1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2019 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/spa_impl.h> 36 #include <sys/bpobj.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/uberblock_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/space_map.h> 45 #include <sys/space_reftree.h> 46 #include <sys/zio.h> 47 #include <sys/zap.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/arc.h> 50 #include <sys/zil.h> 51 #include <sys/dsl_scan.h> 52 #include <sys/abd.h> 53 #include <sys/vdev_initialize.h> 54 #include <sys/vdev_trim.h> 55 56 /* 57 * Virtual device management. 58 */ 59 60 static vdev_ops_t *vdev_ops_table[] = { 61 &vdev_root_ops, 62 &vdev_raidz_ops, 63 &vdev_mirror_ops, 64 &vdev_replacing_ops, 65 &vdev_spare_ops, 66 &vdev_disk_ops, 67 &vdev_file_ops, 68 &vdev_missing_ops, 69 &vdev_hole_ops, 70 &vdev_indirect_ops, 71 NULL 72 }; 73 74 /* maximum scrub/resilver I/O queue per leaf vdev */ 75 int zfs_scrub_limit = 10; 76 77 /* default target for number of metaslabs per top-level vdev */ 78 int zfs_vdev_default_ms_count = 200; 79 80 /* minimum number of metaslabs per top-level vdev */ 81 int zfs_vdev_min_ms_count = 16; 82 83 /* practical upper limit of total metaslabs per top-level vdev */ 84 int zfs_vdev_ms_count_limit = 1ULL << 17; 85 86 /* lower limit for metaslab size (512M) */ 87 int zfs_vdev_default_ms_shift = 29; 88 89 /* upper limit for metaslab size (16G) */ 90 int zfs_vdev_max_ms_shift = 34; 91 92 boolean_t vdev_validate_skip = B_FALSE; 93 94 /* 95 * Since the DTL space map of a vdev is not expected to have a lot of 96 * entries, we default its block size to 4K. 97 */ 98 int zfs_vdev_dtl_sm_blksz = (1 << 12); 99 100 /* 101 * vdev-wide space maps that have lots of entries written to them at 102 * the end of each transaction can benefit from a higher I/O bandwidth 103 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 104 */ 105 int zfs_vdev_standard_sm_blksz = (1 << 17); 106 107 int zfs_ashift_min; 108 109 /*PRINTFLIKE2*/ 110 void 111 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 112 { 113 va_list adx; 114 char buf[256]; 115 116 va_start(adx, fmt); 117 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 118 va_end(adx); 119 120 if (vd->vdev_path != NULL) { 121 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 122 vd->vdev_path, buf); 123 } else { 124 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 125 vd->vdev_ops->vdev_op_type, 126 (u_longlong_t)vd->vdev_id, 127 (u_longlong_t)vd->vdev_guid, buf); 128 } 129 } 130 131 void 132 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 133 { 134 char state[20]; 135 136 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 137 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 138 vd->vdev_ops->vdev_op_type); 139 return; 140 } 141 142 switch (vd->vdev_state) { 143 case VDEV_STATE_UNKNOWN: 144 (void) snprintf(state, sizeof (state), "unknown"); 145 break; 146 case VDEV_STATE_CLOSED: 147 (void) snprintf(state, sizeof (state), "closed"); 148 break; 149 case VDEV_STATE_OFFLINE: 150 (void) snprintf(state, sizeof (state), "offline"); 151 break; 152 case VDEV_STATE_REMOVED: 153 (void) snprintf(state, sizeof (state), "removed"); 154 break; 155 case VDEV_STATE_CANT_OPEN: 156 (void) snprintf(state, sizeof (state), "can't open"); 157 break; 158 case VDEV_STATE_FAULTED: 159 (void) snprintf(state, sizeof (state), "faulted"); 160 break; 161 case VDEV_STATE_DEGRADED: 162 (void) snprintf(state, sizeof (state), "degraded"); 163 break; 164 case VDEV_STATE_HEALTHY: 165 (void) snprintf(state, sizeof (state), "healthy"); 166 break; 167 default: 168 (void) snprintf(state, sizeof (state), "<state %u>", 169 (uint_t)vd->vdev_state); 170 } 171 172 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 173 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 174 vd->vdev_islog ? " (log)" : "", 175 (u_longlong_t)vd->vdev_guid, 176 vd->vdev_path ? vd->vdev_path : "N/A", state); 177 178 for (uint64_t i = 0; i < vd->vdev_children; i++) 179 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 180 } 181 182 /* 183 * Given a vdev type, return the appropriate ops vector. 184 */ 185 static vdev_ops_t * 186 vdev_getops(const char *type) 187 { 188 vdev_ops_t *ops, **opspp; 189 190 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 191 if (strcmp(ops->vdev_op_type, type) == 0) 192 break; 193 194 return (ops); 195 } 196 197 /* 198 * Derive the enumerated alloction bias from string input. 199 * String origin is either the per-vdev zap or zpool(1M). 200 */ 201 static vdev_alloc_bias_t 202 vdev_derive_alloc_bias(const char *bias) 203 { 204 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 205 206 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 207 alloc_bias = VDEV_BIAS_LOG; 208 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 209 alloc_bias = VDEV_BIAS_SPECIAL; 210 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 211 alloc_bias = VDEV_BIAS_DEDUP; 212 213 return (alloc_bias); 214 } 215 216 /* ARGSUSED */ 217 void 218 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res) 219 { 220 res->rs_start = in->rs_start; 221 res->rs_end = in->rs_end; 222 } 223 224 /* 225 * Default asize function: return the MAX of psize with the asize of 226 * all children. This is what's used by anything other than RAID-Z. 227 */ 228 uint64_t 229 vdev_default_asize(vdev_t *vd, uint64_t psize) 230 { 231 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 232 uint64_t csize; 233 234 for (int c = 0; c < vd->vdev_children; c++) { 235 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 236 asize = MAX(asize, csize); 237 } 238 239 return (asize); 240 } 241 242 /* 243 * Get the minimum allocatable size. We define the allocatable size as 244 * the vdev's asize rounded to the nearest metaslab. This allows us to 245 * replace or attach devices which don't have the same physical size but 246 * can still satisfy the same number of allocations. 247 */ 248 uint64_t 249 vdev_get_min_asize(vdev_t *vd) 250 { 251 vdev_t *pvd = vd->vdev_parent; 252 253 /* 254 * If our parent is NULL (inactive spare or cache) or is the root, 255 * just return our own asize. 256 */ 257 if (pvd == NULL) 258 return (vd->vdev_asize); 259 260 /* 261 * The top-level vdev just returns the allocatable size rounded 262 * to the nearest metaslab. 263 */ 264 if (vd == vd->vdev_top) 265 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 266 267 /* 268 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 269 * so each child must provide at least 1/Nth of its asize. 270 */ 271 if (pvd->vdev_ops == &vdev_raidz_ops) 272 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 273 pvd->vdev_children); 274 275 return (pvd->vdev_min_asize); 276 } 277 278 void 279 vdev_set_min_asize(vdev_t *vd) 280 { 281 vd->vdev_min_asize = vdev_get_min_asize(vd); 282 283 for (int c = 0; c < vd->vdev_children; c++) 284 vdev_set_min_asize(vd->vdev_child[c]); 285 } 286 287 vdev_t * 288 vdev_lookup_top(spa_t *spa, uint64_t vdev) 289 { 290 vdev_t *rvd = spa->spa_root_vdev; 291 292 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 293 294 if (vdev < rvd->vdev_children) { 295 ASSERT(rvd->vdev_child[vdev] != NULL); 296 return (rvd->vdev_child[vdev]); 297 } 298 299 return (NULL); 300 } 301 302 vdev_t * 303 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 304 { 305 vdev_t *mvd; 306 307 if (vd->vdev_guid == guid) 308 return (vd); 309 310 for (int c = 0; c < vd->vdev_children; c++) 311 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 312 NULL) 313 return (mvd); 314 315 return (NULL); 316 } 317 318 static int 319 vdev_count_leaves_impl(vdev_t *vd) 320 { 321 int n = 0; 322 323 if (vd->vdev_ops->vdev_op_leaf) 324 return (1); 325 326 for (int c = 0; c < vd->vdev_children; c++) 327 n += vdev_count_leaves_impl(vd->vdev_child[c]); 328 329 return (n); 330 } 331 332 int 333 vdev_count_leaves(spa_t *spa) 334 { 335 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 336 } 337 338 void 339 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 340 { 341 size_t oldsize, newsize; 342 uint64_t id = cvd->vdev_id; 343 vdev_t **newchild; 344 spa_t *spa = cvd->vdev_spa; 345 346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 347 ASSERT(cvd->vdev_parent == NULL); 348 349 cvd->vdev_parent = pvd; 350 351 if (pvd == NULL) 352 return; 353 354 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 355 356 oldsize = pvd->vdev_children * sizeof (vdev_t *); 357 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 358 newsize = pvd->vdev_children * sizeof (vdev_t *); 359 360 newchild = kmem_zalloc(newsize, KM_SLEEP); 361 if (pvd->vdev_child != NULL) { 362 bcopy(pvd->vdev_child, newchild, oldsize); 363 kmem_free(pvd->vdev_child, oldsize); 364 } 365 366 pvd->vdev_child = newchild; 367 pvd->vdev_child[id] = cvd; 368 369 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 370 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 371 372 /* 373 * Walk up all ancestors to update guid sum. 374 */ 375 for (; pvd != NULL; pvd = pvd->vdev_parent) 376 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 377 378 if (cvd->vdev_ops->vdev_op_leaf) { 379 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 380 cvd->vdev_spa->spa_leaf_list_gen++; 381 } 382 } 383 384 void 385 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 386 { 387 int c; 388 uint_t id = cvd->vdev_id; 389 390 ASSERT(cvd->vdev_parent == pvd); 391 392 if (pvd == NULL) 393 return; 394 395 ASSERT(id < pvd->vdev_children); 396 ASSERT(pvd->vdev_child[id] == cvd); 397 398 pvd->vdev_child[id] = NULL; 399 cvd->vdev_parent = NULL; 400 401 for (c = 0; c < pvd->vdev_children; c++) 402 if (pvd->vdev_child[c]) 403 break; 404 405 if (c == pvd->vdev_children) { 406 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 407 pvd->vdev_child = NULL; 408 pvd->vdev_children = 0; 409 } 410 411 if (cvd->vdev_ops->vdev_op_leaf) { 412 spa_t *spa = cvd->vdev_spa; 413 list_remove(&spa->spa_leaf_list, cvd); 414 spa->spa_leaf_list_gen++; 415 } 416 417 /* 418 * Walk up all ancestors to update guid sum. 419 */ 420 for (; pvd != NULL; pvd = pvd->vdev_parent) 421 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 422 } 423 424 /* 425 * Remove any holes in the child array. 426 */ 427 void 428 vdev_compact_children(vdev_t *pvd) 429 { 430 vdev_t **newchild, *cvd; 431 int oldc = pvd->vdev_children; 432 int newc; 433 434 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 435 436 for (int c = newc = 0; c < oldc; c++) 437 if (pvd->vdev_child[c]) 438 newc++; 439 440 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 441 442 for (int c = newc = 0; c < oldc; c++) { 443 if ((cvd = pvd->vdev_child[c]) != NULL) { 444 newchild[newc] = cvd; 445 cvd->vdev_id = newc++; 446 } 447 } 448 449 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 450 pvd->vdev_child = newchild; 451 pvd->vdev_children = newc; 452 } 453 454 /* 455 * Allocate and minimally initialize a vdev_t. 456 */ 457 vdev_t * 458 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 459 { 460 vdev_t *vd; 461 vdev_indirect_config_t *vic; 462 463 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 464 vic = &vd->vdev_indirect_config; 465 466 if (spa->spa_root_vdev == NULL) { 467 ASSERT(ops == &vdev_root_ops); 468 spa->spa_root_vdev = vd; 469 spa->spa_load_guid = spa_generate_guid(NULL); 470 } 471 472 if (guid == 0 && ops != &vdev_hole_ops) { 473 if (spa->spa_root_vdev == vd) { 474 /* 475 * The root vdev's guid will also be the pool guid, 476 * which must be unique among all pools. 477 */ 478 guid = spa_generate_guid(NULL); 479 } else { 480 /* 481 * Any other vdev's guid must be unique within the pool. 482 */ 483 guid = spa_generate_guid(spa); 484 } 485 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 486 } 487 488 vd->vdev_spa = spa; 489 vd->vdev_id = id; 490 vd->vdev_guid = guid; 491 vd->vdev_guid_sum = guid; 492 vd->vdev_ops = ops; 493 vd->vdev_state = VDEV_STATE_CLOSED; 494 vd->vdev_ishole = (ops == &vdev_hole_ops); 495 vic->vic_prev_indirect_vdev = UINT64_MAX; 496 497 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 498 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 499 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); 500 501 list_link_init(&vd->vdev_initialize_node); 502 list_link_init(&vd->vdev_leaf_node); 503 list_link_init(&vd->vdev_trim_node); 504 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 505 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 506 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 507 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 508 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 509 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 510 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 511 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 512 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 513 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 514 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 515 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 516 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 517 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 518 519 for (int t = 0; t < DTL_TYPES; t++) { 520 vd->vdev_dtl[t] = range_tree_create(NULL, NULL); 521 } 522 txg_list_create(&vd->vdev_ms_list, spa, 523 offsetof(struct metaslab, ms_txg_node)); 524 txg_list_create(&vd->vdev_dtl_list, spa, 525 offsetof(struct vdev, vdev_dtl_node)); 526 vd->vdev_stat.vs_timestamp = gethrtime(); 527 vdev_queue_init(vd); 528 vdev_cache_init(vd); 529 530 return (vd); 531 } 532 533 /* 534 * Allocate a new vdev. The 'alloctype' is used to control whether we are 535 * creating a new vdev or loading an existing one - the behavior is slightly 536 * different for each case. 537 */ 538 int 539 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 540 int alloctype) 541 { 542 vdev_ops_t *ops; 543 char *type; 544 uint64_t guid = 0, islog, nparity; 545 vdev_t *vd; 546 vdev_indirect_config_t *vic; 547 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 548 boolean_t top_level = (parent && !parent->vdev_parent); 549 550 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 551 552 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 553 return (SET_ERROR(EINVAL)); 554 555 if ((ops = vdev_getops(type)) == NULL) 556 return (SET_ERROR(EINVAL)); 557 558 /* 559 * If this is a load, get the vdev guid from the nvlist. 560 * Otherwise, vdev_alloc_common() will generate one for us. 561 */ 562 if (alloctype == VDEV_ALLOC_LOAD) { 563 uint64_t label_id; 564 565 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 566 label_id != id) 567 return (SET_ERROR(EINVAL)); 568 569 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 570 return (SET_ERROR(EINVAL)); 571 } else if (alloctype == VDEV_ALLOC_SPARE) { 572 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 573 return (SET_ERROR(EINVAL)); 574 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 575 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 576 return (SET_ERROR(EINVAL)); 577 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 578 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 579 return (SET_ERROR(EINVAL)); 580 } 581 582 /* 583 * The first allocated vdev must be of type 'root'. 584 */ 585 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 586 return (SET_ERROR(EINVAL)); 587 588 /* 589 * Determine whether we're a log vdev. 590 */ 591 islog = 0; 592 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 593 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 594 return (SET_ERROR(ENOTSUP)); 595 596 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 597 return (SET_ERROR(ENOTSUP)); 598 599 /* 600 * Set the nparity property for RAID-Z vdevs. 601 */ 602 nparity = -1ULL; 603 if (ops == &vdev_raidz_ops) { 604 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 605 &nparity) == 0) { 606 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 607 return (SET_ERROR(EINVAL)); 608 /* 609 * Previous versions could only support 1 or 2 parity 610 * device. 611 */ 612 if (nparity > 1 && 613 spa_version(spa) < SPA_VERSION_RAIDZ2) 614 return (SET_ERROR(ENOTSUP)); 615 if (nparity > 2 && 616 spa_version(spa) < SPA_VERSION_RAIDZ3) 617 return (SET_ERROR(ENOTSUP)); 618 } else { 619 /* 620 * We require the parity to be specified for SPAs that 621 * support multiple parity levels. 622 */ 623 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 624 return (SET_ERROR(EINVAL)); 625 /* 626 * Otherwise, we default to 1 parity device for RAID-Z. 627 */ 628 nparity = 1; 629 } 630 } else { 631 nparity = 0; 632 } 633 ASSERT(nparity != -1ULL); 634 635 /* 636 * If creating a top-level vdev, check for allocation classes input 637 */ 638 if (top_level && alloctype == VDEV_ALLOC_ADD) { 639 char *bias; 640 641 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 642 &bias) == 0) { 643 alloc_bias = vdev_derive_alloc_bias(bias); 644 645 /* spa_vdev_add() expects feature to be enabled */ 646 if (alloc_bias != VDEV_BIAS_LOG && 647 spa->spa_load_state != SPA_LOAD_CREATE && 648 !spa_feature_is_enabled(spa, 649 SPA_FEATURE_ALLOCATION_CLASSES)) { 650 return (SET_ERROR(ENOTSUP)); 651 } 652 } 653 } 654 655 vd = vdev_alloc_common(spa, id, guid, ops); 656 vic = &vd->vdev_indirect_config; 657 658 vd->vdev_islog = islog; 659 vd->vdev_nparity = nparity; 660 if (top_level && alloc_bias != VDEV_BIAS_NONE) 661 vd->vdev_alloc_bias = alloc_bias; 662 663 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 664 vd->vdev_path = spa_strdup(vd->vdev_path); 665 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 666 vd->vdev_devid = spa_strdup(vd->vdev_devid); 667 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 668 &vd->vdev_physpath) == 0) 669 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 670 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 671 vd->vdev_fru = spa_strdup(vd->vdev_fru); 672 673 /* 674 * Set the whole_disk property. If it's not specified, leave the value 675 * as -1. 676 */ 677 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 678 &vd->vdev_wholedisk) != 0) 679 vd->vdev_wholedisk = -1ULL; 680 681 ASSERT0(vic->vic_mapping_object); 682 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 683 &vic->vic_mapping_object); 684 ASSERT0(vic->vic_births_object); 685 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 686 &vic->vic_births_object); 687 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 688 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 689 &vic->vic_prev_indirect_vdev); 690 691 /* 692 * Look for the 'not present' flag. This will only be set if the device 693 * was not present at the time of import. 694 */ 695 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 696 &vd->vdev_not_present); 697 698 /* 699 * Get the alignment requirement. 700 */ 701 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 702 703 /* 704 * Retrieve the vdev creation time. 705 */ 706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 707 &vd->vdev_crtxg); 708 709 /* 710 * If we're a top-level vdev, try to load the allocation parameters. 711 */ 712 if (top_level && 713 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 714 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 715 &vd->vdev_ms_array); 716 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 717 &vd->vdev_ms_shift); 718 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 719 &vd->vdev_asize); 720 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 721 &vd->vdev_removing); 722 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 723 &vd->vdev_top_zap); 724 } else { 725 ASSERT0(vd->vdev_top_zap); 726 } 727 728 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 729 ASSERT(alloctype == VDEV_ALLOC_LOAD || 730 alloctype == VDEV_ALLOC_ADD || 731 alloctype == VDEV_ALLOC_SPLIT || 732 alloctype == VDEV_ALLOC_ROOTPOOL); 733 /* Note: metaslab_group_create() is now deferred */ 734 } 735 736 if (vd->vdev_ops->vdev_op_leaf && 737 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 738 (void) nvlist_lookup_uint64(nv, 739 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 740 } else { 741 ASSERT0(vd->vdev_leaf_zap); 742 } 743 744 /* 745 * If we're a leaf vdev, try to load the DTL object and other state. 746 */ 747 748 if (vd->vdev_ops->vdev_op_leaf && 749 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 750 alloctype == VDEV_ALLOC_ROOTPOOL)) { 751 if (alloctype == VDEV_ALLOC_LOAD) { 752 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 753 &vd->vdev_dtl_object); 754 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 755 &vd->vdev_unspare); 756 } 757 758 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 759 uint64_t spare = 0; 760 761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 762 &spare) == 0 && spare) 763 spa_spare_add(vd); 764 } 765 766 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 767 &vd->vdev_offline); 768 769 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 770 &vd->vdev_resilver_txg); 771 772 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 773 vdev_set_deferred_resilver(spa, vd); 774 775 /* 776 * When importing a pool, we want to ignore the persistent fault 777 * state, as the diagnosis made on another system may not be 778 * valid in the current context. Local vdevs will 779 * remain in the faulted state. 780 */ 781 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 782 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 783 &vd->vdev_faulted); 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 785 &vd->vdev_degraded); 786 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 787 &vd->vdev_removed); 788 789 if (vd->vdev_faulted || vd->vdev_degraded) { 790 char *aux; 791 792 vd->vdev_label_aux = 793 VDEV_AUX_ERR_EXCEEDED; 794 if (nvlist_lookup_string(nv, 795 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 796 strcmp(aux, "external") == 0) 797 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 798 } 799 } 800 } 801 802 /* 803 * Add ourselves to the parent's list of children. 804 */ 805 vdev_add_child(parent, vd); 806 807 *vdp = vd; 808 809 return (0); 810 } 811 812 void 813 vdev_free(vdev_t *vd) 814 { 815 spa_t *spa = vd->vdev_spa; 816 817 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 818 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 819 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 820 821 /* 822 * Scan queues are normally destroyed at the end of a scan. If the 823 * queue exists here, that implies the vdev is being removed while 824 * the scan is still running. 825 */ 826 if (vd->vdev_scan_io_queue != NULL) { 827 mutex_enter(&vd->vdev_scan_io_queue_lock); 828 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 829 vd->vdev_scan_io_queue = NULL; 830 mutex_exit(&vd->vdev_scan_io_queue_lock); 831 } 832 833 /* 834 * vdev_free() implies closing the vdev first. This is simpler than 835 * trying to ensure complicated semantics for all callers. 836 */ 837 vdev_close(vd); 838 839 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 840 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 841 842 /* 843 * Free all children. 844 */ 845 for (int c = 0; c < vd->vdev_children; c++) 846 vdev_free(vd->vdev_child[c]); 847 848 ASSERT(vd->vdev_child == NULL); 849 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 850 851 /* 852 * Discard allocation state. 853 */ 854 if (vd->vdev_mg != NULL) { 855 vdev_metaslab_fini(vd); 856 metaslab_group_destroy(vd->vdev_mg); 857 vd->vdev_mg = NULL; 858 } 859 860 ASSERT0(vd->vdev_stat.vs_space); 861 ASSERT0(vd->vdev_stat.vs_dspace); 862 ASSERT0(vd->vdev_stat.vs_alloc); 863 864 /* 865 * Remove this vdev from its parent's child list. 866 */ 867 vdev_remove_child(vd->vdev_parent, vd); 868 869 ASSERT(vd->vdev_parent == NULL); 870 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 871 872 /* 873 * Clean up vdev structure. 874 */ 875 vdev_queue_fini(vd); 876 vdev_cache_fini(vd); 877 878 if (vd->vdev_path) 879 spa_strfree(vd->vdev_path); 880 if (vd->vdev_devid) 881 spa_strfree(vd->vdev_devid); 882 if (vd->vdev_physpath) 883 spa_strfree(vd->vdev_physpath); 884 if (vd->vdev_fru) 885 spa_strfree(vd->vdev_fru); 886 887 if (vd->vdev_isspare) 888 spa_spare_remove(vd); 889 if (vd->vdev_isl2cache) 890 spa_l2cache_remove(vd); 891 892 txg_list_destroy(&vd->vdev_ms_list); 893 txg_list_destroy(&vd->vdev_dtl_list); 894 895 mutex_enter(&vd->vdev_dtl_lock); 896 space_map_close(vd->vdev_dtl_sm); 897 for (int t = 0; t < DTL_TYPES; t++) { 898 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 899 range_tree_destroy(vd->vdev_dtl[t]); 900 } 901 mutex_exit(&vd->vdev_dtl_lock); 902 903 EQUIV(vd->vdev_indirect_births != NULL, 904 vd->vdev_indirect_mapping != NULL); 905 if (vd->vdev_indirect_births != NULL) { 906 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 907 vdev_indirect_births_close(vd->vdev_indirect_births); 908 } 909 910 if (vd->vdev_obsolete_sm != NULL) { 911 ASSERT(vd->vdev_removing || 912 vd->vdev_ops == &vdev_indirect_ops); 913 space_map_close(vd->vdev_obsolete_sm); 914 vd->vdev_obsolete_sm = NULL; 915 } 916 range_tree_destroy(vd->vdev_obsolete_segments); 917 rw_destroy(&vd->vdev_indirect_rwlock); 918 mutex_destroy(&vd->vdev_obsolete_lock); 919 920 mutex_destroy(&vd->vdev_dtl_lock); 921 mutex_destroy(&vd->vdev_stat_lock); 922 mutex_destroy(&vd->vdev_probe_lock); 923 mutex_destroy(&vd->vdev_scan_io_queue_lock); 924 mutex_destroy(&vd->vdev_initialize_lock); 925 mutex_destroy(&vd->vdev_initialize_io_lock); 926 cv_destroy(&vd->vdev_initialize_io_cv); 927 cv_destroy(&vd->vdev_initialize_cv); 928 mutex_destroy(&vd->vdev_trim_lock); 929 mutex_destroy(&vd->vdev_autotrim_lock); 930 mutex_destroy(&vd->vdev_trim_io_lock); 931 cv_destroy(&vd->vdev_trim_cv); 932 cv_destroy(&vd->vdev_autotrim_cv); 933 cv_destroy(&vd->vdev_trim_io_cv); 934 935 if (vd == spa->spa_root_vdev) 936 spa->spa_root_vdev = NULL; 937 938 kmem_free(vd, sizeof (vdev_t)); 939 } 940 941 /* 942 * Transfer top-level vdev state from svd to tvd. 943 */ 944 static void 945 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 946 { 947 spa_t *spa = svd->vdev_spa; 948 metaslab_t *msp; 949 vdev_t *vd; 950 int t; 951 952 ASSERT(tvd == tvd->vdev_top); 953 954 tvd->vdev_ms_array = svd->vdev_ms_array; 955 tvd->vdev_ms_shift = svd->vdev_ms_shift; 956 tvd->vdev_ms_count = svd->vdev_ms_count; 957 tvd->vdev_top_zap = svd->vdev_top_zap; 958 959 svd->vdev_ms_array = 0; 960 svd->vdev_ms_shift = 0; 961 svd->vdev_ms_count = 0; 962 svd->vdev_top_zap = 0; 963 964 if (tvd->vdev_mg) 965 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 966 tvd->vdev_mg = svd->vdev_mg; 967 tvd->vdev_ms = svd->vdev_ms; 968 969 svd->vdev_mg = NULL; 970 svd->vdev_ms = NULL; 971 972 if (tvd->vdev_mg != NULL) 973 tvd->vdev_mg->mg_vd = tvd; 974 975 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 976 svd->vdev_checkpoint_sm = NULL; 977 978 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 979 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 980 981 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 982 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 983 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 984 985 svd->vdev_stat.vs_alloc = 0; 986 svd->vdev_stat.vs_space = 0; 987 svd->vdev_stat.vs_dspace = 0; 988 989 /* 990 * State which may be set on a top-level vdev that's in the 991 * process of being removed. 992 */ 993 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 994 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 995 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 996 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 997 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 998 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 999 ASSERT0(tvd->vdev_removing); 1000 tvd->vdev_removing = svd->vdev_removing; 1001 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1002 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1003 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1004 range_tree_swap(&svd->vdev_obsolete_segments, 1005 &tvd->vdev_obsolete_segments); 1006 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1007 svd->vdev_indirect_config.vic_mapping_object = 0; 1008 svd->vdev_indirect_config.vic_births_object = 0; 1009 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1010 svd->vdev_indirect_mapping = NULL; 1011 svd->vdev_indirect_births = NULL; 1012 svd->vdev_obsolete_sm = NULL; 1013 svd->vdev_removing = 0; 1014 1015 for (t = 0; t < TXG_SIZE; t++) { 1016 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1017 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1018 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1019 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1020 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1021 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1022 } 1023 1024 if (list_link_active(&svd->vdev_config_dirty_node)) { 1025 vdev_config_clean(svd); 1026 vdev_config_dirty(tvd); 1027 } 1028 1029 if (list_link_active(&svd->vdev_state_dirty_node)) { 1030 vdev_state_clean(svd); 1031 vdev_state_dirty(tvd); 1032 } 1033 1034 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1035 svd->vdev_deflate_ratio = 0; 1036 1037 tvd->vdev_islog = svd->vdev_islog; 1038 svd->vdev_islog = 0; 1039 1040 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1041 } 1042 1043 static void 1044 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1045 { 1046 if (vd == NULL) 1047 return; 1048 1049 vd->vdev_top = tvd; 1050 1051 for (int c = 0; c < vd->vdev_children; c++) 1052 vdev_top_update(tvd, vd->vdev_child[c]); 1053 } 1054 1055 /* 1056 * Add a mirror/replacing vdev above an existing vdev. 1057 */ 1058 vdev_t * 1059 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1060 { 1061 spa_t *spa = cvd->vdev_spa; 1062 vdev_t *pvd = cvd->vdev_parent; 1063 vdev_t *mvd; 1064 1065 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1066 1067 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1068 1069 mvd->vdev_asize = cvd->vdev_asize; 1070 mvd->vdev_min_asize = cvd->vdev_min_asize; 1071 mvd->vdev_max_asize = cvd->vdev_max_asize; 1072 mvd->vdev_psize = cvd->vdev_psize; 1073 mvd->vdev_ashift = cvd->vdev_ashift; 1074 mvd->vdev_state = cvd->vdev_state; 1075 mvd->vdev_crtxg = cvd->vdev_crtxg; 1076 1077 vdev_remove_child(pvd, cvd); 1078 vdev_add_child(pvd, mvd); 1079 cvd->vdev_id = mvd->vdev_children; 1080 vdev_add_child(mvd, cvd); 1081 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1082 1083 if (mvd == mvd->vdev_top) 1084 vdev_top_transfer(cvd, mvd); 1085 1086 return (mvd); 1087 } 1088 1089 /* 1090 * Remove a 1-way mirror/replacing vdev from the tree. 1091 */ 1092 void 1093 vdev_remove_parent(vdev_t *cvd) 1094 { 1095 vdev_t *mvd = cvd->vdev_parent; 1096 vdev_t *pvd = mvd->vdev_parent; 1097 1098 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1099 1100 ASSERT(mvd->vdev_children == 1); 1101 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1102 mvd->vdev_ops == &vdev_replacing_ops || 1103 mvd->vdev_ops == &vdev_spare_ops); 1104 cvd->vdev_ashift = mvd->vdev_ashift; 1105 1106 vdev_remove_child(mvd, cvd); 1107 vdev_remove_child(pvd, mvd); 1108 1109 /* 1110 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1111 * Otherwise, we could have detached an offline device, and when we 1112 * go to import the pool we'll think we have two top-level vdevs, 1113 * instead of a different version of the same top-level vdev. 1114 */ 1115 if (mvd->vdev_top == mvd) { 1116 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1117 cvd->vdev_orig_guid = cvd->vdev_guid; 1118 cvd->vdev_guid += guid_delta; 1119 cvd->vdev_guid_sum += guid_delta; 1120 } 1121 cvd->vdev_id = mvd->vdev_id; 1122 vdev_add_child(pvd, cvd); 1123 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1124 1125 if (cvd == cvd->vdev_top) 1126 vdev_top_transfer(mvd, cvd); 1127 1128 ASSERT(mvd->vdev_children == 0); 1129 vdev_free(mvd); 1130 } 1131 1132 static void 1133 vdev_metaslab_group_create(vdev_t *vd) 1134 { 1135 spa_t *spa = vd->vdev_spa; 1136 1137 /* 1138 * metaslab_group_create was delayed until allocation bias was available 1139 */ 1140 if (vd->vdev_mg == NULL) { 1141 metaslab_class_t *mc; 1142 1143 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1144 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1145 1146 ASSERT3U(vd->vdev_islog, ==, 1147 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1148 1149 switch (vd->vdev_alloc_bias) { 1150 case VDEV_BIAS_LOG: 1151 mc = spa_log_class(spa); 1152 break; 1153 case VDEV_BIAS_SPECIAL: 1154 mc = spa_special_class(spa); 1155 break; 1156 case VDEV_BIAS_DEDUP: 1157 mc = spa_dedup_class(spa); 1158 break; 1159 default: 1160 mc = spa_normal_class(spa); 1161 } 1162 1163 vd->vdev_mg = metaslab_group_create(mc, vd, 1164 spa->spa_alloc_count); 1165 1166 /* 1167 * The spa ashift values currently only reflect the 1168 * general vdev classes. Class destination is late 1169 * binding so ashift checking had to wait until now 1170 */ 1171 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1172 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1173 if (vd->vdev_ashift > spa->spa_max_ashift) 1174 spa->spa_max_ashift = vd->vdev_ashift; 1175 if (vd->vdev_ashift < spa->spa_min_ashift) 1176 spa->spa_min_ashift = vd->vdev_ashift; 1177 } 1178 } 1179 } 1180 1181 int 1182 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1183 { 1184 spa_t *spa = vd->vdev_spa; 1185 objset_t *mos = spa->spa_meta_objset; 1186 uint64_t m; 1187 uint64_t oldc = vd->vdev_ms_count; 1188 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1189 metaslab_t **mspp; 1190 int error; 1191 boolean_t expanding = (oldc != 0); 1192 1193 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1194 1195 /* 1196 * This vdev is not being allocated from yet or is a hole. 1197 */ 1198 if (vd->vdev_ms_shift == 0) 1199 return (0); 1200 1201 ASSERT(!vd->vdev_ishole); 1202 1203 ASSERT(oldc <= newc); 1204 1205 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1206 1207 if (expanding) { 1208 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1209 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1210 } 1211 1212 vd->vdev_ms = mspp; 1213 vd->vdev_ms_count = newc; 1214 for (m = oldc; m < newc; m++) { 1215 uint64_t object = 0; 1216 1217 /* 1218 * vdev_ms_array may be 0 if we are creating the "fake" 1219 * metaslabs for an indirect vdev for zdb's leak detection. 1220 * See zdb_leak_init(). 1221 */ 1222 if (txg == 0 && vd->vdev_ms_array != 0) { 1223 error = dmu_read(mos, vd->vdev_ms_array, 1224 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1225 DMU_READ_PREFETCH); 1226 if (error != 0) { 1227 vdev_dbgmsg(vd, "unable to read the metaslab " 1228 "array [error=%d]", error); 1229 return (error); 1230 } 1231 } 1232 1233 #ifndef _KERNEL 1234 /* 1235 * To accomodate zdb_leak_init() fake indirect 1236 * metaslabs, we allocate a metaslab group for 1237 * indirect vdevs which normally don't have one. 1238 */ 1239 if (vd->vdev_mg == NULL) { 1240 ASSERT0(vdev_is_concrete(vd)); 1241 vdev_metaslab_group_create(vd); 1242 } 1243 #endif 1244 error = metaslab_init(vd->vdev_mg, m, object, txg, 1245 &(vd->vdev_ms[m])); 1246 if (error != 0) { 1247 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1248 error); 1249 return (error); 1250 } 1251 } 1252 1253 if (txg == 0) 1254 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1255 1256 /* 1257 * If the vdev is being removed we don't activate 1258 * the metaslabs since we want to ensure that no new 1259 * allocations are performed on this device. 1260 */ 1261 if (!expanding && !vd->vdev_removing) { 1262 metaslab_group_activate(vd->vdev_mg); 1263 } 1264 1265 if (txg == 0) 1266 spa_config_exit(spa, SCL_ALLOC, FTAG); 1267 1268 /* 1269 * Regardless whether this vdev was just added or it is being 1270 * expanded, the metaslab count has changed. Recalculate the 1271 * block limit. 1272 */ 1273 spa_log_sm_set_blocklimit(spa); 1274 1275 return (0); 1276 } 1277 1278 void 1279 vdev_metaslab_fini(vdev_t *vd) 1280 { 1281 if (vd->vdev_checkpoint_sm != NULL) { 1282 ASSERT(spa_feature_is_active(vd->vdev_spa, 1283 SPA_FEATURE_POOL_CHECKPOINT)); 1284 space_map_close(vd->vdev_checkpoint_sm); 1285 /* 1286 * Even though we close the space map, we need to set its 1287 * pointer to NULL. The reason is that vdev_metaslab_fini() 1288 * may be called multiple times for certain operations 1289 * (i.e. when destroying a pool) so we need to ensure that 1290 * this clause never executes twice. This logic is similar 1291 * to the one used for the vdev_ms clause below. 1292 */ 1293 vd->vdev_checkpoint_sm = NULL; 1294 } 1295 1296 if (vd->vdev_ms != NULL) { 1297 metaslab_group_t *mg = vd->vdev_mg; 1298 metaslab_group_passivate(mg); 1299 1300 uint64_t count = vd->vdev_ms_count; 1301 for (uint64_t m = 0; m < count; m++) { 1302 metaslab_t *msp = vd->vdev_ms[m]; 1303 if (msp != NULL) 1304 metaslab_fini(msp); 1305 } 1306 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1307 vd->vdev_ms = NULL; 1308 1309 vd->vdev_ms_count = 0; 1310 1311 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1312 ASSERT0(mg->mg_histogram[i]); 1313 } 1314 ASSERT0(vd->vdev_ms_count); 1315 } 1316 1317 typedef struct vdev_probe_stats { 1318 boolean_t vps_readable; 1319 boolean_t vps_writeable; 1320 int vps_flags; 1321 } vdev_probe_stats_t; 1322 1323 static void 1324 vdev_probe_done(zio_t *zio) 1325 { 1326 spa_t *spa = zio->io_spa; 1327 vdev_t *vd = zio->io_vd; 1328 vdev_probe_stats_t *vps = zio->io_private; 1329 1330 ASSERT(vd->vdev_probe_zio != NULL); 1331 1332 if (zio->io_type == ZIO_TYPE_READ) { 1333 if (zio->io_error == 0) 1334 vps->vps_readable = 1; 1335 if (zio->io_error == 0 && spa_writeable(spa)) { 1336 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1337 zio->io_offset, zio->io_size, zio->io_abd, 1338 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1339 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1340 } else { 1341 abd_free(zio->io_abd); 1342 } 1343 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1344 if (zio->io_error == 0) 1345 vps->vps_writeable = 1; 1346 abd_free(zio->io_abd); 1347 } else if (zio->io_type == ZIO_TYPE_NULL) { 1348 zio_t *pio; 1349 1350 vd->vdev_cant_read |= !vps->vps_readable; 1351 vd->vdev_cant_write |= !vps->vps_writeable; 1352 1353 if (vdev_readable(vd) && 1354 (vdev_writeable(vd) || !spa_writeable(spa))) { 1355 zio->io_error = 0; 1356 } else { 1357 ASSERT(zio->io_error != 0); 1358 vdev_dbgmsg(vd, "failed probe"); 1359 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1360 spa, vd, NULL, NULL, 0, 0); 1361 zio->io_error = SET_ERROR(ENXIO); 1362 } 1363 1364 mutex_enter(&vd->vdev_probe_lock); 1365 ASSERT(vd->vdev_probe_zio == zio); 1366 vd->vdev_probe_zio = NULL; 1367 mutex_exit(&vd->vdev_probe_lock); 1368 1369 zio_link_t *zl = NULL; 1370 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1371 if (!vdev_accessible(vd, pio)) 1372 pio->io_error = SET_ERROR(ENXIO); 1373 1374 kmem_free(vps, sizeof (*vps)); 1375 } 1376 } 1377 1378 /* 1379 * Determine whether this device is accessible. 1380 * 1381 * Read and write to several known locations: the pad regions of each 1382 * vdev label but the first, which we leave alone in case it contains 1383 * a VTOC. 1384 */ 1385 zio_t * 1386 vdev_probe(vdev_t *vd, zio_t *zio) 1387 { 1388 spa_t *spa = vd->vdev_spa; 1389 vdev_probe_stats_t *vps = NULL; 1390 zio_t *pio; 1391 1392 ASSERT(vd->vdev_ops->vdev_op_leaf); 1393 1394 /* 1395 * Don't probe the probe. 1396 */ 1397 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1398 return (NULL); 1399 1400 /* 1401 * To prevent 'probe storms' when a device fails, we create 1402 * just one probe i/o at a time. All zios that want to probe 1403 * this vdev will become parents of the probe io. 1404 */ 1405 mutex_enter(&vd->vdev_probe_lock); 1406 1407 if ((pio = vd->vdev_probe_zio) == NULL) { 1408 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1409 1410 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1411 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1412 ZIO_FLAG_TRYHARD; 1413 1414 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1415 /* 1416 * vdev_cant_read and vdev_cant_write can only 1417 * transition from TRUE to FALSE when we have the 1418 * SCL_ZIO lock as writer; otherwise they can only 1419 * transition from FALSE to TRUE. This ensures that 1420 * any zio looking at these values can assume that 1421 * failures persist for the life of the I/O. That's 1422 * important because when a device has intermittent 1423 * connectivity problems, we want to ensure that 1424 * they're ascribed to the device (ENXIO) and not 1425 * the zio (EIO). 1426 * 1427 * Since we hold SCL_ZIO as writer here, clear both 1428 * values so the probe can reevaluate from first 1429 * principles. 1430 */ 1431 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1432 vd->vdev_cant_read = B_FALSE; 1433 vd->vdev_cant_write = B_FALSE; 1434 } 1435 1436 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1437 vdev_probe_done, vps, 1438 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1439 1440 /* 1441 * We can't change the vdev state in this context, so we 1442 * kick off an async task to do it on our behalf. 1443 */ 1444 if (zio != NULL) { 1445 vd->vdev_probe_wanted = B_TRUE; 1446 spa_async_request(spa, SPA_ASYNC_PROBE); 1447 } 1448 } 1449 1450 if (zio != NULL) 1451 zio_add_child(zio, pio); 1452 1453 mutex_exit(&vd->vdev_probe_lock); 1454 1455 if (vps == NULL) { 1456 ASSERT(zio != NULL); 1457 return (NULL); 1458 } 1459 1460 for (int l = 1; l < VDEV_LABELS; l++) { 1461 zio_nowait(zio_read_phys(pio, vd, 1462 vdev_label_offset(vd->vdev_psize, l, 1463 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1464 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1465 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1466 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1467 } 1468 1469 if (zio == NULL) 1470 return (pio); 1471 1472 zio_nowait(pio); 1473 return (NULL); 1474 } 1475 1476 static void 1477 vdev_open_child(void *arg) 1478 { 1479 vdev_t *vd = arg; 1480 1481 vd->vdev_open_thread = curthread; 1482 vd->vdev_open_error = vdev_open(vd); 1483 vd->vdev_open_thread = NULL; 1484 } 1485 1486 boolean_t 1487 vdev_uses_zvols(vdev_t *vd) 1488 { 1489 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1490 strlen(ZVOL_DIR)) == 0) 1491 return (B_TRUE); 1492 for (int c = 0; c < vd->vdev_children; c++) 1493 if (vdev_uses_zvols(vd->vdev_child[c])) 1494 return (B_TRUE); 1495 return (B_FALSE); 1496 } 1497 1498 void 1499 vdev_open_children(vdev_t *vd) 1500 { 1501 taskq_t *tq; 1502 int children = vd->vdev_children; 1503 1504 /* 1505 * in order to handle pools on top of zvols, do the opens 1506 * in a single thread so that the same thread holds the 1507 * spa_namespace_lock 1508 */ 1509 if (vdev_uses_zvols(vd)) { 1510 retry_sync: 1511 for (int c = 0; c < children; c++) 1512 vd->vdev_child[c]->vdev_open_error = 1513 vdev_open(vd->vdev_child[c]); 1514 } else { 1515 tq = taskq_create("vdev_open", children, minclsyspri, 1516 children, children, TASKQ_PREPOPULATE); 1517 if (tq == NULL) 1518 goto retry_sync; 1519 1520 for (int c = 0; c < children; c++) 1521 VERIFY(taskq_dispatch(tq, vdev_open_child, 1522 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1523 1524 taskq_destroy(tq); 1525 } 1526 1527 vd->vdev_nonrot = B_TRUE; 1528 1529 for (int c = 0; c < children; c++) 1530 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1531 } 1532 1533 /* 1534 * Compute the raidz-deflation ratio. Note, we hard-code 1535 * in 128k (1 << 17) because it is the "typical" blocksize. 1536 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1537 * otherwise it would inconsistently account for existing bp's. 1538 */ 1539 static void 1540 vdev_set_deflate_ratio(vdev_t *vd) 1541 { 1542 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1543 vd->vdev_deflate_ratio = (1 << 17) / 1544 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1545 } 1546 } 1547 1548 /* 1549 * Prepare a virtual device for access. 1550 */ 1551 int 1552 vdev_open(vdev_t *vd) 1553 { 1554 spa_t *spa = vd->vdev_spa; 1555 int error; 1556 uint64_t osize = 0; 1557 uint64_t max_osize = 0; 1558 uint64_t asize, max_asize, psize; 1559 uint64_t ashift = 0; 1560 1561 ASSERT(vd->vdev_open_thread == curthread || 1562 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1563 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1564 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1565 vd->vdev_state == VDEV_STATE_OFFLINE); 1566 1567 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1568 vd->vdev_cant_read = B_FALSE; 1569 vd->vdev_cant_write = B_FALSE; 1570 vd->vdev_min_asize = vdev_get_min_asize(vd); 1571 1572 /* 1573 * If this vdev is not removed, check its fault status. If it's 1574 * faulted, bail out of the open. 1575 */ 1576 if (!vd->vdev_removed && vd->vdev_faulted) { 1577 ASSERT(vd->vdev_children == 0); 1578 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1579 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1580 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1581 vd->vdev_label_aux); 1582 return (SET_ERROR(ENXIO)); 1583 } else if (vd->vdev_offline) { 1584 ASSERT(vd->vdev_children == 0); 1585 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1586 return (SET_ERROR(ENXIO)); 1587 } 1588 1589 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1590 1591 /* 1592 * Reset the vdev_reopening flag so that we actually close 1593 * the vdev on error. 1594 */ 1595 vd->vdev_reopening = B_FALSE; 1596 if (zio_injection_enabled && error == 0) 1597 error = zio_handle_device_injection(vd, NULL, ENXIO); 1598 1599 if (error) { 1600 if (vd->vdev_removed && 1601 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1602 vd->vdev_removed = B_FALSE; 1603 1604 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1605 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1606 vd->vdev_stat.vs_aux); 1607 } else { 1608 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1609 vd->vdev_stat.vs_aux); 1610 } 1611 return (error); 1612 } 1613 1614 vd->vdev_removed = B_FALSE; 1615 1616 /* 1617 * Recheck the faulted flag now that we have confirmed that 1618 * the vdev is accessible. If we're faulted, bail. 1619 */ 1620 if (vd->vdev_faulted) { 1621 ASSERT(vd->vdev_children == 0); 1622 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1623 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1624 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1625 vd->vdev_label_aux); 1626 return (SET_ERROR(ENXIO)); 1627 } 1628 1629 if (vd->vdev_degraded) { 1630 ASSERT(vd->vdev_children == 0); 1631 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1632 VDEV_AUX_ERR_EXCEEDED); 1633 } else { 1634 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1635 } 1636 1637 /* 1638 * For hole or missing vdevs we just return success. 1639 */ 1640 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1641 return (0); 1642 1643 for (int c = 0; c < vd->vdev_children; c++) { 1644 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1645 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1646 VDEV_AUX_NONE); 1647 break; 1648 } 1649 } 1650 1651 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1652 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1653 1654 if (vd->vdev_children == 0) { 1655 if (osize < SPA_MINDEVSIZE) { 1656 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1657 VDEV_AUX_TOO_SMALL); 1658 return (SET_ERROR(EOVERFLOW)); 1659 } 1660 psize = osize; 1661 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1662 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1663 VDEV_LABEL_END_SIZE); 1664 } else { 1665 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1666 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1667 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1668 VDEV_AUX_TOO_SMALL); 1669 return (SET_ERROR(EOVERFLOW)); 1670 } 1671 psize = 0; 1672 asize = osize; 1673 max_asize = max_osize; 1674 } 1675 1676 vd->vdev_psize = psize; 1677 1678 /* 1679 * Make sure the allocatable size hasn't shrunk too much. 1680 */ 1681 if (asize < vd->vdev_min_asize) { 1682 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1683 VDEV_AUX_BAD_LABEL); 1684 return (SET_ERROR(EINVAL)); 1685 } 1686 1687 if (vd->vdev_asize == 0) { 1688 /* 1689 * This is the first-ever open, so use the computed values. 1690 * For compatibility, a different ashift can be requested. 1691 */ 1692 vd->vdev_asize = asize; 1693 vd->vdev_max_asize = max_asize; 1694 if (vd->vdev_ashift == 0) { 1695 vd->vdev_ashift = ashift; /* use detected value */ 1696 } 1697 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1698 vd->vdev_ashift > ASHIFT_MAX)) { 1699 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1700 VDEV_AUX_BAD_ASHIFT); 1701 return (SET_ERROR(EDOM)); 1702 } 1703 } else { 1704 /* 1705 * Detect if the alignment requirement has increased. 1706 * We don't want to make the pool unavailable, just 1707 * post an event instead. 1708 */ 1709 if (ashift > vd->vdev_top->vdev_ashift && 1710 vd->vdev_ops->vdev_op_leaf) { 1711 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1712 spa, vd, NULL, NULL, 0, 0); 1713 } 1714 1715 vd->vdev_max_asize = max_asize; 1716 } 1717 1718 /* 1719 * If all children are healthy we update asize if either: 1720 * The asize has increased, due to a device expansion caused by dynamic 1721 * LUN growth or vdev replacement, and automatic expansion is enabled; 1722 * making the additional space available. 1723 * 1724 * The asize has decreased, due to a device shrink usually caused by a 1725 * vdev replace with a smaller device. This ensures that calculations 1726 * based of max_asize and asize e.g. esize are always valid. It's safe 1727 * to do this as we've already validated that asize is greater than 1728 * vdev_min_asize. 1729 */ 1730 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1731 ((asize > vd->vdev_asize && 1732 (vd->vdev_expanding || spa->spa_autoexpand)) || 1733 (asize < vd->vdev_asize))) 1734 vd->vdev_asize = asize; 1735 1736 vdev_set_min_asize(vd); 1737 1738 /* 1739 * Ensure we can issue some IO before declaring the 1740 * vdev open for business. 1741 */ 1742 if (vd->vdev_ops->vdev_op_leaf && 1743 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1744 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1745 VDEV_AUX_ERR_EXCEEDED); 1746 return (error); 1747 } 1748 1749 /* 1750 * Track the min and max ashift values for normal data devices. 1751 * 1752 * DJB - TBD these should perhaps be tracked per allocation class 1753 * (e.g. spa_min_ashift is used to round up post compression buffers) 1754 */ 1755 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1756 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1757 vd->vdev_aux == NULL) { 1758 if (vd->vdev_ashift > spa->spa_max_ashift) 1759 spa->spa_max_ashift = vd->vdev_ashift; 1760 if (vd->vdev_ashift < spa->spa_min_ashift) 1761 spa->spa_min_ashift = vd->vdev_ashift; 1762 } 1763 1764 /* 1765 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1766 * resilver. But don't do this if we are doing a reopen for a scrub, 1767 * since this would just restart the scrub we are already doing. 1768 */ 1769 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1770 vdev_resilver_needed(vd, NULL, NULL)) { 1771 if (dsl_scan_resilvering(spa->spa_dsl_pool) && 1772 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 1773 vdev_set_deferred_resilver(spa, vd); 1774 else 1775 spa_async_request(spa, SPA_ASYNC_RESILVER); 1776 } 1777 1778 return (0); 1779 } 1780 1781 /* 1782 * Called once the vdevs are all opened, this routine validates the label 1783 * contents. This needs to be done before vdev_load() so that we don't 1784 * inadvertently do repair I/Os to the wrong device. 1785 * 1786 * This function will only return failure if one of the vdevs indicates that it 1787 * has since been destroyed or exported. This is only possible if 1788 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1789 * will be updated but the function will return 0. 1790 */ 1791 int 1792 vdev_validate(vdev_t *vd) 1793 { 1794 spa_t *spa = vd->vdev_spa; 1795 nvlist_t *label; 1796 uint64_t guid = 0, aux_guid = 0, top_guid; 1797 uint64_t state; 1798 nvlist_t *nvl; 1799 uint64_t txg; 1800 1801 if (vdev_validate_skip) 1802 return (0); 1803 1804 for (uint64_t c = 0; c < vd->vdev_children; c++) 1805 if (vdev_validate(vd->vdev_child[c]) != 0) 1806 return (SET_ERROR(EBADF)); 1807 1808 /* 1809 * If the device has already failed, or was marked offline, don't do 1810 * any further validation. Otherwise, label I/O will fail and we will 1811 * overwrite the previous state. 1812 */ 1813 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1814 return (0); 1815 1816 /* 1817 * If we are performing an extreme rewind, we allow for a label that 1818 * was modified at a point after the current txg. 1819 * If config lock is not held do not check for the txg. spa_sync could 1820 * be updating the vdev's label before updating spa_last_synced_txg. 1821 */ 1822 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1823 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1824 txg = UINT64_MAX; 1825 else 1826 txg = spa_last_synced_txg(spa); 1827 1828 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1829 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1830 VDEV_AUX_BAD_LABEL); 1831 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1832 "txg %llu", (u_longlong_t)txg); 1833 return (0); 1834 } 1835 1836 /* 1837 * Determine if this vdev has been split off into another 1838 * pool. If so, then refuse to open it. 1839 */ 1840 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1841 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1842 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1843 VDEV_AUX_SPLIT_POOL); 1844 nvlist_free(label); 1845 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1846 return (0); 1847 } 1848 1849 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1850 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1851 VDEV_AUX_CORRUPT_DATA); 1852 nvlist_free(label); 1853 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1854 ZPOOL_CONFIG_POOL_GUID); 1855 return (0); 1856 } 1857 1858 /* 1859 * If config is not trusted then ignore the spa guid check. This is 1860 * necessary because if the machine crashed during a re-guid the new 1861 * guid might have been written to all of the vdev labels, but not the 1862 * cached config. The check will be performed again once we have the 1863 * trusted config from the MOS. 1864 */ 1865 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1866 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1867 VDEV_AUX_CORRUPT_DATA); 1868 nvlist_free(label); 1869 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1870 "match config (%llu != %llu)", (u_longlong_t)guid, 1871 (u_longlong_t)spa_guid(spa)); 1872 return (0); 1873 } 1874 1875 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1876 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1877 &aux_guid) != 0) 1878 aux_guid = 0; 1879 1880 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1881 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1882 VDEV_AUX_CORRUPT_DATA); 1883 nvlist_free(label); 1884 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1885 ZPOOL_CONFIG_GUID); 1886 return (0); 1887 } 1888 1889 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1890 != 0) { 1891 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1892 VDEV_AUX_CORRUPT_DATA); 1893 nvlist_free(label); 1894 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1895 ZPOOL_CONFIG_TOP_GUID); 1896 return (0); 1897 } 1898 1899 /* 1900 * If this vdev just became a top-level vdev because its sibling was 1901 * detached, it will have adopted the parent's vdev guid -- but the 1902 * label may or may not be on disk yet. Fortunately, either version 1903 * of the label will have the same top guid, so if we're a top-level 1904 * vdev, we can safely compare to that instead. 1905 * However, if the config comes from a cachefile that failed to update 1906 * after the detach, a top-level vdev will appear as a non top-level 1907 * vdev in the config. Also relax the constraints if we perform an 1908 * extreme rewind. 1909 * 1910 * If we split this vdev off instead, then we also check the 1911 * original pool's guid. We don't want to consider the vdev 1912 * corrupt if it is partway through a split operation. 1913 */ 1914 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1915 boolean_t mismatch = B_FALSE; 1916 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1917 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1918 mismatch = B_TRUE; 1919 } else { 1920 if (vd->vdev_guid != top_guid && 1921 vd->vdev_top->vdev_guid != guid) 1922 mismatch = B_TRUE; 1923 } 1924 1925 if (mismatch) { 1926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1927 VDEV_AUX_CORRUPT_DATA); 1928 nvlist_free(label); 1929 vdev_dbgmsg(vd, "vdev_validate: config guid " 1930 "doesn't match label guid"); 1931 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1932 (u_longlong_t)vd->vdev_guid, 1933 (u_longlong_t)vd->vdev_top->vdev_guid); 1934 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1935 "aux_guid %llu", (u_longlong_t)guid, 1936 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1937 return (0); 1938 } 1939 } 1940 1941 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1942 &state) != 0) { 1943 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1944 VDEV_AUX_CORRUPT_DATA); 1945 nvlist_free(label); 1946 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1947 ZPOOL_CONFIG_POOL_STATE); 1948 return (0); 1949 } 1950 1951 nvlist_free(label); 1952 1953 /* 1954 * If this is a verbatim import, no need to check the 1955 * state of the pool. 1956 */ 1957 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1958 spa_load_state(spa) == SPA_LOAD_OPEN && 1959 state != POOL_STATE_ACTIVE) { 1960 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1961 "for spa %s", (u_longlong_t)state, spa->spa_name); 1962 return (SET_ERROR(EBADF)); 1963 } 1964 1965 /* 1966 * If we were able to open and validate a vdev that was 1967 * previously marked permanently unavailable, clear that state 1968 * now. 1969 */ 1970 if (vd->vdev_not_present) 1971 vd->vdev_not_present = 0; 1972 1973 return (0); 1974 } 1975 1976 static void 1977 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1978 { 1979 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1980 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1981 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1982 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1983 dvd->vdev_path, svd->vdev_path); 1984 spa_strfree(dvd->vdev_path); 1985 dvd->vdev_path = spa_strdup(svd->vdev_path); 1986 } 1987 } else if (svd->vdev_path != NULL) { 1988 dvd->vdev_path = spa_strdup(svd->vdev_path); 1989 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 1990 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 1991 } 1992 } 1993 1994 /* 1995 * Recursively copy vdev paths from one vdev to another. Source and destination 1996 * vdev trees must have same geometry otherwise return error. Intended to copy 1997 * paths from userland config into MOS config. 1998 */ 1999 int 2000 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2001 { 2002 if ((svd->vdev_ops == &vdev_missing_ops) || 2003 (svd->vdev_ishole && dvd->vdev_ishole) || 2004 (dvd->vdev_ops == &vdev_indirect_ops)) 2005 return (0); 2006 2007 if (svd->vdev_ops != dvd->vdev_ops) { 2008 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2009 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2010 return (SET_ERROR(EINVAL)); 2011 } 2012 2013 if (svd->vdev_guid != dvd->vdev_guid) { 2014 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2015 "%llu)", (u_longlong_t)svd->vdev_guid, 2016 (u_longlong_t)dvd->vdev_guid); 2017 return (SET_ERROR(EINVAL)); 2018 } 2019 2020 if (svd->vdev_children != dvd->vdev_children) { 2021 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2022 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2023 (u_longlong_t)dvd->vdev_children); 2024 return (SET_ERROR(EINVAL)); 2025 } 2026 2027 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2028 int error = vdev_copy_path_strict(svd->vdev_child[i], 2029 dvd->vdev_child[i]); 2030 if (error != 0) 2031 return (error); 2032 } 2033 2034 if (svd->vdev_ops->vdev_op_leaf) 2035 vdev_copy_path_impl(svd, dvd); 2036 2037 return (0); 2038 } 2039 2040 static void 2041 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2042 { 2043 ASSERT(stvd->vdev_top == stvd); 2044 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2045 2046 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2047 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2048 } 2049 2050 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2051 return; 2052 2053 /* 2054 * The idea here is that while a vdev can shift positions within 2055 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2056 * step outside of it. 2057 */ 2058 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2059 2060 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2061 return; 2062 2063 ASSERT(vd->vdev_ops->vdev_op_leaf); 2064 2065 vdev_copy_path_impl(vd, dvd); 2066 } 2067 2068 /* 2069 * Recursively copy vdev paths from one root vdev to another. Source and 2070 * destination vdev trees may differ in geometry. For each destination leaf 2071 * vdev, search a vdev with the same guid and top vdev id in the source. 2072 * Intended to copy paths from userland config into MOS config. 2073 */ 2074 void 2075 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2076 { 2077 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2078 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2079 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2080 2081 for (uint64_t i = 0; i < children; i++) { 2082 vdev_copy_path_search(srvd->vdev_child[i], 2083 drvd->vdev_child[i]); 2084 } 2085 } 2086 2087 /* 2088 * Close a virtual device. 2089 */ 2090 void 2091 vdev_close(vdev_t *vd) 2092 { 2093 spa_t *spa = vd->vdev_spa; 2094 vdev_t *pvd = vd->vdev_parent; 2095 2096 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2097 2098 /* 2099 * If our parent is reopening, then we are as well, unless we are 2100 * going offline. 2101 */ 2102 if (pvd != NULL && pvd->vdev_reopening) 2103 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2104 2105 vd->vdev_ops->vdev_op_close(vd); 2106 2107 vdev_cache_purge(vd); 2108 2109 /* 2110 * We record the previous state before we close it, so that if we are 2111 * doing a reopen(), we don't generate FMA ereports if we notice that 2112 * it's still faulted. 2113 */ 2114 vd->vdev_prevstate = vd->vdev_state; 2115 2116 if (vd->vdev_offline) 2117 vd->vdev_state = VDEV_STATE_OFFLINE; 2118 else 2119 vd->vdev_state = VDEV_STATE_CLOSED; 2120 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2121 } 2122 2123 void 2124 vdev_hold(vdev_t *vd) 2125 { 2126 spa_t *spa = vd->vdev_spa; 2127 2128 ASSERT(spa_is_root(spa)); 2129 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2130 return; 2131 2132 for (int c = 0; c < vd->vdev_children; c++) 2133 vdev_hold(vd->vdev_child[c]); 2134 2135 if (vd->vdev_ops->vdev_op_leaf) 2136 vd->vdev_ops->vdev_op_hold(vd); 2137 } 2138 2139 void 2140 vdev_rele(vdev_t *vd) 2141 { 2142 spa_t *spa = vd->vdev_spa; 2143 2144 ASSERT(spa_is_root(spa)); 2145 for (int c = 0; c < vd->vdev_children; c++) 2146 vdev_rele(vd->vdev_child[c]); 2147 2148 if (vd->vdev_ops->vdev_op_leaf) 2149 vd->vdev_ops->vdev_op_rele(vd); 2150 } 2151 2152 /* 2153 * Reopen all interior vdevs and any unopened leaves. We don't actually 2154 * reopen leaf vdevs which had previously been opened as they might deadlock 2155 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2156 * If the leaf has never been opened then open it, as usual. 2157 */ 2158 void 2159 vdev_reopen(vdev_t *vd) 2160 { 2161 spa_t *spa = vd->vdev_spa; 2162 2163 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2164 2165 /* set the reopening flag unless we're taking the vdev offline */ 2166 vd->vdev_reopening = !vd->vdev_offline; 2167 vdev_close(vd); 2168 (void) vdev_open(vd); 2169 2170 /* 2171 * Call vdev_validate() here to make sure we have the same device. 2172 * Otherwise, a device with an invalid label could be successfully 2173 * opened in response to vdev_reopen(). 2174 */ 2175 if (vd->vdev_aux) { 2176 (void) vdev_validate_aux(vd); 2177 if (vdev_readable(vd) && vdev_writeable(vd) && 2178 vd->vdev_aux == &spa->spa_l2cache && 2179 !l2arc_vdev_present(vd)) 2180 l2arc_add_vdev(spa, vd); 2181 } else { 2182 (void) vdev_validate(vd); 2183 } 2184 2185 /* 2186 * Reassess parent vdev's health. 2187 */ 2188 vdev_propagate_state(vd); 2189 } 2190 2191 int 2192 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2193 { 2194 int error; 2195 2196 /* 2197 * Normally, partial opens (e.g. of a mirror) are allowed. 2198 * For a create, however, we want to fail the request if 2199 * there are any components we can't open. 2200 */ 2201 error = vdev_open(vd); 2202 2203 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2204 vdev_close(vd); 2205 return (error ? error : ENXIO); 2206 } 2207 2208 /* 2209 * Recursively load DTLs and initialize all labels. 2210 */ 2211 if ((error = vdev_dtl_load(vd)) != 0 || 2212 (error = vdev_label_init(vd, txg, isreplacing ? 2213 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2214 vdev_close(vd); 2215 return (error); 2216 } 2217 2218 return (0); 2219 } 2220 2221 void 2222 vdev_metaslab_set_size(vdev_t *vd) 2223 { 2224 uint64_t asize = vd->vdev_asize; 2225 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2226 uint64_t ms_shift; 2227 2228 /* BEGIN CSTYLED */ 2229 /* 2230 * There are two dimensions to the metaslab sizing calculation: 2231 * the size of the metaslab and the count of metaslabs per vdev. 2232 * 2233 * The default values used below are a good balance between memory 2234 * usage (larger metaslab size means more memory needed for loaded 2235 * metaslabs; more metaslabs means more memory needed for the 2236 * metaslab_t structs), metaslab load time (larger metaslabs take 2237 * longer to load), and metaslab sync time (more metaslabs means 2238 * more time spent syncing all of them). 2239 * 2240 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2241 * The range of the dimensions are as follows: 2242 * 2243 * 2^29 <= ms_size <= 2^34 2244 * 16 <= ms_count <= 131,072 2245 * 2246 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2247 * at least 512MB (2^29) to minimize fragmentation effects when 2248 * testing with smaller devices. However, the count constraint 2249 * of at least 16 metaslabs will override this minimum size goal. 2250 * 2251 * On the upper end of vdev sizes, we aim for a maximum metaslab 2252 * size of 16GB. However, we will cap the total count to 2^17 2253 * metaslabs to keep our memory footprint in check and let the 2254 * metaslab size grow from there if that limit is hit. 2255 * 2256 * The net effect of applying above constrains is summarized below. 2257 * 2258 * vdev size metaslab count 2259 * --------------|----------------- 2260 * < 8GB ~16 2261 * 8GB - 100GB one per 512MB 2262 * 100GB - 3TB ~200 2263 * 3TB - 2PB one per 16GB 2264 * > 2PB ~131,072 2265 * -------------------------------- 2266 * 2267 * Finally, note that all of the above calculate the initial 2268 * number of metaslabs. Expanding a top-level vdev will result 2269 * in additional metaslabs being allocated making it possible 2270 * to exceed the zfs_vdev_ms_count_limit. 2271 */ 2272 /* END CSTYLED */ 2273 2274 if (ms_count < zfs_vdev_min_ms_count) 2275 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2276 else if (ms_count > zfs_vdev_default_ms_count) 2277 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2278 else 2279 ms_shift = zfs_vdev_default_ms_shift; 2280 2281 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2282 ms_shift = SPA_MAXBLOCKSHIFT; 2283 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2284 ms_shift = zfs_vdev_max_ms_shift; 2285 /* cap the total count to constrain memory footprint */ 2286 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2287 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2288 } 2289 2290 vd->vdev_ms_shift = ms_shift; 2291 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2292 } 2293 2294 void 2295 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2296 { 2297 ASSERT(vd == vd->vdev_top); 2298 /* indirect vdevs don't have metaslabs or dtls */ 2299 ASSERT(vdev_is_concrete(vd) || flags == 0); 2300 ASSERT(ISP2(flags)); 2301 ASSERT(spa_writeable(vd->vdev_spa)); 2302 2303 if (flags & VDD_METASLAB) 2304 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2305 2306 if (flags & VDD_DTL) 2307 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2308 2309 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2310 } 2311 2312 void 2313 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2314 { 2315 for (int c = 0; c < vd->vdev_children; c++) 2316 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2317 2318 if (vd->vdev_ops->vdev_op_leaf) 2319 vdev_dirty(vd->vdev_top, flags, vd, txg); 2320 } 2321 2322 /* 2323 * DTLs. 2324 * 2325 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2326 * the vdev has less than perfect replication. There are four kinds of DTL: 2327 * 2328 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2329 * 2330 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2331 * 2332 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2333 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2334 * txgs that was scrubbed. 2335 * 2336 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2337 * persistent errors or just some device being offline. 2338 * Unlike the other three, the DTL_OUTAGE map is not generally 2339 * maintained; it's only computed when needed, typically to 2340 * determine whether a device can be detached. 2341 * 2342 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2343 * either has the data or it doesn't. 2344 * 2345 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2346 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2347 * if any child is less than fully replicated, then so is its parent. 2348 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2349 * comprising only those txgs which appear in 'maxfaults' or more children; 2350 * those are the txgs we don't have enough replication to read. For example, 2351 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2352 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2353 * two child DTL_MISSING maps. 2354 * 2355 * It should be clear from the above that to compute the DTLs and outage maps 2356 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2357 * Therefore, that is all we keep on disk. When loading the pool, or after 2358 * a configuration change, we generate all other DTLs from first principles. 2359 */ 2360 void 2361 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2362 { 2363 range_tree_t *rt = vd->vdev_dtl[t]; 2364 2365 ASSERT(t < DTL_TYPES); 2366 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2367 ASSERT(spa_writeable(vd->vdev_spa)); 2368 2369 mutex_enter(&vd->vdev_dtl_lock); 2370 if (!range_tree_contains(rt, txg, size)) 2371 range_tree_add(rt, txg, size); 2372 mutex_exit(&vd->vdev_dtl_lock); 2373 } 2374 2375 boolean_t 2376 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2377 { 2378 range_tree_t *rt = vd->vdev_dtl[t]; 2379 boolean_t dirty = B_FALSE; 2380 2381 ASSERT(t < DTL_TYPES); 2382 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2383 2384 /* 2385 * While we are loading the pool, the DTLs have not been loaded yet. 2386 * Ignore the DTLs and try all devices. This avoids a recursive 2387 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2388 * when loading the pool (relying on the checksum to ensure that 2389 * we get the right data -- note that we while loading, we are 2390 * only reading the MOS, which is always checksummed). 2391 */ 2392 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2393 return (B_FALSE); 2394 2395 mutex_enter(&vd->vdev_dtl_lock); 2396 if (!range_tree_is_empty(rt)) 2397 dirty = range_tree_contains(rt, txg, size); 2398 mutex_exit(&vd->vdev_dtl_lock); 2399 2400 return (dirty); 2401 } 2402 2403 boolean_t 2404 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2405 { 2406 range_tree_t *rt = vd->vdev_dtl[t]; 2407 boolean_t empty; 2408 2409 mutex_enter(&vd->vdev_dtl_lock); 2410 empty = range_tree_is_empty(rt); 2411 mutex_exit(&vd->vdev_dtl_lock); 2412 2413 return (empty); 2414 } 2415 2416 /* 2417 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2418 */ 2419 boolean_t 2420 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2421 { 2422 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2423 2424 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2425 vd->vdev_ops->vdev_op_leaf) 2426 return (B_TRUE); 2427 2428 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2429 } 2430 2431 /* 2432 * Returns the lowest txg in the DTL range. 2433 */ 2434 static uint64_t 2435 vdev_dtl_min(vdev_t *vd) 2436 { 2437 range_seg_t *rs; 2438 2439 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2440 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2441 ASSERT0(vd->vdev_children); 2442 2443 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2444 return (rs->rs_start - 1); 2445 } 2446 2447 /* 2448 * Returns the highest txg in the DTL. 2449 */ 2450 static uint64_t 2451 vdev_dtl_max(vdev_t *vd) 2452 { 2453 range_seg_t *rs; 2454 2455 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2456 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2457 ASSERT0(vd->vdev_children); 2458 2459 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2460 return (rs->rs_end); 2461 } 2462 2463 /* 2464 * Determine if a resilvering vdev should remove any DTL entries from 2465 * its range. If the vdev was resilvering for the entire duration of the 2466 * scan then it should excise that range from its DTLs. Otherwise, this 2467 * vdev is considered partially resilvered and should leave its DTL 2468 * entries intact. The comment in vdev_dtl_reassess() describes how we 2469 * excise the DTLs. 2470 */ 2471 static boolean_t 2472 vdev_dtl_should_excise(vdev_t *vd) 2473 { 2474 spa_t *spa = vd->vdev_spa; 2475 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2476 2477 ASSERT0(scn->scn_phys.scn_errors); 2478 ASSERT0(vd->vdev_children); 2479 2480 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2481 return (B_FALSE); 2482 2483 if (vd->vdev_resilver_deferred) 2484 return (B_FALSE); 2485 2486 if (vd->vdev_resilver_txg == 0 || 2487 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2488 return (B_TRUE); 2489 2490 /* 2491 * When a resilver is initiated the scan will assign the scn_max_txg 2492 * value to the highest txg value that exists in all DTLs. If this 2493 * device's max DTL is not part of this scan (i.e. it is not in 2494 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2495 * for excision. 2496 */ 2497 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2498 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2499 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2500 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2501 return (B_TRUE); 2502 } 2503 return (B_FALSE); 2504 } 2505 2506 /* 2507 * Reassess DTLs after a config change or scrub completion. 2508 */ 2509 void 2510 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2511 { 2512 spa_t *spa = vd->vdev_spa; 2513 avl_tree_t reftree; 2514 int minref; 2515 2516 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2517 2518 for (int c = 0; c < vd->vdev_children; c++) 2519 vdev_dtl_reassess(vd->vdev_child[c], txg, 2520 scrub_txg, scrub_done); 2521 2522 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2523 return; 2524 2525 if (vd->vdev_ops->vdev_op_leaf) { 2526 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2527 2528 mutex_enter(&vd->vdev_dtl_lock); 2529 2530 /* 2531 * If we've completed a scan cleanly then determine 2532 * if this vdev should remove any DTLs. We only want to 2533 * excise regions on vdevs that were available during 2534 * the entire duration of this scan. 2535 */ 2536 if (scrub_txg != 0 && 2537 (spa->spa_scrub_started || 2538 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2539 vdev_dtl_should_excise(vd)) { 2540 /* 2541 * We completed a scrub up to scrub_txg. If we 2542 * did it without rebooting, then the scrub dtl 2543 * will be valid, so excise the old region and 2544 * fold in the scrub dtl. Otherwise, leave the 2545 * dtl as-is if there was an error. 2546 * 2547 * There's little trick here: to excise the beginning 2548 * of the DTL_MISSING map, we put it into a reference 2549 * tree and then add a segment with refcnt -1 that 2550 * covers the range [0, scrub_txg). This means 2551 * that each txg in that range has refcnt -1 or 0. 2552 * We then add DTL_SCRUB with a refcnt of 2, so that 2553 * entries in the range [0, scrub_txg) will have a 2554 * positive refcnt -- either 1 or 2. We then convert 2555 * the reference tree into the new DTL_MISSING map. 2556 */ 2557 space_reftree_create(&reftree); 2558 space_reftree_add_map(&reftree, 2559 vd->vdev_dtl[DTL_MISSING], 1); 2560 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2561 space_reftree_add_map(&reftree, 2562 vd->vdev_dtl[DTL_SCRUB], 2); 2563 space_reftree_generate_map(&reftree, 2564 vd->vdev_dtl[DTL_MISSING], 1); 2565 space_reftree_destroy(&reftree); 2566 } 2567 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2568 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2569 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2570 if (scrub_done) 2571 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2572 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2573 if (!vdev_readable(vd)) 2574 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2575 else 2576 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2577 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2578 2579 /* 2580 * If the vdev was resilvering and no longer has any 2581 * DTLs then reset its resilvering flag. 2582 */ 2583 if (vd->vdev_resilver_txg != 0 && 2584 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2585 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2586 vd->vdev_resilver_txg = 0; 2587 2588 mutex_exit(&vd->vdev_dtl_lock); 2589 2590 if (txg != 0) 2591 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2592 return; 2593 } 2594 2595 mutex_enter(&vd->vdev_dtl_lock); 2596 for (int t = 0; t < DTL_TYPES; t++) { 2597 /* account for child's outage in parent's missing map */ 2598 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2599 if (t == DTL_SCRUB) 2600 continue; /* leaf vdevs only */ 2601 if (t == DTL_PARTIAL) 2602 minref = 1; /* i.e. non-zero */ 2603 else if (vd->vdev_nparity != 0) 2604 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2605 else 2606 minref = vd->vdev_children; /* any kind of mirror */ 2607 space_reftree_create(&reftree); 2608 for (int c = 0; c < vd->vdev_children; c++) { 2609 vdev_t *cvd = vd->vdev_child[c]; 2610 mutex_enter(&cvd->vdev_dtl_lock); 2611 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2612 mutex_exit(&cvd->vdev_dtl_lock); 2613 } 2614 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2615 space_reftree_destroy(&reftree); 2616 } 2617 mutex_exit(&vd->vdev_dtl_lock); 2618 } 2619 2620 int 2621 vdev_dtl_load(vdev_t *vd) 2622 { 2623 spa_t *spa = vd->vdev_spa; 2624 objset_t *mos = spa->spa_meta_objset; 2625 int error = 0; 2626 2627 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2628 ASSERT(vdev_is_concrete(vd)); 2629 2630 error = space_map_open(&vd->vdev_dtl_sm, mos, 2631 vd->vdev_dtl_object, 0, -1ULL, 0); 2632 if (error) 2633 return (error); 2634 ASSERT(vd->vdev_dtl_sm != NULL); 2635 2636 mutex_enter(&vd->vdev_dtl_lock); 2637 error = space_map_load(vd->vdev_dtl_sm, 2638 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2639 mutex_exit(&vd->vdev_dtl_lock); 2640 2641 return (error); 2642 } 2643 2644 for (int c = 0; c < vd->vdev_children; c++) { 2645 error = vdev_dtl_load(vd->vdev_child[c]); 2646 if (error != 0) 2647 break; 2648 } 2649 2650 return (error); 2651 } 2652 2653 static void 2654 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2655 { 2656 spa_t *spa = vd->vdev_spa; 2657 objset_t *mos = spa->spa_meta_objset; 2658 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2659 const char *string; 2660 2661 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2662 2663 string = 2664 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2665 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2666 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2667 2668 ASSERT(string != NULL); 2669 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2670 1, strlen(string) + 1, string, tx)); 2671 2672 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2673 spa_activate_allocation_classes(spa, tx); 2674 } 2675 } 2676 2677 void 2678 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2679 { 2680 spa_t *spa = vd->vdev_spa; 2681 2682 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2683 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2684 zapobj, tx)); 2685 } 2686 2687 uint64_t 2688 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2689 { 2690 spa_t *spa = vd->vdev_spa; 2691 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2692 DMU_OT_NONE, 0, tx); 2693 2694 ASSERT(zap != 0); 2695 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2696 zap, tx)); 2697 2698 return (zap); 2699 } 2700 2701 void 2702 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2703 { 2704 if (vd->vdev_ops != &vdev_hole_ops && 2705 vd->vdev_ops != &vdev_missing_ops && 2706 vd->vdev_ops != &vdev_root_ops && 2707 !vd->vdev_top->vdev_removing) { 2708 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2709 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2710 } 2711 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2712 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2713 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2714 vdev_zap_allocation_data(vd, tx); 2715 } 2716 } 2717 2718 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2719 vdev_construct_zaps(vd->vdev_child[i], tx); 2720 } 2721 } 2722 2723 void 2724 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2725 { 2726 spa_t *spa = vd->vdev_spa; 2727 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2728 objset_t *mos = spa->spa_meta_objset; 2729 range_tree_t *rtsync; 2730 dmu_tx_t *tx; 2731 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2732 2733 ASSERT(vdev_is_concrete(vd)); 2734 ASSERT(vd->vdev_ops->vdev_op_leaf); 2735 2736 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2737 2738 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2739 mutex_enter(&vd->vdev_dtl_lock); 2740 space_map_free(vd->vdev_dtl_sm, tx); 2741 space_map_close(vd->vdev_dtl_sm); 2742 vd->vdev_dtl_sm = NULL; 2743 mutex_exit(&vd->vdev_dtl_lock); 2744 2745 /* 2746 * We only destroy the leaf ZAP for detached leaves or for 2747 * removed log devices. Removed data devices handle leaf ZAP 2748 * cleanup later, once cancellation is no longer possible. 2749 */ 2750 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2751 vd->vdev_top->vdev_islog)) { 2752 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2753 vd->vdev_leaf_zap = 0; 2754 } 2755 2756 dmu_tx_commit(tx); 2757 return; 2758 } 2759 2760 if (vd->vdev_dtl_sm == NULL) { 2761 uint64_t new_object; 2762 2763 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 2764 VERIFY3U(new_object, !=, 0); 2765 2766 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2767 0, -1ULL, 0)); 2768 ASSERT(vd->vdev_dtl_sm != NULL); 2769 } 2770 2771 rtsync = range_tree_create(NULL, NULL); 2772 2773 mutex_enter(&vd->vdev_dtl_lock); 2774 range_tree_walk(rt, range_tree_add, rtsync); 2775 mutex_exit(&vd->vdev_dtl_lock); 2776 2777 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 2778 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2779 range_tree_vacate(rtsync, NULL, NULL); 2780 2781 range_tree_destroy(rtsync); 2782 2783 /* 2784 * If the object for the space map has changed then dirty 2785 * the top level so that we update the config. 2786 */ 2787 if (object != space_map_object(vd->vdev_dtl_sm)) { 2788 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2789 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2790 (u_longlong_t)object, 2791 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2792 vdev_config_dirty(vd->vdev_top); 2793 } 2794 2795 dmu_tx_commit(tx); 2796 } 2797 2798 /* 2799 * Determine whether the specified vdev can be offlined/detached/removed 2800 * without losing data. 2801 */ 2802 boolean_t 2803 vdev_dtl_required(vdev_t *vd) 2804 { 2805 spa_t *spa = vd->vdev_spa; 2806 vdev_t *tvd = vd->vdev_top; 2807 uint8_t cant_read = vd->vdev_cant_read; 2808 boolean_t required; 2809 2810 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2811 2812 if (vd == spa->spa_root_vdev || vd == tvd) 2813 return (B_TRUE); 2814 2815 /* 2816 * Temporarily mark the device as unreadable, and then determine 2817 * whether this results in any DTL outages in the top-level vdev. 2818 * If not, we can safely offline/detach/remove the device. 2819 */ 2820 vd->vdev_cant_read = B_TRUE; 2821 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2822 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2823 vd->vdev_cant_read = cant_read; 2824 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2825 2826 if (!required && zio_injection_enabled) 2827 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2828 2829 return (required); 2830 } 2831 2832 /* 2833 * Determine if resilver is needed, and if so the txg range. 2834 */ 2835 boolean_t 2836 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2837 { 2838 boolean_t needed = B_FALSE; 2839 uint64_t thismin = UINT64_MAX; 2840 uint64_t thismax = 0; 2841 2842 if (vd->vdev_children == 0) { 2843 mutex_enter(&vd->vdev_dtl_lock); 2844 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2845 vdev_writeable(vd)) { 2846 2847 thismin = vdev_dtl_min(vd); 2848 thismax = vdev_dtl_max(vd); 2849 needed = B_TRUE; 2850 } 2851 mutex_exit(&vd->vdev_dtl_lock); 2852 } else { 2853 for (int c = 0; c < vd->vdev_children; c++) { 2854 vdev_t *cvd = vd->vdev_child[c]; 2855 uint64_t cmin, cmax; 2856 2857 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2858 thismin = MIN(thismin, cmin); 2859 thismax = MAX(thismax, cmax); 2860 needed = B_TRUE; 2861 } 2862 } 2863 } 2864 2865 if (needed && minp) { 2866 *minp = thismin; 2867 *maxp = thismax; 2868 } 2869 return (needed); 2870 } 2871 2872 /* 2873 * Gets the checkpoint space map object from the vdev's ZAP. 2874 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2875 * or the ZAP doesn't exist yet. 2876 */ 2877 int 2878 vdev_checkpoint_sm_object(vdev_t *vd) 2879 { 2880 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2881 if (vd->vdev_top_zap == 0) { 2882 return (0); 2883 } 2884 2885 uint64_t sm_obj = 0; 2886 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2887 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2888 2889 ASSERT(err == 0 || err == ENOENT); 2890 2891 return (sm_obj); 2892 } 2893 2894 int 2895 vdev_load(vdev_t *vd) 2896 { 2897 int error = 0; 2898 /* 2899 * Recursively load all children. 2900 */ 2901 for (int c = 0; c < vd->vdev_children; c++) { 2902 error = vdev_load(vd->vdev_child[c]); 2903 if (error != 0) { 2904 return (error); 2905 } 2906 } 2907 2908 vdev_set_deflate_ratio(vd); 2909 2910 /* 2911 * On spa_load path, grab the allocation bias from our zap 2912 */ 2913 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2914 spa_t *spa = vd->vdev_spa; 2915 char bias_str[64]; 2916 2917 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2918 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2919 bias_str) == 0) { 2920 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2921 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2922 } 2923 } 2924 2925 /* 2926 * If this is a top-level vdev, initialize its metaslabs. 2927 */ 2928 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2929 vdev_metaslab_group_create(vd); 2930 2931 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2932 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2933 VDEV_AUX_CORRUPT_DATA); 2934 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2935 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2936 (u_longlong_t)vd->vdev_asize); 2937 return (SET_ERROR(ENXIO)); 2938 } 2939 2940 error = vdev_metaslab_init(vd, 0); 2941 if (error != 0) { 2942 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2943 "[error=%d]", error); 2944 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2945 VDEV_AUX_CORRUPT_DATA); 2946 return (error); 2947 } 2948 2949 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2950 if (checkpoint_sm_obj != 0) { 2951 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2952 ASSERT(vd->vdev_asize != 0); 2953 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2954 2955 error = space_map_open(&vd->vdev_checkpoint_sm, 2956 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 2957 vd->vdev_ashift); 2958 if (error != 0) { 2959 vdev_dbgmsg(vd, "vdev_load: space_map_open " 2960 "failed for checkpoint spacemap (obj %llu) " 2961 "[error=%d]", 2962 (u_longlong_t)checkpoint_sm_obj, error); 2963 return (error); 2964 } 2965 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2966 2967 /* 2968 * Since the checkpoint_sm contains free entries 2969 * exclusively we can use space_map_allocated() to 2970 * indicate the cumulative checkpointed space that 2971 * has been freed. 2972 */ 2973 vd->vdev_stat.vs_checkpoint_space = 2974 -space_map_allocated(vd->vdev_checkpoint_sm); 2975 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 2976 vd->vdev_stat.vs_checkpoint_space; 2977 } 2978 } 2979 2980 /* 2981 * If this is a leaf vdev, load its DTL. 2982 */ 2983 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 2984 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2985 VDEV_AUX_CORRUPT_DATA); 2986 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 2987 "[error=%d]", error); 2988 return (error); 2989 } 2990 2991 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 2992 if (obsolete_sm_object != 0) { 2993 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2994 ASSERT(vd->vdev_asize != 0); 2995 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 2996 2997 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 2998 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 2999 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3000 VDEV_AUX_CORRUPT_DATA); 3001 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3002 "obsolete spacemap (obj %llu) [error=%d]", 3003 (u_longlong_t)obsolete_sm_object, error); 3004 return (error); 3005 } 3006 } 3007 3008 return (0); 3009 } 3010 3011 /* 3012 * The special vdev case is used for hot spares and l2cache devices. Its 3013 * sole purpose it to set the vdev state for the associated vdev. To do this, 3014 * we make sure that we can open the underlying device, then try to read the 3015 * label, and make sure that the label is sane and that it hasn't been 3016 * repurposed to another pool. 3017 */ 3018 int 3019 vdev_validate_aux(vdev_t *vd) 3020 { 3021 nvlist_t *label; 3022 uint64_t guid, version; 3023 uint64_t state; 3024 3025 if (!vdev_readable(vd)) 3026 return (0); 3027 3028 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3029 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3030 VDEV_AUX_CORRUPT_DATA); 3031 return (-1); 3032 } 3033 3034 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3035 !SPA_VERSION_IS_SUPPORTED(version) || 3036 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3037 guid != vd->vdev_guid || 3038 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3039 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3040 VDEV_AUX_CORRUPT_DATA); 3041 nvlist_free(label); 3042 return (-1); 3043 } 3044 3045 /* 3046 * We don't actually check the pool state here. If it's in fact in 3047 * use by another pool, we update this fact on the fly when requested. 3048 */ 3049 nvlist_free(label); 3050 return (0); 3051 } 3052 3053 static void 3054 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3055 { 3056 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3057 3058 if (vd->vdev_top_zap == 0) 3059 return; 3060 3061 uint64_t object = 0; 3062 int err = zap_lookup(mos, vd->vdev_top_zap, 3063 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3064 if (err == ENOENT) 3065 return; 3066 3067 VERIFY0(dmu_object_free(mos, object, tx)); 3068 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3069 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3070 } 3071 3072 /* 3073 * Free the objects used to store this vdev's spacemaps, and the array 3074 * that points to them. 3075 */ 3076 void 3077 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3078 { 3079 if (vd->vdev_ms_array == 0) 3080 return; 3081 3082 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3083 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3084 size_t array_bytes = array_count * sizeof (uint64_t); 3085 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3086 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3087 array_bytes, smobj_array, 0)); 3088 3089 for (uint64_t i = 0; i < array_count; i++) { 3090 uint64_t smobj = smobj_array[i]; 3091 if (smobj == 0) 3092 continue; 3093 3094 space_map_free_obj(mos, smobj, tx); 3095 } 3096 3097 kmem_free(smobj_array, array_bytes); 3098 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3099 vdev_destroy_ms_flush_data(vd, tx); 3100 vd->vdev_ms_array = 0; 3101 } 3102 3103 static void 3104 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3105 { 3106 spa_t *spa = vd->vdev_spa; 3107 3108 ASSERT(vd->vdev_islog); 3109 ASSERT(vd == vd->vdev_top); 3110 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3111 3112 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3113 3114 vdev_destroy_spacemaps(vd, tx); 3115 if (vd->vdev_top_zap != 0) { 3116 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3117 vd->vdev_top_zap = 0; 3118 } 3119 3120 dmu_tx_commit(tx); 3121 } 3122 3123 void 3124 vdev_sync_done(vdev_t *vd, uint64_t txg) 3125 { 3126 metaslab_t *msp; 3127 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3128 3129 ASSERT(vdev_is_concrete(vd)); 3130 3131 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3132 != NULL) 3133 metaslab_sync_done(msp, txg); 3134 3135 if (reassess) 3136 metaslab_sync_reassess(vd->vdev_mg); 3137 } 3138 3139 void 3140 vdev_sync(vdev_t *vd, uint64_t txg) 3141 { 3142 spa_t *spa = vd->vdev_spa; 3143 vdev_t *lvd; 3144 metaslab_t *msp; 3145 3146 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3147 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3148 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3149 ASSERT(vd->vdev_removing || 3150 vd->vdev_ops == &vdev_indirect_ops); 3151 3152 vdev_indirect_sync_obsolete(vd, tx); 3153 3154 /* 3155 * If the vdev is indirect, it can't have dirty 3156 * metaslabs or DTLs. 3157 */ 3158 if (vd->vdev_ops == &vdev_indirect_ops) { 3159 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3160 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3161 dmu_tx_commit(tx); 3162 return; 3163 } 3164 } 3165 3166 ASSERT(vdev_is_concrete(vd)); 3167 3168 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3169 !vd->vdev_removing) { 3170 ASSERT(vd == vd->vdev_top); 3171 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3172 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3173 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3174 ASSERT(vd->vdev_ms_array != 0); 3175 vdev_config_dirty(vd); 3176 } 3177 3178 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3179 metaslab_sync(msp, txg); 3180 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3181 } 3182 3183 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3184 vdev_dtl_sync(lvd, txg); 3185 3186 /* 3187 * If this is an empty log device being removed, destroy the 3188 * metadata associated with it. 3189 */ 3190 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3191 vdev_remove_empty_log(vd, txg); 3192 3193 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3194 dmu_tx_commit(tx); 3195 } 3196 3197 uint64_t 3198 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3199 { 3200 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3201 } 3202 3203 /* 3204 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3205 * not be opened, and no I/O is attempted. 3206 */ 3207 int 3208 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3209 { 3210 vdev_t *vd, *tvd; 3211 3212 spa_vdev_state_enter(spa, SCL_NONE); 3213 3214 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3215 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3216 3217 if (!vd->vdev_ops->vdev_op_leaf) 3218 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3219 3220 tvd = vd->vdev_top; 3221 3222 /* 3223 * We don't directly use the aux state here, but if we do a 3224 * vdev_reopen(), we need this value to be present to remember why we 3225 * were faulted. 3226 */ 3227 vd->vdev_label_aux = aux; 3228 3229 /* 3230 * Faulted state takes precedence over degraded. 3231 */ 3232 vd->vdev_delayed_close = B_FALSE; 3233 vd->vdev_faulted = 1ULL; 3234 vd->vdev_degraded = 0ULL; 3235 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3236 3237 /* 3238 * If this device has the only valid copy of the data, then 3239 * back off and simply mark the vdev as degraded instead. 3240 */ 3241 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3242 vd->vdev_degraded = 1ULL; 3243 vd->vdev_faulted = 0ULL; 3244 3245 /* 3246 * If we reopen the device and it's not dead, only then do we 3247 * mark it degraded. 3248 */ 3249 vdev_reopen(tvd); 3250 3251 if (vdev_readable(vd)) 3252 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3253 } 3254 3255 return (spa_vdev_state_exit(spa, vd, 0)); 3256 } 3257 3258 /* 3259 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3260 * user that something is wrong. The vdev continues to operate as normal as far 3261 * as I/O is concerned. 3262 */ 3263 int 3264 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3265 { 3266 vdev_t *vd; 3267 3268 spa_vdev_state_enter(spa, SCL_NONE); 3269 3270 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3271 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3272 3273 if (!vd->vdev_ops->vdev_op_leaf) 3274 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3275 3276 /* 3277 * If the vdev is already faulted, then don't do anything. 3278 */ 3279 if (vd->vdev_faulted || vd->vdev_degraded) 3280 return (spa_vdev_state_exit(spa, NULL, 0)); 3281 3282 vd->vdev_degraded = 1ULL; 3283 if (!vdev_is_dead(vd)) 3284 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3285 aux); 3286 3287 return (spa_vdev_state_exit(spa, vd, 0)); 3288 } 3289 3290 /* 3291 * Online the given vdev. 3292 * 3293 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3294 * spare device should be detached when the device finishes resilvering. 3295 * Second, the online should be treated like a 'test' online case, so no FMA 3296 * events are generated if the device fails to open. 3297 */ 3298 int 3299 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3300 { 3301 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3302 boolean_t wasoffline; 3303 vdev_state_t oldstate; 3304 3305 spa_vdev_state_enter(spa, SCL_NONE); 3306 3307 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3308 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3309 3310 if (!vd->vdev_ops->vdev_op_leaf) 3311 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3312 3313 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3314 oldstate = vd->vdev_state; 3315 3316 tvd = vd->vdev_top; 3317 vd->vdev_offline = B_FALSE; 3318 vd->vdev_tmpoffline = B_FALSE; 3319 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3320 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3321 3322 /* XXX - L2ARC 1.0 does not support expansion */ 3323 if (!vd->vdev_aux) { 3324 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3325 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3326 } 3327 3328 vdev_reopen(tvd); 3329 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3330 3331 if (!vd->vdev_aux) { 3332 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3333 pvd->vdev_expanding = B_FALSE; 3334 } 3335 3336 if (newstate) 3337 *newstate = vd->vdev_state; 3338 if ((flags & ZFS_ONLINE_UNSPARE) && 3339 !vdev_is_dead(vd) && vd->vdev_parent && 3340 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3341 vd->vdev_parent->vdev_child[0] == vd) 3342 vd->vdev_unspare = B_TRUE; 3343 3344 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3345 3346 /* XXX - L2ARC 1.0 does not support expansion */ 3347 if (vd->vdev_aux) 3348 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3349 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3350 } 3351 3352 /* Restart initializing if necessary */ 3353 mutex_enter(&vd->vdev_initialize_lock); 3354 if (vdev_writeable(vd) && 3355 vd->vdev_initialize_thread == NULL && 3356 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3357 (void) vdev_initialize(vd); 3358 } 3359 mutex_exit(&vd->vdev_initialize_lock); 3360 3361 /* Restart trimming if necessary */ 3362 mutex_enter(&vd->vdev_trim_lock); 3363 if (vdev_writeable(vd) && 3364 vd->vdev_trim_thread == NULL && 3365 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3366 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3367 vd->vdev_trim_secure); 3368 } 3369 mutex_exit(&vd->vdev_trim_lock); 3370 3371 if (wasoffline || 3372 (oldstate < VDEV_STATE_DEGRADED && 3373 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3374 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3375 3376 return (spa_vdev_state_exit(spa, vd, 0)); 3377 } 3378 3379 static int 3380 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3381 { 3382 vdev_t *vd, *tvd; 3383 int error = 0; 3384 uint64_t generation; 3385 metaslab_group_t *mg; 3386 3387 top: 3388 spa_vdev_state_enter(spa, SCL_ALLOC); 3389 3390 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3391 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3392 3393 if (!vd->vdev_ops->vdev_op_leaf) 3394 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3395 3396 tvd = vd->vdev_top; 3397 mg = tvd->vdev_mg; 3398 generation = spa->spa_config_generation + 1; 3399 3400 /* 3401 * If the device isn't already offline, try to offline it. 3402 */ 3403 if (!vd->vdev_offline) { 3404 /* 3405 * If this device has the only valid copy of some data, 3406 * don't allow it to be offlined. Log devices are always 3407 * expendable. 3408 */ 3409 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3410 vdev_dtl_required(vd)) 3411 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3412 3413 /* 3414 * If the top-level is a slog and it has had allocations 3415 * then proceed. We check that the vdev's metaslab group 3416 * is not NULL since it's possible that we may have just 3417 * added this vdev but not yet initialized its metaslabs. 3418 */ 3419 if (tvd->vdev_islog && mg != NULL) { 3420 /* 3421 * Prevent any future allocations. 3422 */ 3423 metaslab_group_passivate(mg); 3424 (void) spa_vdev_state_exit(spa, vd, 0); 3425 3426 error = spa_reset_logs(spa); 3427 3428 /* 3429 * If the log device was successfully reset but has 3430 * checkpointed data, do not offline it. 3431 */ 3432 if (error == 0 && 3433 tvd->vdev_checkpoint_sm != NULL) { 3434 error = ZFS_ERR_CHECKPOINT_EXISTS; 3435 } 3436 3437 spa_vdev_state_enter(spa, SCL_ALLOC); 3438 3439 /* 3440 * Check to see if the config has changed. 3441 */ 3442 if (error || generation != spa->spa_config_generation) { 3443 metaslab_group_activate(mg); 3444 if (error) 3445 return (spa_vdev_state_exit(spa, 3446 vd, error)); 3447 (void) spa_vdev_state_exit(spa, vd, 0); 3448 goto top; 3449 } 3450 ASSERT0(tvd->vdev_stat.vs_alloc); 3451 } 3452 3453 /* 3454 * Offline this device and reopen its top-level vdev. 3455 * If the top-level vdev is a log device then just offline 3456 * it. Otherwise, if this action results in the top-level 3457 * vdev becoming unusable, undo it and fail the request. 3458 */ 3459 vd->vdev_offline = B_TRUE; 3460 vdev_reopen(tvd); 3461 3462 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3463 vdev_is_dead(tvd)) { 3464 vd->vdev_offline = B_FALSE; 3465 vdev_reopen(tvd); 3466 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3467 } 3468 3469 /* 3470 * Add the device back into the metaslab rotor so that 3471 * once we online the device it's open for business. 3472 */ 3473 if (tvd->vdev_islog && mg != NULL) 3474 metaslab_group_activate(mg); 3475 } 3476 3477 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3478 3479 return (spa_vdev_state_exit(spa, vd, 0)); 3480 } 3481 3482 int 3483 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3484 { 3485 int error; 3486 3487 mutex_enter(&spa->spa_vdev_top_lock); 3488 error = vdev_offline_locked(spa, guid, flags); 3489 mutex_exit(&spa->spa_vdev_top_lock); 3490 3491 return (error); 3492 } 3493 3494 /* 3495 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3496 * vdev_offline(), we assume the spa config is locked. We also clear all 3497 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3498 */ 3499 void 3500 vdev_clear(spa_t *spa, vdev_t *vd) 3501 { 3502 vdev_t *rvd = spa->spa_root_vdev; 3503 3504 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3505 3506 if (vd == NULL) 3507 vd = rvd; 3508 3509 vd->vdev_stat.vs_read_errors = 0; 3510 vd->vdev_stat.vs_write_errors = 0; 3511 vd->vdev_stat.vs_checksum_errors = 0; 3512 3513 for (int c = 0; c < vd->vdev_children; c++) 3514 vdev_clear(spa, vd->vdev_child[c]); 3515 3516 /* 3517 * It makes no sense to "clear" an indirect vdev. 3518 */ 3519 if (!vdev_is_concrete(vd)) 3520 return; 3521 3522 /* 3523 * If we're in the FAULTED state or have experienced failed I/O, then 3524 * clear the persistent state and attempt to reopen the device. We 3525 * also mark the vdev config dirty, so that the new faulted state is 3526 * written out to disk. 3527 */ 3528 if (vd->vdev_faulted || vd->vdev_degraded || 3529 !vdev_readable(vd) || !vdev_writeable(vd)) { 3530 3531 /* 3532 * When reopening in reponse to a clear event, it may be due to 3533 * a fmadm repair request. In this case, if the device is 3534 * still broken, we want to still post the ereport again. 3535 */ 3536 vd->vdev_forcefault = B_TRUE; 3537 3538 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3539 vd->vdev_cant_read = B_FALSE; 3540 vd->vdev_cant_write = B_FALSE; 3541 3542 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3543 3544 vd->vdev_forcefault = B_FALSE; 3545 3546 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3547 vdev_state_dirty(vd->vdev_top); 3548 3549 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) { 3550 if (dsl_scan_resilvering(spa->spa_dsl_pool) && 3551 spa_feature_is_enabled(spa, 3552 SPA_FEATURE_RESILVER_DEFER)) 3553 vdev_set_deferred_resilver(spa, vd); 3554 else 3555 spa_async_request(spa, SPA_ASYNC_RESILVER); 3556 } 3557 3558 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3559 } 3560 3561 /* 3562 * When clearing a FMA-diagnosed fault, we always want to 3563 * unspare the device, as we assume that the original spare was 3564 * done in response to the FMA fault. 3565 */ 3566 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3567 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3568 vd->vdev_parent->vdev_child[0] == vd) 3569 vd->vdev_unspare = B_TRUE; 3570 } 3571 3572 boolean_t 3573 vdev_is_dead(vdev_t *vd) 3574 { 3575 /* 3576 * Holes and missing devices are always considered "dead". 3577 * This simplifies the code since we don't have to check for 3578 * these types of devices in the various code paths. 3579 * Instead we rely on the fact that we skip over dead devices 3580 * before issuing I/O to them. 3581 */ 3582 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3583 vd->vdev_ops == &vdev_hole_ops || 3584 vd->vdev_ops == &vdev_missing_ops); 3585 } 3586 3587 boolean_t 3588 vdev_readable(vdev_t *vd) 3589 { 3590 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3591 } 3592 3593 boolean_t 3594 vdev_writeable(vdev_t *vd) 3595 { 3596 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3597 vdev_is_concrete(vd)); 3598 } 3599 3600 boolean_t 3601 vdev_allocatable(vdev_t *vd) 3602 { 3603 uint64_t state = vd->vdev_state; 3604 3605 /* 3606 * We currently allow allocations from vdevs which may be in the 3607 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3608 * fails to reopen then we'll catch it later when we're holding 3609 * the proper locks. Note that we have to get the vdev state 3610 * in a local variable because although it changes atomically, 3611 * we're asking two separate questions about it. 3612 */ 3613 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3614 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3615 vd->vdev_mg->mg_initialized); 3616 } 3617 3618 boolean_t 3619 vdev_accessible(vdev_t *vd, zio_t *zio) 3620 { 3621 ASSERT(zio->io_vd == vd); 3622 3623 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3624 return (B_FALSE); 3625 3626 if (zio->io_type == ZIO_TYPE_READ) 3627 return (!vd->vdev_cant_read); 3628 3629 if (zio->io_type == ZIO_TYPE_WRITE) 3630 return (!vd->vdev_cant_write); 3631 3632 return (B_TRUE); 3633 } 3634 3635 boolean_t 3636 vdev_is_spacemap_addressable(vdev_t *vd) 3637 { 3638 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3639 return (B_TRUE); 3640 3641 /* 3642 * If double-word space map entries are not enabled we assume 3643 * 47 bits of the space map entry are dedicated to the entry's 3644 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3645 * to calculate the maximum address that can be described by a 3646 * space map entry for the given device. 3647 */ 3648 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3649 3650 if (shift >= 63) /* detect potential overflow */ 3651 return (B_TRUE); 3652 3653 return (vd->vdev_asize < (1ULL << shift)); 3654 } 3655 3656 /* 3657 * Get statistics for the given vdev. 3658 */ 3659 void 3660 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3661 { 3662 spa_t *spa = vd->vdev_spa; 3663 vdev_t *rvd = spa->spa_root_vdev; 3664 vdev_t *tvd = vd->vdev_top; 3665 3666 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3667 3668 mutex_enter(&vd->vdev_stat_lock); 3669 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3670 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3671 vs->vs_state = vd->vdev_state; 3672 vs->vs_rsize = vdev_get_min_asize(vd); 3673 if (vd->vdev_ops->vdev_op_leaf) { 3674 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 3675 /* 3676 * Report intializing progress. Since we don't have the 3677 * initializing locks held, this is only an estimate (although a 3678 * fairly accurate one). 3679 */ 3680 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done; 3681 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est; 3682 vs->vs_initialize_state = vd->vdev_initialize_state; 3683 vs->vs_initialize_action_time = vd->vdev_initialize_action_time; 3684 } 3685 3686 /* 3687 * Report manual TRIM progress. Since we don't have 3688 * the manual TRIM locks held, this is only an 3689 * estimate (although fairly accurate one). 3690 */ 3691 vs->vs_trim_notsup = !vd->vdev_has_trim; 3692 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 3693 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 3694 vs->vs_trim_state = vd->vdev_trim_state; 3695 vs->vs_trim_action_time = vd->vdev_trim_action_time; 3696 3697 /* 3698 * Report expandable space on top-level, non-auxillary devices only. 3699 * The expandable space is reported in terms of metaslab sized units 3700 * since that determines how much space the pool can expand. 3701 */ 3702 if (vd->vdev_aux == NULL && tvd != NULL) { 3703 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 3704 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3705 } 3706 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3707 vdev_is_concrete(vd)) { 3708 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3709 vd->vdev_mg->mg_fragmentation : 0; 3710 } 3711 if (vd->vdev_ops->vdev_op_leaf) 3712 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 3713 3714 /* 3715 * If we're getting stats on the root vdev, aggregate the I/O counts 3716 * over all top-level vdevs (i.e. the direct children of the root). 3717 */ 3718 if (vd == rvd) { 3719 for (int c = 0; c < rvd->vdev_children; c++) { 3720 vdev_t *cvd = rvd->vdev_child[c]; 3721 vdev_stat_t *cvs = &cvd->vdev_stat; 3722 3723 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3724 vs->vs_ops[t] += cvs->vs_ops[t]; 3725 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3726 } 3727 cvs->vs_scan_removing = cvd->vdev_removing; 3728 } 3729 } 3730 mutex_exit(&vd->vdev_stat_lock); 3731 } 3732 3733 void 3734 vdev_clear_stats(vdev_t *vd) 3735 { 3736 mutex_enter(&vd->vdev_stat_lock); 3737 vd->vdev_stat.vs_space = 0; 3738 vd->vdev_stat.vs_dspace = 0; 3739 vd->vdev_stat.vs_alloc = 0; 3740 mutex_exit(&vd->vdev_stat_lock); 3741 } 3742 3743 void 3744 vdev_scan_stat_init(vdev_t *vd) 3745 { 3746 vdev_stat_t *vs = &vd->vdev_stat; 3747 3748 for (int c = 0; c < vd->vdev_children; c++) 3749 vdev_scan_stat_init(vd->vdev_child[c]); 3750 3751 mutex_enter(&vd->vdev_stat_lock); 3752 vs->vs_scan_processed = 0; 3753 mutex_exit(&vd->vdev_stat_lock); 3754 } 3755 3756 void 3757 vdev_stat_update(zio_t *zio, uint64_t psize) 3758 { 3759 spa_t *spa = zio->io_spa; 3760 vdev_t *rvd = spa->spa_root_vdev; 3761 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3762 vdev_t *pvd; 3763 uint64_t txg = zio->io_txg; 3764 vdev_stat_t *vs = &vd->vdev_stat; 3765 zio_type_t type = zio->io_type; 3766 int flags = zio->io_flags; 3767 3768 /* 3769 * If this i/o is a gang leader, it didn't do any actual work. 3770 */ 3771 if (zio->io_gang_tree) 3772 return; 3773 3774 if (zio->io_error == 0) { 3775 /* 3776 * If this is a root i/o, don't count it -- we've already 3777 * counted the top-level vdevs, and vdev_get_stats() will 3778 * aggregate them when asked. This reduces contention on 3779 * the root vdev_stat_lock and implicitly handles blocks 3780 * that compress away to holes, for which there is no i/o. 3781 * (Holes never create vdev children, so all the counters 3782 * remain zero, which is what we want.) 3783 * 3784 * Note: this only applies to successful i/o (io_error == 0) 3785 * because unlike i/o counts, errors are not additive. 3786 * When reading a ditto block, for example, failure of 3787 * one top-level vdev does not imply a root-level error. 3788 */ 3789 if (vd == rvd) 3790 return; 3791 3792 ASSERT(vd == zio->io_vd); 3793 3794 if (flags & ZIO_FLAG_IO_BYPASS) 3795 return; 3796 3797 mutex_enter(&vd->vdev_stat_lock); 3798 3799 if (flags & ZIO_FLAG_IO_REPAIR) { 3800 if (flags & ZIO_FLAG_SCAN_THREAD) { 3801 dsl_scan_phys_t *scn_phys = 3802 &spa->spa_dsl_pool->dp_scan->scn_phys; 3803 uint64_t *processed = &scn_phys->scn_processed; 3804 3805 /* XXX cleanup? */ 3806 if (vd->vdev_ops->vdev_op_leaf) 3807 atomic_add_64(processed, psize); 3808 vs->vs_scan_processed += psize; 3809 } 3810 3811 if (flags & ZIO_FLAG_SELF_HEAL) 3812 vs->vs_self_healed += psize; 3813 } 3814 3815 zio_type_t vs_type = type; 3816 3817 /* 3818 * TRIM ops and bytes are reported to user space as 3819 * ZIO_TYPE_IOCTL. This is done to preserve the 3820 * vdev_stat_t structure layout for user space. 3821 */ 3822 if (type == ZIO_TYPE_TRIM) 3823 vs_type = ZIO_TYPE_IOCTL; 3824 3825 vs->vs_ops[vs_type]++; 3826 vs->vs_bytes[vs_type] += psize; 3827 3828 mutex_exit(&vd->vdev_stat_lock); 3829 return; 3830 } 3831 3832 if (flags & ZIO_FLAG_SPECULATIVE) 3833 return; 3834 3835 /* 3836 * If this is an I/O error that is going to be retried, then ignore the 3837 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3838 * hard errors, when in reality they can happen for any number of 3839 * innocuous reasons (bus resets, MPxIO link failure, etc). 3840 */ 3841 if (zio->io_error == EIO && 3842 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3843 return; 3844 3845 /* 3846 * Intent logs writes won't propagate their error to the root 3847 * I/O so don't mark these types of failures as pool-level 3848 * errors. 3849 */ 3850 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3851 return; 3852 3853 mutex_enter(&vd->vdev_stat_lock); 3854 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3855 if (zio->io_error == ECKSUM) 3856 vs->vs_checksum_errors++; 3857 else 3858 vs->vs_read_errors++; 3859 } 3860 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3861 vs->vs_write_errors++; 3862 mutex_exit(&vd->vdev_stat_lock); 3863 3864 if (spa->spa_load_state == SPA_LOAD_NONE && 3865 type == ZIO_TYPE_WRITE && txg != 0 && 3866 (!(flags & ZIO_FLAG_IO_REPAIR) || 3867 (flags & ZIO_FLAG_SCAN_THREAD) || 3868 spa->spa_claiming)) { 3869 /* 3870 * This is either a normal write (not a repair), or it's 3871 * a repair induced by the scrub thread, or it's a repair 3872 * made by zil_claim() during spa_load() in the first txg. 3873 * In the normal case, we commit the DTL change in the same 3874 * txg as the block was born. In the scrub-induced repair 3875 * case, we know that scrubs run in first-pass syncing context, 3876 * so we commit the DTL change in spa_syncing_txg(spa). 3877 * In the zil_claim() case, we commit in spa_first_txg(spa). 3878 * 3879 * We currently do not make DTL entries for failed spontaneous 3880 * self-healing writes triggered by normal (non-scrubbing) 3881 * reads, because we have no transactional context in which to 3882 * do so -- and it's not clear that it'd be desirable anyway. 3883 */ 3884 if (vd->vdev_ops->vdev_op_leaf) { 3885 uint64_t commit_txg = txg; 3886 if (flags & ZIO_FLAG_SCAN_THREAD) { 3887 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3888 ASSERT(spa_sync_pass(spa) == 1); 3889 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3890 commit_txg = spa_syncing_txg(spa); 3891 } else if (spa->spa_claiming) { 3892 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3893 commit_txg = spa_first_txg(spa); 3894 } 3895 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3896 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3897 return; 3898 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3899 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3900 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3901 } 3902 if (vd != rvd) 3903 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3904 } 3905 } 3906 3907 int64_t 3908 vdev_deflated_space(vdev_t *vd, int64_t space) 3909 { 3910 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 3911 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3912 3913 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 3914 } 3915 3916 /* 3917 * Update the in-core space usage stats for this vdev, its metaslab class, 3918 * and the root vdev. 3919 */ 3920 void 3921 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3922 int64_t space_delta) 3923 { 3924 int64_t dspace_delta; 3925 spa_t *spa = vd->vdev_spa; 3926 vdev_t *rvd = spa->spa_root_vdev; 3927 3928 ASSERT(vd == vd->vdev_top); 3929 3930 /* 3931 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3932 * factor. We must calculate this here and not at the root vdev 3933 * because the root vdev's psize-to-asize is simply the max of its 3934 * childrens', thus not accurate enough for us. 3935 */ 3936 dspace_delta = vdev_deflated_space(vd, space_delta); 3937 3938 mutex_enter(&vd->vdev_stat_lock); 3939 /* ensure we won't underflow */ 3940 if (alloc_delta < 0) { 3941 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 3942 } 3943 3944 vd->vdev_stat.vs_alloc += alloc_delta; 3945 vd->vdev_stat.vs_space += space_delta; 3946 vd->vdev_stat.vs_dspace += dspace_delta; 3947 mutex_exit(&vd->vdev_stat_lock); 3948 3949 /* every class but log contributes to root space stats */ 3950 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 3951 ASSERT(!vd->vdev_isl2cache); 3952 mutex_enter(&rvd->vdev_stat_lock); 3953 rvd->vdev_stat.vs_alloc += alloc_delta; 3954 rvd->vdev_stat.vs_space += space_delta; 3955 rvd->vdev_stat.vs_dspace += dspace_delta; 3956 mutex_exit(&rvd->vdev_stat_lock); 3957 } 3958 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 3959 } 3960 3961 /* 3962 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3963 * so that it will be written out next time the vdev configuration is synced. 3964 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3965 */ 3966 void 3967 vdev_config_dirty(vdev_t *vd) 3968 { 3969 spa_t *spa = vd->vdev_spa; 3970 vdev_t *rvd = spa->spa_root_vdev; 3971 int c; 3972 3973 ASSERT(spa_writeable(spa)); 3974 3975 /* 3976 * If this is an aux vdev (as with l2cache and spare devices), then we 3977 * update the vdev config manually and set the sync flag. 3978 */ 3979 if (vd->vdev_aux != NULL) { 3980 spa_aux_vdev_t *sav = vd->vdev_aux; 3981 nvlist_t **aux; 3982 uint_t naux; 3983 3984 for (c = 0; c < sav->sav_count; c++) { 3985 if (sav->sav_vdevs[c] == vd) 3986 break; 3987 } 3988 3989 if (c == sav->sav_count) { 3990 /* 3991 * We're being removed. There's nothing more to do. 3992 */ 3993 ASSERT(sav->sav_sync == B_TRUE); 3994 return; 3995 } 3996 3997 sav->sav_sync = B_TRUE; 3998 3999 if (nvlist_lookup_nvlist_array(sav->sav_config, 4000 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4001 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4002 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4003 } 4004 4005 ASSERT(c < naux); 4006 4007 /* 4008 * Setting the nvlist in the middle if the array is a little 4009 * sketchy, but it will work. 4010 */ 4011 nvlist_free(aux[c]); 4012 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4013 4014 return; 4015 } 4016 4017 /* 4018 * The dirty list is protected by the SCL_CONFIG lock. The caller 4019 * must either hold SCL_CONFIG as writer, or must be the sync thread 4020 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4021 * so this is sufficient to ensure mutual exclusion. 4022 */ 4023 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4024 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4025 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4026 4027 if (vd == rvd) { 4028 for (c = 0; c < rvd->vdev_children; c++) 4029 vdev_config_dirty(rvd->vdev_child[c]); 4030 } else { 4031 ASSERT(vd == vd->vdev_top); 4032 4033 if (!list_link_active(&vd->vdev_config_dirty_node) && 4034 vdev_is_concrete(vd)) { 4035 list_insert_head(&spa->spa_config_dirty_list, vd); 4036 } 4037 } 4038 } 4039 4040 void 4041 vdev_config_clean(vdev_t *vd) 4042 { 4043 spa_t *spa = vd->vdev_spa; 4044 4045 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4046 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4047 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4048 4049 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4050 list_remove(&spa->spa_config_dirty_list, vd); 4051 } 4052 4053 /* 4054 * Mark a top-level vdev's state as dirty, so that the next pass of 4055 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4056 * the state changes from larger config changes because they require 4057 * much less locking, and are often needed for administrative actions. 4058 */ 4059 void 4060 vdev_state_dirty(vdev_t *vd) 4061 { 4062 spa_t *spa = vd->vdev_spa; 4063 4064 ASSERT(spa_writeable(spa)); 4065 ASSERT(vd == vd->vdev_top); 4066 4067 /* 4068 * The state list is protected by the SCL_STATE lock. The caller 4069 * must either hold SCL_STATE as writer, or must be the sync thread 4070 * (which holds SCL_STATE as reader). There's only one sync thread, 4071 * so this is sufficient to ensure mutual exclusion. 4072 */ 4073 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4074 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4075 spa_config_held(spa, SCL_STATE, RW_READER))); 4076 4077 if (!list_link_active(&vd->vdev_state_dirty_node) && 4078 vdev_is_concrete(vd)) 4079 list_insert_head(&spa->spa_state_dirty_list, vd); 4080 } 4081 4082 void 4083 vdev_state_clean(vdev_t *vd) 4084 { 4085 spa_t *spa = vd->vdev_spa; 4086 4087 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4088 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4089 spa_config_held(spa, SCL_STATE, RW_READER))); 4090 4091 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4092 list_remove(&spa->spa_state_dirty_list, vd); 4093 } 4094 4095 /* 4096 * Propagate vdev state up from children to parent. 4097 */ 4098 void 4099 vdev_propagate_state(vdev_t *vd) 4100 { 4101 spa_t *spa = vd->vdev_spa; 4102 vdev_t *rvd = spa->spa_root_vdev; 4103 int degraded = 0, faulted = 0; 4104 int corrupted = 0; 4105 vdev_t *child; 4106 4107 if (vd->vdev_children > 0) { 4108 for (int c = 0; c < vd->vdev_children; c++) { 4109 child = vd->vdev_child[c]; 4110 4111 /* 4112 * Don't factor holes or indirect vdevs into the 4113 * decision. 4114 */ 4115 if (!vdev_is_concrete(child)) 4116 continue; 4117 4118 if (!vdev_readable(child) || 4119 (!vdev_writeable(child) && spa_writeable(spa))) { 4120 /* 4121 * Root special: if there is a top-level log 4122 * device, treat the root vdev as if it were 4123 * degraded. 4124 */ 4125 if (child->vdev_islog && vd == rvd) 4126 degraded++; 4127 else 4128 faulted++; 4129 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4130 degraded++; 4131 } 4132 4133 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4134 corrupted++; 4135 } 4136 4137 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4138 4139 /* 4140 * Root special: if there is a top-level vdev that cannot be 4141 * opened due to corrupted metadata, then propagate the root 4142 * vdev's aux state as 'corrupt' rather than 'insufficient 4143 * replicas'. 4144 */ 4145 if (corrupted && vd == rvd && 4146 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4147 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4148 VDEV_AUX_CORRUPT_DATA); 4149 } 4150 4151 if (vd->vdev_parent) 4152 vdev_propagate_state(vd->vdev_parent); 4153 } 4154 4155 /* 4156 * Set a vdev's state. If this is during an open, we don't update the parent 4157 * state, because we're in the process of opening children depth-first. 4158 * Otherwise, we propagate the change to the parent. 4159 * 4160 * If this routine places a device in a faulted state, an appropriate ereport is 4161 * generated. 4162 */ 4163 void 4164 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4165 { 4166 uint64_t save_state; 4167 spa_t *spa = vd->vdev_spa; 4168 4169 if (state == vd->vdev_state) { 4170 vd->vdev_stat.vs_aux = aux; 4171 return; 4172 } 4173 4174 save_state = vd->vdev_state; 4175 4176 vd->vdev_state = state; 4177 vd->vdev_stat.vs_aux = aux; 4178 4179 /* 4180 * If we are setting the vdev state to anything but an open state, then 4181 * always close the underlying device unless the device has requested 4182 * a delayed close (i.e. we're about to remove or fault the device). 4183 * Otherwise, we keep accessible but invalid devices open forever. 4184 * We don't call vdev_close() itself, because that implies some extra 4185 * checks (offline, etc) that we don't want here. This is limited to 4186 * leaf devices, because otherwise closing the device will affect other 4187 * children. 4188 */ 4189 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4190 vd->vdev_ops->vdev_op_leaf) 4191 vd->vdev_ops->vdev_op_close(vd); 4192 4193 /* 4194 * If we have brought this vdev back into service, we need 4195 * to notify fmd so that it can gracefully repair any outstanding 4196 * cases due to a missing device. We do this in all cases, even those 4197 * that probably don't correlate to a repaired fault. This is sure to 4198 * catch all cases, and we let the zfs-retire agent sort it out. If 4199 * this is a transient state it's OK, as the retire agent will 4200 * double-check the state of the vdev before repairing it. 4201 */ 4202 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4203 vd->vdev_prevstate != state) 4204 zfs_post_state_change(spa, vd); 4205 4206 if (vd->vdev_removed && 4207 state == VDEV_STATE_CANT_OPEN && 4208 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4209 /* 4210 * If the previous state is set to VDEV_STATE_REMOVED, then this 4211 * device was previously marked removed and someone attempted to 4212 * reopen it. If this failed due to a nonexistent device, then 4213 * keep the device in the REMOVED state. We also let this be if 4214 * it is one of our special test online cases, which is only 4215 * attempting to online the device and shouldn't generate an FMA 4216 * fault. 4217 */ 4218 vd->vdev_state = VDEV_STATE_REMOVED; 4219 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4220 } else if (state == VDEV_STATE_REMOVED) { 4221 vd->vdev_removed = B_TRUE; 4222 } else if (state == VDEV_STATE_CANT_OPEN) { 4223 /* 4224 * If we fail to open a vdev during an import or recovery, we 4225 * mark it as "not available", which signifies that it was 4226 * never there to begin with. Failure to open such a device 4227 * is not considered an error. 4228 */ 4229 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4230 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4231 vd->vdev_ops->vdev_op_leaf) 4232 vd->vdev_not_present = 1; 4233 4234 /* 4235 * Post the appropriate ereport. If the 'prevstate' field is 4236 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4237 * that this is part of a vdev_reopen(). In this case, we don't 4238 * want to post the ereport if the device was already in the 4239 * CANT_OPEN state beforehand. 4240 * 4241 * If the 'checkremove' flag is set, then this is an attempt to 4242 * online the device in response to an insertion event. If we 4243 * hit this case, then we have detected an insertion event for a 4244 * faulted or offline device that wasn't in the removed state. 4245 * In this scenario, we don't post an ereport because we are 4246 * about to replace the device, or attempt an online with 4247 * vdev_forcefault, which will generate the fault for us. 4248 */ 4249 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4250 !vd->vdev_not_present && !vd->vdev_checkremove && 4251 vd != spa->spa_root_vdev) { 4252 const char *class; 4253 4254 switch (aux) { 4255 case VDEV_AUX_OPEN_FAILED: 4256 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4257 break; 4258 case VDEV_AUX_CORRUPT_DATA: 4259 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4260 break; 4261 case VDEV_AUX_NO_REPLICAS: 4262 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4263 break; 4264 case VDEV_AUX_BAD_GUID_SUM: 4265 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4266 break; 4267 case VDEV_AUX_TOO_SMALL: 4268 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4269 break; 4270 case VDEV_AUX_BAD_LABEL: 4271 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4272 break; 4273 case VDEV_AUX_BAD_ASHIFT: 4274 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4275 break; 4276 default: 4277 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4278 } 4279 4280 zfs_ereport_post(class, spa, vd, NULL, NULL, 4281 save_state, 0); 4282 } 4283 4284 /* Erase any notion of persistent removed state */ 4285 vd->vdev_removed = B_FALSE; 4286 } else { 4287 vd->vdev_removed = B_FALSE; 4288 } 4289 4290 if (!isopen && vd->vdev_parent) 4291 vdev_propagate_state(vd->vdev_parent); 4292 } 4293 4294 boolean_t 4295 vdev_children_are_offline(vdev_t *vd) 4296 { 4297 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4298 4299 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4300 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4301 return (B_FALSE); 4302 } 4303 4304 return (B_TRUE); 4305 } 4306 4307 /* 4308 * Check the vdev configuration to ensure that it's capable of supporting 4309 * a root pool. We do not support partial configuration. 4310 * In addition, only a single top-level vdev is allowed. 4311 */ 4312 boolean_t 4313 vdev_is_bootable(vdev_t *vd) 4314 { 4315 if (!vd->vdev_ops->vdev_op_leaf) { 4316 char *vdev_type = vd->vdev_ops->vdev_op_type; 4317 4318 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 4319 vd->vdev_children > 1) { 4320 int non_indirect = 0; 4321 4322 for (int c = 0; c < vd->vdev_children; c++) { 4323 vdev_type = 4324 vd->vdev_child[c]->vdev_ops->vdev_op_type; 4325 if (strcmp(vdev_type, VDEV_TYPE_INDIRECT) != 0) 4326 non_indirect++; 4327 } 4328 /* 4329 * non_indirect > 1 means we have more than one 4330 * top-level vdev, so we stop here. 4331 */ 4332 if (non_indirect > 1) 4333 return (B_FALSE); 4334 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 4335 return (B_FALSE); 4336 } 4337 } 4338 4339 for (int c = 0; c < vd->vdev_children; c++) { 4340 if (!vdev_is_bootable(vd->vdev_child[c])) 4341 return (B_FALSE); 4342 } 4343 return (B_TRUE); 4344 } 4345 4346 boolean_t 4347 vdev_is_concrete(vdev_t *vd) 4348 { 4349 vdev_ops_t *ops = vd->vdev_ops; 4350 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4351 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4352 return (B_FALSE); 4353 } else { 4354 return (B_TRUE); 4355 } 4356 } 4357 4358 /* 4359 * Determine if a log device has valid content. If the vdev was 4360 * removed or faulted in the MOS config then we know that 4361 * the content on the log device has already been written to the pool. 4362 */ 4363 boolean_t 4364 vdev_log_state_valid(vdev_t *vd) 4365 { 4366 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4367 !vd->vdev_removed) 4368 return (B_TRUE); 4369 4370 for (int c = 0; c < vd->vdev_children; c++) 4371 if (vdev_log_state_valid(vd->vdev_child[c])) 4372 return (B_TRUE); 4373 4374 return (B_FALSE); 4375 } 4376 4377 /* 4378 * Expand a vdev if possible. 4379 */ 4380 void 4381 vdev_expand(vdev_t *vd, uint64_t txg) 4382 { 4383 ASSERT(vd->vdev_top == vd); 4384 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4385 ASSERT(vdev_is_concrete(vd)); 4386 4387 vdev_set_deflate_ratio(vd); 4388 4389 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4390 vdev_is_concrete(vd)) { 4391 vdev_metaslab_group_create(vd); 4392 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4393 vdev_config_dirty(vd); 4394 } 4395 } 4396 4397 /* 4398 * Split a vdev. 4399 */ 4400 void 4401 vdev_split(vdev_t *vd) 4402 { 4403 vdev_t *cvd, *pvd = vd->vdev_parent; 4404 4405 vdev_remove_child(pvd, vd); 4406 vdev_compact_children(pvd); 4407 4408 cvd = pvd->vdev_child[0]; 4409 if (pvd->vdev_children == 1) { 4410 vdev_remove_parent(cvd); 4411 cvd->vdev_splitting = B_TRUE; 4412 } 4413 vdev_propagate_state(cvd); 4414 } 4415 4416 void 4417 vdev_deadman(vdev_t *vd) 4418 { 4419 for (int c = 0; c < vd->vdev_children; c++) { 4420 vdev_t *cvd = vd->vdev_child[c]; 4421 4422 vdev_deadman(cvd); 4423 } 4424 4425 if (vd->vdev_ops->vdev_op_leaf) { 4426 vdev_queue_t *vq = &vd->vdev_queue; 4427 4428 mutex_enter(&vq->vq_lock); 4429 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4430 spa_t *spa = vd->vdev_spa; 4431 zio_t *fio; 4432 uint64_t delta; 4433 4434 /* 4435 * Look at the head of all the pending queues, 4436 * if any I/O has been outstanding for longer than 4437 * the spa_deadman_synctime we panic the system. 4438 */ 4439 fio = avl_first(&vq->vq_active_tree); 4440 delta = gethrtime() - fio->io_timestamp; 4441 if (delta > spa_deadman_synctime(spa)) { 4442 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4443 "%lluns, delta %lluns, last io %lluns", 4444 fio->io_timestamp, (u_longlong_t)delta, 4445 vq->vq_io_complete_ts); 4446 fm_panic("I/O to pool '%s' appears to be " 4447 "hung.", spa_name(spa)); 4448 } 4449 } 4450 mutex_exit(&vq->vq_lock); 4451 } 4452 } 4453 4454 void 4455 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd) 4456 { 4457 for (uint64_t i = 0; i < vd->vdev_children; i++) 4458 vdev_set_deferred_resilver(spa, vd->vdev_child[i]); 4459 4460 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) || 4461 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 4462 return; 4463 } 4464 4465 vd->vdev_resilver_deferred = B_TRUE; 4466 spa->spa_resilver_deferred = B_TRUE; 4467 } 4468 4469 /* 4470 * Translate a logical range to the physical range for the specified vdev_t. 4471 * This function is initially called with a leaf vdev and will walk each 4472 * parent vdev until it reaches a top-level vdev. Once the top-level is 4473 * reached the physical range is initialized and the recursive function 4474 * begins to unwind. As it unwinds it calls the parent's vdev specific 4475 * translation function to do the real conversion. 4476 */ 4477 void 4478 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs) 4479 { 4480 /* 4481 * Walk up the vdev tree 4482 */ 4483 if (vd != vd->vdev_top) { 4484 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 4485 } else { 4486 /* 4487 * We've reached the top-level vdev, initialize the 4488 * physical range to the logical range and start to 4489 * unwind. 4490 */ 4491 physical_rs->rs_start = logical_rs->rs_start; 4492 physical_rs->rs_end = logical_rs->rs_end; 4493 return; 4494 } 4495 4496 vdev_t *pvd = vd->vdev_parent; 4497 ASSERT3P(pvd, !=, NULL); 4498 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 4499 4500 /* 4501 * As this recursive function unwinds, translate the logical 4502 * range into its physical components by calling the 4503 * vdev specific translate function. 4504 */ 4505 range_seg_t intermediate = { { { 0, 0 } } }; 4506 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 4507 4508 physical_rs->rs_start = intermediate.rs_start; 4509 physical_rs->rs_end = intermediate.rs_end; 4510 } 4511