xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 447b1e1fca22e4de5e04623965fbb1460857930c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/space_reftree.h>
41 #include <sys/zio.h>
42 #include <sys/zap.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/arc.h>
45 #include <sys/zil.h>
46 #include <sys/dsl_scan.h>
47 
48 /*
49  * Virtual device management.
50  */
51 
52 static vdev_ops_t *vdev_ops_table[] = {
53 	&vdev_root_ops,
54 	&vdev_raidz_ops,
55 	&vdev_mirror_ops,
56 	&vdev_replacing_ops,
57 	&vdev_spare_ops,
58 	&vdev_disk_ops,
59 	&vdev_file_ops,
60 	&vdev_missing_ops,
61 	&vdev_hole_ops,
62 	NULL
63 };
64 
65 /* maximum scrub/resilver I/O queue per leaf vdev */
66 int zfs_scrub_limit = 10;
67 
68 /*
69  * When a vdev is added, it will be divided into approximately (but no
70  * more than) this number of metaslabs.
71  */
72 int metaslabs_per_vdev = 200;
73 
74 /*
75  * Given a vdev type, return the appropriate ops vector.
76  */
77 static vdev_ops_t *
78 vdev_getops(const char *type)
79 {
80 	vdev_ops_t *ops, **opspp;
81 
82 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
83 		if (strcmp(ops->vdev_op_type, type) == 0)
84 			break;
85 
86 	return (ops);
87 }
88 
89 /*
90  * Default asize function: return the MAX of psize with the asize of
91  * all children.  This is what's used by anything other than RAID-Z.
92  */
93 uint64_t
94 vdev_default_asize(vdev_t *vd, uint64_t psize)
95 {
96 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
97 	uint64_t csize;
98 
99 	for (int c = 0; c < vd->vdev_children; c++) {
100 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101 		asize = MAX(asize, csize);
102 	}
103 
104 	return (asize);
105 }
106 
107 /*
108  * Get the minimum allocatable size. We define the allocatable size as
109  * the vdev's asize rounded to the nearest metaslab. This allows us to
110  * replace or attach devices which don't have the same physical size but
111  * can still satisfy the same number of allocations.
112  */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116 	vdev_t *pvd = vd->vdev_parent;
117 
118 	/*
119 	 * If our parent is NULL (inactive spare or cache) or is the root,
120 	 * just return our own asize.
121 	 */
122 	if (pvd == NULL)
123 		return (vd->vdev_asize);
124 
125 	/*
126 	 * The top-level vdev just returns the allocatable size rounded
127 	 * to the nearest metaslab.
128 	 */
129 	if (vd == vd->vdev_top)
130 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131 
132 	/*
133 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134 	 * so each child must provide at least 1/Nth of its asize.
135 	 */
136 	if (pvd->vdev_ops == &vdev_raidz_ops)
137 		return (pvd->vdev_min_asize / pvd->vdev_children);
138 
139 	return (pvd->vdev_min_asize);
140 }
141 
142 void
143 vdev_set_min_asize(vdev_t *vd)
144 {
145 	vd->vdev_min_asize = vdev_get_min_asize(vd);
146 
147 	for (int c = 0; c < vd->vdev_children; c++)
148 		vdev_set_min_asize(vd->vdev_child[c]);
149 }
150 
151 vdev_t *
152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 	vdev_t *rvd = spa->spa_root_vdev;
155 
156 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157 
158 	if (vdev < rvd->vdev_children) {
159 		ASSERT(rvd->vdev_child[vdev] != NULL);
160 		return (rvd->vdev_child[vdev]);
161 	}
162 
163 	return (NULL);
164 }
165 
166 vdev_t *
167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 	vdev_t *mvd;
170 
171 	if (vd->vdev_guid == guid)
172 		return (vd);
173 
174 	for (int c = 0; c < vd->vdev_children; c++)
175 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 		    NULL)
177 			return (mvd);
178 
179 	return (NULL);
180 }
181 
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 	int n = 0;
186 
187 	if (vd->vdev_ops->vdev_op_leaf)
188 		return (1);
189 
190 	for (int c = 0; c < vd->vdev_children; c++)
191 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
192 
193 	return (n);
194 }
195 
196 int
197 vdev_count_leaves(spa_t *spa)
198 {
199 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
200 }
201 
202 void
203 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
204 {
205 	size_t oldsize, newsize;
206 	uint64_t id = cvd->vdev_id;
207 	vdev_t **newchild;
208 	spa_t *spa = cvd->vdev_spa;
209 
210 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 	ASSERT(cvd->vdev_parent == NULL);
212 
213 	cvd->vdev_parent = pvd;
214 
215 	if (pvd == NULL)
216 		return;
217 
218 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219 
220 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 	newsize = pvd->vdev_children * sizeof (vdev_t *);
223 
224 	newchild = kmem_zalloc(newsize, KM_SLEEP);
225 	if (pvd->vdev_child != NULL) {
226 		bcopy(pvd->vdev_child, newchild, oldsize);
227 		kmem_free(pvd->vdev_child, oldsize);
228 	}
229 
230 	pvd->vdev_child = newchild;
231 	pvd->vdev_child[id] = cvd;
232 
233 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235 
236 	/*
237 	 * Walk up all ancestors to update guid sum.
238 	 */
239 	for (; pvd != NULL; pvd = pvd->vdev_parent)
240 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242 
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 	int c;
247 	uint_t id = cvd->vdev_id;
248 
249 	ASSERT(cvd->vdev_parent == pvd);
250 
251 	if (pvd == NULL)
252 		return;
253 
254 	ASSERT(id < pvd->vdev_children);
255 	ASSERT(pvd->vdev_child[id] == cvd);
256 
257 	pvd->vdev_child[id] = NULL;
258 	cvd->vdev_parent = NULL;
259 
260 	for (c = 0; c < pvd->vdev_children; c++)
261 		if (pvd->vdev_child[c])
262 			break;
263 
264 	if (c == pvd->vdev_children) {
265 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 		pvd->vdev_child = NULL;
267 		pvd->vdev_children = 0;
268 	}
269 
270 	/*
271 	 * Walk up all ancestors to update guid sum.
272 	 */
273 	for (; pvd != NULL; pvd = pvd->vdev_parent)
274 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276 
277 /*
278  * Remove any holes in the child array.
279  */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283 	vdev_t **newchild, *cvd;
284 	int oldc = pvd->vdev_children;
285 	int newc;
286 
287 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
288 
289 	for (int c = newc = 0; c < oldc; c++)
290 		if (pvd->vdev_child[c])
291 			newc++;
292 
293 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
294 
295 	for (int c = newc = 0; c < oldc; c++) {
296 		if ((cvd = pvd->vdev_child[c]) != NULL) {
297 			newchild[newc] = cvd;
298 			cvd->vdev_id = newc++;
299 		}
300 	}
301 
302 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
303 	pvd->vdev_child = newchild;
304 	pvd->vdev_children = newc;
305 }
306 
307 /*
308  * Allocate and minimally initialize a vdev_t.
309  */
310 vdev_t *
311 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
312 {
313 	vdev_t *vd;
314 
315 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
316 
317 	if (spa->spa_root_vdev == NULL) {
318 		ASSERT(ops == &vdev_root_ops);
319 		spa->spa_root_vdev = vd;
320 		spa->spa_load_guid = spa_generate_guid(NULL);
321 	}
322 
323 	if (guid == 0 && ops != &vdev_hole_ops) {
324 		if (spa->spa_root_vdev == vd) {
325 			/*
326 			 * The root vdev's guid will also be the pool guid,
327 			 * which must be unique among all pools.
328 			 */
329 			guid = spa_generate_guid(NULL);
330 		} else {
331 			/*
332 			 * Any other vdev's guid must be unique within the pool.
333 			 */
334 			guid = spa_generate_guid(spa);
335 		}
336 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
337 	}
338 
339 	vd->vdev_spa = spa;
340 	vd->vdev_id = id;
341 	vd->vdev_guid = guid;
342 	vd->vdev_guid_sum = guid;
343 	vd->vdev_ops = ops;
344 	vd->vdev_state = VDEV_STATE_CLOSED;
345 	vd->vdev_ishole = (ops == &vdev_hole_ops);
346 
347 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
348 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
349 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
350 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
351 	for (int t = 0; t < DTL_TYPES; t++) {
352 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
353 		    &vd->vdev_dtl_lock);
354 	}
355 	txg_list_create(&vd->vdev_ms_list,
356 	    offsetof(struct metaslab, ms_txg_node));
357 	txg_list_create(&vd->vdev_dtl_list,
358 	    offsetof(struct vdev, vdev_dtl_node));
359 	vd->vdev_stat.vs_timestamp = gethrtime();
360 	vdev_queue_init(vd);
361 	vdev_cache_init(vd);
362 
363 	return (vd);
364 }
365 
366 /*
367  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
368  * creating a new vdev or loading an existing one - the behavior is slightly
369  * different for each case.
370  */
371 int
372 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
373     int alloctype)
374 {
375 	vdev_ops_t *ops;
376 	char *type;
377 	uint64_t guid = 0, islog, nparity;
378 	vdev_t *vd;
379 
380 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381 
382 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
383 		return (SET_ERROR(EINVAL));
384 
385 	if ((ops = vdev_getops(type)) == NULL)
386 		return (SET_ERROR(EINVAL));
387 
388 	/*
389 	 * If this is a load, get the vdev guid from the nvlist.
390 	 * Otherwise, vdev_alloc_common() will generate one for us.
391 	 */
392 	if (alloctype == VDEV_ALLOC_LOAD) {
393 		uint64_t label_id;
394 
395 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
396 		    label_id != id)
397 			return (SET_ERROR(EINVAL));
398 
399 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
400 			return (SET_ERROR(EINVAL));
401 	} else if (alloctype == VDEV_ALLOC_SPARE) {
402 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 			return (SET_ERROR(EINVAL));
404 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 			return (SET_ERROR(EINVAL));
407 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
408 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 			return (SET_ERROR(EINVAL));
410 	}
411 
412 	/*
413 	 * The first allocated vdev must be of type 'root'.
414 	 */
415 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
416 		return (SET_ERROR(EINVAL));
417 
418 	/*
419 	 * Determine whether we're a log vdev.
420 	 */
421 	islog = 0;
422 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
423 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
424 		return (SET_ERROR(ENOTSUP));
425 
426 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
427 		return (SET_ERROR(ENOTSUP));
428 
429 	/*
430 	 * Set the nparity property for RAID-Z vdevs.
431 	 */
432 	nparity = -1ULL;
433 	if (ops == &vdev_raidz_ops) {
434 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
435 		    &nparity) == 0) {
436 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
437 				return (SET_ERROR(EINVAL));
438 			/*
439 			 * Previous versions could only support 1 or 2 parity
440 			 * device.
441 			 */
442 			if (nparity > 1 &&
443 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
444 				return (SET_ERROR(ENOTSUP));
445 			if (nparity > 2 &&
446 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
447 				return (SET_ERROR(ENOTSUP));
448 		} else {
449 			/*
450 			 * We require the parity to be specified for SPAs that
451 			 * support multiple parity levels.
452 			 */
453 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
454 				return (SET_ERROR(EINVAL));
455 			/*
456 			 * Otherwise, we default to 1 parity device for RAID-Z.
457 			 */
458 			nparity = 1;
459 		}
460 	} else {
461 		nparity = 0;
462 	}
463 	ASSERT(nparity != -1ULL);
464 
465 	vd = vdev_alloc_common(spa, id, guid, ops);
466 
467 	vd->vdev_islog = islog;
468 	vd->vdev_nparity = nparity;
469 
470 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
471 		vd->vdev_path = spa_strdup(vd->vdev_path);
472 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
473 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
474 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
475 	    &vd->vdev_physpath) == 0)
476 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
477 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
478 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
479 
480 	/*
481 	 * Set the whole_disk property.  If it's not specified, leave the value
482 	 * as -1.
483 	 */
484 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
485 	    &vd->vdev_wholedisk) != 0)
486 		vd->vdev_wholedisk = -1ULL;
487 
488 	/*
489 	 * Look for the 'not present' flag.  This will only be set if the device
490 	 * was not present at the time of import.
491 	 */
492 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
493 	    &vd->vdev_not_present);
494 
495 	/*
496 	 * Get the alignment requirement.
497 	 */
498 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
499 
500 	/*
501 	 * Retrieve the vdev creation time.
502 	 */
503 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
504 	    &vd->vdev_crtxg);
505 
506 	/*
507 	 * If we're a top-level vdev, try to load the allocation parameters.
508 	 */
509 	if (parent && !parent->vdev_parent &&
510 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
511 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
512 		    &vd->vdev_ms_array);
513 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
514 		    &vd->vdev_ms_shift);
515 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
516 		    &vd->vdev_asize);
517 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
518 		    &vd->vdev_removing);
519 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
520 		    &vd->vdev_top_zap);
521 	} else {
522 		ASSERT0(vd->vdev_top_zap);
523 	}
524 
525 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
526 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
527 		    alloctype == VDEV_ALLOC_ADD ||
528 		    alloctype == VDEV_ALLOC_SPLIT ||
529 		    alloctype == VDEV_ALLOC_ROOTPOOL);
530 		vd->vdev_mg = metaslab_group_create(islog ?
531 		    spa_log_class(spa) : spa_normal_class(spa), vd);
532 	}
533 
534 	if (vd->vdev_ops->vdev_op_leaf &&
535 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
536 		(void) nvlist_lookup_uint64(nv,
537 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
538 	} else {
539 		ASSERT0(vd->vdev_leaf_zap);
540 	}
541 
542 	/*
543 	 * If we're a leaf vdev, try to load the DTL object and other state.
544 	 */
545 
546 	if (vd->vdev_ops->vdev_op_leaf &&
547 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
548 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
549 		if (alloctype == VDEV_ALLOC_LOAD) {
550 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
551 			    &vd->vdev_dtl_object);
552 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
553 			    &vd->vdev_unspare);
554 		}
555 
556 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
557 			uint64_t spare = 0;
558 
559 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
560 			    &spare) == 0 && spare)
561 				spa_spare_add(vd);
562 		}
563 
564 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
565 		    &vd->vdev_offline);
566 
567 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
568 		    &vd->vdev_resilver_txg);
569 
570 		/*
571 		 * When importing a pool, we want to ignore the persistent fault
572 		 * state, as the diagnosis made on another system may not be
573 		 * valid in the current context.  Local vdevs will
574 		 * remain in the faulted state.
575 		 */
576 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
577 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
578 			    &vd->vdev_faulted);
579 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
580 			    &vd->vdev_degraded);
581 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
582 			    &vd->vdev_removed);
583 
584 			if (vd->vdev_faulted || vd->vdev_degraded) {
585 				char *aux;
586 
587 				vd->vdev_label_aux =
588 				    VDEV_AUX_ERR_EXCEEDED;
589 				if (nvlist_lookup_string(nv,
590 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
591 				    strcmp(aux, "external") == 0)
592 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
593 			}
594 		}
595 	}
596 
597 	/*
598 	 * Add ourselves to the parent's list of children.
599 	 */
600 	vdev_add_child(parent, vd);
601 
602 	*vdp = vd;
603 
604 	return (0);
605 }
606 
607 void
608 vdev_free(vdev_t *vd)
609 {
610 	spa_t *spa = vd->vdev_spa;
611 
612 	/*
613 	 * vdev_free() implies closing the vdev first.  This is simpler than
614 	 * trying to ensure complicated semantics for all callers.
615 	 */
616 	vdev_close(vd);
617 
618 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
619 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
620 
621 	/*
622 	 * Free all children.
623 	 */
624 	for (int c = 0; c < vd->vdev_children; c++)
625 		vdev_free(vd->vdev_child[c]);
626 
627 	ASSERT(vd->vdev_child == NULL);
628 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
629 
630 	/*
631 	 * Discard allocation state.
632 	 */
633 	if (vd->vdev_mg != NULL) {
634 		vdev_metaslab_fini(vd);
635 		metaslab_group_destroy(vd->vdev_mg);
636 	}
637 
638 	ASSERT0(vd->vdev_stat.vs_space);
639 	ASSERT0(vd->vdev_stat.vs_dspace);
640 	ASSERT0(vd->vdev_stat.vs_alloc);
641 
642 	/*
643 	 * Remove this vdev from its parent's child list.
644 	 */
645 	vdev_remove_child(vd->vdev_parent, vd);
646 
647 	ASSERT(vd->vdev_parent == NULL);
648 
649 	/*
650 	 * Clean up vdev structure.
651 	 */
652 	vdev_queue_fini(vd);
653 	vdev_cache_fini(vd);
654 
655 	if (vd->vdev_path)
656 		spa_strfree(vd->vdev_path);
657 	if (vd->vdev_devid)
658 		spa_strfree(vd->vdev_devid);
659 	if (vd->vdev_physpath)
660 		spa_strfree(vd->vdev_physpath);
661 	if (vd->vdev_fru)
662 		spa_strfree(vd->vdev_fru);
663 
664 	if (vd->vdev_isspare)
665 		spa_spare_remove(vd);
666 	if (vd->vdev_isl2cache)
667 		spa_l2cache_remove(vd);
668 
669 	txg_list_destroy(&vd->vdev_ms_list);
670 	txg_list_destroy(&vd->vdev_dtl_list);
671 
672 	mutex_enter(&vd->vdev_dtl_lock);
673 	space_map_close(vd->vdev_dtl_sm);
674 	for (int t = 0; t < DTL_TYPES; t++) {
675 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
676 		range_tree_destroy(vd->vdev_dtl[t]);
677 	}
678 	mutex_exit(&vd->vdev_dtl_lock);
679 
680 	mutex_destroy(&vd->vdev_queue_lock);
681 	mutex_destroy(&vd->vdev_dtl_lock);
682 	mutex_destroy(&vd->vdev_stat_lock);
683 	mutex_destroy(&vd->vdev_probe_lock);
684 
685 	if (vd == spa->spa_root_vdev)
686 		spa->spa_root_vdev = NULL;
687 
688 	kmem_free(vd, sizeof (vdev_t));
689 }
690 
691 /*
692  * Transfer top-level vdev state from svd to tvd.
693  */
694 static void
695 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
696 {
697 	spa_t *spa = svd->vdev_spa;
698 	metaslab_t *msp;
699 	vdev_t *vd;
700 	int t;
701 
702 	ASSERT(tvd == tvd->vdev_top);
703 
704 	tvd->vdev_ms_array = svd->vdev_ms_array;
705 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
706 	tvd->vdev_ms_count = svd->vdev_ms_count;
707 	tvd->vdev_top_zap = svd->vdev_top_zap;
708 
709 	svd->vdev_ms_array = 0;
710 	svd->vdev_ms_shift = 0;
711 	svd->vdev_ms_count = 0;
712 	svd->vdev_top_zap = 0;
713 
714 	if (tvd->vdev_mg)
715 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
716 	tvd->vdev_mg = svd->vdev_mg;
717 	tvd->vdev_ms = svd->vdev_ms;
718 
719 	svd->vdev_mg = NULL;
720 	svd->vdev_ms = NULL;
721 
722 	if (tvd->vdev_mg != NULL)
723 		tvd->vdev_mg->mg_vd = tvd;
724 
725 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
726 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
727 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
728 
729 	svd->vdev_stat.vs_alloc = 0;
730 	svd->vdev_stat.vs_space = 0;
731 	svd->vdev_stat.vs_dspace = 0;
732 
733 	for (t = 0; t < TXG_SIZE; t++) {
734 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
735 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
736 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
737 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
738 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
739 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
740 	}
741 
742 	if (list_link_active(&svd->vdev_config_dirty_node)) {
743 		vdev_config_clean(svd);
744 		vdev_config_dirty(tvd);
745 	}
746 
747 	if (list_link_active(&svd->vdev_state_dirty_node)) {
748 		vdev_state_clean(svd);
749 		vdev_state_dirty(tvd);
750 	}
751 
752 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
753 	svd->vdev_deflate_ratio = 0;
754 
755 	tvd->vdev_islog = svd->vdev_islog;
756 	svd->vdev_islog = 0;
757 }
758 
759 static void
760 vdev_top_update(vdev_t *tvd, vdev_t *vd)
761 {
762 	if (vd == NULL)
763 		return;
764 
765 	vd->vdev_top = tvd;
766 
767 	for (int c = 0; c < vd->vdev_children; c++)
768 		vdev_top_update(tvd, vd->vdev_child[c]);
769 }
770 
771 /*
772  * Add a mirror/replacing vdev above an existing vdev.
773  */
774 vdev_t *
775 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
776 {
777 	spa_t *spa = cvd->vdev_spa;
778 	vdev_t *pvd = cvd->vdev_parent;
779 	vdev_t *mvd;
780 
781 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
782 
783 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
784 
785 	mvd->vdev_asize = cvd->vdev_asize;
786 	mvd->vdev_min_asize = cvd->vdev_min_asize;
787 	mvd->vdev_max_asize = cvd->vdev_max_asize;
788 	mvd->vdev_ashift = cvd->vdev_ashift;
789 	mvd->vdev_state = cvd->vdev_state;
790 	mvd->vdev_crtxg = cvd->vdev_crtxg;
791 
792 	vdev_remove_child(pvd, cvd);
793 	vdev_add_child(pvd, mvd);
794 	cvd->vdev_id = mvd->vdev_children;
795 	vdev_add_child(mvd, cvd);
796 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
797 
798 	if (mvd == mvd->vdev_top)
799 		vdev_top_transfer(cvd, mvd);
800 
801 	return (mvd);
802 }
803 
804 /*
805  * Remove a 1-way mirror/replacing vdev from the tree.
806  */
807 void
808 vdev_remove_parent(vdev_t *cvd)
809 {
810 	vdev_t *mvd = cvd->vdev_parent;
811 	vdev_t *pvd = mvd->vdev_parent;
812 
813 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
814 
815 	ASSERT(mvd->vdev_children == 1);
816 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
817 	    mvd->vdev_ops == &vdev_replacing_ops ||
818 	    mvd->vdev_ops == &vdev_spare_ops);
819 	cvd->vdev_ashift = mvd->vdev_ashift;
820 
821 	vdev_remove_child(mvd, cvd);
822 	vdev_remove_child(pvd, mvd);
823 
824 	/*
825 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
826 	 * Otherwise, we could have detached an offline device, and when we
827 	 * go to import the pool we'll think we have two top-level vdevs,
828 	 * instead of a different version of the same top-level vdev.
829 	 */
830 	if (mvd->vdev_top == mvd) {
831 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
832 		cvd->vdev_orig_guid = cvd->vdev_guid;
833 		cvd->vdev_guid += guid_delta;
834 		cvd->vdev_guid_sum += guid_delta;
835 	}
836 	cvd->vdev_id = mvd->vdev_id;
837 	vdev_add_child(pvd, cvd);
838 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
839 
840 	if (cvd == cvd->vdev_top)
841 		vdev_top_transfer(mvd, cvd);
842 
843 	ASSERT(mvd->vdev_children == 0);
844 	vdev_free(mvd);
845 }
846 
847 int
848 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
849 {
850 	spa_t *spa = vd->vdev_spa;
851 	objset_t *mos = spa->spa_meta_objset;
852 	uint64_t m;
853 	uint64_t oldc = vd->vdev_ms_count;
854 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
855 	metaslab_t **mspp;
856 	int error;
857 
858 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
859 
860 	/*
861 	 * This vdev is not being allocated from yet or is a hole.
862 	 */
863 	if (vd->vdev_ms_shift == 0)
864 		return (0);
865 
866 	ASSERT(!vd->vdev_ishole);
867 
868 	/*
869 	 * Compute the raidz-deflation ratio.  Note, we hard-code
870 	 * in 128k (1 << 17) because it is the "typical" blocksize.
871 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
872 	 * otherwise it would inconsistently account for existing bp's.
873 	 */
874 	vd->vdev_deflate_ratio = (1 << 17) /
875 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
876 
877 	ASSERT(oldc <= newc);
878 
879 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
880 
881 	if (oldc != 0) {
882 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
883 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
884 	}
885 
886 	vd->vdev_ms = mspp;
887 	vd->vdev_ms_count = newc;
888 
889 	for (m = oldc; m < newc; m++) {
890 		uint64_t object = 0;
891 
892 		if (txg == 0) {
893 			error = dmu_read(mos, vd->vdev_ms_array,
894 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
895 			    DMU_READ_PREFETCH);
896 			if (error)
897 				return (error);
898 		}
899 
900 		error = metaslab_init(vd->vdev_mg, m, object, txg,
901 		    &(vd->vdev_ms[m]));
902 		if (error)
903 			return (error);
904 	}
905 
906 	if (txg == 0)
907 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
908 
909 	/*
910 	 * If the vdev is being removed we don't activate
911 	 * the metaslabs since we want to ensure that no new
912 	 * allocations are performed on this device.
913 	 */
914 	if (oldc == 0 && !vd->vdev_removing)
915 		metaslab_group_activate(vd->vdev_mg);
916 
917 	if (txg == 0)
918 		spa_config_exit(spa, SCL_ALLOC, FTAG);
919 
920 	return (0);
921 }
922 
923 void
924 vdev_metaslab_fini(vdev_t *vd)
925 {
926 	uint64_t m;
927 	uint64_t count = vd->vdev_ms_count;
928 
929 	if (vd->vdev_ms != NULL) {
930 		metaslab_group_passivate(vd->vdev_mg);
931 		for (m = 0; m < count; m++) {
932 			metaslab_t *msp = vd->vdev_ms[m];
933 
934 			if (msp != NULL)
935 				metaslab_fini(msp);
936 		}
937 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
938 		vd->vdev_ms = NULL;
939 	}
940 }
941 
942 typedef struct vdev_probe_stats {
943 	boolean_t	vps_readable;
944 	boolean_t	vps_writeable;
945 	int		vps_flags;
946 } vdev_probe_stats_t;
947 
948 static void
949 vdev_probe_done(zio_t *zio)
950 {
951 	spa_t *spa = zio->io_spa;
952 	vdev_t *vd = zio->io_vd;
953 	vdev_probe_stats_t *vps = zio->io_private;
954 
955 	ASSERT(vd->vdev_probe_zio != NULL);
956 
957 	if (zio->io_type == ZIO_TYPE_READ) {
958 		if (zio->io_error == 0)
959 			vps->vps_readable = 1;
960 		if (zio->io_error == 0 && spa_writeable(spa)) {
961 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
962 			    zio->io_offset, zio->io_size, zio->io_data,
963 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
964 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
965 		} else {
966 			zio_buf_free(zio->io_data, zio->io_size);
967 		}
968 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
969 		if (zio->io_error == 0)
970 			vps->vps_writeable = 1;
971 		zio_buf_free(zio->io_data, zio->io_size);
972 	} else if (zio->io_type == ZIO_TYPE_NULL) {
973 		zio_t *pio;
974 
975 		vd->vdev_cant_read |= !vps->vps_readable;
976 		vd->vdev_cant_write |= !vps->vps_writeable;
977 
978 		if (vdev_readable(vd) &&
979 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
980 			zio->io_error = 0;
981 		} else {
982 			ASSERT(zio->io_error != 0);
983 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
984 			    spa, vd, NULL, 0, 0);
985 			zio->io_error = SET_ERROR(ENXIO);
986 		}
987 
988 		mutex_enter(&vd->vdev_probe_lock);
989 		ASSERT(vd->vdev_probe_zio == zio);
990 		vd->vdev_probe_zio = NULL;
991 		mutex_exit(&vd->vdev_probe_lock);
992 
993 		zio_link_t *zl = NULL;
994 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
995 			if (!vdev_accessible(vd, pio))
996 				pio->io_error = SET_ERROR(ENXIO);
997 
998 		kmem_free(vps, sizeof (*vps));
999 	}
1000 }
1001 
1002 /*
1003  * Determine whether this device is accessible.
1004  *
1005  * Read and write to several known locations: the pad regions of each
1006  * vdev label but the first, which we leave alone in case it contains
1007  * a VTOC.
1008  */
1009 zio_t *
1010 vdev_probe(vdev_t *vd, zio_t *zio)
1011 {
1012 	spa_t *spa = vd->vdev_spa;
1013 	vdev_probe_stats_t *vps = NULL;
1014 	zio_t *pio;
1015 
1016 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1017 
1018 	/*
1019 	 * Don't probe the probe.
1020 	 */
1021 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1022 		return (NULL);
1023 
1024 	/*
1025 	 * To prevent 'probe storms' when a device fails, we create
1026 	 * just one probe i/o at a time.  All zios that want to probe
1027 	 * this vdev will become parents of the probe io.
1028 	 */
1029 	mutex_enter(&vd->vdev_probe_lock);
1030 
1031 	if ((pio = vd->vdev_probe_zio) == NULL) {
1032 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1033 
1034 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1035 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1036 		    ZIO_FLAG_TRYHARD;
1037 
1038 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1039 			/*
1040 			 * vdev_cant_read and vdev_cant_write can only
1041 			 * transition from TRUE to FALSE when we have the
1042 			 * SCL_ZIO lock as writer; otherwise they can only
1043 			 * transition from FALSE to TRUE.  This ensures that
1044 			 * any zio looking at these values can assume that
1045 			 * failures persist for the life of the I/O.  That's
1046 			 * important because when a device has intermittent
1047 			 * connectivity problems, we want to ensure that
1048 			 * they're ascribed to the device (ENXIO) and not
1049 			 * the zio (EIO).
1050 			 *
1051 			 * Since we hold SCL_ZIO as writer here, clear both
1052 			 * values so the probe can reevaluate from first
1053 			 * principles.
1054 			 */
1055 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1056 			vd->vdev_cant_read = B_FALSE;
1057 			vd->vdev_cant_write = B_FALSE;
1058 		}
1059 
1060 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1061 		    vdev_probe_done, vps,
1062 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1063 
1064 		/*
1065 		 * We can't change the vdev state in this context, so we
1066 		 * kick off an async task to do it on our behalf.
1067 		 */
1068 		if (zio != NULL) {
1069 			vd->vdev_probe_wanted = B_TRUE;
1070 			spa_async_request(spa, SPA_ASYNC_PROBE);
1071 		}
1072 	}
1073 
1074 	if (zio != NULL)
1075 		zio_add_child(zio, pio);
1076 
1077 	mutex_exit(&vd->vdev_probe_lock);
1078 
1079 	if (vps == NULL) {
1080 		ASSERT(zio != NULL);
1081 		return (NULL);
1082 	}
1083 
1084 	for (int l = 1; l < VDEV_LABELS; l++) {
1085 		zio_nowait(zio_read_phys(pio, vd,
1086 		    vdev_label_offset(vd->vdev_psize, l,
1087 		    offsetof(vdev_label_t, vl_pad2)),
1088 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1089 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1090 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1091 	}
1092 
1093 	if (zio == NULL)
1094 		return (pio);
1095 
1096 	zio_nowait(pio);
1097 	return (NULL);
1098 }
1099 
1100 static void
1101 vdev_open_child(void *arg)
1102 {
1103 	vdev_t *vd = arg;
1104 
1105 	vd->vdev_open_thread = curthread;
1106 	vd->vdev_open_error = vdev_open(vd);
1107 	vd->vdev_open_thread = NULL;
1108 }
1109 
1110 boolean_t
1111 vdev_uses_zvols(vdev_t *vd)
1112 {
1113 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1114 	    strlen(ZVOL_DIR)) == 0)
1115 		return (B_TRUE);
1116 	for (int c = 0; c < vd->vdev_children; c++)
1117 		if (vdev_uses_zvols(vd->vdev_child[c]))
1118 			return (B_TRUE);
1119 	return (B_FALSE);
1120 }
1121 
1122 void
1123 vdev_open_children(vdev_t *vd)
1124 {
1125 	taskq_t *tq;
1126 	int children = vd->vdev_children;
1127 
1128 	/*
1129 	 * in order to handle pools on top of zvols, do the opens
1130 	 * in a single thread so that the same thread holds the
1131 	 * spa_namespace_lock
1132 	 */
1133 	if (vdev_uses_zvols(vd)) {
1134 		for (int c = 0; c < children; c++)
1135 			vd->vdev_child[c]->vdev_open_error =
1136 			    vdev_open(vd->vdev_child[c]);
1137 		return;
1138 	}
1139 	tq = taskq_create("vdev_open", children, minclsyspri,
1140 	    children, children, TASKQ_PREPOPULATE);
1141 
1142 	for (int c = 0; c < children; c++)
1143 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1144 		    TQ_SLEEP) != NULL);
1145 
1146 	taskq_destroy(tq);
1147 }
1148 
1149 /*
1150  * Prepare a virtual device for access.
1151  */
1152 int
1153 vdev_open(vdev_t *vd)
1154 {
1155 	spa_t *spa = vd->vdev_spa;
1156 	int error;
1157 	uint64_t osize = 0;
1158 	uint64_t max_osize = 0;
1159 	uint64_t asize, max_asize, psize;
1160 	uint64_t ashift = 0;
1161 
1162 	ASSERT(vd->vdev_open_thread == curthread ||
1163 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1164 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1165 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1166 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1167 
1168 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1169 	vd->vdev_cant_read = B_FALSE;
1170 	vd->vdev_cant_write = B_FALSE;
1171 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1172 
1173 	/*
1174 	 * If this vdev is not removed, check its fault status.  If it's
1175 	 * faulted, bail out of the open.
1176 	 */
1177 	if (!vd->vdev_removed && vd->vdev_faulted) {
1178 		ASSERT(vd->vdev_children == 0);
1179 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1180 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1181 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1182 		    vd->vdev_label_aux);
1183 		return (SET_ERROR(ENXIO));
1184 	} else if (vd->vdev_offline) {
1185 		ASSERT(vd->vdev_children == 0);
1186 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1187 		return (SET_ERROR(ENXIO));
1188 	}
1189 
1190 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1191 
1192 	/*
1193 	 * Reset the vdev_reopening flag so that we actually close
1194 	 * the vdev on error.
1195 	 */
1196 	vd->vdev_reopening = B_FALSE;
1197 	if (zio_injection_enabled && error == 0)
1198 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1199 
1200 	if (error) {
1201 		if (vd->vdev_removed &&
1202 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1203 			vd->vdev_removed = B_FALSE;
1204 
1205 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1206 		    vd->vdev_stat.vs_aux);
1207 		return (error);
1208 	}
1209 
1210 	vd->vdev_removed = B_FALSE;
1211 
1212 	/*
1213 	 * Recheck the faulted flag now that we have confirmed that
1214 	 * the vdev is accessible.  If we're faulted, bail.
1215 	 */
1216 	if (vd->vdev_faulted) {
1217 		ASSERT(vd->vdev_children == 0);
1218 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1219 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1220 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1221 		    vd->vdev_label_aux);
1222 		return (SET_ERROR(ENXIO));
1223 	}
1224 
1225 	if (vd->vdev_degraded) {
1226 		ASSERT(vd->vdev_children == 0);
1227 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1228 		    VDEV_AUX_ERR_EXCEEDED);
1229 	} else {
1230 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1231 	}
1232 
1233 	/*
1234 	 * For hole or missing vdevs we just return success.
1235 	 */
1236 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1237 		return (0);
1238 
1239 	for (int c = 0; c < vd->vdev_children; c++) {
1240 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1241 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1242 			    VDEV_AUX_NONE);
1243 			break;
1244 		}
1245 	}
1246 
1247 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1248 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1249 
1250 	if (vd->vdev_children == 0) {
1251 		if (osize < SPA_MINDEVSIZE) {
1252 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253 			    VDEV_AUX_TOO_SMALL);
1254 			return (SET_ERROR(EOVERFLOW));
1255 		}
1256 		psize = osize;
1257 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1258 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1259 		    VDEV_LABEL_END_SIZE);
1260 	} else {
1261 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1262 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1263 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 			    VDEV_AUX_TOO_SMALL);
1265 			return (SET_ERROR(EOVERFLOW));
1266 		}
1267 		psize = 0;
1268 		asize = osize;
1269 		max_asize = max_osize;
1270 	}
1271 
1272 	vd->vdev_psize = psize;
1273 
1274 	/*
1275 	 * Make sure the allocatable size hasn't shrunk.
1276 	 */
1277 	if (asize < vd->vdev_min_asize) {
1278 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279 		    VDEV_AUX_BAD_LABEL);
1280 		return (SET_ERROR(EINVAL));
1281 	}
1282 
1283 	if (vd->vdev_asize == 0) {
1284 		/*
1285 		 * This is the first-ever open, so use the computed values.
1286 		 * For testing purposes, a higher ashift can be requested.
1287 		 */
1288 		vd->vdev_asize = asize;
1289 		vd->vdev_max_asize = max_asize;
1290 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1291 	} else {
1292 		/*
1293 		 * Detect if the alignment requirement has increased.
1294 		 * We don't want to make the pool unavailable, just
1295 		 * issue a warning instead.
1296 		 */
1297 		if (ashift > vd->vdev_top->vdev_ashift &&
1298 		    vd->vdev_ops->vdev_op_leaf) {
1299 			cmn_err(CE_WARN,
1300 			    "Disk, '%s', has a block alignment that is "
1301 			    "larger than the pool's alignment\n",
1302 			    vd->vdev_path);
1303 		}
1304 		vd->vdev_max_asize = max_asize;
1305 	}
1306 
1307 	/*
1308 	 * If all children are healthy and the asize has increased,
1309 	 * then we've experienced dynamic LUN growth.  If automatic
1310 	 * expansion is enabled then use the additional space.
1311 	 */
1312 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1313 	    (vd->vdev_expanding || spa->spa_autoexpand))
1314 		vd->vdev_asize = asize;
1315 
1316 	vdev_set_min_asize(vd);
1317 
1318 	/*
1319 	 * Ensure we can issue some IO before declaring the
1320 	 * vdev open for business.
1321 	 */
1322 	if (vd->vdev_ops->vdev_op_leaf &&
1323 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1324 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1325 		    VDEV_AUX_ERR_EXCEEDED);
1326 		return (error);
1327 	}
1328 
1329 	/*
1330 	 * Track the min and max ashift values for normal data devices.
1331 	 */
1332 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1333 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1334 		if (vd->vdev_ashift > spa->spa_max_ashift)
1335 			spa->spa_max_ashift = vd->vdev_ashift;
1336 		if (vd->vdev_ashift < spa->spa_min_ashift)
1337 			spa->spa_min_ashift = vd->vdev_ashift;
1338 	}
1339 
1340 	/*
1341 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1342 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1343 	 * since this would just restart the scrub we are already doing.
1344 	 */
1345 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1346 	    vdev_resilver_needed(vd, NULL, NULL))
1347 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1348 
1349 	return (0);
1350 }
1351 
1352 /*
1353  * Called once the vdevs are all opened, this routine validates the label
1354  * contents.  This needs to be done before vdev_load() so that we don't
1355  * inadvertently do repair I/Os to the wrong device.
1356  *
1357  * If 'strict' is false ignore the spa guid check. This is necessary because
1358  * if the machine crashed during a re-guid the new guid might have been written
1359  * to all of the vdev labels, but not the cached config. The strict check
1360  * will be performed when the pool is opened again using the mos config.
1361  *
1362  * This function will only return failure if one of the vdevs indicates that it
1363  * has since been destroyed or exported.  This is only possible if
1364  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1365  * will be updated but the function will return 0.
1366  */
1367 int
1368 vdev_validate(vdev_t *vd, boolean_t strict)
1369 {
1370 	spa_t *spa = vd->vdev_spa;
1371 	nvlist_t *label;
1372 	uint64_t guid = 0, top_guid;
1373 	uint64_t state;
1374 
1375 	for (int c = 0; c < vd->vdev_children; c++)
1376 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1377 			return (SET_ERROR(EBADF));
1378 
1379 	/*
1380 	 * If the device has already failed, or was marked offline, don't do
1381 	 * any further validation.  Otherwise, label I/O will fail and we will
1382 	 * overwrite the previous state.
1383 	 */
1384 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1385 		uint64_t aux_guid = 0;
1386 		nvlist_t *nvl;
1387 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1388 		    spa_last_synced_txg(spa) : -1ULL;
1389 
1390 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1391 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1392 			    VDEV_AUX_BAD_LABEL);
1393 			return (0);
1394 		}
1395 
1396 		/*
1397 		 * Determine if this vdev has been split off into another
1398 		 * pool.  If so, then refuse to open it.
1399 		 */
1400 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1401 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1402 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1403 			    VDEV_AUX_SPLIT_POOL);
1404 			nvlist_free(label);
1405 			return (0);
1406 		}
1407 
1408 		if (strict && (nvlist_lookup_uint64(label,
1409 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1410 		    guid != spa_guid(spa))) {
1411 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1412 			    VDEV_AUX_CORRUPT_DATA);
1413 			nvlist_free(label);
1414 			return (0);
1415 		}
1416 
1417 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1418 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1419 		    &aux_guid) != 0)
1420 			aux_guid = 0;
1421 
1422 		/*
1423 		 * If this vdev just became a top-level vdev because its
1424 		 * sibling was detached, it will have adopted the parent's
1425 		 * vdev guid -- but the label may or may not be on disk yet.
1426 		 * Fortunately, either version of the label will have the
1427 		 * same top guid, so if we're a top-level vdev, we can
1428 		 * safely compare to that instead.
1429 		 *
1430 		 * If we split this vdev off instead, then we also check the
1431 		 * original pool's guid.  We don't want to consider the vdev
1432 		 * corrupt if it is partway through a split operation.
1433 		 */
1434 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1435 		    &guid) != 0 ||
1436 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1437 		    &top_guid) != 0 ||
1438 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1439 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1440 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1441 			    VDEV_AUX_CORRUPT_DATA);
1442 			nvlist_free(label);
1443 			return (0);
1444 		}
1445 
1446 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1447 		    &state) != 0) {
1448 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1449 			    VDEV_AUX_CORRUPT_DATA);
1450 			nvlist_free(label);
1451 			return (0);
1452 		}
1453 
1454 		nvlist_free(label);
1455 
1456 		/*
1457 		 * If this is a verbatim import, no need to check the
1458 		 * state of the pool.
1459 		 */
1460 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1461 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1462 		    state != POOL_STATE_ACTIVE)
1463 			return (SET_ERROR(EBADF));
1464 
1465 		/*
1466 		 * If we were able to open and validate a vdev that was
1467 		 * previously marked permanently unavailable, clear that state
1468 		 * now.
1469 		 */
1470 		if (vd->vdev_not_present)
1471 			vd->vdev_not_present = 0;
1472 	}
1473 
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Close a virtual device.
1479  */
1480 void
1481 vdev_close(vdev_t *vd)
1482 {
1483 	spa_t *spa = vd->vdev_spa;
1484 	vdev_t *pvd = vd->vdev_parent;
1485 
1486 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1487 
1488 	/*
1489 	 * If our parent is reopening, then we are as well, unless we are
1490 	 * going offline.
1491 	 */
1492 	if (pvd != NULL && pvd->vdev_reopening)
1493 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1494 
1495 	vd->vdev_ops->vdev_op_close(vd);
1496 
1497 	vdev_cache_purge(vd);
1498 
1499 	/*
1500 	 * We record the previous state before we close it, so that if we are
1501 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1502 	 * it's still faulted.
1503 	 */
1504 	vd->vdev_prevstate = vd->vdev_state;
1505 
1506 	if (vd->vdev_offline)
1507 		vd->vdev_state = VDEV_STATE_OFFLINE;
1508 	else
1509 		vd->vdev_state = VDEV_STATE_CLOSED;
1510 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1511 }
1512 
1513 void
1514 vdev_hold(vdev_t *vd)
1515 {
1516 	spa_t *spa = vd->vdev_spa;
1517 
1518 	ASSERT(spa_is_root(spa));
1519 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1520 		return;
1521 
1522 	for (int c = 0; c < vd->vdev_children; c++)
1523 		vdev_hold(vd->vdev_child[c]);
1524 
1525 	if (vd->vdev_ops->vdev_op_leaf)
1526 		vd->vdev_ops->vdev_op_hold(vd);
1527 }
1528 
1529 void
1530 vdev_rele(vdev_t *vd)
1531 {
1532 	spa_t *spa = vd->vdev_spa;
1533 
1534 	ASSERT(spa_is_root(spa));
1535 	for (int c = 0; c < vd->vdev_children; c++)
1536 		vdev_rele(vd->vdev_child[c]);
1537 
1538 	if (vd->vdev_ops->vdev_op_leaf)
1539 		vd->vdev_ops->vdev_op_rele(vd);
1540 }
1541 
1542 /*
1543  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1544  * reopen leaf vdevs which had previously been opened as they might deadlock
1545  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1546  * If the leaf has never been opened then open it, as usual.
1547  */
1548 void
1549 vdev_reopen(vdev_t *vd)
1550 {
1551 	spa_t *spa = vd->vdev_spa;
1552 
1553 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1554 
1555 	/* set the reopening flag unless we're taking the vdev offline */
1556 	vd->vdev_reopening = !vd->vdev_offline;
1557 	vdev_close(vd);
1558 	(void) vdev_open(vd);
1559 
1560 	/*
1561 	 * Call vdev_validate() here to make sure we have the same device.
1562 	 * Otherwise, a device with an invalid label could be successfully
1563 	 * opened in response to vdev_reopen().
1564 	 */
1565 	if (vd->vdev_aux) {
1566 		(void) vdev_validate_aux(vd);
1567 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1568 		    vd->vdev_aux == &spa->spa_l2cache &&
1569 		    !l2arc_vdev_present(vd))
1570 			l2arc_add_vdev(spa, vd);
1571 	} else {
1572 		(void) vdev_validate(vd, B_TRUE);
1573 	}
1574 
1575 	/*
1576 	 * Reassess parent vdev's health.
1577 	 */
1578 	vdev_propagate_state(vd);
1579 }
1580 
1581 int
1582 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1583 {
1584 	int error;
1585 
1586 	/*
1587 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1588 	 * For a create, however, we want to fail the request if
1589 	 * there are any components we can't open.
1590 	 */
1591 	error = vdev_open(vd);
1592 
1593 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1594 		vdev_close(vd);
1595 		return (error ? error : ENXIO);
1596 	}
1597 
1598 	/*
1599 	 * Recursively load DTLs and initialize all labels.
1600 	 */
1601 	if ((error = vdev_dtl_load(vd)) != 0 ||
1602 	    (error = vdev_label_init(vd, txg, isreplacing ?
1603 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1604 		vdev_close(vd);
1605 		return (error);
1606 	}
1607 
1608 	return (0);
1609 }
1610 
1611 void
1612 vdev_metaslab_set_size(vdev_t *vd)
1613 {
1614 	/*
1615 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1616 	 */
1617 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1618 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1619 }
1620 
1621 void
1622 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1623 {
1624 	ASSERT(vd == vd->vdev_top);
1625 	ASSERT(!vd->vdev_ishole);
1626 	ASSERT(ISP2(flags));
1627 	ASSERT(spa_writeable(vd->vdev_spa));
1628 
1629 	if (flags & VDD_METASLAB)
1630 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1631 
1632 	if (flags & VDD_DTL)
1633 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1634 
1635 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1636 }
1637 
1638 void
1639 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1640 {
1641 	for (int c = 0; c < vd->vdev_children; c++)
1642 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1643 
1644 	if (vd->vdev_ops->vdev_op_leaf)
1645 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1646 }
1647 
1648 /*
1649  * DTLs.
1650  *
1651  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1652  * the vdev has less than perfect replication.  There are four kinds of DTL:
1653  *
1654  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1655  *
1656  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1657  *
1658  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1659  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1660  *	txgs that was scrubbed.
1661  *
1662  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1663  *	persistent errors or just some device being offline.
1664  *	Unlike the other three, the DTL_OUTAGE map is not generally
1665  *	maintained; it's only computed when needed, typically to
1666  *	determine whether a device can be detached.
1667  *
1668  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1669  * either has the data or it doesn't.
1670  *
1671  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1672  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1673  * if any child is less than fully replicated, then so is its parent.
1674  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1675  * comprising only those txgs which appear in 'maxfaults' or more children;
1676  * those are the txgs we don't have enough replication to read.  For example,
1677  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1678  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1679  * two child DTL_MISSING maps.
1680  *
1681  * It should be clear from the above that to compute the DTLs and outage maps
1682  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1683  * Therefore, that is all we keep on disk.  When loading the pool, or after
1684  * a configuration change, we generate all other DTLs from first principles.
1685  */
1686 void
1687 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1688 {
1689 	range_tree_t *rt = vd->vdev_dtl[t];
1690 
1691 	ASSERT(t < DTL_TYPES);
1692 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1693 	ASSERT(spa_writeable(vd->vdev_spa));
1694 
1695 	mutex_enter(rt->rt_lock);
1696 	if (!range_tree_contains(rt, txg, size))
1697 		range_tree_add(rt, txg, size);
1698 	mutex_exit(rt->rt_lock);
1699 }
1700 
1701 boolean_t
1702 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1703 {
1704 	range_tree_t *rt = vd->vdev_dtl[t];
1705 	boolean_t dirty = B_FALSE;
1706 
1707 	ASSERT(t < DTL_TYPES);
1708 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1709 
1710 	mutex_enter(rt->rt_lock);
1711 	if (range_tree_space(rt) != 0)
1712 		dirty = range_tree_contains(rt, txg, size);
1713 	mutex_exit(rt->rt_lock);
1714 
1715 	return (dirty);
1716 }
1717 
1718 boolean_t
1719 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1720 {
1721 	range_tree_t *rt = vd->vdev_dtl[t];
1722 	boolean_t empty;
1723 
1724 	mutex_enter(rt->rt_lock);
1725 	empty = (range_tree_space(rt) == 0);
1726 	mutex_exit(rt->rt_lock);
1727 
1728 	return (empty);
1729 }
1730 
1731 /*
1732  * Returns the lowest txg in the DTL range.
1733  */
1734 static uint64_t
1735 vdev_dtl_min(vdev_t *vd)
1736 {
1737 	range_seg_t *rs;
1738 
1739 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1740 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1741 	ASSERT0(vd->vdev_children);
1742 
1743 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1744 	return (rs->rs_start - 1);
1745 }
1746 
1747 /*
1748  * Returns the highest txg in the DTL.
1749  */
1750 static uint64_t
1751 vdev_dtl_max(vdev_t *vd)
1752 {
1753 	range_seg_t *rs;
1754 
1755 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1756 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1757 	ASSERT0(vd->vdev_children);
1758 
1759 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1760 	return (rs->rs_end);
1761 }
1762 
1763 /*
1764  * Determine if a resilvering vdev should remove any DTL entries from
1765  * its range. If the vdev was resilvering for the entire duration of the
1766  * scan then it should excise that range from its DTLs. Otherwise, this
1767  * vdev is considered partially resilvered and should leave its DTL
1768  * entries intact. The comment in vdev_dtl_reassess() describes how we
1769  * excise the DTLs.
1770  */
1771 static boolean_t
1772 vdev_dtl_should_excise(vdev_t *vd)
1773 {
1774 	spa_t *spa = vd->vdev_spa;
1775 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1776 
1777 	ASSERT0(scn->scn_phys.scn_errors);
1778 	ASSERT0(vd->vdev_children);
1779 
1780 	if (vd->vdev_resilver_txg == 0 ||
1781 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1782 		return (B_TRUE);
1783 
1784 	/*
1785 	 * When a resilver is initiated the scan will assign the scn_max_txg
1786 	 * value to the highest txg value that exists in all DTLs. If this
1787 	 * device's max DTL is not part of this scan (i.e. it is not in
1788 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1789 	 * for excision.
1790 	 */
1791 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1792 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1793 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1794 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1795 		return (B_TRUE);
1796 	}
1797 	return (B_FALSE);
1798 }
1799 
1800 /*
1801  * Reassess DTLs after a config change or scrub completion.
1802  */
1803 void
1804 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1805 {
1806 	spa_t *spa = vd->vdev_spa;
1807 	avl_tree_t reftree;
1808 	int minref;
1809 
1810 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1811 
1812 	for (int c = 0; c < vd->vdev_children; c++)
1813 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1814 		    scrub_txg, scrub_done);
1815 
1816 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1817 		return;
1818 
1819 	if (vd->vdev_ops->vdev_op_leaf) {
1820 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1821 
1822 		mutex_enter(&vd->vdev_dtl_lock);
1823 
1824 		/*
1825 		 * If we've completed a scan cleanly then determine
1826 		 * if this vdev should remove any DTLs. We only want to
1827 		 * excise regions on vdevs that were available during
1828 		 * the entire duration of this scan.
1829 		 */
1830 		if (scrub_txg != 0 &&
1831 		    (spa->spa_scrub_started ||
1832 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1833 		    vdev_dtl_should_excise(vd)) {
1834 			/*
1835 			 * We completed a scrub up to scrub_txg.  If we
1836 			 * did it without rebooting, then the scrub dtl
1837 			 * will be valid, so excise the old region and
1838 			 * fold in the scrub dtl.  Otherwise, leave the
1839 			 * dtl as-is if there was an error.
1840 			 *
1841 			 * There's little trick here: to excise the beginning
1842 			 * of the DTL_MISSING map, we put it into a reference
1843 			 * tree and then add a segment with refcnt -1 that
1844 			 * covers the range [0, scrub_txg).  This means
1845 			 * that each txg in that range has refcnt -1 or 0.
1846 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1847 			 * entries in the range [0, scrub_txg) will have a
1848 			 * positive refcnt -- either 1 or 2.  We then convert
1849 			 * the reference tree into the new DTL_MISSING map.
1850 			 */
1851 			space_reftree_create(&reftree);
1852 			space_reftree_add_map(&reftree,
1853 			    vd->vdev_dtl[DTL_MISSING], 1);
1854 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1855 			space_reftree_add_map(&reftree,
1856 			    vd->vdev_dtl[DTL_SCRUB], 2);
1857 			space_reftree_generate_map(&reftree,
1858 			    vd->vdev_dtl[DTL_MISSING], 1);
1859 			space_reftree_destroy(&reftree);
1860 		}
1861 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1862 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1863 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1864 		if (scrub_done)
1865 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1866 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1867 		if (!vdev_readable(vd))
1868 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1869 		else
1870 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1871 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1872 
1873 		/*
1874 		 * If the vdev was resilvering and no longer has any
1875 		 * DTLs then reset its resilvering flag.
1876 		 */
1877 		if (vd->vdev_resilver_txg != 0 &&
1878 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1879 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1880 			vd->vdev_resilver_txg = 0;
1881 
1882 		mutex_exit(&vd->vdev_dtl_lock);
1883 
1884 		if (txg != 0)
1885 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1886 		return;
1887 	}
1888 
1889 	mutex_enter(&vd->vdev_dtl_lock);
1890 	for (int t = 0; t < DTL_TYPES; t++) {
1891 		/* account for child's outage in parent's missing map */
1892 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1893 		if (t == DTL_SCRUB)
1894 			continue;			/* leaf vdevs only */
1895 		if (t == DTL_PARTIAL)
1896 			minref = 1;			/* i.e. non-zero */
1897 		else if (vd->vdev_nparity != 0)
1898 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1899 		else
1900 			minref = vd->vdev_children;	/* any kind of mirror */
1901 		space_reftree_create(&reftree);
1902 		for (int c = 0; c < vd->vdev_children; c++) {
1903 			vdev_t *cvd = vd->vdev_child[c];
1904 			mutex_enter(&cvd->vdev_dtl_lock);
1905 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1906 			mutex_exit(&cvd->vdev_dtl_lock);
1907 		}
1908 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1909 		space_reftree_destroy(&reftree);
1910 	}
1911 	mutex_exit(&vd->vdev_dtl_lock);
1912 }
1913 
1914 int
1915 vdev_dtl_load(vdev_t *vd)
1916 {
1917 	spa_t *spa = vd->vdev_spa;
1918 	objset_t *mos = spa->spa_meta_objset;
1919 	int error = 0;
1920 
1921 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1922 		ASSERT(!vd->vdev_ishole);
1923 
1924 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1925 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1926 		if (error)
1927 			return (error);
1928 		ASSERT(vd->vdev_dtl_sm != NULL);
1929 
1930 		mutex_enter(&vd->vdev_dtl_lock);
1931 
1932 		/*
1933 		 * Now that we've opened the space_map we need to update
1934 		 * the in-core DTL.
1935 		 */
1936 		space_map_update(vd->vdev_dtl_sm);
1937 
1938 		error = space_map_load(vd->vdev_dtl_sm,
1939 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1940 		mutex_exit(&vd->vdev_dtl_lock);
1941 
1942 		return (error);
1943 	}
1944 
1945 	for (int c = 0; c < vd->vdev_children; c++) {
1946 		error = vdev_dtl_load(vd->vdev_child[c]);
1947 		if (error != 0)
1948 			break;
1949 	}
1950 
1951 	return (error);
1952 }
1953 
1954 void
1955 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1956 {
1957 	spa_t *spa = vd->vdev_spa;
1958 
1959 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1960 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1961 	    zapobj, tx));
1962 }
1963 
1964 uint64_t
1965 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1966 {
1967 	spa_t *spa = vd->vdev_spa;
1968 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1969 	    DMU_OT_NONE, 0, tx);
1970 
1971 	ASSERT(zap != 0);
1972 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1973 	    zap, tx));
1974 
1975 	return (zap);
1976 }
1977 
1978 void
1979 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1980 {
1981 	if (vd->vdev_ops != &vdev_hole_ops &&
1982 	    vd->vdev_ops != &vdev_missing_ops &&
1983 	    vd->vdev_ops != &vdev_root_ops &&
1984 	    !vd->vdev_top->vdev_removing) {
1985 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
1986 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
1987 		}
1988 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
1989 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
1990 		}
1991 	}
1992 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1993 		vdev_construct_zaps(vd->vdev_child[i], tx);
1994 	}
1995 }
1996 
1997 void
1998 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1999 {
2000 	spa_t *spa = vd->vdev_spa;
2001 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2002 	objset_t *mos = spa->spa_meta_objset;
2003 	range_tree_t *rtsync;
2004 	kmutex_t rtlock;
2005 	dmu_tx_t *tx;
2006 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2007 
2008 	ASSERT(!vd->vdev_ishole);
2009 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2010 
2011 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2012 
2013 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2014 		mutex_enter(&vd->vdev_dtl_lock);
2015 		space_map_free(vd->vdev_dtl_sm, tx);
2016 		space_map_close(vd->vdev_dtl_sm);
2017 		vd->vdev_dtl_sm = NULL;
2018 		mutex_exit(&vd->vdev_dtl_lock);
2019 
2020 		/*
2021 		 * We only destroy the leaf ZAP for detached leaves or for
2022 		 * removed log devices. Removed data devices handle leaf ZAP
2023 		 * cleanup later, once cancellation is no longer possible.
2024 		 */
2025 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2026 		    vd->vdev_top->vdev_islog)) {
2027 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2028 			vd->vdev_leaf_zap = 0;
2029 		}
2030 
2031 		dmu_tx_commit(tx);
2032 		return;
2033 	}
2034 
2035 	if (vd->vdev_dtl_sm == NULL) {
2036 		uint64_t new_object;
2037 
2038 		new_object = space_map_alloc(mos, tx);
2039 		VERIFY3U(new_object, !=, 0);
2040 
2041 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2042 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2043 		ASSERT(vd->vdev_dtl_sm != NULL);
2044 	}
2045 
2046 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2047 
2048 	rtsync = range_tree_create(NULL, NULL, &rtlock);
2049 
2050 	mutex_enter(&rtlock);
2051 
2052 	mutex_enter(&vd->vdev_dtl_lock);
2053 	range_tree_walk(rt, range_tree_add, rtsync);
2054 	mutex_exit(&vd->vdev_dtl_lock);
2055 
2056 	space_map_truncate(vd->vdev_dtl_sm, tx);
2057 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2058 	range_tree_vacate(rtsync, NULL, NULL);
2059 
2060 	range_tree_destroy(rtsync);
2061 
2062 	mutex_exit(&rtlock);
2063 	mutex_destroy(&rtlock);
2064 
2065 	/*
2066 	 * If the object for the space map has changed then dirty
2067 	 * the top level so that we update the config.
2068 	 */
2069 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2070 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2071 		    "new object %llu", txg, spa_name(spa), object,
2072 		    space_map_object(vd->vdev_dtl_sm));
2073 		vdev_config_dirty(vd->vdev_top);
2074 	}
2075 
2076 	dmu_tx_commit(tx);
2077 
2078 	mutex_enter(&vd->vdev_dtl_lock);
2079 	space_map_update(vd->vdev_dtl_sm);
2080 	mutex_exit(&vd->vdev_dtl_lock);
2081 }
2082 
2083 /*
2084  * Determine whether the specified vdev can be offlined/detached/removed
2085  * without losing data.
2086  */
2087 boolean_t
2088 vdev_dtl_required(vdev_t *vd)
2089 {
2090 	spa_t *spa = vd->vdev_spa;
2091 	vdev_t *tvd = vd->vdev_top;
2092 	uint8_t cant_read = vd->vdev_cant_read;
2093 	boolean_t required;
2094 
2095 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2096 
2097 	if (vd == spa->spa_root_vdev || vd == tvd)
2098 		return (B_TRUE);
2099 
2100 	/*
2101 	 * Temporarily mark the device as unreadable, and then determine
2102 	 * whether this results in any DTL outages in the top-level vdev.
2103 	 * If not, we can safely offline/detach/remove the device.
2104 	 */
2105 	vd->vdev_cant_read = B_TRUE;
2106 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2107 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2108 	vd->vdev_cant_read = cant_read;
2109 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2110 
2111 	if (!required && zio_injection_enabled)
2112 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2113 
2114 	return (required);
2115 }
2116 
2117 /*
2118  * Determine if resilver is needed, and if so the txg range.
2119  */
2120 boolean_t
2121 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2122 {
2123 	boolean_t needed = B_FALSE;
2124 	uint64_t thismin = UINT64_MAX;
2125 	uint64_t thismax = 0;
2126 
2127 	if (vd->vdev_children == 0) {
2128 		mutex_enter(&vd->vdev_dtl_lock);
2129 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2130 		    vdev_writeable(vd)) {
2131 
2132 			thismin = vdev_dtl_min(vd);
2133 			thismax = vdev_dtl_max(vd);
2134 			needed = B_TRUE;
2135 		}
2136 		mutex_exit(&vd->vdev_dtl_lock);
2137 	} else {
2138 		for (int c = 0; c < vd->vdev_children; c++) {
2139 			vdev_t *cvd = vd->vdev_child[c];
2140 			uint64_t cmin, cmax;
2141 
2142 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2143 				thismin = MIN(thismin, cmin);
2144 				thismax = MAX(thismax, cmax);
2145 				needed = B_TRUE;
2146 			}
2147 		}
2148 	}
2149 
2150 	if (needed && minp) {
2151 		*minp = thismin;
2152 		*maxp = thismax;
2153 	}
2154 	return (needed);
2155 }
2156 
2157 void
2158 vdev_load(vdev_t *vd)
2159 {
2160 	/*
2161 	 * Recursively load all children.
2162 	 */
2163 	for (int c = 0; c < vd->vdev_children; c++)
2164 		vdev_load(vd->vdev_child[c]);
2165 
2166 	/*
2167 	 * If this is a top-level vdev, initialize its metaslabs.
2168 	 */
2169 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2170 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2171 	    vdev_metaslab_init(vd, 0) != 0))
2172 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2173 		    VDEV_AUX_CORRUPT_DATA);
2174 
2175 	/*
2176 	 * If this is a leaf vdev, load its DTL.
2177 	 */
2178 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2179 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2180 		    VDEV_AUX_CORRUPT_DATA);
2181 }
2182 
2183 /*
2184  * The special vdev case is used for hot spares and l2cache devices.  Its
2185  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2186  * we make sure that we can open the underlying device, then try to read the
2187  * label, and make sure that the label is sane and that it hasn't been
2188  * repurposed to another pool.
2189  */
2190 int
2191 vdev_validate_aux(vdev_t *vd)
2192 {
2193 	nvlist_t *label;
2194 	uint64_t guid, version;
2195 	uint64_t state;
2196 
2197 	if (!vdev_readable(vd))
2198 		return (0);
2199 
2200 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2201 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2202 		    VDEV_AUX_CORRUPT_DATA);
2203 		return (-1);
2204 	}
2205 
2206 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2207 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2208 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2209 	    guid != vd->vdev_guid ||
2210 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2211 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2212 		    VDEV_AUX_CORRUPT_DATA);
2213 		nvlist_free(label);
2214 		return (-1);
2215 	}
2216 
2217 	/*
2218 	 * We don't actually check the pool state here.  If it's in fact in
2219 	 * use by another pool, we update this fact on the fly when requested.
2220 	 */
2221 	nvlist_free(label);
2222 	return (0);
2223 }
2224 
2225 void
2226 vdev_remove(vdev_t *vd, uint64_t txg)
2227 {
2228 	spa_t *spa = vd->vdev_spa;
2229 	objset_t *mos = spa->spa_meta_objset;
2230 	dmu_tx_t *tx;
2231 
2232 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2233 	ASSERT(vd == vd->vdev_top);
2234 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2235 
2236 	if (vd->vdev_ms != NULL) {
2237 		metaslab_group_t *mg = vd->vdev_mg;
2238 
2239 		metaslab_group_histogram_verify(mg);
2240 		metaslab_class_histogram_verify(mg->mg_class);
2241 
2242 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2243 			metaslab_t *msp = vd->vdev_ms[m];
2244 
2245 			if (msp == NULL || msp->ms_sm == NULL)
2246 				continue;
2247 
2248 			mutex_enter(&msp->ms_lock);
2249 			/*
2250 			 * If the metaslab was not loaded when the vdev
2251 			 * was removed then the histogram accounting may
2252 			 * not be accurate. Update the histogram information
2253 			 * here so that we ensure that the metaslab group
2254 			 * and metaslab class are up-to-date.
2255 			 */
2256 			metaslab_group_histogram_remove(mg, msp);
2257 
2258 			VERIFY0(space_map_allocated(msp->ms_sm));
2259 			space_map_free(msp->ms_sm, tx);
2260 			space_map_close(msp->ms_sm);
2261 			msp->ms_sm = NULL;
2262 			mutex_exit(&msp->ms_lock);
2263 		}
2264 
2265 		metaslab_group_histogram_verify(mg);
2266 		metaslab_class_histogram_verify(mg->mg_class);
2267 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2268 			ASSERT0(mg->mg_histogram[i]);
2269 
2270 	}
2271 
2272 	if (vd->vdev_ms_array) {
2273 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2274 		vd->vdev_ms_array = 0;
2275 	}
2276 
2277 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2278 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2279 		vd->vdev_top_zap = 0;
2280 	}
2281 	dmu_tx_commit(tx);
2282 }
2283 
2284 void
2285 vdev_sync_done(vdev_t *vd, uint64_t txg)
2286 {
2287 	metaslab_t *msp;
2288 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2289 
2290 	ASSERT(!vd->vdev_ishole);
2291 
2292 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2293 		metaslab_sync_done(msp, txg);
2294 
2295 	if (reassess)
2296 		metaslab_sync_reassess(vd->vdev_mg);
2297 }
2298 
2299 void
2300 vdev_sync(vdev_t *vd, uint64_t txg)
2301 {
2302 	spa_t *spa = vd->vdev_spa;
2303 	vdev_t *lvd;
2304 	metaslab_t *msp;
2305 	dmu_tx_t *tx;
2306 
2307 	ASSERT(!vd->vdev_ishole);
2308 
2309 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2310 		ASSERT(vd == vd->vdev_top);
2311 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2312 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2313 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2314 		ASSERT(vd->vdev_ms_array != 0);
2315 		vdev_config_dirty(vd);
2316 		dmu_tx_commit(tx);
2317 	}
2318 
2319 	/*
2320 	 * Remove the metadata associated with this vdev once it's empty.
2321 	 */
2322 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2323 		vdev_remove(vd, txg);
2324 
2325 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2326 		metaslab_sync(msp, txg);
2327 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2328 	}
2329 
2330 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2331 		vdev_dtl_sync(lvd, txg);
2332 
2333 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2334 }
2335 
2336 uint64_t
2337 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2338 {
2339 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2340 }
2341 
2342 /*
2343  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2344  * not be opened, and no I/O is attempted.
2345  */
2346 int
2347 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2348 {
2349 	vdev_t *vd, *tvd;
2350 
2351 	spa_vdev_state_enter(spa, SCL_NONE);
2352 
2353 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2354 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2355 
2356 	if (!vd->vdev_ops->vdev_op_leaf)
2357 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2358 
2359 	tvd = vd->vdev_top;
2360 
2361 	/*
2362 	 * We don't directly use the aux state here, but if we do a
2363 	 * vdev_reopen(), we need this value to be present to remember why we
2364 	 * were faulted.
2365 	 */
2366 	vd->vdev_label_aux = aux;
2367 
2368 	/*
2369 	 * Faulted state takes precedence over degraded.
2370 	 */
2371 	vd->vdev_delayed_close = B_FALSE;
2372 	vd->vdev_faulted = 1ULL;
2373 	vd->vdev_degraded = 0ULL;
2374 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2375 
2376 	/*
2377 	 * If this device has the only valid copy of the data, then
2378 	 * back off and simply mark the vdev as degraded instead.
2379 	 */
2380 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2381 		vd->vdev_degraded = 1ULL;
2382 		vd->vdev_faulted = 0ULL;
2383 
2384 		/*
2385 		 * If we reopen the device and it's not dead, only then do we
2386 		 * mark it degraded.
2387 		 */
2388 		vdev_reopen(tvd);
2389 
2390 		if (vdev_readable(vd))
2391 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2392 	}
2393 
2394 	return (spa_vdev_state_exit(spa, vd, 0));
2395 }
2396 
2397 /*
2398  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2399  * user that something is wrong.  The vdev continues to operate as normal as far
2400  * as I/O is concerned.
2401  */
2402 int
2403 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2404 {
2405 	vdev_t *vd;
2406 
2407 	spa_vdev_state_enter(spa, SCL_NONE);
2408 
2409 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2410 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2411 
2412 	if (!vd->vdev_ops->vdev_op_leaf)
2413 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2414 
2415 	/*
2416 	 * If the vdev is already faulted, then don't do anything.
2417 	 */
2418 	if (vd->vdev_faulted || vd->vdev_degraded)
2419 		return (spa_vdev_state_exit(spa, NULL, 0));
2420 
2421 	vd->vdev_degraded = 1ULL;
2422 	if (!vdev_is_dead(vd))
2423 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2424 		    aux);
2425 
2426 	return (spa_vdev_state_exit(spa, vd, 0));
2427 }
2428 
2429 /*
2430  * Online the given vdev.
2431  *
2432  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2433  * spare device should be detached when the device finishes resilvering.
2434  * Second, the online should be treated like a 'test' online case, so no FMA
2435  * events are generated if the device fails to open.
2436  */
2437 int
2438 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2439 {
2440 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2441 	boolean_t postevent = B_FALSE;
2442 
2443 	spa_vdev_state_enter(spa, SCL_NONE);
2444 
2445 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2446 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2447 
2448 	if (!vd->vdev_ops->vdev_op_leaf)
2449 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2450 
2451 	postevent =
2452 	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2453 	    B_TRUE : B_FALSE;
2454 
2455 	tvd = vd->vdev_top;
2456 	vd->vdev_offline = B_FALSE;
2457 	vd->vdev_tmpoffline = B_FALSE;
2458 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2459 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2460 
2461 	/* XXX - L2ARC 1.0 does not support expansion */
2462 	if (!vd->vdev_aux) {
2463 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2464 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2465 	}
2466 
2467 	vdev_reopen(tvd);
2468 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2469 
2470 	if (!vd->vdev_aux) {
2471 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2472 			pvd->vdev_expanding = B_FALSE;
2473 	}
2474 
2475 	if (newstate)
2476 		*newstate = vd->vdev_state;
2477 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2478 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2479 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2480 	    vd->vdev_parent->vdev_child[0] == vd)
2481 		vd->vdev_unspare = B_TRUE;
2482 
2483 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2484 
2485 		/* XXX - L2ARC 1.0 does not support expansion */
2486 		if (vd->vdev_aux)
2487 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2488 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2489 	}
2490 
2491 	if (postevent)
2492 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2493 
2494 	return (spa_vdev_state_exit(spa, vd, 0));
2495 }
2496 
2497 static int
2498 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2499 {
2500 	vdev_t *vd, *tvd;
2501 	int error = 0;
2502 	uint64_t generation;
2503 	metaslab_group_t *mg;
2504 
2505 top:
2506 	spa_vdev_state_enter(spa, SCL_ALLOC);
2507 
2508 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2509 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2510 
2511 	if (!vd->vdev_ops->vdev_op_leaf)
2512 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2513 
2514 	tvd = vd->vdev_top;
2515 	mg = tvd->vdev_mg;
2516 	generation = spa->spa_config_generation + 1;
2517 
2518 	/*
2519 	 * If the device isn't already offline, try to offline it.
2520 	 */
2521 	if (!vd->vdev_offline) {
2522 		/*
2523 		 * If this device has the only valid copy of some data,
2524 		 * don't allow it to be offlined. Log devices are always
2525 		 * expendable.
2526 		 */
2527 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2528 		    vdev_dtl_required(vd))
2529 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2530 
2531 		/*
2532 		 * If the top-level is a slog and it has had allocations
2533 		 * then proceed.  We check that the vdev's metaslab group
2534 		 * is not NULL since it's possible that we may have just
2535 		 * added this vdev but not yet initialized its metaslabs.
2536 		 */
2537 		if (tvd->vdev_islog && mg != NULL) {
2538 			/*
2539 			 * Prevent any future allocations.
2540 			 */
2541 			metaslab_group_passivate(mg);
2542 			(void) spa_vdev_state_exit(spa, vd, 0);
2543 
2544 			error = spa_offline_log(spa);
2545 
2546 			spa_vdev_state_enter(spa, SCL_ALLOC);
2547 
2548 			/*
2549 			 * Check to see if the config has changed.
2550 			 */
2551 			if (error || generation != spa->spa_config_generation) {
2552 				metaslab_group_activate(mg);
2553 				if (error)
2554 					return (spa_vdev_state_exit(spa,
2555 					    vd, error));
2556 				(void) spa_vdev_state_exit(spa, vd, 0);
2557 				goto top;
2558 			}
2559 			ASSERT0(tvd->vdev_stat.vs_alloc);
2560 		}
2561 
2562 		/*
2563 		 * Offline this device and reopen its top-level vdev.
2564 		 * If the top-level vdev is a log device then just offline
2565 		 * it. Otherwise, if this action results in the top-level
2566 		 * vdev becoming unusable, undo it and fail the request.
2567 		 */
2568 		vd->vdev_offline = B_TRUE;
2569 		vdev_reopen(tvd);
2570 
2571 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2572 		    vdev_is_dead(tvd)) {
2573 			vd->vdev_offline = B_FALSE;
2574 			vdev_reopen(tvd);
2575 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2576 		}
2577 
2578 		/*
2579 		 * Add the device back into the metaslab rotor so that
2580 		 * once we online the device it's open for business.
2581 		 */
2582 		if (tvd->vdev_islog && mg != NULL)
2583 			metaslab_group_activate(mg);
2584 	}
2585 
2586 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2587 
2588 	return (spa_vdev_state_exit(spa, vd, 0));
2589 }
2590 
2591 int
2592 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2593 {
2594 	int error;
2595 
2596 	mutex_enter(&spa->spa_vdev_top_lock);
2597 	error = vdev_offline_locked(spa, guid, flags);
2598 	mutex_exit(&spa->spa_vdev_top_lock);
2599 
2600 	return (error);
2601 }
2602 
2603 /*
2604  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2605  * vdev_offline(), we assume the spa config is locked.  We also clear all
2606  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2607  */
2608 void
2609 vdev_clear(spa_t *spa, vdev_t *vd)
2610 {
2611 	vdev_t *rvd = spa->spa_root_vdev;
2612 
2613 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2614 
2615 	if (vd == NULL)
2616 		vd = rvd;
2617 
2618 	vd->vdev_stat.vs_read_errors = 0;
2619 	vd->vdev_stat.vs_write_errors = 0;
2620 	vd->vdev_stat.vs_checksum_errors = 0;
2621 
2622 	for (int c = 0; c < vd->vdev_children; c++)
2623 		vdev_clear(spa, vd->vdev_child[c]);
2624 
2625 	/*
2626 	 * If we're in the FAULTED state or have experienced failed I/O, then
2627 	 * clear the persistent state and attempt to reopen the device.  We
2628 	 * also mark the vdev config dirty, so that the new faulted state is
2629 	 * written out to disk.
2630 	 */
2631 	if (vd->vdev_faulted || vd->vdev_degraded ||
2632 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2633 
2634 		/*
2635 		 * When reopening in reponse to a clear event, it may be due to
2636 		 * a fmadm repair request.  In this case, if the device is
2637 		 * still broken, we want to still post the ereport again.
2638 		 */
2639 		vd->vdev_forcefault = B_TRUE;
2640 
2641 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2642 		vd->vdev_cant_read = B_FALSE;
2643 		vd->vdev_cant_write = B_FALSE;
2644 
2645 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2646 
2647 		vd->vdev_forcefault = B_FALSE;
2648 
2649 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2650 			vdev_state_dirty(vd->vdev_top);
2651 
2652 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2653 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2654 
2655 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2656 	}
2657 
2658 	/*
2659 	 * When clearing a FMA-diagnosed fault, we always want to
2660 	 * unspare the device, as we assume that the original spare was
2661 	 * done in response to the FMA fault.
2662 	 */
2663 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2664 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2665 	    vd->vdev_parent->vdev_child[0] == vd)
2666 		vd->vdev_unspare = B_TRUE;
2667 }
2668 
2669 boolean_t
2670 vdev_is_dead(vdev_t *vd)
2671 {
2672 	/*
2673 	 * Holes and missing devices are always considered "dead".
2674 	 * This simplifies the code since we don't have to check for
2675 	 * these types of devices in the various code paths.
2676 	 * Instead we rely on the fact that we skip over dead devices
2677 	 * before issuing I/O to them.
2678 	 */
2679 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2680 	    vd->vdev_ops == &vdev_missing_ops);
2681 }
2682 
2683 boolean_t
2684 vdev_readable(vdev_t *vd)
2685 {
2686 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2687 }
2688 
2689 boolean_t
2690 vdev_writeable(vdev_t *vd)
2691 {
2692 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2693 }
2694 
2695 boolean_t
2696 vdev_allocatable(vdev_t *vd)
2697 {
2698 	uint64_t state = vd->vdev_state;
2699 
2700 	/*
2701 	 * We currently allow allocations from vdevs which may be in the
2702 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2703 	 * fails to reopen then we'll catch it later when we're holding
2704 	 * the proper locks.  Note that we have to get the vdev state
2705 	 * in a local variable because although it changes atomically,
2706 	 * we're asking two separate questions about it.
2707 	 */
2708 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2709 	    !vd->vdev_cant_write && !vd->vdev_ishole &&
2710 	    vd->vdev_mg->mg_initialized);
2711 }
2712 
2713 boolean_t
2714 vdev_accessible(vdev_t *vd, zio_t *zio)
2715 {
2716 	ASSERT(zio->io_vd == vd);
2717 
2718 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2719 		return (B_FALSE);
2720 
2721 	if (zio->io_type == ZIO_TYPE_READ)
2722 		return (!vd->vdev_cant_read);
2723 
2724 	if (zio->io_type == ZIO_TYPE_WRITE)
2725 		return (!vd->vdev_cant_write);
2726 
2727 	return (B_TRUE);
2728 }
2729 
2730 /*
2731  * Get statistics for the given vdev.
2732  */
2733 void
2734 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2735 {
2736 	spa_t *spa = vd->vdev_spa;
2737 	vdev_t *rvd = spa->spa_root_vdev;
2738 	vdev_t *tvd = vd->vdev_top;
2739 
2740 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2741 
2742 	mutex_enter(&vd->vdev_stat_lock);
2743 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2744 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2745 	vs->vs_state = vd->vdev_state;
2746 	vs->vs_rsize = vdev_get_min_asize(vd);
2747 	if (vd->vdev_ops->vdev_op_leaf)
2748 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2749 	/*
2750 	 * Report expandable space on top-level, non-auxillary devices only.
2751 	 * The expandable space is reported in terms of metaslab sized units
2752 	 * since that determines how much space the pool can expand.
2753 	 */
2754 	if (vd->vdev_aux == NULL && tvd != NULL) {
2755 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2756 		    1ULL << tvd->vdev_ms_shift);
2757 	}
2758 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2759 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2760 	}
2761 
2762 	/*
2763 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2764 	 * over all top-level vdevs (i.e. the direct children of the root).
2765 	 */
2766 	if (vd == rvd) {
2767 		for (int c = 0; c < rvd->vdev_children; c++) {
2768 			vdev_t *cvd = rvd->vdev_child[c];
2769 			vdev_stat_t *cvs = &cvd->vdev_stat;
2770 
2771 			for (int t = 0; t < ZIO_TYPES; t++) {
2772 				vs->vs_ops[t] += cvs->vs_ops[t];
2773 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2774 			}
2775 			cvs->vs_scan_removing = cvd->vdev_removing;
2776 		}
2777 	}
2778 	mutex_exit(&vd->vdev_stat_lock);
2779 }
2780 
2781 void
2782 vdev_clear_stats(vdev_t *vd)
2783 {
2784 	mutex_enter(&vd->vdev_stat_lock);
2785 	vd->vdev_stat.vs_space = 0;
2786 	vd->vdev_stat.vs_dspace = 0;
2787 	vd->vdev_stat.vs_alloc = 0;
2788 	mutex_exit(&vd->vdev_stat_lock);
2789 }
2790 
2791 void
2792 vdev_scan_stat_init(vdev_t *vd)
2793 {
2794 	vdev_stat_t *vs = &vd->vdev_stat;
2795 
2796 	for (int c = 0; c < vd->vdev_children; c++)
2797 		vdev_scan_stat_init(vd->vdev_child[c]);
2798 
2799 	mutex_enter(&vd->vdev_stat_lock);
2800 	vs->vs_scan_processed = 0;
2801 	mutex_exit(&vd->vdev_stat_lock);
2802 }
2803 
2804 void
2805 vdev_stat_update(zio_t *zio, uint64_t psize)
2806 {
2807 	spa_t *spa = zio->io_spa;
2808 	vdev_t *rvd = spa->spa_root_vdev;
2809 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2810 	vdev_t *pvd;
2811 	uint64_t txg = zio->io_txg;
2812 	vdev_stat_t *vs = &vd->vdev_stat;
2813 	zio_type_t type = zio->io_type;
2814 	int flags = zio->io_flags;
2815 
2816 	/*
2817 	 * If this i/o is a gang leader, it didn't do any actual work.
2818 	 */
2819 	if (zio->io_gang_tree)
2820 		return;
2821 
2822 	if (zio->io_error == 0) {
2823 		/*
2824 		 * If this is a root i/o, don't count it -- we've already
2825 		 * counted the top-level vdevs, and vdev_get_stats() will
2826 		 * aggregate them when asked.  This reduces contention on
2827 		 * the root vdev_stat_lock and implicitly handles blocks
2828 		 * that compress away to holes, for which there is no i/o.
2829 		 * (Holes never create vdev children, so all the counters
2830 		 * remain zero, which is what we want.)
2831 		 *
2832 		 * Note: this only applies to successful i/o (io_error == 0)
2833 		 * because unlike i/o counts, errors are not additive.
2834 		 * When reading a ditto block, for example, failure of
2835 		 * one top-level vdev does not imply a root-level error.
2836 		 */
2837 		if (vd == rvd)
2838 			return;
2839 
2840 		ASSERT(vd == zio->io_vd);
2841 
2842 		if (flags & ZIO_FLAG_IO_BYPASS)
2843 			return;
2844 
2845 		mutex_enter(&vd->vdev_stat_lock);
2846 
2847 		if (flags & ZIO_FLAG_IO_REPAIR) {
2848 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2849 				dsl_scan_phys_t *scn_phys =
2850 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2851 				uint64_t *processed = &scn_phys->scn_processed;
2852 
2853 				/* XXX cleanup? */
2854 				if (vd->vdev_ops->vdev_op_leaf)
2855 					atomic_add_64(processed, psize);
2856 				vs->vs_scan_processed += psize;
2857 			}
2858 
2859 			if (flags & ZIO_FLAG_SELF_HEAL)
2860 				vs->vs_self_healed += psize;
2861 		}
2862 
2863 		vs->vs_ops[type]++;
2864 		vs->vs_bytes[type] += psize;
2865 
2866 		mutex_exit(&vd->vdev_stat_lock);
2867 		return;
2868 	}
2869 
2870 	if (flags & ZIO_FLAG_SPECULATIVE)
2871 		return;
2872 
2873 	/*
2874 	 * If this is an I/O error that is going to be retried, then ignore the
2875 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2876 	 * hard errors, when in reality they can happen for any number of
2877 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2878 	 */
2879 	if (zio->io_error == EIO &&
2880 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2881 		return;
2882 
2883 	/*
2884 	 * Intent logs writes won't propagate their error to the root
2885 	 * I/O so don't mark these types of failures as pool-level
2886 	 * errors.
2887 	 */
2888 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2889 		return;
2890 
2891 	mutex_enter(&vd->vdev_stat_lock);
2892 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2893 		if (zio->io_error == ECKSUM)
2894 			vs->vs_checksum_errors++;
2895 		else
2896 			vs->vs_read_errors++;
2897 	}
2898 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2899 		vs->vs_write_errors++;
2900 	mutex_exit(&vd->vdev_stat_lock);
2901 
2902 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2903 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2904 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2905 	    spa->spa_claiming)) {
2906 		/*
2907 		 * This is either a normal write (not a repair), or it's
2908 		 * a repair induced by the scrub thread, or it's a repair
2909 		 * made by zil_claim() during spa_load() in the first txg.
2910 		 * In the normal case, we commit the DTL change in the same
2911 		 * txg as the block was born.  In the scrub-induced repair
2912 		 * case, we know that scrubs run in first-pass syncing context,
2913 		 * so we commit the DTL change in spa_syncing_txg(spa).
2914 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2915 		 *
2916 		 * We currently do not make DTL entries for failed spontaneous
2917 		 * self-healing writes triggered by normal (non-scrubbing)
2918 		 * reads, because we have no transactional context in which to
2919 		 * do so -- and it's not clear that it'd be desirable anyway.
2920 		 */
2921 		if (vd->vdev_ops->vdev_op_leaf) {
2922 			uint64_t commit_txg = txg;
2923 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2924 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2925 				ASSERT(spa_sync_pass(spa) == 1);
2926 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2927 				commit_txg = spa_syncing_txg(spa);
2928 			} else if (spa->spa_claiming) {
2929 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2930 				commit_txg = spa_first_txg(spa);
2931 			}
2932 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2933 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2934 				return;
2935 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2936 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2937 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2938 		}
2939 		if (vd != rvd)
2940 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2941 	}
2942 }
2943 
2944 /*
2945  * Update the in-core space usage stats for this vdev, its metaslab class,
2946  * and the root vdev.
2947  */
2948 void
2949 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2950     int64_t space_delta)
2951 {
2952 	int64_t dspace_delta = space_delta;
2953 	spa_t *spa = vd->vdev_spa;
2954 	vdev_t *rvd = spa->spa_root_vdev;
2955 	metaslab_group_t *mg = vd->vdev_mg;
2956 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2957 
2958 	ASSERT(vd == vd->vdev_top);
2959 
2960 	/*
2961 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2962 	 * factor.  We must calculate this here and not at the root vdev
2963 	 * because the root vdev's psize-to-asize is simply the max of its
2964 	 * childrens', thus not accurate enough for us.
2965 	 */
2966 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2967 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2968 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2969 	    vd->vdev_deflate_ratio;
2970 
2971 	mutex_enter(&vd->vdev_stat_lock);
2972 	vd->vdev_stat.vs_alloc += alloc_delta;
2973 	vd->vdev_stat.vs_space += space_delta;
2974 	vd->vdev_stat.vs_dspace += dspace_delta;
2975 	mutex_exit(&vd->vdev_stat_lock);
2976 
2977 	if (mc == spa_normal_class(spa)) {
2978 		mutex_enter(&rvd->vdev_stat_lock);
2979 		rvd->vdev_stat.vs_alloc += alloc_delta;
2980 		rvd->vdev_stat.vs_space += space_delta;
2981 		rvd->vdev_stat.vs_dspace += dspace_delta;
2982 		mutex_exit(&rvd->vdev_stat_lock);
2983 	}
2984 
2985 	if (mc != NULL) {
2986 		ASSERT(rvd == vd->vdev_parent);
2987 		ASSERT(vd->vdev_ms_count != 0);
2988 
2989 		metaslab_class_space_update(mc,
2990 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2991 	}
2992 }
2993 
2994 /*
2995  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2996  * so that it will be written out next time the vdev configuration is synced.
2997  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2998  */
2999 void
3000 vdev_config_dirty(vdev_t *vd)
3001 {
3002 	spa_t *spa = vd->vdev_spa;
3003 	vdev_t *rvd = spa->spa_root_vdev;
3004 	int c;
3005 
3006 	ASSERT(spa_writeable(spa));
3007 
3008 	/*
3009 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3010 	 * update the vdev config manually and set the sync flag.
3011 	 */
3012 	if (vd->vdev_aux != NULL) {
3013 		spa_aux_vdev_t *sav = vd->vdev_aux;
3014 		nvlist_t **aux;
3015 		uint_t naux;
3016 
3017 		for (c = 0; c < sav->sav_count; c++) {
3018 			if (sav->sav_vdevs[c] == vd)
3019 				break;
3020 		}
3021 
3022 		if (c == sav->sav_count) {
3023 			/*
3024 			 * We're being removed.  There's nothing more to do.
3025 			 */
3026 			ASSERT(sav->sav_sync == B_TRUE);
3027 			return;
3028 		}
3029 
3030 		sav->sav_sync = B_TRUE;
3031 
3032 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3033 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3034 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3035 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3036 		}
3037 
3038 		ASSERT(c < naux);
3039 
3040 		/*
3041 		 * Setting the nvlist in the middle if the array is a little
3042 		 * sketchy, but it will work.
3043 		 */
3044 		nvlist_free(aux[c]);
3045 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3046 
3047 		return;
3048 	}
3049 
3050 	/*
3051 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3052 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3053 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3054 	 * so this is sufficient to ensure mutual exclusion.
3055 	 */
3056 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3057 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3058 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3059 
3060 	if (vd == rvd) {
3061 		for (c = 0; c < rvd->vdev_children; c++)
3062 			vdev_config_dirty(rvd->vdev_child[c]);
3063 	} else {
3064 		ASSERT(vd == vd->vdev_top);
3065 
3066 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3067 		    !vd->vdev_ishole)
3068 			list_insert_head(&spa->spa_config_dirty_list, vd);
3069 	}
3070 }
3071 
3072 void
3073 vdev_config_clean(vdev_t *vd)
3074 {
3075 	spa_t *spa = vd->vdev_spa;
3076 
3077 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3078 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3079 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3080 
3081 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3082 	list_remove(&spa->spa_config_dirty_list, vd);
3083 }
3084 
3085 /*
3086  * Mark a top-level vdev's state as dirty, so that the next pass of
3087  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3088  * the state changes from larger config changes because they require
3089  * much less locking, and are often needed for administrative actions.
3090  */
3091 void
3092 vdev_state_dirty(vdev_t *vd)
3093 {
3094 	spa_t *spa = vd->vdev_spa;
3095 
3096 	ASSERT(spa_writeable(spa));
3097 	ASSERT(vd == vd->vdev_top);
3098 
3099 	/*
3100 	 * The state list is protected by the SCL_STATE lock.  The caller
3101 	 * must either hold SCL_STATE as writer, or must be the sync thread
3102 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3103 	 * so this is sufficient to ensure mutual exclusion.
3104 	 */
3105 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3106 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3107 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3108 
3109 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3110 		list_insert_head(&spa->spa_state_dirty_list, vd);
3111 }
3112 
3113 void
3114 vdev_state_clean(vdev_t *vd)
3115 {
3116 	spa_t *spa = vd->vdev_spa;
3117 
3118 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3119 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3120 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3121 
3122 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3123 	list_remove(&spa->spa_state_dirty_list, vd);
3124 }
3125 
3126 /*
3127  * Propagate vdev state up from children to parent.
3128  */
3129 void
3130 vdev_propagate_state(vdev_t *vd)
3131 {
3132 	spa_t *spa = vd->vdev_spa;
3133 	vdev_t *rvd = spa->spa_root_vdev;
3134 	int degraded = 0, faulted = 0;
3135 	int corrupted = 0;
3136 	vdev_t *child;
3137 
3138 	if (vd->vdev_children > 0) {
3139 		for (int c = 0; c < vd->vdev_children; c++) {
3140 			child = vd->vdev_child[c];
3141 
3142 			/*
3143 			 * Don't factor holes into the decision.
3144 			 */
3145 			if (child->vdev_ishole)
3146 				continue;
3147 
3148 			if (!vdev_readable(child) ||
3149 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3150 				/*
3151 				 * Root special: if there is a top-level log
3152 				 * device, treat the root vdev as if it were
3153 				 * degraded.
3154 				 */
3155 				if (child->vdev_islog && vd == rvd)
3156 					degraded++;
3157 				else
3158 					faulted++;
3159 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3160 				degraded++;
3161 			}
3162 
3163 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3164 				corrupted++;
3165 		}
3166 
3167 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3168 
3169 		/*
3170 		 * Root special: if there is a top-level vdev that cannot be
3171 		 * opened due to corrupted metadata, then propagate the root
3172 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3173 		 * replicas'.
3174 		 */
3175 		if (corrupted && vd == rvd &&
3176 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3177 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3178 			    VDEV_AUX_CORRUPT_DATA);
3179 	}
3180 
3181 	if (vd->vdev_parent)
3182 		vdev_propagate_state(vd->vdev_parent);
3183 }
3184 
3185 /*
3186  * Set a vdev's state.  If this is during an open, we don't update the parent
3187  * state, because we're in the process of opening children depth-first.
3188  * Otherwise, we propagate the change to the parent.
3189  *
3190  * If this routine places a device in a faulted state, an appropriate ereport is
3191  * generated.
3192  */
3193 void
3194 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3195 {
3196 	uint64_t save_state;
3197 	spa_t *spa = vd->vdev_spa;
3198 
3199 	if (state == vd->vdev_state) {
3200 		vd->vdev_stat.vs_aux = aux;
3201 		return;
3202 	}
3203 
3204 	save_state = vd->vdev_state;
3205 
3206 	vd->vdev_state = state;
3207 	vd->vdev_stat.vs_aux = aux;
3208 
3209 	/*
3210 	 * If we are setting the vdev state to anything but an open state, then
3211 	 * always close the underlying device unless the device has requested
3212 	 * a delayed close (i.e. we're about to remove or fault the device).
3213 	 * Otherwise, we keep accessible but invalid devices open forever.
3214 	 * We don't call vdev_close() itself, because that implies some extra
3215 	 * checks (offline, etc) that we don't want here.  This is limited to
3216 	 * leaf devices, because otherwise closing the device will affect other
3217 	 * children.
3218 	 */
3219 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3220 	    vd->vdev_ops->vdev_op_leaf)
3221 		vd->vdev_ops->vdev_op_close(vd);
3222 
3223 	/*
3224 	 * If we have brought this vdev back into service, we need
3225 	 * to notify fmd so that it can gracefully repair any outstanding
3226 	 * cases due to a missing device.  We do this in all cases, even those
3227 	 * that probably don't correlate to a repaired fault.  This is sure to
3228 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3229 	 * this is a transient state it's OK, as the retire agent will
3230 	 * double-check the state of the vdev before repairing it.
3231 	 */
3232 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3233 	    vd->vdev_prevstate != state)
3234 		zfs_post_state_change(spa, vd);
3235 
3236 	if (vd->vdev_removed &&
3237 	    state == VDEV_STATE_CANT_OPEN &&
3238 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3239 		/*
3240 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3241 		 * device was previously marked removed and someone attempted to
3242 		 * reopen it.  If this failed due to a nonexistent device, then
3243 		 * keep the device in the REMOVED state.  We also let this be if
3244 		 * it is one of our special test online cases, which is only
3245 		 * attempting to online the device and shouldn't generate an FMA
3246 		 * fault.
3247 		 */
3248 		vd->vdev_state = VDEV_STATE_REMOVED;
3249 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3250 	} else if (state == VDEV_STATE_REMOVED) {
3251 		vd->vdev_removed = B_TRUE;
3252 	} else if (state == VDEV_STATE_CANT_OPEN) {
3253 		/*
3254 		 * If we fail to open a vdev during an import or recovery, we
3255 		 * mark it as "not available", which signifies that it was
3256 		 * never there to begin with.  Failure to open such a device
3257 		 * is not considered an error.
3258 		 */
3259 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3260 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3261 		    vd->vdev_ops->vdev_op_leaf)
3262 			vd->vdev_not_present = 1;
3263 
3264 		/*
3265 		 * Post the appropriate ereport.  If the 'prevstate' field is
3266 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3267 		 * that this is part of a vdev_reopen().  In this case, we don't
3268 		 * want to post the ereport if the device was already in the
3269 		 * CANT_OPEN state beforehand.
3270 		 *
3271 		 * If the 'checkremove' flag is set, then this is an attempt to
3272 		 * online the device in response to an insertion event.  If we
3273 		 * hit this case, then we have detected an insertion event for a
3274 		 * faulted or offline device that wasn't in the removed state.
3275 		 * In this scenario, we don't post an ereport because we are
3276 		 * about to replace the device, or attempt an online with
3277 		 * vdev_forcefault, which will generate the fault for us.
3278 		 */
3279 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3280 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3281 		    vd != spa->spa_root_vdev) {
3282 			const char *class;
3283 
3284 			switch (aux) {
3285 			case VDEV_AUX_OPEN_FAILED:
3286 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3287 				break;
3288 			case VDEV_AUX_CORRUPT_DATA:
3289 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3290 				break;
3291 			case VDEV_AUX_NO_REPLICAS:
3292 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3293 				break;
3294 			case VDEV_AUX_BAD_GUID_SUM:
3295 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3296 				break;
3297 			case VDEV_AUX_TOO_SMALL:
3298 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3299 				break;
3300 			case VDEV_AUX_BAD_LABEL:
3301 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3302 				break;
3303 			default:
3304 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3305 			}
3306 
3307 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3308 		}
3309 
3310 		/* Erase any notion of persistent removed state */
3311 		vd->vdev_removed = B_FALSE;
3312 	} else {
3313 		vd->vdev_removed = B_FALSE;
3314 	}
3315 
3316 	if (!isopen && vd->vdev_parent)
3317 		vdev_propagate_state(vd->vdev_parent);
3318 }
3319 
3320 /*
3321  * Check the vdev configuration to ensure that it's capable of supporting
3322  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3323  * In addition, only a single top-level vdev is allowed and none of the leaves
3324  * can be wholedisks.
3325  */
3326 boolean_t
3327 vdev_is_bootable(vdev_t *vd)
3328 {
3329 	if (!vd->vdev_ops->vdev_op_leaf) {
3330 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3331 
3332 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3333 		    vd->vdev_children > 1) {
3334 			return (B_FALSE);
3335 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3336 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3337 			return (B_FALSE);
3338 		}
3339 	}
3340 
3341 	for (int c = 0; c < vd->vdev_children; c++) {
3342 		if (!vdev_is_bootable(vd->vdev_child[c]))
3343 			return (B_FALSE);
3344 	}
3345 	return (B_TRUE);
3346 }
3347 
3348 /*
3349  * Load the state from the original vdev tree (ovd) which
3350  * we've retrieved from the MOS config object. If the original
3351  * vdev was offline or faulted then we transfer that state to the
3352  * device in the current vdev tree (nvd).
3353  */
3354 void
3355 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3356 {
3357 	spa_t *spa = nvd->vdev_spa;
3358 
3359 	ASSERT(nvd->vdev_top->vdev_islog);
3360 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3361 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3362 
3363 	for (int c = 0; c < nvd->vdev_children; c++)
3364 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3365 
3366 	if (nvd->vdev_ops->vdev_op_leaf) {
3367 		/*
3368 		 * Restore the persistent vdev state
3369 		 */
3370 		nvd->vdev_offline = ovd->vdev_offline;
3371 		nvd->vdev_faulted = ovd->vdev_faulted;
3372 		nvd->vdev_degraded = ovd->vdev_degraded;
3373 		nvd->vdev_removed = ovd->vdev_removed;
3374 	}
3375 }
3376 
3377 /*
3378  * Determine if a log device has valid content.  If the vdev was
3379  * removed or faulted in the MOS config then we know that
3380  * the content on the log device has already been written to the pool.
3381  */
3382 boolean_t
3383 vdev_log_state_valid(vdev_t *vd)
3384 {
3385 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3386 	    !vd->vdev_removed)
3387 		return (B_TRUE);
3388 
3389 	for (int c = 0; c < vd->vdev_children; c++)
3390 		if (vdev_log_state_valid(vd->vdev_child[c]))
3391 			return (B_TRUE);
3392 
3393 	return (B_FALSE);
3394 }
3395 
3396 /*
3397  * Expand a vdev if possible.
3398  */
3399 void
3400 vdev_expand(vdev_t *vd, uint64_t txg)
3401 {
3402 	ASSERT(vd->vdev_top == vd);
3403 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3404 
3405 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3406 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3407 		vdev_config_dirty(vd);
3408 	}
3409 }
3410 
3411 /*
3412  * Split a vdev.
3413  */
3414 void
3415 vdev_split(vdev_t *vd)
3416 {
3417 	vdev_t *cvd, *pvd = vd->vdev_parent;
3418 
3419 	vdev_remove_child(pvd, vd);
3420 	vdev_compact_children(pvd);
3421 
3422 	cvd = pvd->vdev_child[0];
3423 	if (pvd->vdev_children == 1) {
3424 		vdev_remove_parent(cvd);
3425 		cvd->vdev_splitting = B_TRUE;
3426 	}
3427 	vdev_propagate_state(cvd);
3428 }
3429 
3430 void
3431 vdev_deadman(vdev_t *vd)
3432 {
3433 	for (int c = 0; c < vd->vdev_children; c++) {
3434 		vdev_t *cvd = vd->vdev_child[c];
3435 
3436 		vdev_deadman(cvd);
3437 	}
3438 
3439 	if (vd->vdev_ops->vdev_op_leaf) {
3440 		vdev_queue_t *vq = &vd->vdev_queue;
3441 
3442 		mutex_enter(&vq->vq_lock);
3443 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3444 			spa_t *spa = vd->vdev_spa;
3445 			zio_t *fio;
3446 			uint64_t delta;
3447 
3448 			/*
3449 			 * Look at the head of all the pending queues,
3450 			 * if any I/O has been outstanding for longer than
3451 			 * the spa_deadman_synctime we panic the system.
3452 			 */
3453 			fio = avl_first(&vq->vq_active_tree);
3454 			delta = gethrtime() - fio->io_timestamp;
3455 			if (delta > spa_deadman_synctime(spa)) {
3456 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3457 				    "delta %lluns, last io %lluns",
3458 				    fio->io_timestamp, delta,
3459 				    vq->vq_io_complete_ts);
3460 				fm_panic("I/O to pool '%s' appears to be "
3461 				    "hung.", spa_name(spa));
3462 			}
3463 		}
3464 		mutex_exit(&vq->vq_lock);
3465 	}
3466 }
3467