xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2019 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/vdev_trim.h>
55 
56 /*
57  * Virtual device management.
58  */
59 
60 static vdev_ops_t *vdev_ops_table[] = {
61 	&vdev_root_ops,
62 	&vdev_raidz_ops,
63 	&vdev_mirror_ops,
64 	&vdev_replacing_ops,
65 	&vdev_spare_ops,
66 	&vdev_disk_ops,
67 	&vdev_file_ops,
68 	&vdev_missing_ops,
69 	&vdev_hole_ops,
70 	&vdev_indirect_ops,
71 	NULL
72 };
73 
74 /* maximum scrub/resilver I/O queue per leaf vdev */
75 int zfs_scrub_limit = 10;
76 
77 /* default target for number of metaslabs per top-level vdev */
78 int zfs_vdev_default_ms_count = 200;
79 
80 /* minimum number of metaslabs per top-level vdev */
81 int zfs_vdev_min_ms_count = 16;
82 
83 /* practical upper limit of total metaslabs per top-level vdev */
84 int zfs_vdev_ms_count_limit = 1ULL << 17;
85 
86 /* lower limit for metaslab size (512M) */
87 int zfs_vdev_default_ms_shift = 29;
88 
89 /* upper limit for metaslab size (16G) */
90 int zfs_vdev_max_ms_shift = 34;
91 
92 boolean_t vdev_validate_skip = B_FALSE;
93 
94 /*
95  * Since the DTL space map of a vdev is not expected to have a lot of
96  * entries, we default its block size to 4K.
97  */
98 int zfs_vdev_dtl_sm_blksz = (1 << 12);
99 
100 /*
101  * vdev-wide space maps that have lots of entries written to them at
102  * the end of each transaction can benefit from a higher I/O bandwidth
103  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
104  */
105 int zfs_vdev_standard_sm_blksz = (1 << 17);
106 
107 int zfs_ashift_min;
108 
109 /*PRINTFLIKE2*/
110 void
111 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
112 {
113 	va_list adx;
114 	char buf[256];
115 
116 	va_start(adx, fmt);
117 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
118 	va_end(adx);
119 
120 	if (vd->vdev_path != NULL) {
121 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
122 		    vd->vdev_path, buf);
123 	} else {
124 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
125 		    vd->vdev_ops->vdev_op_type,
126 		    (u_longlong_t)vd->vdev_id,
127 		    (u_longlong_t)vd->vdev_guid, buf);
128 	}
129 }
130 
131 void
132 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
133 {
134 	char state[20];
135 
136 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
137 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
138 		    vd->vdev_ops->vdev_op_type);
139 		return;
140 	}
141 
142 	switch (vd->vdev_state) {
143 	case VDEV_STATE_UNKNOWN:
144 		(void) snprintf(state, sizeof (state), "unknown");
145 		break;
146 	case VDEV_STATE_CLOSED:
147 		(void) snprintf(state, sizeof (state), "closed");
148 		break;
149 	case VDEV_STATE_OFFLINE:
150 		(void) snprintf(state, sizeof (state), "offline");
151 		break;
152 	case VDEV_STATE_REMOVED:
153 		(void) snprintf(state, sizeof (state), "removed");
154 		break;
155 	case VDEV_STATE_CANT_OPEN:
156 		(void) snprintf(state, sizeof (state), "can't open");
157 		break;
158 	case VDEV_STATE_FAULTED:
159 		(void) snprintf(state, sizeof (state), "faulted");
160 		break;
161 	case VDEV_STATE_DEGRADED:
162 		(void) snprintf(state, sizeof (state), "degraded");
163 		break;
164 	case VDEV_STATE_HEALTHY:
165 		(void) snprintf(state, sizeof (state), "healthy");
166 		break;
167 	default:
168 		(void) snprintf(state, sizeof (state), "<state %u>",
169 		    (uint_t)vd->vdev_state);
170 	}
171 
172 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
173 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
174 	    vd->vdev_islog ? " (log)" : "",
175 	    (u_longlong_t)vd->vdev_guid,
176 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
177 
178 	for (uint64_t i = 0; i < vd->vdev_children; i++)
179 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
180 }
181 
182 /*
183  * Given a vdev type, return the appropriate ops vector.
184  */
185 static vdev_ops_t *
186 vdev_getops(const char *type)
187 {
188 	vdev_ops_t *ops, **opspp;
189 
190 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
191 		if (strcmp(ops->vdev_op_type, type) == 0)
192 			break;
193 
194 	return (ops);
195 }
196 
197 /*
198  * Derive the enumerated alloction bias from string input.
199  * String origin is either the per-vdev zap or zpool(1M).
200  */
201 static vdev_alloc_bias_t
202 vdev_derive_alloc_bias(const char *bias)
203 {
204 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
205 
206 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
207 		alloc_bias = VDEV_BIAS_LOG;
208 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
209 		alloc_bias = VDEV_BIAS_SPECIAL;
210 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
211 		alloc_bias = VDEV_BIAS_DEDUP;
212 
213 	return (alloc_bias);
214 }
215 
216 /* ARGSUSED */
217 void
218 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
219 {
220 	res->rs_start = in->rs_start;
221 	res->rs_end = in->rs_end;
222 }
223 
224 /*
225  * Default asize function: return the MAX of psize with the asize of
226  * all children.  This is what's used by anything other than RAID-Z.
227  */
228 uint64_t
229 vdev_default_asize(vdev_t *vd, uint64_t psize)
230 {
231 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
232 	uint64_t csize;
233 
234 	for (int c = 0; c < vd->vdev_children; c++) {
235 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
236 		asize = MAX(asize, csize);
237 	}
238 
239 	return (asize);
240 }
241 
242 /*
243  * Get the minimum allocatable size. We define the allocatable size as
244  * the vdev's asize rounded to the nearest metaslab. This allows us to
245  * replace or attach devices which don't have the same physical size but
246  * can still satisfy the same number of allocations.
247  */
248 uint64_t
249 vdev_get_min_asize(vdev_t *vd)
250 {
251 	vdev_t *pvd = vd->vdev_parent;
252 
253 	/*
254 	 * If our parent is NULL (inactive spare or cache) or is the root,
255 	 * just return our own asize.
256 	 */
257 	if (pvd == NULL)
258 		return (vd->vdev_asize);
259 
260 	/*
261 	 * The top-level vdev just returns the allocatable size rounded
262 	 * to the nearest metaslab.
263 	 */
264 	if (vd == vd->vdev_top)
265 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
266 
267 	/*
268 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
269 	 * so each child must provide at least 1/Nth of its asize.
270 	 */
271 	if (pvd->vdev_ops == &vdev_raidz_ops)
272 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
273 		    pvd->vdev_children);
274 
275 	return (pvd->vdev_min_asize);
276 }
277 
278 void
279 vdev_set_min_asize(vdev_t *vd)
280 {
281 	vd->vdev_min_asize = vdev_get_min_asize(vd);
282 
283 	for (int c = 0; c < vd->vdev_children; c++)
284 		vdev_set_min_asize(vd->vdev_child[c]);
285 }
286 
287 vdev_t *
288 vdev_lookup_top(spa_t *spa, uint64_t vdev)
289 {
290 	vdev_t *rvd = spa->spa_root_vdev;
291 
292 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
293 
294 	if (vdev < rvd->vdev_children) {
295 		ASSERT(rvd->vdev_child[vdev] != NULL);
296 		return (rvd->vdev_child[vdev]);
297 	}
298 
299 	return (NULL);
300 }
301 
302 vdev_t *
303 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
304 {
305 	vdev_t *mvd;
306 
307 	if (vd->vdev_guid == guid)
308 		return (vd);
309 
310 	for (int c = 0; c < vd->vdev_children; c++)
311 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
312 		    NULL)
313 			return (mvd);
314 
315 	return (NULL);
316 }
317 
318 static int
319 vdev_count_leaves_impl(vdev_t *vd)
320 {
321 	int n = 0;
322 
323 	if (vd->vdev_ops->vdev_op_leaf)
324 		return (1);
325 
326 	for (int c = 0; c < vd->vdev_children; c++)
327 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
328 
329 	return (n);
330 }
331 
332 int
333 vdev_count_leaves(spa_t *spa)
334 {
335 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
336 }
337 
338 void
339 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
340 {
341 	size_t oldsize, newsize;
342 	uint64_t id = cvd->vdev_id;
343 	vdev_t **newchild;
344 	spa_t *spa = cvd->vdev_spa;
345 
346 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
347 	ASSERT(cvd->vdev_parent == NULL);
348 
349 	cvd->vdev_parent = pvd;
350 
351 	if (pvd == NULL)
352 		return;
353 
354 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
355 
356 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
357 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
358 	newsize = pvd->vdev_children * sizeof (vdev_t *);
359 
360 	newchild = kmem_zalloc(newsize, KM_SLEEP);
361 	if (pvd->vdev_child != NULL) {
362 		bcopy(pvd->vdev_child, newchild, oldsize);
363 		kmem_free(pvd->vdev_child, oldsize);
364 	}
365 
366 	pvd->vdev_child = newchild;
367 	pvd->vdev_child[id] = cvd;
368 
369 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
370 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
371 
372 	/*
373 	 * Walk up all ancestors to update guid sum.
374 	 */
375 	for (; pvd != NULL; pvd = pvd->vdev_parent)
376 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
377 
378 	if (cvd->vdev_ops->vdev_op_leaf) {
379 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
380 		cvd->vdev_spa->spa_leaf_list_gen++;
381 	}
382 }
383 
384 void
385 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
386 {
387 	int c;
388 	uint_t id = cvd->vdev_id;
389 
390 	ASSERT(cvd->vdev_parent == pvd);
391 
392 	if (pvd == NULL)
393 		return;
394 
395 	ASSERT(id < pvd->vdev_children);
396 	ASSERT(pvd->vdev_child[id] == cvd);
397 
398 	pvd->vdev_child[id] = NULL;
399 	cvd->vdev_parent = NULL;
400 
401 	for (c = 0; c < pvd->vdev_children; c++)
402 		if (pvd->vdev_child[c])
403 			break;
404 
405 	if (c == pvd->vdev_children) {
406 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
407 		pvd->vdev_child = NULL;
408 		pvd->vdev_children = 0;
409 	}
410 
411 	if (cvd->vdev_ops->vdev_op_leaf) {
412 		spa_t *spa = cvd->vdev_spa;
413 		list_remove(&spa->spa_leaf_list, cvd);
414 		spa->spa_leaf_list_gen++;
415 	}
416 
417 	/*
418 	 * Walk up all ancestors to update guid sum.
419 	 */
420 	for (; pvd != NULL; pvd = pvd->vdev_parent)
421 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
422 }
423 
424 /*
425  * Remove any holes in the child array.
426  */
427 void
428 vdev_compact_children(vdev_t *pvd)
429 {
430 	vdev_t **newchild, *cvd;
431 	int oldc = pvd->vdev_children;
432 	int newc;
433 
434 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
435 
436 	for (int c = newc = 0; c < oldc; c++)
437 		if (pvd->vdev_child[c])
438 			newc++;
439 
440 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
441 
442 	for (int c = newc = 0; c < oldc; c++) {
443 		if ((cvd = pvd->vdev_child[c]) != NULL) {
444 			newchild[newc] = cvd;
445 			cvd->vdev_id = newc++;
446 		}
447 	}
448 
449 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
450 	pvd->vdev_child = newchild;
451 	pvd->vdev_children = newc;
452 }
453 
454 /*
455  * Allocate and minimally initialize a vdev_t.
456  */
457 vdev_t *
458 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
459 {
460 	vdev_t *vd;
461 	vdev_indirect_config_t *vic;
462 
463 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
464 	vic = &vd->vdev_indirect_config;
465 
466 	if (spa->spa_root_vdev == NULL) {
467 		ASSERT(ops == &vdev_root_ops);
468 		spa->spa_root_vdev = vd;
469 		spa->spa_load_guid = spa_generate_guid(NULL);
470 	}
471 
472 	if (guid == 0 && ops != &vdev_hole_ops) {
473 		if (spa->spa_root_vdev == vd) {
474 			/*
475 			 * The root vdev's guid will also be the pool guid,
476 			 * which must be unique among all pools.
477 			 */
478 			guid = spa_generate_guid(NULL);
479 		} else {
480 			/*
481 			 * Any other vdev's guid must be unique within the pool.
482 			 */
483 			guid = spa_generate_guid(spa);
484 		}
485 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
486 	}
487 
488 	vd->vdev_spa = spa;
489 	vd->vdev_id = id;
490 	vd->vdev_guid = guid;
491 	vd->vdev_guid_sum = guid;
492 	vd->vdev_ops = ops;
493 	vd->vdev_state = VDEV_STATE_CLOSED;
494 	vd->vdev_ishole = (ops == &vdev_hole_ops);
495 	vic->vic_prev_indirect_vdev = UINT64_MAX;
496 
497 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
498 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
499 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
500 
501 	list_link_init(&vd->vdev_initialize_node);
502 	list_link_init(&vd->vdev_leaf_node);
503 	list_link_init(&vd->vdev_trim_node);
504 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
505 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
506 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
507 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
508 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
509 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
510 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
511 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
512 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
513 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
514 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
515 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
516 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
517 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
518 
519 	for (int t = 0; t < DTL_TYPES; t++) {
520 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
521 	}
522 	txg_list_create(&vd->vdev_ms_list, spa,
523 	    offsetof(struct metaslab, ms_txg_node));
524 	txg_list_create(&vd->vdev_dtl_list, spa,
525 	    offsetof(struct vdev, vdev_dtl_node));
526 	vd->vdev_stat.vs_timestamp = gethrtime();
527 	vdev_queue_init(vd);
528 	vdev_cache_init(vd);
529 
530 	return (vd);
531 }
532 
533 /*
534  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
535  * creating a new vdev or loading an existing one - the behavior is slightly
536  * different for each case.
537  */
538 int
539 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
540     int alloctype)
541 {
542 	vdev_ops_t *ops;
543 	char *type;
544 	uint64_t guid = 0, islog, nparity;
545 	vdev_t *vd;
546 	vdev_indirect_config_t *vic;
547 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
548 	boolean_t top_level = (parent && !parent->vdev_parent);
549 
550 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
551 
552 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
553 		return (SET_ERROR(EINVAL));
554 
555 	if ((ops = vdev_getops(type)) == NULL)
556 		return (SET_ERROR(EINVAL));
557 
558 	/*
559 	 * If this is a load, get the vdev guid from the nvlist.
560 	 * Otherwise, vdev_alloc_common() will generate one for us.
561 	 */
562 	if (alloctype == VDEV_ALLOC_LOAD) {
563 		uint64_t label_id;
564 
565 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
566 		    label_id != id)
567 			return (SET_ERROR(EINVAL));
568 
569 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
570 			return (SET_ERROR(EINVAL));
571 	} else if (alloctype == VDEV_ALLOC_SPARE) {
572 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
573 			return (SET_ERROR(EINVAL));
574 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
575 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
576 			return (SET_ERROR(EINVAL));
577 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
578 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
579 			return (SET_ERROR(EINVAL));
580 	}
581 
582 	/*
583 	 * The first allocated vdev must be of type 'root'.
584 	 */
585 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
586 		return (SET_ERROR(EINVAL));
587 
588 	/*
589 	 * Determine whether we're a log vdev.
590 	 */
591 	islog = 0;
592 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
593 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
594 		return (SET_ERROR(ENOTSUP));
595 
596 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
597 		return (SET_ERROR(ENOTSUP));
598 
599 	/*
600 	 * Set the nparity property for RAID-Z vdevs.
601 	 */
602 	nparity = -1ULL;
603 	if (ops == &vdev_raidz_ops) {
604 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
605 		    &nparity) == 0) {
606 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
607 				return (SET_ERROR(EINVAL));
608 			/*
609 			 * Previous versions could only support 1 or 2 parity
610 			 * device.
611 			 */
612 			if (nparity > 1 &&
613 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
614 				return (SET_ERROR(ENOTSUP));
615 			if (nparity > 2 &&
616 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
617 				return (SET_ERROR(ENOTSUP));
618 		} else {
619 			/*
620 			 * We require the parity to be specified for SPAs that
621 			 * support multiple parity levels.
622 			 */
623 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
624 				return (SET_ERROR(EINVAL));
625 			/*
626 			 * Otherwise, we default to 1 parity device for RAID-Z.
627 			 */
628 			nparity = 1;
629 		}
630 	} else {
631 		nparity = 0;
632 	}
633 	ASSERT(nparity != -1ULL);
634 
635 	/*
636 	 * If creating a top-level vdev, check for allocation classes input
637 	 */
638 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
639 		char *bias;
640 
641 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
642 		    &bias) == 0) {
643 			alloc_bias = vdev_derive_alloc_bias(bias);
644 
645 			/* spa_vdev_add() expects feature to be enabled */
646 			if (alloc_bias != VDEV_BIAS_LOG &&
647 			    spa->spa_load_state != SPA_LOAD_CREATE &&
648 			    !spa_feature_is_enabled(spa,
649 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
650 				return (SET_ERROR(ENOTSUP));
651 			}
652 		}
653 	}
654 
655 	vd = vdev_alloc_common(spa, id, guid, ops);
656 	vic = &vd->vdev_indirect_config;
657 
658 	vd->vdev_islog = islog;
659 	vd->vdev_nparity = nparity;
660 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
661 		vd->vdev_alloc_bias = alloc_bias;
662 
663 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
664 		vd->vdev_path = spa_strdup(vd->vdev_path);
665 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
666 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
667 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
668 	    &vd->vdev_physpath) == 0)
669 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
670 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
671 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
672 
673 	/*
674 	 * Set the whole_disk property.  If it's not specified, leave the value
675 	 * as -1.
676 	 */
677 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
678 	    &vd->vdev_wholedisk) != 0)
679 		vd->vdev_wholedisk = -1ULL;
680 
681 	ASSERT0(vic->vic_mapping_object);
682 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
683 	    &vic->vic_mapping_object);
684 	ASSERT0(vic->vic_births_object);
685 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
686 	    &vic->vic_births_object);
687 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
688 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
689 	    &vic->vic_prev_indirect_vdev);
690 
691 	/*
692 	 * Look for the 'not present' flag.  This will only be set if the device
693 	 * was not present at the time of import.
694 	 */
695 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
696 	    &vd->vdev_not_present);
697 
698 	/*
699 	 * Get the alignment requirement.
700 	 */
701 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
702 
703 	/*
704 	 * Retrieve the vdev creation time.
705 	 */
706 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
707 	    &vd->vdev_crtxg);
708 
709 	/*
710 	 * If we're a top-level vdev, try to load the allocation parameters.
711 	 */
712 	if (top_level &&
713 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
714 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
715 		    &vd->vdev_ms_array);
716 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
717 		    &vd->vdev_ms_shift);
718 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
719 		    &vd->vdev_asize);
720 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
721 		    &vd->vdev_removing);
722 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
723 		    &vd->vdev_top_zap);
724 	} else {
725 		ASSERT0(vd->vdev_top_zap);
726 	}
727 
728 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
729 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
730 		    alloctype == VDEV_ALLOC_ADD ||
731 		    alloctype == VDEV_ALLOC_SPLIT ||
732 		    alloctype == VDEV_ALLOC_ROOTPOOL);
733 		/* Note: metaslab_group_create() is now deferred */
734 	}
735 
736 	if (vd->vdev_ops->vdev_op_leaf &&
737 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
738 		(void) nvlist_lookup_uint64(nv,
739 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
740 	} else {
741 		ASSERT0(vd->vdev_leaf_zap);
742 	}
743 
744 	/*
745 	 * If we're a leaf vdev, try to load the DTL object and other state.
746 	 */
747 
748 	if (vd->vdev_ops->vdev_op_leaf &&
749 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
750 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
751 		if (alloctype == VDEV_ALLOC_LOAD) {
752 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
753 			    &vd->vdev_dtl_object);
754 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
755 			    &vd->vdev_unspare);
756 		}
757 
758 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
759 			uint64_t spare = 0;
760 
761 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
762 			    &spare) == 0 && spare)
763 				spa_spare_add(vd);
764 		}
765 
766 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
767 		    &vd->vdev_offline);
768 
769 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
770 		    &vd->vdev_resilver_txg);
771 
772 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
773 			vdev_set_deferred_resilver(spa, vd);
774 
775 		/*
776 		 * When importing a pool, we want to ignore the persistent fault
777 		 * state, as the diagnosis made on another system may not be
778 		 * valid in the current context.  Local vdevs will
779 		 * remain in the faulted state.
780 		 */
781 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
782 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
783 			    &vd->vdev_faulted);
784 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
785 			    &vd->vdev_degraded);
786 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
787 			    &vd->vdev_removed);
788 
789 			if (vd->vdev_faulted || vd->vdev_degraded) {
790 				char *aux;
791 
792 				vd->vdev_label_aux =
793 				    VDEV_AUX_ERR_EXCEEDED;
794 				if (nvlist_lookup_string(nv,
795 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
796 				    strcmp(aux, "external") == 0)
797 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
798 			}
799 		}
800 	}
801 
802 	/*
803 	 * Add ourselves to the parent's list of children.
804 	 */
805 	vdev_add_child(parent, vd);
806 
807 	*vdp = vd;
808 
809 	return (0);
810 }
811 
812 void
813 vdev_free(vdev_t *vd)
814 {
815 	spa_t *spa = vd->vdev_spa;
816 
817 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
818 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
819 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
820 
821 	/*
822 	 * Scan queues are normally destroyed at the end of a scan. If the
823 	 * queue exists here, that implies the vdev is being removed while
824 	 * the scan is still running.
825 	 */
826 	if (vd->vdev_scan_io_queue != NULL) {
827 		mutex_enter(&vd->vdev_scan_io_queue_lock);
828 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
829 		vd->vdev_scan_io_queue = NULL;
830 		mutex_exit(&vd->vdev_scan_io_queue_lock);
831 	}
832 
833 	/*
834 	 * vdev_free() implies closing the vdev first.  This is simpler than
835 	 * trying to ensure complicated semantics for all callers.
836 	 */
837 	vdev_close(vd);
838 
839 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
840 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
841 
842 	/*
843 	 * Free all children.
844 	 */
845 	for (int c = 0; c < vd->vdev_children; c++)
846 		vdev_free(vd->vdev_child[c]);
847 
848 	ASSERT(vd->vdev_child == NULL);
849 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
850 
851 	/*
852 	 * Discard allocation state.
853 	 */
854 	if (vd->vdev_mg != NULL) {
855 		vdev_metaslab_fini(vd);
856 		metaslab_group_destroy(vd->vdev_mg);
857 		vd->vdev_mg = NULL;
858 	}
859 
860 	ASSERT0(vd->vdev_stat.vs_space);
861 	ASSERT0(vd->vdev_stat.vs_dspace);
862 	ASSERT0(vd->vdev_stat.vs_alloc);
863 
864 	/*
865 	 * Remove this vdev from its parent's child list.
866 	 */
867 	vdev_remove_child(vd->vdev_parent, vd);
868 
869 	ASSERT(vd->vdev_parent == NULL);
870 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
871 
872 	/*
873 	 * Clean up vdev structure.
874 	 */
875 	vdev_queue_fini(vd);
876 	vdev_cache_fini(vd);
877 
878 	if (vd->vdev_path)
879 		spa_strfree(vd->vdev_path);
880 	if (vd->vdev_devid)
881 		spa_strfree(vd->vdev_devid);
882 	if (vd->vdev_physpath)
883 		spa_strfree(vd->vdev_physpath);
884 	if (vd->vdev_fru)
885 		spa_strfree(vd->vdev_fru);
886 
887 	if (vd->vdev_isspare)
888 		spa_spare_remove(vd);
889 	if (vd->vdev_isl2cache)
890 		spa_l2cache_remove(vd);
891 
892 	txg_list_destroy(&vd->vdev_ms_list);
893 	txg_list_destroy(&vd->vdev_dtl_list);
894 
895 	mutex_enter(&vd->vdev_dtl_lock);
896 	space_map_close(vd->vdev_dtl_sm);
897 	for (int t = 0; t < DTL_TYPES; t++) {
898 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
899 		range_tree_destroy(vd->vdev_dtl[t]);
900 	}
901 	mutex_exit(&vd->vdev_dtl_lock);
902 
903 	EQUIV(vd->vdev_indirect_births != NULL,
904 	    vd->vdev_indirect_mapping != NULL);
905 	if (vd->vdev_indirect_births != NULL) {
906 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
907 		vdev_indirect_births_close(vd->vdev_indirect_births);
908 	}
909 
910 	if (vd->vdev_obsolete_sm != NULL) {
911 		ASSERT(vd->vdev_removing ||
912 		    vd->vdev_ops == &vdev_indirect_ops);
913 		space_map_close(vd->vdev_obsolete_sm);
914 		vd->vdev_obsolete_sm = NULL;
915 	}
916 	range_tree_destroy(vd->vdev_obsolete_segments);
917 	rw_destroy(&vd->vdev_indirect_rwlock);
918 	mutex_destroy(&vd->vdev_obsolete_lock);
919 
920 	mutex_destroy(&vd->vdev_dtl_lock);
921 	mutex_destroy(&vd->vdev_stat_lock);
922 	mutex_destroy(&vd->vdev_probe_lock);
923 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
924 	mutex_destroy(&vd->vdev_initialize_lock);
925 	mutex_destroy(&vd->vdev_initialize_io_lock);
926 	cv_destroy(&vd->vdev_initialize_io_cv);
927 	cv_destroy(&vd->vdev_initialize_cv);
928 	mutex_destroy(&vd->vdev_trim_lock);
929 	mutex_destroy(&vd->vdev_autotrim_lock);
930 	mutex_destroy(&vd->vdev_trim_io_lock);
931 	cv_destroy(&vd->vdev_trim_cv);
932 	cv_destroy(&vd->vdev_autotrim_cv);
933 	cv_destroy(&vd->vdev_trim_io_cv);
934 
935 	if (vd == spa->spa_root_vdev)
936 		spa->spa_root_vdev = NULL;
937 
938 	kmem_free(vd, sizeof (vdev_t));
939 }
940 
941 /*
942  * Transfer top-level vdev state from svd to tvd.
943  */
944 static void
945 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
946 {
947 	spa_t *spa = svd->vdev_spa;
948 	metaslab_t *msp;
949 	vdev_t *vd;
950 	int t;
951 
952 	ASSERT(tvd == tvd->vdev_top);
953 
954 	tvd->vdev_ms_array = svd->vdev_ms_array;
955 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
956 	tvd->vdev_ms_count = svd->vdev_ms_count;
957 	tvd->vdev_top_zap = svd->vdev_top_zap;
958 
959 	svd->vdev_ms_array = 0;
960 	svd->vdev_ms_shift = 0;
961 	svd->vdev_ms_count = 0;
962 	svd->vdev_top_zap = 0;
963 
964 	if (tvd->vdev_mg)
965 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
966 	tvd->vdev_mg = svd->vdev_mg;
967 	tvd->vdev_ms = svd->vdev_ms;
968 
969 	svd->vdev_mg = NULL;
970 	svd->vdev_ms = NULL;
971 
972 	if (tvd->vdev_mg != NULL)
973 		tvd->vdev_mg->mg_vd = tvd;
974 
975 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
976 	svd->vdev_checkpoint_sm = NULL;
977 
978 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
979 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
980 
981 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
982 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
983 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
984 
985 	svd->vdev_stat.vs_alloc = 0;
986 	svd->vdev_stat.vs_space = 0;
987 	svd->vdev_stat.vs_dspace = 0;
988 
989 	/*
990 	 * State which may be set on a top-level vdev that's in the
991 	 * process of being removed.
992 	 */
993 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
994 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
995 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
996 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
997 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
998 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
999 	ASSERT0(tvd->vdev_removing);
1000 	tvd->vdev_removing = svd->vdev_removing;
1001 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1002 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1003 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1004 	range_tree_swap(&svd->vdev_obsolete_segments,
1005 	    &tvd->vdev_obsolete_segments);
1006 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1007 	svd->vdev_indirect_config.vic_mapping_object = 0;
1008 	svd->vdev_indirect_config.vic_births_object = 0;
1009 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1010 	svd->vdev_indirect_mapping = NULL;
1011 	svd->vdev_indirect_births = NULL;
1012 	svd->vdev_obsolete_sm = NULL;
1013 	svd->vdev_removing = 0;
1014 
1015 	for (t = 0; t < TXG_SIZE; t++) {
1016 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1017 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1018 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1019 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1020 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1021 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1022 	}
1023 
1024 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1025 		vdev_config_clean(svd);
1026 		vdev_config_dirty(tvd);
1027 	}
1028 
1029 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1030 		vdev_state_clean(svd);
1031 		vdev_state_dirty(tvd);
1032 	}
1033 
1034 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1035 	svd->vdev_deflate_ratio = 0;
1036 
1037 	tvd->vdev_islog = svd->vdev_islog;
1038 	svd->vdev_islog = 0;
1039 
1040 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1041 }
1042 
1043 static void
1044 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1045 {
1046 	if (vd == NULL)
1047 		return;
1048 
1049 	vd->vdev_top = tvd;
1050 
1051 	for (int c = 0; c < vd->vdev_children; c++)
1052 		vdev_top_update(tvd, vd->vdev_child[c]);
1053 }
1054 
1055 /*
1056  * Add a mirror/replacing vdev above an existing vdev.
1057  */
1058 vdev_t *
1059 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1060 {
1061 	spa_t *spa = cvd->vdev_spa;
1062 	vdev_t *pvd = cvd->vdev_parent;
1063 	vdev_t *mvd;
1064 
1065 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1066 
1067 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1068 
1069 	mvd->vdev_asize = cvd->vdev_asize;
1070 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1071 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1072 	mvd->vdev_psize = cvd->vdev_psize;
1073 	mvd->vdev_ashift = cvd->vdev_ashift;
1074 	mvd->vdev_state = cvd->vdev_state;
1075 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1076 
1077 	vdev_remove_child(pvd, cvd);
1078 	vdev_add_child(pvd, mvd);
1079 	cvd->vdev_id = mvd->vdev_children;
1080 	vdev_add_child(mvd, cvd);
1081 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1082 
1083 	if (mvd == mvd->vdev_top)
1084 		vdev_top_transfer(cvd, mvd);
1085 
1086 	return (mvd);
1087 }
1088 
1089 /*
1090  * Remove a 1-way mirror/replacing vdev from the tree.
1091  */
1092 void
1093 vdev_remove_parent(vdev_t *cvd)
1094 {
1095 	vdev_t *mvd = cvd->vdev_parent;
1096 	vdev_t *pvd = mvd->vdev_parent;
1097 
1098 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1099 
1100 	ASSERT(mvd->vdev_children == 1);
1101 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1102 	    mvd->vdev_ops == &vdev_replacing_ops ||
1103 	    mvd->vdev_ops == &vdev_spare_ops);
1104 	cvd->vdev_ashift = mvd->vdev_ashift;
1105 
1106 	vdev_remove_child(mvd, cvd);
1107 	vdev_remove_child(pvd, mvd);
1108 
1109 	/*
1110 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1111 	 * Otherwise, we could have detached an offline device, and when we
1112 	 * go to import the pool we'll think we have two top-level vdevs,
1113 	 * instead of a different version of the same top-level vdev.
1114 	 */
1115 	if (mvd->vdev_top == mvd) {
1116 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1117 		cvd->vdev_orig_guid = cvd->vdev_guid;
1118 		cvd->vdev_guid += guid_delta;
1119 		cvd->vdev_guid_sum += guid_delta;
1120 	}
1121 	cvd->vdev_id = mvd->vdev_id;
1122 	vdev_add_child(pvd, cvd);
1123 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1124 
1125 	if (cvd == cvd->vdev_top)
1126 		vdev_top_transfer(mvd, cvd);
1127 
1128 	ASSERT(mvd->vdev_children == 0);
1129 	vdev_free(mvd);
1130 }
1131 
1132 static void
1133 vdev_metaslab_group_create(vdev_t *vd)
1134 {
1135 	spa_t *spa = vd->vdev_spa;
1136 
1137 	/*
1138 	 * metaslab_group_create was delayed until allocation bias was available
1139 	 */
1140 	if (vd->vdev_mg == NULL) {
1141 		metaslab_class_t *mc;
1142 
1143 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1144 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1145 
1146 		ASSERT3U(vd->vdev_islog, ==,
1147 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1148 
1149 		switch (vd->vdev_alloc_bias) {
1150 		case VDEV_BIAS_LOG:
1151 			mc = spa_log_class(spa);
1152 			break;
1153 		case VDEV_BIAS_SPECIAL:
1154 			mc = spa_special_class(spa);
1155 			break;
1156 		case VDEV_BIAS_DEDUP:
1157 			mc = spa_dedup_class(spa);
1158 			break;
1159 		default:
1160 			mc = spa_normal_class(spa);
1161 		}
1162 
1163 		vd->vdev_mg = metaslab_group_create(mc, vd,
1164 		    spa->spa_alloc_count);
1165 
1166 		/*
1167 		 * The spa ashift values currently only reflect the
1168 		 * general vdev classes. Class destination is late
1169 		 * binding so ashift checking had to wait until now
1170 		 */
1171 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1172 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1173 			if (vd->vdev_ashift > spa->spa_max_ashift)
1174 				spa->spa_max_ashift = vd->vdev_ashift;
1175 			if (vd->vdev_ashift < spa->spa_min_ashift)
1176 				spa->spa_min_ashift = vd->vdev_ashift;
1177 		}
1178 	}
1179 }
1180 
1181 int
1182 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1183 {
1184 	spa_t *spa = vd->vdev_spa;
1185 	objset_t *mos = spa->spa_meta_objset;
1186 	uint64_t m;
1187 	uint64_t oldc = vd->vdev_ms_count;
1188 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1189 	metaslab_t **mspp;
1190 	int error;
1191 	boolean_t expanding = (oldc != 0);
1192 
1193 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1194 
1195 	/*
1196 	 * This vdev is not being allocated from yet or is a hole.
1197 	 */
1198 	if (vd->vdev_ms_shift == 0)
1199 		return (0);
1200 
1201 	ASSERT(!vd->vdev_ishole);
1202 
1203 	ASSERT(oldc <= newc);
1204 
1205 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1206 
1207 	if (expanding) {
1208 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1209 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1210 	}
1211 
1212 	vd->vdev_ms = mspp;
1213 	vd->vdev_ms_count = newc;
1214 	for (m = oldc; m < newc; m++) {
1215 		uint64_t object = 0;
1216 
1217 		/*
1218 		 * vdev_ms_array may be 0 if we are creating the "fake"
1219 		 * metaslabs for an indirect vdev for zdb's leak detection.
1220 		 * See zdb_leak_init().
1221 		 */
1222 		if (txg == 0 && vd->vdev_ms_array != 0) {
1223 			error = dmu_read(mos, vd->vdev_ms_array,
1224 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1225 			    DMU_READ_PREFETCH);
1226 			if (error != 0) {
1227 				vdev_dbgmsg(vd, "unable to read the metaslab "
1228 				    "array [error=%d]", error);
1229 				return (error);
1230 			}
1231 		}
1232 
1233 #ifndef _KERNEL
1234 		/*
1235 		 * To accomodate zdb_leak_init() fake indirect
1236 		 * metaslabs, we allocate a metaslab group for
1237 		 * indirect vdevs which normally don't have one.
1238 		 */
1239 		if (vd->vdev_mg == NULL) {
1240 			ASSERT0(vdev_is_concrete(vd));
1241 			vdev_metaslab_group_create(vd);
1242 		}
1243 #endif
1244 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1245 		    &(vd->vdev_ms[m]));
1246 		if (error != 0) {
1247 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1248 			    error);
1249 			return (error);
1250 		}
1251 	}
1252 
1253 	if (txg == 0)
1254 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1255 
1256 	/*
1257 	 * If the vdev is being removed we don't activate
1258 	 * the metaslabs since we want to ensure that no new
1259 	 * allocations are performed on this device.
1260 	 */
1261 	if (!expanding && !vd->vdev_removing) {
1262 		metaslab_group_activate(vd->vdev_mg);
1263 	}
1264 
1265 	if (txg == 0)
1266 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1267 
1268 	/*
1269 	 * Regardless whether this vdev was just added or it is being
1270 	 * expanded, the metaslab count has changed. Recalculate the
1271 	 * block limit.
1272 	 */
1273 	spa_log_sm_set_blocklimit(spa);
1274 
1275 	return (0);
1276 }
1277 
1278 void
1279 vdev_metaslab_fini(vdev_t *vd)
1280 {
1281 	if (vd->vdev_checkpoint_sm != NULL) {
1282 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1283 		    SPA_FEATURE_POOL_CHECKPOINT));
1284 		space_map_close(vd->vdev_checkpoint_sm);
1285 		/*
1286 		 * Even though we close the space map, we need to set its
1287 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1288 		 * may be called multiple times for certain operations
1289 		 * (i.e. when destroying a pool) so we need to ensure that
1290 		 * this clause never executes twice. This logic is similar
1291 		 * to the one used for the vdev_ms clause below.
1292 		 */
1293 		vd->vdev_checkpoint_sm = NULL;
1294 	}
1295 
1296 	if (vd->vdev_ms != NULL) {
1297 		metaslab_group_t *mg = vd->vdev_mg;
1298 		metaslab_group_passivate(mg);
1299 
1300 		uint64_t count = vd->vdev_ms_count;
1301 		for (uint64_t m = 0; m < count; m++) {
1302 			metaslab_t *msp = vd->vdev_ms[m];
1303 			if (msp != NULL)
1304 				metaslab_fini(msp);
1305 		}
1306 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1307 		vd->vdev_ms = NULL;
1308 
1309 		vd->vdev_ms_count = 0;
1310 
1311 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1312 			ASSERT0(mg->mg_histogram[i]);
1313 	}
1314 	ASSERT0(vd->vdev_ms_count);
1315 }
1316 
1317 typedef struct vdev_probe_stats {
1318 	boolean_t	vps_readable;
1319 	boolean_t	vps_writeable;
1320 	int		vps_flags;
1321 } vdev_probe_stats_t;
1322 
1323 static void
1324 vdev_probe_done(zio_t *zio)
1325 {
1326 	spa_t *spa = zio->io_spa;
1327 	vdev_t *vd = zio->io_vd;
1328 	vdev_probe_stats_t *vps = zio->io_private;
1329 
1330 	ASSERT(vd->vdev_probe_zio != NULL);
1331 
1332 	if (zio->io_type == ZIO_TYPE_READ) {
1333 		if (zio->io_error == 0)
1334 			vps->vps_readable = 1;
1335 		if (zio->io_error == 0 && spa_writeable(spa)) {
1336 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1337 			    zio->io_offset, zio->io_size, zio->io_abd,
1338 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1339 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1340 		} else {
1341 			abd_free(zio->io_abd);
1342 		}
1343 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1344 		if (zio->io_error == 0)
1345 			vps->vps_writeable = 1;
1346 		abd_free(zio->io_abd);
1347 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1348 		zio_t *pio;
1349 
1350 		vd->vdev_cant_read |= !vps->vps_readable;
1351 		vd->vdev_cant_write |= !vps->vps_writeable;
1352 
1353 		if (vdev_readable(vd) &&
1354 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1355 			zio->io_error = 0;
1356 		} else {
1357 			ASSERT(zio->io_error != 0);
1358 			vdev_dbgmsg(vd, "failed probe");
1359 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1360 			    spa, vd, NULL, NULL, 0, 0);
1361 			zio->io_error = SET_ERROR(ENXIO);
1362 		}
1363 
1364 		mutex_enter(&vd->vdev_probe_lock);
1365 		ASSERT(vd->vdev_probe_zio == zio);
1366 		vd->vdev_probe_zio = NULL;
1367 		mutex_exit(&vd->vdev_probe_lock);
1368 
1369 		zio_link_t *zl = NULL;
1370 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1371 			if (!vdev_accessible(vd, pio))
1372 				pio->io_error = SET_ERROR(ENXIO);
1373 
1374 		kmem_free(vps, sizeof (*vps));
1375 	}
1376 }
1377 
1378 /*
1379  * Determine whether this device is accessible.
1380  *
1381  * Read and write to several known locations: the pad regions of each
1382  * vdev label but the first, which we leave alone in case it contains
1383  * a VTOC.
1384  */
1385 zio_t *
1386 vdev_probe(vdev_t *vd, zio_t *zio)
1387 {
1388 	spa_t *spa = vd->vdev_spa;
1389 	vdev_probe_stats_t *vps = NULL;
1390 	zio_t *pio;
1391 
1392 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1393 
1394 	/*
1395 	 * Don't probe the probe.
1396 	 */
1397 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1398 		return (NULL);
1399 
1400 	/*
1401 	 * To prevent 'probe storms' when a device fails, we create
1402 	 * just one probe i/o at a time.  All zios that want to probe
1403 	 * this vdev will become parents of the probe io.
1404 	 */
1405 	mutex_enter(&vd->vdev_probe_lock);
1406 
1407 	if ((pio = vd->vdev_probe_zio) == NULL) {
1408 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1409 
1410 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1411 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1412 		    ZIO_FLAG_TRYHARD;
1413 
1414 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1415 			/*
1416 			 * vdev_cant_read and vdev_cant_write can only
1417 			 * transition from TRUE to FALSE when we have the
1418 			 * SCL_ZIO lock as writer; otherwise they can only
1419 			 * transition from FALSE to TRUE.  This ensures that
1420 			 * any zio looking at these values can assume that
1421 			 * failures persist for the life of the I/O.  That's
1422 			 * important because when a device has intermittent
1423 			 * connectivity problems, we want to ensure that
1424 			 * they're ascribed to the device (ENXIO) and not
1425 			 * the zio (EIO).
1426 			 *
1427 			 * Since we hold SCL_ZIO as writer here, clear both
1428 			 * values so the probe can reevaluate from first
1429 			 * principles.
1430 			 */
1431 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1432 			vd->vdev_cant_read = B_FALSE;
1433 			vd->vdev_cant_write = B_FALSE;
1434 		}
1435 
1436 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1437 		    vdev_probe_done, vps,
1438 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1439 
1440 		/*
1441 		 * We can't change the vdev state in this context, so we
1442 		 * kick off an async task to do it on our behalf.
1443 		 */
1444 		if (zio != NULL) {
1445 			vd->vdev_probe_wanted = B_TRUE;
1446 			spa_async_request(spa, SPA_ASYNC_PROBE);
1447 		}
1448 	}
1449 
1450 	if (zio != NULL)
1451 		zio_add_child(zio, pio);
1452 
1453 	mutex_exit(&vd->vdev_probe_lock);
1454 
1455 	if (vps == NULL) {
1456 		ASSERT(zio != NULL);
1457 		return (NULL);
1458 	}
1459 
1460 	for (int l = 1; l < VDEV_LABELS; l++) {
1461 		zio_nowait(zio_read_phys(pio, vd,
1462 		    vdev_label_offset(vd->vdev_psize, l,
1463 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1464 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1465 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1466 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1467 	}
1468 
1469 	if (zio == NULL)
1470 		return (pio);
1471 
1472 	zio_nowait(pio);
1473 	return (NULL);
1474 }
1475 
1476 static void
1477 vdev_open_child(void *arg)
1478 {
1479 	vdev_t *vd = arg;
1480 
1481 	vd->vdev_open_thread = curthread;
1482 	vd->vdev_open_error = vdev_open(vd);
1483 	vd->vdev_open_thread = NULL;
1484 }
1485 
1486 boolean_t
1487 vdev_uses_zvols(vdev_t *vd)
1488 {
1489 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1490 	    strlen(ZVOL_DIR)) == 0)
1491 		return (B_TRUE);
1492 	for (int c = 0; c < vd->vdev_children; c++)
1493 		if (vdev_uses_zvols(vd->vdev_child[c]))
1494 			return (B_TRUE);
1495 	return (B_FALSE);
1496 }
1497 
1498 void
1499 vdev_open_children(vdev_t *vd)
1500 {
1501 	taskq_t *tq;
1502 	int children = vd->vdev_children;
1503 
1504 	/*
1505 	 * in order to handle pools on top of zvols, do the opens
1506 	 * in a single thread so that the same thread holds the
1507 	 * spa_namespace_lock
1508 	 */
1509 	if (vdev_uses_zvols(vd)) {
1510 retry_sync:
1511 		for (int c = 0; c < children; c++)
1512 			vd->vdev_child[c]->vdev_open_error =
1513 			    vdev_open(vd->vdev_child[c]);
1514 	} else {
1515 		tq = taskq_create("vdev_open", children, minclsyspri,
1516 		    children, children, TASKQ_PREPOPULATE);
1517 		if (tq == NULL)
1518 			goto retry_sync;
1519 
1520 		for (int c = 0; c < children; c++)
1521 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1522 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1523 
1524 		taskq_destroy(tq);
1525 	}
1526 
1527 	vd->vdev_nonrot = B_TRUE;
1528 
1529 	for (int c = 0; c < children; c++)
1530 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1531 }
1532 
1533 /*
1534  * Compute the raidz-deflation ratio.  Note, we hard-code
1535  * in 128k (1 << 17) because it is the "typical" blocksize.
1536  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1537  * otherwise it would inconsistently account for existing bp's.
1538  */
1539 static void
1540 vdev_set_deflate_ratio(vdev_t *vd)
1541 {
1542 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1543 		vd->vdev_deflate_ratio = (1 << 17) /
1544 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1545 	}
1546 }
1547 
1548 /*
1549  * Prepare a virtual device for access.
1550  */
1551 int
1552 vdev_open(vdev_t *vd)
1553 {
1554 	spa_t *spa = vd->vdev_spa;
1555 	int error;
1556 	uint64_t osize = 0;
1557 	uint64_t max_osize = 0;
1558 	uint64_t asize, max_asize, psize;
1559 	uint64_t ashift = 0;
1560 
1561 	ASSERT(vd->vdev_open_thread == curthread ||
1562 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1563 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1564 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1565 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1566 
1567 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1568 	vd->vdev_cant_read = B_FALSE;
1569 	vd->vdev_cant_write = B_FALSE;
1570 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1571 
1572 	/*
1573 	 * If this vdev is not removed, check its fault status.  If it's
1574 	 * faulted, bail out of the open.
1575 	 */
1576 	if (!vd->vdev_removed && vd->vdev_faulted) {
1577 		ASSERT(vd->vdev_children == 0);
1578 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1579 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1580 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1581 		    vd->vdev_label_aux);
1582 		return (SET_ERROR(ENXIO));
1583 	} else if (vd->vdev_offline) {
1584 		ASSERT(vd->vdev_children == 0);
1585 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1586 		return (SET_ERROR(ENXIO));
1587 	}
1588 
1589 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1590 
1591 	/*
1592 	 * Reset the vdev_reopening flag so that we actually close
1593 	 * the vdev on error.
1594 	 */
1595 	vd->vdev_reopening = B_FALSE;
1596 	if (zio_injection_enabled && error == 0)
1597 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1598 
1599 	if (error) {
1600 		if (vd->vdev_removed &&
1601 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1602 			vd->vdev_removed = B_FALSE;
1603 
1604 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1605 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1606 			    vd->vdev_stat.vs_aux);
1607 		} else {
1608 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1609 			    vd->vdev_stat.vs_aux);
1610 		}
1611 		return (error);
1612 	}
1613 
1614 	vd->vdev_removed = B_FALSE;
1615 
1616 	/*
1617 	 * Recheck the faulted flag now that we have confirmed that
1618 	 * the vdev is accessible.  If we're faulted, bail.
1619 	 */
1620 	if (vd->vdev_faulted) {
1621 		ASSERT(vd->vdev_children == 0);
1622 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1623 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1624 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1625 		    vd->vdev_label_aux);
1626 		return (SET_ERROR(ENXIO));
1627 	}
1628 
1629 	if (vd->vdev_degraded) {
1630 		ASSERT(vd->vdev_children == 0);
1631 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1632 		    VDEV_AUX_ERR_EXCEEDED);
1633 	} else {
1634 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1635 	}
1636 
1637 	/*
1638 	 * For hole or missing vdevs we just return success.
1639 	 */
1640 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1641 		return (0);
1642 
1643 	for (int c = 0; c < vd->vdev_children; c++) {
1644 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1645 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1646 			    VDEV_AUX_NONE);
1647 			break;
1648 		}
1649 	}
1650 
1651 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1652 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1653 
1654 	if (vd->vdev_children == 0) {
1655 		if (osize < SPA_MINDEVSIZE) {
1656 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1657 			    VDEV_AUX_TOO_SMALL);
1658 			return (SET_ERROR(EOVERFLOW));
1659 		}
1660 		psize = osize;
1661 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1662 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1663 		    VDEV_LABEL_END_SIZE);
1664 	} else {
1665 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1666 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1667 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1668 			    VDEV_AUX_TOO_SMALL);
1669 			return (SET_ERROR(EOVERFLOW));
1670 		}
1671 		psize = 0;
1672 		asize = osize;
1673 		max_asize = max_osize;
1674 	}
1675 
1676 	vd->vdev_psize = psize;
1677 
1678 	/*
1679 	 * Make sure the allocatable size hasn't shrunk too much.
1680 	 */
1681 	if (asize < vd->vdev_min_asize) {
1682 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1683 		    VDEV_AUX_BAD_LABEL);
1684 		return (SET_ERROR(EINVAL));
1685 	}
1686 
1687 	if (vd->vdev_asize == 0) {
1688 		/*
1689 		 * This is the first-ever open, so use the computed values.
1690 		 * For compatibility, a different ashift can be requested.
1691 		 */
1692 		vd->vdev_asize = asize;
1693 		vd->vdev_max_asize = max_asize;
1694 		if (vd->vdev_ashift == 0) {
1695 			vd->vdev_ashift = ashift; /* use detected value */
1696 		}
1697 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1698 		    vd->vdev_ashift > ASHIFT_MAX)) {
1699 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1700 			    VDEV_AUX_BAD_ASHIFT);
1701 			return (SET_ERROR(EDOM));
1702 		}
1703 	} else {
1704 		/*
1705 		 * Detect if the alignment requirement has increased.
1706 		 * We don't want to make the pool unavailable, just
1707 		 * post an event instead.
1708 		 */
1709 		if (ashift > vd->vdev_top->vdev_ashift &&
1710 		    vd->vdev_ops->vdev_op_leaf) {
1711 			zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1712 			    spa, vd, NULL, NULL, 0, 0);
1713 		}
1714 
1715 		vd->vdev_max_asize = max_asize;
1716 	}
1717 
1718 	/*
1719 	 * If all children are healthy we update asize if either:
1720 	 * The asize has increased, due to a device expansion caused by dynamic
1721 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1722 	 * making the additional space available.
1723 	 *
1724 	 * The asize has decreased, due to a device shrink usually caused by a
1725 	 * vdev replace with a smaller device. This ensures that calculations
1726 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1727 	 * to do this as we've already validated that asize is greater than
1728 	 * vdev_min_asize.
1729 	 */
1730 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1731 	    ((asize > vd->vdev_asize &&
1732 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1733 	    (asize < vd->vdev_asize)))
1734 		vd->vdev_asize = asize;
1735 
1736 	vdev_set_min_asize(vd);
1737 
1738 	/*
1739 	 * Ensure we can issue some IO before declaring the
1740 	 * vdev open for business.
1741 	 */
1742 	if (vd->vdev_ops->vdev_op_leaf &&
1743 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1744 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1745 		    VDEV_AUX_ERR_EXCEEDED);
1746 		return (error);
1747 	}
1748 
1749 	/*
1750 	 * Track the min and max ashift values for normal data devices.
1751 	 *
1752 	 * DJB - TBD these should perhaps be tracked per allocation class
1753 	 * (e.g. spa_min_ashift is used to round up post compression buffers)
1754 	 */
1755 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1756 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1757 	    vd->vdev_aux == NULL) {
1758 		if (vd->vdev_ashift > spa->spa_max_ashift)
1759 			spa->spa_max_ashift = vd->vdev_ashift;
1760 		if (vd->vdev_ashift < spa->spa_min_ashift)
1761 			spa->spa_min_ashift = vd->vdev_ashift;
1762 	}
1763 
1764 	/*
1765 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1766 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1767 	 * since this would just restart the scrub we are already doing.
1768 	 */
1769 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1770 	    vdev_resilver_needed(vd, NULL, NULL)) {
1771 		if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1772 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1773 			vdev_set_deferred_resilver(spa, vd);
1774 		else
1775 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1776 	}
1777 
1778 	return (0);
1779 }
1780 
1781 /*
1782  * Called once the vdevs are all opened, this routine validates the label
1783  * contents. This needs to be done before vdev_load() so that we don't
1784  * inadvertently do repair I/Os to the wrong device.
1785  *
1786  * This function will only return failure if one of the vdevs indicates that it
1787  * has since been destroyed or exported.  This is only possible if
1788  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1789  * will be updated but the function will return 0.
1790  */
1791 int
1792 vdev_validate(vdev_t *vd)
1793 {
1794 	spa_t *spa = vd->vdev_spa;
1795 	nvlist_t *label;
1796 	uint64_t guid = 0, aux_guid = 0, top_guid;
1797 	uint64_t state;
1798 	nvlist_t *nvl;
1799 	uint64_t txg;
1800 
1801 	if (vdev_validate_skip)
1802 		return (0);
1803 
1804 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1805 		if (vdev_validate(vd->vdev_child[c]) != 0)
1806 			return (SET_ERROR(EBADF));
1807 
1808 	/*
1809 	 * If the device has already failed, or was marked offline, don't do
1810 	 * any further validation.  Otherwise, label I/O will fail and we will
1811 	 * overwrite the previous state.
1812 	 */
1813 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1814 		return (0);
1815 
1816 	/*
1817 	 * If we are performing an extreme rewind, we allow for a label that
1818 	 * was modified at a point after the current txg.
1819 	 * If config lock is not held do not check for the txg. spa_sync could
1820 	 * be updating the vdev's label before updating spa_last_synced_txg.
1821 	 */
1822 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1823 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1824 		txg = UINT64_MAX;
1825 	else
1826 		txg = spa_last_synced_txg(spa);
1827 
1828 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1829 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1830 		    VDEV_AUX_BAD_LABEL);
1831 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1832 		    "txg %llu", (u_longlong_t)txg);
1833 		return (0);
1834 	}
1835 
1836 	/*
1837 	 * Determine if this vdev has been split off into another
1838 	 * pool.  If so, then refuse to open it.
1839 	 */
1840 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1841 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1842 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1843 		    VDEV_AUX_SPLIT_POOL);
1844 		nvlist_free(label);
1845 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1846 		return (0);
1847 	}
1848 
1849 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1850 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1851 		    VDEV_AUX_CORRUPT_DATA);
1852 		nvlist_free(label);
1853 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1854 		    ZPOOL_CONFIG_POOL_GUID);
1855 		return (0);
1856 	}
1857 
1858 	/*
1859 	 * If config is not trusted then ignore the spa guid check. This is
1860 	 * necessary because if the machine crashed during a re-guid the new
1861 	 * guid might have been written to all of the vdev labels, but not the
1862 	 * cached config. The check will be performed again once we have the
1863 	 * trusted config from the MOS.
1864 	 */
1865 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1866 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1867 		    VDEV_AUX_CORRUPT_DATA);
1868 		nvlist_free(label);
1869 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1870 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1871 		    (u_longlong_t)spa_guid(spa));
1872 		return (0);
1873 	}
1874 
1875 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1876 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1877 	    &aux_guid) != 0)
1878 		aux_guid = 0;
1879 
1880 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1881 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1882 		    VDEV_AUX_CORRUPT_DATA);
1883 		nvlist_free(label);
1884 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1885 		    ZPOOL_CONFIG_GUID);
1886 		return (0);
1887 	}
1888 
1889 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1890 	    != 0) {
1891 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1892 		    VDEV_AUX_CORRUPT_DATA);
1893 		nvlist_free(label);
1894 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1895 		    ZPOOL_CONFIG_TOP_GUID);
1896 		return (0);
1897 	}
1898 
1899 	/*
1900 	 * If this vdev just became a top-level vdev because its sibling was
1901 	 * detached, it will have adopted the parent's vdev guid -- but the
1902 	 * label may or may not be on disk yet. Fortunately, either version
1903 	 * of the label will have the same top guid, so if we're a top-level
1904 	 * vdev, we can safely compare to that instead.
1905 	 * However, if the config comes from a cachefile that failed to update
1906 	 * after the detach, a top-level vdev will appear as a non top-level
1907 	 * vdev in the config. Also relax the constraints if we perform an
1908 	 * extreme rewind.
1909 	 *
1910 	 * If we split this vdev off instead, then we also check the
1911 	 * original pool's guid. We don't want to consider the vdev
1912 	 * corrupt if it is partway through a split operation.
1913 	 */
1914 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1915 		boolean_t mismatch = B_FALSE;
1916 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1917 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1918 				mismatch = B_TRUE;
1919 		} else {
1920 			if (vd->vdev_guid != top_guid &&
1921 			    vd->vdev_top->vdev_guid != guid)
1922 				mismatch = B_TRUE;
1923 		}
1924 
1925 		if (mismatch) {
1926 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1927 			    VDEV_AUX_CORRUPT_DATA);
1928 			nvlist_free(label);
1929 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1930 			    "doesn't match label guid");
1931 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1932 			    (u_longlong_t)vd->vdev_guid,
1933 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1934 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1935 			    "aux_guid %llu", (u_longlong_t)guid,
1936 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1937 			return (0);
1938 		}
1939 	}
1940 
1941 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1942 	    &state) != 0) {
1943 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1944 		    VDEV_AUX_CORRUPT_DATA);
1945 		nvlist_free(label);
1946 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1947 		    ZPOOL_CONFIG_POOL_STATE);
1948 		return (0);
1949 	}
1950 
1951 	nvlist_free(label);
1952 
1953 	/*
1954 	 * If this is a verbatim import, no need to check the
1955 	 * state of the pool.
1956 	 */
1957 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1958 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1959 	    state != POOL_STATE_ACTIVE) {
1960 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1961 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1962 		return (SET_ERROR(EBADF));
1963 	}
1964 
1965 	/*
1966 	 * If we were able to open and validate a vdev that was
1967 	 * previously marked permanently unavailable, clear that state
1968 	 * now.
1969 	 */
1970 	if (vd->vdev_not_present)
1971 		vd->vdev_not_present = 0;
1972 
1973 	return (0);
1974 }
1975 
1976 static void
1977 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1978 {
1979 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1980 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1981 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1982 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1983 			    dvd->vdev_path, svd->vdev_path);
1984 			spa_strfree(dvd->vdev_path);
1985 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1986 		}
1987 	} else if (svd->vdev_path != NULL) {
1988 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1989 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1990 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1991 	}
1992 }
1993 
1994 /*
1995  * Recursively copy vdev paths from one vdev to another. Source and destination
1996  * vdev trees must have same geometry otherwise return error. Intended to copy
1997  * paths from userland config into MOS config.
1998  */
1999 int
2000 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2001 {
2002 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2003 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2004 	    (dvd->vdev_ops == &vdev_indirect_ops))
2005 		return (0);
2006 
2007 	if (svd->vdev_ops != dvd->vdev_ops) {
2008 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2009 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2010 		return (SET_ERROR(EINVAL));
2011 	}
2012 
2013 	if (svd->vdev_guid != dvd->vdev_guid) {
2014 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2015 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2016 		    (u_longlong_t)dvd->vdev_guid);
2017 		return (SET_ERROR(EINVAL));
2018 	}
2019 
2020 	if (svd->vdev_children != dvd->vdev_children) {
2021 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2022 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2023 		    (u_longlong_t)dvd->vdev_children);
2024 		return (SET_ERROR(EINVAL));
2025 	}
2026 
2027 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2028 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2029 		    dvd->vdev_child[i]);
2030 		if (error != 0)
2031 			return (error);
2032 	}
2033 
2034 	if (svd->vdev_ops->vdev_op_leaf)
2035 		vdev_copy_path_impl(svd, dvd);
2036 
2037 	return (0);
2038 }
2039 
2040 static void
2041 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2042 {
2043 	ASSERT(stvd->vdev_top == stvd);
2044 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2045 
2046 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2047 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2048 	}
2049 
2050 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2051 		return;
2052 
2053 	/*
2054 	 * The idea here is that while a vdev can shift positions within
2055 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2056 	 * step outside of it.
2057 	 */
2058 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2059 
2060 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2061 		return;
2062 
2063 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2064 
2065 	vdev_copy_path_impl(vd, dvd);
2066 }
2067 
2068 /*
2069  * Recursively copy vdev paths from one root vdev to another. Source and
2070  * destination vdev trees may differ in geometry. For each destination leaf
2071  * vdev, search a vdev with the same guid and top vdev id in the source.
2072  * Intended to copy paths from userland config into MOS config.
2073  */
2074 void
2075 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2076 {
2077 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2078 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2079 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2080 
2081 	for (uint64_t i = 0; i < children; i++) {
2082 		vdev_copy_path_search(srvd->vdev_child[i],
2083 		    drvd->vdev_child[i]);
2084 	}
2085 }
2086 
2087 /*
2088  * Close a virtual device.
2089  */
2090 void
2091 vdev_close(vdev_t *vd)
2092 {
2093 	spa_t *spa = vd->vdev_spa;
2094 	vdev_t *pvd = vd->vdev_parent;
2095 
2096 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2097 
2098 	/*
2099 	 * If our parent is reopening, then we are as well, unless we are
2100 	 * going offline.
2101 	 */
2102 	if (pvd != NULL && pvd->vdev_reopening)
2103 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2104 
2105 	vd->vdev_ops->vdev_op_close(vd);
2106 
2107 	vdev_cache_purge(vd);
2108 
2109 	/*
2110 	 * We record the previous state before we close it, so that if we are
2111 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2112 	 * it's still faulted.
2113 	 */
2114 	vd->vdev_prevstate = vd->vdev_state;
2115 
2116 	if (vd->vdev_offline)
2117 		vd->vdev_state = VDEV_STATE_OFFLINE;
2118 	else
2119 		vd->vdev_state = VDEV_STATE_CLOSED;
2120 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2121 }
2122 
2123 void
2124 vdev_hold(vdev_t *vd)
2125 {
2126 	spa_t *spa = vd->vdev_spa;
2127 
2128 	ASSERT(spa_is_root(spa));
2129 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2130 		return;
2131 
2132 	for (int c = 0; c < vd->vdev_children; c++)
2133 		vdev_hold(vd->vdev_child[c]);
2134 
2135 	if (vd->vdev_ops->vdev_op_leaf)
2136 		vd->vdev_ops->vdev_op_hold(vd);
2137 }
2138 
2139 void
2140 vdev_rele(vdev_t *vd)
2141 {
2142 	spa_t *spa = vd->vdev_spa;
2143 
2144 	ASSERT(spa_is_root(spa));
2145 	for (int c = 0; c < vd->vdev_children; c++)
2146 		vdev_rele(vd->vdev_child[c]);
2147 
2148 	if (vd->vdev_ops->vdev_op_leaf)
2149 		vd->vdev_ops->vdev_op_rele(vd);
2150 }
2151 
2152 /*
2153  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2154  * reopen leaf vdevs which had previously been opened as they might deadlock
2155  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2156  * If the leaf has never been opened then open it, as usual.
2157  */
2158 void
2159 vdev_reopen(vdev_t *vd)
2160 {
2161 	spa_t *spa = vd->vdev_spa;
2162 
2163 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2164 
2165 	/* set the reopening flag unless we're taking the vdev offline */
2166 	vd->vdev_reopening = !vd->vdev_offline;
2167 	vdev_close(vd);
2168 	(void) vdev_open(vd);
2169 
2170 	/*
2171 	 * Call vdev_validate() here to make sure we have the same device.
2172 	 * Otherwise, a device with an invalid label could be successfully
2173 	 * opened in response to vdev_reopen().
2174 	 */
2175 	if (vd->vdev_aux) {
2176 		(void) vdev_validate_aux(vd);
2177 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2178 		    vd->vdev_aux == &spa->spa_l2cache &&
2179 		    !l2arc_vdev_present(vd))
2180 			l2arc_add_vdev(spa, vd);
2181 	} else {
2182 		(void) vdev_validate(vd);
2183 	}
2184 
2185 	/*
2186 	 * Reassess parent vdev's health.
2187 	 */
2188 	vdev_propagate_state(vd);
2189 }
2190 
2191 int
2192 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2193 {
2194 	int error;
2195 
2196 	/*
2197 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2198 	 * For a create, however, we want to fail the request if
2199 	 * there are any components we can't open.
2200 	 */
2201 	error = vdev_open(vd);
2202 
2203 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2204 		vdev_close(vd);
2205 		return (error ? error : ENXIO);
2206 	}
2207 
2208 	/*
2209 	 * Recursively load DTLs and initialize all labels.
2210 	 */
2211 	if ((error = vdev_dtl_load(vd)) != 0 ||
2212 	    (error = vdev_label_init(vd, txg, isreplacing ?
2213 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2214 		vdev_close(vd);
2215 		return (error);
2216 	}
2217 
2218 	return (0);
2219 }
2220 
2221 void
2222 vdev_metaslab_set_size(vdev_t *vd)
2223 {
2224 	uint64_t asize = vd->vdev_asize;
2225 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2226 	uint64_t ms_shift;
2227 
2228 	/* BEGIN CSTYLED */
2229 	/*
2230 	 * There are two dimensions to the metaslab sizing calculation:
2231 	 * the size of the metaslab and the count of metaslabs per vdev.
2232 	 *
2233 	 * The default values used below are a good balance between memory
2234 	 * usage (larger metaslab size means more memory needed for loaded
2235 	 * metaslabs; more metaslabs means more memory needed for the
2236 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2237 	 * longer to load), and metaslab sync time (more metaslabs means
2238 	 * more time spent syncing all of them).
2239 	 *
2240 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2241 	 * The range of the dimensions are as follows:
2242 	 *
2243 	 *	2^29 <= ms_size  <= 2^34
2244 	 *	  16 <= ms_count <= 131,072
2245 	 *
2246 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2247 	 * at least 512MB (2^29) to minimize fragmentation effects when
2248 	 * testing with smaller devices.  However, the count constraint
2249 	 * of at least 16 metaslabs will override this minimum size goal.
2250 	 *
2251 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2252 	 * size of 16GB.  However, we will cap the total count to 2^17
2253 	 * metaslabs to keep our memory footprint in check and let the
2254 	 * metaslab size grow from there if that limit is hit.
2255 	 *
2256 	 * The net effect of applying above constrains is summarized below.
2257 	 *
2258 	 *   vdev size	    metaslab count
2259 	 *  --------------|-----------------
2260 	 *	< 8GB		~16
2261 	 *  8GB   - 100GB	one per 512MB
2262 	 *  100GB - 3TB		~200
2263 	 *  3TB   - 2PB		one per 16GB
2264 	 *	> 2PB		~131,072
2265 	 *  --------------------------------
2266 	 *
2267 	 *  Finally, note that all of the above calculate the initial
2268 	 *  number of metaslabs. Expanding a top-level vdev will result
2269 	 *  in additional metaslabs being allocated making it possible
2270 	 *  to exceed the zfs_vdev_ms_count_limit.
2271 	 */
2272 	/* END CSTYLED */
2273 
2274 	if (ms_count < zfs_vdev_min_ms_count)
2275 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2276 	else if (ms_count > zfs_vdev_default_ms_count)
2277 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2278 	else
2279 		ms_shift = zfs_vdev_default_ms_shift;
2280 
2281 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2282 		ms_shift = SPA_MAXBLOCKSHIFT;
2283 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2284 		ms_shift = zfs_vdev_max_ms_shift;
2285 		/* cap the total count to constrain memory footprint */
2286 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2287 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2288 	}
2289 
2290 	vd->vdev_ms_shift = ms_shift;
2291 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2292 }
2293 
2294 void
2295 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2296 {
2297 	ASSERT(vd == vd->vdev_top);
2298 	/* indirect vdevs don't have metaslabs or dtls */
2299 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2300 	ASSERT(ISP2(flags));
2301 	ASSERT(spa_writeable(vd->vdev_spa));
2302 
2303 	if (flags & VDD_METASLAB)
2304 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2305 
2306 	if (flags & VDD_DTL)
2307 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2308 
2309 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2310 }
2311 
2312 void
2313 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2314 {
2315 	for (int c = 0; c < vd->vdev_children; c++)
2316 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2317 
2318 	if (vd->vdev_ops->vdev_op_leaf)
2319 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2320 }
2321 
2322 /*
2323  * DTLs.
2324  *
2325  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2326  * the vdev has less than perfect replication.  There are four kinds of DTL:
2327  *
2328  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2329  *
2330  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2331  *
2332  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2333  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2334  *	txgs that was scrubbed.
2335  *
2336  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2337  *	persistent errors or just some device being offline.
2338  *	Unlike the other three, the DTL_OUTAGE map is not generally
2339  *	maintained; it's only computed when needed, typically to
2340  *	determine whether a device can be detached.
2341  *
2342  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2343  * either has the data or it doesn't.
2344  *
2345  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2346  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2347  * if any child is less than fully replicated, then so is its parent.
2348  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2349  * comprising only those txgs which appear in 'maxfaults' or more children;
2350  * those are the txgs we don't have enough replication to read.  For example,
2351  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2352  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2353  * two child DTL_MISSING maps.
2354  *
2355  * It should be clear from the above that to compute the DTLs and outage maps
2356  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2357  * Therefore, that is all we keep on disk.  When loading the pool, or after
2358  * a configuration change, we generate all other DTLs from first principles.
2359  */
2360 void
2361 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2362 {
2363 	range_tree_t *rt = vd->vdev_dtl[t];
2364 
2365 	ASSERT(t < DTL_TYPES);
2366 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2367 	ASSERT(spa_writeable(vd->vdev_spa));
2368 
2369 	mutex_enter(&vd->vdev_dtl_lock);
2370 	if (!range_tree_contains(rt, txg, size))
2371 		range_tree_add(rt, txg, size);
2372 	mutex_exit(&vd->vdev_dtl_lock);
2373 }
2374 
2375 boolean_t
2376 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2377 {
2378 	range_tree_t *rt = vd->vdev_dtl[t];
2379 	boolean_t dirty = B_FALSE;
2380 
2381 	ASSERT(t < DTL_TYPES);
2382 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2383 
2384 	/*
2385 	 * While we are loading the pool, the DTLs have not been loaded yet.
2386 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2387 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2388 	 * when loading the pool (relying on the checksum to ensure that
2389 	 * we get the right data -- note that we while loading, we are
2390 	 * only reading the MOS, which is always checksummed).
2391 	 */
2392 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2393 		return (B_FALSE);
2394 
2395 	mutex_enter(&vd->vdev_dtl_lock);
2396 	if (!range_tree_is_empty(rt))
2397 		dirty = range_tree_contains(rt, txg, size);
2398 	mutex_exit(&vd->vdev_dtl_lock);
2399 
2400 	return (dirty);
2401 }
2402 
2403 boolean_t
2404 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2405 {
2406 	range_tree_t *rt = vd->vdev_dtl[t];
2407 	boolean_t empty;
2408 
2409 	mutex_enter(&vd->vdev_dtl_lock);
2410 	empty = range_tree_is_empty(rt);
2411 	mutex_exit(&vd->vdev_dtl_lock);
2412 
2413 	return (empty);
2414 }
2415 
2416 /*
2417  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2418  */
2419 boolean_t
2420 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2421 {
2422 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2423 
2424 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2425 	    vd->vdev_ops->vdev_op_leaf)
2426 		return (B_TRUE);
2427 
2428 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2429 }
2430 
2431 /*
2432  * Returns the lowest txg in the DTL range.
2433  */
2434 static uint64_t
2435 vdev_dtl_min(vdev_t *vd)
2436 {
2437 	range_seg_t *rs;
2438 
2439 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2440 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2441 	ASSERT0(vd->vdev_children);
2442 
2443 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2444 	return (rs->rs_start - 1);
2445 }
2446 
2447 /*
2448  * Returns the highest txg in the DTL.
2449  */
2450 static uint64_t
2451 vdev_dtl_max(vdev_t *vd)
2452 {
2453 	range_seg_t *rs;
2454 
2455 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2456 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2457 	ASSERT0(vd->vdev_children);
2458 
2459 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2460 	return (rs->rs_end);
2461 }
2462 
2463 /*
2464  * Determine if a resilvering vdev should remove any DTL entries from
2465  * its range. If the vdev was resilvering for the entire duration of the
2466  * scan then it should excise that range from its DTLs. Otherwise, this
2467  * vdev is considered partially resilvered and should leave its DTL
2468  * entries intact. The comment in vdev_dtl_reassess() describes how we
2469  * excise the DTLs.
2470  */
2471 static boolean_t
2472 vdev_dtl_should_excise(vdev_t *vd)
2473 {
2474 	spa_t *spa = vd->vdev_spa;
2475 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2476 
2477 	ASSERT0(scn->scn_phys.scn_errors);
2478 	ASSERT0(vd->vdev_children);
2479 
2480 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2481 		return (B_FALSE);
2482 
2483 	if (vd->vdev_resilver_deferred)
2484 		return (B_FALSE);
2485 
2486 	if (vd->vdev_resilver_txg == 0 ||
2487 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2488 		return (B_TRUE);
2489 
2490 	/*
2491 	 * When a resilver is initiated the scan will assign the scn_max_txg
2492 	 * value to the highest txg value that exists in all DTLs. If this
2493 	 * device's max DTL is not part of this scan (i.e. it is not in
2494 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2495 	 * for excision.
2496 	 */
2497 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2498 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2499 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2500 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2501 		return (B_TRUE);
2502 	}
2503 	return (B_FALSE);
2504 }
2505 
2506 /*
2507  * Reassess DTLs after a config change or scrub completion.
2508  */
2509 void
2510 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2511 {
2512 	spa_t *spa = vd->vdev_spa;
2513 	avl_tree_t reftree;
2514 	int minref;
2515 
2516 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2517 
2518 	for (int c = 0; c < vd->vdev_children; c++)
2519 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2520 		    scrub_txg, scrub_done);
2521 
2522 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2523 		return;
2524 
2525 	if (vd->vdev_ops->vdev_op_leaf) {
2526 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2527 
2528 		mutex_enter(&vd->vdev_dtl_lock);
2529 
2530 		/*
2531 		 * If we've completed a scan cleanly then determine
2532 		 * if this vdev should remove any DTLs. We only want to
2533 		 * excise regions on vdevs that were available during
2534 		 * the entire duration of this scan.
2535 		 */
2536 		if (scrub_txg != 0 &&
2537 		    (spa->spa_scrub_started ||
2538 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2539 		    vdev_dtl_should_excise(vd)) {
2540 			/*
2541 			 * We completed a scrub up to scrub_txg.  If we
2542 			 * did it without rebooting, then the scrub dtl
2543 			 * will be valid, so excise the old region and
2544 			 * fold in the scrub dtl.  Otherwise, leave the
2545 			 * dtl as-is if there was an error.
2546 			 *
2547 			 * There's little trick here: to excise the beginning
2548 			 * of the DTL_MISSING map, we put it into a reference
2549 			 * tree and then add a segment with refcnt -1 that
2550 			 * covers the range [0, scrub_txg).  This means
2551 			 * that each txg in that range has refcnt -1 or 0.
2552 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2553 			 * entries in the range [0, scrub_txg) will have a
2554 			 * positive refcnt -- either 1 or 2.  We then convert
2555 			 * the reference tree into the new DTL_MISSING map.
2556 			 */
2557 			space_reftree_create(&reftree);
2558 			space_reftree_add_map(&reftree,
2559 			    vd->vdev_dtl[DTL_MISSING], 1);
2560 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2561 			space_reftree_add_map(&reftree,
2562 			    vd->vdev_dtl[DTL_SCRUB], 2);
2563 			space_reftree_generate_map(&reftree,
2564 			    vd->vdev_dtl[DTL_MISSING], 1);
2565 			space_reftree_destroy(&reftree);
2566 		}
2567 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2568 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2569 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2570 		if (scrub_done)
2571 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2572 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2573 		if (!vdev_readable(vd))
2574 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2575 		else
2576 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2577 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2578 
2579 		/*
2580 		 * If the vdev was resilvering and no longer has any
2581 		 * DTLs then reset its resilvering flag.
2582 		 */
2583 		if (vd->vdev_resilver_txg != 0 &&
2584 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2585 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2586 			vd->vdev_resilver_txg = 0;
2587 
2588 		mutex_exit(&vd->vdev_dtl_lock);
2589 
2590 		if (txg != 0)
2591 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2592 		return;
2593 	}
2594 
2595 	mutex_enter(&vd->vdev_dtl_lock);
2596 	for (int t = 0; t < DTL_TYPES; t++) {
2597 		/* account for child's outage in parent's missing map */
2598 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2599 		if (t == DTL_SCRUB)
2600 			continue;			/* leaf vdevs only */
2601 		if (t == DTL_PARTIAL)
2602 			minref = 1;			/* i.e. non-zero */
2603 		else if (vd->vdev_nparity != 0)
2604 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2605 		else
2606 			minref = vd->vdev_children;	/* any kind of mirror */
2607 		space_reftree_create(&reftree);
2608 		for (int c = 0; c < vd->vdev_children; c++) {
2609 			vdev_t *cvd = vd->vdev_child[c];
2610 			mutex_enter(&cvd->vdev_dtl_lock);
2611 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2612 			mutex_exit(&cvd->vdev_dtl_lock);
2613 		}
2614 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2615 		space_reftree_destroy(&reftree);
2616 	}
2617 	mutex_exit(&vd->vdev_dtl_lock);
2618 }
2619 
2620 int
2621 vdev_dtl_load(vdev_t *vd)
2622 {
2623 	spa_t *spa = vd->vdev_spa;
2624 	objset_t *mos = spa->spa_meta_objset;
2625 	int error = 0;
2626 
2627 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2628 		ASSERT(vdev_is_concrete(vd));
2629 
2630 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2631 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2632 		if (error)
2633 			return (error);
2634 		ASSERT(vd->vdev_dtl_sm != NULL);
2635 
2636 		mutex_enter(&vd->vdev_dtl_lock);
2637 		error = space_map_load(vd->vdev_dtl_sm,
2638 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2639 		mutex_exit(&vd->vdev_dtl_lock);
2640 
2641 		return (error);
2642 	}
2643 
2644 	for (int c = 0; c < vd->vdev_children; c++) {
2645 		error = vdev_dtl_load(vd->vdev_child[c]);
2646 		if (error != 0)
2647 			break;
2648 	}
2649 
2650 	return (error);
2651 }
2652 
2653 static void
2654 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2655 {
2656 	spa_t *spa = vd->vdev_spa;
2657 	objset_t *mos = spa->spa_meta_objset;
2658 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2659 	const char *string;
2660 
2661 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2662 
2663 	string =
2664 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2665 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2666 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2667 
2668 	ASSERT(string != NULL);
2669 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2670 	    1, strlen(string) + 1, string, tx));
2671 
2672 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2673 		spa_activate_allocation_classes(spa, tx);
2674 	}
2675 }
2676 
2677 void
2678 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2679 {
2680 	spa_t *spa = vd->vdev_spa;
2681 
2682 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2683 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2684 	    zapobj, tx));
2685 }
2686 
2687 uint64_t
2688 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2689 {
2690 	spa_t *spa = vd->vdev_spa;
2691 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2692 	    DMU_OT_NONE, 0, tx);
2693 
2694 	ASSERT(zap != 0);
2695 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2696 	    zap, tx));
2697 
2698 	return (zap);
2699 }
2700 
2701 void
2702 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2703 {
2704 	if (vd->vdev_ops != &vdev_hole_ops &&
2705 	    vd->vdev_ops != &vdev_missing_ops &&
2706 	    vd->vdev_ops != &vdev_root_ops &&
2707 	    !vd->vdev_top->vdev_removing) {
2708 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2709 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2710 		}
2711 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2712 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2713 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2714 				vdev_zap_allocation_data(vd, tx);
2715 		}
2716 	}
2717 
2718 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2719 		vdev_construct_zaps(vd->vdev_child[i], tx);
2720 	}
2721 }
2722 
2723 void
2724 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2725 {
2726 	spa_t *spa = vd->vdev_spa;
2727 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2728 	objset_t *mos = spa->spa_meta_objset;
2729 	range_tree_t *rtsync;
2730 	dmu_tx_t *tx;
2731 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2732 
2733 	ASSERT(vdev_is_concrete(vd));
2734 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2735 
2736 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2737 
2738 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2739 		mutex_enter(&vd->vdev_dtl_lock);
2740 		space_map_free(vd->vdev_dtl_sm, tx);
2741 		space_map_close(vd->vdev_dtl_sm);
2742 		vd->vdev_dtl_sm = NULL;
2743 		mutex_exit(&vd->vdev_dtl_lock);
2744 
2745 		/*
2746 		 * We only destroy the leaf ZAP for detached leaves or for
2747 		 * removed log devices. Removed data devices handle leaf ZAP
2748 		 * cleanup later, once cancellation is no longer possible.
2749 		 */
2750 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2751 		    vd->vdev_top->vdev_islog)) {
2752 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2753 			vd->vdev_leaf_zap = 0;
2754 		}
2755 
2756 		dmu_tx_commit(tx);
2757 		return;
2758 	}
2759 
2760 	if (vd->vdev_dtl_sm == NULL) {
2761 		uint64_t new_object;
2762 
2763 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
2764 		VERIFY3U(new_object, !=, 0);
2765 
2766 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2767 		    0, -1ULL, 0));
2768 		ASSERT(vd->vdev_dtl_sm != NULL);
2769 	}
2770 
2771 	rtsync = range_tree_create(NULL, NULL);
2772 
2773 	mutex_enter(&vd->vdev_dtl_lock);
2774 	range_tree_walk(rt, range_tree_add, rtsync);
2775 	mutex_exit(&vd->vdev_dtl_lock);
2776 
2777 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
2778 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2779 	range_tree_vacate(rtsync, NULL, NULL);
2780 
2781 	range_tree_destroy(rtsync);
2782 
2783 	/*
2784 	 * If the object for the space map has changed then dirty
2785 	 * the top level so that we update the config.
2786 	 */
2787 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2788 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2789 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2790 		    (u_longlong_t)object,
2791 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2792 		vdev_config_dirty(vd->vdev_top);
2793 	}
2794 
2795 	dmu_tx_commit(tx);
2796 }
2797 
2798 /*
2799  * Determine whether the specified vdev can be offlined/detached/removed
2800  * without losing data.
2801  */
2802 boolean_t
2803 vdev_dtl_required(vdev_t *vd)
2804 {
2805 	spa_t *spa = vd->vdev_spa;
2806 	vdev_t *tvd = vd->vdev_top;
2807 	uint8_t cant_read = vd->vdev_cant_read;
2808 	boolean_t required;
2809 
2810 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2811 
2812 	if (vd == spa->spa_root_vdev || vd == tvd)
2813 		return (B_TRUE);
2814 
2815 	/*
2816 	 * Temporarily mark the device as unreadable, and then determine
2817 	 * whether this results in any DTL outages in the top-level vdev.
2818 	 * If not, we can safely offline/detach/remove the device.
2819 	 */
2820 	vd->vdev_cant_read = B_TRUE;
2821 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2822 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2823 	vd->vdev_cant_read = cant_read;
2824 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2825 
2826 	if (!required && zio_injection_enabled)
2827 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2828 
2829 	return (required);
2830 }
2831 
2832 /*
2833  * Determine if resilver is needed, and if so the txg range.
2834  */
2835 boolean_t
2836 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2837 {
2838 	boolean_t needed = B_FALSE;
2839 	uint64_t thismin = UINT64_MAX;
2840 	uint64_t thismax = 0;
2841 
2842 	if (vd->vdev_children == 0) {
2843 		mutex_enter(&vd->vdev_dtl_lock);
2844 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2845 		    vdev_writeable(vd)) {
2846 
2847 			thismin = vdev_dtl_min(vd);
2848 			thismax = vdev_dtl_max(vd);
2849 			needed = B_TRUE;
2850 		}
2851 		mutex_exit(&vd->vdev_dtl_lock);
2852 	} else {
2853 		for (int c = 0; c < vd->vdev_children; c++) {
2854 			vdev_t *cvd = vd->vdev_child[c];
2855 			uint64_t cmin, cmax;
2856 
2857 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2858 				thismin = MIN(thismin, cmin);
2859 				thismax = MAX(thismax, cmax);
2860 				needed = B_TRUE;
2861 			}
2862 		}
2863 	}
2864 
2865 	if (needed && minp) {
2866 		*minp = thismin;
2867 		*maxp = thismax;
2868 	}
2869 	return (needed);
2870 }
2871 
2872 /*
2873  * Gets the checkpoint space map object from the vdev's ZAP.
2874  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2875  * or the ZAP doesn't exist yet.
2876  */
2877 int
2878 vdev_checkpoint_sm_object(vdev_t *vd)
2879 {
2880 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2881 	if (vd->vdev_top_zap == 0) {
2882 		return (0);
2883 	}
2884 
2885 	uint64_t sm_obj = 0;
2886 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2887 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2888 
2889 	ASSERT(err == 0 || err == ENOENT);
2890 
2891 	return (sm_obj);
2892 }
2893 
2894 int
2895 vdev_load(vdev_t *vd)
2896 {
2897 	int error = 0;
2898 	/*
2899 	 * Recursively load all children.
2900 	 */
2901 	for (int c = 0; c < vd->vdev_children; c++) {
2902 		error = vdev_load(vd->vdev_child[c]);
2903 		if (error != 0) {
2904 			return (error);
2905 		}
2906 	}
2907 
2908 	vdev_set_deflate_ratio(vd);
2909 
2910 	/*
2911 	 * On spa_load path, grab the allocation bias from our zap
2912 	 */
2913 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2914 		spa_t *spa = vd->vdev_spa;
2915 		char bias_str[64];
2916 
2917 		if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2918 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2919 		    bias_str) == 0) {
2920 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2921 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2922 		}
2923 	}
2924 
2925 	/*
2926 	 * If this is a top-level vdev, initialize its metaslabs.
2927 	 */
2928 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2929 		vdev_metaslab_group_create(vd);
2930 
2931 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2932 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2933 			    VDEV_AUX_CORRUPT_DATA);
2934 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2935 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2936 			    (u_longlong_t)vd->vdev_asize);
2937 			return (SET_ERROR(ENXIO));
2938 		}
2939 
2940 		error = vdev_metaslab_init(vd, 0);
2941 		if (error != 0) {
2942 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2943 			    "[error=%d]", error);
2944 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2945 			    VDEV_AUX_CORRUPT_DATA);
2946 			return (error);
2947 		}
2948 
2949 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2950 		if (checkpoint_sm_obj != 0) {
2951 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2952 			ASSERT(vd->vdev_asize != 0);
2953 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2954 
2955 			error = space_map_open(&vd->vdev_checkpoint_sm,
2956 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2957 			    vd->vdev_ashift);
2958 			if (error != 0) {
2959 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2960 				    "failed for checkpoint spacemap (obj %llu) "
2961 				    "[error=%d]",
2962 				    (u_longlong_t)checkpoint_sm_obj, error);
2963 				return (error);
2964 			}
2965 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2966 
2967 			/*
2968 			 * Since the checkpoint_sm contains free entries
2969 			 * exclusively we can use space_map_allocated() to
2970 			 * indicate the cumulative checkpointed space that
2971 			 * has been freed.
2972 			 */
2973 			vd->vdev_stat.vs_checkpoint_space =
2974 			    -space_map_allocated(vd->vdev_checkpoint_sm);
2975 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2976 			    vd->vdev_stat.vs_checkpoint_space;
2977 		}
2978 	}
2979 
2980 	/*
2981 	 * If this is a leaf vdev, load its DTL.
2982 	 */
2983 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2984 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2985 		    VDEV_AUX_CORRUPT_DATA);
2986 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2987 		    "[error=%d]", error);
2988 		return (error);
2989 	}
2990 
2991 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2992 	if (obsolete_sm_object != 0) {
2993 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2994 		ASSERT(vd->vdev_asize != 0);
2995 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2996 
2997 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2998 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2999 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3000 			    VDEV_AUX_CORRUPT_DATA);
3001 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3002 			    "obsolete spacemap (obj %llu) [error=%d]",
3003 			    (u_longlong_t)obsolete_sm_object, error);
3004 			return (error);
3005 		}
3006 	}
3007 
3008 	return (0);
3009 }
3010 
3011 /*
3012  * The special vdev case is used for hot spares and l2cache devices.  Its
3013  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3014  * we make sure that we can open the underlying device, then try to read the
3015  * label, and make sure that the label is sane and that it hasn't been
3016  * repurposed to another pool.
3017  */
3018 int
3019 vdev_validate_aux(vdev_t *vd)
3020 {
3021 	nvlist_t *label;
3022 	uint64_t guid, version;
3023 	uint64_t state;
3024 
3025 	if (!vdev_readable(vd))
3026 		return (0);
3027 
3028 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3029 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3030 		    VDEV_AUX_CORRUPT_DATA);
3031 		return (-1);
3032 	}
3033 
3034 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3035 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3036 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3037 	    guid != vd->vdev_guid ||
3038 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3039 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3040 		    VDEV_AUX_CORRUPT_DATA);
3041 		nvlist_free(label);
3042 		return (-1);
3043 	}
3044 
3045 	/*
3046 	 * We don't actually check the pool state here.  If it's in fact in
3047 	 * use by another pool, we update this fact on the fly when requested.
3048 	 */
3049 	nvlist_free(label);
3050 	return (0);
3051 }
3052 
3053 static void
3054 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3055 {
3056 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3057 
3058 	if (vd->vdev_top_zap == 0)
3059 		return;
3060 
3061 	uint64_t object = 0;
3062 	int err = zap_lookup(mos, vd->vdev_top_zap,
3063 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3064 	if (err == ENOENT)
3065 		return;
3066 
3067 	VERIFY0(dmu_object_free(mos, object, tx));
3068 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3069 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3070 }
3071 
3072 /*
3073  * Free the objects used to store this vdev's spacemaps, and the array
3074  * that points to them.
3075  */
3076 void
3077 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3078 {
3079 	if (vd->vdev_ms_array == 0)
3080 		return;
3081 
3082 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3083 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3084 	size_t array_bytes = array_count * sizeof (uint64_t);
3085 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3086 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3087 	    array_bytes, smobj_array, 0));
3088 
3089 	for (uint64_t i = 0; i < array_count; i++) {
3090 		uint64_t smobj = smobj_array[i];
3091 		if (smobj == 0)
3092 			continue;
3093 
3094 		space_map_free_obj(mos, smobj, tx);
3095 	}
3096 
3097 	kmem_free(smobj_array, array_bytes);
3098 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3099 	vdev_destroy_ms_flush_data(vd, tx);
3100 	vd->vdev_ms_array = 0;
3101 }
3102 
3103 static void
3104 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3105 {
3106 	spa_t *spa = vd->vdev_spa;
3107 
3108 	ASSERT(vd->vdev_islog);
3109 	ASSERT(vd == vd->vdev_top);
3110 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3111 
3112 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3113 
3114 	vdev_destroy_spacemaps(vd, tx);
3115 	if (vd->vdev_top_zap != 0) {
3116 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3117 		vd->vdev_top_zap = 0;
3118 	}
3119 
3120 	dmu_tx_commit(tx);
3121 }
3122 
3123 void
3124 vdev_sync_done(vdev_t *vd, uint64_t txg)
3125 {
3126 	metaslab_t *msp;
3127 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3128 
3129 	ASSERT(vdev_is_concrete(vd));
3130 
3131 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3132 	    != NULL)
3133 		metaslab_sync_done(msp, txg);
3134 
3135 	if (reassess)
3136 		metaslab_sync_reassess(vd->vdev_mg);
3137 }
3138 
3139 void
3140 vdev_sync(vdev_t *vd, uint64_t txg)
3141 {
3142 	spa_t *spa = vd->vdev_spa;
3143 	vdev_t *lvd;
3144 	metaslab_t *msp;
3145 
3146 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3147 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3148 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3149 		ASSERT(vd->vdev_removing ||
3150 		    vd->vdev_ops == &vdev_indirect_ops);
3151 
3152 		vdev_indirect_sync_obsolete(vd, tx);
3153 
3154 		/*
3155 		 * If the vdev is indirect, it can't have dirty
3156 		 * metaslabs or DTLs.
3157 		 */
3158 		if (vd->vdev_ops == &vdev_indirect_ops) {
3159 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3160 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3161 			dmu_tx_commit(tx);
3162 			return;
3163 		}
3164 	}
3165 
3166 	ASSERT(vdev_is_concrete(vd));
3167 
3168 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3169 	    !vd->vdev_removing) {
3170 		ASSERT(vd == vd->vdev_top);
3171 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3172 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3173 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3174 		ASSERT(vd->vdev_ms_array != 0);
3175 		vdev_config_dirty(vd);
3176 	}
3177 
3178 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3179 		metaslab_sync(msp, txg);
3180 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3181 	}
3182 
3183 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3184 		vdev_dtl_sync(lvd, txg);
3185 
3186 	/*
3187 	 * If this is an empty log device being removed, destroy the
3188 	 * metadata associated with it.
3189 	 */
3190 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3191 		vdev_remove_empty_log(vd, txg);
3192 
3193 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3194 	dmu_tx_commit(tx);
3195 }
3196 
3197 uint64_t
3198 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3199 {
3200 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3201 }
3202 
3203 /*
3204  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3205  * not be opened, and no I/O is attempted.
3206  */
3207 int
3208 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3209 {
3210 	vdev_t *vd, *tvd;
3211 
3212 	spa_vdev_state_enter(spa, SCL_NONE);
3213 
3214 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3215 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3216 
3217 	if (!vd->vdev_ops->vdev_op_leaf)
3218 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3219 
3220 	tvd = vd->vdev_top;
3221 
3222 	/*
3223 	 * We don't directly use the aux state here, but if we do a
3224 	 * vdev_reopen(), we need this value to be present to remember why we
3225 	 * were faulted.
3226 	 */
3227 	vd->vdev_label_aux = aux;
3228 
3229 	/*
3230 	 * Faulted state takes precedence over degraded.
3231 	 */
3232 	vd->vdev_delayed_close = B_FALSE;
3233 	vd->vdev_faulted = 1ULL;
3234 	vd->vdev_degraded = 0ULL;
3235 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3236 
3237 	/*
3238 	 * If this device has the only valid copy of the data, then
3239 	 * back off and simply mark the vdev as degraded instead.
3240 	 */
3241 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3242 		vd->vdev_degraded = 1ULL;
3243 		vd->vdev_faulted = 0ULL;
3244 
3245 		/*
3246 		 * If we reopen the device and it's not dead, only then do we
3247 		 * mark it degraded.
3248 		 */
3249 		vdev_reopen(tvd);
3250 
3251 		if (vdev_readable(vd))
3252 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3253 	}
3254 
3255 	return (spa_vdev_state_exit(spa, vd, 0));
3256 }
3257 
3258 /*
3259  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3260  * user that something is wrong.  The vdev continues to operate as normal as far
3261  * as I/O is concerned.
3262  */
3263 int
3264 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3265 {
3266 	vdev_t *vd;
3267 
3268 	spa_vdev_state_enter(spa, SCL_NONE);
3269 
3270 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3271 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3272 
3273 	if (!vd->vdev_ops->vdev_op_leaf)
3274 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3275 
3276 	/*
3277 	 * If the vdev is already faulted, then don't do anything.
3278 	 */
3279 	if (vd->vdev_faulted || vd->vdev_degraded)
3280 		return (spa_vdev_state_exit(spa, NULL, 0));
3281 
3282 	vd->vdev_degraded = 1ULL;
3283 	if (!vdev_is_dead(vd))
3284 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3285 		    aux);
3286 
3287 	return (spa_vdev_state_exit(spa, vd, 0));
3288 }
3289 
3290 /*
3291  * Online the given vdev.
3292  *
3293  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3294  * spare device should be detached when the device finishes resilvering.
3295  * Second, the online should be treated like a 'test' online case, so no FMA
3296  * events are generated if the device fails to open.
3297  */
3298 int
3299 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3300 {
3301 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3302 	boolean_t wasoffline;
3303 	vdev_state_t oldstate;
3304 
3305 	spa_vdev_state_enter(spa, SCL_NONE);
3306 
3307 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3308 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3309 
3310 	if (!vd->vdev_ops->vdev_op_leaf)
3311 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3312 
3313 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3314 	oldstate = vd->vdev_state;
3315 
3316 	tvd = vd->vdev_top;
3317 	vd->vdev_offline = B_FALSE;
3318 	vd->vdev_tmpoffline = B_FALSE;
3319 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3320 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3321 
3322 	/* XXX - L2ARC 1.0 does not support expansion */
3323 	if (!vd->vdev_aux) {
3324 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3325 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3326 	}
3327 
3328 	vdev_reopen(tvd);
3329 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3330 
3331 	if (!vd->vdev_aux) {
3332 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3333 			pvd->vdev_expanding = B_FALSE;
3334 	}
3335 
3336 	if (newstate)
3337 		*newstate = vd->vdev_state;
3338 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3339 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3340 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3341 	    vd->vdev_parent->vdev_child[0] == vd)
3342 		vd->vdev_unspare = B_TRUE;
3343 
3344 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3345 
3346 		/* XXX - L2ARC 1.0 does not support expansion */
3347 		if (vd->vdev_aux)
3348 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3349 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3350 	}
3351 
3352 	/* Restart initializing if necessary */
3353 	mutex_enter(&vd->vdev_initialize_lock);
3354 	if (vdev_writeable(vd) &&
3355 	    vd->vdev_initialize_thread == NULL &&
3356 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3357 		(void) vdev_initialize(vd);
3358 	}
3359 	mutex_exit(&vd->vdev_initialize_lock);
3360 
3361 	/* Restart trimming if necessary */
3362 	mutex_enter(&vd->vdev_trim_lock);
3363 	if (vdev_writeable(vd) &&
3364 	    vd->vdev_trim_thread == NULL &&
3365 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3366 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3367 		    vd->vdev_trim_secure);
3368 	}
3369 	mutex_exit(&vd->vdev_trim_lock);
3370 
3371 	if (wasoffline ||
3372 	    (oldstate < VDEV_STATE_DEGRADED &&
3373 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3374 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3375 
3376 	return (spa_vdev_state_exit(spa, vd, 0));
3377 }
3378 
3379 static int
3380 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3381 {
3382 	vdev_t *vd, *tvd;
3383 	int error = 0;
3384 	uint64_t generation;
3385 	metaslab_group_t *mg;
3386 
3387 top:
3388 	spa_vdev_state_enter(spa, SCL_ALLOC);
3389 
3390 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3391 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3392 
3393 	if (!vd->vdev_ops->vdev_op_leaf)
3394 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3395 
3396 	tvd = vd->vdev_top;
3397 	mg = tvd->vdev_mg;
3398 	generation = spa->spa_config_generation + 1;
3399 
3400 	/*
3401 	 * If the device isn't already offline, try to offline it.
3402 	 */
3403 	if (!vd->vdev_offline) {
3404 		/*
3405 		 * If this device has the only valid copy of some data,
3406 		 * don't allow it to be offlined. Log devices are always
3407 		 * expendable.
3408 		 */
3409 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3410 		    vdev_dtl_required(vd))
3411 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3412 
3413 		/*
3414 		 * If the top-level is a slog and it has had allocations
3415 		 * then proceed.  We check that the vdev's metaslab group
3416 		 * is not NULL since it's possible that we may have just
3417 		 * added this vdev but not yet initialized its metaslabs.
3418 		 */
3419 		if (tvd->vdev_islog && mg != NULL) {
3420 			/*
3421 			 * Prevent any future allocations.
3422 			 */
3423 			metaslab_group_passivate(mg);
3424 			(void) spa_vdev_state_exit(spa, vd, 0);
3425 
3426 			error = spa_reset_logs(spa);
3427 
3428 			/*
3429 			 * If the log device was successfully reset but has
3430 			 * checkpointed data, do not offline it.
3431 			 */
3432 			if (error == 0 &&
3433 			    tvd->vdev_checkpoint_sm != NULL) {
3434 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3435 			}
3436 
3437 			spa_vdev_state_enter(spa, SCL_ALLOC);
3438 
3439 			/*
3440 			 * Check to see if the config has changed.
3441 			 */
3442 			if (error || generation != spa->spa_config_generation) {
3443 				metaslab_group_activate(mg);
3444 				if (error)
3445 					return (spa_vdev_state_exit(spa,
3446 					    vd, error));
3447 				(void) spa_vdev_state_exit(spa, vd, 0);
3448 				goto top;
3449 			}
3450 			ASSERT0(tvd->vdev_stat.vs_alloc);
3451 		}
3452 
3453 		/*
3454 		 * Offline this device and reopen its top-level vdev.
3455 		 * If the top-level vdev is a log device then just offline
3456 		 * it. Otherwise, if this action results in the top-level
3457 		 * vdev becoming unusable, undo it and fail the request.
3458 		 */
3459 		vd->vdev_offline = B_TRUE;
3460 		vdev_reopen(tvd);
3461 
3462 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3463 		    vdev_is_dead(tvd)) {
3464 			vd->vdev_offline = B_FALSE;
3465 			vdev_reopen(tvd);
3466 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3467 		}
3468 
3469 		/*
3470 		 * Add the device back into the metaslab rotor so that
3471 		 * once we online the device it's open for business.
3472 		 */
3473 		if (tvd->vdev_islog && mg != NULL)
3474 			metaslab_group_activate(mg);
3475 	}
3476 
3477 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3478 
3479 	return (spa_vdev_state_exit(spa, vd, 0));
3480 }
3481 
3482 int
3483 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3484 {
3485 	int error;
3486 
3487 	mutex_enter(&spa->spa_vdev_top_lock);
3488 	error = vdev_offline_locked(spa, guid, flags);
3489 	mutex_exit(&spa->spa_vdev_top_lock);
3490 
3491 	return (error);
3492 }
3493 
3494 /*
3495  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3496  * vdev_offline(), we assume the spa config is locked.  We also clear all
3497  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3498  */
3499 void
3500 vdev_clear(spa_t *spa, vdev_t *vd)
3501 {
3502 	vdev_t *rvd = spa->spa_root_vdev;
3503 
3504 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3505 
3506 	if (vd == NULL)
3507 		vd = rvd;
3508 
3509 	vd->vdev_stat.vs_read_errors = 0;
3510 	vd->vdev_stat.vs_write_errors = 0;
3511 	vd->vdev_stat.vs_checksum_errors = 0;
3512 
3513 	for (int c = 0; c < vd->vdev_children; c++)
3514 		vdev_clear(spa, vd->vdev_child[c]);
3515 
3516 	/*
3517 	 * It makes no sense to "clear" an indirect vdev.
3518 	 */
3519 	if (!vdev_is_concrete(vd))
3520 		return;
3521 
3522 	/*
3523 	 * If we're in the FAULTED state or have experienced failed I/O, then
3524 	 * clear the persistent state and attempt to reopen the device.  We
3525 	 * also mark the vdev config dirty, so that the new faulted state is
3526 	 * written out to disk.
3527 	 */
3528 	if (vd->vdev_faulted || vd->vdev_degraded ||
3529 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3530 
3531 		/*
3532 		 * When reopening in reponse to a clear event, it may be due to
3533 		 * a fmadm repair request.  In this case, if the device is
3534 		 * still broken, we want to still post the ereport again.
3535 		 */
3536 		vd->vdev_forcefault = B_TRUE;
3537 
3538 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3539 		vd->vdev_cant_read = B_FALSE;
3540 		vd->vdev_cant_write = B_FALSE;
3541 
3542 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3543 
3544 		vd->vdev_forcefault = B_FALSE;
3545 
3546 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3547 			vdev_state_dirty(vd->vdev_top);
3548 
3549 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3550 			if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3551 			    spa_feature_is_enabled(spa,
3552 			    SPA_FEATURE_RESILVER_DEFER))
3553 				vdev_set_deferred_resilver(spa, vd);
3554 			else
3555 				spa_async_request(spa, SPA_ASYNC_RESILVER);
3556 		}
3557 
3558 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3559 	}
3560 
3561 	/*
3562 	 * When clearing a FMA-diagnosed fault, we always want to
3563 	 * unspare the device, as we assume that the original spare was
3564 	 * done in response to the FMA fault.
3565 	 */
3566 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3567 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3568 	    vd->vdev_parent->vdev_child[0] == vd)
3569 		vd->vdev_unspare = B_TRUE;
3570 }
3571 
3572 boolean_t
3573 vdev_is_dead(vdev_t *vd)
3574 {
3575 	/*
3576 	 * Holes and missing devices are always considered "dead".
3577 	 * This simplifies the code since we don't have to check for
3578 	 * these types of devices in the various code paths.
3579 	 * Instead we rely on the fact that we skip over dead devices
3580 	 * before issuing I/O to them.
3581 	 */
3582 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3583 	    vd->vdev_ops == &vdev_hole_ops ||
3584 	    vd->vdev_ops == &vdev_missing_ops);
3585 }
3586 
3587 boolean_t
3588 vdev_readable(vdev_t *vd)
3589 {
3590 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3591 }
3592 
3593 boolean_t
3594 vdev_writeable(vdev_t *vd)
3595 {
3596 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3597 	    vdev_is_concrete(vd));
3598 }
3599 
3600 boolean_t
3601 vdev_allocatable(vdev_t *vd)
3602 {
3603 	uint64_t state = vd->vdev_state;
3604 
3605 	/*
3606 	 * We currently allow allocations from vdevs which may be in the
3607 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3608 	 * fails to reopen then we'll catch it later when we're holding
3609 	 * the proper locks.  Note that we have to get the vdev state
3610 	 * in a local variable because although it changes atomically,
3611 	 * we're asking two separate questions about it.
3612 	 */
3613 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3614 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3615 	    vd->vdev_mg->mg_initialized);
3616 }
3617 
3618 boolean_t
3619 vdev_accessible(vdev_t *vd, zio_t *zio)
3620 {
3621 	ASSERT(zio->io_vd == vd);
3622 
3623 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3624 		return (B_FALSE);
3625 
3626 	if (zio->io_type == ZIO_TYPE_READ)
3627 		return (!vd->vdev_cant_read);
3628 
3629 	if (zio->io_type == ZIO_TYPE_WRITE)
3630 		return (!vd->vdev_cant_write);
3631 
3632 	return (B_TRUE);
3633 }
3634 
3635 boolean_t
3636 vdev_is_spacemap_addressable(vdev_t *vd)
3637 {
3638 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3639 		return (B_TRUE);
3640 
3641 	/*
3642 	 * If double-word space map entries are not enabled we assume
3643 	 * 47 bits of the space map entry are dedicated to the entry's
3644 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3645 	 * to calculate the maximum address that can be described by a
3646 	 * space map entry for the given device.
3647 	 */
3648 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3649 
3650 	if (shift >= 63) /* detect potential overflow */
3651 		return (B_TRUE);
3652 
3653 	return (vd->vdev_asize < (1ULL << shift));
3654 }
3655 
3656 /*
3657  * Get statistics for the given vdev.
3658  */
3659 void
3660 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3661 {
3662 	spa_t *spa = vd->vdev_spa;
3663 	vdev_t *rvd = spa->spa_root_vdev;
3664 	vdev_t *tvd = vd->vdev_top;
3665 
3666 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3667 
3668 	mutex_enter(&vd->vdev_stat_lock);
3669 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3670 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3671 	vs->vs_state = vd->vdev_state;
3672 	vs->vs_rsize = vdev_get_min_asize(vd);
3673 	if (vd->vdev_ops->vdev_op_leaf) {
3674 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3675 		/*
3676 		 * Report intializing progress. Since we don't have the
3677 		 * initializing locks held, this is only an estimate (although a
3678 		 * fairly accurate one).
3679 		 */
3680 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3681 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3682 		vs->vs_initialize_state = vd->vdev_initialize_state;
3683 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3684 	}
3685 
3686 	/*
3687 	 * Report manual TRIM progress. Since we don't have
3688 	 * the manual TRIM locks held, this is only an
3689 	 * estimate (although fairly accurate one).
3690 	 */
3691 	vs->vs_trim_notsup = !vd->vdev_has_trim;
3692 	vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
3693 	vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
3694 	vs->vs_trim_state = vd->vdev_trim_state;
3695 	vs->vs_trim_action_time = vd->vdev_trim_action_time;
3696 
3697 	/*
3698 	 * Report expandable space on top-level, non-auxillary devices only.
3699 	 * The expandable space is reported in terms of metaslab sized units
3700 	 * since that determines how much space the pool can expand.
3701 	 */
3702 	if (vd->vdev_aux == NULL && tvd != NULL) {
3703 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3704 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3705 	}
3706 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3707 	    vdev_is_concrete(vd)) {
3708 		vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3709 		    vd->vdev_mg->mg_fragmentation : 0;
3710 	}
3711 	if (vd->vdev_ops->vdev_op_leaf)
3712 		vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3713 
3714 	/*
3715 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3716 	 * over all top-level vdevs (i.e. the direct children of the root).
3717 	 */
3718 	if (vd == rvd) {
3719 		for (int c = 0; c < rvd->vdev_children; c++) {
3720 			vdev_t *cvd = rvd->vdev_child[c];
3721 			vdev_stat_t *cvs = &cvd->vdev_stat;
3722 
3723 			for (int t = 0; t < VS_ZIO_TYPES; t++) {
3724 				vs->vs_ops[t] += cvs->vs_ops[t];
3725 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3726 			}
3727 			cvs->vs_scan_removing = cvd->vdev_removing;
3728 		}
3729 	}
3730 	mutex_exit(&vd->vdev_stat_lock);
3731 }
3732 
3733 void
3734 vdev_clear_stats(vdev_t *vd)
3735 {
3736 	mutex_enter(&vd->vdev_stat_lock);
3737 	vd->vdev_stat.vs_space = 0;
3738 	vd->vdev_stat.vs_dspace = 0;
3739 	vd->vdev_stat.vs_alloc = 0;
3740 	mutex_exit(&vd->vdev_stat_lock);
3741 }
3742 
3743 void
3744 vdev_scan_stat_init(vdev_t *vd)
3745 {
3746 	vdev_stat_t *vs = &vd->vdev_stat;
3747 
3748 	for (int c = 0; c < vd->vdev_children; c++)
3749 		vdev_scan_stat_init(vd->vdev_child[c]);
3750 
3751 	mutex_enter(&vd->vdev_stat_lock);
3752 	vs->vs_scan_processed = 0;
3753 	mutex_exit(&vd->vdev_stat_lock);
3754 }
3755 
3756 void
3757 vdev_stat_update(zio_t *zio, uint64_t psize)
3758 {
3759 	spa_t *spa = zio->io_spa;
3760 	vdev_t *rvd = spa->spa_root_vdev;
3761 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3762 	vdev_t *pvd;
3763 	uint64_t txg = zio->io_txg;
3764 	vdev_stat_t *vs = &vd->vdev_stat;
3765 	zio_type_t type = zio->io_type;
3766 	int flags = zio->io_flags;
3767 
3768 	/*
3769 	 * If this i/o is a gang leader, it didn't do any actual work.
3770 	 */
3771 	if (zio->io_gang_tree)
3772 		return;
3773 
3774 	if (zio->io_error == 0) {
3775 		/*
3776 		 * If this is a root i/o, don't count it -- we've already
3777 		 * counted the top-level vdevs, and vdev_get_stats() will
3778 		 * aggregate them when asked.  This reduces contention on
3779 		 * the root vdev_stat_lock and implicitly handles blocks
3780 		 * that compress away to holes, for which there is no i/o.
3781 		 * (Holes never create vdev children, so all the counters
3782 		 * remain zero, which is what we want.)
3783 		 *
3784 		 * Note: this only applies to successful i/o (io_error == 0)
3785 		 * because unlike i/o counts, errors are not additive.
3786 		 * When reading a ditto block, for example, failure of
3787 		 * one top-level vdev does not imply a root-level error.
3788 		 */
3789 		if (vd == rvd)
3790 			return;
3791 
3792 		ASSERT(vd == zio->io_vd);
3793 
3794 		if (flags & ZIO_FLAG_IO_BYPASS)
3795 			return;
3796 
3797 		mutex_enter(&vd->vdev_stat_lock);
3798 
3799 		if (flags & ZIO_FLAG_IO_REPAIR) {
3800 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3801 				dsl_scan_phys_t *scn_phys =
3802 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3803 				uint64_t *processed = &scn_phys->scn_processed;
3804 
3805 				/* XXX cleanup? */
3806 				if (vd->vdev_ops->vdev_op_leaf)
3807 					atomic_add_64(processed, psize);
3808 				vs->vs_scan_processed += psize;
3809 			}
3810 
3811 			if (flags & ZIO_FLAG_SELF_HEAL)
3812 				vs->vs_self_healed += psize;
3813 		}
3814 
3815 		zio_type_t vs_type = type;
3816 
3817 		/*
3818 		 * TRIM ops and bytes are reported to user space as
3819 		 * ZIO_TYPE_IOCTL.  This is done to preserve the
3820 		 * vdev_stat_t structure layout for user space.
3821 		 */
3822 		if (type == ZIO_TYPE_TRIM)
3823 			vs_type = ZIO_TYPE_IOCTL;
3824 
3825 		vs->vs_ops[vs_type]++;
3826 		vs->vs_bytes[vs_type] += psize;
3827 
3828 		mutex_exit(&vd->vdev_stat_lock);
3829 		return;
3830 	}
3831 
3832 	if (flags & ZIO_FLAG_SPECULATIVE)
3833 		return;
3834 
3835 	/*
3836 	 * If this is an I/O error that is going to be retried, then ignore the
3837 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3838 	 * hard errors, when in reality they can happen for any number of
3839 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3840 	 */
3841 	if (zio->io_error == EIO &&
3842 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3843 		return;
3844 
3845 	/*
3846 	 * Intent logs writes won't propagate their error to the root
3847 	 * I/O so don't mark these types of failures as pool-level
3848 	 * errors.
3849 	 */
3850 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3851 		return;
3852 
3853 	mutex_enter(&vd->vdev_stat_lock);
3854 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3855 		if (zio->io_error == ECKSUM)
3856 			vs->vs_checksum_errors++;
3857 		else
3858 			vs->vs_read_errors++;
3859 	}
3860 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3861 		vs->vs_write_errors++;
3862 	mutex_exit(&vd->vdev_stat_lock);
3863 
3864 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3865 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3866 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3867 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3868 	    spa->spa_claiming)) {
3869 		/*
3870 		 * This is either a normal write (not a repair), or it's
3871 		 * a repair induced by the scrub thread, or it's a repair
3872 		 * made by zil_claim() during spa_load() in the first txg.
3873 		 * In the normal case, we commit the DTL change in the same
3874 		 * txg as the block was born.  In the scrub-induced repair
3875 		 * case, we know that scrubs run in first-pass syncing context,
3876 		 * so we commit the DTL change in spa_syncing_txg(spa).
3877 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3878 		 *
3879 		 * We currently do not make DTL entries for failed spontaneous
3880 		 * self-healing writes triggered by normal (non-scrubbing)
3881 		 * reads, because we have no transactional context in which to
3882 		 * do so -- and it's not clear that it'd be desirable anyway.
3883 		 */
3884 		if (vd->vdev_ops->vdev_op_leaf) {
3885 			uint64_t commit_txg = txg;
3886 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3887 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3888 				ASSERT(spa_sync_pass(spa) == 1);
3889 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3890 				commit_txg = spa_syncing_txg(spa);
3891 			} else if (spa->spa_claiming) {
3892 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3893 				commit_txg = spa_first_txg(spa);
3894 			}
3895 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3896 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3897 				return;
3898 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3899 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3900 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3901 		}
3902 		if (vd != rvd)
3903 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3904 	}
3905 }
3906 
3907 int64_t
3908 vdev_deflated_space(vdev_t *vd, int64_t space)
3909 {
3910 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
3911 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3912 
3913 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
3914 }
3915 
3916 /*
3917  * Update the in-core space usage stats for this vdev, its metaslab class,
3918  * and the root vdev.
3919  */
3920 void
3921 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3922     int64_t space_delta)
3923 {
3924 	int64_t dspace_delta;
3925 	spa_t *spa = vd->vdev_spa;
3926 	vdev_t *rvd = spa->spa_root_vdev;
3927 
3928 	ASSERT(vd == vd->vdev_top);
3929 
3930 	/*
3931 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3932 	 * factor.  We must calculate this here and not at the root vdev
3933 	 * because the root vdev's psize-to-asize is simply the max of its
3934 	 * childrens', thus not accurate enough for us.
3935 	 */
3936 	dspace_delta = vdev_deflated_space(vd, space_delta);
3937 
3938 	mutex_enter(&vd->vdev_stat_lock);
3939 	/* ensure we won't underflow */
3940 	if (alloc_delta < 0) {
3941 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
3942 	}
3943 
3944 	vd->vdev_stat.vs_alloc += alloc_delta;
3945 	vd->vdev_stat.vs_space += space_delta;
3946 	vd->vdev_stat.vs_dspace += dspace_delta;
3947 	mutex_exit(&vd->vdev_stat_lock);
3948 
3949 	/* every class but log contributes to root space stats */
3950 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
3951 		ASSERT(!vd->vdev_isl2cache);
3952 		mutex_enter(&rvd->vdev_stat_lock);
3953 		rvd->vdev_stat.vs_alloc += alloc_delta;
3954 		rvd->vdev_stat.vs_space += space_delta;
3955 		rvd->vdev_stat.vs_dspace += dspace_delta;
3956 		mutex_exit(&rvd->vdev_stat_lock);
3957 	}
3958 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
3959 }
3960 
3961 /*
3962  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3963  * so that it will be written out next time the vdev configuration is synced.
3964  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3965  */
3966 void
3967 vdev_config_dirty(vdev_t *vd)
3968 {
3969 	spa_t *spa = vd->vdev_spa;
3970 	vdev_t *rvd = spa->spa_root_vdev;
3971 	int c;
3972 
3973 	ASSERT(spa_writeable(spa));
3974 
3975 	/*
3976 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3977 	 * update the vdev config manually and set the sync flag.
3978 	 */
3979 	if (vd->vdev_aux != NULL) {
3980 		spa_aux_vdev_t *sav = vd->vdev_aux;
3981 		nvlist_t **aux;
3982 		uint_t naux;
3983 
3984 		for (c = 0; c < sav->sav_count; c++) {
3985 			if (sav->sav_vdevs[c] == vd)
3986 				break;
3987 		}
3988 
3989 		if (c == sav->sav_count) {
3990 			/*
3991 			 * We're being removed.  There's nothing more to do.
3992 			 */
3993 			ASSERT(sav->sav_sync == B_TRUE);
3994 			return;
3995 		}
3996 
3997 		sav->sav_sync = B_TRUE;
3998 
3999 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4000 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4001 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4002 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4003 		}
4004 
4005 		ASSERT(c < naux);
4006 
4007 		/*
4008 		 * Setting the nvlist in the middle if the array is a little
4009 		 * sketchy, but it will work.
4010 		 */
4011 		nvlist_free(aux[c]);
4012 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4013 
4014 		return;
4015 	}
4016 
4017 	/*
4018 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4019 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4020 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4021 	 * so this is sufficient to ensure mutual exclusion.
4022 	 */
4023 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4024 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4025 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4026 
4027 	if (vd == rvd) {
4028 		for (c = 0; c < rvd->vdev_children; c++)
4029 			vdev_config_dirty(rvd->vdev_child[c]);
4030 	} else {
4031 		ASSERT(vd == vd->vdev_top);
4032 
4033 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4034 		    vdev_is_concrete(vd)) {
4035 			list_insert_head(&spa->spa_config_dirty_list, vd);
4036 		}
4037 	}
4038 }
4039 
4040 void
4041 vdev_config_clean(vdev_t *vd)
4042 {
4043 	spa_t *spa = vd->vdev_spa;
4044 
4045 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4046 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4047 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4048 
4049 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4050 	list_remove(&spa->spa_config_dirty_list, vd);
4051 }
4052 
4053 /*
4054  * Mark a top-level vdev's state as dirty, so that the next pass of
4055  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4056  * the state changes from larger config changes because they require
4057  * much less locking, and are often needed for administrative actions.
4058  */
4059 void
4060 vdev_state_dirty(vdev_t *vd)
4061 {
4062 	spa_t *spa = vd->vdev_spa;
4063 
4064 	ASSERT(spa_writeable(spa));
4065 	ASSERT(vd == vd->vdev_top);
4066 
4067 	/*
4068 	 * The state list is protected by the SCL_STATE lock.  The caller
4069 	 * must either hold SCL_STATE as writer, or must be the sync thread
4070 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4071 	 * so this is sufficient to ensure mutual exclusion.
4072 	 */
4073 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4074 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4075 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4076 
4077 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4078 	    vdev_is_concrete(vd))
4079 		list_insert_head(&spa->spa_state_dirty_list, vd);
4080 }
4081 
4082 void
4083 vdev_state_clean(vdev_t *vd)
4084 {
4085 	spa_t *spa = vd->vdev_spa;
4086 
4087 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4088 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4089 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4090 
4091 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4092 	list_remove(&spa->spa_state_dirty_list, vd);
4093 }
4094 
4095 /*
4096  * Propagate vdev state up from children to parent.
4097  */
4098 void
4099 vdev_propagate_state(vdev_t *vd)
4100 {
4101 	spa_t *spa = vd->vdev_spa;
4102 	vdev_t *rvd = spa->spa_root_vdev;
4103 	int degraded = 0, faulted = 0;
4104 	int corrupted = 0;
4105 	vdev_t *child;
4106 
4107 	if (vd->vdev_children > 0) {
4108 		for (int c = 0; c < vd->vdev_children; c++) {
4109 			child = vd->vdev_child[c];
4110 
4111 			/*
4112 			 * Don't factor holes or indirect vdevs into the
4113 			 * decision.
4114 			 */
4115 			if (!vdev_is_concrete(child))
4116 				continue;
4117 
4118 			if (!vdev_readable(child) ||
4119 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4120 				/*
4121 				 * Root special: if there is a top-level log
4122 				 * device, treat the root vdev as if it were
4123 				 * degraded.
4124 				 */
4125 				if (child->vdev_islog && vd == rvd)
4126 					degraded++;
4127 				else
4128 					faulted++;
4129 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4130 				degraded++;
4131 			}
4132 
4133 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4134 				corrupted++;
4135 		}
4136 
4137 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4138 
4139 		/*
4140 		 * Root special: if there is a top-level vdev that cannot be
4141 		 * opened due to corrupted metadata, then propagate the root
4142 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4143 		 * replicas'.
4144 		 */
4145 		if (corrupted && vd == rvd &&
4146 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4147 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4148 			    VDEV_AUX_CORRUPT_DATA);
4149 	}
4150 
4151 	if (vd->vdev_parent)
4152 		vdev_propagate_state(vd->vdev_parent);
4153 }
4154 
4155 /*
4156  * Set a vdev's state.  If this is during an open, we don't update the parent
4157  * state, because we're in the process of opening children depth-first.
4158  * Otherwise, we propagate the change to the parent.
4159  *
4160  * If this routine places a device in a faulted state, an appropriate ereport is
4161  * generated.
4162  */
4163 void
4164 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4165 {
4166 	uint64_t save_state;
4167 	spa_t *spa = vd->vdev_spa;
4168 
4169 	if (state == vd->vdev_state) {
4170 		vd->vdev_stat.vs_aux = aux;
4171 		return;
4172 	}
4173 
4174 	save_state = vd->vdev_state;
4175 
4176 	vd->vdev_state = state;
4177 	vd->vdev_stat.vs_aux = aux;
4178 
4179 	/*
4180 	 * If we are setting the vdev state to anything but an open state, then
4181 	 * always close the underlying device unless the device has requested
4182 	 * a delayed close (i.e. we're about to remove or fault the device).
4183 	 * Otherwise, we keep accessible but invalid devices open forever.
4184 	 * We don't call vdev_close() itself, because that implies some extra
4185 	 * checks (offline, etc) that we don't want here.  This is limited to
4186 	 * leaf devices, because otherwise closing the device will affect other
4187 	 * children.
4188 	 */
4189 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4190 	    vd->vdev_ops->vdev_op_leaf)
4191 		vd->vdev_ops->vdev_op_close(vd);
4192 
4193 	/*
4194 	 * If we have brought this vdev back into service, we need
4195 	 * to notify fmd so that it can gracefully repair any outstanding
4196 	 * cases due to a missing device.  We do this in all cases, even those
4197 	 * that probably don't correlate to a repaired fault.  This is sure to
4198 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
4199 	 * this is a transient state it's OK, as the retire agent will
4200 	 * double-check the state of the vdev before repairing it.
4201 	 */
4202 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
4203 	    vd->vdev_prevstate != state)
4204 		zfs_post_state_change(spa, vd);
4205 
4206 	if (vd->vdev_removed &&
4207 	    state == VDEV_STATE_CANT_OPEN &&
4208 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4209 		/*
4210 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4211 		 * device was previously marked removed and someone attempted to
4212 		 * reopen it.  If this failed due to a nonexistent device, then
4213 		 * keep the device in the REMOVED state.  We also let this be if
4214 		 * it is one of our special test online cases, which is only
4215 		 * attempting to online the device and shouldn't generate an FMA
4216 		 * fault.
4217 		 */
4218 		vd->vdev_state = VDEV_STATE_REMOVED;
4219 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4220 	} else if (state == VDEV_STATE_REMOVED) {
4221 		vd->vdev_removed = B_TRUE;
4222 	} else if (state == VDEV_STATE_CANT_OPEN) {
4223 		/*
4224 		 * If we fail to open a vdev during an import or recovery, we
4225 		 * mark it as "not available", which signifies that it was
4226 		 * never there to begin with.  Failure to open such a device
4227 		 * is not considered an error.
4228 		 */
4229 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4230 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4231 		    vd->vdev_ops->vdev_op_leaf)
4232 			vd->vdev_not_present = 1;
4233 
4234 		/*
4235 		 * Post the appropriate ereport.  If the 'prevstate' field is
4236 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4237 		 * that this is part of a vdev_reopen().  In this case, we don't
4238 		 * want to post the ereport if the device was already in the
4239 		 * CANT_OPEN state beforehand.
4240 		 *
4241 		 * If the 'checkremove' flag is set, then this is an attempt to
4242 		 * online the device in response to an insertion event.  If we
4243 		 * hit this case, then we have detected an insertion event for a
4244 		 * faulted or offline device that wasn't in the removed state.
4245 		 * In this scenario, we don't post an ereport because we are
4246 		 * about to replace the device, or attempt an online with
4247 		 * vdev_forcefault, which will generate the fault for us.
4248 		 */
4249 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4250 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4251 		    vd != spa->spa_root_vdev) {
4252 			const char *class;
4253 
4254 			switch (aux) {
4255 			case VDEV_AUX_OPEN_FAILED:
4256 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4257 				break;
4258 			case VDEV_AUX_CORRUPT_DATA:
4259 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4260 				break;
4261 			case VDEV_AUX_NO_REPLICAS:
4262 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4263 				break;
4264 			case VDEV_AUX_BAD_GUID_SUM:
4265 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4266 				break;
4267 			case VDEV_AUX_TOO_SMALL:
4268 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4269 				break;
4270 			case VDEV_AUX_BAD_LABEL:
4271 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4272 				break;
4273 			case VDEV_AUX_BAD_ASHIFT:
4274 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4275 				break;
4276 			default:
4277 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4278 			}
4279 
4280 			zfs_ereport_post(class, spa, vd, NULL, NULL,
4281 			    save_state, 0);
4282 		}
4283 
4284 		/* Erase any notion of persistent removed state */
4285 		vd->vdev_removed = B_FALSE;
4286 	} else {
4287 		vd->vdev_removed = B_FALSE;
4288 	}
4289 
4290 	if (!isopen && vd->vdev_parent)
4291 		vdev_propagate_state(vd->vdev_parent);
4292 }
4293 
4294 boolean_t
4295 vdev_children_are_offline(vdev_t *vd)
4296 {
4297 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4298 
4299 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4300 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4301 			return (B_FALSE);
4302 	}
4303 
4304 	return (B_TRUE);
4305 }
4306 
4307 /*
4308  * Check the vdev configuration to ensure that it's capable of supporting
4309  * a root pool. We do not support partial configuration.
4310  * In addition, only a single top-level vdev is allowed.
4311  */
4312 boolean_t
4313 vdev_is_bootable(vdev_t *vd)
4314 {
4315 	if (!vd->vdev_ops->vdev_op_leaf) {
4316 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4317 
4318 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4319 		    vd->vdev_children > 1) {
4320 			int non_indirect = 0;
4321 
4322 			for (int c = 0; c < vd->vdev_children; c++) {
4323 				vdev_type =
4324 				    vd->vdev_child[c]->vdev_ops->vdev_op_type;
4325 				if (strcmp(vdev_type, VDEV_TYPE_INDIRECT) != 0)
4326 					non_indirect++;
4327 			}
4328 			/*
4329 			 * non_indirect > 1 means we have more than one
4330 			 * top-level vdev, so we stop here.
4331 			 */
4332 			if (non_indirect > 1)
4333 				return (B_FALSE);
4334 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
4335 			return (B_FALSE);
4336 		}
4337 	}
4338 
4339 	for (int c = 0; c < vd->vdev_children; c++) {
4340 		if (!vdev_is_bootable(vd->vdev_child[c]))
4341 			return (B_FALSE);
4342 	}
4343 	return (B_TRUE);
4344 }
4345 
4346 boolean_t
4347 vdev_is_concrete(vdev_t *vd)
4348 {
4349 	vdev_ops_t *ops = vd->vdev_ops;
4350 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4351 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4352 		return (B_FALSE);
4353 	} else {
4354 		return (B_TRUE);
4355 	}
4356 }
4357 
4358 /*
4359  * Determine if a log device has valid content.  If the vdev was
4360  * removed or faulted in the MOS config then we know that
4361  * the content on the log device has already been written to the pool.
4362  */
4363 boolean_t
4364 vdev_log_state_valid(vdev_t *vd)
4365 {
4366 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4367 	    !vd->vdev_removed)
4368 		return (B_TRUE);
4369 
4370 	for (int c = 0; c < vd->vdev_children; c++)
4371 		if (vdev_log_state_valid(vd->vdev_child[c]))
4372 			return (B_TRUE);
4373 
4374 	return (B_FALSE);
4375 }
4376 
4377 /*
4378  * Expand a vdev if possible.
4379  */
4380 void
4381 vdev_expand(vdev_t *vd, uint64_t txg)
4382 {
4383 	ASSERT(vd->vdev_top == vd);
4384 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4385 	ASSERT(vdev_is_concrete(vd));
4386 
4387 	vdev_set_deflate_ratio(vd);
4388 
4389 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4390 	    vdev_is_concrete(vd)) {
4391 		vdev_metaslab_group_create(vd);
4392 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4393 		vdev_config_dirty(vd);
4394 	}
4395 }
4396 
4397 /*
4398  * Split a vdev.
4399  */
4400 void
4401 vdev_split(vdev_t *vd)
4402 {
4403 	vdev_t *cvd, *pvd = vd->vdev_parent;
4404 
4405 	vdev_remove_child(pvd, vd);
4406 	vdev_compact_children(pvd);
4407 
4408 	cvd = pvd->vdev_child[0];
4409 	if (pvd->vdev_children == 1) {
4410 		vdev_remove_parent(cvd);
4411 		cvd->vdev_splitting = B_TRUE;
4412 	}
4413 	vdev_propagate_state(cvd);
4414 }
4415 
4416 void
4417 vdev_deadman(vdev_t *vd)
4418 {
4419 	for (int c = 0; c < vd->vdev_children; c++) {
4420 		vdev_t *cvd = vd->vdev_child[c];
4421 
4422 		vdev_deadman(cvd);
4423 	}
4424 
4425 	if (vd->vdev_ops->vdev_op_leaf) {
4426 		vdev_queue_t *vq = &vd->vdev_queue;
4427 
4428 		mutex_enter(&vq->vq_lock);
4429 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4430 			spa_t *spa = vd->vdev_spa;
4431 			zio_t *fio;
4432 			uint64_t delta;
4433 
4434 			/*
4435 			 * Look at the head of all the pending queues,
4436 			 * if any I/O has been outstanding for longer than
4437 			 * the spa_deadman_synctime we panic the system.
4438 			 */
4439 			fio = avl_first(&vq->vq_active_tree);
4440 			delta = gethrtime() - fio->io_timestamp;
4441 			if (delta > spa_deadman_synctime(spa)) {
4442 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4443 				    "%lluns, delta %lluns, last io %lluns",
4444 				    fio->io_timestamp, (u_longlong_t)delta,
4445 				    vq->vq_io_complete_ts);
4446 				fm_panic("I/O to pool '%s' appears to be "
4447 				    "hung.", spa_name(spa));
4448 			}
4449 		}
4450 		mutex_exit(&vq->vq_lock);
4451 	}
4452 }
4453 
4454 void
4455 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4456 {
4457 	for (uint64_t i = 0; i < vd->vdev_children; i++)
4458 		vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4459 
4460 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4461 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4462 		return;
4463 	}
4464 
4465 	vd->vdev_resilver_deferred = B_TRUE;
4466 	spa->spa_resilver_deferred = B_TRUE;
4467 }
4468 
4469 /*
4470  * Translate a logical range to the physical range for the specified vdev_t.
4471  * This function is initially called with a leaf vdev and will walk each
4472  * parent vdev until it reaches a top-level vdev. Once the top-level is
4473  * reached the physical range is initialized and the recursive function
4474  * begins to unwind. As it unwinds it calls the parent's vdev specific
4475  * translation function to do the real conversion.
4476  */
4477 void
4478 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
4479 {
4480 	/*
4481 	 * Walk up the vdev tree
4482 	 */
4483 	if (vd != vd->vdev_top) {
4484 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4485 	} else {
4486 		/*
4487 		 * We've reached the top-level vdev, initialize the
4488 		 * physical range to the logical range and start to
4489 		 * unwind.
4490 		 */
4491 		physical_rs->rs_start = logical_rs->rs_start;
4492 		physical_rs->rs_end = logical_rs->rs_end;
4493 		return;
4494 	}
4495 
4496 	vdev_t *pvd = vd->vdev_parent;
4497 	ASSERT3P(pvd, !=, NULL);
4498 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
4499 
4500 	/*
4501 	 * As this recursive function unwinds, translate the logical
4502 	 * range into its physical components by calling the
4503 	 * vdev specific translate function.
4504 	 */
4505 	range_seg_t intermediate = { { { 0, 0 } } };
4506 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
4507 
4508 	physical_rs->rs_start = intermediate.rs_start;
4509 	physical_rs->rs_end = intermediate.rs_end;
4510 }
4511