
333 	    offsetof(struct metaslab, ms_txg_node));
334 	txg_list_create(&vd->vdev_dtl_list,
335 	    offsetof(struct vdev, vdev_dtl_node));
336 	vd->vdev_stat.vs_timestamp = gethrtime();
337 	vdev_queue_init(vd);
338 	vdev_cache_init(vd);
339 
340 	return (vd);
341 }
342 
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 int
349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
350     int alloctype)
351 {
352 	vdev_ops_t *ops;
353 	char *type;
354 	uint64_t guid = 0, islog, nparity;
355 	vdev_t *vd;
356 
357 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
358 
359 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
360 		return (SET_ERROR(EINVAL));
361 
362 	if ((ops = vdev_getops(type)) == NULL)
363 		return (SET_ERROR(EINVAL));
364 
365 	/*
366 	 * If this is a load, get the vdev guid from the nvlist.
367 	 * Otherwise, vdev_alloc_common() will generate one for us.
368 	 */
369 	if (alloctype == VDEV_ALLOC_LOAD) {
370 		uint64_t label_id;
371 
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
373 		    label_id != id)
374 			return (SET_ERROR(EINVAL));
375 
376 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 			return (SET_ERROR(EINVAL));
378 	} else if (alloctype == VDEV_ALLOC_SPARE) {
379 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 			return (SET_ERROR(EINVAL));
381 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
382 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 			return (SET_ERROR(EINVAL));
384 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
385 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
386 			return (SET_ERROR(EINVAL));
387 	}
388 
389 	/*
390 	 * The first allocated vdev must be of type 'root'.
391 	 */
392 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
393 		return (SET_ERROR(EINVAL));
394 
395 	/*
396 	 * Determine whether we're a log vdev.
397 	 */
398 	islog = 0;
399 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
400 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
401 		return (SET_ERROR(ENOTSUP));
402 
403 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
404 		return (SET_ERROR(ENOTSUP));
405 
406 	/*
407 	 * Set the nparity property for RAID-Z vdevs.
408 	 */
409 	nparity = -1ULL;
410 	if (ops == &vdev_raidz_ops) {
411 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
412 		    &nparity) == 0) {
413 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
414 				return (SET_ERROR(EINVAL));
415 			/*
416 			 * Previous versions could only support 1 or 2 parity
417 			 * device.
418 			 */
419 			if (nparity > 1 &&
420 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
421 				return (SET_ERROR(ENOTSUP));
422 			if (nparity > 2 &&
423 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
424 				return (SET_ERROR(ENOTSUP));
425 		} else {
426 			/*
427 			 * We require the parity to be specified for SPAs that
428 			 * support multiple parity levels.
429 			 */
430 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
431 				return (SET_ERROR(EINVAL));
432 			/*
433 			 * Otherwise, we default to 1 parity device for RAID-Z.
434 			 */
435 			nparity = 1;
436 		}
437 	} else {
438 		nparity = 0;
439 	}
440 	ASSERT(nparity != -1ULL);
441 
442 	vd = vdev_alloc_common(spa, id, guid, ops);
443 
444 	vd->vdev_islog = islog;
445 	vd->vdev_nparity = nparity;
446 
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
448 		vd->vdev_path = spa_strdup(vd->vdev_path);
449 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
450 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
451 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
452 	    &vd->vdev_physpath) == 0)
453 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
454 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
455 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
456 
457 	/*
458 	 * Set the whole_disk property.  If it's not specified, leave the value
459 	 * as -1.
460 	 */
461 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 	    &vd->vdev_wholedisk) != 0)
463 		vd->vdev_wholedisk = -1ULL;
464 
465 	/*
466 	 * Look for the 'not present' flag.  This will only be set if the device
467 	 * was not present at the time of import.
468 	 */
469 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
470 	    &vd->vdev_not_present);
471 
472 	/*
473 	 * Get the alignment requirement.
474 	 */
475 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
476 
477 	/*
478 	 * Retrieve the vdev creation time.
479 	 */
480 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
481 	    &vd->vdev_crtxg);
482 
483 	/*
484 	 * If we're a top-level vdev, try to load the allocation parameters.
485 	 */
486 	if (parent && !parent->vdev_parent &&
487 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 		    &vd->vdev_ms_array);
490 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 		    &vd->vdev_ms_shift);
492 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
493 		    &vd->vdev_asize);
494 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
495 		    &vd->vdev_removing);
496 	}
497 
498 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
499 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
500 		    alloctype == VDEV_ALLOC_ADD ||
501 		    alloctype == VDEV_ALLOC_SPLIT ||
502 		    alloctype == VDEV_ALLOC_ROOTPOOL);
503 		vd->vdev_mg = metaslab_group_create(islog ?
504 		    spa_log_class(spa) : spa_normal_class(spa), vd);
505 	}
506 
507 	/*
508 	 * If we're a leaf vdev, try to load the DTL object and other state.
509 	 */
510 	if (vd->vdev_ops->vdev_op_leaf &&
511 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
512 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
513 		if (alloctype == VDEV_ALLOC_LOAD) {
514 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
515 			    &vd->vdev_dtl_object);
516 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
517 			    &vd->vdev_unspare);
518 		}
519 
520 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
521 			uint64_t spare = 0;
522 
523 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
524 			    &spare) == 0 && spare)
525 				spa_spare_add(vd);
526 		}
527 
528 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
529 		    &vd->vdev_offline);
530 
531 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
532 		    &vd->vdev_resilver_txg);
533 
534 		/*
535 		 * When importing a pool, we want to ignore the persistent fault
536 		 * state, as the diagnosis made on another system may not be
537 		 * valid in the current context.  Local vdevs will
538 		 * remain in the faulted state.
539 		 */
540 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
541 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
542 			    &vd->vdev_faulted);
543 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
544 			    &vd->vdev_degraded);
545 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
546 			    &vd->vdev_removed);
547 
548 			if (vd->vdev_faulted || vd->vdev_degraded) {
549 				char *aux;
550 
551 				vd->vdev_label_aux =
552 				    VDEV_AUX_ERR_EXCEEDED;
553 				if (nvlist_lookup_string(nv,
554 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
555 				    strcmp(aux, "external") == 0)
556 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
557 			}
558 		}
559 	}
560 
561 	/*
562 	 * Add ourselves to the parent's list of children.
563 	 */
564 	vdev_add_child(parent, vd);
565 
566 	*vdp = vd;
567 
568 	return (0);
569 }
570 
571 void
572 vdev_free(vdev_t *vd)
573 {
574 	spa_t *spa = vd->vdev_spa;
575 
576 	/*
577 	 * vdev_free() implies closing the vdev first.  This is simpler than
578 	 * trying to ensure complicated semantics for all callers.
579 	 */
580 	vdev_close(vd);
581 
582 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
583 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
584 
585 	/*
586 	 * Free all children.
587 	 */
588 	for (int c = 0; c < vd->vdev_children; c++)
589 		vdev_free(vd->vdev_child[c]);
590 
591 	ASSERT(vd->vdev_child == NULL);
592 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
593 
594 	/*
595 	 * Discard allocation state.
596 	 */
597 	if (vd->vdev_mg != NULL) {
598 		vdev_metaslab_fini(vd);
599 		metaslab_group_destroy(vd->vdev_mg);
600 	}
601 
602 	ASSERT0(vd->vdev_stat.vs_space);
603 	ASSERT0(vd->vdev_stat.vs_dspace);
604 	ASSERT0(vd->vdev_stat.vs_alloc);
605 
606 	/*
607 	 * Remove this vdev from its parent's child list.
608 	 */
609 	vdev_remove_child(vd->vdev_parent, vd);
610 
611 	ASSERT(vd->vdev_parent == NULL);
612 
613 	/*
614 	 * Clean up vdev structure.
615 	 */
616 	vdev_queue_fini(vd);
617 	vdev_cache_fini(vd);
618 
619 	if (vd->vdev_path)
620 		spa_strfree(vd->vdev_path);
621 	if (vd->vdev_devid)
622 		spa_strfree(vd->vdev_devid);
623 	if (vd->vdev_physpath)
624 		spa_strfree(vd->vdev_physpath);
625 	if (vd->vdev_fru)
626 		spa_strfree(vd->vdev_fru);
627 
628 	if (vd->vdev_isspare)
629 		spa_spare_remove(vd);
630 	if (vd->vdev_isl2cache)
631 		spa_l2cache_remove(vd);
632 
633 	txg_list_destroy(&vd->vdev_ms_list);
634 	txg_list_destroy(&vd->vdev_dtl_list);
635 
636 	mutex_enter(&vd->vdev_dtl_lock);
637 	space_map_close(vd->vdev_dtl_sm);
638 	for (int t = 0; t < DTL_TYPES; t++) {
639 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
640 		range_tree_destroy(vd->vdev_dtl[t]);
641 	}
642 	mutex_exit(&vd->vdev_dtl_lock);
643 
644 	mutex_destroy(&vd->vdev_dtl_lock);
645 	mutex_destroy(&vd->vdev_stat_lock);
646 	mutex_destroy(&vd->vdev_probe_lock);
647 
648 	if (vd == spa->spa_root_vdev)
649 		spa->spa_root_vdev = NULL;
650 
651 	kmem_free(vd, sizeof (vdev_t));
652 }
653 
654 /*
655  * Transfer top-level vdev state from svd to tvd.
656  */
657 static void
658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
659 {
660 	spa_t *spa = svd->vdev_spa;
661 	metaslab_t *msp;
662 	vdev_t *vd;
663 	int t;
664 
665 	ASSERT(tvd == tvd->vdev_top);
666 
667 	tvd->vdev_ms_array = svd->vdev_ms_array;
668 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
669 	tvd->vdev_ms_count = svd->vdev_ms_count;
670 
671 	svd->vdev_ms_array = 0;
672 	svd->vdev_ms_shift = 0;
673 	svd->vdev_ms_count = 0;
674 
675 	if (tvd->vdev_mg)
676 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
677 	tvd->vdev_mg = svd->vdev_mg;
678 	tvd->vdev_ms = svd->vdev_ms;
679 
680 	svd->vdev_mg = NULL;
681 	svd->vdev_ms = NULL;
682 
683 	if (tvd->vdev_mg != NULL)
684 		tvd->vdev_mg->mg_vd = tvd;
685 
686 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
687 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
688 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
689 
690 	svd->vdev_stat.vs_alloc = 0;
691 	svd->vdev_stat.vs_space = 0;
692 	svd->vdev_stat.vs_dspace = 0;
693 
694 	for (t = 0; t < TXG_SIZE; t++) {
695 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
696 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
697 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
698 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
699 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
700 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
701 	}
702 
703 	if (list_link_active(&svd->vdev_config_dirty_node)) {
704 		vdev_config_clean(svd);
705 		vdev_config_dirty(tvd);
706 	}
707 
708 	if (list_link_active(&svd->vdev_state_dirty_node)) {
709 		vdev_state_clean(svd);
710 		vdev_state_dirty(tvd);
711 	}
712 
713 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
714 	svd->vdev_deflate_ratio = 0;
715 
716 	tvd->vdev_islog = svd->vdev_islog;
717 	svd->vdev_islog = 0;
718 }
719 
720 static void
721 vdev_top_update(vdev_t *tvd, vdev_t *vd)
722 {
723 	if (vd == NULL)
724 		return;
725 
726 	vd->vdev_top = tvd;
727 
728 	for (int c = 0; c < vd->vdev_children; c++)
729 		vdev_top_update(tvd, vd->vdev_child[c]);
730 }
731 
732 /*
733  * Add a mirror/replacing vdev above an existing vdev.
734  */
735 vdev_t *
736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737 {
738 	spa_t *spa = cvd->vdev_spa;
739 	vdev_t *pvd = cvd->vdev_parent;
740 	vdev_t *mvd;
741 
742 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743 
744 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745 
746 	mvd->vdev_asize = cvd->vdev_asize;
747 	mvd->vdev_min_asize = cvd->vdev_min_asize;
748 	mvd->vdev_max_asize = cvd->vdev_max_asize;
749 	mvd->vdev_ashift = cvd->vdev_ashift;
750 	mvd->vdev_state = cvd->vdev_state;
751 	mvd->vdev_crtxg = cvd->vdev_crtxg;
752 
753 	vdev_remove_child(pvd, cvd);
754 	vdev_add_child(pvd, mvd);
755 	cvd->vdev_id = mvd->vdev_children;
756 	vdev_add_child(mvd, cvd);
757 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758 
759 	if (mvd == mvd->vdev_top)
760 		vdev_top_transfer(cvd, mvd);
761 
762 	return (mvd);
763 }
764 
765 /*
766  * Remove a 1-way mirror/replacing vdev from the tree.
767  */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771 	vdev_t *mvd = cvd->vdev_parent;
772 	vdev_t *pvd = mvd->vdev_parent;
773 
774 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775 
776 	ASSERT(mvd->vdev_children == 1);
777 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778 	    mvd->vdev_ops == &vdev_replacing_ops ||
779 	    mvd->vdev_ops == &vdev_spare_ops);
780 	cvd->vdev_ashift = mvd->vdev_ashift;
781 
782 	vdev_remove_child(mvd, cvd);
783 	vdev_remove_child(pvd, mvd);
784 
785 	/*
786 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787 	 * Otherwise, we could have detached an offline device, and when we
788 	 * go to import the pool we'll think we have two top-level vdevs,
789 	 * instead of a different version of the same top-level vdev.
790 	 */
791 	if (mvd->vdev_top == mvd) {
792 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793 		cvd->vdev_orig_guid = cvd->vdev_guid;
794 		cvd->vdev_guid += guid_delta;
795 		cvd->vdev_guid_sum += guid_delta;
796 	}
797 	cvd->vdev_id = mvd->vdev_id;
798 	vdev_add_child(pvd, cvd);
799 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800 
801 	if (cvd == cvd->vdev_top)
802 		vdev_top_transfer(mvd, cvd);
803 
804 	ASSERT(mvd->vdev_children == 0);
805 	vdev_free(mvd);
806 }
807 
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811 	spa_t *spa = vd->vdev_spa;
812 	objset_t *mos = spa->spa_meta_objset;
813 	uint64_t m;
814 	uint64_t oldc = vd->vdev_ms_count;
815 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816 	metaslab_t **mspp;
817 	int error;
818 
819 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820 
821 	/*
822 	 * This vdev is not being allocated from yet or is a hole.
823 	 */
824 	if (vd->vdev_ms_shift == 0)
825 		return (0);
826 
827 	ASSERT(!vd->vdev_ishole);
828 
829 	/*
830 	 * Compute the raidz-deflation ratio.  Note, we hard-code
831 	 * in 128k (1 << 17) because it is the "typical" blocksize.
832 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
833 	 * otherwise it would inconsistently account for existing bp's.
834 	 */
835 	vd->vdev_deflate_ratio = (1 << 17) /
836 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837 
838 	ASSERT(oldc <= newc);
839 
840 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
841 
842 	if (oldc != 0) {
843 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845 	}
846 
847 	vd->vdev_ms = mspp;
848 	vd->vdev_ms_count = newc;
849 
850 	for (m = oldc; m < newc; m++) {
851 		uint64_t object = 0;
852 
853 		if (txg == 0) {
854 			error = dmu_read(mos, vd->vdev_ms_array,
855 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
856 			    DMU_READ_PREFETCH);
857 			if (error)
858 				return (error);
859 		}
860 
861 		error = metaslab_init(vd->vdev_mg, m, object, txg,
862 		    &(vd->vdev_ms[m]));
863 		if (error)
864 			return (error);
865 	}
866 
867 	if (txg == 0)
868 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
869 
870 	/*
871 	 * If the vdev is being removed we don't activate
872 	 * the metaslabs since we want to ensure that no new
873 	 * allocations are performed on this device.
874 	 */
875 	if (oldc == 0 && !vd->vdev_removing)
876 		metaslab_group_activate(vd->vdev_mg);
877 
878 	if (txg == 0)
879 		spa_config_exit(spa, SCL_ALLOC, FTAG);
880 
881 	return (0);
882 }
883 
884 void
885 vdev_metaslab_fini(vdev_t *vd)
886 {
887 	uint64_t m;
888 	uint64_t count = vd->vdev_ms_count;
889 
890 	if (vd->vdev_ms != NULL) {
891 		metaslab_group_passivate(vd->vdev_mg);
892 		for (m = 0; m < count; m++) {
893 			metaslab_t *msp = vd->vdev_ms[m];
894 
895 			if (msp != NULL)
896 				metaslab_fini(msp);
897 		}
898 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
899 		vd->vdev_ms = NULL;
900 	}
901 }
902 
903 typedef struct vdev_probe_stats {
904 	boolean_t	vps_readable;
905 	boolean_t	vps_writeable;
906 	int		vps_flags;
907 } vdev_probe_stats_t;
908 
909 static void
910 vdev_probe_done(zio_t *zio)
911 {
912 	spa_t *spa = zio->io_spa;
913 	vdev_t *vd = zio->io_vd;
914 	vdev_probe_stats_t *vps = zio->io_private;
915 
916 	ASSERT(vd->vdev_probe_zio != NULL);
917 
918 	if (zio->io_type == ZIO_TYPE_READ) {
919 		if (zio->io_error == 0)
920 			vps->vps_readable = 1;
921 		if (zio->io_error == 0 && spa_writeable(spa)) {
922 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
923 			    zio->io_offset, zio->io_size, zio->io_data,
924 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
925 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
926 		} else {
927 			zio_buf_free(zio->io_data, zio->io_size);
928 		}
929 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
930 		if (zio->io_error == 0)
931 			vps->vps_writeable = 1;
932 		zio_buf_free(zio->io_data, zio->io_size);
933 	} else if (zio->io_type == ZIO_TYPE_NULL) {
934 		zio_t *pio;
935 
936 		vd->vdev_cant_read |= !vps->vps_readable;
937 		vd->vdev_cant_write |= !vps->vps_writeable;
938 
939 		if (vdev_readable(vd) &&
940 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
941 			zio->io_error = 0;
942 		} else {
943 			ASSERT(zio->io_error != 0);
944 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
945 			    spa, vd, NULL, 0, 0);
946 			zio->io_error = SET_ERROR(ENXIO);
947 		}
948 
949 		mutex_enter(&vd->vdev_probe_lock);
950 		ASSERT(vd->vdev_probe_zio == zio);
951 		vd->vdev_probe_zio = NULL;
952 		mutex_exit(&vd->vdev_probe_lock);
953 
954 		while ((pio = zio_walk_parents(zio)) != NULL)
955 			if (!vdev_accessible(vd, pio))
956 				pio->io_error = SET_ERROR(ENXIO);
957 
958 		kmem_free(vps, sizeof (*vps));
959 	}
960 }
961 
962 /*
963  * Determine whether this device is accessible.
964  *
965  * Read and write to several known locations: the pad regions of each
966  * vdev label but the first, which we leave alone in case it contains
967  * a VTOC.
968  */
969 zio_t *
970 vdev_probe(vdev_t *vd, zio_t *zio)
971 {
972 	spa_t *spa = vd->vdev_spa;
973 	vdev_probe_stats_t *vps = NULL;
974 	zio_t *pio;
975 
976 	ASSERT(vd->vdev_ops->vdev_op_leaf);
977 
978 	/*
979 	 * Don't probe the probe.
980 	 */
981 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
982 		return (NULL);
983 
984 	/*
985 	 * To prevent 'probe storms' when a device fails, we create
986 	 * just one probe i/o at a time.  All zios that want to probe
987 	 * this vdev will become parents of the probe io.
988 	 */
989 	mutex_enter(&vd->vdev_probe_lock);
990 
991 	if ((pio = vd->vdev_probe_zio) == NULL) {
992 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
993 
994 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
995 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
996 		    ZIO_FLAG_TRYHARD;
997 
998 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
999 			/*
1000 			 * vdev_cant_read and vdev_cant_write can only
1001 			 * transition from TRUE to FALSE when we have the
1002 			 * SCL_ZIO lock as writer; otherwise they can only
1003 			 * transition from FALSE to TRUE.  This ensures that
1004 			 * any zio looking at these values can assume that
1005 			 * failures persist for the life of the I/O.  That's
1006 			 * important because when a device has intermittent
1007 			 * connectivity problems, we want to ensure that
1008 			 * they're ascribed to the device (ENXIO) and not
1009 			 * the zio (EIO).
1010 			 *
1011 			 * Since we hold SCL_ZIO as writer here, clear both
1012 			 * values so the probe can reevaluate from first
1013 			 * principles.
1014 			 */
1015 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1016 			vd->vdev_cant_read = B_FALSE;
1017 			vd->vdev_cant_write = B_FALSE;
1018 		}
1019 
1020 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1021 		    vdev_probe_done, vps,
1022 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1023 
1024 		/*
1025 		 * We can't change the vdev state in this context, so we
1026 		 * kick off an async task to do it on our behalf.
1027 		 */
1028 		if (zio != NULL) {
1029 			vd->vdev_probe_wanted = B_TRUE;
1030 			spa_async_request(spa, SPA_ASYNC_PROBE);
1031 		}
1032 	}
1033 
1034 	if (zio != NULL)
1035 		zio_add_child(zio, pio);
1036 
1037 	mutex_exit(&vd->vdev_probe_lock);
1038 
1039 	if (vps == NULL) {
1040 		ASSERT(zio != NULL);
1041 		return (NULL);
1042 	}
1043 
1044 	for (int l = 1; l < VDEV_LABELS; l++) {
1045 		zio_nowait(zio_read_phys(pio, vd,
1046 		    vdev_label_offset(vd->vdev_psize, l,
1047 		    offsetof(vdev_label_t, vl_pad2)),
1048 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1049 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1050 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1051 	}
1052 
1053 	if (zio == NULL)
1054 		return (pio);
1055 
1056 	zio_nowait(pio);
1057 	return (NULL);
1058 }
1059 
1060 static void
1061 vdev_open_child(void *arg)
1062 {
1063 	vdev_t *vd = arg;
1064 
1065 	vd->vdev_open_thread = curthread;
1066 	vd->vdev_open_error = vdev_open(vd);
1067 	vd->vdev_open_thread = NULL;
1068 }
1069 
1070 boolean_t
1071 vdev_uses_zvols(vdev_t *vd)
1072 {
1073 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1074 	    strlen(ZVOL_DIR)) == 0)
1075 		return (B_TRUE);
1076 	for (int c = 0; c < vd->vdev_children; c++)
1077 		if (vdev_uses_zvols(vd->vdev_child[c]))
1078 			return (B_TRUE);
1079 	return (B_FALSE);
1080 }
1081 
1082 void
1083 vdev_open_children(vdev_t *vd)
1084 {
1085 	taskq_t *tq;
1086 	int children = vd->vdev_children;
1087 
1088 	/*
1089 	 * in order to handle pools on top of zvols, do the opens
1090 	 * in a single thread so that the same thread holds the
1091 	 * spa_namespace_lock
1092 	 */
1093 	if (vdev_uses_zvols(vd)) {
1094 		for (int c = 0; c < children; c++)
1095 			vd->vdev_child[c]->vdev_open_error =
1096 			    vdev_open(vd->vdev_child[c]);
1097 		return;
1098 	}
1099 	tq = taskq_create("vdev_open", children, minclsyspri,
1100 	    children, children, TASKQ_PREPOPULATE);
1101 
1102 	for (int c = 0; c < children; c++)
1103 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1104 		    TQ_SLEEP) != NULL);
1105 
1106 	taskq_destroy(tq);
1107 }
1108 
1109 /*
1110  * Prepare a virtual device for access.
1111  */
1112 int
1113 vdev_open(vdev_t *vd)
1114 {
1115 	spa_t *spa = vd->vdev_spa;
1116 	int error;
1117 	uint64_t osize = 0;
1118 	uint64_t max_osize = 0;
1119 	uint64_t asize, max_asize, psize;
1120 	uint64_t ashift = 0;
1121 
1122 	ASSERT(vd->vdev_open_thread == curthread ||
1123 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1124 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1125 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1126 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1127 
1128 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1129 	vd->vdev_cant_read = B_FALSE;
1130 	vd->vdev_cant_write = B_FALSE;
1131 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1132 
1133 	/*
1134 	 * If this vdev is not removed, check its fault status.  If it's
1135 	 * faulted, bail out of the open.
1136 	 */
1137 	if (!vd->vdev_removed && vd->vdev_faulted) {
1138 		ASSERT(vd->vdev_children == 0);
1139 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1140 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1141 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1142 		    vd->vdev_label_aux);
1143 		return (SET_ERROR(ENXIO));
1144 	} else if (vd->vdev_offline) {
1145 		ASSERT(vd->vdev_children == 0);
1146 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1147 		return (SET_ERROR(ENXIO));
1148 	}
1149 
1150 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1151 
1152 	/*
1153 	 * Reset the vdev_reopening flag so that we actually close
1154 	 * the vdev on error.
1155 	 */
1156 	vd->vdev_reopening = B_FALSE;
1157 	if (zio_injection_enabled && error == 0)
1158 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1159 
1160 	if (error) {
1161 		if (vd->vdev_removed &&
1162 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1163 			vd->vdev_removed = B_FALSE;
1164 
1165 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1166 		    vd->vdev_stat.vs_aux);
1167 		return (error);
1168 	}
1169 
1170 	vd->vdev_removed = B_FALSE;
1171 
1172 	/*
1173 	 * Recheck the faulted flag now that we have confirmed that
1174 	 * the vdev is accessible.  If we're faulted, bail.
1175 	 */
1176 	if (vd->vdev_faulted) {
1177 		ASSERT(vd->vdev_children == 0);
1178 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1179 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1180 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1181 		    vd->vdev_label_aux);
1182 		return (SET_ERROR(ENXIO));
1183 	}
1184 
1185 	if (vd->vdev_degraded) {
1186 		ASSERT(vd->vdev_children == 0);
1187 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1188 		    VDEV_AUX_ERR_EXCEEDED);
1189 	} else {
1190 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1191 	}
1192 
1193 	/*
1194 	 * For hole or missing vdevs we just return success.
1195 	 */
1196 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1197 		return (0);
1198 
1199 	for (int c = 0; c < vd->vdev_children; c++) {
1200 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1201 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202 			    VDEV_AUX_NONE);
1203 			break;
1204 		}
1205 	}
1206 
1207 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1208 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1209 
1210 	if (vd->vdev_children == 0) {
1211 		if (osize < SPA_MINDEVSIZE) {
1212 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1213 			    VDEV_AUX_TOO_SMALL);
1214 			return (SET_ERROR(EOVERFLOW));
1215 		}
1216 		psize = osize;
1217 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1218 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1219 		    VDEV_LABEL_END_SIZE);
1220 	} else {
1221 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1222 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1223 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224 			    VDEV_AUX_TOO_SMALL);
1225 			return (SET_ERROR(EOVERFLOW));
1226 		}
1227 		psize = 0;
1228 		asize = osize;
1229 		max_asize = max_osize;
1230 	}
1231 
1232 	vd->vdev_psize = psize;
1233 
1234 	/*
1235 	 * Make sure the allocatable size hasn't shrunk.
1236 	 */
1237 	if (asize < vd->vdev_min_asize) {
1238 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1239 		    VDEV_AUX_BAD_LABEL);
1240 		return (SET_ERROR(EINVAL));
1241 	}
1242 
1243 	if (vd->vdev_asize == 0) {
1244 		/*
1245 		 * This is the first-ever open, so use the computed values.
1246 		 * For testing purposes, a higher ashift can be requested.
1247 		 */
1248 		vd->vdev_asize = asize;
1249 		vd->vdev_max_asize = max_asize;
1250 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1251 	} else {
1252 		/*
1253 		 * Detect if the alignment requirement has increased.
1254 		 * We don't want to make the pool unavailable, just
1255 		 * issue a warning instead.
1256 		 */
1257 		if (ashift > vd->vdev_top->vdev_ashift &&
1258 		    vd->vdev_ops->vdev_op_leaf) {
1259 			cmn_err(CE_WARN,
1260 			    "Disk, '%s', has a block alignment that is "
1261 			    "larger than the pool's alignment\n",
1262 			    vd->vdev_path);
1263 		}
1264 		vd->vdev_max_asize = max_asize;
1265 	}
1266 
1267 	/*
1268 	 * If all children are healthy and the asize has increased,
1269 	 * then we've experienced dynamic LUN growth.  If automatic
1270 	 * expansion is enabled then use the additional space.
1271 	 */
1272 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1273 	    (vd->vdev_expanding || spa->spa_autoexpand))
1274 		vd->vdev_asize = asize;
1275 
1276 	vdev_set_min_asize(vd);
1277 
1278 	/*
1279 	 * Ensure we can issue some IO before declaring the
1280 	 * vdev open for business.
1281 	 */
1282 	if (vd->vdev_ops->vdev_op_leaf &&
1283 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1284 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1285 		    VDEV_AUX_ERR_EXCEEDED);
1286 		return (error);
1287 	}
1288 
1289 	/*
1290 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1291 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1292 	 * since this would just restart the scrub we are already doing.
1293 	 */
1294 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1295 	    vdev_resilver_needed(vd, NULL, NULL))
1296 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1297 
1298 	return (0);
1299 }
1300 
1301 /*
1302  * Called once the vdevs are all opened, this routine validates the label
1303  * contents.  This needs to be done before vdev_load() so that we don't
1304  * inadvertently do repair I/Os to the wrong device.
1305  *
1306  * If 'strict' is false ignore the spa guid check. This is necessary because
1307  * if the machine crashed during a re-guid the new guid might have been written
1308  * to all of the vdev labels, but not the cached config. The strict check
1309  * will be performed when the pool is opened again using the mos config.
1310  *
1311  * This function will only return failure if one of the vdevs indicates that it
1312  * has since been destroyed or exported.  This is only possible if
1313  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1314  * will be updated but the function will return 0.
1315  */
1316 int
1317 vdev_validate(vdev_t *vd, boolean_t strict)
1318 {
1319 	spa_t *spa = vd->vdev_spa;
1320 	nvlist_t *label;
1321 	uint64_t guid = 0, top_guid;
1322 	uint64_t state;
1323 
1324 	for (int c = 0; c < vd->vdev_children; c++)
1325 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1326 			return (SET_ERROR(EBADF));
1327 
1328 	/*
1329 	 * If the device has already failed, or was marked offline, don't do
1330 	 * any further validation.  Otherwise, label I/O will fail and we will
1331 	 * overwrite the previous state.
1332 	 */
1333 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1334 		uint64_t aux_guid = 0;
1335 		nvlist_t *nvl;
1336 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1337 		    spa_last_synced_txg(spa) : -1ULL;
1338 
1339 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1340 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1341 			    VDEV_AUX_BAD_LABEL);
1342 			return (0);
1343 		}
1344 
1345 		/*
1346 		 * Determine if this vdev has been split off into another
1347 		 * pool.  If so, then refuse to open it.
1348 		 */
1349 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1350 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1351 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1352 			    VDEV_AUX_SPLIT_POOL);
1353 			nvlist_free(label);
1354 			return (0);
1355 		}
1356 
1357 		if (strict && (nvlist_lookup_uint64(label,
1358 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1359 		    guid != spa_guid(spa))) {
1360 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1361 			    VDEV_AUX_CORRUPT_DATA);
1362 			nvlist_free(label);
1363 			return (0);
1364 		}
1365 
1366 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1367 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1368 		    &aux_guid) != 0)
1369 			aux_guid = 0;
1370 
1371 		/*
1372 		 * If this vdev just became a top-level vdev because its
1373 		 * sibling was detached, it will have adopted the parent's
1374 		 * vdev guid -- but the label may or may not be on disk yet.
1375 		 * Fortunately, either version of the label will have the
1376 		 * same top guid, so if we're a top-level vdev, we can
1377 		 * safely compare to that instead.
1378 		 *
1379 		 * If we split this vdev off instead, then we also check the
1380 		 * original pool's guid.  We don't want to consider the vdev
1381 		 * corrupt if it is partway through a split operation.
1382 		 */
1383 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1384 		    &guid) != 0 ||
1385 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1386 		    &top_guid) != 0 ||
1387 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1388 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1389 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1390 			    VDEV_AUX_CORRUPT_DATA);
1391 			nvlist_free(label);
1392 			return (0);
1393 		}
1394 
1395 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1396 		    &state) != 0) {
1397 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1398 			    VDEV_AUX_CORRUPT_DATA);
1399 			nvlist_free(label);
1400 			return (0);
1401 		}
1402 
1403 		nvlist_free(label);
1404 
1405 		/*
1406 		 * If this is a verbatim import, no need to check the
1407 		 * state of the pool.
1408 		 */
1409 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1410 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1411 		    state != POOL_STATE_ACTIVE)
1412 			return (SET_ERROR(EBADF));
1413 
1414 		/*
1415 		 * If we were able to open and validate a vdev that was
1416 		 * previously marked permanently unavailable, clear that state
1417 		 * now.
1418 		 */
1419 		if (vd->vdev_not_present)
1420 			vd->vdev_not_present = 0;
1421 	}
1422 
1423 	return (0);
1424 }
1425 
1426 /*
1427  * Close a virtual device.
1428  */
1429 void
1430 vdev_close(vdev_t *vd)
1431 {
1432 	spa_t *spa = vd->vdev_spa;
1433 	vdev_t *pvd = vd->vdev_parent;
1434 
1435 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1436 
1437 	/*
1438 	 * If our parent is reopening, then we are as well, unless we are
1439 	 * going offline.
1440 	 */
1441 	if (pvd != NULL && pvd->vdev_reopening)
1442 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1443 
1444 	vd->vdev_ops->vdev_op_close(vd);
1445 
1446 	vdev_cache_purge(vd);
1447 
1448 	/*
1449 	 * We record the previous state before we close it, so that if we are
1450 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1451 	 * it's still faulted.
1452 	 */
1453 	vd->vdev_prevstate = vd->vdev_state;
1454 
1455 	if (vd->vdev_offline)
1456 		vd->vdev_state = VDEV_STATE_OFFLINE;
1457 	else
1458 		vd->vdev_state = VDEV_STATE_CLOSED;
1459 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1460 }
1461 
1462 void
1463 vdev_hold(vdev_t *vd)
1464 {
1465 	spa_t *spa = vd->vdev_spa;
1466 
1467 	ASSERT(spa_is_root(spa));
1468 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1469 		return;
1470 
1471 	for (int c = 0; c < vd->vdev_children; c++)
1472 		vdev_hold(vd->vdev_child[c]);
1473 
1474 	if (vd->vdev_ops->vdev_op_leaf)
1475 		vd->vdev_ops->vdev_op_hold(vd);
1476 }
1477 
1478 void
1479 vdev_rele(vdev_t *vd)
1480 {
1481 	spa_t *spa = vd->vdev_spa;
1482 
1483 	ASSERT(spa_is_root(spa));
1484 	for (int c = 0; c < vd->vdev_children; c++)
1485 		vdev_rele(vd->vdev_child[c]);
1486 
1487 	if (vd->vdev_ops->vdev_op_leaf)
1488 		vd->vdev_ops->vdev_op_rele(vd);
1489 }
1490 
1491 /*
1492  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1493  * reopen leaf vdevs which had previously been opened as they might deadlock
1494  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1495  * If the leaf has never been opened then open it, as usual.
1496  */
1497 void
1498 vdev_reopen(vdev_t *vd)
1499 {
1500 	spa_t *spa = vd->vdev_spa;
1501 
1502 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1503 
1504 	/* set the reopening flag unless we're taking the vdev offline */
1505 	vd->vdev_reopening = !vd->vdev_offline;
1506 	vdev_close(vd);
1507 	(void) vdev_open(vd);
1508 
1509 	/*
1510 	 * Call vdev_validate() here to make sure we have the same device.
1511 	 * Otherwise, a device with an invalid label could be successfully
1512 	 * opened in response to vdev_reopen().
1513 	 */
1514 	if (vd->vdev_aux) {
1515 		(void) vdev_validate_aux(vd);
1516 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1517 		    vd->vdev_aux == &spa->spa_l2cache &&
1518 		    !l2arc_vdev_present(vd))
1519 			l2arc_add_vdev(spa, vd);
1520 	} else {
1521 		(void) vdev_validate(vd, B_TRUE);
1522 	}
1523 
1524 	/*
1525 	 * Reassess parent vdev's health.
1526 	 */
1527 	vdev_propagate_state(vd);
1528 }
1529 
1530 int
1531 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1532 {
1533 	int error;
1534 
1535 	/*
1536 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1537 	 * For a create, however, we want to fail the request if
1538 	 * there are any components we can't open.
1539 	 */
1540 	error = vdev_open(vd);
1541 
1542 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1543 		vdev_close(vd);
1544 		return (error ? error : ENXIO);
1545 	}
1546 
1547 	/*
1548 	 * Recursively load DTLs and initialize all labels.
1549 	 */
1550 	if ((error = vdev_dtl_load(vd)) != 0 ||
1551 	    (error = vdev_label_init(vd, txg, isreplacing ?
1552 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1553 		vdev_close(vd);
1554 		return (error);
1555 	}
1556 
1557 	return (0);
1558 }
1559 
1560 void
1561 vdev_metaslab_set_size(vdev_t *vd)
1562 {
1563 	/*
1564 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1565 	 */
1566 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1567 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1568 }
1569 
1570 void
1571 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1572 {
1573 	ASSERT(vd == vd->vdev_top);
1574 	ASSERT(!vd->vdev_ishole);
1575 	ASSERT(ISP2(flags));
1576 	ASSERT(spa_writeable(vd->vdev_spa));
1577 
1578 	if (flags & VDD_METASLAB)
1579 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1580 
1581 	if (flags & VDD_DTL)
1582 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1583 
1584 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1585 }
1586 
1587 void
1588 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1589 {
1590 	for (int c = 0; c < vd->vdev_children; c++)
1591 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1592 
1593 	if (vd->vdev_ops->vdev_op_leaf)
1594 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1595 }
1596 
1597 /*
1598  * DTLs.
1599  *
1600  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1601  * the vdev has less than perfect replication.  There are four kinds of DTL:
1602  *
1603  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1604  *
1605  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1606  *
1607  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1608  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1609  *	txgs that was scrubbed.
1610  *
1611  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1612  *	persistent errors or just some device being offline.
1613  *	Unlike the other three, the DTL_OUTAGE map is not generally
1614  *	maintained; it's only computed when needed, typically to
1615  *	determine whether a device can be detached.
1616  *
1617  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1618  * either has the data or it doesn't.
1619  *
1620  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1621  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1622  * if any child is less than fully replicated, then so is its parent.
1623  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1624  * comprising only those txgs which appear in 'maxfaults' or more children;
1625  * those are the txgs we don't have enough replication to read.  For example,
1626  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1627  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1628  * two child DTL_MISSING maps.
1629  *
1630  * It should be clear from the above that to compute the DTLs and outage maps
1631  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1632  * Therefore, that is all we keep on disk.  When loading the pool, or after
1633  * a configuration change, we generate all other DTLs from first principles.
1634  */
1635 void
1636 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1637 {
1638 	range_tree_t *rt = vd->vdev_dtl[t];
1639 
1640 	ASSERT(t < DTL_TYPES);
1641 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1642 	ASSERT(spa_writeable(vd->vdev_spa));
1643 
1644 	mutex_enter(rt->rt_lock);
1645 	if (!range_tree_contains(rt, txg, size))
1646 		range_tree_add(rt, txg, size);
1647 	mutex_exit(rt->rt_lock);
1648 }
1649 
1650 boolean_t
1651 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1652 {
1653 	range_tree_t *rt = vd->vdev_dtl[t];
1654 	boolean_t dirty = B_FALSE;
1655 
1656 	ASSERT(t < DTL_TYPES);
1657 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1658 
1659 	mutex_enter(rt->rt_lock);
1660 	if (range_tree_space(rt) != 0)
1661 		dirty = range_tree_contains(rt, txg, size);
1662 	mutex_exit(rt->rt_lock);
1663 
1664 	return (dirty);
1665 }
1666 
1667 boolean_t
1668 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1669 {
1670 	range_tree_t *rt = vd->vdev_dtl[t];
1671 	boolean_t empty;
1672 
1673 	mutex_enter(rt->rt_lock);
1674 	empty = (range_tree_space(rt) == 0);
1675 	mutex_exit(rt->rt_lock);
1676 
1677 	return (empty);
1678 }
1679 
1680 /*
1681  * Returns the lowest txg in the DTL range.
1682  */
1683 static uint64_t
1684 vdev_dtl_min(vdev_t *vd)
1685 {
1686 	range_seg_t *rs;
1687 
1688 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1689 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1690 	ASSERT0(vd->vdev_children);
1691 
1692 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1693 	return (rs->rs_start - 1);
1694 }
1695 
1696 /*
1697  * Returns the highest txg in the DTL.
1698  */
1699 static uint64_t
1700 vdev_dtl_max(vdev_t *vd)
1701 {
1702 	range_seg_t *rs;
1703 
1704 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1705 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1706 	ASSERT0(vd->vdev_children);
1707 
1708 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1709 	return (rs->rs_end);
1710 }
1711 
1712 /*
1713  * Determine if a resilvering vdev should remove any DTL entries from
1714  * its range. If the vdev was resilvering for the entire duration of the
1715  * scan then it should excise that range from its DTLs. Otherwise, this
1716  * vdev is considered partially resilvered and should leave its DTL
1717  * entries intact. The comment in vdev_dtl_reassess() describes how we
1718  * excise the DTLs.
1719  */
1720 static boolean_t
1721 vdev_dtl_should_excise(vdev_t *vd)
1722 {
1723 	spa_t *spa = vd->vdev_spa;
1724 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1725 
1726 	ASSERT0(scn->scn_phys.scn_errors);
1727 	ASSERT0(vd->vdev_children);
1728 
1729 	if (vd->vdev_resilver_txg == 0 ||
1730 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1731 		return (B_TRUE);
1732 
1733 	/*
1734 	 * When a resilver is initiated the scan will assign the scn_max_txg
1735 	 * value to the highest txg value that exists in all DTLs. If this
1736 	 * device's max DTL is not part of this scan (i.e. it is not in
1737 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1738 	 * for excision.
1739 	 */
1740 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1741 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1742 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1743 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1744 		return (B_TRUE);
1745 	}
1746 	return (B_FALSE);
1747 }
1748 
1749 /*
1750  * Reassess DTLs after a config change or scrub completion.
1751  */
1752 void
1753 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1754 {
1755 	spa_t *spa = vd->vdev_spa;
1756 	avl_tree_t reftree;
1757 	int minref;
1758 
1759 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1760 
1761 	for (int c = 0; c < vd->vdev_children; c++)
1762 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1763 		    scrub_txg, scrub_done);
1764 
1765 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1766 		return;
1767 
1768 	if (vd->vdev_ops->vdev_op_leaf) {
1769 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1770 
1771 		mutex_enter(&vd->vdev_dtl_lock);
1772 
1773 		/*
1774 		 * If we've completed a scan cleanly then determine
1775 		 * if this vdev should remove any DTLs. We only want to
1776 		 * excise regions on vdevs that were available during
1777 		 * the entire duration of this scan.
1778 		 */
1779 		if (scrub_txg != 0 &&
1780 		    (spa->spa_scrub_started ||
1781 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1782 		    vdev_dtl_should_excise(vd)) {
1783 			/*
1784 			 * We completed a scrub up to scrub_txg.  If we
1785 			 * did it without rebooting, then the scrub dtl
1786 			 * will be valid, so excise the old region and
1787 			 * fold in the scrub dtl.  Otherwise, leave the
1788 			 * dtl as-is if there was an error.
1789 			 *
1790 			 * There's little trick here: to excise the beginning
1791 			 * of the DTL_MISSING map, we put it into a reference
1792 			 * tree and then add a segment with refcnt -1 that
1793 			 * covers the range [0, scrub_txg).  This means
1794 			 * that each txg in that range has refcnt -1 or 0.
1795 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1796 			 * entries in the range [0, scrub_txg) will have a
1797 			 * positive refcnt -- either 1 or 2.  We then convert
1798 			 * the reference tree into the new DTL_MISSING map.
1799 			 */
1800 			space_reftree_create(&reftree);
1801 			space_reftree_add_map(&reftree,
1802 			    vd->vdev_dtl[DTL_MISSING], 1);
1803 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1804 			space_reftree_add_map(&reftree,
1805 			    vd->vdev_dtl[DTL_SCRUB], 2);
1806 			space_reftree_generate_map(&reftree,
1807 			    vd->vdev_dtl[DTL_MISSING], 1);
1808 			space_reftree_destroy(&reftree);
1809 		}
1810 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1811 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1812 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1813 		if (scrub_done)
1814 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1815 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1816 		if (!vdev_readable(vd))
1817 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1818 		else
1819 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1820 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1821 
1822 		/*
1823 		 * If the vdev was resilvering and no longer has any
1824 		 * DTLs then reset its resilvering flag.
1825 		 */
1826 		if (vd->vdev_resilver_txg != 0 &&
1827 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1828 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1829 			vd->vdev_resilver_txg = 0;
1830 
1831 		mutex_exit(&vd->vdev_dtl_lock);
1832 
1833 		if (txg != 0)
1834 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1835 		return;
1836 	}
1837 
1838 	mutex_enter(&vd->vdev_dtl_lock);
1839 	for (int t = 0; t < DTL_TYPES; t++) {
1840 		/* account for child's outage in parent's missing map */
1841 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1842 		if (t == DTL_SCRUB)
1843 			continue;			/* leaf vdevs only */
1844 		if (t == DTL_PARTIAL)
1845 			minref = 1;			/* i.e. non-zero */
1846 		else if (vd->vdev_nparity != 0)
1847 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1848 		else
1849 			minref = vd->vdev_children;	/* any kind of mirror */
1850 		space_reftree_create(&reftree);
1851 		for (int c = 0; c < vd->vdev_children; c++) {
1852 			vdev_t *cvd = vd->vdev_child[c];
1853 			mutex_enter(&cvd->vdev_dtl_lock);
1854 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1855 			mutex_exit(&cvd->vdev_dtl_lock);
1856 		}
1857 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1858 		space_reftree_destroy(&reftree);
1859 	}
1860 	mutex_exit(&vd->vdev_dtl_lock);
1861 }
1862 
1863 int
1864 vdev_dtl_load(vdev_t *vd)
1865 {
1866 	spa_t *spa = vd->vdev_spa;
1867 	objset_t *mos = spa->spa_meta_objset;
1868 	int error = 0;
1869 
1870 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1871 		ASSERT(!vd->vdev_ishole);
1872 
1873 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1874 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1875 		if (error)
1876 			return (error);
1877 		ASSERT(vd->vdev_dtl_sm != NULL);
1878 
1879 		mutex_enter(&vd->vdev_dtl_lock);
1880 
1881 		/*
1882 		 * Now that we've opened the space_map we need to update
1883 		 * the in-core DTL.
1884 		 */
1885 		space_map_update(vd->vdev_dtl_sm);
1886 
1887 		error = space_map_load(vd->vdev_dtl_sm,
1888 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1889 		mutex_exit(&vd->vdev_dtl_lock);
1890 
1891 		return (error);
1892 	}
1893 
1894 	for (int c = 0; c < vd->vdev_children; c++) {
1895 		error = vdev_dtl_load(vd->vdev_child[c]);
1896 		if (error != 0)
1897 			break;
1898 	}
1899 
1900 	return (error);
1901 }
1902 
1903 void
1904 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1905 {
1906 	spa_t *spa = vd->vdev_spa;
1907 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1908 	objset_t *mos = spa->spa_meta_objset;
1909 	range_tree_t *rtsync;
1910 	kmutex_t rtlock;
1911 	dmu_tx_t *tx;
1912 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1913 
1914 	ASSERT(!vd->vdev_ishole);
1915 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1916 
1917 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1918 
1919 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1920 		mutex_enter(&vd->vdev_dtl_lock);
1921 		space_map_free(vd->vdev_dtl_sm, tx);
1922 		space_map_close(vd->vdev_dtl_sm);
1923 		vd->vdev_dtl_sm = NULL;
1924 		mutex_exit(&vd->vdev_dtl_lock);
1925 		dmu_tx_commit(tx);
1926 		return;
1927 	}
1928 
1929 	if (vd->vdev_dtl_sm == NULL) {
1930 		uint64_t new_object;
1931 
1932 		new_object = space_map_alloc(mos, tx);
1933 		VERIFY3U(new_object, !=, 0);
1934 
1935 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1936 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
1937 		ASSERT(vd->vdev_dtl_sm != NULL);
1938 	}
1939 
1940 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1941 
1942 	rtsync = range_tree_create(NULL, NULL, &rtlock);
1943 
1944 	mutex_enter(&rtlock);
1945 
1946 	mutex_enter(&vd->vdev_dtl_lock);
1947 	range_tree_walk(rt, range_tree_add, rtsync);
1948 	mutex_exit(&vd->vdev_dtl_lock);
1949 
1950 	space_map_truncate(vd->vdev_dtl_sm, tx);
1951 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1952 	range_tree_vacate(rtsync, NULL, NULL);
1953 
1954 	range_tree_destroy(rtsync);
1955 
1956 	mutex_exit(&rtlock);
1957 	mutex_destroy(&rtlock);
1958 
1959 	/*
1960 	 * If the object for the space map has changed then dirty
1961 	 * the top level so that we update the config.
1962 	 */
1963 	if (object != space_map_object(vd->vdev_dtl_sm)) {
1964 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1965 		    "new object %llu", txg, spa_name(spa), object,
1966 		    space_map_object(vd->vdev_dtl_sm));
1967 		vdev_config_dirty(vd->vdev_top);
1968 	}
1969 
1970 	dmu_tx_commit(tx);
1971 
1972 	mutex_enter(&vd->vdev_dtl_lock);
1973 	space_map_update(vd->vdev_dtl_sm);
1974 	mutex_exit(&vd->vdev_dtl_lock);
1975 }
1976 
1977 /*
1978  * Determine whether the specified vdev can be offlined/detached/removed
1979  * without losing data.
1980  */
1981 boolean_t
1982 vdev_dtl_required(vdev_t *vd)
1983 {
1984 	spa_t *spa = vd->vdev_spa;
1985 	vdev_t *tvd = vd->vdev_top;
1986 	uint8_t cant_read = vd->vdev_cant_read;
1987 	boolean_t required;
1988 
1989 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1990 
1991 	if (vd == spa->spa_root_vdev || vd == tvd)
1992 		return (B_TRUE);
1993 
1994 	/*
1995 	 * Temporarily mark the device as unreadable, and then determine
1996 	 * whether this results in any DTL outages in the top-level vdev.
1997 	 * If not, we can safely offline/detach/remove the device.
1998 	 */
1999 	vd->vdev_cant_read = B_TRUE;
2000 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2001 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2002 	vd->vdev_cant_read = cant_read;
2003 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2004 
2005 	if (!required && zio_injection_enabled)
2006 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2007 
2008 	return (required);
2009 }
2010 
2011 /*
2012  * Determine if resilver is needed, and if so the txg range.
2013  */
2014 boolean_t
2015 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2016 {
2017 	boolean_t needed = B_FALSE;
2018 	uint64_t thismin = UINT64_MAX;
2019 	uint64_t thismax = 0;
2020 
2021 	if (vd->vdev_children == 0) {
2022 		mutex_enter(&vd->vdev_dtl_lock);
2023 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2024 		    vdev_writeable(vd)) {
2025 
2026 			thismin = vdev_dtl_min(vd);
2027 			thismax = vdev_dtl_max(vd);
2028 			needed = B_TRUE;
2029 		}
2030 		mutex_exit(&vd->vdev_dtl_lock);
2031 	} else {
2032 		for (int c = 0; c < vd->vdev_children; c++) {
2033 			vdev_t *cvd = vd->vdev_child[c];
2034 			uint64_t cmin, cmax;
2035 
2036 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2037 				thismin = MIN(thismin, cmin);
2038 				thismax = MAX(thismax, cmax);
2039 				needed = B_TRUE;
2040 			}
2041 		}
2042 	}
2043 
2044 	if (needed && minp) {
2045 		*minp = thismin;
2046 		*maxp = thismax;
2047 	}
2048 	return (needed);
2049 }
2050 
2051 void
2052 vdev_load(vdev_t *vd)
2053 {
2054 	/*
2055 	 * Recursively load all children.
2056 	 */
2057 	for (int c = 0; c < vd->vdev_children; c++)
2058 		vdev_load(vd->vdev_child[c]);
2059 
2060 	/*
2061 	 * If this is a top-level vdev, initialize its metaslabs.
2062 	 */
2063 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2064 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2065 	    vdev_metaslab_init(vd, 0) != 0))
2066 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2067 		    VDEV_AUX_CORRUPT_DATA);
2068 
2069 	/*
2070 	 * If this is a leaf vdev, load its DTL.
2071 	 */
2072 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2073 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2074 		    VDEV_AUX_CORRUPT_DATA);
2075 }
2076 
2077 /*
2078  * The special vdev case is used for hot spares and l2cache devices.  Its
2079  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2080  * we make sure that we can open the underlying device, then try to read the
2081  * label, and make sure that the label is sane and that it hasn't been
2082  * repurposed to another pool.
2083  */
2084 int
2085 vdev_validate_aux(vdev_t *vd)
2086 {
2087 	nvlist_t *label;
2088 	uint64_t guid, version;
2089 	uint64_t state;
2090 
2091 	if (!vdev_readable(vd))
2092 		return (0);
2093 
2094 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2095 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2096 		    VDEV_AUX_CORRUPT_DATA);
2097 		return (-1);
2098 	}
2099 
2100 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2101 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2102 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2103 	    guid != vd->vdev_guid ||
2104 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2105 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2106 		    VDEV_AUX_CORRUPT_DATA);
2107 		nvlist_free(label);
2108 		return (-1);
2109 	}
2110 
2111 	/*
2112 	 * We don't actually check the pool state here.  If it's in fact in
2113 	 * use by another pool, we update this fact on the fly when requested.
2114 	 */
2115 	nvlist_free(label);
2116 	return (0);
2117 }
2118 
2119 void
2120 vdev_remove(vdev_t *vd, uint64_t txg)
2121 {
2122 	spa_t *spa = vd->vdev_spa;
2123 	objset_t *mos = spa->spa_meta_objset;
2124 	dmu_tx_t *tx;
2125 
2126 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2127 
2128 	if (vd->vdev_ms != NULL) {
2129 		metaslab_group_t *mg = vd->vdev_mg;
2130 
2131 		metaslab_group_histogram_verify(mg);
2132 		metaslab_class_histogram_verify(mg->mg_class);
2133 
2134 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2135 			metaslab_t *msp = vd->vdev_ms[m];
2136 
2137 			if (msp == NULL || msp->ms_sm == NULL)
2138 				continue;
2139 
2140 			mutex_enter(&msp->ms_lock);
2141 			/*
2142 			 * If the metaslab was not loaded when the vdev
2143 			 * was removed then the histogram accounting may
2144 			 * not be accurate. Update the histogram information
2145 			 * here so that we ensure that the metaslab group
2146 			 * and metaslab class are up-to-date.
2147 			 */
2148 			metaslab_group_histogram_remove(mg, msp);
2149 
2150 			VERIFY0(space_map_allocated(msp->ms_sm));
2151 			space_map_free(msp->ms_sm, tx);
2152 			space_map_close(msp->ms_sm);
2153 			msp->ms_sm = NULL;
2154 			mutex_exit(&msp->ms_lock);
2155 		}
2156 
2157 		metaslab_group_histogram_verify(mg);
2158 		metaslab_class_histogram_verify(mg->mg_class);
2159 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2160 			ASSERT0(mg->mg_histogram[i]);
2161 
2162 	}
2163 
2164 	if (vd->vdev_ms_array) {
2165 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2166 		vd->vdev_ms_array = 0;
2167 	}
2168 	dmu_tx_commit(tx);
2169 }
2170 
2171 void
2172 vdev_sync_done(vdev_t *vd, uint64_t txg)
2173 {
2174 	metaslab_t *msp;
2175 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2176 
2177 	ASSERT(!vd->vdev_ishole);
2178 
2179 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2180 		metaslab_sync_done(msp, txg);
2181 
2182 	if (reassess)
2183 		metaslab_sync_reassess(vd->vdev_mg);
2184 }
2185 
2186 void
2187 vdev_sync(vdev_t *vd, uint64_t txg)
2188 {
2189 	spa_t *spa = vd->vdev_spa;
2190 	vdev_t *lvd;
2191 	metaslab_t *msp;
2192 	dmu_tx_t *tx;
2193 
2194 	ASSERT(!vd->vdev_ishole);
2195 
2196 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2197 		ASSERT(vd == vd->vdev_top);
2198 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2199 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2200 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2201 		ASSERT(vd->vdev_ms_array != 0);
2202 		vdev_config_dirty(vd);
2203 		dmu_tx_commit(tx);
2204 	}
2205 
2206 	/*
2207 	 * Remove the metadata associated with this vdev once it's empty.
2208 	 */
2209 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2210 		vdev_remove(vd, txg);
2211 
2212 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2213 		metaslab_sync(msp, txg);
2214 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2215 	}
2216 
2217 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2218 		vdev_dtl_sync(lvd, txg);
2219 
2220 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2221 }
2222 
2223 uint64_t
2224 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2225 {
2226 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2227 }
2228 
2229 /*
2230  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2231  * not be opened, and no I/O is attempted.
2232  */
2233 int
2234 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2235 {
2236 	vdev_t *vd, *tvd;
2237 
2238 	spa_vdev_state_enter(spa, SCL_NONE);
2239 
2240 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2241 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2242 
2243 	if (!vd->vdev_ops->vdev_op_leaf)
2244 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2245 
2246 	tvd = vd->vdev_top;
2247 
2248 	/*
2249 	 * We don't directly use the aux state here, but if we do a
2250 	 * vdev_reopen(), we need this value to be present to remember why we
2251 	 * were faulted.
2252 	 */
2253 	vd->vdev_label_aux = aux;
2254 
2255 	/*
2256 	 * Faulted state takes precedence over degraded.
2257 	 */
2258 	vd->vdev_delayed_close = B_FALSE;
2259 	vd->vdev_faulted = 1ULL;
2260 	vd->vdev_degraded = 0ULL;
2261 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2262 
2263 	/*
2264 	 * If this device has the only valid copy of the data, then
2265 	 * back off and simply mark the vdev as degraded instead.
2266 	 */
2267 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2268 		vd->vdev_degraded = 1ULL;
2269 		vd->vdev_faulted = 0ULL;
2270 
2271 		/*
2272 		 * If we reopen the device and it's not dead, only then do we
2273 		 * mark it degraded.
2274 		 */
2275 		vdev_reopen(tvd);
2276 
2277 		if (vdev_readable(vd))
2278 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2279 	}
2280 
2281 	return (spa_vdev_state_exit(spa, vd, 0));
2282 }
2283 
2284 /*
2285  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2286  * user that something is wrong.  The vdev continues to operate as normal as far
2287  * as I/O is concerned.
2288  */
2289 int
2290 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2291 {
2292 	vdev_t *vd;
2293 
2294 	spa_vdev_state_enter(spa, SCL_NONE);
2295 
2296 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2297 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2298 
2299 	if (!vd->vdev_ops->vdev_op_leaf)
2300 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2301 
2302 	/*
2303 	 * If the vdev is already faulted, then don't do anything.
2304 	 */
2305 	if (vd->vdev_faulted || vd->vdev_degraded)
2306 		return (spa_vdev_state_exit(spa, NULL, 0));
2307 
2308 	vd->vdev_degraded = 1ULL;
2309 	if (!vdev_is_dead(vd))
2310 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2311 		    aux);
2312 
2313 	return (spa_vdev_state_exit(spa, vd, 0));
2314 }
2315 
2316 /*
2317  * Online the given vdev.
2318  *
2319  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2320  * spare device should be detached when the device finishes resilvering.
2321  * Second, the online should be treated like a 'test' online case, so no FMA
2322  * events are generated if the device fails to open.
2323  */
2324 int
2325 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2326 {
2327 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2328 
2329 	spa_vdev_state_enter(spa, SCL_NONE);
2330 
2331 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2332 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2333 
2334 	if (!vd->vdev_ops->vdev_op_leaf)
2335 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2336 
2337 	tvd = vd->vdev_top;
2338 	vd->vdev_offline = B_FALSE;
2339 	vd->vdev_tmpoffline = B_FALSE;
2340 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2341 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2342 
2343 	/* XXX - L2ARC 1.0 does not support expansion */
2344 	if (!vd->vdev_aux) {
2345 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2346 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2347 	}
2348 
2349 	vdev_reopen(tvd);
2350 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2351 
2352 	if (!vd->vdev_aux) {
2353 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2354 			pvd->vdev_expanding = B_FALSE;
2355 	}
2356 
2357 	if (newstate)
2358 		*newstate = vd->vdev_state;
2359 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2360 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2361 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2362 	    vd->vdev_parent->vdev_child[0] == vd)
2363 		vd->vdev_unspare = B_TRUE;
2364 
2365 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2366 
2367 		/* XXX - L2ARC 1.0 does not support expansion */
2368 		if (vd->vdev_aux)
2369 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2370 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2371 	}
2372 	return (spa_vdev_state_exit(spa, vd, 0));
2373 }
2374 
2375 static int
2376 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2377 {
2378 	vdev_t *vd, *tvd;
2379 	int error = 0;
2380 	uint64_t generation;
2381 	metaslab_group_t *mg;
2382 
2383 top:
2384 	spa_vdev_state_enter(spa, SCL_ALLOC);
2385 
2386 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2387 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2388 
2389 	if (!vd->vdev_ops->vdev_op_leaf)
2390 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2391 
2392 	tvd = vd->vdev_top;
2393 	mg = tvd->vdev_mg;
2394 	generation = spa->spa_config_generation + 1;
2395 
2396 	/*
2397 	 * If the device isn't already offline, try to offline it.
2398 	 */
2399 	if (!vd->vdev_offline) {
2400 		/*
2401 		 * If this device has the only valid copy of some data,
2402 		 * don't allow it to be offlined. Log devices are always
2403 		 * expendable.
2404 		 */
2405 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2406 		    vdev_dtl_required(vd))
2407 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2408 
2409 		/*
2410 		 * If the top-level is a slog and it has had allocations
2411 		 * then proceed.  We check that the vdev's metaslab group
2412 		 * is not NULL since it's possible that we may have just
2413 		 * added this vdev but not yet initialized its metaslabs.
2414 		 */
2415 		if (tvd->vdev_islog && mg != NULL) {
2416 			/*
2417 			 * Prevent any future allocations.
2418 			 */
2419 			metaslab_group_passivate(mg);
2420 			(void) spa_vdev_state_exit(spa, vd, 0);
2421 
2422 			error = spa_offline_log(spa);
2423 
2424 			spa_vdev_state_enter(spa, SCL_ALLOC);
2425 
2426 			/*
2427 			 * Check to see if the config has changed.
2428 			 */
2429 			if (error || generation != spa->spa_config_generation) {
2430 				metaslab_group_activate(mg);
2431 				if (error)
2432 					return (spa_vdev_state_exit(spa,
2433 					    vd, error));
2434 				(void) spa_vdev_state_exit(spa, vd, 0);
2435 				goto top;
2436 			}
2437 			ASSERT0(tvd->vdev_stat.vs_alloc);
2438 		}
2439 
2440 		/*
2441 		 * Offline this device and reopen its top-level vdev.
2442 		 * If the top-level vdev is a log device then just offline
2443 		 * it. Otherwise, if this action results in the top-level
2444 		 * vdev becoming unusable, undo it and fail the request.
2445 		 */
2446 		vd->vdev_offline = B_TRUE;
2447 		vdev_reopen(tvd);
2448 
2449 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2450 		    vdev_is_dead(tvd)) {
2451 			vd->vdev_offline = B_FALSE;
2452 			vdev_reopen(tvd);
2453 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2454 		}
2455 
2456 		/*
2457 		 * Add the device back into the metaslab rotor so that
2458 		 * once we online the device it's open for business.
2459 		 */
2460 		if (tvd->vdev_islog && mg != NULL)
2461 			metaslab_group_activate(mg);
2462 	}
2463 
2464 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2465 
2466 	return (spa_vdev_state_exit(spa, vd, 0));
2467 }
2468 
2469 int
2470 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2471 {
2472 	int error;
2473 
2474 	mutex_enter(&spa->spa_vdev_top_lock);
2475 	error = vdev_offline_locked(spa, guid, flags);
2476 	mutex_exit(&spa->spa_vdev_top_lock);
2477 
2478 	return (error);
2479 }
2480 
2481 /*
2482  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2483  * vdev_offline(), we assume the spa config is locked.  We also clear all
2484  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2485  */
2486 void
2487 vdev_clear(spa_t *spa, vdev_t *vd)
2488 {
2489 	vdev_t *rvd = spa->spa_root_vdev;
2490 
2491 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2492 
2493 	if (vd == NULL)
2494 		vd = rvd;
2495 
2496 	vd->vdev_stat.vs_read_errors = 0;
2497 	vd->vdev_stat.vs_write_errors = 0;
2498 	vd->vdev_stat.vs_checksum_errors = 0;
2499 
2500 	for (int c = 0; c < vd->vdev_children; c++)
2501 		vdev_clear(spa, vd->vdev_child[c]);
2502 
2503 	/*
2504 	 * If we're in the FAULTED state or have experienced failed I/O, then
2505 	 * clear the persistent state and attempt to reopen the device.  We
2506 	 * also mark the vdev config dirty, so that the new faulted state is
2507 	 * written out to disk.
2508 	 */
2509 	if (vd->vdev_faulted || vd->vdev_degraded ||
2510 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2511 
2512 		/*
2513 		 * When reopening in reponse to a clear event, it may be due to
2514 		 * a fmadm repair request.  In this case, if the device is
2515 		 * still broken, we want to still post the ereport again.
2516 		 */
2517 		vd->vdev_forcefault = B_TRUE;
2518 
2519 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2520 		vd->vdev_cant_read = B_FALSE;
2521 		vd->vdev_cant_write = B_FALSE;
2522 
2523 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2524 
2525 		vd->vdev_forcefault = B_FALSE;
2526 
2527 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2528 			vdev_state_dirty(vd->vdev_top);
2529 
2530 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2531 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2532 
2533 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2534 	}
2535 
2536 	/*
2537 	 * When clearing a FMA-diagnosed fault, we always want to
2538 	 * unspare the device, as we assume that the original spare was
2539 	 * done in response to the FMA fault.
2540 	 */
2541 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2542 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2543 	    vd->vdev_parent->vdev_child[0] == vd)
2544 		vd->vdev_unspare = B_TRUE;
2545 }
2546 
2547 boolean_t
2548 vdev_is_dead(vdev_t *vd)
2549 {
2550 	/*
2551 	 * Holes and missing devices are always considered "dead".
2552 	 * This simplifies the code since we don't have to check for
2553 	 * these types of devices in the various code paths.
2554 	 * Instead we rely on the fact that we skip over dead devices
2555 	 * before issuing I/O to them.
2556 	 */
2557 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2558 	    vd->vdev_ops == &vdev_missing_ops);
2559 }
2560 
2561 boolean_t
2562 vdev_readable(vdev_t *vd)
2563 {
2564 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2565 }
2566 
2567 boolean_t
2568 vdev_writeable(vdev_t *vd)
2569 {
2570 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2571 }
2572 
2573 boolean_t
2574 vdev_allocatable(vdev_t *vd)
2575 {
2576 	uint64_t state = vd->vdev_state;
2577 
2578 	/*
2579 	 * We currently allow allocations from vdevs which may be in the
2580 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2581 	 * fails to reopen then we'll catch it later when we're holding
2582 	 * the proper locks.  Note that we have to get the vdev state
2583 	 * in a local variable because although it changes atomically,
2584 	 * we're asking two separate questions about it.
2585 	 */
2586 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2587 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2588 }
2589 
2590 boolean_t
2591 vdev_accessible(vdev_t *vd, zio_t *zio)
2592 {
2593 	ASSERT(zio->io_vd == vd);
2594 
2595 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2596 		return (B_FALSE);
2597 
2598 	if (zio->io_type == ZIO_TYPE_READ)
2599 		return (!vd->vdev_cant_read);
2600 
2601 	if (zio->io_type == ZIO_TYPE_WRITE)
2602 		return (!vd->vdev_cant_write);
2603 
2604 	return (B_TRUE);
2605 }
2606 
2607 /*
2608  * Get statistics for the given vdev.
2609  */
2610 void
2611 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2612 {
2613 	spa_t *spa = vd->vdev_spa;
2614 	vdev_t *rvd = spa->spa_root_vdev;
2615 
2616 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2617 
2618 	mutex_enter(&vd->vdev_stat_lock);
2619 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2620 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2621 	vs->vs_state = vd->vdev_state;
2622 	vs->vs_rsize = vdev_get_min_asize(vd);
2623 	if (vd->vdev_ops->vdev_op_leaf)
2624 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2625 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2626 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2627 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2628 	}
2629 
2630 	/*
2631 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2632 	 * over all top-level vdevs (i.e. the direct children of the root).
2633 	 */
2634 	if (vd == rvd) {
2635 		for (int c = 0; c < rvd->vdev_children; c++) {
2636 			vdev_t *cvd = rvd->vdev_child[c];
2637 			vdev_stat_t *cvs = &cvd->vdev_stat;
2638 
2639 			for (int t = 0; t < ZIO_TYPES; t++) {
2640 				vs->vs_ops[t] += cvs->vs_ops[t];
2641 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2642 			}
2643 			cvs->vs_scan_removing = cvd->vdev_removing;
2644 		}
2645 	}
2646 	mutex_exit(&vd->vdev_stat_lock);
2647 }
2648 
2649 void
2650 vdev_clear_stats(vdev_t *vd)
2651 {
2652 	mutex_enter(&vd->vdev_stat_lock);
2653 	vd->vdev_stat.vs_space = 0;
2654 	vd->vdev_stat.vs_dspace = 0;
2655 	vd->vdev_stat.vs_alloc = 0;
2656 	mutex_exit(&vd->vdev_stat_lock);
2657 }
2658 
2659 void
2660 vdev_scan_stat_init(vdev_t *vd)
2661 {
2662 	vdev_stat_t *vs = &vd->vdev_stat;
2663 
2664 	for (int c = 0; c < vd->vdev_children; c++)
2665 		vdev_scan_stat_init(vd->vdev_child[c]);
2666 
2667 	mutex_enter(&vd->vdev_stat_lock);
2668 	vs->vs_scan_processed = 0;
2669 	mutex_exit(&vd->vdev_stat_lock);
2670 }
2671 
2672 void
2673 vdev_stat_update(zio_t *zio, uint64_t psize)
2674 {
2675 	spa_t *spa = zio->io_spa;
2676 	vdev_t *rvd = spa->spa_root_vdev;
2677 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2678 	vdev_t *pvd;
2679 	uint64_t txg = zio->io_txg;
2680 	vdev_stat_t *vs = &vd->vdev_stat;
2681 	zio_type_t type = zio->io_type;
2682 	int flags = zio->io_flags;
2683 
2684 	/*
2685 	 * If this i/o is a gang leader, it didn't do any actual work.
2686 	 */
2687 	if (zio->io_gang_tree)
2688 		return;
2689 
2690 	if (zio->io_error == 0) {
2691 		/*
2692 		 * If this is a root i/o, don't count it -- we've already
2693 		 * counted the top-level vdevs, and vdev_get_stats() will
2694 		 * aggregate them when asked.  This reduces contention on
2695 		 * the root vdev_stat_lock and implicitly handles blocks
2696 		 * that compress away to holes, for which there is no i/o.
2697 		 * (Holes never create vdev children, so all the counters
2698 		 * remain zero, which is what we want.)
2699 		 *
2700 		 * Note: this only applies to successful i/o (io_error == 0)
2701 		 * because unlike i/o counts, errors are not additive.
2702 		 * When reading a ditto block, for example, failure of
2703 		 * one top-level vdev does not imply a root-level error.
2704 		 */
2705 		if (vd == rvd)
2706 			return;
2707 
2708 		ASSERT(vd == zio->io_vd);
2709 
2710 		if (flags & ZIO_FLAG_IO_BYPASS)
2711 			return;
2712 
2713 		mutex_enter(&vd->vdev_stat_lock);
2714 
2715 		if (flags & ZIO_FLAG_IO_REPAIR) {
2716 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2717 				dsl_scan_phys_t *scn_phys =
2718 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2719 				uint64_t *processed = &scn_phys->scn_processed;
2720 
2721 				/* XXX cleanup? */
2722 				if (vd->vdev_ops->vdev_op_leaf)
2723 					atomic_add_64(processed, psize);
2724 				vs->vs_scan_processed += psize;
2725 			}
2726 
2727 			if (flags & ZIO_FLAG_SELF_HEAL)
2728 				vs->vs_self_healed += psize;
2729 		}
2730 
2731 		vs->vs_ops[type]++;
2732 		vs->vs_bytes[type] += psize;
2733 
2734 		mutex_exit(&vd->vdev_stat_lock);
2735 		return;
2736 	}
2737 
2738 	if (flags & ZIO_FLAG_SPECULATIVE)
2739 		return;
2740 
2741 	/*
2742 	 * If this is an I/O error that is going to be retried, then ignore the
2743 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2744 	 * hard errors, when in reality they can happen for any number of
2745 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2746 	 */
2747 	if (zio->io_error == EIO &&
2748 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2749 		return;
2750 
2751 	/*
2752 	 * Intent logs writes won't propagate their error to the root
2753 	 * I/O so don't mark these types of failures as pool-level
2754 	 * errors.
2755 	 */
2756 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2757 		return;
2758 
2759 	mutex_enter(&vd->vdev_stat_lock);
2760 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2761 		if (zio->io_error == ECKSUM)
2762 			vs->vs_checksum_errors++;
2763 		else
2764 			vs->vs_read_errors++;
2765 	}
2766 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2767 		vs->vs_write_errors++;
2768 	mutex_exit(&vd->vdev_stat_lock);
2769 
2770 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2771 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2772 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2773 	    spa->spa_claiming)) {
2774 		/*
2775 		 * This is either a normal write (not a repair), or it's
2776 		 * a repair induced by the scrub thread, or it's a repair
2777 		 * made by zil_claim() during spa_load() in the first txg.
2778 		 * In the normal case, we commit the DTL change in the same
2779 		 * txg as the block was born.  In the scrub-induced repair
2780 		 * case, we know that scrubs run in first-pass syncing context,
2781 		 * so we commit the DTL change in spa_syncing_txg(spa).
2782 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2783 		 *
2784 		 * We currently do not make DTL entries for failed spontaneous
2785 		 * self-healing writes triggered by normal (non-scrubbing)
2786 		 * reads, because we have no transactional context in which to
2787 		 * do so -- and it's not clear that it'd be desirable anyway.
2788 		 */
2789 		if (vd->vdev_ops->vdev_op_leaf) {
2790 			uint64_t commit_txg = txg;
2791 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2792 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2793 				ASSERT(spa_sync_pass(spa) == 1);
2794 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2795 				commit_txg = spa_syncing_txg(spa);
2796 			} else if (spa->spa_claiming) {
2797 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2798 				commit_txg = spa_first_txg(spa);
2799 			}
2800 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2801 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2802 				return;
2803 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2804 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2805 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2806 		}
2807 		if (vd != rvd)
2808 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2809 	}
2810 }
2811 
2812 /*
2813  * Update the in-core space usage stats for this vdev, its metaslab class,
2814  * and the root vdev.
2815  */
2816 void
2817 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2818     int64_t space_delta)
2819 {
2820 	int64_t dspace_delta = space_delta;
2821 	spa_t *spa = vd->vdev_spa;
2822 	vdev_t *rvd = spa->spa_root_vdev;
2823 	metaslab_group_t *mg = vd->vdev_mg;
2824 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2825 
2826 	ASSERT(vd == vd->vdev_top);
2827 
2828 	/*
2829 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2830 	 * factor.  We must calculate this here and not at the root vdev
2831 	 * because the root vdev's psize-to-asize is simply the max of its
2832 	 * childrens', thus not accurate enough for us.
2833 	 */
2834 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2835 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2836 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2837 	    vd->vdev_deflate_ratio;
2838 
2839 	mutex_enter(&vd->vdev_stat_lock);
2840 	vd->vdev_stat.vs_alloc += alloc_delta;
2841 	vd->vdev_stat.vs_space += space_delta;
2842 	vd->vdev_stat.vs_dspace += dspace_delta;
2843 	mutex_exit(&vd->vdev_stat_lock);
2844 
2845 	if (mc == spa_normal_class(spa)) {
2846 		mutex_enter(&rvd->vdev_stat_lock);
2847 		rvd->vdev_stat.vs_alloc += alloc_delta;
2848 		rvd->vdev_stat.vs_space += space_delta;
2849 		rvd->vdev_stat.vs_dspace += dspace_delta;
2850 		mutex_exit(&rvd->vdev_stat_lock);
2851 	}
2852 
2853 	if (mc != NULL) {
2854 		ASSERT(rvd == vd->vdev_parent);
2855 		ASSERT(vd->vdev_ms_count != 0);
2856 
2857 		metaslab_class_space_update(mc,
2858 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2859 	}
2860 }
2861 
2862 /*
2863  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2864  * so that it will be written out next time the vdev configuration is synced.
2865  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2866  */
2867 void
2868 vdev_config_dirty(vdev_t *vd)
2869 {
2870 	spa_t *spa = vd->vdev_spa;
2871 	vdev_t *rvd = spa->spa_root_vdev;
2872 	int c;
2873 
2874 	ASSERT(spa_writeable(spa));
2875 
2876 	/*
2877 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2878 	 * update the vdev config manually and set the sync flag.
2879 	 */
2880 	if (vd->vdev_aux != NULL) {
2881 		spa_aux_vdev_t *sav = vd->vdev_aux;
2882 		nvlist_t **aux;
2883 		uint_t naux;
2884 
2885 		for (c = 0; c < sav->sav_count; c++) {
2886 			if (sav->sav_vdevs[c] == vd)
2887 				break;
2888 		}
2889 
2890 		if (c == sav->sav_count) {
2891 			/*
2892 			 * We're being removed.  There's nothing more to do.
2893 			 */
2894 			ASSERT(sav->sav_sync == B_TRUE);
2895 			return;
2896 		}
2897 
2898 		sav->sav_sync = B_TRUE;
2899 
2900 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2901 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2902 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2903 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2904 		}
2905 
2906 		ASSERT(c < naux);
2907 
2908 		/*
2909 		 * Setting the nvlist in the middle if the array is a little
2910 		 * sketchy, but it will work.
2911 		 */
2912 		nvlist_free(aux[c]);
2913 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2914 
2915 		return;
2916 	}
2917 
2918 	/*
2919 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2920 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2921 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2922 	 * so this is sufficient to ensure mutual exclusion.
2923 	 */
2924 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2925 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2926 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2927 
2928 	if (vd == rvd) {
2929 		for (c = 0; c < rvd->vdev_children; c++)
2930 			vdev_config_dirty(rvd->vdev_child[c]);
2931 	} else {
2932 		ASSERT(vd == vd->vdev_top);
2933 
2934 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2935 		    !vd->vdev_ishole)
2936 			list_insert_head(&spa->spa_config_dirty_list, vd);
2937 	}
2938 }
2939 
2940 void
2941 vdev_config_clean(vdev_t *vd)
2942 {
2943 	spa_t *spa = vd->vdev_spa;
2944 
2945 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2946 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2947 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2948 
2949 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2950 	list_remove(&spa->spa_config_dirty_list, vd);
2951 }
2952 
2953 /*
2954  * Mark a top-level vdev's state as dirty, so that the next pass of
2955  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2956  * the state changes from larger config changes because they require
2957  * much less locking, and are often needed for administrative actions.
2958  */
2959 void
2960 vdev_state_dirty(vdev_t *vd)
2961 {
2962 	spa_t *spa = vd->vdev_spa;
2963 
2964 	ASSERT(spa_writeable(spa));
2965 	ASSERT(vd == vd->vdev_top);
2966 
2967 	/*
2968 	 * The state list is protected by the SCL_STATE lock.  The caller
2969 	 * must either hold SCL_STATE as writer, or must be the sync thread
2970 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2971 	 * so this is sufficient to ensure mutual exclusion.
2972 	 */
2973 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2974 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2975 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2976 
2977 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2978 		list_insert_head(&spa->spa_state_dirty_list, vd);
2979 }
2980 
2981 void
2982 vdev_state_clean(vdev_t *vd)
2983 {
2984 	spa_t *spa = vd->vdev_spa;
2985 
2986 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2987 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2988 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2989 
2990 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2991 	list_remove(&spa->spa_state_dirty_list, vd);
2992 }
2993 
2994 /*
2995  * Propagate vdev state up from children to parent.
2996  */
2997 void
2998 vdev_propagate_state(vdev_t *vd)
2999 {
3000 	spa_t *spa = vd->vdev_spa;
3001 	vdev_t *rvd = spa->spa_root_vdev;
3002 	int degraded = 0, faulted = 0;
3003 	int corrupted = 0;
3004 	vdev_t *child;
3005 
3006 	if (vd->vdev_children > 0) {
3007 		for (int c = 0; c < vd->vdev_children; c++) {
3008 			child = vd->vdev_child[c];
3009 
3010 			/*
3011 			 * Don't factor holes into the decision.
3012 			 */
3013 			if (child->vdev_ishole)
3014 				continue;
3015 
3016 			if (!vdev_readable(child) ||
3017 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3018 				/*
3019 				 * Root special: if there is a top-level log
3020 				 * device, treat the root vdev as if it were
3021 				 * degraded.
3022 				 */
3023 				if (child->vdev_islog && vd == rvd)
3024 					degraded++;
3025 				else
3026 					faulted++;
3027 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3028 				degraded++;
3029 			}
3030 
3031 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3032 				corrupted++;
3033 		}
3034 
3035 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3036 
3037 		/*
3038 		 * Root special: if there is a top-level vdev that cannot be
3039 		 * opened due to corrupted metadata, then propagate the root
3040 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3041 		 * replicas'.
3042 		 */
3043 		if (corrupted && vd == rvd &&
3044 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3045 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3046 			    VDEV_AUX_CORRUPT_DATA);
3047 	}
3048 
3049 	if (vd->vdev_parent)
3050 		vdev_propagate_state(vd->vdev_parent);
3051 }
3052 
3053 /*
3054  * Set a vdev's state.  If this is during an open, we don't update the parent
3055  * state, because we're in the process of opening children depth-first.
3056  * Otherwise, we propagate the change to the parent.
3057  *
3058  * If this routine places a device in a faulted state, an appropriate ereport is
3059  * generated.
3060  */
3061 void
3062 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3063 {
3064 	uint64_t save_state;
3065 	spa_t *spa = vd->vdev_spa;
3066 
3067 	if (state == vd->vdev_state) {
3068 		vd->vdev_stat.vs_aux = aux;
3069 		return;
3070 	}
3071 
3072 	save_state = vd->vdev_state;
3073 
3074 	vd->vdev_state = state;
3075 	vd->vdev_stat.vs_aux = aux;
3076 
3077 	/*
3078 	 * If we are setting the vdev state to anything but an open state, then
3079 	 * always close the underlying device unless the device has requested
3080 	 * a delayed close (i.e. we're about to remove or fault the device).
3081 	 * Otherwise, we keep accessible but invalid devices open forever.
3082 	 * We don't call vdev_close() itself, because that implies some extra
3083 	 * checks (offline, etc) that we don't want here.  This is limited to
3084 	 * leaf devices, because otherwise closing the device will affect other
3085 	 * children.
3086 	 */
3087 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3088 	    vd->vdev_ops->vdev_op_leaf)
3089 		vd->vdev_ops->vdev_op_close(vd);
3090 
3091 	/*
3092 	 * If we have brought this vdev back into service, we need
3093 	 * to notify fmd so that it can gracefully repair any outstanding
3094 	 * cases due to a missing device.  We do this in all cases, even those
3095 	 * that probably don't correlate to a repaired fault.  This is sure to
3096 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3097 	 * this is a transient state it's OK, as the retire agent will
3098 	 * double-check the state of the vdev before repairing it.
3099 	 */
3100 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3101 	    vd->vdev_prevstate != state)
3102 		zfs_post_state_change(spa, vd);
3103 
3104 	if (vd->vdev_removed &&
3105 	    state == VDEV_STATE_CANT_OPEN &&
3106 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3107 		/*
3108 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3109 		 * device was previously marked removed and someone attempted to
3110 		 * reopen it.  If this failed due to a nonexistent device, then
3111 		 * keep the device in the REMOVED state.  We also let this be if
3112 		 * it is one of our special test online cases, which is only
3113 		 * attempting to online the device and shouldn't generate an FMA
3114 		 * fault.
3115 		 */
3116 		vd->vdev_state = VDEV_STATE_REMOVED;
3117 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3118 	} else if (state == VDEV_STATE_REMOVED) {
3119 		vd->vdev_removed = B_TRUE;
3120 	} else if (state == VDEV_STATE_CANT_OPEN) {
3121 		/*
3122 		 * If we fail to open a vdev during an import or recovery, we
3123 		 * mark it as "not available", which signifies that it was
3124 		 * never there to begin with.  Failure to open such a device
3125 		 * is not considered an error.
3126 		 */
3127 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3128 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3129 		    vd->vdev_ops->vdev_op_leaf)
3130 			vd->vdev_not_present = 1;
3131 
3132 		/*
3133 		 * Post the appropriate ereport.  If the 'prevstate' field is
3134 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3135 		 * that this is part of a vdev_reopen().  In this case, we don't
3136 		 * want to post the ereport if the device was already in the
3137 		 * CANT_OPEN state beforehand.
3138 		 *
3139 		 * If the 'checkremove' flag is set, then this is an attempt to
3140 		 * online the device in response to an insertion event.  If we
3141 		 * hit this case, then we have detected an insertion event for a
3142 		 * faulted or offline device that wasn't in the removed state.
3143 		 * In this scenario, we don't post an ereport because we are
3144 		 * about to replace the device, or attempt an online with
3145 		 * vdev_forcefault, which will generate the fault for us.
3146 		 */
3147 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3148 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3149 		    vd != spa->spa_root_vdev) {
3150 			const char *class;
3151 
3152 			switch (aux) {
3153 			case VDEV_AUX_OPEN_FAILED:
3154 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3155 				break;
3156 			case VDEV_AUX_CORRUPT_DATA:
3157 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3158 				break;
3159 			case VDEV_AUX_NO_REPLICAS:
3160 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3161 				break;
3162 			case VDEV_AUX_BAD_GUID_SUM:
3163 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3164 				break;
3165 			case VDEV_AUX_TOO_SMALL:
3166 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3167 				break;
3168 			case VDEV_AUX_BAD_LABEL:
3169 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3170 				break;
3171 			default:
3172 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3173 			}
3174 
3175 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3176 		}
3177 
3178 		/* Erase any notion of persistent removed state */
3179 		vd->vdev_removed = B_FALSE;
3180 	} else {
3181 		vd->vdev_removed = B_FALSE;
3182 	}
3183 
3184 	if (!isopen && vd->vdev_parent)
3185 		vdev_propagate_state(vd->vdev_parent);
3186 }
3187 
3188 /*
3189  * Check the vdev configuration to ensure that it's capable of supporting
3190  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3191  * In addition, only a single top-level vdev is allowed and none of the leaves
3192  * can be wholedisks.
3193  */
3194 boolean_t
3195 vdev_is_bootable(vdev_t *vd)
3196 {
3197 	if (!vd->vdev_ops->vdev_op_leaf) {
3198 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3199 
3200 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3201 		    vd->vdev_children > 1) {
3202 			return (B_FALSE);
3203 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3204 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3205 			return (B_FALSE);
3206 		}
3207 	} else if (vd->vdev_wholedisk == 1) {
3208 		return (B_FALSE);
3209 	}
3210 
3211 	for (int c = 0; c < vd->vdev_children; c++) {
3212 		if (!vdev_is_bootable(vd->vdev_child[c]))
3213 			return (B_FALSE);
3214 	}
3215 	return (B_TRUE);
3216 }
3217 
3218 /*
3219  * Load the state from the original vdev tree (ovd) which
3220  * we've retrieved from the MOS config object. If the original
3221  * vdev was offline or faulted then we transfer that state to the
3222  * device in the current vdev tree (nvd).
3223  */
3224 void
3225 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3226 {
3227 	spa_t *spa = nvd->vdev_spa;
3228 
3229 	ASSERT(nvd->vdev_top->vdev_islog);
3230 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3231 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3232 
3233 	for (int c = 0; c < nvd->vdev_children; c++)
3234 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3235 
3236 	if (nvd->vdev_ops->vdev_op_leaf) {
3237 		/*
3238 		 * Restore the persistent vdev state
3239 		 */
3240 		nvd->vdev_offline = ovd->vdev_offline;
3241 		nvd->vdev_faulted = ovd->vdev_faulted;
3242 		nvd->vdev_degraded = ovd->vdev_degraded;
3243 		nvd->vdev_removed = ovd->vdev_removed;
3244 	}
3245 }
3246 
3247 /*
3248  * Determine if a log device has valid content.  If the vdev was
3249  * removed or faulted in the MOS config then we know that
3250  * the content on the log device has already been written to the pool.
3251  */
3252 boolean_t
3253 vdev_log_state_valid(vdev_t *vd)
3254 {
3255 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3256 	    !vd->vdev_removed)
3257 		return (B_TRUE);
3258 
3259 	for (int c = 0; c < vd->vdev_children; c++)
3260 		if (vdev_log_state_valid(vd->vdev_child[c]))
3261 			return (B_TRUE);
3262 
3263 	return (B_FALSE);
3264 }
3265 
3266 /*
3267  * Expand a vdev if possible.
3268  */
3269 void
3270 vdev_expand(vdev_t *vd, uint64_t txg)
3271 {
3272 	ASSERT(vd->vdev_top == vd);
3273 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3274 
3275 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3276 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3277 		vdev_config_dirty(vd);
3278 	}
3279 }
3280 
3281 /*
3282  * Split a vdev.
3283  */
3284 void
3285 vdev_split(vdev_t *vd)
3286 {
3287 	vdev_t *cvd, *pvd = vd->vdev_parent;
3288 
3289 	vdev_remove_child(pvd, vd);
3290 	vdev_compact_children(pvd);
3291 
3292 	cvd = pvd->vdev_child[0];
3293 	if (pvd->vdev_children == 1) {
3294 		vdev_remove_parent(cvd);
3295 		cvd->vdev_splitting = B_TRUE;
3296 	}
3297 	vdev_propagate_state(cvd);
3298 }
3299 
3300 void
3301 vdev_deadman(vdev_t *vd)
3302 {
3303 	for (int c = 0; c < vd->vdev_children; c++) {
3304 		vdev_t *cvd = vd->vdev_child[c];
3305 
3306 		vdev_deadman(cvd);
3307 	}
3308 
3309 	if (vd->vdev_ops->vdev_op_leaf) {
3310 		vdev_queue_t *vq = &vd->vdev_queue;
3311 
3312 		mutex_enter(&vq->vq_lock);
3313 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3314 			spa_t *spa = vd->vdev_spa;
3315 			zio_t *fio;
3316 			uint64_t delta;
3317 
3318 			/*
3319 			 * Look at the head of all the pending queues,
3320 			 * if any I/O has been outstanding for longer than
3321 			 * the spa_deadman_synctime we panic the system.
3322 			 */
3323 			fio = avl_first(&vq->vq_active_tree);
3324 			delta = gethrtime() - fio->io_timestamp;
3325 			if (delta > spa_deadman_synctime(spa)) {
3326 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3327 				    "delta %lluns, last io %lluns",
3328 				    fio->io_timestamp, delta,
3329 				    vq->vq_io_complete_ts);
3330 				fm_panic("I/O to pool '%s' appears to be "
3331 				    "hung.", spa_name(spa));
3332 			}
3333 		}
3334 		mutex_exit(&vq->vq_lock);
3335 	}
3336 }
3337