1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * When a vdev is added, it will be divided into approximately (but no 69 * more than) this number of metaslabs. 70 */ 71 int metaslabs_per_vdev = 200; 72 73 /* 74 * Given a vdev type, return the appropriate ops vector. 75 */ 76 static vdev_ops_t * 77 vdev_getops(const char *type) 78 { 79 vdev_ops_t *ops, **opspp; 80 81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 82 if (strcmp(ops->vdev_op_type, type) == 0) 83 break; 84 85 return (ops); 86 } 87 88 /* 89 * Default asize function: return the MAX of psize with the asize of 90 * all children. This is what's used by anything other than RAID-Z. 91 */ 92 uint64_t 93 vdev_default_asize(vdev_t *vd, uint64_t psize) 94 { 95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 96 uint64_t csize; 97 98 for (int c = 0; c < vd->vdev_children; c++) { 99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 100 asize = MAX(asize, csize); 101 } 102 103 return (asize); 104 } 105 106 /* 107 * Get the minimum allocatable size. We define the allocatable size as 108 * the vdev's asize rounded to the nearest metaslab. This allows us to 109 * replace or attach devices which don't have the same physical size but 110 * can still satisfy the same number of allocations. 111 */ 112 uint64_t 113 vdev_get_min_asize(vdev_t *vd) 114 { 115 vdev_t *pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL (inactive spare or cache) or is the root, 119 * just return our own asize. 120 */ 121 if (pvd == NULL) 122 return (vd->vdev_asize); 123 124 /* 125 * The top-level vdev just returns the allocatable size rounded 126 * to the nearest metaslab. 127 */ 128 if (vd == vd->vdev_top) 129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 130 131 /* 132 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 133 * so each child must provide at least 1/Nth of its asize. 134 */ 135 if (pvd->vdev_ops == &vdev_raidz_ops) 136 return (pvd->vdev_min_asize / pvd->vdev_children); 137 138 return (pvd->vdev_min_asize); 139 } 140 141 void 142 vdev_set_min_asize(vdev_t *vd) 143 { 144 vd->vdev_min_asize = vdev_get_min_asize(vd); 145 146 for (int c = 0; c < vd->vdev_children; c++) 147 vdev_set_min_asize(vd->vdev_child[c]); 148 } 149 150 vdev_t * 151 vdev_lookup_top(spa_t *spa, uint64_t vdev) 152 { 153 vdev_t *rvd = spa->spa_root_vdev; 154 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 156 157 if (vdev < rvd->vdev_children) { 158 ASSERT(rvd->vdev_child[vdev] != NULL); 159 return (rvd->vdev_child[vdev]); 160 } 161 162 return (NULL); 163 } 164 165 vdev_t * 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 167 { 168 vdev_t *mvd; 169 170 if (vd->vdev_guid == guid) 171 return (vd); 172 173 for (int c = 0; c < vd->vdev_children; c++) 174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 175 NULL) 176 return (mvd); 177 178 return (NULL); 179 } 180 181 void 182 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 183 { 184 size_t oldsize, newsize; 185 uint64_t id = cvd->vdev_id; 186 vdev_t **newchild; 187 188 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 189 ASSERT(cvd->vdev_parent == NULL); 190 191 cvd->vdev_parent = pvd; 192 193 if (pvd == NULL) 194 return; 195 196 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 197 198 oldsize = pvd->vdev_children * sizeof (vdev_t *); 199 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 200 newsize = pvd->vdev_children * sizeof (vdev_t *); 201 202 newchild = kmem_zalloc(newsize, KM_SLEEP); 203 if (pvd->vdev_child != NULL) { 204 bcopy(pvd->vdev_child, newchild, oldsize); 205 kmem_free(pvd->vdev_child, oldsize); 206 } 207 208 pvd->vdev_child = newchild; 209 pvd->vdev_child[id] = cvd; 210 211 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 212 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 213 214 /* 215 * Walk up all ancestors to update guid sum. 216 */ 217 for (; pvd != NULL; pvd = pvd->vdev_parent) 218 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 219 } 220 221 void 222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 223 { 224 int c; 225 uint_t id = cvd->vdev_id; 226 227 ASSERT(cvd->vdev_parent == pvd); 228 229 if (pvd == NULL) 230 return; 231 232 ASSERT(id < pvd->vdev_children); 233 ASSERT(pvd->vdev_child[id] == cvd); 234 235 pvd->vdev_child[id] = NULL; 236 cvd->vdev_parent = NULL; 237 238 for (c = 0; c < pvd->vdev_children; c++) 239 if (pvd->vdev_child[c]) 240 break; 241 242 if (c == pvd->vdev_children) { 243 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 244 pvd->vdev_child = NULL; 245 pvd->vdev_children = 0; 246 } 247 248 /* 249 * Walk up all ancestors to update guid sum. 250 */ 251 for (; pvd != NULL; pvd = pvd->vdev_parent) 252 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 253 } 254 255 /* 256 * Remove any holes in the child array. 257 */ 258 void 259 vdev_compact_children(vdev_t *pvd) 260 { 261 vdev_t **newchild, *cvd; 262 int oldc = pvd->vdev_children; 263 int newc; 264 265 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 266 267 for (int c = newc = 0; c < oldc; c++) 268 if (pvd->vdev_child[c]) 269 newc++; 270 271 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 272 273 for (int c = newc = 0; c < oldc; c++) { 274 if ((cvd = pvd->vdev_child[c]) != NULL) { 275 newchild[newc] = cvd; 276 cvd->vdev_id = newc++; 277 } 278 } 279 280 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 281 pvd->vdev_child = newchild; 282 pvd->vdev_children = newc; 283 } 284 285 /* 286 * Allocate and minimally initialize a vdev_t. 287 */ 288 vdev_t * 289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 290 { 291 vdev_t *vd; 292 293 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 294 295 if (spa->spa_root_vdev == NULL) { 296 ASSERT(ops == &vdev_root_ops); 297 spa->spa_root_vdev = vd; 298 spa->spa_load_guid = spa_generate_guid(NULL); 299 } 300 301 if (guid == 0 && ops != &vdev_hole_ops) { 302 if (spa->spa_root_vdev == vd) { 303 /* 304 * The root vdev's guid will also be the pool guid, 305 * which must be unique among all pools. 306 */ 307 guid = spa_generate_guid(NULL); 308 } else { 309 /* 310 * Any other vdev's guid must be unique within the pool. 311 */ 312 guid = spa_generate_guid(spa); 313 } 314 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 315 } 316 317 vd->vdev_spa = spa; 318 vd->vdev_id = id; 319 vd->vdev_guid = guid; 320 vd->vdev_guid_sum = guid; 321 vd->vdev_ops = ops; 322 vd->vdev_state = VDEV_STATE_CLOSED; 323 vd->vdev_ishole = (ops == &vdev_hole_ops); 324 325 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 327 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 328 for (int t = 0; t < DTL_TYPES; t++) { 329 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 330 &vd->vdev_dtl_lock); 331 } 332 txg_list_create(&vd->vdev_ms_list, 333 offsetof(struct metaslab, ms_txg_node)); 334 txg_list_create(&vd->vdev_dtl_list, 335 offsetof(struct vdev, vdev_dtl_node)); 336 vd->vdev_stat.vs_timestamp = gethrtime(); 337 vdev_queue_init(vd); 338 vdev_cache_init(vd); 339 340 return (vd); 341 } 342 343 /* 344 * Allocate a new vdev. The 'alloctype' is used to control whether we are 345 * creating a new vdev or loading an existing one - the behavior is slightly 346 * different for each case. 347 */ 348 int 349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 350 int alloctype) 351 { 352 vdev_ops_t *ops; 353 char *type; 354 uint64_t guid = 0, islog, nparity; 355 vdev_t *vd; 356 357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 358 359 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 360 return (SET_ERROR(EINVAL)); 361 362 if ((ops = vdev_getops(type)) == NULL) 363 return (SET_ERROR(EINVAL)); 364 365 /* 366 * If this is a load, get the vdev guid from the nvlist. 367 * Otherwise, vdev_alloc_common() will generate one for us. 368 */ 369 if (alloctype == VDEV_ALLOC_LOAD) { 370 uint64_t label_id; 371 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 373 label_id != id) 374 return (SET_ERROR(EINVAL)); 375 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (SET_ERROR(EINVAL)); 378 } else if (alloctype == VDEV_ALLOC_SPARE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (SET_ERROR(EINVAL)); 381 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (SET_ERROR(EINVAL)); 384 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 385 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 386 return (SET_ERROR(EINVAL)); 387 } 388 389 /* 390 * The first allocated vdev must be of type 'root'. 391 */ 392 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 393 return (SET_ERROR(EINVAL)); 394 395 /* 396 * Determine whether we're a log vdev. 397 */ 398 islog = 0; 399 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 400 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 401 return (SET_ERROR(ENOTSUP)); 402 403 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 404 return (SET_ERROR(ENOTSUP)); 405 406 /* 407 * Set the nparity property for RAID-Z vdevs. 408 */ 409 nparity = -1ULL; 410 if (ops == &vdev_raidz_ops) { 411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 412 &nparity) == 0) { 413 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 414 return (SET_ERROR(EINVAL)); 415 /* 416 * Previous versions could only support 1 or 2 parity 417 * device. 418 */ 419 if (nparity > 1 && 420 spa_version(spa) < SPA_VERSION_RAIDZ2) 421 return (SET_ERROR(ENOTSUP)); 422 if (nparity > 2 && 423 spa_version(spa) < SPA_VERSION_RAIDZ3) 424 return (SET_ERROR(ENOTSUP)); 425 } else { 426 /* 427 * We require the parity to be specified for SPAs that 428 * support multiple parity levels. 429 */ 430 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 431 return (SET_ERROR(EINVAL)); 432 /* 433 * Otherwise, we default to 1 parity device for RAID-Z. 434 */ 435 nparity = 1; 436 } 437 } else { 438 nparity = 0; 439 } 440 ASSERT(nparity != -1ULL); 441 442 vd = vdev_alloc_common(spa, id, guid, ops); 443 444 vd->vdev_islog = islog; 445 vd->vdev_nparity = nparity; 446 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 448 vd->vdev_path = spa_strdup(vd->vdev_path); 449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 450 vd->vdev_devid = spa_strdup(vd->vdev_devid); 451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 452 &vd->vdev_physpath) == 0) 453 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 455 vd->vdev_fru = spa_strdup(vd->vdev_fru); 456 457 /* 458 * Set the whole_disk property. If it's not specified, leave the value 459 * as -1. 460 */ 461 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 462 &vd->vdev_wholedisk) != 0) 463 vd->vdev_wholedisk = -1ULL; 464 465 /* 466 * Look for the 'not present' flag. This will only be set if the device 467 * was not present at the time of import. 468 */ 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 470 &vd->vdev_not_present); 471 472 /* 473 * Get the alignment requirement. 474 */ 475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 476 477 /* 478 * Retrieve the vdev creation time. 479 */ 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 481 &vd->vdev_crtxg); 482 483 /* 484 * If we're a top-level vdev, try to load the allocation parameters. 485 */ 486 if (parent && !parent->vdev_parent && 487 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 489 &vd->vdev_ms_array); 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 491 &vd->vdev_ms_shift); 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 493 &vd->vdev_asize); 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 495 &vd->vdev_removing); 496 } 497 498 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 499 ASSERT(alloctype == VDEV_ALLOC_LOAD || 500 alloctype == VDEV_ALLOC_ADD || 501 alloctype == VDEV_ALLOC_SPLIT || 502 alloctype == VDEV_ALLOC_ROOTPOOL); 503 vd->vdev_mg = metaslab_group_create(islog ? 504 spa_log_class(spa) : spa_normal_class(spa), vd); 505 } 506 507 /* 508 * If we're a leaf vdev, try to load the DTL object and other state. 509 */ 510 if (vd->vdev_ops->vdev_op_leaf && 511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 512 alloctype == VDEV_ALLOC_ROOTPOOL)) { 513 if (alloctype == VDEV_ALLOC_LOAD) { 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 515 &vd->vdev_dtl_object); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 517 &vd->vdev_unspare); 518 } 519 520 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 521 uint64_t spare = 0; 522 523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 524 &spare) == 0 && spare) 525 spa_spare_add(vd); 526 } 527 528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 529 &vd->vdev_offline); 530 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 532 &vd->vdev_resilver_txg); 533 534 /* 535 * When importing a pool, we want to ignore the persistent fault 536 * state, as the diagnosis made on another system may not be 537 * valid in the current context. Local vdevs will 538 * remain in the faulted state. 539 */ 540 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 542 &vd->vdev_faulted); 543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 544 &vd->vdev_degraded); 545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 546 &vd->vdev_removed); 547 548 if (vd->vdev_faulted || vd->vdev_degraded) { 549 char *aux; 550 551 vd->vdev_label_aux = 552 VDEV_AUX_ERR_EXCEEDED; 553 if (nvlist_lookup_string(nv, 554 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 555 strcmp(aux, "external") == 0) 556 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 557 } 558 } 559 } 560 561 /* 562 * Add ourselves to the parent's list of children. 563 */ 564 vdev_add_child(parent, vd); 565 566 *vdp = vd; 567 568 return (0); 569 } 570 571 void 572 vdev_free(vdev_t *vd) 573 { 574 spa_t *spa = vd->vdev_spa; 575 576 /* 577 * vdev_free() implies closing the vdev first. This is simpler than 578 * trying to ensure complicated semantics for all callers. 579 */ 580 vdev_close(vd); 581 582 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 583 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 584 585 /* 586 * Free all children. 587 */ 588 for (int c = 0; c < vd->vdev_children; c++) 589 vdev_free(vd->vdev_child[c]); 590 591 ASSERT(vd->vdev_child == NULL); 592 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 593 594 /* 595 * Discard allocation state. 596 */ 597 if (vd->vdev_mg != NULL) { 598 vdev_metaslab_fini(vd); 599 metaslab_group_destroy(vd->vdev_mg); 600 } 601 602 ASSERT0(vd->vdev_stat.vs_space); 603 ASSERT0(vd->vdev_stat.vs_dspace); 604 ASSERT0(vd->vdev_stat.vs_alloc); 605 606 /* 607 * Remove this vdev from its parent's child list. 608 */ 609 vdev_remove_child(vd->vdev_parent, vd); 610 611 ASSERT(vd->vdev_parent == NULL); 612 613 /* 614 * Clean up vdev structure. 615 */ 616 vdev_queue_fini(vd); 617 vdev_cache_fini(vd); 618 619 if (vd->vdev_path) 620 spa_strfree(vd->vdev_path); 621 if (vd->vdev_devid) 622 spa_strfree(vd->vdev_devid); 623 if (vd->vdev_physpath) 624 spa_strfree(vd->vdev_physpath); 625 if (vd->vdev_fru) 626 spa_strfree(vd->vdev_fru); 627 628 if (vd->vdev_isspare) 629 spa_spare_remove(vd); 630 if (vd->vdev_isl2cache) 631 spa_l2cache_remove(vd); 632 633 txg_list_destroy(&vd->vdev_ms_list); 634 txg_list_destroy(&vd->vdev_dtl_list); 635 636 mutex_enter(&vd->vdev_dtl_lock); 637 space_map_close(vd->vdev_dtl_sm); 638 for (int t = 0; t < DTL_TYPES; t++) { 639 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 640 range_tree_destroy(vd->vdev_dtl[t]); 641 } 642 mutex_exit(&vd->vdev_dtl_lock); 643 644 mutex_destroy(&vd->vdev_dtl_lock); 645 mutex_destroy(&vd->vdev_stat_lock); 646 mutex_destroy(&vd->vdev_probe_lock); 647 648 if (vd == spa->spa_root_vdev) 649 spa->spa_root_vdev = NULL; 650 651 kmem_free(vd, sizeof (vdev_t)); 652 } 653 654 /* 655 * Transfer top-level vdev state from svd to tvd. 656 */ 657 static void 658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 659 { 660 spa_t *spa = svd->vdev_spa; 661 metaslab_t *msp; 662 vdev_t *vd; 663 int t; 664 665 ASSERT(tvd == tvd->vdev_top); 666 667 tvd->vdev_ms_array = svd->vdev_ms_array; 668 tvd->vdev_ms_shift = svd->vdev_ms_shift; 669 tvd->vdev_ms_count = svd->vdev_ms_count; 670 671 svd->vdev_ms_array = 0; 672 svd->vdev_ms_shift = 0; 673 svd->vdev_ms_count = 0; 674 675 if (tvd->vdev_mg) 676 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 677 tvd->vdev_mg = svd->vdev_mg; 678 tvd->vdev_ms = svd->vdev_ms; 679 680 svd->vdev_mg = NULL; 681 svd->vdev_ms = NULL; 682 683 if (tvd->vdev_mg != NULL) 684 tvd->vdev_mg->mg_vd = tvd; 685 686 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 687 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 688 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 689 690 svd->vdev_stat.vs_alloc = 0; 691 svd->vdev_stat.vs_space = 0; 692 svd->vdev_stat.vs_dspace = 0; 693 694 for (t = 0; t < TXG_SIZE; t++) { 695 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 696 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 697 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 698 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 699 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 700 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 701 } 702 703 if (list_link_active(&svd->vdev_config_dirty_node)) { 704 vdev_config_clean(svd); 705 vdev_config_dirty(tvd); 706 } 707 708 if (list_link_active(&svd->vdev_state_dirty_node)) { 709 vdev_state_clean(svd); 710 vdev_state_dirty(tvd); 711 } 712 713 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 714 svd->vdev_deflate_ratio = 0; 715 716 tvd->vdev_islog = svd->vdev_islog; 717 svd->vdev_islog = 0; 718 } 719 720 static void 721 vdev_top_update(vdev_t *tvd, vdev_t *vd) 722 { 723 if (vd == NULL) 724 return; 725 726 vd->vdev_top = tvd; 727 728 for (int c = 0; c < vd->vdev_children; c++) 729 vdev_top_update(tvd, vd->vdev_child[c]); 730 } 731 732 /* 733 * Add a mirror/replacing vdev above an existing vdev. 734 */ 735 vdev_t * 736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 737 { 738 spa_t *spa = cvd->vdev_spa; 739 vdev_t *pvd = cvd->vdev_parent; 740 vdev_t *mvd; 741 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 745 746 mvd->vdev_asize = cvd->vdev_asize; 747 mvd->vdev_min_asize = cvd->vdev_min_asize; 748 mvd->vdev_max_asize = cvd->vdev_max_asize; 749 mvd->vdev_ashift = cvd->vdev_ashift; 750 mvd->vdev_state = cvd->vdev_state; 751 mvd->vdev_crtxg = cvd->vdev_crtxg; 752 753 vdev_remove_child(pvd, cvd); 754 vdev_add_child(pvd, mvd); 755 cvd->vdev_id = mvd->vdev_children; 756 vdev_add_child(mvd, cvd); 757 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 758 759 if (mvd == mvd->vdev_top) 760 vdev_top_transfer(cvd, mvd); 761 762 return (mvd); 763 } 764 765 /* 766 * Remove a 1-way mirror/replacing vdev from the tree. 767 */ 768 void 769 vdev_remove_parent(vdev_t *cvd) 770 { 771 vdev_t *mvd = cvd->vdev_parent; 772 vdev_t *pvd = mvd->vdev_parent; 773 774 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 775 776 ASSERT(mvd->vdev_children == 1); 777 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 778 mvd->vdev_ops == &vdev_replacing_ops || 779 mvd->vdev_ops == &vdev_spare_ops); 780 cvd->vdev_ashift = mvd->vdev_ashift; 781 782 vdev_remove_child(mvd, cvd); 783 vdev_remove_child(pvd, mvd); 784 785 /* 786 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 787 * Otherwise, we could have detached an offline device, and when we 788 * go to import the pool we'll think we have two top-level vdevs, 789 * instead of a different version of the same top-level vdev. 790 */ 791 if (mvd->vdev_top == mvd) { 792 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 793 cvd->vdev_orig_guid = cvd->vdev_guid; 794 cvd->vdev_guid += guid_delta; 795 cvd->vdev_guid_sum += guid_delta; 796 } 797 cvd->vdev_id = mvd->vdev_id; 798 vdev_add_child(pvd, cvd); 799 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 800 801 if (cvd == cvd->vdev_top) 802 vdev_top_transfer(mvd, cvd); 803 804 ASSERT(mvd->vdev_children == 0); 805 vdev_free(mvd); 806 } 807 808 int 809 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 810 { 811 spa_t *spa = vd->vdev_spa; 812 objset_t *mos = spa->spa_meta_objset; 813 uint64_t m; 814 uint64_t oldc = vd->vdev_ms_count; 815 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 816 metaslab_t **mspp; 817 int error; 818 819 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 820 821 /* 822 * This vdev is not being allocated from yet or is a hole. 823 */ 824 if (vd->vdev_ms_shift == 0) 825 return (0); 826 827 ASSERT(!vd->vdev_ishole); 828 829 /* 830 * Compute the raidz-deflation ratio. Note, we hard-code 831 * in 128k (1 << 17) because it is the "typical" blocksize. 832 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 833 * otherwise it would inconsistently account for existing bp's. 834 */ 835 vd->vdev_deflate_ratio = (1 << 17) / 836 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 837 838 ASSERT(oldc <= newc); 839 840 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 841 842 if (oldc != 0) { 843 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 844 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 845 } 846 847 vd->vdev_ms = mspp; 848 vd->vdev_ms_count = newc; 849 850 for (m = oldc; m < newc; m++) { 851 uint64_t object = 0; 852 853 if (txg == 0) { 854 error = dmu_read(mos, vd->vdev_ms_array, 855 m * sizeof (uint64_t), sizeof (uint64_t), &object, 856 DMU_READ_PREFETCH); 857 if (error) 858 return (error); 859 } 860 861 error = metaslab_init(vd->vdev_mg, m, object, txg, 862 &(vd->vdev_ms[m])); 863 if (error) 864 return (error); 865 } 866 867 if (txg == 0) 868 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 869 870 /* 871 * If the vdev is being removed we don't activate 872 * the metaslabs since we want to ensure that no new 873 * allocations are performed on this device. 874 */ 875 if (oldc == 0 && !vd->vdev_removing) 876 metaslab_group_activate(vd->vdev_mg); 877 878 if (txg == 0) 879 spa_config_exit(spa, SCL_ALLOC, FTAG); 880 881 return (0); 882 } 883 884 void 885 vdev_metaslab_fini(vdev_t *vd) 886 { 887 uint64_t m; 888 uint64_t count = vd->vdev_ms_count; 889 890 if (vd->vdev_ms != NULL) { 891 metaslab_group_passivate(vd->vdev_mg); 892 for (m = 0; m < count; m++) { 893 metaslab_t *msp = vd->vdev_ms[m]; 894 895 if (msp != NULL) 896 metaslab_fini(msp); 897 } 898 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 899 vd->vdev_ms = NULL; 900 } 901 } 902 903 typedef struct vdev_probe_stats { 904 boolean_t vps_readable; 905 boolean_t vps_writeable; 906 int vps_flags; 907 } vdev_probe_stats_t; 908 909 static void 910 vdev_probe_done(zio_t *zio) 911 { 912 spa_t *spa = zio->io_spa; 913 vdev_t *vd = zio->io_vd; 914 vdev_probe_stats_t *vps = zio->io_private; 915 916 ASSERT(vd->vdev_probe_zio != NULL); 917 918 if (zio->io_type == ZIO_TYPE_READ) { 919 if (zio->io_error == 0) 920 vps->vps_readable = 1; 921 if (zio->io_error == 0 && spa_writeable(spa)) { 922 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 923 zio->io_offset, zio->io_size, zio->io_data, 924 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 925 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 926 } else { 927 zio_buf_free(zio->io_data, zio->io_size); 928 } 929 } else if (zio->io_type == ZIO_TYPE_WRITE) { 930 if (zio->io_error == 0) 931 vps->vps_writeable = 1; 932 zio_buf_free(zio->io_data, zio->io_size); 933 } else if (zio->io_type == ZIO_TYPE_NULL) { 934 zio_t *pio; 935 936 vd->vdev_cant_read |= !vps->vps_readable; 937 vd->vdev_cant_write |= !vps->vps_writeable; 938 939 if (vdev_readable(vd) && 940 (vdev_writeable(vd) || !spa_writeable(spa))) { 941 zio->io_error = 0; 942 } else { 943 ASSERT(zio->io_error != 0); 944 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 945 spa, vd, NULL, 0, 0); 946 zio->io_error = SET_ERROR(ENXIO); 947 } 948 949 mutex_enter(&vd->vdev_probe_lock); 950 ASSERT(vd->vdev_probe_zio == zio); 951 vd->vdev_probe_zio = NULL; 952 mutex_exit(&vd->vdev_probe_lock); 953 954 while ((pio = zio_walk_parents(zio)) != NULL) 955 if (!vdev_accessible(vd, pio)) 956 pio->io_error = SET_ERROR(ENXIO); 957 958 kmem_free(vps, sizeof (*vps)); 959 } 960 } 961 962 /* 963 * Determine whether this device is accessible. 964 * 965 * Read and write to several known locations: the pad regions of each 966 * vdev label but the first, which we leave alone in case it contains 967 * a VTOC. 968 */ 969 zio_t * 970 vdev_probe(vdev_t *vd, zio_t *zio) 971 { 972 spa_t *spa = vd->vdev_spa; 973 vdev_probe_stats_t *vps = NULL; 974 zio_t *pio; 975 976 ASSERT(vd->vdev_ops->vdev_op_leaf); 977 978 /* 979 * Don't probe the probe. 980 */ 981 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 982 return (NULL); 983 984 /* 985 * To prevent 'probe storms' when a device fails, we create 986 * just one probe i/o at a time. All zios that want to probe 987 * this vdev will become parents of the probe io. 988 */ 989 mutex_enter(&vd->vdev_probe_lock); 990 991 if ((pio = vd->vdev_probe_zio) == NULL) { 992 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 993 994 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 995 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 996 ZIO_FLAG_TRYHARD; 997 998 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 999 /* 1000 * vdev_cant_read and vdev_cant_write can only 1001 * transition from TRUE to FALSE when we have the 1002 * SCL_ZIO lock as writer; otherwise they can only 1003 * transition from FALSE to TRUE. This ensures that 1004 * any zio looking at these values can assume that 1005 * failures persist for the life of the I/O. That's 1006 * important because when a device has intermittent 1007 * connectivity problems, we want to ensure that 1008 * they're ascribed to the device (ENXIO) and not 1009 * the zio (EIO). 1010 * 1011 * Since we hold SCL_ZIO as writer here, clear both 1012 * values so the probe can reevaluate from first 1013 * principles. 1014 */ 1015 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1016 vd->vdev_cant_read = B_FALSE; 1017 vd->vdev_cant_write = B_FALSE; 1018 } 1019 1020 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1021 vdev_probe_done, vps, 1022 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1023 1024 /* 1025 * We can't change the vdev state in this context, so we 1026 * kick off an async task to do it on our behalf. 1027 */ 1028 if (zio != NULL) { 1029 vd->vdev_probe_wanted = B_TRUE; 1030 spa_async_request(spa, SPA_ASYNC_PROBE); 1031 } 1032 } 1033 1034 if (zio != NULL) 1035 zio_add_child(zio, pio); 1036 1037 mutex_exit(&vd->vdev_probe_lock); 1038 1039 if (vps == NULL) { 1040 ASSERT(zio != NULL); 1041 return (NULL); 1042 } 1043 1044 for (int l = 1; l < VDEV_LABELS; l++) { 1045 zio_nowait(zio_read_phys(pio, vd, 1046 vdev_label_offset(vd->vdev_psize, l, 1047 offsetof(vdev_label_t, vl_pad2)), 1048 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1049 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1050 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1051 } 1052 1053 if (zio == NULL) 1054 return (pio); 1055 1056 zio_nowait(pio); 1057 return (NULL); 1058 } 1059 1060 static void 1061 vdev_open_child(void *arg) 1062 { 1063 vdev_t *vd = arg; 1064 1065 vd->vdev_open_thread = curthread; 1066 vd->vdev_open_error = vdev_open(vd); 1067 vd->vdev_open_thread = NULL; 1068 } 1069 1070 boolean_t 1071 vdev_uses_zvols(vdev_t *vd) 1072 { 1073 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1074 strlen(ZVOL_DIR)) == 0) 1075 return (B_TRUE); 1076 for (int c = 0; c < vd->vdev_children; c++) 1077 if (vdev_uses_zvols(vd->vdev_child[c])) 1078 return (B_TRUE); 1079 return (B_FALSE); 1080 } 1081 1082 void 1083 vdev_open_children(vdev_t *vd) 1084 { 1085 taskq_t *tq; 1086 int children = vd->vdev_children; 1087 1088 /* 1089 * in order to handle pools on top of zvols, do the opens 1090 * in a single thread so that the same thread holds the 1091 * spa_namespace_lock 1092 */ 1093 if (vdev_uses_zvols(vd)) { 1094 for (int c = 0; c < children; c++) 1095 vd->vdev_child[c]->vdev_open_error = 1096 vdev_open(vd->vdev_child[c]); 1097 return; 1098 } 1099 tq = taskq_create("vdev_open", children, minclsyspri, 1100 children, children, TASKQ_PREPOPULATE); 1101 1102 for (int c = 0; c < children; c++) 1103 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1104 TQ_SLEEP) != NULL); 1105 1106 taskq_destroy(tq); 1107 } 1108 1109 /* 1110 * Prepare a virtual device for access. 1111 */ 1112 int 1113 vdev_open(vdev_t *vd) 1114 { 1115 spa_t *spa = vd->vdev_spa; 1116 int error; 1117 uint64_t osize = 0; 1118 uint64_t max_osize = 0; 1119 uint64_t asize, max_asize, psize; 1120 uint64_t ashift = 0; 1121 1122 ASSERT(vd->vdev_open_thread == curthread || 1123 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1124 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1125 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1126 vd->vdev_state == VDEV_STATE_OFFLINE); 1127 1128 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1129 vd->vdev_cant_read = B_FALSE; 1130 vd->vdev_cant_write = B_FALSE; 1131 vd->vdev_min_asize = vdev_get_min_asize(vd); 1132 1133 /* 1134 * If this vdev is not removed, check its fault status. If it's 1135 * faulted, bail out of the open. 1136 */ 1137 if (!vd->vdev_removed && vd->vdev_faulted) { 1138 ASSERT(vd->vdev_children == 0); 1139 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1140 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1141 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1142 vd->vdev_label_aux); 1143 return (SET_ERROR(ENXIO)); 1144 } else if (vd->vdev_offline) { 1145 ASSERT(vd->vdev_children == 0); 1146 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1147 return (SET_ERROR(ENXIO)); 1148 } 1149 1150 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1151 1152 /* 1153 * Reset the vdev_reopening flag so that we actually close 1154 * the vdev on error. 1155 */ 1156 vd->vdev_reopening = B_FALSE; 1157 if (zio_injection_enabled && error == 0) 1158 error = zio_handle_device_injection(vd, NULL, ENXIO); 1159 1160 if (error) { 1161 if (vd->vdev_removed && 1162 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1163 vd->vdev_removed = B_FALSE; 1164 1165 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1166 vd->vdev_stat.vs_aux); 1167 return (error); 1168 } 1169 1170 vd->vdev_removed = B_FALSE; 1171 1172 /* 1173 * Recheck the faulted flag now that we have confirmed that 1174 * the vdev is accessible. If we're faulted, bail. 1175 */ 1176 if (vd->vdev_faulted) { 1177 ASSERT(vd->vdev_children == 0); 1178 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1179 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1181 vd->vdev_label_aux); 1182 return (SET_ERROR(ENXIO)); 1183 } 1184 1185 if (vd->vdev_degraded) { 1186 ASSERT(vd->vdev_children == 0); 1187 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1188 VDEV_AUX_ERR_EXCEEDED); 1189 } else { 1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1191 } 1192 1193 /* 1194 * For hole or missing vdevs we just return success. 1195 */ 1196 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1197 return (0); 1198 1199 for (int c = 0; c < vd->vdev_children; c++) { 1200 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1202 VDEV_AUX_NONE); 1203 break; 1204 } 1205 } 1206 1207 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1208 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1209 1210 if (vd->vdev_children == 0) { 1211 if (osize < SPA_MINDEVSIZE) { 1212 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1213 VDEV_AUX_TOO_SMALL); 1214 return (SET_ERROR(EOVERFLOW)); 1215 } 1216 psize = osize; 1217 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1218 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1219 VDEV_LABEL_END_SIZE); 1220 } else { 1221 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1222 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1223 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1224 VDEV_AUX_TOO_SMALL); 1225 return (SET_ERROR(EOVERFLOW)); 1226 } 1227 psize = 0; 1228 asize = osize; 1229 max_asize = max_osize; 1230 } 1231 1232 vd->vdev_psize = psize; 1233 1234 /* 1235 * Make sure the allocatable size hasn't shrunk. 1236 */ 1237 if (asize < vd->vdev_min_asize) { 1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1239 VDEV_AUX_BAD_LABEL); 1240 return (SET_ERROR(EINVAL)); 1241 } 1242 1243 if (vd->vdev_asize == 0) { 1244 /* 1245 * This is the first-ever open, so use the computed values. 1246 * For testing purposes, a higher ashift can be requested. 1247 */ 1248 vd->vdev_asize = asize; 1249 vd->vdev_max_asize = max_asize; 1250 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1251 } else { 1252 /* 1253 * Detect if the alignment requirement has increased. 1254 * We don't want to make the pool unavailable, just 1255 * issue a warning instead. 1256 */ 1257 if (ashift > vd->vdev_top->vdev_ashift && 1258 vd->vdev_ops->vdev_op_leaf) { 1259 cmn_err(CE_WARN, 1260 "Disk, '%s', has a block alignment that is " 1261 "larger than the pool's alignment\n", 1262 vd->vdev_path); 1263 } 1264 vd->vdev_max_asize = max_asize; 1265 } 1266 1267 /* 1268 * If all children are healthy and the asize has increased, 1269 * then we've experienced dynamic LUN growth. If automatic 1270 * expansion is enabled then use the additional space. 1271 */ 1272 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1273 (vd->vdev_expanding || spa->spa_autoexpand)) 1274 vd->vdev_asize = asize; 1275 1276 vdev_set_min_asize(vd); 1277 1278 /* 1279 * Ensure we can issue some IO before declaring the 1280 * vdev open for business. 1281 */ 1282 if (vd->vdev_ops->vdev_op_leaf && 1283 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1284 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1285 VDEV_AUX_ERR_EXCEEDED); 1286 return (error); 1287 } 1288 1289 /* 1290 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1291 * resilver. But don't do this if we are doing a reopen for a scrub, 1292 * since this would just restart the scrub we are already doing. 1293 */ 1294 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1295 vdev_resilver_needed(vd, NULL, NULL)) 1296 spa_async_request(spa, SPA_ASYNC_RESILVER); 1297 1298 return (0); 1299 } 1300 1301 /* 1302 * Called once the vdevs are all opened, this routine validates the label 1303 * contents. This needs to be done before vdev_load() so that we don't 1304 * inadvertently do repair I/Os to the wrong device. 1305 * 1306 * If 'strict' is false ignore the spa guid check. This is necessary because 1307 * if the machine crashed during a re-guid the new guid might have been written 1308 * to all of the vdev labels, but not the cached config. The strict check 1309 * will be performed when the pool is opened again using the mos config. 1310 * 1311 * This function will only return failure if one of the vdevs indicates that it 1312 * has since been destroyed or exported. This is only possible if 1313 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1314 * will be updated but the function will return 0. 1315 */ 1316 int 1317 vdev_validate(vdev_t *vd, boolean_t strict) 1318 { 1319 spa_t *spa = vd->vdev_spa; 1320 nvlist_t *label; 1321 uint64_t guid = 0, top_guid; 1322 uint64_t state; 1323 1324 for (int c = 0; c < vd->vdev_children; c++) 1325 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1326 return (SET_ERROR(EBADF)); 1327 1328 /* 1329 * If the device has already failed, or was marked offline, don't do 1330 * any further validation. Otherwise, label I/O will fail and we will 1331 * overwrite the previous state. 1332 */ 1333 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1334 uint64_t aux_guid = 0; 1335 nvlist_t *nvl; 1336 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1337 spa_last_synced_txg(spa) : -1ULL; 1338 1339 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1340 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1341 VDEV_AUX_BAD_LABEL); 1342 return (0); 1343 } 1344 1345 /* 1346 * Determine if this vdev has been split off into another 1347 * pool. If so, then refuse to open it. 1348 */ 1349 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1350 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1351 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1352 VDEV_AUX_SPLIT_POOL); 1353 nvlist_free(label); 1354 return (0); 1355 } 1356 1357 if (strict && (nvlist_lookup_uint64(label, 1358 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1359 guid != spa_guid(spa))) { 1360 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1361 VDEV_AUX_CORRUPT_DATA); 1362 nvlist_free(label); 1363 return (0); 1364 } 1365 1366 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1367 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1368 &aux_guid) != 0) 1369 aux_guid = 0; 1370 1371 /* 1372 * If this vdev just became a top-level vdev because its 1373 * sibling was detached, it will have adopted the parent's 1374 * vdev guid -- but the label may or may not be on disk yet. 1375 * Fortunately, either version of the label will have the 1376 * same top guid, so if we're a top-level vdev, we can 1377 * safely compare to that instead. 1378 * 1379 * If we split this vdev off instead, then we also check the 1380 * original pool's guid. We don't want to consider the vdev 1381 * corrupt if it is partway through a split operation. 1382 */ 1383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1384 &guid) != 0 || 1385 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1386 &top_guid) != 0 || 1387 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1388 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1389 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1390 VDEV_AUX_CORRUPT_DATA); 1391 nvlist_free(label); 1392 return (0); 1393 } 1394 1395 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1396 &state) != 0) { 1397 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1398 VDEV_AUX_CORRUPT_DATA); 1399 nvlist_free(label); 1400 return (0); 1401 } 1402 1403 nvlist_free(label); 1404 1405 /* 1406 * If this is a verbatim import, no need to check the 1407 * state of the pool. 1408 */ 1409 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1410 spa_load_state(spa) == SPA_LOAD_OPEN && 1411 state != POOL_STATE_ACTIVE) 1412 return (SET_ERROR(EBADF)); 1413 1414 /* 1415 * If we were able to open and validate a vdev that was 1416 * previously marked permanently unavailable, clear that state 1417 * now. 1418 */ 1419 if (vd->vdev_not_present) 1420 vd->vdev_not_present = 0; 1421 } 1422 1423 return (0); 1424 } 1425 1426 /* 1427 * Close a virtual device. 1428 */ 1429 void 1430 vdev_close(vdev_t *vd) 1431 { 1432 spa_t *spa = vd->vdev_spa; 1433 vdev_t *pvd = vd->vdev_parent; 1434 1435 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1436 1437 /* 1438 * If our parent is reopening, then we are as well, unless we are 1439 * going offline. 1440 */ 1441 if (pvd != NULL && pvd->vdev_reopening) 1442 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1443 1444 vd->vdev_ops->vdev_op_close(vd); 1445 1446 vdev_cache_purge(vd); 1447 1448 /* 1449 * We record the previous state before we close it, so that if we are 1450 * doing a reopen(), we don't generate FMA ereports if we notice that 1451 * it's still faulted. 1452 */ 1453 vd->vdev_prevstate = vd->vdev_state; 1454 1455 if (vd->vdev_offline) 1456 vd->vdev_state = VDEV_STATE_OFFLINE; 1457 else 1458 vd->vdev_state = VDEV_STATE_CLOSED; 1459 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1460 } 1461 1462 void 1463 vdev_hold(vdev_t *vd) 1464 { 1465 spa_t *spa = vd->vdev_spa; 1466 1467 ASSERT(spa_is_root(spa)); 1468 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1469 return; 1470 1471 for (int c = 0; c < vd->vdev_children; c++) 1472 vdev_hold(vd->vdev_child[c]); 1473 1474 if (vd->vdev_ops->vdev_op_leaf) 1475 vd->vdev_ops->vdev_op_hold(vd); 1476 } 1477 1478 void 1479 vdev_rele(vdev_t *vd) 1480 { 1481 spa_t *spa = vd->vdev_spa; 1482 1483 ASSERT(spa_is_root(spa)); 1484 for (int c = 0; c < vd->vdev_children; c++) 1485 vdev_rele(vd->vdev_child[c]); 1486 1487 if (vd->vdev_ops->vdev_op_leaf) 1488 vd->vdev_ops->vdev_op_rele(vd); 1489 } 1490 1491 /* 1492 * Reopen all interior vdevs and any unopened leaves. We don't actually 1493 * reopen leaf vdevs which had previously been opened as they might deadlock 1494 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1495 * If the leaf has never been opened then open it, as usual. 1496 */ 1497 void 1498 vdev_reopen(vdev_t *vd) 1499 { 1500 spa_t *spa = vd->vdev_spa; 1501 1502 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1503 1504 /* set the reopening flag unless we're taking the vdev offline */ 1505 vd->vdev_reopening = !vd->vdev_offline; 1506 vdev_close(vd); 1507 (void) vdev_open(vd); 1508 1509 /* 1510 * Call vdev_validate() here to make sure we have the same device. 1511 * Otherwise, a device with an invalid label could be successfully 1512 * opened in response to vdev_reopen(). 1513 */ 1514 if (vd->vdev_aux) { 1515 (void) vdev_validate_aux(vd); 1516 if (vdev_readable(vd) && vdev_writeable(vd) && 1517 vd->vdev_aux == &spa->spa_l2cache && 1518 !l2arc_vdev_present(vd)) 1519 l2arc_add_vdev(spa, vd); 1520 } else { 1521 (void) vdev_validate(vd, B_TRUE); 1522 } 1523 1524 /* 1525 * Reassess parent vdev's health. 1526 */ 1527 vdev_propagate_state(vd); 1528 } 1529 1530 int 1531 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1532 { 1533 int error; 1534 1535 /* 1536 * Normally, partial opens (e.g. of a mirror) are allowed. 1537 * For a create, however, we want to fail the request if 1538 * there are any components we can't open. 1539 */ 1540 error = vdev_open(vd); 1541 1542 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1543 vdev_close(vd); 1544 return (error ? error : ENXIO); 1545 } 1546 1547 /* 1548 * Recursively load DTLs and initialize all labels. 1549 */ 1550 if ((error = vdev_dtl_load(vd)) != 0 || 1551 (error = vdev_label_init(vd, txg, isreplacing ? 1552 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1553 vdev_close(vd); 1554 return (error); 1555 } 1556 1557 return (0); 1558 } 1559 1560 void 1561 vdev_metaslab_set_size(vdev_t *vd) 1562 { 1563 /* 1564 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1565 */ 1566 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1567 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1568 } 1569 1570 void 1571 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1572 { 1573 ASSERT(vd == vd->vdev_top); 1574 ASSERT(!vd->vdev_ishole); 1575 ASSERT(ISP2(flags)); 1576 ASSERT(spa_writeable(vd->vdev_spa)); 1577 1578 if (flags & VDD_METASLAB) 1579 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1580 1581 if (flags & VDD_DTL) 1582 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1583 1584 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1585 } 1586 1587 void 1588 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1589 { 1590 for (int c = 0; c < vd->vdev_children; c++) 1591 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1592 1593 if (vd->vdev_ops->vdev_op_leaf) 1594 vdev_dirty(vd->vdev_top, flags, vd, txg); 1595 } 1596 1597 /* 1598 * DTLs. 1599 * 1600 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1601 * the vdev has less than perfect replication. There are four kinds of DTL: 1602 * 1603 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1604 * 1605 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1606 * 1607 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1608 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1609 * txgs that was scrubbed. 1610 * 1611 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1612 * persistent errors or just some device being offline. 1613 * Unlike the other three, the DTL_OUTAGE map is not generally 1614 * maintained; it's only computed when needed, typically to 1615 * determine whether a device can be detached. 1616 * 1617 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1618 * either has the data or it doesn't. 1619 * 1620 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1621 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1622 * if any child is less than fully replicated, then so is its parent. 1623 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1624 * comprising only those txgs which appear in 'maxfaults' or more children; 1625 * those are the txgs we don't have enough replication to read. For example, 1626 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1627 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1628 * two child DTL_MISSING maps. 1629 * 1630 * It should be clear from the above that to compute the DTLs and outage maps 1631 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1632 * Therefore, that is all we keep on disk. When loading the pool, or after 1633 * a configuration change, we generate all other DTLs from first principles. 1634 */ 1635 void 1636 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1637 { 1638 range_tree_t *rt = vd->vdev_dtl[t]; 1639 1640 ASSERT(t < DTL_TYPES); 1641 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1642 ASSERT(spa_writeable(vd->vdev_spa)); 1643 1644 mutex_enter(rt->rt_lock); 1645 if (!range_tree_contains(rt, txg, size)) 1646 range_tree_add(rt, txg, size); 1647 mutex_exit(rt->rt_lock); 1648 } 1649 1650 boolean_t 1651 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1652 { 1653 range_tree_t *rt = vd->vdev_dtl[t]; 1654 boolean_t dirty = B_FALSE; 1655 1656 ASSERT(t < DTL_TYPES); 1657 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1658 1659 mutex_enter(rt->rt_lock); 1660 if (range_tree_space(rt) != 0) 1661 dirty = range_tree_contains(rt, txg, size); 1662 mutex_exit(rt->rt_lock); 1663 1664 return (dirty); 1665 } 1666 1667 boolean_t 1668 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1669 { 1670 range_tree_t *rt = vd->vdev_dtl[t]; 1671 boolean_t empty; 1672 1673 mutex_enter(rt->rt_lock); 1674 empty = (range_tree_space(rt) == 0); 1675 mutex_exit(rt->rt_lock); 1676 1677 return (empty); 1678 } 1679 1680 /* 1681 * Returns the lowest txg in the DTL range. 1682 */ 1683 static uint64_t 1684 vdev_dtl_min(vdev_t *vd) 1685 { 1686 range_seg_t *rs; 1687 1688 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1689 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1690 ASSERT0(vd->vdev_children); 1691 1692 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1693 return (rs->rs_start - 1); 1694 } 1695 1696 /* 1697 * Returns the highest txg in the DTL. 1698 */ 1699 static uint64_t 1700 vdev_dtl_max(vdev_t *vd) 1701 { 1702 range_seg_t *rs; 1703 1704 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1705 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1706 ASSERT0(vd->vdev_children); 1707 1708 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1709 return (rs->rs_end); 1710 } 1711 1712 /* 1713 * Determine if a resilvering vdev should remove any DTL entries from 1714 * its range. If the vdev was resilvering for the entire duration of the 1715 * scan then it should excise that range from its DTLs. Otherwise, this 1716 * vdev is considered partially resilvered and should leave its DTL 1717 * entries intact. The comment in vdev_dtl_reassess() describes how we 1718 * excise the DTLs. 1719 */ 1720 static boolean_t 1721 vdev_dtl_should_excise(vdev_t *vd) 1722 { 1723 spa_t *spa = vd->vdev_spa; 1724 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1725 1726 ASSERT0(scn->scn_phys.scn_errors); 1727 ASSERT0(vd->vdev_children); 1728 1729 if (vd->vdev_resilver_txg == 0 || 1730 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1731 return (B_TRUE); 1732 1733 /* 1734 * When a resilver is initiated the scan will assign the scn_max_txg 1735 * value to the highest txg value that exists in all DTLs. If this 1736 * device's max DTL is not part of this scan (i.e. it is not in 1737 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1738 * for excision. 1739 */ 1740 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1741 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1742 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1743 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1744 return (B_TRUE); 1745 } 1746 return (B_FALSE); 1747 } 1748 1749 /* 1750 * Reassess DTLs after a config change or scrub completion. 1751 */ 1752 void 1753 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1754 { 1755 spa_t *spa = vd->vdev_spa; 1756 avl_tree_t reftree; 1757 int minref; 1758 1759 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1760 1761 for (int c = 0; c < vd->vdev_children; c++) 1762 vdev_dtl_reassess(vd->vdev_child[c], txg, 1763 scrub_txg, scrub_done); 1764 1765 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1766 return; 1767 1768 if (vd->vdev_ops->vdev_op_leaf) { 1769 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1770 1771 mutex_enter(&vd->vdev_dtl_lock); 1772 1773 /* 1774 * If we've completed a scan cleanly then determine 1775 * if this vdev should remove any DTLs. We only want to 1776 * excise regions on vdevs that were available during 1777 * the entire duration of this scan. 1778 */ 1779 if (scrub_txg != 0 && 1780 (spa->spa_scrub_started || 1781 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1782 vdev_dtl_should_excise(vd)) { 1783 /* 1784 * We completed a scrub up to scrub_txg. If we 1785 * did it without rebooting, then the scrub dtl 1786 * will be valid, so excise the old region and 1787 * fold in the scrub dtl. Otherwise, leave the 1788 * dtl as-is if there was an error. 1789 * 1790 * There's little trick here: to excise the beginning 1791 * of the DTL_MISSING map, we put it into a reference 1792 * tree and then add a segment with refcnt -1 that 1793 * covers the range [0, scrub_txg). This means 1794 * that each txg in that range has refcnt -1 or 0. 1795 * We then add DTL_SCRUB with a refcnt of 2, so that 1796 * entries in the range [0, scrub_txg) will have a 1797 * positive refcnt -- either 1 or 2. We then convert 1798 * the reference tree into the new DTL_MISSING map. 1799 */ 1800 space_reftree_create(&reftree); 1801 space_reftree_add_map(&reftree, 1802 vd->vdev_dtl[DTL_MISSING], 1); 1803 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1804 space_reftree_add_map(&reftree, 1805 vd->vdev_dtl[DTL_SCRUB], 2); 1806 space_reftree_generate_map(&reftree, 1807 vd->vdev_dtl[DTL_MISSING], 1); 1808 space_reftree_destroy(&reftree); 1809 } 1810 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1811 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1812 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1813 if (scrub_done) 1814 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1815 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1816 if (!vdev_readable(vd)) 1817 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1818 else 1819 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1820 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1821 1822 /* 1823 * If the vdev was resilvering and no longer has any 1824 * DTLs then reset its resilvering flag. 1825 */ 1826 if (vd->vdev_resilver_txg != 0 && 1827 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1828 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1829 vd->vdev_resilver_txg = 0; 1830 1831 mutex_exit(&vd->vdev_dtl_lock); 1832 1833 if (txg != 0) 1834 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1835 return; 1836 } 1837 1838 mutex_enter(&vd->vdev_dtl_lock); 1839 for (int t = 0; t < DTL_TYPES; t++) { 1840 /* account for child's outage in parent's missing map */ 1841 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1842 if (t == DTL_SCRUB) 1843 continue; /* leaf vdevs only */ 1844 if (t == DTL_PARTIAL) 1845 minref = 1; /* i.e. non-zero */ 1846 else if (vd->vdev_nparity != 0) 1847 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1848 else 1849 minref = vd->vdev_children; /* any kind of mirror */ 1850 space_reftree_create(&reftree); 1851 for (int c = 0; c < vd->vdev_children; c++) { 1852 vdev_t *cvd = vd->vdev_child[c]; 1853 mutex_enter(&cvd->vdev_dtl_lock); 1854 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1855 mutex_exit(&cvd->vdev_dtl_lock); 1856 } 1857 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1858 space_reftree_destroy(&reftree); 1859 } 1860 mutex_exit(&vd->vdev_dtl_lock); 1861 } 1862 1863 int 1864 vdev_dtl_load(vdev_t *vd) 1865 { 1866 spa_t *spa = vd->vdev_spa; 1867 objset_t *mos = spa->spa_meta_objset; 1868 int error = 0; 1869 1870 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1871 ASSERT(!vd->vdev_ishole); 1872 1873 error = space_map_open(&vd->vdev_dtl_sm, mos, 1874 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1875 if (error) 1876 return (error); 1877 ASSERT(vd->vdev_dtl_sm != NULL); 1878 1879 mutex_enter(&vd->vdev_dtl_lock); 1880 1881 /* 1882 * Now that we've opened the space_map we need to update 1883 * the in-core DTL. 1884 */ 1885 space_map_update(vd->vdev_dtl_sm); 1886 1887 error = space_map_load(vd->vdev_dtl_sm, 1888 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1889 mutex_exit(&vd->vdev_dtl_lock); 1890 1891 return (error); 1892 } 1893 1894 for (int c = 0; c < vd->vdev_children; c++) { 1895 error = vdev_dtl_load(vd->vdev_child[c]); 1896 if (error != 0) 1897 break; 1898 } 1899 1900 return (error); 1901 } 1902 1903 void 1904 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1905 { 1906 spa_t *spa = vd->vdev_spa; 1907 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1908 objset_t *mos = spa->spa_meta_objset; 1909 range_tree_t *rtsync; 1910 kmutex_t rtlock; 1911 dmu_tx_t *tx; 1912 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1913 1914 ASSERT(!vd->vdev_ishole); 1915 ASSERT(vd->vdev_ops->vdev_op_leaf); 1916 1917 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1918 1919 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1920 mutex_enter(&vd->vdev_dtl_lock); 1921 space_map_free(vd->vdev_dtl_sm, tx); 1922 space_map_close(vd->vdev_dtl_sm); 1923 vd->vdev_dtl_sm = NULL; 1924 mutex_exit(&vd->vdev_dtl_lock); 1925 dmu_tx_commit(tx); 1926 return; 1927 } 1928 1929 if (vd->vdev_dtl_sm == NULL) { 1930 uint64_t new_object; 1931 1932 new_object = space_map_alloc(mos, tx); 1933 VERIFY3U(new_object, !=, 0); 1934 1935 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1936 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1937 ASSERT(vd->vdev_dtl_sm != NULL); 1938 } 1939 1940 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1941 1942 rtsync = range_tree_create(NULL, NULL, &rtlock); 1943 1944 mutex_enter(&rtlock); 1945 1946 mutex_enter(&vd->vdev_dtl_lock); 1947 range_tree_walk(rt, range_tree_add, rtsync); 1948 mutex_exit(&vd->vdev_dtl_lock); 1949 1950 space_map_truncate(vd->vdev_dtl_sm, tx); 1951 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1952 range_tree_vacate(rtsync, NULL, NULL); 1953 1954 range_tree_destroy(rtsync); 1955 1956 mutex_exit(&rtlock); 1957 mutex_destroy(&rtlock); 1958 1959 /* 1960 * If the object for the space map has changed then dirty 1961 * the top level so that we update the config. 1962 */ 1963 if (object != space_map_object(vd->vdev_dtl_sm)) { 1964 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1965 "new object %llu", txg, spa_name(spa), object, 1966 space_map_object(vd->vdev_dtl_sm)); 1967 vdev_config_dirty(vd->vdev_top); 1968 } 1969 1970 dmu_tx_commit(tx); 1971 1972 mutex_enter(&vd->vdev_dtl_lock); 1973 space_map_update(vd->vdev_dtl_sm); 1974 mutex_exit(&vd->vdev_dtl_lock); 1975 } 1976 1977 /* 1978 * Determine whether the specified vdev can be offlined/detached/removed 1979 * without losing data. 1980 */ 1981 boolean_t 1982 vdev_dtl_required(vdev_t *vd) 1983 { 1984 spa_t *spa = vd->vdev_spa; 1985 vdev_t *tvd = vd->vdev_top; 1986 uint8_t cant_read = vd->vdev_cant_read; 1987 boolean_t required; 1988 1989 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1990 1991 if (vd == spa->spa_root_vdev || vd == tvd) 1992 return (B_TRUE); 1993 1994 /* 1995 * Temporarily mark the device as unreadable, and then determine 1996 * whether this results in any DTL outages in the top-level vdev. 1997 * If not, we can safely offline/detach/remove the device. 1998 */ 1999 vd->vdev_cant_read = B_TRUE; 2000 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2001 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2002 vd->vdev_cant_read = cant_read; 2003 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2004 2005 if (!required && zio_injection_enabled) 2006 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2007 2008 return (required); 2009 } 2010 2011 /* 2012 * Determine if resilver is needed, and if so the txg range. 2013 */ 2014 boolean_t 2015 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2016 { 2017 boolean_t needed = B_FALSE; 2018 uint64_t thismin = UINT64_MAX; 2019 uint64_t thismax = 0; 2020 2021 if (vd->vdev_children == 0) { 2022 mutex_enter(&vd->vdev_dtl_lock); 2023 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2024 vdev_writeable(vd)) { 2025 2026 thismin = vdev_dtl_min(vd); 2027 thismax = vdev_dtl_max(vd); 2028 needed = B_TRUE; 2029 } 2030 mutex_exit(&vd->vdev_dtl_lock); 2031 } else { 2032 for (int c = 0; c < vd->vdev_children; c++) { 2033 vdev_t *cvd = vd->vdev_child[c]; 2034 uint64_t cmin, cmax; 2035 2036 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2037 thismin = MIN(thismin, cmin); 2038 thismax = MAX(thismax, cmax); 2039 needed = B_TRUE; 2040 } 2041 } 2042 } 2043 2044 if (needed && minp) { 2045 *minp = thismin; 2046 *maxp = thismax; 2047 } 2048 return (needed); 2049 } 2050 2051 void 2052 vdev_load(vdev_t *vd) 2053 { 2054 /* 2055 * Recursively load all children. 2056 */ 2057 for (int c = 0; c < vd->vdev_children; c++) 2058 vdev_load(vd->vdev_child[c]); 2059 2060 /* 2061 * If this is a top-level vdev, initialize its metaslabs. 2062 */ 2063 if (vd == vd->vdev_top && !vd->vdev_ishole && 2064 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2065 vdev_metaslab_init(vd, 0) != 0)) 2066 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2067 VDEV_AUX_CORRUPT_DATA); 2068 2069 /* 2070 * If this is a leaf vdev, load its DTL. 2071 */ 2072 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2073 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2074 VDEV_AUX_CORRUPT_DATA); 2075 } 2076 2077 /* 2078 * The special vdev case is used for hot spares and l2cache devices. Its 2079 * sole purpose it to set the vdev state for the associated vdev. To do this, 2080 * we make sure that we can open the underlying device, then try to read the 2081 * label, and make sure that the label is sane and that it hasn't been 2082 * repurposed to another pool. 2083 */ 2084 int 2085 vdev_validate_aux(vdev_t *vd) 2086 { 2087 nvlist_t *label; 2088 uint64_t guid, version; 2089 uint64_t state; 2090 2091 if (!vdev_readable(vd)) 2092 return (0); 2093 2094 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2096 VDEV_AUX_CORRUPT_DATA); 2097 return (-1); 2098 } 2099 2100 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2101 !SPA_VERSION_IS_SUPPORTED(version) || 2102 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2103 guid != vd->vdev_guid || 2104 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2105 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2106 VDEV_AUX_CORRUPT_DATA); 2107 nvlist_free(label); 2108 return (-1); 2109 } 2110 2111 /* 2112 * We don't actually check the pool state here. If it's in fact in 2113 * use by another pool, we update this fact on the fly when requested. 2114 */ 2115 nvlist_free(label); 2116 return (0); 2117 } 2118 2119 void 2120 vdev_remove(vdev_t *vd, uint64_t txg) 2121 { 2122 spa_t *spa = vd->vdev_spa; 2123 objset_t *mos = spa->spa_meta_objset; 2124 dmu_tx_t *tx; 2125 2126 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2127 2128 if (vd->vdev_ms != NULL) { 2129 metaslab_group_t *mg = vd->vdev_mg; 2130 2131 metaslab_group_histogram_verify(mg); 2132 metaslab_class_histogram_verify(mg->mg_class); 2133 2134 for (int m = 0; m < vd->vdev_ms_count; m++) { 2135 metaslab_t *msp = vd->vdev_ms[m]; 2136 2137 if (msp == NULL || msp->ms_sm == NULL) 2138 continue; 2139 2140 mutex_enter(&msp->ms_lock); 2141 /* 2142 * If the metaslab was not loaded when the vdev 2143 * was removed then the histogram accounting may 2144 * not be accurate. Update the histogram information 2145 * here so that we ensure that the metaslab group 2146 * and metaslab class are up-to-date. 2147 */ 2148 metaslab_group_histogram_remove(mg, msp); 2149 2150 VERIFY0(space_map_allocated(msp->ms_sm)); 2151 space_map_free(msp->ms_sm, tx); 2152 space_map_close(msp->ms_sm); 2153 msp->ms_sm = NULL; 2154 mutex_exit(&msp->ms_lock); 2155 } 2156 2157 metaslab_group_histogram_verify(mg); 2158 metaslab_class_histogram_verify(mg->mg_class); 2159 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2160 ASSERT0(mg->mg_histogram[i]); 2161 2162 } 2163 2164 if (vd->vdev_ms_array) { 2165 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2166 vd->vdev_ms_array = 0; 2167 } 2168 dmu_tx_commit(tx); 2169 } 2170 2171 void 2172 vdev_sync_done(vdev_t *vd, uint64_t txg) 2173 { 2174 metaslab_t *msp; 2175 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2176 2177 ASSERT(!vd->vdev_ishole); 2178 2179 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2180 metaslab_sync_done(msp, txg); 2181 2182 if (reassess) 2183 metaslab_sync_reassess(vd->vdev_mg); 2184 } 2185 2186 void 2187 vdev_sync(vdev_t *vd, uint64_t txg) 2188 { 2189 spa_t *spa = vd->vdev_spa; 2190 vdev_t *lvd; 2191 metaslab_t *msp; 2192 dmu_tx_t *tx; 2193 2194 ASSERT(!vd->vdev_ishole); 2195 2196 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2197 ASSERT(vd == vd->vdev_top); 2198 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2199 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2200 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2201 ASSERT(vd->vdev_ms_array != 0); 2202 vdev_config_dirty(vd); 2203 dmu_tx_commit(tx); 2204 } 2205 2206 /* 2207 * Remove the metadata associated with this vdev once it's empty. 2208 */ 2209 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2210 vdev_remove(vd, txg); 2211 2212 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2213 metaslab_sync(msp, txg); 2214 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2215 } 2216 2217 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2218 vdev_dtl_sync(lvd, txg); 2219 2220 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2221 } 2222 2223 uint64_t 2224 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2225 { 2226 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2227 } 2228 2229 /* 2230 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2231 * not be opened, and no I/O is attempted. 2232 */ 2233 int 2234 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2235 { 2236 vdev_t *vd, *tvd; 2237 2238 spa_vdev_state_enter(spa, SCL_NONE); 2239 2240 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2241 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2242 2243 if (!vd->vdev_ops->vdev_op_leaf) 2244 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2245 2246 tvd = vd->vdev_top; 2247 2248 /* 2249 * We don't directly use the aux state here, but if we do a 2250 * vdev_reopen(), we need this value to be present to remember why we 2251 * were faulted. 2252 */ 2253 vd->vdev_label_aux = aux; 2254 2255 /* 2256 * Faulted state takes precedence over degraded. 2257 */ 2258 vd->vdev_delayed_close = B_FALSE; 2259 vd->vdev_faulted = 1ULL; 2260 vd->vdev_degraded = 0ULL; 2261 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2262 2263 /* 2264 * If this device has the only valid copy of the data, then 2265 * back off and simply mark the vdev as degraded instead. 2266 */ 2267 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2268 vd->vdev_degraded = 1ULL; 2269 vd->vdev_faulted = 0ULL; 2270 2271 /* 2272 * If we reopen the device and it's not dead, only then do we 2273 * mark it degraded. 2274 */ 2275 vdev_reopen(tvd); 2276 2277 if (vdev_readable(vd)) 2278 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2279 } 2280 2281 return (spa_vdev_state_exit(spa, vd, 0)); 2282 } 2283 2284 /* 2285 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2286 * user that something is wrong. The vdev continues to operate as normal as far 2287 * as I/O is concerned. 2288 */ 2289 int 2290 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2291 { 2292 vdev_t *vd; 2293 2294 spa_vdev_state_enter(spa, SCL_NONE); 2295 2296 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2297 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2298 2299 if (!vd->vdev_ops->vdev_op_leaf) 2300 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2301 2302 /* 2303 * If the vdev is already faulted, then don't do anything. 2304 */ 2305 if (vd->vdev_faulted || vd->vdev_degraded) 2306 return (spa_vdev_state_exit(spa, NULL, 0)); 2307 2308 vd->vdev_degraded = 1ULL; 2309 if (!vdev_is_dead(vd)) 2310 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2311 aux); 2312 2313 return (spa_vdev_state_exit(spa, vd, 0)); 2314 } 2315 2316 /* 2317 * Online the given vdev. 2318 * 2319 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2320 * spare device should be detached when the device finishes resilvering. 2321 * Second, the online should be treated like a 'test' online case, so no FMA 2322 * events are generated if the device fails to open. 2323 */ 2324 int 2325 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2326 { 2327 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2328 2329 spa_vdev_state_enter(spa, SCL_NONE); 2330 2331 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2332 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2333 2334 if (!vd->vdev_ops->vdev_op_leaf) 2335 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2336 2337 tvd = vd->vdev_top; 2338 vd->vdev_offline = B_FALSE; 2339 vd->vdev_tmpoffline = B_FALSE; 2340 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2341 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2342 2343 /* XXX - L2ARC 1.0 does not support expansion */ 2344 if (!vd->vdev_aux) { 2345 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2346 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2347 } 2348 2349 vdev_reopen(tvd); 2350 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2351 2352 if (!vd->vdev_aux) { 2353 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2354 pvd->vdev_expanding = B_FALSE; 2355 } 2356 2357 if (newstate) 2358 *newstate = vd->vdev_state; 2359 if ((flags & ZFS_ONLINE_UNSPARE) && 2360 !vdev_is_dead(vd) && vd->vdev_parent && 2361 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2362 vd->vdev_parent->vdev_child[0] == vd) 2363 vd->vdev_unspare = B_TRUE; 2364 2365 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2366 2367 /* XXX - L2ARC 1.0 does not support expansion */ 2368 if (vd->vdev_aux) 2369 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2370 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2371 } 2372 return (spa_vdev_state_exit(spa, vd, 0)); 2373 } 2374 2375 static int 2376 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2377 { 2378 vdev_t *vd, *tvd; 2379 int error = 0; 2380 uint64_t generation; 2381 metaslab_group_t *mg; 2382 2383 top: 2384 spa_vdev_state_enter(spa, SCL_ALLOC); 2385 2386 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2387 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2388 2389 if (!vd->vdev_ops->vdev_op_leaf) 2390 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2391 2392 tvd = vd->vdev_top; 2393 mg = tvd->vdev_mg; 2394 generation = spa->spa_config_generation + 1; 2395 2396 /* 2397 * If the device isn't already offline, try to offline it. 2398 */ 2399 if (!vd->vdev_offline) { 2400 /* 2401 * If this device has the only valid copy of some data, 2402 * don't allow it to be offlined. Log devices are always 2403 * expendable. 2404 */ 2405 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2406 vdev_dtl_required(vd)) 2407 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2408 2409 /* 2410 * If the top-level is a slog and it has had allocations 2411 * then proceed. We check that the vdev's metaslab group 2412 * is not NULL since it's possible that we may have just 2413 * added this vdev but not yet initialized its metaslabs. 2414 */ 2415 if (tvd->vdev_islog && mg != NULL) { 2416 /* 2417 * Prevent any future allocations. 2418 */ 2419 metaslab_group_passivate(mg); 2420 (void) spa_vdev_state_exit(spa, vd, 0); 2421 2422 error = spa_offline_log(spa); 2423 2424 spa_vdev_state_enter(spa, SCL_ALLOC); 2425 2426 /* 2427 * Check to see if the config has changed. 2428 */ 2429 if (error || generation != spa->spa_config_generation) { 2430 metaslab_group_activate(mg); 2431 if (error) 2432 return (spa_vdev_state_exit(spa, 2433 vd, error)); 2434 (void) spa_vdev_state_exit(spa, vd, 0); 2435 goto top; 2436 } 2437 ASSERT0(tvd->vdev_stat.vs_alloc); 2438 } 2439 2440 /* 2441 * Offline this device and reopen its top-level vdev. 2442 * If the top-level vdev is a log device then just offline 2443 * it. Otherwise, if this action results in the top-level 2444 * vdev becoming unusable, undo it and fail the request. 2445 */ 2446 vd->vdev_offline = B_TRUE; 2447 vdev_reopen(tvd); 2448 2449 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2450 vdev_is_dead(tvd)) { 2451 vd->vdev_offline = B_FALSE; 2452 vdev_reopen(tvd); 2453 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2454 } 2455 2456 /* 2457 * Add the device back into the metaslab rotor so that 2458 * once we online the device it's open for business. 2459 */ 2460 if (tvd->vdev_islog && mg != NULL) 2461 metaslab_group_activate(mg); 2462 } 2463 2464 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2465 2466 return (spa_vdev_state_exit(spa, vd, 0)); 2467 } 2468 2469 int 2470 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2471 { 2472 int error; 2473 2474 mutex_enter(&spa->spa_vdev_top_lock); 2475 error = vdev_offline_locked(spa, guid, flags); 2476 mutex_exit(&spa->spa_vdev_top_lock); 2477 2478 return (error); 2479 } 2480 2481 /* 2482 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2483 * vdev_offline(), we assume the spa config is locked. We also clear all 2484 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2485 */ 2486 void 2487 vdev_clear(spa_t *spa, vdev_t *vd) 2488 { 2489 vdev_t *rvd = spa->spa_root_vdev; 2490 2491 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2492 2493 if (vd == NULL) 2494 vd = rvd; 2495 2496 vd->vdev_stat.vs_read_errors = 0; 2497 vd->vdev_stat.vs_write_errors = 0; 2498 vd->vdev_stat.vs_checksum_errors = 0; 2499 2500 for (int c = 0; c < vd->vdev_children; c++) 2501 vdev_clear(spa, vd->vdev_child[c]); 2502 2503 /* 2504 * If we're in the FAULTED state or have experienced failed I/O, then 2505 * clear the persistent state and attempt to reopen the device. We 2506 * also mark the vdev config dirty, so that the new faulted state is 2507 * written out to disk. 2508 */ 2509 if (vd->vdev_faulted || vd->vdev_degraded || 2510 !vdev_readable(vd) || !vdev_writeable(vd)) { 2511 2512 /* 2513 * When reopening in reponse to a clear event, it may be due to 2514 * a fmadm repair request. In this case, if the device is 2515 * still broken, we want to still post the ereport again. 2516 */ 2517 vd->vdev_forcefault = B_TRUE; 2518 2519 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2520 vd->vdev_cant_read = B_FALSE; 2521 vd->vdev_cant_write = B_FALSE; 2522 2523 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2524 2525 vd->vdev_forcefault = B_FALSE; 2526 2527 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2528 vdev_state_dirty(vd->vdev_top); 2529 2530 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2531 spa_async_request(spa, SPA_ASYNC_RESILVER); 2532 2533 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2534 } 2535 2536 /* 2537 * When clearing a FMA-diagnosed fault, we always want to 2538 * unspare the device, as we assume that the original spare was 2539 * done in response to the FMA fault. 2540 */ 2541 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2542 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2543 vd->vdev_parent->vdev_child[0] == vd) 2544 vd->vdev_unspare = B_TRUE; 2545 } 2546 2547 boolean_t 2548 vdev_is_dead(vdev_t *vd) 2549 { 2550 /* 2551 * Holes and missing devices are always considered "dead". 2552 * This simplifies the code since we don't have to check for 2553 * these types of devices in the various code paths. 2554 * Instead we rely on the fact that we skip over dead devices 2555 * before issuing I/O to them. 2556 */ 2557 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2558 vd->vdev_ops == &vdev_missing_ops); 2559 } 2560 2561 boolean_t 2562 vdev_readable(vdev_t *vd) 2563 { 2564 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2565 } 2566 2567 boolean_t 2568 vdev_writeable(vdev_t *vd) 2569 { 2570 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2571 } 2572 2573 boolean_t 2574 vdev_allocatable(vdev_t *vd) 2575 { 2576 uint64_t state = vd->vdev_state; 2577 2578 /* 2579 * We currently allow allocations from vdevs which may be in the 2580 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2581 * fails to reopen then we'll catch it later when we're holding 2582 * the proper locks. Note that we have to get the vdev state 2583 * in a local variable because although it changes atomically, 2584 * we're asking two separate questions about it. 2585 */ 2586 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2587 !vd->vdev_cant_write && !vd->vdev_ishole); 2588 } 2589 2590 boolean_t 2591 vdev_accessible(vdev_t *vd, zio_t *zio) 2592 { 2593 ASSERT(zio->io_vd == vd); 2594 2595 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2596 return (B_FALSE); 2597 2598 if (zio->io_type == ZIO_TYPE_READ) 2599 return (!vd->vdev_cant_read); 2600 2601 if (zio->io_type == ZIO_TYPE_WRITE) 2602 return (!vd->vdev_cant_write); 2603 2604 return (B_TRUE); 2605 } 2606 2607 /* 2608 * Get statistics for the given vdev. 2609 */ 2610 void 2611 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2612 { 2613 spa_t *spa = vd->vdev_spa; 2614 vdev_t *rvd = spa->spa_root_vdev; 2615 2616 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2617 2618 mutex_enter(&vd->vdev_stat_lock); 2619 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2620 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2621 vs->vs_state = vd->vdev_state; 2622 vs->vs_rsize = vdev_get_min_asize(vd); 2623 if (vd->vdev_ops->vdev_op_leaf) 2624 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2625 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2626 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2627 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2628 } 2629 2630 /* 2631 * If we're getting stats on the root vdev, aggregate the I/O counts 2632 * over all top-level vdevs (i.e. the direct children of the root). 2633 */ 2634 if (vd == rvd) { 2635 for (int c = 0; c < rvd->vdev_children; c++) { 2636 vdev_t *cvd = rvd->vdev_child[c]; 2637 vdev_stat_t *cvs = &cvd->vdev_stat; 2638 2639 for (int t = 0; t < ZIO_TYPES; t++) { 2640 vs->vs_ops[t] += cvs->vs_ops[t]; 2641 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2642 } 2643 cvs->vs_scan_removing = cvd->vdev_removing; 2644 } 2645 } 2646 mutex_exit(&vd->vdev_stat_lock); 2647 } 2648 2649 void 2650 vdev_clear_stats(vdev_t *vd) 2651 { 2652 mutex_enter(&vd->vdev_stat_lock); 2653 vd->vdev_stat.vs_space = 0; 2654 vd->vdev_stat.vs_dspace = 0; 2655 vd->vdev_stat.vs_alloc = 0; 2656 mutex_exit(&vd->vdev_stat_lock); 2657 } 2658 2659 void 2660 vdev_scan_stat_init(vdev_t *vd) 2661 { 2662 vdev_stat_t *vs = &vd->vdev_stat; 2663 2664 for (int c = 0; c < vd->vdev_children; c++) 2665 vdev_scan_stat_init(vd->vdev_child[c]); 2666 2667 mutex_enter(&vd->vdev_stat_lock); 2668 vs->vs_scan_processed = 0; 2669 mutex_exit(&vd->vdev_stat_lock); 2670 } 2671 2672 void 2673 vdev_stat_update(zio_t *zio, uint64_t psize) 2674 { 2675 spa_t *spa = zio->io_spa; 2676 vdev_t *rvd = spa->spa_root_vdev; 2677 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2678 vdev_t *pvd; 2679 uint64_t txg = zio->io_txg; 2680 vdev_stat_t *vs = &vd->vdev_stat; 2681 zio_type_t type = zio->io_type; 2682 int flags = zio->io_flags; 2683 2684 /* 2685 * If this i/o is a gang leader, it didn't do any actual work. 2686 */ 2687 if (zio->io_gang_tree) 2688 return; 2689 2690 if (zio->io_error == 0) { 2691 /* 2692 * If this is a root i/o, don't count it -- we've already 2693 * counted the top-level vdevs, and vdev_get_stats() will 2694 * aggregate them when asked. This reduces contention on 2695 * the root vdev_stat_lock and implicitly handles blocks 2696 * that compress away to holes, for which there is no i/o. 2697 * (Holes never create vdev children, so all the counters 2698 * remain zero, which is what we want.) 2699 * 2700 * Note: this only applies to successful i/o (io_error == 0) 2701 * because unlike i/o counts, errors are not additive. 2702 * When reading a ditto block, for example, failure of 2703 * one top-level vdev does not imply a root-level error. 2704 */ 2705 if (vd == rvd) 2706 return; 2707 2708 ASSERT(vd == zio->io_vd); 2709 2710 if (flags & ZIO_FLAG_IO_BYPASS) 2711 return; 2712 2713 mutex_enter(&vd->vdev_stat_lock); 2714 2715 if (flags & ZIO_FLAG_IO_REPAIR) { 2716 if (flags & ZIO_FLAG_SCAN_THREAD) { 2717 dsl_scan_phys_t *scn_phys = 2718 &spa->spa_dsl_pool->dp_scan->scn_phys; 2719 uint64_t *processed = &scn_phys->scn_processed; 2720 2721 /* XXX cleanup? */ 2722 if (vd->vdev_ops->vdev_op_leaf) 2723 atomic_add_64(processed, psize); 2724 vs->vs_scan_processed += psize; 2725 } 2726 2727 if (flags & ZIO_FLAG_SELF_HEAL) 2728 vs->vs_self_healed += psize; 2729 } 2730 2731 vs->vs_ops[type]++; 2732 vs->vs_bytes[type] += psize; 2733 2734 mutex_exit(&vd->vdev_stat_lock); 2735 return; 2736 } 2737 2738 if (flags & ZIO_FLAG_SPECULATIVE) 2739 return; 2740 2741 /* 2742 * If this is an I/O error that is going to be retried, then ignore the 2743 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2744 * hard errors, when in reality they can happen for any number of 2745 * innocuous reasons (bus resets, MPxIO link failure, etc). 2746 */ 2747 if (zio->io_error == EIO && 2748 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2749 return; 2750 2751 /* 2752 * Intent logs writes won't propagate their error to the root 2753 * I/O so don't mark these types of failures as pool-level 2754 * errors. 2755 */ 2756 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2757 return; 2758 2759 mutex_enter(&vd->vdev_stat_lock); 2760 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2761 if (zio->io_error == ECKSUM) 2762 vs->vs_checksum_errors++; 2763 else 2764 vs->vs_read_errors++; 2765 } 2766 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2767 vs->vs_write_errors++; 2768 mutex_exit(&vd->vdev_stat_lock); 2769 2770 if (type == ZIO_TYPE_WRITE && txg != 0 && 2771 (!(flags & ZIO_FLAG_IO_REPAIR) || 2772 (flags & ZIO_FLAG_SCAN_THREAD) || 2773 spa->spa_claiming)) { 2774 /* 2775 * This is either a normal write (not a repair), or it's 2776 * a repair induced by the scrub thread, or it's a repair 2777 * made by zil_claim() during spa_load() in the first txg. 2778 * In the normal case, we commit the DTL change in the same 2779 * txg as the block was born. In the scrub-induced repair 2780 * case, we know that scrubs run in first-pass syncing context, 2781 * so we commit the DTL change in spa_syncing_txg(spa). 2782 * In the zil_claim() case, we commit in spa_first_txg(spa). 2783 * 2784 * We currently do not make DTL entries for failed spontaneous 2785 * self-healing writes triggered by normal (non-scrubbing) 2786 * reads, because we have no transactional context in which to 2787 * do so -- and it's not clear that it'd be desirable anyway. 2788 */ 2789 if (vd->vdev_ops->vdev_op_leaf) { 2790 uint64_t commit_txg = txg; 2791 if (flags & ZIO_FLAG_SCAN_THREAD) { 2792 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2793 ASSERT(spa_sync_pass(spa) == 1); 2794 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2795 commit_txg = spa_syncing_txg(spa); 2796 } else if (spa->spa_claiming) { 2797 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2798 commit_txg = spa_first_txg(spa); 2799 } 2800 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2801 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2802 return; 2803 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2804 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2805 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2806 } 2807 if (vd != rvd) 2808 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2809 } 2810 } 2811 2812 /* 2813 * Update the in-core space usage stats for this vdev, its metaslab class, 2814 * and the root vdev. 2815 */ 2816 void 2817 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2818 int64_t space_delta) 2819 { 2820 int64_t dspace_delta = space_delta; 2821 spa_t *spa = vd->vdev_spa; 2822 vdev_t *rvd = spa->spa_root_vdev; 2823 metaslab_group_t *mg = vd->vdev_mg; 2824 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2825 2826 ASSERT(vd == vd->vdev_top); 2827 2828 /* 2829 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2830 * factor. We must calculate this here and not at the root vdev 2831 * because the root vdev's psize-to-asize is simply the max of its 2832 * childrens', thus not accurate enough for us. 2833 */ 2834 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2835 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2836 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2837 vd->vdev_deflate_ratio; 2838 2839 mutex_enter(&vd->vdev_stat_lock); 2840 vd->vdev_stat.vs_alloc += alloc_delta; 2841 vd->vdev_stat.vs_space += space_delta; 2842 vd->vdev_stat.vs_dspace += dspace_delta; 2843 mutex_exit(&vd->vdev_stat_lock); 2844 2845 if (mc == spa_normal_class(spa)) { 2846 mutex_enter(&rvd->vdev_stat_lock); 2847 rvd->vdev_stat.vs_alloc += alloc_delta; 2848 rvd->vdev_stat.vs_space += space_delta; 2849 rvd->vdev_stat.vs_dspace += dspace_delta; 2850 mutex_exit(&rvd->vdev_stat_lock); 2851 } 2852 2853 if (mc != NULL) { 2854 ASSERT(rvd == vd->vdev_parent); 2855 ASSERT(vd->vdev_ms_count != 0); 2856 2857 metaslab_class_space_update(mc, 2858 alloc_delta, defer_delta, space_delta, dspace_delta); 2859 } 2860 } 2861 2862 /* 2863 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2864 * so that it will be written out next time the vdev configuration is synced. 2865 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2866 */ 2867 void 2868 vdev_config_dirty(vdev_t *vd) 2869 { 2870 spa_t *spa = vd->vdev_spa; 2871 vdev_t *rvd = spa->spa_root_vdev; 2872 int c; 2873 2874 ASSERT(spa_writeable(spa)); 2875 2876 /* 2877 * If this is an aux vdev (as with l2cache and spare devices), then we 2878 * update the vdev config manually and set the sync flag. 2879 */ 2880 if (vd->vdev_aux != NULL) { 2881 spa_aux_vdev_t *sav = vd->vdev_aux; 2882 nvlist_t **aux; 2883 uint_t naux; 2884 2885 for (c = 0; c < sav->sav_count; c++) { 2886 if (sav->sav_vdevs[c] == vd) 2887 break; 2888 } 2889 2890 if (c == sav->sav_count) { 2891 /* 2892 * We're being removed. There's nothing more to do. 2893 */ 2894 ASSERT(sav->sav_sync == B_TRUE); 2895 return; 2896 } 2897 2898 sav->sav_sync = B_TRUE; 2899 2900 if (nvlist_lookup_nvlist_array(sav->sav_config, 2901 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2902 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2903 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2904 } 2905 2906 ASSERT(c < naux); 2907 2908 /* 2909 * Setting the nvlist in the middle if the array is a little 2910 * sketchy, but it will work. 2911 */ 2912 nvlist_free(aux[c]); 2913 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2914 2915 return; 2916 } 2917 2918 /* 2919 * The dirty list is protected by the SCL_CONFIG lock. The caller 2920 * must either hold SCL_CONFIG as writer, or must be the sync thread 2921 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2922 * so this is sufficient to ensure mutual exclusion. 2923 */ 2924 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2925 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2926 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2927 2928 if (vd == rvd) { 2929 for (c = 0; c < rvd->vdev_children; c++) 2930 vdev_config_dirty(rvd->vdev_child[c]); 2931 } else { 2932 ASSERT(vd == vd->vdev_top); 2933 2934 if (!list_link_active(&vd->vdev_config_dirty_node) && 2935 !vd->vdev_ishole) 2936 list_insert_head(&spa->spa_config_dirty_list, vd); 2937 } 2938 } 2939 2940 void 2941 vdev_config_clean(vdev_t *vd) 2942 { 2943 spa_t *spa = vd->vdev_spa; 2944 2945 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2946 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2947 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2948 2949 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2950 list_remove(&spa->spa_config_dirty_list, vd); 2951 } 2952 2953 /* 2954 * Mark a top-level vdev's state as dirty, so that the next pass of 2955 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2956 * the state changes from larger config changes because they require 2957 * much less locking, and are often needed for administrative actions. 2958 */ 2959 void 2960 vdev_state_dirty(vdev_t *vd) 2961 { 2962 spa_t *spa = vd->vdev_spa; 2963 2964 ASSERT(spa_writeable(spa)); 2965 ASSERT(vd == vd->vdev_top); 2966 2967 /* 2968 * The state list is protected by the SCL_STATE lock. The caller 2969 * must either hold SCL_STATE as writer, or must be the sync thread 2970 * (which holds SCL_STATE as reader). There's only one sync thread, 2971 * so this is sufficient to ensure mutual exclusion. 2972 */ 2973 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2974 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2975 spa_config_held(spa, SCL_STATE, RW_READER))); 2976 2977 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2978 list_insert_head(&spa->spa_state_dirty_list, vd); 2979 } 2980 2981 void 2982 vdev_state_clean(vdev_t *vd) 2983 { 2984 spa_t *spa = vd->vdev_spa; 2985 2986 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2987 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2988 spa_config_held(spa, SCL_STATE, RW_READER))); 2989 2990 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2991 list_remove(&spa->spa_state_dirty_list, vd); 2992 } 2993 2994 /* 2995 * Propagate vdev state up from children to parent. 2996 */ 2997 void 2998 vdev_propagate_state(vdev_t *vd) 2999 { 3000 spa_t *spa = vd->vdev_spa; 3001 vdev_t *rvd = spa->spa_root_vdev; 3002 int degraded = 0, faulted = 0; 3003 int corrupted = 0; 3004 vdev_t *child; 3005 3006 if (vd->vdev_children > 0) { 3007 for (int c = 0; c < vd->vdev_children; c++) { 3008 child = vd->vdev_child[c]; 3009 3010 /* 3011 * Don't factor holes into the decision. 3012 */ 3013 if (child->vdev_ishole) 3014 continue; 3015 3016 if (!vdev_readable(child) || 3017 (!vdev_writeable(child) && spa_writeable(spa))) { 3018 /* 3019 * Root special: if there is a top-level log 3020 * device, treat the root vdev as if it were 3021 * degraded. 3022 */ 3023 if (child->vdev_islog && vd == rvd) 3024 degraded++; 3025 else 3026 faulted++; 3027 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3028 degraded++; 3029 } 3030 3031 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3032 corrupted++; 3033 } 3034 3035 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3036 3037 /* 3038 * Root special: if there is a top-level vdev that cannot be 3039 * opened due to corrupted metadata, then propagate the root 3040 * vdev's aux state as 'corrupt' rather than 'insufficient 3041 * replicas'. 3042 */ 3043 if (corrupted && vd == rvd && 3044 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3045 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3046 VDEV_AUX_CORRUPT_DATA); 3047 } 3048 3049 if (vd->vdev_parent) 3050 vdev_propagate_state(vd->vdev_parent); 3051 } 3052 3053 /* 3054 * Set a vdev's state. If this is during an open, we don't update the parent 3055 * state, because we're in the process of opening children depth-first. 3056 * Otherwise, we propagate the change to the parent. 3057 * 3058 * If this routine places a device in a faulted state, an appropriate ereport is 3059 * generated. 3060 */ 3061 void 3062 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3063 { 3064 uint64_t save_state; 3065 spa_t *spa = vd->vdev_spa; 3066 3067 if (state == vd->vdev_state) { 3068 vd->vdev_stat.vs_aux = aux; 3069 return; 3070 } 3071 3072 save_state = vd->vdev_state; 3073 3074 vd->vdev_state = state; 3075 vd->vdev_stat.vs_aux = aux; 3076 3077 /* 3078 * If we are setting the vdev state to anything but an open state, then 3079 * always close the underlying device unless the device has requested 3080 * a delayed close (i.e. we're about to remove or fault the device). 3081 * Otherwise, we keep accessible but invalid devices open forever. 3082 * We don't call vdev_close() itself, because that implies some extra 3083 * checks (offline, etc) that we don't want here. This is limited to 3084 * leaf devices, because otherwise closing the device will affect other 3085 * children. 3086 */ 3087 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3088 vd->vdev_ops->vdev_op_leaf) 3089 vd->vdev_ops->vdev_op_close(vd); 3090 3091 /* 3092 * If we have brought this vdev back into service, we need 3093 * to notify fmd so that it can gracefully repair any outstanding 3094 * cases due to a missing device. We do this in all cases, even those 3095 * that probably don't correlate to a repaired fault. This is sure to 3096 * catch all cases, and we let the zfs-retire agent sort it out. If 3097 * this is a transient state it's OK, as the retire agent will 3098 * double-check the state of the vdev before repairing it. 3099 */ 3100 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3101 vd->vdev_prevstate != state) 3102 zfs_post_state_change(spa, vd); 3103 3104 if (vd->vdev_removed && 3105 state == VDEV_STATE_CANT_OPEN && 3106 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3107 /* 3108 * If the previous state is set to VDEV_STATE_REMOVED, then this 3109 * device was previously marked removed and someone attempted to 3110 * reopen it. If this failed due to a nonexistent device, then 3111 * keep the device in the REMOVED state. We also let this be if 3112 * it is one of our special test online cases, which is only 3113 * attempting to online the device and shouldn't generate an FMA 3114 * fault. 3115 */ 3116 vd->vdev_state = VDEV_STATE_REMOVED; 3117 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3118 } else if (state == VDEV_STATE_REMOVED) { 3119 vd->vdev_removed = B_TRUE; 3120 } else if (state == VDEV_STATE_CANT_OPEN) { 3121 /* 3122 * If we fail to open a vdev during an import or recovery, we 3123 * mark it as "not available", which signifies that it was 3124 * never there to begin with. Failure to open such a device 3125 * is not considered an error. 3126 */ 3127 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3128 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3129 vd->vdev_ops->vdev_op_leaf) 3130 vd->vdev_not_present = 1; 3131 3132 /* 3133 * Post the appropriate ereport. If the 'prevstate' field is 3134 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3135 * that this is part of a vdev_reopen(). In this case, we don't 3136 * want to post the ereport if the device was already in the 3137 * CANT_OPEN state beforehand. 3138 * 3139 * If the 'checkremove' flag is set, then this is an attempt to 3140 * online the device in response to an insertion event. If we 3141 * hit this case, then we have detected an insertion event for a 3142 * faulted or offline device that wasn't in the removed state. 3143 * In this scenario, we don't post an ereport because we are 3144 * about to replace the device, or attempt an online with 3145 * vdev_forcefault, which will generate the fault for us. 3146 */ 3147 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3148 !vd->vdev_not_present && !vd->vdev_checkremove && 3149 vd != spa->spa_root_vdev) { 3150 const char *class; 3151 3152 switch (aux) { 3153 case VDEV_AUX_OPEN_FAILED: 3154 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3155 break; 3156 case VDEV_AUX_CORRUPT_DATA: 3157 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3158 break; 3159 case VDEV_AUX_NO_REPLICAS: 3160 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3161 break; 3162 case VDEV_AUX_BAD_GUID_SUM: 3163 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3164 break; 3165 case VDEV_AUX_TOO_SMALL: 3166 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3167 break; 3168 case VDEV_AUX_BAD_LABEL: 3169 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3170 break; 3171 default: 3172 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3173 } 3174 3175 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3176 } 3177 3178 /* Erase any notion of persistent removed state */ 3179 vd->vdev_removed = B_FALSE; 3180 } else { 3181 vd->vdev_removed = B_FALSE; 3182 } 3183 3184 if (!isopen && vd->vdev_parent) 3185 vdev_propagate_state(vd->vdev_parent); 3186 } 3187 3188 /* 3189 * Check the vdev configuration to ensure that it's capable of supporting 3190 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3191 * In addition, only a single top-level vdev is allowed and none of the leaves 3192 * can be wholedisks. 3193 */ 3194 boolean_t 3195 vdev_is_bootable(vdev_t *vd) 3196 { 3197 if (!vd->vdev_ops->vdev_op_leaf) { 3198 char *vdev_type = vd->vdev_ops->vdev_op_type; 3199 3200 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3201 vd->vdev_children > 1) { 3202 return (B_FALSE); 3203 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3204 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3205 return (B_FALSE); 3206 } 3207 } 3208 3209 for (int c = 0; c < vd->vdev_children; c++) { 3210 if (!vdev_is_bootable(vd->vdev_child[c])) 3211 return (B_FALSE); 3212 } 3213 return (B_TRUE); 3214 } 3215 3216 /* 3217 * Load the state from the original vdev tree (ovd) which 3218 * we've retrieved from the MOS config object. If the original 3219 * vdev was offline or faulted then we transfer that state to the 3220 * device in the current vdev tree (nvd). 3221 */ 3222 void 3223 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3224 { 3225 spa_t *spa = nvd->vdev_spa; 3226 3227 ASSERT(nvd->vdev_top->vdev_islog); 3228 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3229 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3230 3231 for (int c = 0; c < nvd->vdev_children; c++) 3232 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3233 3234 if (nvd->vdev_ops->vdev_op_leaf) { 3235 /* 3236 * Restore the persistent vdev state 3237 */ 3238 nvd->vdev_offline = ovd->vdev_offline; 3239 nvd->vdev_faulted = ovd->vdev_faulted; 3240 nvd->vdev_degraded = ovd->vdev_degraded; 3241 nvd->vdev_removed = ovd->vdev_removed; 3242 } 3243 } 3244 3245 /* 3246 * Determine if a log device has valid content. If the vdev was 3247 * removed or faulted in the MOS config then we know that 3248 * the content on the log device has already been written to the pool. 3249 */ 3250 boolean_t 3251 vdev_log_state_valid(vdev_t *vd) 3252 { 3253 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3254 !vd->vdev_removed) 3255 return (B_TRUE); 3256 3257 for (int c = 0; c < vd->vdev_children; c++) 3258 if (vdev_log_state_valid(vd->vdev_child[c])) 3259 return (B_TRUE); 3260 3261 return (B_FALSE); 3262 } 3263 3264 /* 3265 * Expand a vdev if possible. 3266 */ 3267 void 3268 vdev_expand(vdev_t *vd, uint64_t txg) 3269 { 3270 ASSERT(vd->vdev_top == vd); 3271 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3272 3273 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3274 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3275 vdev_config_dirty(vd); 3276 } 3277 } 3278 3279 /* 3280 * Split a vdev. 3281 */ 3282 void 3283 vdev_split(vdev_t *vd) 3284 { 3285 vdev_t *cvd, *pvd = vd->vdev_parent; 3286 3287 vdev_remove_child(pvd, vd); 3288 vdev_compact_children(pvd); 3289 3290 cvd = pvd->vdev_child[0]; 3291 if (pvd->vdev_children == 1) { 3292 vdev_remove_parent(cvd); 3293 cvd->vdev_splitting = B_TRUE; 3294 } 3295 vdev_propagate_state(cvd); 3296 } 3297 3298 void 3299 vdev_deadman(vdev_t *vd) 3300 { 3301 for (int c = 0; c < vd->vdev_children; c++) { 3302 vdev_t *cvd = vd->vdev_child[c]; 3303 3304 vdev_deadman(cvd); 3305 } 3306 3307 if (vd->vdev_ops->vdev_op_leaf) { 3308 vdev_queue_t *vq = &vd->vdev_queue; 3309 3310 mutex_enter(&vq->vq_lock); 3311 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3312 spa_t *spa = vd->vdev_spa; 3313 zio_t *fio; 3314 uint64_t delta; 3315 3316 /* 3317 * Look at the head of all the pending queues, 3318 * if any I/O has been outstanding for longer than 3319 * the spa_deadman_synctime we panic the system. 3320 */ 3321 fio = avl_first(&vq->vq_active_tree); 3322 delta = gethrtime() - fio->io_timestamp; 3323 if (delta > spa_deadman_synctime(spa)) { 3324 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3325 "delta %lluns, last io %lluns", 3326 fio->io_timestamp, delta, 3327 vq->vq_io_complete_ts); 3328 fm_panic("I/O to pool '%s' appears to be " 3329 "hung.", spa_name(spa)); 3330 } 3331 } 3332 mutex_exit(&vq->vq_lock); 3333 } 3334 } 3335