1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/fm/fs/zfs.h> 33 #include <sys/spa.h> 34 #include <sys/spa_impl.h> 35 #include <sys/bpobj.h> 36 #include <sys/dmu.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/vdev_impl.h> 40 #include <sys/uberblock_impl.h> 41 #include <sys/metaslab.h> 42 #include <sys/metaslab_impl.h> 43 #include <sys/space_map.h> 44 #include <sys/space_reftree.h> 45 #include <sys/zio.h> 46 #include <sys/zap.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/arc.h> 49 #include <sys/zil.h> 50 #include <sys/dsl_scan.h> 51 #include <sys/abd.h> 52 #include <sys/vdev_initialize.h> 53 54 /* 55 * Virtual device management. 56 */ 57 58 static vdev_ops_t *vdev_ops_table[] = { 59 &vdev_root_ops, 60 &vdev_raidz_ops, 61 &vdev_mirror_ops, 62 &vdev_replacing_ops, 63 &vdev_spare_ops, 64 &vdev_disk_ops, 65 &vdev_file_ops, 66 &vdev_missing_ops, 67 &vdev_hole_ops, 68 &vdev_indirect_ops, 69 NULL 70 }; 71 72 /* maximum scrub/resilver I/O queue per leaf vdev */ 73 int zfs_scrub_limit = 10; 74 75 /* default target for number of metaslabs per top-level vdev */ 76 int zfs_vdev_default_ms_count = 200; 77 78 /* minimum number of metaslabs per top-level vdev */ 79 int zfs_vdev_min_ms_count = 16; 80 81 /* practical upper limit of total metaslabs per top-level vdev */ 82 int zfs_vdev_ms_count_limit = 1ULL << 17; 83 84 /* lower limit for metaslab size (512M) */ 85 int zfs_vdev_default_ms_shift = 29; 86 87 /* upper limit for metaslab size (16G) */ 88 int zfs_vdev_max_ms_shift = 34; 89 90 boolean_t vdev_validate_skip = B_FALSE; 91 92 /* 93 * Since the DTL space map of a vdev is not expected to have a lot of 94 * entries, we default its block size to 4K. 95 */ 96 int vdev_dtl_sm_blksz = (1 << 12); 97 98 /* 99 * vdev-wide space maps that have lots of entries written to them at 100 * the end of each transaction can benefit from a higher I/O bandwidth 101 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 102 */ 103 int vdev_standard_sm_blksz = (1 << 17); 104 105 int zfs_ashift_min; 106 107 /*PRINTFLIKE2*/ 108 void 109 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 110 { 111 va_list adx; 112 char buf[256]; 113 114 va_start(adx, fmt); 115 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 116 va_end(adx); 117 118 if (vd->vdev_path != NULL) { 119 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 120 vd->vdev_path, buf); 121 } else { 122 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 123 vd->vdev_ops->vdev_op_type, 124 (u_longlong_t)vd->vdev_id, 125 (u_longlong_t)vd->vdev_guid, buf); 126 } 127 } 128 129 void 130 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 131 { 132 char state[20]; 133 134 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 135 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 136 vd->vdev_ops->vdev_op_type); 137 return; 138 } 139 140 switch (vd->vdev_state) { 141 case VDEV_STATE_UNKNOWN: 142 (void) snprintf(state, sizeof (state), "unknown"); 143 break; 144 case VDEV_STATE_CLOSED: 145 (void) snprintf(state, sizeof (state), "closed"); 146 break; 147 case VDEV_STATE_OFFLINE: 148 (void) snprintf(state, sizeof (state), "offline"); 149 break; 150 case VDEV_STATE_REMOVED: 151 (void) snprintf(state, sizeof (state), "removed"); 152 break; 153 case VDEV_STATE_CANT_OPEN: 154 (void) snprintf(state, sizeof (state), "can't open"); 155 break; 156 case VDEV_STATE_FAULTED: 157 (void) snprintf(state, sizeof (state), "faulted"); 158 break; 159 case VDEV_STATE_DEGRADED: 160 (void) snprintf(state, sizeof (state), "degraded"); 161 break; 162 case VDEV_STATE_HEALTHY: 163 (void) snprintf(state, sizeof (state), "healthy"); 164 break; 165 default: 166 (void) snprintf(state, sizeof (state), "<state %u>", 167 (uint_t)vd->vdev_state); 168 } 169 170 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 171 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 172 vd->vdev_islog ? " (log)" : "", 173 (u_longlong_t)vd->vdev_guid, 174 vd->vdev_path ? vd->vdev_path : "N/A", state); 175 176 for (uint64_t i = 0; i < vd->vdev_children; i++) 177 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 178 } 179 180 /* 181 * Given a vdev type, return the appropriate ops vector. 182 */ 183 static vdev_ops_t * 184 vdev_getops(const char *type) 185 { 186 vdev_ops_t *ops, **opspp; 187 188 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 189 if (strcmp(ops->vdev_op_type, type) == 0) 190 break; 191 192 return (ops); 193 } 194 195 /* ARGSUSED */ 196 void 197 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res) 198 { 199 res->rs_start = in->rs_start; 200 res->rs_end = in->rs_end; 201 } 202 203 /* 204 * Default asize function: return the MAX of psize with the asize of 205 * all children. This is what's used by anything other than RAID-Z. 206 */ 207 uint64_t 208 vdev_default_asize(vdev_t *vd, uint64_t psize) 209 { 210 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 211 uint64_t csize; 212 213 for (int c = 0; c < vd->vdev_children; c++) { 214 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 215 asize = MAX(asize, csize); 216 } 217 218 return (asize); 219 } 220 221 /* 222 * Get the minimum allocatable size. We define the allocatable size as 223 * the vdev's asize rounded to the nearest metaslab. This allows us to 224 * replace or attach devices which don't have the same physical size but 225 * can still satisfy the same number of allocations. 226 */ 227 uint64_t 228 vdev_get_min_asize(vdev_t *vd) 229 { 230 vdev_t *pvd = vd->vdev_parent; 231 232 /* 233 * If our parent is NULL (inactive spare or cache) or is the root, 234 * just return our own asize. 235 */ 236 if (pvd == NULL) 237 return (vd->vdev_asize); 238 239 /* 240 * The top-level vdev just returns the allocatable size rounded 241 * to the nearest metaslab. 242 */ 243 if (vd == vd->vdev_top) 244 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 245 246 /* 247 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 248 * so each child must provide at least 1/Nth of its asize. 249 */ 250 if (pvd->vdev_ops == &vdev_raidz_ops) 251 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 252 pvd->vdev_children); 253 254 return (pvd->vdev_min_asize); 255 } 256 257 void 258 vdev_set_min_asize(vdev_t *vd) 259 { 260 vd->vdev_min_asize = vdev_get_min_asize(vd); 261 262 for (int c = 0; c < vd->vdev_children; c++) 263 vdev_set_min_asize(vd->vdev_child[c]); 264 } 265 266 vdev_t * 267 vdev_lookup_top(spa_t *spa, uint64_t vdev) 268 { 269 vdev_t *rvd = spa->spa_root_vdev; 270 271 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 272 273 if (vdev < rvd->vdev_children) { 274 ASSERT(rvd->vdev_child[vdev] != NULL); 275 return (rvd->vdev_child[vdev]); 276 } 277 278 return (NULL); 279 } 280 281 vdev_t * 282 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 283 { 284 vdev_t *mvd; 285 286 if (vd->vdev_guid == guid) 287 return (vd); 288 289 for (int c = 0; c < vd->vdev_children; c++) 290 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 291 NULL) 292 return (mvd); 293 294 return (NULL); 295 } 296 297 static int 298 vdev_count_leaves_impl(vdev_t *vd) 299 { 300 int n = 0; 301 302 if (vd->vdev_ops->vdev_op_leaf) 303 return (1); 304 305 for (int c = 0; c < vd->vdev_children; c++) 306 n += vdev_count_leaves_impl(vd->vdev_child[c]); 307 308 return (n); 309 } 310 311 int 312 vdev_count_leaves(spa_t *spa) 313 { 314 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 315 } 316 317 void 318 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 319 { 320 size_t oldsize, newsize; 321 uint64_t id = cvd->vdev_id; 322 vdev_t **newchild; 323 spa_t *spa = cvd->vdev_spa; 324 325 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 326 ASSERT(cvd->vdev_parent == NULL); 327 328 cvd->vdev_parent = pvd; 329 330 if (pvd == NULL) 331 return; 332 333 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 334 335 oldsize = pvd->vdev_children * sizeof (vdev_t *); 336 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 337 newsize = pvd->vdev_children * sizeof (vdev_t *); 338 339 newchild = kmem_zalloc(newsize, KM_SLEEP); 340 if (pvd->vdev_child != NULL) { 341 bcopy(pvd->vdev_child, newchild, oldsize); 342 kmem_free(pvd->vdev_child, oldsize); 343 } 344 345 pvd->vdev_child = newchild; 346 pvd->vdev_child[id] = cvd; 347 348 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 349 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 350 351 /* 352 * Walk up all ancestors to update guid sum. 353 */ 354 for (; pvd != NULL; pvd = pvd->vdev_parent) 355 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 356 } 357 358 void 359 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 360 { 361 int c; 362 uint_t id = cvd->vdev_id; 363 364 ASSERT(cvd->vdev_parent == pvd); 365 366 if (pvd == NULL) 367 return; 368 369 ASSERT(id < pvd->vdev_children); 370 ASSERT(pvd->vdev_child[id] == cvd); 371 372 pvd->vdev_child[id] = NULL; 373 cvd->vdev_parent = NULL; 374 375 for (c = 0; c < pvd->vdev_children; c++) 376 if (pvd->vdev_child[c]) 377 break; 378 379 if (c == pvd->vdev_children) { 380 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 381 pvd->vdev_child = NULL; 382 pvd->vdev_children = 0; 383 } 384 385 /* 386 * Walk up all ancestors to update guid sum. 387 */ 388 for (; pvd != NULL; pvd = pvd->vdev_parent) 389 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 390 } 391 392 /* 393 * Remove any holes in the child array. 394 */ 395 void 396 vdev_compact_children(vdev_t *pvd) 397 { 398 vdev_t **newchild, *cvd; 399 int oldc = pvd->vdev_children; 400 int newc; 401 402 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 403 404 for (int c = newc = 0; c < oldc; c++) 405 if (pvd->vdev_child[c]) 406 newc++; 407 408 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 409 410 for (int c = newc = 0; c < oldc; c++) { 411 if ((cvd = pvd->vdev_child[c]) != NULL) { 412 newchild[newc] = cvd; 413 cvd->vdev_id = newc++; 414 } 415 } 416 417 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 418 pvd->vdev_child = newchild; 419 pvd->vdev_children = newc; 420 } 421 422 /* 423 * Allocate and minimally initialize a vdev_t. 424 */ 425 vdev_t * 426 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 427 { 428 vdev_t *vd; 429 vdev_indirect_config_t *vic; 430 431 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 432 vic = &vd->vdev_indirect_config; 433 434 if (spa->spa_root_vdev == NULL) { 435 ASSERT(ops == &vdev_root_ops); 436 spa->spa_root_vdev = vd; 437 spa->spa_load_guid = spa_generate_guid(NULL); 438 } 439 440 if (guid == 0 && ops != &vdev_hole_ops) { 441 if (spa->spa_root_vdev == vd) { 442 /* 443 * The root vdev's guid will also be the pool guid, 444 * which must be unique among all pools. 445 */ 446 guid = spa_generate_guid(NULL); 447 } else { 448 /* 449 * Any other vdev's guid must be unique within the pool. 450 */ 451 guid = spa_generate_guid(spa); 452 } 453 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 454 } 455 456 vd->vdev_spa = spa; 457 vd->vdev_id = id; 458 vd->vdev_guid = guid; 459 vd->vdev_guid_sum = guid; 460 vd->vdev_ops = ops; 461 vd->vdev_state = VDEV_STATE_CLOSED; 462 vd->vdev_ishole = (ops == &vdev_hole_ops); 463 vic->vic_prev_indirect_vdev = UINT64_MAX; 464 465 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 466 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 467 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); 468 469 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 470 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 471 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 472 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL); 473 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 474 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 475 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 476 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 477 478 for (int t = 0; t < DTL_TYPES; t++) { 479 vd->vdev_dtl[t] = range_tree_create(NULL, NULL); 480 } 481 txg_list_create(&vd->vdev_ms_list, spa, 482 offsetof(struct metaslab, ms_txg_node)); 483 txg_list_create(&vd->vdev_dtl_list, spa, 484 offsetof(struct vdev, vdev_dtl_node)); 485 vd->vdev_stat.vs_timestamp = gethrtime(); 486 vdev_queue_init(vd); 487 vdev_cache_init(vd); 488 489 return (vd); 490 } 491 492 /* 493 * Allocate a new vdev. The 'alloctype' is used to control whether we are 494 * creating a new vdev or loading an existing one - the behavior is slightly 495 * different for each case. 496 */ 497 int 498 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 499 int alloctype) 500 { 501 vdev_ops_t *ops; 502 char *type; 503 uint64_t guid = 0, islog, nparity; 504 vdev_t *vd; 505 vdev_indirect_config_t *vic; 506 507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 508 509 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 510 return (SET_ERROR(EINVAL)); 511 512 if ((ops = vdev_getops(type)) == NULL) 513 return (SET_ERROR(EINVAL)); 514 515 /* 516 * If this is a load, get the vdev guid from the nvlist. 517 * Otherwise, vdev_alloc_common() will generate one for us. 518 */ 519 if (alloctype == VDEV_ALLOC_LOAD) { 520 uint64_t label_id; 521 522 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 523 label_id != id) 524 return (SET_ERROR(EINVAL)); 525 526 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 527 return (SET_ERROR(EINVAL)); 528 } else if (alloctype == VDEV_ALLOC_SPARE) { 529 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 530 return (SET_ERROR(EINVAL)); 531 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 532 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 533 return (SET_ERROR(EINVAL)); 534 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 535 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 536 return (SET_ERROR(EINVAL)); 537 } 538 539 /* 540 * The first allocated vdev must be of type 'root'. 541 */ 542 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 543 return (SET_ERROR(EINVAL)); 544 545 /* 546 * Determine whether we're a log vdev. 547 */ 548 islog = 0; 549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 550 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 551 return (SET_ERROR(ENOTSUP)); 552 553 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 554 return (SET_ERROR(ENOTSUP)); 555 556 /* 557 * Set the nparity property for RAID-Z vdevs. 558 */ 559 nparity = -1ULL; 560 if (ops == &vdev_raidz_ops) { 561 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 562 &nparity) == 0) { 563 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 564 return (SET_ERROR(EINVAL)); 565 /* 566 * Previous versions could only support 1 or 2 parity 567 * device. 568 */ 569 if (nparity > 1 && 570 spa_version(spa) < SPA_VERSION_RAIDZ2) 571 return (SET_ERROR(ENOTSUP)); 572 if (nparity > 2 && 573 spa_version(spa) < SPA_VERSION_RAIDZ3) 574 return (SET_ERROR(ENOTSUP)); 575 } else { 576 /* 577 * We require the parity to be specified for SPAs that 578 * support multiple parity levels. 579 */ 580 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 581 return (SET_ERROR(EINVAL)); 582 /* 583 * Otherwise, we default to 1 parity device for RAID-Z. 584 */ 585 nparity = 1; 586 } 587 } else { 588 nparity = 0; 589 } 590 ASSERT(nparity != -1ULL); 591 592 vd = vdev_alloc_common(spa, id, guid, ops); 593 vic = &vd->vdev_indirect_config; 594 595 vd->vdev_islog = islog; 596 vd->vdev_nparity = nparity; 597 598 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 599 vd->vdev_path = spa_strdup(vd->vdev_path); 600 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 601 vd->vdev_devid = spa_strdup(vd->vdev_devid); 602 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 603 &vd->vdev_physpath) == 0) 604 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 605 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 606 vd->vdev_fru = spa_strdup(vd->vdev_fru); 607 608 /* 609 * Set the whole_disk property. If it's not specified, leave the value 610 * as -1. 611 */ 612 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 613 &vd->vdev_wholedisk) != 0) 614 vd->vdev_wholedisk = -1ULL; 615 616 ASSERT0(vic->vic_mapping_object); 617 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 618 &vic->vic_mapping_object); 619 ASSERT0(vic->vic_births_object); 620 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 621 &vic->vic_births_object); 622 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 623 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 624 &vic->vic_prev_indirect_vdev); 625 626 /* 627 * Look for the 'not present' flag. This will only be set if the device 628 * was not present at the time of import. 629 */ 630 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 631 &vd->vdev_not_present); 632 633 /* 634 * Get the alignment requirement. 635 */ 636 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 637 638 /* 639 * Retrieve the vdev creation time. 640 */ 641 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 642 &vd->vdev_crtxg); 643 644 /* 645 * If we're a top-level vdev, try to load the allocation parameters. 646 */ 647 if (parent && !parent->vdev_parent && 648 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 649 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 650 &vd->vdev_ms_array); 651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 652 &vd->vdev_ms_shift); 653 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 654 &vd->vdev_asize); 655 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 656 &vd->vdev_removing); 657 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 658 &vd->vdev_top_zap); 659 } else { 660 ASSERT0(vd->vdev_top_zap); 661 } 662 663 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 664 ASSERT(alloctype == VDEV_ALLOC_LOAD || 665 alloctype == VDEV_ALLOC_ADD || 666 alloctype == VDEV_ALLOC_SPLIT || 667 alloctype == VDEV_ALLOC_ROOTPOOL); 668 vd->vdev_mg = metaslab_group_create(islog ? 669 spa_log_class(spa) : spa_normal_class(spa), vd, 670 spa->spa_alloc_count); 671 } 672 673 if (vd->vdev_ops->vdev_op_leaf && 674 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 675 (void) nvlist_lookup_uint64(nv, 676 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 677 } else { 678 ASSERT0(vd->vdev_leaf_zap); 679 } 680 681 /* 682 * If we're a leaf vdev, try to load the DTL object and other state. 683 */ 684 685 if (vd->vdev_ops->vdev_op_leaf && 686 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 687 alloctype == VDEV_ALLOC_ROOTPOOL)) { 688 if (alloctype == VDEV_ALLOC_LOAD) { 689 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 690 &vd->vdev_dtl_object); 691 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 692 &vd->vdev_unspare); 693 } 694 695 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 696 uint64_t spare = 0; 697 698 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 699 &spare) == 0 && spare) 700 spa_spare_add(vd); 701 } 702 703 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 704 &vd->vdev_offline); 705 706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 707 &vd->vdev_resilver_txg); 708 709 /* 710 * When importing a pool, we want to ignore the persistent fault 711 * state, as the diagnosis made on another system may not be 712 * valid in the current context. Local vdevs will 713 * remain in the faulted state. 714 */ 715 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 716 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 717 &vd->vdev_faulted); 718 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 719 &vd->vdev_degraded); 720 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 721 &vd->vdev_removed); 722 723 if (vd->vdev_faulted || vd->vdev_degraded) { 724 char *aux; 725 726 vd->vdev_label_aux = 727 VDEV_AUX_ERR_EXCEEDED; 728 if (nvlist_lookup_string(nv, 729 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 730 strcmp(aux, "external") == 0) 731 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 732 } 733 } 734 } 735 736 /* 737 * Add ourselves to the parent's list of children. 738 */ 739 vdev_add_child(parent, vd); 740 741 *vdp = vd; 742 743 return (0); 744 } 745 746 void 747 vdev_free(vdev_t *vd) 748 { 749 spa_t *spa = vd->vdev_spa; 750 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 751 752 /* 753 * vdev_free() implies closing the vdev first. This is simpler than 754 * trying to ensure complicated semantics for all callers. 755 */ 756 vdev_close(vd); 757 758 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 759 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 760 761 /* 762 * Free all children. 763 */ 764 for (int c = 0; c < vd->vdev_children; c++) 765 vdev_free(vd->vdev_child[c]); 766 767 ASSERT(vd->vdev_child == NULL); 768 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 769 ASSERT(vd->vdev_initialize_thread == NULL); 770 771 /* 772 * Discard allocation state. 773 */ 774 if (vd->vdev_mg != NULL) { 775 vdev_metaslab_fini(vd); 776 metaslab_group_destroy(vd->vdev_mg); 777 } 778 779 ASSERT0(vd->vdev_stat.vs_space); 780 ASSERT0(vd->vdev_stat.vs_dspace); 781 ASSERT0(vd->vdev_stat.vs_alloc); 782 783 /* 784 * Remove this vdev from its parent's child list. 785 */ 786 vdev_remove_child(vd->vdev_parent, vd); 787 788 ASSERT(vd->vdev_parent == NULL); 789 790 /* 791 * Clean up vdev structure. 792 */ 793 vdev_queue_fini(vd); 794 vdev_cache_fini(vd); 795 796 if (vd->vdev_path) 797 spa_strfree(vd->vdev_path); 798 if (vd->vdev_devid) 799 spa_strfree(vd->vdev_devid); 800 if (vd->vdev_physpath) 801 spa_strfree(vd->vdev_physpath); 802 if (vd->vdev_fru) 803 spa_strfree(vd->vdev_fru); 804 805 if (vd->vdev_isspare) 806 spa_spare_remove(vd); 807 if (vd->vdev_isl2cache) 808 spa_l2cache_remove(vd); 809 810 txg_list_destroy(&vd->vdev_ms_list); 811 txg_list_destroy(&vd->vdev_dtl_list); 812 813 mutex_enter(&vd->vdev_dtl_lock); 814 space_map_close(vd->vdev_dtl_sm); 815 for (int t = 0; t < DTL_TYPES; t++) { 816 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 817 range_tree_destroy(vd->vdev_dtl[t]); 818 } 819 mutex_exit(&vd->vdev_dtl_lock); 820 821 EQUIV(vd->vdev_indirect_births != NULL, 822 vd->vdev_indirect_mapping != NULL); 823 if (vd->vdev_indirect_births != NULL) { 824 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 825 vdev_indirect_births_close(vd->vdev_indirect_births); 826 } 827 828 if (vd->vdev_obsolete_sm != NULL) { 829 ASSERT(vd->vdev_removing || 830 vd->vdev_ops == &vdev_indirect_ops); 831 space_map_close(vd->vdev_obsolete_sm); 832 vd->vdev_obsolete_sm = NULL; 833 } 834 range_tree_destroy(vd->vdev_obsolete_segments); 835 rw_destroy(&vd->vdev_indirect_rwlock); 836 mutex_destroy(&vd->vdev_obsolete_lock); 837 838 mutex_destroy(&vd->vdev_queue_lock); 839 mutex_destroy(&vd->vdev_dtl_lock); 840 mutex_destroy(&vd->vdev_stat_lock); 841 mutex_destroy(&vd->vdev_probe_lock); 842 mutex_destroy(&vd->vdev_initialize_lock); 843 mutex_destroy(&vd->vdev_initialize_io_lock); 844 cv_destroy(&vd->vdev_initialize_io_cv); 845 cv_destroy(&vd->vdev_initialize_cv); 846 847 if (vd == spa->spa_root_vdev) 848 spa->spa_root_vdev = NULL; 849 850 kmem_free(vd, sizeof (vdev_t)); 851 } 852 853 /* 854 * Transfer top-level vdev state from svd to tvd. 855 */ 856 static void 857 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 858 { 859 spa_t *spa = svd->vdev_spa; 860 metaslab_t *msp; 861 vdev_t *vd; 862 int t; 863 864 ASSERT(tvd == tvd->vdev_top); 865 866 tvd->vdev_ms_array = svd->vdev_ms_array; 867 tvd->vdev_ms_shift = svd->vdev_ms_shift; 868 tvd->vdev_ms_count = svd->vdev_ms_count; 869 tvd->vdev_top_zap = svd->vdev_top_zap; 870 871 svd->vdev_ms_array = 0; 872 svd->vdev_ms_shift = 0; 873 svd->vdev_ms_count = 0; 874 svd->vdev_top_zap = 0; 875 876 if (tvd->vdev_mg) 877 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 878 tvd->vdev_mg = svd->vdev_mg; 879 tvd->vdev_ms = svd->vdev_ms; 880 881 svd->vdev_mg = NULL; 882 svd->vdev_ms = NULL; 883 884 if (tvd->vdev_mg != NULL) 885 tvd->vdev_mg->mg_vd = tvd; 886 887 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 888 svd->vdev_checkpoint_sm = NULL; 889 890 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 891 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 892 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 893 894 svd->vdev_stat.vs_alloc = 0; 895 svd->vdev_stat.vs_space = 0; 896 svd->vdev_stat.vs_dspace = 0; 897 898 /* 899 * State which may be set on a top-level vdev that's in the 900 * process of being removed. 901 */ 902 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 903 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 904 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 905 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 906 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 907 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 908 ASSERT0(tvd->vdev_removing); 909 tvd->vdev_removing = svd->vdev_removing; 910 tvd->vdev_indirect_config = svd->vdev_indirect_config; 911 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 912 tvd->vdev_indirect_births = svd->vdev_indirect_births; 913 range_tree_swap(&svd->vdev_obsolete_segments, 914 &tvd->vdev_obsolete_segments); 915 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 916 svd->vdev_indirect_config.vic_mapping_object = 0; 917 svd->vdev_indirect_config.vic_births_object = 0; 918 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 919 svd->vdev_indirect_mapping = NULL; 920 svd->vdev_indirect_births = NULL; 921 svd->vdev_obsolete_sm = NULL; 922 svd->vdev_removing = 0; 923 924 for (t = 0; t < TXG_SIZE; t++) { 925 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 926 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 927 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 928 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 929 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 930 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 931 } 932 933 if (list_link_active(&svd->vdev_config_dirty_node)) { 934 vdev_config_clean(svd); 935 vdev_config_dirty(tvd); 936 } 937 938 if (list_link_active(&svd->vdev_state_dirty_node)) { 939 vdev_state_clean(svd); 940 vdev_state_dirty(tvd); 941 } 942 943 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 944 svd->vdev_deflate_ratio = 0; 945 946 tvd->vdev_islog = svd->vdev_islog; 947 svd->vdev_islog = 0; 948 } 949 950 static void 951 vdev_top_update(vdev_t *tvd, vdev_t *vd) 952 { 953 if (vd == NULL) 954 return; 955 956 vd->vdev_top = tvd; 957 958 for (int c = 0; c < vd->vdev_children; c++) 959 vdev_top_update(tvd, vd->vdev_child[c]); 960 } 961 962 /* 963 * Add a mirror/replacing vdev above an existing vdev. 964 */ 965 vdev_t * 966 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 967 { 968 spa_t *spa = cvd->vdev_spa; 969 vdev_t *pvd = cvd->vdev_parent; 970 vdev_t *mvd; 971 972 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 973 974 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 975 976 mvd->vdev_asize = cvd->vdev_asize; 977 mvd->vdev_min_asize = cvd->vdev_min_asize; 978 mvd->vdev_max_asize = cvd->vdev_max_asize; 979 mvd->vdev_psize = cvd->vdev_psize; 980 mvd->vdev_ashift = cvd->vdev_ashift; 981 mvd->vdev_state = cvd->vdev_state; 982 mvd->vdev_crtxg = cvd->vdev_crtxg; 983 984 vdev_remove_child(pvd, cvd); 985 vdev_add_child(pvd, mvd); 986 cvd->vdev_id = mvd->vdev_children; 987 vdev_add_child(mvd, cvd); 988 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 989 990 if (mvd == mvd->vdev_top) 991 vdev_top_transfer(cvd, mvd); 992 993 return (mvd); 994 } 995 996 /* 997 * Remove a 1-way mirror/replacing vdev from the tree. 998 */ 999 void 1000 vdev_remove_parent(vdev_t *cvd) 1001 { 1002 vdev_t *mvd = cvd->vdev_parent; 1003 vdev_t *pvd = mvd->vdev_parent; 1004 1005 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1006 1007 ASSERT(mvd->vdev_children == 1); 1008 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1009 mvd->vdev_ops == &vdev_replacing_ops || 1010 mvd->vdev_ops == &vdev_spare_ops); 1011 cvd->vdev_ashift = mvd->vdev_ashift; 1012 1013 vdev_remove_child(mvd, cvd); 1014 vdev_remove_child(pvd, mvd); 1015 1016 /* 1017 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1018 * Otherwise, we could have detached an offline device, and when we 1019 * go to import the pool we'll think we have two top-level vdevs, 1020 * instead of a different version of the same top-level vdev. 1021 */ 1022 if (mvd->vdev_top == mvd) { 1023 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1024 cvd->vdev_orig_guid = cvd->vdev_guid; 1025 cvd->vdev_guid += guid_delta; 1026 cvd->vdev_guid_sum += guid_delta; 1027 } 1028 cvd->vdev_id = mvd->vdev_id; 1029 vdev_add_child(pvd, cvd); 1030 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1031 1032 if (cvd == cvd->vdev_top) 1033 vdev_top_transfer(mvd, cvd); 1034 1035 ASSERT(mvd->vdev_children == 0); 1036 vdev_free(mvd); 1037 } 1038 1039 int 1040 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1041 { 1042 spa_t *spa = vd->vdev_spa; 1043 objset_t *mos = spa->spa_meta_objset; 1044 uint64_t m; 1045 uint64_t oldc = vd->vdev_ms_count; 1046 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1047 metaslab_t **mspp; 1048 int error; 1049 1050 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1051 1052 /* 1053 * This vdev is not being allocated from yet or is a hole. 1054 */ 1055 if (vd->vdev_ms_shift == 0) 1056 return (0); 1057 1058 ASSERT(!vd->vdev_ishole); 1059 1060 ASSERT(oldc <= newc); 1061 1062 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1063 1064 if (oldc != 0) { 1065 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1066 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1067 } 1068 1069 vd->vdev_ms = mspp; 1070 vd->vdev_ms_count = newc; 1071 for (m = oldc; m < newc; m++) { 1072 uint64_t object = 0; 1073 1074 /* 1075 * vdev_ms_array may be 0 if we are creating the "fake" 1076 * metaslabs for an indirect vdev for zdb's leak detection. 1077 * See zdb_leak_init(). 1078 */ 1079 if (txg == 0 && vd->vdev_ms_array != 0) { 1080 error = dmu_read(mos, vd->vdev_ms_array, 1081 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1082 DMU_READ_PREFETCH); 1083 if (error != 0) { 1084 vdev_dbgmsg(vd, "unable to read the metaslab " 1085 "array [error=%d]", error); 1086 return (error); 1087 } 1088 } 1089 1090 error = metaslab_init(vd->vdev_mg, m, object, txg, 1091 &(vd->vdev_ms[m])); 1092 if (error != 0) { 1093 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1094 error); 1095 return (error); 1096 } 1097 } 1098 1099 if (txg == 0) 1100 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1101 1102 /* 1103 * If the vdev is being removed we don't activate 1104 * the metaslabs since we want to ensure that no new 1105 * allocations are performed on this device. 1106 */ 1107 if (oldc == 0 && !vd->vdev_removing) 1108 metaslab_group_activate(vd->vdev_mg); 1109 1110 if (txg == 0) 1111 spa_config_exit(spa, SCL_ALLOC, FTAG); 1112 1113 return (0); 1114 } 1115 1116 void 1117 vdev_metaslab_fini(vdev_t *vd) 1118 { 1119 if (vd->vdev_checkpoint_sm != NULL) { 1120 ASSERT(spa_feature_is_active(vd->vdev_spa, 1121 SPA_FEATURE_POOL_CHECKPOINT)); 1122 space_map_close(vd->vdev_checkpoint_sm); 1123 /* 1124 * Even though we close the space map, we need to set its 1125 * pointer to NULL. The reason is that vdev_metaslab_fini() 1126 * may be called multiple times for certain operations 1127 * (i.e. when destroying a pool) so we need to ensure that 1128 * this clause never executes twice. This logic is similar 1129 * to the one used for the vdev_ms clause below. 1130 */ 1131 vd->vdev_checkpoint_sm = NULL; 1132 } 1133 1134 if (vd->vdev_ms != NULL) { 1135 uint64_t count = vd->vdev_ms_count; 1136 1137 metaslab_group_passivate(vd->vdev_mg); 1138 for (uint64_t m = 0; m < count; m++) { 1139 metaslab_t *msp = vd->vdev_ms[m]; 1140 1141 if (msp != NULL) 1142 metaslab_fini(msp); 1143 } 1144 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1145 vd->vdev_ms = NULL; 1146 1147 vd->vdev_ms_count = 0; 1148 } 1149 ASSERT0(vd->vdev_ms_count); 1150 } 1151 1152 typedef struct vdev_probe_stats { 1153 boolean_t vps_readable; 1154 boolean_t vps_writeable; 1155 int vps_flags; 1156 } vdev_probe_stats_t; 1157 1158 static void 1159 vdev_probe_done(zio_t *zio) 1160 { 1161 spa_t *spa = zio->io_spa; 1162 vdev_t *vd = zio->io_vd; 1163 vdev_probe_stats_t *vps = zio->io_private; 1164 1165 ASSERT(vd->vdev_probe_zio != NULL); 1166 1167 if (zio->io_type == ZIO_TYPE_READ) { 1168 if (zio->io_error == 0) 1169 vps->vps_readable = 1; 1170 if (zio->io_error == 0 && spa_writeable(spa)) { 1171 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1172 zio->io_offset, zio->io_size, zio->io_abd, 1173 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1174 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1175 } else { 1176 abd_free(zio->io_abd); 1177 } 1178 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1179 if (zio->io_error == 0) 1180 vps->vps_writeable = 1; 1181 abd_free(zio->io_abd); 1182 } else if (zio->io_type == ZIO_TYPE_NULL) { 1183 zio_t *pio; 1184 1185 vd->vdev_cant_read |= !vps->vps_readable; 1186 vd->vdev_cant_write |= !vps->vps_writeable; 1187 1188 if (vdev_readable(vd) && 1189 (vdev_writeable(vd) || !spa_writeable(spa))) { 1190 zio->io_error = 0; 1191 } else { 1192 ASSERT(zio->io_error != 0); 1193 vdev_dbgmsg(vd, "failed probe"); 1194 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1195 spa, vd, NULL, 0, 0); 1196 zio->io_error = SET_ERROR(ENXIO); 1197 } 1198 1199 mutex_enter(&vd->vdev_probe_lock); 1200 ASSERT(vd->vdev_probe_zio == zio); 1201 vd->vdev_probe_zio = NULL; 1202 mutex_exit(&vd->vdev_probe_lock); 1203 1204 zio_link_t *zl = NULL; 1205 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1206 if (!vdev_accessible(vd, pio)) 1207 pio->io_error = SET_ERROR(ENXIO); 1208 1209 kmem_free(vps, sizeof (*vps)); 1210 } 1211 } 1212 1213 /* 1214 * Determine whether this device is accessible. 1215 * 1216 * Read and write to several known locations: the pad regions of each 1217 * vdev label but the first, which we leave alone in case it contains 1218 * a VTOC. 1219 */ 1220 zio_t * 1221 vdev_probe(vdev_t *vd, zio_t *zio) 1222 { 1223 spa_t *spa = vd->vdev_spa; 1224 vdev_probe_stats_t *vps = NULL; 1225 zio_t *pio; 1226 1227 ASSERT(vd->vdev_ops->vdev_op_leaf); 1228 1229 /* 1230 * Don't probe the probe. 1231 */ 1232 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1233 return (NULL); 1234 1235 /* 1236 * To prevent 'probe storms' when a device fails, we create 1237 * just one probe i/o at a time. All zios that want to probe 1238 * this vdev will become parents of the probe io. 1239 */ 1240 mutex_enter(&vd->vdev_probe_lock); 1241 1242 if ((pio = vd->vdev_probe_zio) == NULL) { 1243 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1244 1245 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1246 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1247 ZIO_FLAG_TRYHARD; 1248 1249 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1250 /* 1251 * vdev_cant_read and vdev_cant_write can only 1252 * transition from TRUE to FALSE when we have the 1253 * SCL_ZIO lock as writer; otherwise they can only 1254 * transition from FALSE to TRUE. This ensures that 1255 * any zio looking at these values can assume that 1256 * failures persist for the life of the I/O. That's 1257 * important because when a device has intermittent 1258 * connectivity problems, we want to ensure that 1259 * they're ascribed to the device (ENXIO) and not 1260 * the zio (EIO). 1261 * 1262 * Since we hold SCL_ZIO as writer here, clear both 1263 * values so the probe can reevaluate from first 1264 * principles. 1265 */ 1266 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1267 vd->vdev_cant_read = B_FALSE; 1268 vd->vdev_cant_write = B_FALSE; 1269 } 1270 1271 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1272 vdev_probe_done, vps, 1273 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1274 1275 /* 1276 * We can't change the vdev state in this context, so we 1277 * kick off an async task to do it on our behalf. 1278 */ 1279 if (zio != NULL) { 1280 vd->vdev_probe_wanted = B_TRUE; 1281 spa_async_request(spa, SPA_ASYNC_PROBE); 1282 } 1283 } 1284 1285 if (zio != NULL) 1286 zio_add_child(zio, pio); 1287 1288 mutex_exit(&vd->vdev_probe_lock); 1289 1290 if (vps == NULL) { 1291 ASSERT(zio != NULL); 1292 return (NULL); 1293 } 1294 1295 for (int l = 1; l < VDEV_LABELS; l++) { 1296 zio_nowait(zio_read_phys(pio, vd, 1297 vdev_label_offset(vd->vdev_psize, l, 1298 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1299 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1300 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1301 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1302 } 1303 1304 if (zio == NULL) 1305 return (pio); 1306 1307 zio_nowait(pio); 1308 return (NULL); 1309 } 1310 1311 static void 1312 vdev_open_child(void *arg) 1313 { 1314 vdev_t *vd = arg; 1315 1316 vd->vdev_open_thread = curthread; 1317 vd->vdev_open_error = vdev_open(vd); 1318 vd->vdev_open_thread = NULL; 1319 } 1320 1321 boolean_t 1322 vdev_uses_zvols(vdev_t *vd) 1323 { 1324 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1325 strlen(ZVOL_DIR)) == 0) 1326 return (B_TRUE); 1327 for (int c = 0; c < vd->vdev_children; c++) 1328 if (vdev_uses_zvols(vd->vdev_child[c])) 1329 return (B_TRUE); 1330 return (B_FALSE); 1331 } 1332 1333 void 1334 vdev_open_children(vdev_t *vd) 1335 { 1336 taskq_t *tq; 1337 int children = vd->vdev_children; 1338 1339 /* 1340 * in order to handle pools on top of zvols, do the opens 1341 * in a single thread so that the same thread holds the 1342 * spa_namespace_lock 1343 */ 1344 if (vdev_uses_zvols(vd)) { 1345 for (int c = 0; c < children; c++) 1346 vd->vdev_child[c]->vdev_open_error = 1347 vdev_open(vd->vdev_child[c]); 1348 return; 1349 } 1350 tq = taskq_create("vdev_open", children, minclsyspri, 1351 children, children, TASKQ_PREPOPULATE); 1352 1353 for (int c = 0; c < children; c++) 1354 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1355 TQ_SLEEP) != NULL); 1356 1357 taskq_destroy(tq); 1358 } 1359 1360 /* 1361 * Compute the raidz-deflation ratio. Note, we hard-code 1362 * in 128k (1 << 17) because it is the "typical" blocksize. 1363 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1364 * otherwise it would inconsistently account for existing bp's. 1365 */ 1366 static void 1367 vdev_set_deflate_ratio(vdev_t *vd) 1368 { 1369 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1370 vd->vdev_deflate_ratio = (1 << 17) / 1371 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1372 } 1373 } 1374 1375 /* 1376 * Prepare a virtual device for access. 1377 */ 1378 int 1379 vdev_open(vdev_t *vd) 1380 { 1381 spa_t *spa = vd->vdev_spa; 1382 int error; 1383 uint64_t osize = 0; 1384 uint64_t max_osize = 0; 1385 uint64_t asize, max_asize, psize; 1386 uint64_t ashift = 0; 1387 1388 ASSERT(vd->vdev_open_thread == curthread || 1389 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1390 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1391 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1392 vd->vdev_state == VDEV_STATE_OFFLINE); 1393 1394 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1395 vd->vdev_cant_read = B_FALSE; 1396 vd->vdev_cant_write = B_FALSE; 1397 vd->vdev_min_asize = vdev_get_min_asize(vd); 1398 1399 /* 1400 * If this vdev is not removed, check its fault status. If it's 1401 * faulted, bail out of the open. 1402 */ 1403 if (!vd->vdev_removed && vd->vdev_faulted) { 1404 ASSERT(vd->vdev_children == 0); 1405 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1406 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1407 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1408 vd->vdev_label_aux); 1409 return (SET_ERROR(ENXIO)); 1410 } else if (vd->vdev_offline) { 1411 ASSERT(vd->vdev_children == 0); 1412 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1413 return (SET_ERROR(ENXIO)); 1414 } 1415 1416 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1417 1418 /* 1419 * Reset the vdev_reopening flag so that we actually close 1420 * the vdev on error. 1421 */ 1422 vd->vdev_reopening = B_FALSE; 1423 if (zio_injection_enabled && error == 0) 1424 error = zio_handle_device_injection(vd, NULL, ENXIO); 1425 1426 if (error) { 1427 if (vd->vdev_removed && 1428 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1429 vd->vdev_removed = B_FALSE; 1430 1431 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1432 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1433 vd->vdev_stat.vs_aux); 1434 } else { 1435 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1436 vd->vdev_stat.vs_aux); 1437 } 1438 return (error); 1439 } 1440 1441 vd->vdev_removed = B_FALSE; 1442 1443 /* 1444 * Recheck the faulted flag now that we have confirmed that 1445 * the vdev is accessible. If we're faulted, bail. 1446 */ 1447 if (vd->vdev_faulted) { 1448 ASSERT(vd->vdev_children == 0); 1449 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1450 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1451 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1452 vd->vdev_label_aux); 1453 return (SET_ERROR(ENXIO)); 1454 } 1455 1456 if (vd->vdev_degraded) { 1457 ASSERT(vd->vdev_children == 0); 1458 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1459 VDEV_AUX_ERR_EXCEEDED); 1460 } else { 1461 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1462 } 1463 1464 /* 1465 * For hole or missing vdevs we just return success. 1466 */ 1467 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1468 return (0); 1469 1470 for (int c = 0; c < vd->vdev_children; c++) { 1471 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1472 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1473 VDEV_AUX_NONE); 1474 break; 1475 } 1476 } 1477 1478 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1479 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1480 1481 if (vd->vdev_children == 0) { 1482 if (osize < SPA_MINDEVSIZE) { 1483 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1484 VDEV_AUX_TOO_SMALL); 1485 return (SET_ERROR(EOVERFLOW)); 1486 } 1487 psize = osize; 1488 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1489 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1490 VDEV_LABEL_END_SIZE); 1491 } else { 1492 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1493 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1494 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1495 VDEV_AUX_TOO_SMALL); 1496 return (SET_ERROR(EOVERFLOW)); 1497 } 1498 psize = 0; 1499 asize = osize; 1500 max_asize = max_osize; 1501 } 1502 1503 vd->vdev_psize = psize; 1504 1505 /* 1506 * Make sure the allocatable size hasn't shrunk too much. 1507 */ 1508 if (asize < vd->vdev_min_asize) { 1509 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1510 VDEV_AUX_BAD_LABEL); 1511 return (SET_ERROR(EINVAL)); 1512 } 1513 1514 if (vd->vdev_asize == 0) { 1515 /* 1516 * This is the first-ever open, so use the computed values. 1517 * For testing purposes, a higher ashift can be requested. 1518 */ 1519 vd->vdev_asize = asize; 1520 vd->vdev_max_asize = max_asize; 1521 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1522 vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift); 1523 } else { 1524 /* 1525 * Detect if the alignment requirement has increased. 1526 * We don't want to make the pool unavailable, just 1527 * issue a warning instead. 1528 */ 1529 if (ashift > vd->vdev_top->vdev_ashift && 1530 vd->vdev_ops->vdev_op_leaf) { 1531 cmn_err(CE_WARN, 1532 "Disk, '%s', has a block alignment that is " 1533 "larger than the pool's alignment\n", 1534 vd->vdev_path); 1535 } 1536 vd->vdev_max_asize = max_asize; 1537 } 1538 1539 /* 1540 * If all children are healthy we update asize if either: 1541 * The asize has increased, due to a device expansion caused by dynamic 1542 * LUN growth or vdev replacement, and automatic expansion is enabled; 1543 * making the additional space available. 1544 * 1545 * The asize has decreased, due to a device shrink usually caused by a 1546 * vdev replace with a smaller device. This ensures that calculations 1547 * based of max_asize and asize e.g. esize are always valid. It's safe 1548 * to do this as we've already validated that asize is greater than 1549 * vdev_min_asize. 1550 */ 1551 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1552 ((asize > vd->vdev_asize && 1553 (vd->vdev_expanding || spa->spa_autoexpand)) || 1554 (asize < vd->vdev_asize))) 1555 vd->vdev_asize = asize; 1556 1557 vdev_set_min_asize(vd); 1558 1559 /* 1560 * Ensure we can issue some IO before declaring the 1561 * vdev open for business. 1562 */ 1563 if (vd->vdev_ops->vdev_op_leaf && 1564 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1565 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1566 VDEV_AUX_ERR_EXCEEDED); 1567 return (error); 1568 } 1569 1570 /* 1571 * Track the min and max ashift values for normal data devices. 1572 */ 1573 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1574 !vd->vdev_islog && vd->vdev_aux == NULL) { 1575 if (vd->vdev_ashift > spa->spa_max_ashift) 1576 spa->spa_max_ashift = vd->vdev_ashift; 1577 if (vd->vdev_ashift < spa->spa_min_ashift) 1578 spa->spa_min_ashift = vd->vdev_ashift; 1579 } 1580 1581 /* 1582 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1583 * resilver. But don't do this if we are doing a reopen for a scrub, 1584 * since this would just restart the scrub we are already doing. 1585 */ 1586 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1587 vdev_resilver_needed(vd, NULL, NULL)) 1588 spa_async_request(spa, SPA_ASYNC_RESILVER); 1589 1590 return (0); 1591 } 1592 1593 /* 1594 * Called once the vdevs are all opened, this routine validates the label 1595 * contents. This needs to be done before vdev_load() so that we don't 1596 * inadvertently do repair I/Os to the wrong device. 1597 * 1598 * This function will only return failure if one of the vdevs indicates that it 1599 * has since been destroyed or exported. This is only possible if 1600 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1601 * will be updated but the function will return 0. 1602 */ 1603 int 1604 vdev_validate(vdev_t *vd) 1605 { 1606 spa_t *spa = vd->vdev_spa; 1607 nvlist_t *label; 1608 uint64_t guid = 0, aux_guid = 0, top_guid; 1609 uint64_t state; 1610 nvlist_t *nvl; 1611 uint64_t txg; 1612 1613 if (vdev_validate_skip) 1614 return (0); 1615 1616 for (uint64_t c = 0; c < vd->vdev_children; c++) 1617 if (vdev_validate(vd->vdev_child[c]) != 0) 1618 return (SET_ERROR(EBADF)); 1619 1620 /* 1621 * If the device has already failed, or was marked offline, don't do 1622 * any further validation. Otherwise, label I/O will fail and we will 1623 * overwrite the previous state. 1624 */ 1625 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1626 return (0); 1627 1628 /* 1629 * If we are performing an extreme rewind, we allow for a label that 1630 * was modified at a point after the current txg. 1631 * If config lock is not held do not check for the txg. spa_sync could 1632 * be updating the vdev's label before updating spa_last_synced_txg. 1633 */ 1634 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1635 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1636 txg = UINT64_MAX; 1637 else 1638 txg = spa_last_synced_txg(spa); 1639 1640 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1641 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1642 VDEV_AUX_BAD_LABEL); 1643 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1644 "txg %llu", (u_longlong_t)txg); 1645 return (0); 1646 } 1647 1648 /* 1649 * Determine if this vdev has been split off into another 1650 * pool. If so, then refuse to open it. 1651 */ 1652 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1653 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1654 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1655 VDEV_AUX_SPLIT_POOL); 1656 nvlist_free(label); 1657 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1658 return (0); 1659 } 1660 1661 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1662 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1663 VDEV_AUX_CORRUPT_DATA); 1664 nvlist_free(label); 1665 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1666 ZPOOL_CONFIG_POOL_GUID); 1667 return (0); 1668 } 1669 1670 /* 1671 * If config is not trusted then ignore the spa guid check. This is 1672 * necessary because if the machine crashed during a re-guid the new 1673 * guid might have been written to all of the vdev labels, but not the 1674 * cached config. The check will be performed again once we have the 1675 * trusted config from the MOS. 1676 */ 1677 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1678 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1679 VDEV_AUX_CORRUPT_DATA); 1680 nvlist_free(label); 1681 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1682 "match config (%llu != %llu)", (u_longlong_t)guid, 1683 (u_longlong_t)spa_guid(spa)); 1684 return (0); 1685 } 1686 1687 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1688 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1689 &aux_guid) != 0) 1690 aux_guid = 0; 1691 1692 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1693 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1694 VDEV_AUX_CORRUPT_DATA); 1695 nvlist_free(label); 1696 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1697 ZPOOL_CONFIG_GUID); 1698 return (0); 1699 } 1700 1701 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1702 != 0) { 1703 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1704 VDEV_AUX_CORRUPT_DATA); 1705 nvlist_free(label); 1706 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1707 ZPOOL_CONFIG_TOP_GUID); 1708 return (0); 1709 } 1710 1711 /* 1712 * If this vdev just became a top-level vdev because its sibling was 1713 * detached, it will have adopted the parent's vdev guid -- but the 1714 * label may or may not be on disk yet. Fortunately, either version 1715 * of the label will have the same top guid, so if we're a top-level 1716 * vdev, we can safely compare to that instead. 1717 * However, if the config comes from a cachefile that failed to update 1718 * after the detach, a top-level vdev will appear as a non top-level 1719 * vdev in the config. Also relax the constraints if we perform an 1720 * extreme rewind. 1721 * 1722 * If we split this vdev off instead, then we also check the 1723 * original pool's guid. We don't want to consider the vdev 1724 * corrupt if it is partway through a split operation. 1725 */ 1726 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1727 boolean_t mismatch = B_FALSE; 1728 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1729 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1730 mismatch = B_TRUE; 1731 } else { 1732 if (vd->vdev_guid != top_guid && 1733 vd->vdev_top->vdev_guid != guid) 1734 mismatch = B_TRUE; 1735 } 1736 1737 if (mismatch) { 1738 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1739 VDEV_AUX_CORRUPT_DATA); 1740 nvlist_free(label); 1741 vdev_dbgmsg(vd, "vdev_validate: config guid " 1742 "doesn't match label guid"); 1743 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1744 (u_longlong_t)vd->vdev_guid, 1745 (u_longlong_t)vd->vdev_top->vdev_guid); 1746 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1747 "aux_guid %llu", (u_longlong_t)guid, 1748 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1749 return (0); 1750 } 1751 } 1752 1753 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1754 &state) != 0) { 1755 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1756 VDEV_AUX_CORRUPT_DATA); 1757 nvlist_free(label); 1758 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1759 ZPOOL_CONFIG_POOL_STATE); 1760 return (0); 1761 } 1762 1763 nvlist_free(label); 1764 1765 /* 1766 * If this is a verbatim import, no need to check the 1767 * state of the pool. 1768 */ 1769 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1770 spa_load_state(spa) == SPA_LOAD_OPEN && 1771 state != POOL_STATE_ACTIVE) { 1772 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1773 "for spa %s", (u_longlong_t)state, spa->spa_name); 1774 return (SET_ERROR(EBADF)); 1775 } 1776 1777 /* 1778 * If we were able to open and validate a vdev that was 1779 * previously marked permanently unavailable, clear that state 1780 * now. 1781 */ 1782 if (vd->vdev_not_present) 1783 vd->vdev_not_present = 0; 1784 1785 return (0); 1786 } 1787 1788 static void 1789 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1790 { 1791 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1792 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1793 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1794 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1795 dvd->vdev_path, svd->vdev_path); 1796 spa_strfree(dvd->vdev_path); 1797 dvd->vdev_path = spa_strdup(svd->vdev_path); 1798 } 1799 } else if (svd->vdev_path != NULL) { 1800 dvd->vdev_path = spa_strdup(svd->vdev_path); 1801 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 1802 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 1803 } 1804 } 1805 1806 /* 1807 * Recursively copy vdev paths from one vdev to another. Source and destination 1808 * vdev trees must have same geometry otherwise return error. Intended to copy 1809 * paths from userland config into MOS config. 1810 */ 1811 int 1812 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 1813 { 1814 if ((svd->vdev_ops == &vdev_missing_ops) || 1815 (svd->vdev_ishole && dvd->vdev_ishole) || 1816 (dvd->vdev_ops == &vdev_indirect_ops)) 1817 return (0); 1818 1819 if (svd->vdev_ops != dvd->vdev_ops) { 1820 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 1821 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 1822 return (SET_ERROR(EINVAL)); 1823 } 1824 1825 if (svd->vdev_guid != dvd->vdev_guid) { 1826 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 1827 "%llu)", (u_longlong_t)svd->vdev_guid, 1828 (u_longlong_t)dvd->vdev_guid); 1829 return (SET_ERROR(EINVAL)); 1830 } 1831 1832 if (svd->vdev_children != dvd->vdev_children) { 1833 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 1834 "%llu != %llu", (u_longlong_t)svd->vdev_children, 1835 (u_longlong_t)dvd->vdev_children); 1836 return (SET_ERROR(EINVAL)); 1837 } 1838 1839 for (uint64_t i = 0; i < svd->vdev_children; i++) { 1840 int error = vdev_copy_path_strict(svd->vdev_child[i], 1841 dvd->vdev_child[i]); 1842 if (error != 0) 1843 return (error); 1844 } 1845 1846 if (svd->vdev_ops->vdev_op_leaf) 1847 vdev_copy_path_impl(svd, dvd); 1848 1849 return (0); 1850 } 1851 1852 static void 1853 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 1854 { 1855 ASSERT(stvd->vdev_top == stvd); 1856 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 1857 1858 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 1859 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 1860 } 1861 1862 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 1863 return; 1864 1865 /* 1866 * The idea here is that while a vdev can shift positions within 1867 * a top vdev (when replacing, attaching mirror, etc.) it cannot 1868 * step outside of it. 1869 */ 1870 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 1871 1872 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 1873 return; 1874 1875 ASSERT(vd->vdev_ops->vdev_op_leaf); 1876 1877 vdev_copy_path_impl(vd, dvd); 1878 } 1879 1880 /* 1881 * Recursively copy vdev paths from one root vdev to another. Source and 1882 * destination vdev trees may differ in geometry. For each destination leaf 1883 * vdev, search a vdev with the same guid and top vdev id in the source. 1884 * Intended to copy paths from userland config into MOS config. 1885 */ 1886 void 1887 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 1888 { 1889 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 1890 ASSERT(srvd->vdev_ops == &vdev_root_ops); 1891 ASSERT(drvd->vdev_ops == &vdev_root_ops); 1892 1893 for (uint64_t i = 0; i < children; i++) { 1894 vdev_copy_path_search(srvd->vdev_child[i], 1895 drvd->vdev_child[i]); 1896 } 1897 } 1898 1899 /* 1900 * Close a virtual device. 1901 */ 1902 void 1903 vdev_close(vdev_t *vd) 1904 { 1905 spa_t *spa = vd->vdev_spa; 1906 vdev_t *pvd = vd->vdev_parent; 1907 1908 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1909 1910 /* 1911 * If our parent is reopening, then we are as well, unless we are 1912 * going offline. 1913 */ 1914 if (pvd != NULL && pvd->vdev_reopening) 1915 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1916 1917 vd->vdev_ops->vdev_op_close(vd); 1918 1919 vdev_cache_purge(vd); 1920 1921 /* 1922 * We record the previous state before we close it, so that if we are 1923 * doing a reopen(), we don't generate FMA ereports if we notice that 1924 * it's still faulted. 1925 */ 1926 vd->vdev_prevstate = vd->vdev_state; 1927 1928 if (vd->vdev_offline) 1929 vd->vdev_state = VDEV_STATE_OFFLINE; 1930 else 1931 vd->vdev_state = VDEV_STATE_CLOSED; 1932 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1933 } 1934 1935 void 1936 vdev_hold(vdev_t *vd) 1937 { 1938 spa_t *spa = vd->vdev_spa; 1939 1940 ASSERT(spa_is_root(spa)); 1941 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1942 return; 1943 1944 for (int c = 0; c < vd->vdev_children; c++) 1945 vdev_hold(vd->vdev_child[c]); 1946 1947 if (vd->vdev_ops->vdev_op_leaf) 1948 vd->vdev_ops->vdev_op_hold(vd); 1949 } 1950 1951 void 1952 vdev_rele(vdev_t *vd) 1953 { 1954 spa_t *spa = vd->vdev_spa; 1955 1956 ASSERT(spa_is_root(spa)); 1957 for (int c = 0; c < vd->vdev_children; c++) 1958 vdev_rele(vd->vdev_child[c]); 1959 1960 if (vd->vdev_ops->vdev_op_leaf) 1961 vd->vdev_ops->vdev_op_rele(vd); 1962 } 1963 1964 /* 1965 * Reopen all interior vdevs and any unopened leaves. We don't actually 1966 * reopen leaf vdevs which had previously been opened as they might deadlock 1967 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1968 * If the leaf has never been opened then open it, as usual. 1969 */ 1970 void 1971 vdev_reopen(vdev_t *vd) 1972 { 1973 spa_t *spa = vd->vdev_spa; 1974 1975 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1976 1977 /* set the reopening flag unless we're taking the vdev offline */ 1978 vd->vdev_reopening = !vd->vdev_offline; 1979 vdev_close(vd); 1980 (void) vdev_open(vd); 1981 1982 /* 1983 * Call vdev_validate() here to make sure we have the same device. 1984 * Otherwise, a device with an invalid label could be successfully 1985 * opened in response to vdev_reopen(). 1986 */ 1987 if (vd->vdev_aux) { 1988 (void) vdev_validate_aux(vd); 1989 if (vdev_readable(vd) && vdev_writeable(vd) && 1990 vd->vdev_aux == &spa->spa_l2cache && 1991 !l2arc_vdev_present(vd)) 1992 l2arc_add_vdev(spa, vd); 1993 } else { 1994 (void) vdev_validate(vd); 1995 } 1996 1997 /* 1998 * Reassess parent vdev's health. 1999 */ 2000 vdev_propagate_state(vd); 2001 } 2002 2003 int 2004 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2005 { 2006 int error; 2007 2008 /* 2009 * Normally, partial opens (e.g. of a mirror) are allowed. 2010 * For a create, however, we want to fail the request if 2011 * there are any components we can't open. 2012 */ 2013 error = vdev_open(vd); 2014 2015 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2016 vdev_close(vd); 2017 return (error ? error : ENXIO); 2018 } 2019 2020 /* 2021 * Recursively load DTLs and initialize all labels. 2022 */ 2023 if ((error = vdev_dtl_load(vd)) != 0 || 2024 (error = vdev_label_init(vd, txg, isreplacing ? 2025 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2026 vdev_close(vd); 2027 return (error); 2028 } 2029 2030 return (0); 2031 } 2032 2033 void 2034 vdev_metaslab_set_size(vdev_t *vd) 2035 { 2036 uint64_t asize = vd->vdev_asize; 2037 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2038 uint64_t ms_shift; 2039 2040 /* 2041 * There are two dimensions to the metaslab sizing calculation: 2042 * the size of the metaslab and the count of metaslabs per vdev. 2043 * 2044 * The default values used below are a good balance between memory 2045 * usage (larger metaslab size means more memory needed for loaded 2046 * metaslabs; more metaslabs means more memory needed for the 2047 * metaslab_t structs), metaslab load time (larger metaslabs take 2048 * longer to load), and metaslab sync time (more metaslabs means 2049 * more time spent syncing all of them). 2050 * 2051 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2052 * The range of the dimensions are as follows: 2053 * 2054 * 2^29 <= ms_size <= 2^34 2055 * 16 <= ms_count <= 131,072 2056 * 2057 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2058 * at least 512MB (2^29) to minimize fragmentation effects when 2059 * testing with smaller devices. However, the count constraint 2060 * of at least 16 metaslabs will override this minimum size goal. 2061 * 2062 * On the upper end of vdev sizes, we aim for a maximum metaslab 2063 * size of 16GB. However, we will cap the total count to 2^17 2064 * metaslabs to keep our memory footprint in check and let the 2065 * metaslab size grow from there if that limit is hit. 2066 * 2067 * The net effect of applying above constrains is summarized below. 2068 * 2069 * vdev size metaslab count 2070 * --------------|----------------- 2071 * < 8GB ~16 2072 * 8GB - 100GB one per 512MB 2073 * 100GB - 3TB ~200 2074 * 3TB - 2PB one per 16GB 2075 * > 2PB ~131,072 2076 * -------------------------------- 2077 * 2078 * Finally, note that all of the above calculate the initial 2079 * number of metaslabs. Expanding a top-level vdev will result 2080 * in additional metaslabs being allocated making it possible 2081 * to exceed the zfs_vdev_ms_count_limit. 2082 */ 2083 2084 if (ms_count < zfs_vdev_min_ms_count) 2085 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2086 else if (ms_count > zfs_vdev_default_ms_count) 2087 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2088 else 2089 ms_shift = zfs_vdev_default_ms_shift; 2090 2091 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2092 ms_shift = SPA_MAXBLOCKSHIFT; 2093 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2094 ms_shift = zfs_vdev_max_ms_shift; 2095 /* cap the total count to constrain memory footprint */ 2096 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2097 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2098 } 2099 2100 vd->vdev_ms_shift = ms_shift; 2101 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2102 } 2103 2104 void 2105 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2106 { 2107 ASSERT(vd == vd->vdev_top); 2108 /* indirect vdevs don't have metaslabs or dtls */ 2109 ASSERT(vdev_is_concrete(vd) || flags == 0); 2110 ASSERT(ISP2(flags)); 2111 ASSERT(spa_writeable(vd->vdev_spa)); 2112 2113 if (flags & VDD_METASLAB) 2114 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2115 2116 if (flags & VDD_DTL) 2117 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2118 2119 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2120 } 2121 2122 void 2123 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2124 { 2125 for (int c = 0; c < vd->vdev_children; c++) 2126 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2127 2128 if (vd->vdev_ops->vdev_op_leaf) 2129 vdev_dirty(vd->vdev_top, flags, vd, txg); 2130 } 2131 2132 /* 2133 * DTLs. 2134 * 2135 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2136 * the vdev has less than perfect replication. There are four kinds of DTL: 2137 * 2138 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2139 * 2140 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2141 * 2142 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2143 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2144 * txgs that was scrubbed. 2145 * 2146 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2147 * persistent errors or just some device being offline. 2148 * Unlike the other three, the DTL_OUTAGE map is not generally 2149 * maintained; it's only computed when needed, typically to 2150 * determine whether a device can be detached. 2151 * 2152 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2153 * either has the data or it doesn't. 2154 * 2155 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2156 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2157 * if any child is less than fully replicated, then so is its parent. 2158 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2159 * comprising only those txgs which appear in 'maxfaults' or more children; 2160 * those are the txgs we don't have enough replication to read. For example, 2161 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2162 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2163 * two child DTL_MISSING maps. 2164 * 2165 * It should be clear from the above that to compute the DTLs and outage maps 2166 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2167 * Therefore, that is all we keep on disk. When loading the pool, or after 2168 * a configuration change, we generate all other DTLs from first principles. 2169 */ 2170 void 2171 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2172 { 2173 range_tree_t *rt = vd->vdev_dtl[t]; 2174 2175 ASSERT(t < DTL_TYPES); 2176 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2177 ASSERT(spa_writeable(vd->vdev_spa)); 2178 2179 mutex_enter(&vd->vdev_dtl_lock); 2180 if (!range_tree_contains(rt, txg, size)) 2181 range_tree_add(rt, txg, size); 2182 mutex_exit(&vd->vdev_dtl_lock); 2183 } 2184 2185 boolean_t 2186 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2187 { 2188 range_tree_t *rt = vd->vdev_dtl[t]; 2189 boolean_t dirty = B_FALSE; 2190 2191 ASSERT(t < DTL_TYPES); 2192 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2193 2194 /* 2195 * While we are loading the pool, the DTLs have not been loaded yet. 2196 * Ignore the DTLs and try all devices. This avoids a recursive 2197 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2198 * when loading the pool (relying on the checksum to ensure that 2199 * we get the right data -- note that we while loading, we are 2200 * only reading the MOS, which is always checksummed). 2201 */ 2202 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2203 return (B_FALSE); 2204 2205 mutex_enter(&vd->vdev_dtl_lock); 2206 if (!range_tree_is_empty(rt)) 2207 dirty = range_tree_contains(rt, txg, size); 2208 mutex_exit(&vd->vdev_dtl_lock); 2209 2210 return (dirty); 2211 } 2212 2213 boolean_t 2214 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2215 { 2216 range_tree_t *rt = vd->vdev_dtl[t]; 2217 boolean_t empty; 2218 2219 mutex_enter(&vd->vdev_dtl_lock); 2220 empty = range_tree_is_empty(rt); 2221 mutex_exit(&vd->vdev_dtl_lock); 2222 2223 return (empty); 2224 } 2225 2226 /* 2227 * Returns the lowest txg in the DTL range. 2228 */ 2229 static uint64_t 2230 vdev_dtl_min(vdev_t *vd) 2231 { 2232 range_seg_t *rs; 2233 2234 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2235 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2236 ASSERT0(vd->vdev_children); 2237 2238 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2239 return (rs->rs_start - 1); 2240 } 2241 2242 /* 2243 * Returns the highest txg in the DTL. 2244 */ 2245 static uint64_t 2246 vdev_dtl_max(vdev_t *vd) 2247 { 2248 range_seg_t *rs; 2249 2250 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2251 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2252 ASSERT0(vd->vdev_children); 2253 2254 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2255 return (rs->rs_end); 2256 } 2257 2258 /* 2259 * Determine if a resilvering vdev should remove any DTL entries from 2260 * its range. If the vdev was resilvering for the entire duration of the 2261 * scan then it should excise that range from its DTLs. Otherwise, this 2262 * vdev is considered partially resilvered and should leave its DTL 2263 * entries intact. The comment in vdev_dtl_reassess() describes how we 2264 * excise the DTLs. 2265 */ 2266 static boolean_t 2267 vdev_dtl_should_excise(vdev_t *vd) 2268 { 2269 spa_t *spa = vd->vdev_spa; 2270 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2271 2272 ASSERT0(scn->scn_phys.scn_errors); 2273 ASSERT0(vd->vdev_children); 2274 2275 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2276 return (B_FALSE); 2277 2278 if (vd->vdev_resilver_txg == 0 || 2279 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2280 return (B_TRUE); 2281 2282 /* 2283 * When a resilver is initiated the scan will assign the scn_max_txg 2284 * value to the highest txg value that exists in all DTLs. If this 2285 * device's max DTL is not part of this scan (i.e. it is not in 2286 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2287 * for excision. 2288 */ 2289 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2290 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2291 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2292 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2293 return (B_TRUE); 2294 } 2295 return (B_FALSE); 2296 } 2297 2298 /* 2299 * Reassess DTLs after a config change or scrub completion. 2300 */ 2301 void 2302 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2303 { 2304 spa_t *spa = vd->vdev_spa; 2305 avl_tree_t reftree; 2306 int minref; 2307 2308 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2309 2310 for (int c = 0; c < vd->vdev_children; c++) 2311 vdev_dtl_reassess(vd->vdev_child[c], txg, 2312 scrub_txg, scrub_done); 2313 2314 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2315 return; 2316 2317 if (vd->vdev_ops->vdev_op_leaf) { 2318 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2319 2320 mutex_enter(&vd->vdev_dtl_lock); 2321 2322 /* 2323 * If we've completed a scan cleanly then determine 2324 * if this vdev should remove any DTLs. We only want to 2325 * excise regions on vdevs that were available during 2326 * the entire duration of this scan. 2327 */ 2328 if (scrub_txg != 0 && 2329 (spa->spa_scrub_started || 2330 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2331 vdev_dtl_should_excise(vd)) { 2332 /* 2333 * We completed a scrub up to scrub_txg. If we 2334 * did it without rebooting, then the scrub dtl 2335 * will be valid, so excise the old region and 2336 * fold in the scrub dtl. Otherwise, leave the 2337 * dtl as-is if there was an error. 2338 * 2339 * There's little trick here: to excise the beginning 2340 * of the DTL_MISSING map, we put it into a reference 2341 * tree and then add a segment with refcnt -1 that 2342 * covers the range [0, scrub_txg). This means 2343 * that each txg in that range has refcnt -1 or 0. 2344 * We then add DTL_SCRUB with a refcnt of 2, so that 2345 * entries in the range [0, scrub_txg) will have a 2346 * positive refcnt -- either 1 or 2. We then convert 2347 * the reference tree into the new DTL_MISSING map. 2348 */ 2349 space_reftree_create(&reftree); 2350 space_reftree_add_map(&reftree, 2351 vd->vdev_dtl[DTL_MISSING], 1); 2352 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2353 space_reftree_add_map(&reftree, 2354 vd->vdev_dtl[DTL_SCRUB], 2); 2355 space_reftree_generate_map(&reftree, 2356 vd->vdev_dtl[DTL_MISSING], 1); 2357 space_reftree_destroy(&reftree); 2358 } 2359 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2360 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2361 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2362 if (scrub_done) 2363 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2364 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2365 if (!vdev_readable(vd)) 2366 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2367 else 2368 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2369 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2370 2371 /* 2372 * If the vdev was resilvering and no longer has any 2373 * DTLs then reset its resilvering flag. 2374 */ 2375 if (vd->vdev_resilver_txg != 0 && 2376 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2377 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2378 vd->vdev_resilver_txg = 0; 2379 2380 mutex_exit(&vd->vdev_dtl_lock); 2381 2382 if (txg != 0) 2383 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2384 return; 2385 } 2386 2387 mutex_enter(&vd->vdev_dtl_lock); 2388 for (int t = 0; t < DTL_TYPES; t++) { 2389 /* account for child's outage in parent's missing map */ 2390 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2391 if (t == DTL_SCRUB) 2392 continue; /* leaf vdevs only */ 2393 if (t == DTL_PARTIAL) 2394 minref = 1; /* i.e. non-zero */ 2395 else if (vd->vdev_nparity != 0) 2396 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2397 else 2398 minref = vd->vdev_children; /* any kind of mirror */ 2399 space_reftree_create(&reftree); 2400 for (int c = 0; c < vd->vdev_children; c++) { 2401 vdev_t *cvd = vd->vdev_child[c]; 2402 mutex_enter(&cvd->vdev_dtl_lock); 2403 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2404 mutex_exit(&cvd->vdev_dtl_lock); 2405 } 2406 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2407 space_reftree_destroy(&reftree); 2408 } 2409 mutex_exit(&vd->vdev_dtl_lock); 2410 } 2411 2412 int 2413 vdev_dtl_load(vdev_t *vd) 2414 { 2415 spa_t *spa = vd->vdev_spa; 2416 objset_t *mos = spa->spa_meta_objset; 2417 int error = 0; 2418 2419 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2420 ASSERT(vdev_is_concrete(vd)); 2421 2422 error = space_map_open(&vd->vdev_dtl_sm, mos, 2423 vd->vdev_dtl_object, 0, -1ULL, 0); 2424 if (error) 2425 return (error); 2426 ASSERT(vd->vdev_dtl_sm != NULL); 2427 2428 mutex_enter(&vd->vdev_dtl_lock); 2429 2430 /* 2431 * Now that we've opened the space_map we need to update 2432 * the in-core DTL. 2433 */ 2434 space_map_update(vd->vdev_dtl_sm); 2435 2436 error = space_map_load(vd->vdev_dtl_sm, 2437 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2438 mutex_exit(&vd->vdev_dtl_lock); 2439 2440 return (error); 2441 } 2442 2443 for (int c = 0; c < vd->vdev_children; c++) { 2444 error = vdev_dtl_load(vd->vdev_child[c]); 2445 if (error != 0) 2446 break; 2447 } 2448 2449 return (error); 2450 } 2451 2452 void 2453 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2454 { 2455 spa_t *spa = vd->vdev_spa; 2456 2457 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2458 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2459 zapobj, tx)); 2460 } 2461 2462 uint64_t 2463 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2464 { 2465 spa_t *spa = vd->vdev_spa; 2466 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2467 DMU_OT_NONE, 0, tx); 2468 2469 ASSERT(zap != 0); 2470 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2471 zap, tx)); 2472 2473 return (zap); 2474 } 2475 2476 void 2477 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2478 { 2479 if (vd->vdev_ops != &vdev_hole_ops && 2480 vd->vdev_ops != &vdev_missing_ops && 2481 vd->vdev_ops != &vdev_root_ops && 2482 !vd->vdev_top->vdev_removing) { 2483 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2484 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2485 } 2486 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2487 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2488 } 2489 } 2490 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2491 vdev_construct_zaps(vd->vdev_child[i], tx); 2492 } 2493 } 2494 2495 void 2496 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2497 { 2498 spa_t *spa = vd->vdev_spa; 2499 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2500 objset_t *mos = spa->spa_meta_objset; 2501 range_tree_t *rtsync; 2502 dmu_tx_t *tx; 2503 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2504 2505 ASSERT(vdev_is_concrete(vd)); 2506 ASSERT(vd->vdev_ops->vdev_op_leaf); 2507 2508 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2509 2510 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2511 mutex_enter(&vd->vdev_dtl_lock); 2512 space_map_free(vd->vdev_dtl_sm, tx); 2513 space_map_close(vd->vdev_dtl_sm); 2514 vd->vdev_dtl_sm = NULL; 2515 mutex_exit(&vd->vdev_dtl_lock); 2516 2517 /* 2518 * We only destroy the leaf ZAP for detached leaves or for 2519 * removed log devices. Removed data devices handle leaf ZAP 2520 * cleanup later, once cancellation is no longer possible. 2521 */ 2522 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2523 vd->vdev_top->vdev_islog)) { 2524 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2525 vd->vdev_leaf_zap = 0; 2526 } 2527 2528 dmu_tx_commit(tx); 2529 return; 2530 } 2531 2532 if (vd->vdev_dtl_sm == NULL) { 2533 uint64_t new_object; 2534 2535 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx); 2536 VERIFY3U(new_object, !=, 0); 2537 2538 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2539 0, -1ULL, 0)); 2540 ASSERT(vd->vdev_dtl_sm != NULL); 2541 } 2542 2543 rtsync = range_tree_create(NULL, NULL); 2544 2545 mutex_enter(&vd->vdev_dtl_lock); 2546 range_tree_walk(rt, range_tree_add, rtsync); 2547 mutex_exit(&vd->vdev_dtl_lock); 2548 2549 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx); 2550 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2551 range_tree_vacate(rtsync, NULL, NULL); 2552 2553 range_tree_destroy(rtsync); 2554 2555 /* 2556 * If the object for the space map has changed then dirty 2557 * the top level so that we update the config. 2558 */ 2559 if (object != space_map_object(vd->vdev_dtl_sm)) { 2560 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2561 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2562 (u_longlong_t)object, 2563 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2564 vdev_config_dirty(vd->vdev_top); 2565 } 2566 2567 dmu_tx_commit(tx); 2568 2569 mutex_enter(&vd->vdev_dtl_lock); 2570 space_map_update(vd->vdev_dtl_sm); 2571 mutex_exit(&vd->vdev_dtl_lock); 2572 } 2573 2574 /* 2575 * Determine whether the specified vdev can be offlined/detached/removed 2576 * without losing data. 2577 */ 2578 boolean_t 2579 vdev_dtl_required(vdev_t *vd) 2580 { 2581 spa_t *spa = vd->vdev_spa; 2582 vdev_t *tvd = vd->vdev_top; 2583 uint8_t cant_read = vd->vdev_cant_read; 2584 boolean_t required; 2585 2586 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2587 2588 if (vd == spa->spa_root_vdev || vd == tvd) 2589 return (B_TRUE); 2590 2591 /* 2592 * Temporarily mark the device as unreadable, and then determine 2593 * whether this results in any DTL outages in the top-level vdev. 2594 * If not, we can safely offline/detach/remove the device. 2595 */ 2596 vd->vdev_cant_read = B_TRUE; 2597 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2598 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2599 vd->vdev_cant_read = cant_read; 2600 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2601 2602 if (!required && zio_injection_enabled) 2603 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2604 2605 return (required); 2606 } 2607 2608 /* 2609 * Determine if resilver is needed, and if so the txg range. 2610 */ 2611 boolean_t 2612 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2613 { 2614 boolean_t needed = B_FALSE; 2615 uint64_t thismin = UINT64_MAX; 2616 uint64_t thismax = 0; 2617 2618 if (vd->vdev_children == 0) { 2619 mutex_enter(&vd->vdev_dtl_lock); 2620 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2621 vdev_writeable(vd)) { 2622 2623 thismin = vdev_dtl_min(vd); 2624 thismax = vdev_dtl_max(vd); 2625 needed = B_TRUE; 2626 } 2627 mutex_exit(&vd->vdev_dtl_lock); 2628 } else { 2629 for (int c = 0; c < vd->vdev_children; c++) { 2630 vdev_t *cvd = vd->vdev_child[c]; 2631 uint64_t cmin, cmax; 2632 2633 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2634 thismin = MIN(thismin, cmin); 2635 thismax = MAX(thismax, cmax); 2636 needed = B_TRUE; 2637 } 2638 } 2639 } 2640 2641 if (needed && minp) { 2642 *minp = thismin; 2643 *maxp = thismax; 2644 } 2645 return (needed); 2646 } 2647 2648 /* 2649 * Gets the checkpoint space map object from the vdev's ZAP. 2650 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2651 * or the ZAP doesn't exist yet. 2652 */ 2653 int 2654 vdev_checkpoint_sm_object(vdev_t *vd) 2655 { 2656 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2657 if (vd->vdev_top_zap == 0) { 2658 return (0); 2659 } 2660 2661 uint64_t sm_obj = 0; 2662 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2663 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2664 2665 ASSERT(err == 0 || err == ENOENT); 2666 2667 return (sm_obj); 2668 } 2669 2670 int 2671 vdev_load(vdev_t *vd) 2672 { 2673 int error = 0; 2674 /* 2675 * Recursively load all children. 2676 */ 2677 for (int c = 0; c < vd->vdev_children; c++) { 2678 error = vdev_load(vd->vdev_child[c]); 2679 if (error != 0) { 2680 return (error); 2681 } 2682 } 2683 2684 vdev_set_deflate_ratio(vd); 2685 2686 /* 2687 * If this is a top-level vdev, initialize its metaslabs. 2688 */ 2689 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2690 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2691 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2692 VDEV_AUX_CORRUPT_DATA); 2693 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2694 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2695 (u_longlong_t)vd->vdev_asize); 2696 return (SET_ERROR(ENXIO)); 2697 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) { 2698 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2699 "[error=%d]", error); 2700 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2701 VDEV_AUX_CORRUPT_DATA); 2702 return (error); 2703 } 2704 2705 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2706 if (checkpoint_sm_obj != 0) { 2707 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2708 ASSERT(vd->vdev_asize != 0); 2709 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2710 2711 if ((error = space_map_open(&vd->vdev_checkpoint_sm, 2712 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 2713 vd->vdev_ashift))) { 2714 vdev_dbgmsg(vd, "vdev_load: space_map_open " 2715 "failed for checkpoint spacemap (obj %llu) " 2716 "[error=%d]", 2717 (u_longlong_t)checkpoint_sm_obj, error); 2718 return (error); 2719 } 2720 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2721 space_map_update(vd->vdev_checkpoint_sm); 2722 2723 /* 2724 * Since the checkpoint_sm contains free entries 2725 * exclusively we can use sm_alloc to indicate the 2726 * culmulative checkpointed space that has been freed. 2727 */ 2728 vd->vdev_stat.vs_checkpoint_space = 2729 -vd->vdev_checkpoint_sm->sm_alloc; 2730 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 2731 vd->vdev_stat.vs_checkpoint_space; 2732 } 2733 } 2734 2735 /* 2736 * If this is a leaf vdev, load its DTL. 2737 */ 2738 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 2739 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2740 VDEV_AUX_CORRUPT_DATA); 2741 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 2742 "[error=%d]", error); 2743 return (error); 2744 } 2745 2746 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 2747 if (obsolete_sm_object != 0) { 2748 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2749 ASSERT(vd->vdev_asize != 0); 2750 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 2751 2752 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 2753 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 2754 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2755 VDEV_AUX_CORRUPT_DATA); 2756 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 2757 "obsolete spacemap (obj %llu) [error=%d]", 2758 (u_longlong_t)obsolete_sm_object, error); 2759 return (error); 2760 } 2761 space_map_update(vd->vdev_obsolete_sm); 2762 } 2763 2764 return (0); 2765 } 2766 2767 /* 2768 * The special vdev case is used for hot spares and l2cache devices. Its 2769 * sole purpose it to set the vdev state for the associated vdev. To do this, 2770 * we make sure that we can open the underlying device, then try to read the 2771 * label, and make sure that the label is sane and that it hasn't been 2772 * repurposed to another pool. 2773 */ 2774 int 2775 vdev_validate_aux(vdev_t *vd) 2776 { 2777 nvlist_t *label; 2778 uint64_t guid, version; 2779 uint64_t state; 2780 2781 if (!vdev_readable(vd)) 2782 return (0); 2783 2784 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2785 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2786 VDEV_AUX_CORRUPT_DATA); 2787 return (-1); 2788 } 2789 2790 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2791 !SPA_VERSION_IS_SUPPORTED(version) || 2792 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2793 guid != vd->vdev_guid || 2794 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2795 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2796 VDEV_AUX_CORRUPT_DATA); 2797 nvlist_free(label); 2798 return (-1); 2799 } 2800 2801 /* 2802 * We don't actually check the pool state here. If it's in fact in 2803 * use by another pool, we update this fact on the fly when requested. 2804 */ 2805 nvlist_free(label); 2806 return (0); 2807 } 2808 2809 /* 2810 * Free the objects used to store this vdev's spacemaps, and the array 2811 * that points to them. 2812 */ 2813 void 2814 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 2815 { 2816 if (vd->vdev_ms_array == 0) 2817 return; 2818 2819 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2820 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 2821 size_t array_bytes = array_count * sizeof (uint64_t); 2822 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 2823 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 2824 array_bytes, smobj_array, 0)); 2825 2826 for (uint64_t i = 0; i < array_count; i++) { 2827 uint64_t smobj = smobj_array[i]; 2828 if (smobj == 0) 2829 continue; 2830 2831 space_map_free_obj(mos, smobj, tx); 2832 } 2833 2834 kmem_free(smobj_array, array_bytes); 2835 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 2836 vd->vdev_ms_array = 0; 2837 } 2838 2839 static void 2840 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 2841 { 2842 spa_t *spa = vd->vdev_spa; 2843 2844 ASSERT(vd->vdev_islog); 2845 ASSERT(vd == vd->vdev_top); 2846 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 2847 2848 if (vd->vdev_ms != NULL) { 2849 metaslab_group_t *mg = vd->vdev_mg; 2850 2851 metaslab_group_histogram_verify(mg); 2852 metaslab_class_histogram_verify(mg->mg_class); 2853 2854 for (int m = 0; m < vd->vdev_ms_count; m++) { 2855 metaslab_t *msp = vd->vdev_ms[m]; 2856 2857 if (msp == NULL || msp->ms_sm == NULL) 2858 continue; 2859 2860 mutex_enter(&msp->ms_lock); 2861 /* 2862 * If the metaslab was not loaded when the vdev 2863 * was removed then the histogram accounting may 2864 * not be accurate. Update the histogram information 2865 * here so that we ensure that the metaslab group 2866 * and metaslab class are up-to-date. 2867 */ 2868 metaslab_group_histogram_remove(mg, msp); 2869 2870 VERIFY0(space_map_allocated(msp->ms_sm)); 2871 space_map_close(msp->ms_sm); 2872 msp->ms_sm = NULL; 2873 mutex_exit(&msp->ms_lock); 2874 } 2875 2876 if (vd->vdev_checkpoint_sm != NULL) { 2877 ASSERT(spa_has_checkpoint(spa)); 2878 space_map_close(vd->vdev_checkpoint_sm); 2879 vd->vdev_checkpoint_sm = NULL; 2880 } 2881 2882 metaslab_group_histogram_verify(mg); 2883 metaslab_class_histogram_verify(mg->mg_class); 2884 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2885 ASSERT0(mg->mg_histogram[i]); 2886 } 2887 2888 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2889 2890 vdev_destroy_spacemaps(vd, tx); 2891 if (vd->vdev_top_zap != 0) { 2892 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 2893 vd->vdev_top_zap = 0; 2894 } 2895 2896 dmu_tx_commit(tx); 2897 } 2898 2899 void 2900 vdev_sync_done(vdev_t *vd, uint64_t txg) 2901 { 2902 metaslab_t *msp; 2903 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2904 2905 ASSERT(vdev_is_concrete(vd)); 2906 2907 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2908 != NULL) 2909 metaslab_sync_done(msp, txg); 2910 2911 if (reassess) 2912 metaslab_sync_reassess(vd->vdev_mg); 2913 } 2914 2915 void 2916 vdev_sync(vdev_t *vd, uint64_t txg) 2917 { 2918 spa_t *spa = vd->vdev_spa; 2919 vdev_t *lvd; 2920 metaslab_t *msp; 2921 dmu_tx_t *tx; 2922 2923 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 2924 dmu_tx_t *tx; 2925 2926 ASSERT(vd->vdev_removing || 2927 vd->vdev_ops == &vdev_indirect_ops); 2928 2929 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2930 vdev_indirect_sync_obsolete(vd, tx); 2931 dmu_tx_commit(tx); 2932 2933 /* 2934 * If the vdev is indirect, it can't have dirty 2935 * metaslabs or DTLs. 2936 */ 2937 if (vd->vdev_ops == &vdev_indirect_ops) { 2938 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 2939 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 2940 return; 2941 } 2942 } 2943 2944 ASSERT(vdev_is_concrete(vd)); 2945 2946 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 2947 !vd->vdev_removing) { 2948 ASSERT(vd == vd->vdev_top); 2949 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 2950 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2951 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2952 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2953 ASSERT(vd->vdev_ms_array != 0); 2954 vdev_config_dirty(vd); 2955 dmu_tx_commit(tx); 2956 } 2957 2958 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2959 metaslab_sync(msp, txg); 2960 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2961 } 2962 2963 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2964 vdev_dtl_sync(lvd, txg); 2965 2966 /* 2967 * If this is an empty log device being removed, destroy the 2968 * metadata associated with it. 2969 */ 2970 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2971 vdev_remove_empty_log(vd, txg); 2972 2973 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2974 } 2975 2976 uint64_t 2977 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2978 { 2979 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2980 } 2981 2982 /* 2983 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2984 * not be opened, and no I/O is attempted. 2985 */ 2986 int 2987 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2988 { 2989 vdev_t *vd, *tvd; 2990 2991 spa_vdev_state_enter(spa, SCL_NONE); 2992 2993 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2994 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2995 2996 if (!vd->vdev_ops->vdev_op_leaf) 2997 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2998 2999 tvd = vd->vdev_top; 3000 3001 /* 3002 * We don't directly use the aux state here, but if we do a 3003 * vdev_reopen(), we need this value to be present to remember why we 3004 * were faulted. 3005 */ 3006 vd->vdev_label_aux = aux; 3007 3008 /* 3009 * Faulted state takes precedence over degraded. 3010 */ 3011 vd->vdev_delayed_close = B_FALSE; 3012 vd->vdev_faulted = 1ULL; 3013 vd->vdev_degraded = 0ULL; 3014 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3015 3016 /* 3017 * If this device has the only valid copy of the data, then 3018 * back off and simply mark the vdev as degraded instead. 3019 */ 3020 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3021 vd->vdev_degraded = 1ULL; 3022 vd->vdev_faulted = 0ULL; 3023 3024 /* 3025 * If we reopen the device and it's not dead, only then do we 3026 * mark it degraded. 3027 */ 3028 vdev_reopen(tvd); 3029 3030 if (vdev_readable(vd)) 3031 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3032 } 3033 3034 return (spa_vdev_state_exit(spa, vd, 0)); 3035 } 3036 3037 /* 3038 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3039 * user that something is wrong. The vdev continues to operate as normal as far 3040 * as I/O is concerned. 3041 */ 3042 int 3043 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3044 { 3045 vdev_t *vd; 3046 3047 spa_vdev_state_enter(spa, SCL_NONE); 3048 3049 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3050 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3051 3052 if (!vd->vdev_ops->vdev_op_leaf) 3053 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3054 3055 /* 3056 * If the vdev is already faulted, then don't do anything. 3057 */ 3058 if (vd->vdev_faulted || vd->vdev_degraded) 3059 return (spa_vdev_state_exit(spa, NULL, 0)); 3060 3061 vd->vdev_degraded = 1ULL; 3062 if (!vdev_is_dead(vd)) 3063 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3064 aux); 3065 3066 return (spa_vdev_state_exit(spa, vd, 0)); 3067 } 3068 3069 /* 3070 * Online the given vdev. 3071 * 3072 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3073 * spare device should be detached when the device finishes resilvering. 3074 * Second, the online should be treated like a 'test' online case, so no FMA 3075 * events are generated if the device fails to open. 3076 */ 3077 int 3078 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3079 { 3080 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3081 boolean_t wasoffline; 3082 vdev_state_t oldstate; 3083 3084 spa_vdev_state_enter(spa, SCL_NONE); 3085 3086 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3087 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3088 3089 if (!vd->vdev_ops->vdev_op_leaf) 3090 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3091 3092 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3093 oldstate = vd->vdev_state; 3094 3095 tvd = vd->vdev_top; 3096 vd->vdev_offline = B_FALSE; 3097 vd->vdev_tmpoffline = B_FALSE; 3098 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3099 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3100 3101 /* XXX - L2ARC 1.0 does not support expansion */ 3102 if (!vd->vdev_aux) { 3103 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3104 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3105 } 3106 3107 vdev_reopen(tvd); 3108 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3109 3110 if (!vd->vdev_aux) { 3111 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3112 pvd->vdev_expanding = B_FALSE; 3113 } 3114 3115 if (newstate) 3116 *newstate = vd->vdev_state; 3117 if ((flags & ZFS_ONLINE_UNSPARE) && 3118 !vdev_is_dead(vd) && vd->vdev_parent && 3119 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3120 vd->vdev_parent->vdev_child[0] == vd) 3121 vd->vdev_unspare = B_TRUE; 3122 3123 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3124 3125 /* XXX - L2ARC 1.0 does not support expansion */ 3126 if (vd->vdev_aux) 3127 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3128 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3129 } 3130 3131 /* Restart initializing if necessary */ 3132 mutex_enter(&vd->vdev_initialize_lock); 3133 if (vdev_writeable(vd) && 3134 vd->vdev_initialize_thread == NULL && 3135 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3136 (void) vdev_initialize(vd); 3137 } 3138 mutex_exit(&vd->vdev_initialize_lock); 3139 3140 if (wasoffline || 3141 (oldstate < VDEV_STATE_DEGRADED && 3142 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3143 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3144 3145 return (spa_vdev_state_exit(spa, vd, 0)); 3146 } 3147 3148 static int 3149 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3150 { 3151 vdev_t *vd, *tvd; 3152 int error = 0; 3153 uint64_t generation; 3154 metaslab_group_t *mg; 3155 3156 top: 3157 spa_vdev_state_enter(spa, SCL_ALLOC); 3158 3159 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3160 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3161 3162 if (!vd->vdev_ops->vdev_op_leaf) 3163 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3164 3165 tvd = vd->vdev_top; 3166 mg = tvd->vdev_mg; 3167 generation = spa->spa_config_generation + 1; 3168 3169 /* 3170 * If the device isn't already offline, try to offline it. 3171 */ 3172 if (!vd->vdev_offline) { 3173 /* 3174 * If this device has the only valid copy of some data, 3175 * don't allow it to be offlined. Log devices are always 3176 * expendable. 3177 */ 3178 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3179 vdev_dtl_required(vd)) 3180 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3181 3182 /* 3183 * If the top-level is a slog and it has had allocations 3184 * then proceed. We check that the vdev's metaslab group 3185 * is not NULL since it's possible that we may have just 3186 * added this vdev but not yet initialized its metaslabs. 3187 */ 3188 if (tvd->vdev_islog && mg != NULL) { 3189 /* 3190 * Prevent any future allocations. 3191 */ 3192 metaslab_group_passivate(mg); 3193 (void) spa_vdev_state_exit(spa, vd, 0); 3194 3195 error = spa_reset_logs(spa); 3196 3197 /* 3198 * If the log device was successfully reset but has 3199 * checkpointed data, do not offline it. 3200 */ 3201 if (error == 0 && 3202 tvd->vdev_checkpoint_sm != NULL) { 3203 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc, 3204 !=, 0); 3205 error = ZFS_ERR_CHECKPOINT_EXISTS; 3206 } 3207 3208 spa_vdev_state_enter(spa, SCL_ALLOC); 3209 3210 /* 3211 * Check to see if the config has changed. 3212 */ 3213 if (error || generation != spa->spa_config_generation) { 3214 metaslab_group_activate(mg); 3215 if (error) 3216 return (spa_vdev_state_exit(spa, 3217 vd, error)); 3218 (void) spa_vdev_state_exit(spa, vd, 0); 3219 goto top; 3220 } 3221 ASSERT0(tvd->vdev_stat.vs_alloc); 3222 } 3223 3224 /* 3225 * Offline this device and reopen its top-level vdev. 3226 * If the top-level vdev is a log device then just offline 3227 * it. Otherwise, if this action results in the top-level 3228 * vdev becoming unusable, undo it and fail the request. 3229 */ 3230 vd->vdev_offline = B_TRUE; 3231 vdev_reopen(tvd); 3232 3233 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3234 vdev_is_dead(tvd)) { 3235 vd->vdev_offline = B_FALSE; 3236 vdev_reopen(tvd); 3237 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3238 } 3239 3240 /* 3241 * Add the device back into the metaslab rotor so that 3242 * once we online the device it's open for business. 3243 */ 3244 if (tvd->vdev_islog && mg != NULL) 3245 metaslab_group_activate(mg); 3246 } 3247 3248 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3249 3250 return (spa_vdev_state_exit(spa, vd, 0)); 3251 } 3252 3253 int 3254 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3255 { 3256 int error; 3257 3258 mutex_enter(&spa->spa_vdev_top_lock); 3259 error = vdev_offline_locked(spa, guid, flags); 3260 mutex_exit(&spa->spa_vdev_top_lock); 3261 3262 return (error); 3263 } 3264 3265 /* 3266 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3267 * vdev_offline(), we assume the spa config is locked. We also clear all 3268 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3269 */ 3270 void 3271 vdev_clear(spa_t *spa, vdev_t *vd) 3272 { 3273 vdev_t *rvd = spa->spa_root_vdev; 3274 3275 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3276 3277 if (vd == NULL) 3278 vd = rvd; 3279 3280 vd->vdev_stat.vs_read_errors = 0; 3281 vd->vdev_stat.vs_write_errors = 0; 3282 vd->vdev_stat.vs_checksum_errors = 0; 3283 3284 for (int c = 0; c < vd->vdev_children; c++) 3285 vdev_clear(spa, vd->vdev_child[c]); 3286 3287 /* 3288 * It makes no sense to "clear" an indirect vdev. 3289 */ 3290 if (!vdev_is_concrete(vd)) 3291 return; 3292 3293 /* 3294 * If we're in the FAULTED state or have experienced failed I/O, then 3295 * clear the persistent state and attempt to reopen the device. We 3296 * also mark the vdev config dirty, so that the new faulted state is 3297 * written out to disk. 3298 */ 3299 if (vd->vdev_faulted || vd->vdev_degraded || 3300 !vdev_readable(vd) || !vdev_writeable(vd)) { 3301 3302 /* 3303 * When reopening in reponse to a clear event, it may be due to 3304 * a fmadm repair request. In this case, if the device is 3305 * still broken, we want to still post the ereport again. 3306 */ 3307 vd->vdev_forcefault = B_TRUE; 3308 3309 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3310 vd->vdev_cant_read = B_FALSE; 3311 vd->vdev_cant_write = B_FALSE; 3312 3313 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3314 3315 vd->vdev_forcefault = B_FALSE; 3316 3317 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3318 vdev_state_dirty(vd->vdev_top); 3319 3320 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 3321 spa_async_request(spa, SPA_ASYNC_RESILVER); 3322 3323 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3324 } 3325 3326 /* 3327 * When clearing a FMA-diagnosed fault, we always want to 3328 * unspare the device, as we assume that the original spare was 3329 * done in response to the FMA fault. 3330 */ 3331 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3332 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3333 vd->vdev_parent->vdev_child[0] == vd) 3334 vd->vdev_unspare = B_TRUE; 3335 } 3336 3337 boolean_t 3338 vdev_is_dead(vdev_t *vd) 3339 { 3340 /* 3341 * Holes and missing devices are always considered "dead". 3342 * This simplifies the code since we don't have to check for 3343 * these types of devices in the various code paths. 3344 * Instead we rely on the fact that we skip over dead devices 3345 * before issuing I/O to them. 3346 */ 3347 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3348 vd->vdev_ops == &vdev_hole_ops || 3349 vd->vdev_ops == &vdev_missing_ops); 3350 } 3351 3352 boolean_t 3353 vdev_readable(vdev_t *vd) 3354 { 3355 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3356 } 3357 3358 boolean_t 3359 vdev_writeable(vdev_t *vd) 3360 { 3361 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3362 vdev_is_concrete(vd)); 3363 } 3364 3365 boolean_t 3366 vdev_allocatable(vdev_t *vd) 3367 { 3368 uint64_t state = vd->vdev_state; 3369 3370 /* 3371 * We currently allow allocations from vdevs which may be in the 3372 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3373 * fails to reopen then we'll catch it later when we're holding 3374 * the proper locks. Note that we have to get the vdev state 3375 * in a local variable because although it changes atomically, 3376 * we're asking two separate questions about it. 3377 */ 3378 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3379 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3380 vd->vdev_mg->mg_initialized); 3381 } 3382 3383 boolean_t 3384 vdev_accessible(vdev_t *vd, zio_t *zio) 3385 { 3386 ASSERT(zio->io_vd == vd); 3387 3388 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3389 return (B_FALSE); 3390 3391 if (zio->io_type == ZIO_TYPE_READ) 3392 return (!vd->vdev_cant_read); 3393 3394 if (zio->io_type == ZIO_TYPE_WRITE) 3395 return (!vd->vdev_cant_write); 3396 3397 return (B_TRUE); 3398 } 3399 3400 boolean_t 3401 vdev_is_spacemap_addressable(vdev_t *vd) 3402 { 3403 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3404 return (B_TRUE); 3405 3406 /* 3407 * If double-word space map entries are not enabled we assume 3408 * 47 bits of the space map entry are dedicated to the entry's 3409 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3410 * to calculate the maximum address that can be described by a 3411 * space map entry for the given device. 3412 */ 3413 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3414 3415 if (shift >= 63) /* detect potential overflow */ 3416 return (B_TRUE); 3417 3418 return (vd->vdev_asize < (1ULL << shift)); 3419 } 3420 3421 /* 3422 * Get statistics for the given vdev. 3423 */ 3424 void 3425 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3426 { 3427 spa_t *spa = vd->vdev_spa; 3428 vdev_t *rvd = spa->spa_root_vdev; 3429 vdev_t *tvd = vd->vdev_top; 3430 3431 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3432 3433 mutex_enter(&vd->vdev_stat_lock); 3434 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3435 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3436 vs->vs_state = vd->vdev_state; 3437 vs->vs_rsize = vdev_get_min_asize(vd); 3438 if (vd->vdev_ops->vdev_op_leaf) { 3439 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 3440 /* 3441 * Report intializing progress. Since we don't have the 3442 * initializing locks held, this is only an estimate (although a 3443 * fairly accurate one). 3444 */ 3445 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done; 3446 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est; 3447 vs->vs_initialize_state = vd->vdev_initialize_state; 3448 vs->vs_initialize_action_time = vd->vdev_initialize_action_time; 3449 } 3450 /* 3451 * Report expandable space on top-level, non-auxillary devices only. 3452 * The expandable space is reported in terms of metaslab sized units 3453 * since that determines how much space the pool can expand. 3454 */ 3455 if (vd->vdev_aux == NULL && tvd != NULL) { 3456 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 3457 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3458 } 3459 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3460 vdev_is_concrete(vd)) { 3461 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 3462 } 3463 3464 /* 3465 * If we're getting stats on the root vdev, aggregate the I/O counts 3466 * over all top-level vdevs (i.e. the direct children of the root). 3467 */ 3468 if (vd == rvd) { 3469 for (int c = 0; c < rvd->vdev_children; c++) { 3470 vdev_t *cvd = rvd->vdev_child[c]; 3471 vdev_stat_t *cvs = &cvd->vdev_stat; 3472 3473 for (int t = 0; t < ZIO_TYPES; t++) { 3474 vs->vs_ops[t] += cvs->vs_ops[t]; 3475 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3476 } 3477 cvs->vs_scan_removing = cvd->vdev_removing; 3478 } 3479 } 3480 mutex_exit(&vd->vdev_stat_lock); 3481 } 3482 3483 void 3484 vdev_clear_stats(vdev_t *vd) 3485 { 3486 mutex_enter(&vd->vdev_stat_lock); 3487 vd->vdev_stat.vs_space = 0; 3488 vd->vdev_stat.vs_dspace = 0; 3489 vd->vdev_stat.vs_alloc = 0; 3490 mutex_exit(&vd->vdev_stat_lock); 3491 } 3492 3493 void 3494 vdev_scan_stat_init(vdev_t *vd) 3495 { 3496 vdev_stat_t *vs = &vd->vdev_stat; 3497 3498 for (int c = 0; c < vd->vdev_children; c++) 3499 vdev_scan_stat_init(vd->vdev_child[c]); 3500 3501 mutex_enter(&vd->vdev_stat_lock); 3502 vs->vs_scan_processed = 0; 3503 mutex_exit(&vd->vdev_stat_lock); 3504 } 3505 3506 void 3507 vdev_stat_update(zio_t *zio, uint64_t psize) 3508 { 3509 spa_t *spa = zio->io_spa; 3510 vdev_t *rvd = spa->spa_root_vdev; 3511 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3512 vdev_t *pvd; 3513 uint64_t txg = zio->io_txg; 3514 vdev_stat_t *vs = &vd->vdev_stat; 3515 zio_type_t type = zio->io_type; 3516 int flags = zio->io_flags; 3517 3518 /* 3519 * If this i/o is a gang leader, it didn't do any actual work. 3520 */ 3521 if (zio->io_gang_tree) 3522 return; 3523 3524 if (zio->io_error == 0) { 3525 /* 3526 * If this is a root i/o, don't count it -- we've already 3527 * counted the top-level vdevs, and vdev_get_stats() will 3528 * aggregate them when asked. This reduces contention on 3529 * the root vdev_stat_lock and implicitly handles blocks 3530 * that compress away to holes, for which there is no i/o. 3531 * (Holes never create vdev children, so all the counters 3532 * remain zero, which is what we want.) 3533 * 3534 * Note: this only applies to successful i/o (io_error == 0) 3535 * because unlike i/o counts, errors are not additive. 3536 * When reading a ditto block, for example, failure of 3537 * one top-level vdev does not imply a root-level error. 3538 */ 3539 if (vd == rvd) 3540 return; 3541 3542 ASSERT(vd == zio->io_vd); 3543 3544 if (flags & ZIO_FLAG_IO_BYPASS) 3545 return; 3546 3547 mutex_enter(&vd->vdev_stat_lock); 3548 3549 if (flags & ZIO_FLAG_IO_REPAIR) { 3550 if (flags & ZIO_FLAG_SCAN_THREAD) { 3551 dsl_scan_phys_t *scn_phys = 3552 &spa->spa_dsl_pool->dp_scan->scn_phys; 3553 uint64_t *processed = &scn_phys->scn_processed; 3554 3555 /* XXX cleanup? */ 3556 if (vd->vdev_ops->vdev_op_leaf) 3557 atomic_add_64(processed, psize); 3558 vs->vs_scan_processed += psize; 3559 } 3560 3561 if (flags & ZIO_FLAG_SELF_HEAL) 3562 vs->vs_self_healed += psize; 3563 } 3564 3565 vs->vs_ops[type]++; 3566 vs->vs_bytes[type] += psize; 3567 3568 mutex_exit(&vd->vdev_stat_lock); 3569 return; 3570 } 3571 3572 if (flags & ZIO_FLAG_SPECULATIVE) 3573 return; 3574 3575 /* 3576 * If this is an I/O error that is going to be retried, then ignore the 3577 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3578 * hard errors, when in reality they can happen for any number of 3579 * innocuous reasons (bus resets, MPxIO link failure, etc). 3580 */ 3581 if (zio->io_error == EIO && 3582 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3583 return; 3584 3585 /* 3586 * Intent logs writes won't propagate their error to the root 3587 * I/O so don't mark these types of failures as pool-level 3588 * errors. 3589 */ 3590 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3591 return; 3592 3593 mutex_enter(&vd->vdev_stat_lock); 3594 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3595 if (zio->io_error == ECKSUM) 3596 vs->vs_checksum_errors++; 3597 else 3598 vs->vs_read_errors++; 3599 } 3600 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3601 vs->vs_write_errors++; 3602 mutex_exit(&vd->vdev_stat_lock); 3603 3604 if (spa->spa_load_state == SPA_LOAD_NONE && 3605 type == ZIO_TYPE_WRITE && txg != 0 && 3606 (!(flags & ZIO_FLAG_IO_REPAIR) || 3607 (flags & ZIO_FLAG_SCAN_THREAD) || 3608 spa->spa_claiming)) { 3609 /* 3610 * This is either a normal write (not a repair), or it's 3611 * a repair induced by the scrub thread, or it's a repair 3612 * made by zil_claim() during spa_load() in the first txg. 3613 * In the normal case, we commit the DTL change in the same 3614 * txg as the block was born. In the scrub-induced repair 3615 * case, we know that scrubs run in first-pass syncing context, 3616 * so we commit the DTL change in spa_syncing_txg(spa). 3617 * In the zil_claim() case, we commit in spa_first_txg(spa). 3618 * 3619 * We currently do not make DTL entries for failed spontaneous 3620 * self-healing writes triggered by normal (non-scrubbing) 3621 * reads, because we have no transactional context in which to 3622 * do so -- and it's not clear that it'd be desirable anyway. 3623 */ 3624 if (vd->vdev_ops->vdev_op_leaf) { 3625 uint64_t commit_txg = txg; 3626 if (flags & ZIO_FLAG_SCAN_THREAD) { 3627 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3628 ASSERT(spa_sync_pass(spa) == 1); 3629 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3630 commit_txg = spa_syncing_txg(spa); 3631 } else if (spa->spa_claiming) { 3632 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3633 commit_txg = spa_first_txg(spa); 3634 } 3635 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3636 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3637 return; 3638 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3639 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3640 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3641 } 3642 if (vd != rvd) 3643 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3644 } 3645 } 3646 3647 /* 3648 * Update the in-core space usage stats for this vdev, its metaslab class, 3649 * and the root vdev. 3650 */ 3651 void 3652 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3653 int64_t space_delta) 3654 { 3655 int64_t dspace_delta = space_delta; 3656 spa_t *spa = vd->vdev_spa; 3657 vdev_t *rvd = spa->spa_root_vdev; 3658 metaslab_group_t *mg = vd->vdev_mg; 3659 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 3660 3661 ASSERT(vd == vd->vdev_top); 3662 3663 /* 3664 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3665 * factor. We must calculate this here and not at the root vdev 3666 * because the root vdev's psize-to-asize is simply the max of its 3667 * childrens', thus not accurate enough for us. 3668 */ 3669 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 3670 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3671 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 3672 vd->vdev_deflate_ratio; 3673 3674 mutex_enter(&vd->vdev_stat_lock); 3675 vd->vdev_stat.vs_alloc += alloc_delta; 3676 vd->vdev_stat.vs_space += space_delta; 3677 vd->vdev_stat.vs_dspace += dspace_delta; 3678 mutex_exit(&vd->vdev_stat_lock); 3679 3680 if (mc == spa_normal_class(spa)) { 3681 mutex_enter(&rvd->vdev_stat_lock); 3682 rvd->vdev_stat.vs_alloc += alloc_delta; 3683 rvd->vdev_stat.vs_space += space_delta; 3684 rvd->vdev_stat.vs_dspace += dspace_delta; 3685 mutex_exit(&rvd->vdev_stat_lock); 3686 } 3687 3688 if (mc != NULL) { 3689 ASSERT(rvd == vd->vdev_parent); 3690 ASSERT(vd->vdev_ms_count != 0); 3691 3692 metaslab_class_space_update(mc, 3693 alloc_delta, defer_delta, space_delta, dspace_delta); 3694 } 3695 } 3696 3697 /* 3698 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3699 * so that it will be written out next time the vdev configuration is synced. 3700 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3701 */ 3702 void 3703 vdev_config_dirty(vdev_t *vd) 3704 { 3705 spa_t *spa = vd->vdev_spa; 3706 vdev_t *rvd = spa->spa_root_vdev; 3707 int c; 3708 3709 ASSERT(spa_writeable(spa)); 3710 3711 /* 3712 * If this is an aux vdev (as with l2cache and spare devices), then we 3713 * update the vdev config manually and set the sync flag. 3714 */ 3715 if (vd->vdev_aux != NULL) { 3716 spa_aux_vdev_t *sav = vd->vdev_aux; 3717 nvlist_t **aux; 3718 uint_t naux; 3719 3720 for (c = 0; c < sav->sav_count; c++) { 3721 if (sav->sav_vdevs[c] == vd) 3722 break; 3723 } 3724 3725 if (c == sav->sav_count) { 3726 /* 3727 * We're being removed. There's nothing more to do. 3728 */ 3729 ASSERT(sav->sav_sync == B_TRUE); 3730 return; 3731 } 3732 3733 sav->sav_sync = B_TRUE; 3734 3735 if (nvlist_lookup_nvlist_array(sav->sav_config, 3736 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3737 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3738 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3739 } 3740 3741 ASSERT(c < naux); 3742 3743 /* 3744 * Setting the nvlist in the middle if the array is a little 3745 * sketchy, but it will work. 3746 */ 3747 nvlist_free(aux[c]); 3748 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3749 3750 return; 3751 } 3752 3753 /* 3754 * The dirty list is protected by the SCL_CONFIG lock. The caller 3755 * must either hold SCL_CONFIG as writer, or must be the sync thread 3756 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3757 * so this is sufficient to ensure mutual exclusion. 3758 */ 3759 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3760 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3761 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3762 3763 if (vd == rvd) { 3764 for (c = 0; c < rvd->vdev_children; c++) 3765 vdev_config_dirty(rvd->vdev_child[c]); 3766 } else { 3767 ASSERT(vd == vd->vdev_top); 3768 3769 if (!list_link_active(&vd->vdev_config_dirty_node) && 3770 vdev_is_concrete(vd)) { 3771 list_insert_head(&spa->spa_config_dirty_list, vd); 3772 } 3773 } 3774 } 3775 3776 void 3777 vdev_config_clean(vdev_t *vd) 3778 { 3779 spa_t *spa = vd->vdev_spa; 3780 3781 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3782 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3783 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3784 3785 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3786 list_remove(&spa->spa_config_dirty_list, vd); 3787 } 3788 3789 /* 3790 * Mark a top-level vdev's state as dirty, so that the next pass of 3791 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3792 * the state changes from larger config changes because they require 3793 * much less locking, and are often needed for administrative actions. 3794 */ 3795 void 3796 vdev_state_dirty(vdev_t *vd) 3797 { 3798 spa_t *spa = vd->vdev_spa; 3799 3800 ASSERT(spa_writeable(spa)); 3801 ASSERT(vd == vd->vdev_top); 3802 3803 /* 3804 * The state list is protected by the SCL_STATE lock. The caller 3805 * must either hold SCL_STATE as writer, or must be the sync thread 3806 * (which holds SCL_STATE as reader). There's only one sync thread, 3807 * so this is sufficient to ensure mutual exclusion. 3808 */ 3809 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3810 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3811 spa_config_held(spa, SCL_STATE, RW_READER))); 3812 3813 if (!list_link_active(&vd->vdev_state_dirty_node) && 3814 vdev_is_concrete(vd)) 3815 list_insert_head(&spa->spa_state_dirty_list, vd); 3816 } 3817 3818 void 3819 vdev_state_clean(vdev_t *vd) 3820 { 3821 spa_t *spa = vd->vdev_spa; 3822 3823 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3824 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3825 spa_config_held(spa, SCL_STATE, RW_READER))); 3826 3827 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3828 list_remove(&spa->spa_state_dirty_list, vd); 3829 } 3830 3831 /* 3832 * Propagate vdev state up from children to parent. 3833 */ 3834 void 3835 vdev_propagate_state(vdev_t *vd) 3836 { 3837 spa_t *spa = vd->vdev_spa; 3838 vdev_t *rvd = spa->spa_root_vdev; 3839 int degraded = 0, faulted = 0; 3840 int corrupted = 0; 3841 vdev_t *child; 3842 3843 if (vd->vdev_children > 0) { 3844 for (int c = 0; c < vd->vdev_children; c++) { 3845 child = vd->vdev_child[c]; 3846 3847 /* 3848 * Don't factor holes or indirect vdevs into the 3849 * decision. 3850 */ 3851 if (!vdev_is_concrete(child)) 3852 continue; 3853 3854 if (!vdev_readable(child) || 3855 (!vdev_writeable(child) && spa_writeable(spa))) { 3856 /* 3857 * Root special: if there is a top-level log 3858 * device, treat the root vdev as if it were 3859 * degraded. 3860 */ 3861 if (child->vdev_islog && vd == rvd) 3862 degraded++; 3863 else 3864 faulted++; 3865 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3866 degraded++; 3867 } 3868 3869 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3870 corrupted++; 3871 } 3872 3873 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3874 3875 /* 3876 * Root special: if there is a top-level vdev that cannot be 3877 * opened due to corrupted metadata, then propagate the root 3878 * vdev's aux state as 'corrupt' rather than 'insufficient 3879 * replicas'. 3880 */ 3881 if (corrupted && vd == rvd && 3882 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3883 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3884 VDEV_AUX_CORRUPT_DATA); 3885 } 3886 3887 if (vd->vdev_parent) 3888 vdev_propagate_state(vd->vdev_parent); 3889 } 3890 3891 /* 3892 * Set a vdev's state. If this is during an open, we don't update the parent 3893 * state, because we're in the process of opening children depth-first. 3894 * Otherwise, we propagate the change to the parent. 3895 * 3896 * If this routine places a device in a faulted state, an appropriate ereport is 3897 * generated. 3898 */ 3899 void 3900 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3901 { 3902 uint64_t save_state; 3903 spa_t *spa = vd->vdev_spa; 3904 3905 if (state == vd->vdev_state) { 3906 vd->vdev_stat.vs_aux = aux; 3907 return; 3908 } 3909 3910 save_state = vd->vdev_state; 3911 3912 vd->vdev_state = state; 3913 vd->vdev_stat.vs_aux = aux; 3914 3915 /* 3916 * If we are setting the vdev state to anything but an open state, then 3917 * always close the underlying device unless the device has requested 3918 * a delayed close (i.e. we're about to remove or fault the device). 3919 * Otherwise, we keep accessible but invalid devices open forever. 3920 * We don't call vdev_close() itself, because that implies some extra 3921 * checks (offline, etc) that we don't want here. This is limited to 3922 * leaf devices, because otherwise closing the device will affect other 3923 * children. 3924 */ 3925 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3926 vd->vdev_ops->vdev_op_leaf) 3927 vd->vdev_ops->vdev_op_close(vd); 3928 3929 /* 3930 * If we have brought this vdev back into service, we need 3931 * to notify fmd so that it can gracefully repair any outstanding 3932 * cases due to a missing device. We do this in all cases, even those 3933 * that probably don't correlate to a repaired fault. This is sure to 3934 * catch all cases, and we let the zfs-retire agent sort it out. If 3935 * this is a transient state it's OK, as the retire agent will 3936 * double-check the state of the vdev before repairing it. 3937 */ 3938 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3939 vd->vdev_prevstate != state) 3940 zfs_post_state_change(spa, vd); 3941 3942 if (vd->vdev_removed && 3943 state == VDEV_STATE_CANT_OPEN && 3944 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3945 /* 3946 * If the previous state is set to VDEV_STATE_REMOVED, then this 3947 * device was previously marked removed and someone attempted to 3948 * reopen it. If this failed due to a nonexistent device, then 3949 * keep the device in the REMOVED state. We also let this be if 3950 * it is one of our special test online cases, which is only 3951 * attempting to online the device and shouldn't generate an FMA 3952 * fault. 3953 */ 3954 vd->vdev_state = VDEV_STATE_REMOVED; 3955 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3956 } else if (state == VDEV_STATE_REMOVED) { 3957 vd->vdev_removed = B_TRUE; 3958 } else if (state == VDEV_STATE_CANT_OPEN) { 3959 /* 3960 * If we fail to open a vdev during an import or recovery, we 3961 * mark it as "not available", which signifies that it was 3962 * never there to begin with. Failure to open such a device 3963 * is not considered an error. 3964 */ 3965 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3966 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3967 vd->vdev_ops->vdev_op_leaf) 3968 vd->vdev_not_present = 1; 3969 3970 /* 3971 * Post the appropriate ereport. If the 'prevstate' field is 3972 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3973 * that this is part of a vdev_reopen(). In this case, we don't 3974 * want to post the ereport if the device was already in the 3975 * CANT_OPEN state beforehand. 3976 * 3977 * If the 'checkremove' flag is set, then this is an attempt to 3978 * online the device in response to an insertion event. If we 3979 * hit this case, then we have detected an insertion event for a 3980 * faulted or offline device that wasn't in the removed state. 3981 * In this scenario, we don't post an ereport because we are 3982 * about to replace the device, or attempt an online with 3983 * vdev_forcefault, which will generate the fault for us. 3984 */ 3985 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3986 !vd->vdev_not_present && !vd->vdev_checkremove && 3987 vd != spa->spa_root_vdev) { 3988 const char *class; 3989 3990 switch (aux) { 3991 case VDEV_AUX_OPEN_FAILED: 3992 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3993 break; 3994 case VDEV_AUX_CORRUPT_DATA: 3995 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3996 break; 3997 case VDEV_AUX_NO_REPLICAS: 3998 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3999 break; 4000 case VDEV_AUX_BAD_GUID_SUM: 4001 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4002 break; 4003 case VDEV_AUX_TOO_SMALL: 4004 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4005 break; 4006 case VDEV_AUX_BAD_LABEL: 4007 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4008 break; 4009 default: 4010 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4011 } 4012 4013 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 4014 } 4015 4016 /* Erase any notion of persistent removed state */ 4017 vd->vdev_removed = B_FALSE; 4018 } else { 4019 vd->vdev_removed = B_FALSE; 4020 } 4021 4022 if (!isopen && vd->vdev_parent) 4023 vdev_propagate_state(vd->vdev_parent); 4024 } 4025 4026 boolean_t 4027 vdev_children_are_offline(vdev_t *vd) 4028 { 4029 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4030 4031 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4032 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4033 return (B_FALSE); 4034 } 4035 4036 return (B_TRUE); 4037 } 4038 4039 /* 4040 * Check the vdev configuration to ensure that it's capable of supporting 4041 * a root pool. We do not support partial configuration. 4042 * In addition, only a single top-level vdev is allowed. 4043 */ 4044 boolean_t 4045 vdev_is_bootable(vdev_t *vd) 4046 { 4047 if (!vd->vdev_ops->vdev_op_leaf) { 4048 char *vdev_type = vd->vdev_ops->vdev_op_type; 4049 4050 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 4051 vd->vdev_children > 1) { 4052 return (B_FALSE); 4053 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 4054 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 4055 return (B_FALSE); 4056 } 4057 } 4058 4059 for (int c = 0; c < vd->vdev_children; c++) { 4060 if (!vdev_is_bootable(vd->vdev_child[c])) 4061 return (B_FALSE); 4062 } 4063 return (B_TRUE); 4064 } 4065 4066 boolean_t 4067 vdev_is_concrete(vdev_t *vd) 4068 { 4069 vdev_ops_t *ops = vd->vdev_ops; 4070 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4071 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4072 return (B_FALSE); 4073 } else { 4074 return (B_TRUE); 4075 } 4076 } 4077 4078 /* 4079 * Determine if a log device has valid content. If the vdev was 4080 * removed or faulted in the MOS config then we know that 4081 * the content on the log device has already been written to the pool. 4082 */ 4083 boolean_t 4084 vdev_log_state_valid(vdev_t *vd) 4085 { 4086 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4087 !vd->vdev_removed) 4088 return (B_TRUE); 4089 4090 for (int c = 0; c < vd->vdev_children; c++) 4091 if (vdev_log_state_valid(vd->vdev_child[c])) 4092 return (B_TRUE); 4093 4094 return (B_FALSE); 4095 } 4096 4097 /* 4098 * Expand a vdev if possible. 4099 */ 4100 void 4101 vdev_expand(vdev_t *vd, uint64_t txg) 4102 { 4103 ASSERT(vd->vdev_top == vd); 4104 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4105 ASSERT(vdev_is_concrete(vd)); 4106 4107 vdev_set_deflate_ratio(vd); 4108 4109 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 4110 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4111 vdev_config_dirty(vd); 4112 } 4113 } 4114 4115 /* 4116 * Split a vdev. 4117 */ 4118 void 4119 vdev_split(vdev_t *vd) 4120 { 4121 vdev_t *cvd, *pvd = vd->vdev_parent; 4122 4123 vdev_remove_child(pvd, vd); 4124 vdev_compact_children(pvd); 4125 4126 cvd = pvd->vdev_child[0]; 4127 if (pvd->vdev_children == 1) { 4128 vdev_remove_parent(cvd); 4129 cvd->vdev_splitting = B_TRUE; 4130 } 4131 vdev_propagate_state(cvd); 4132 } 4133 4134 void 4135 vdev_deadman(vdev_t *vd) 4136 { 4137 for (int c = 0; c < vd->vdev_children; c++) { 4138 vdev_t *cvd = vd->vdev_child[c]; 4139 4140 vdev_deadman(cvd); 4141 } 4142 4143 if (vd->vdev_ops->vdev_op_leaf) { 4144 vdev_queue_t *vq = &vd->vdev_queue; 4145 4146 mutex_enter(&vq->vq_lock); 4147 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4148 spa_t *spa = vd->vdev_spa; 4149 zio_t *fio; 4150 uint64_t delta; 4151 4152 /* 4153 * Look at the head of all the pending queues, 4154 * if any I/O has been outstanding for longer than 4155 * the spa_deadman_synctime we panic the system. 4156 */ 4157 fio = avl_first(&vq->vq_active_tree); 4158 delta = gethrtime() - fio->io_timestamp; 4159 if (delta > spa_deadman_synctime(spa)) { 4160 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4161 "%lluns, delta %lluns, last io %lluns", 4162 fio->io_timestamp, (u_longlong_t)delta, 4163 vq->vq_io_complete_ts); 4164 fm_panic("I/O to pool '%s' appears to be " 4165 "hung.", spa_name(spa)); 4166 } 4167 } 4168 mutex_exit(&vq->vq_lock); 4169 } 4170 } 4171