xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 3afe87ebb25691cb6d158edaa34a6fb9b703a691)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_spare_ops,
53 	&vdev_disk_ops,
54 	&vdev_file_ops,
55 	&vdev_missing_ops,
56 	NULL
57 };
58 
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
61 
62 /*
63  * Given a vdev type, return the appropriate ops vector.
64  */
65 static vdev_ops_t *
66 vdev_getops(const char *type)
67 {
68 	vdev_ops_t *ops, **opspp;
69 
70 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71 		if (strcmp(ops->vdev_op_type, type) == 0)
72 			break;
73 
74 	return (ops);
75 }
76 
77 /*
78  * Default asize function: return the MAX of psize with the asize of
79  * all children.  This is what's used by anything other than RAID-Z.
80  */
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
83 {
84 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85 	uint64_t csize;
86 	uint64_t c;
87 
88 	for (c = 0; c < vd->vdev_children; c++) {
89 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 		asize = MAX(asize, csize);
91 	}
92 
93 	return (asize);
94 }
95 
96 /*
97  * Get the replaceable or attachable device size.
98  * If the parent is a mirror or raidz, the replaceable size is the minimum
99  * psize of all its children. For the rest, just return our own psize.
100  *
101  * e.g.
102  *			psize	rsize
103  * root			-	-
104  *	mirror/raidz	-	-
105  *	    disk1	20g	20g
106  *	    disk2 	40g	20g
107  *	disk3 		80g	80g
108  */
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
111 {
112 	vdev_t *pvd, *cvd;
113 	uint64_t c, rsize;
114 
115 	pvd = vd->vdev_parent;
116 
117 	/*
118 	 * If our parent is NULL or the root, just return our own psize.
119 	 */
120 	if (pvd == NULL || pvd->vdev_parent == NULL)
121 		return (vd->vdev_psize);
122 
123 	rsize = 0;
124 
125 	for (c = 0; c < pvd->vdev_children; c++) {
126 		cvd = pvd->vdev_child[c];
127 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
128 	}
129 
130 	return (rsize);
131 }
132 
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
135 {
136 	vdev_t *rvd = spa->spa_root_vdev;
137 
138 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
139 
140 	if (vdev < rvd->vdev_children) {
141 		ASSERT(rvd->vdev_child[vdev] != NULL);
142 		return (rvd->vdev_child[vdev]);
143 	}
144 
145 	return (NULL);
146 }
147 
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151 	int c;
152 	vdev_t *mvd;
153 
154 	if (vd->vdev_guid == guid)
155 		return (vd);
156 
157 	for (c = 0; c < vd->vdev_children; c++)
158 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159 		    NULL)
160 			return (mvd);
161 
162 	return (NULL);
163 }
164 
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168 	size_t oldsize, newsize;
169 	uint64_t id = cvd->vdev_id;
170 	vdev_t **newchild;
171 
172 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173 	ASSERT(cvd->vdev_parent == NULL);
174 
175 	cvd->vdev_parent = pvd;
176 
177 	if (pvd == NULL)
178 		return;
179 
180 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181 
182 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
183 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184 	newsize = pvd->vdev_children * sizeof (vdev_t *);
185 
186 	newchild = kmem_zalloc(newsize, KM_SLEEP);
187 	if (pvd->vdev_child != NULL) {
188 		bcopy(pvd->vdev_child, newchild, oldsize);
189 		kmem_free(pvd->vdev_child, oldsize);
190 	}
191 
192 	pvd->vdev_child = newchild;
193 	pvd->vdev_child[id] = cvd;
194 
195 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197 
198 	/*
199 	 * Walk up all ancestors to update guid sum.
200 	 */
201 	for (; pvd != NULL; pvd = pvd->vdev_parent)
202 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203 
204 	if (cvd->vdev_ops->vdev_op_leaf)
205 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207 
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211 	int c;
212 	uint_t id = cvd->vdev_id;
213 
214 	ASSERT(cvd->vdev_parent == pvd);
215 
216 	if (pvd == NULL)
217 		return;
218 
219 	ASSERT(id < pvd->vdev_children);
220 	ASSERT(pvd->vdev_child[id] == cvd);
221 
222 	pvd->vdev_child[id] = NULL;
223 	cvd->vdev_parent = NULL;
224 
225 	for (c = 0; c < pvd->vdev_children; c++)
226 		if (pvd->vdev_child[c])
227 			break;
228 
229 	if (c == pvd->vdev_children) {
230 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231 		pvd->vdev_child = NULL;
232 		pvd->vdev_children = 0;
233 	}
234 
235 	/*
236 	 * Walk up all ancestors to update guid sum.
237 	 */
238 	for (; pvd != NULL; pvd = pvd->vdev_parent)
239 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240 
241 	if (cvd->vdev_ops->vdev_op_leaf)
242 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244 
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251 	vdev_t **newchild, *cvd;
252 	int oldc = pvd->vdev_children;
253 	int newc, c;
254 
255 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
256 
257 	for (c = newc = 0; c < oldc; c++)
258 		if (pvd->vdev_child[c])
259 			newc++;
260 
261 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262 
263 	for (c = newc = 0; c < oldc; c++) {
264 		if ((cvd = pvd->vdev_child[c]) != NULL) {
265 			newchild[newc] = cvd;
266 			cvd->vdev_id = newc++;
267 		}
268 	}
269 
270 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271 	pvd->vdev_child = newchild;
272 	pvd->vdev_children = newc;
273 }
274 
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281 	vdev_t *vd;
282 
283 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284 
285 	if (spa->spa_root_vdev == NULL) {
286 		ASSERT(ops == &vdev_root_ops);
287 		spa->spa_root_vdev = vd;
288 	}
289 
290 	if (guid == 0) {
291 		if (spa->spa_root_vdev == vd) {
292 			/*
293 			 * The root vdev's guid will also be the pool guid,
294 			 * which must be unique among all pools.
295 			 */
296 			while (guid == 0 || spa_guid_exists(guid, 0))
297 				guid = spa_get_random(-1ULL);
298 		} else {
299 			/*
300 			 * Any other vdev's guid must be unique within the pool.
301 			 */
302 			while (guid == 0 ||
303 			    spa_guid_exists(spa_guid(spa), guid))
304 				guid = spa_get_random(-1ULL);
305 		}
306 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307 	}
308 
309 	vd->vdev_spa = spa;
310 	vd->vdev_id = id;
311 	vd->vdev_guid = guid;
312 	vd->vdev_guid_sum = guid;
313 	vd->vdev_ops = ops;
314 	vd->vdev_state = VDEV_STATE_CLOSED;
315 
316 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319 	for (int t = 0; t < DTL_TYPES; t++) {
320 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
321 		    &vd->vdev_dtl_lock);
322 	}
323 	txg_list_create(&vd->vdev_ms_list,
324 	    offsetof(struct metaslab, ms_txg_node));
325 	txg_list_create(&vd->vdev_dtl_list,
326 	    offsetof(struct vdev, vdev_dtl_node));
327 	vd->vdev_stat.vs_timestamp = gethrtime();
328 	vdev_queue_init(vd);
329 	vdev_cache_init(vd);
330 
331 	return (vd);
332 }
333 
334 /*
335  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
336  * creating a new vdev or loading an existing one - the behavior is slightly
337  * different for each case.
338  */
339 int
340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
341     int alloctype)
342 {
343 	vdev_ops_t *ops;
344 	char *type;
345 	uint64_t guid = 0, islog, nparity;
346 	vdev_t *vd;
347 
348 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
349 
350 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
351 		return (EINVAL);
352 
353 	if ((ops = vdev_getops(type)) == NULL)
354 		return (EINVAL);
355 
356 	/*
357 	 * If this is a load, get the vdev guid from the nvlist.
358 	 * Otherwise, vdev_alloc_common() will generate one for us.
359 	 */
360 	if (alloctype == VDEV_ALLOC_LOAD) {
361 		uint64_t label_id;
362 
363 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
364 		    label_id != id)
365 			return (EINVAL);
366 
367 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
368 			return (EINVAL);
369 	} else if (alloctype == VDEV_ALLOC_SPARE) {
370 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371 			return (EINVAL);
372 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 			return (EINVAL);
375 	}
376 
377 	/*
378 	 * The first allocated vdev must be of type 'root'.
379 	 */
380 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
381 		return (EINVAL);
382 
383 	/*
384 	 * Determine whether we're a log vdev.
385 	 */
386 	islog = 0;
387 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
388 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
389 		return (ENOTSUP);
390 
391 	/*
392 	 * Set the nparity property for RAID-Z vdevs.
393 	 */
394 	nparity = -1ULL;
395 	if (ops == &vdev_raidz_ops) {
396 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
397 		    &nparity) == 0) {
398 			/*
399 			 * Currently, we can only support 2 parity devices.
400 			 */
401 			if (nparity == 0 || nparity > 2)
402 				return (EINVAL);
403 			/*
404 			 * Older versions can only support 1 parity device.
405 			 */
406 			if (nparity == 2 &&
407 			    spa_version(spa) < SPA_VERSION_RAID6)
408 				return (ENOTSUP);
409 		} else {
410 			/*
411 			 * We require the parity to be specified for SPAs that
412 			 * support multiple parity levels.
413 			 */
414 			if (spa_version(spa) >= SPA_VERSION_RAID6)
415 				return (EINVAL);
416 			/*
417 			 * Otherwise, we default to 1 parity device for RAID-Z.
418 			 */
419 			nparity = 1;
420 		}
421 	} else {
422 		nparity = 0;
423 	}
424 	ASSERT(nparity != -1ULL);
425 
426 	vd = vdev_alloc_common(spa, id, guid, ops);
427 
428 	vd->vdev_islog = islog;
429 	vd->vdev_nparity = nparity;
430 
431 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
432 		vd->vdev_path = spa_strdup(vd->vdev_path);
433 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
434 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
435 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
436 	    &vd->vdev_physpath) == 0)
437 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
438 
439 	/*
440 	 * Set the whole_disk property.  If it's not specified, leave the value
441 	 * as -1.
442 	 */
443 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
444 	    &vd->vdev_wholedisk) != 0)
445 		vd->vdev_wholedisk = -1ULL;
446 
447 	/*
448 	 * Look for the 'not present' flag.  This will only be set if the device
449 	 * was not present at the time of import.
450 	 */
451 	if (!spa->spa_import_faulted)
452 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
453 		    &vd->vdev_not_present);
454 
455 	/*
456 	 * Get the alignment requirement.
457 	 */
458 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
459 
460 	/*
461 	 * If we're a top-level vdev, try to load the allocation parameters.
462 	 */
463 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
464 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
465 		    &vd->vdev_ms_array);
466 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
467 		    &vd->vdev_ms_shift);
468 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
469 		    &vd->vdev_asize);
470 	}
471 
472 	/*
473 	 * If we're a leaf vdev, try to load the DTL object and other state.
474 	 */
475 	if (vd->vdev_ops->vdev_op_leaf &&
476 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
477 		if (alloctype == VDEV_ALLOC_LOAD) {
478 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
479 			    &vd->vdev_dtl_smo.smo_object);
480 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
481 			    &vd->vdev_unspare);
482 		}
483 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
484 		    &vd->vdev_offline);
485 
486 		/*
487 		 * When importing a pool, we want to ignore the persistent fault
488 		 * state, as the diagnosis made on another system may not be
489 		 * valid in the current context.
490 		 */
491 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
492 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
493 			    &vd->vdev_faulted);
494 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
495 			    &vd->vdev_degraded);
496 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
497 			    &vd->vdev_removed);
498 		}
499 	}
500 
501 	/*
502 	 * Add ourselves to the parent's list of children.
503 	 */
504 	vdev_add_child(parent, vd);
505 
506 	*vdp = vd;
507 
508 	return (0);
509 }
510 
511 void
512 vdev_free(vdev_t *vd)
513 {
514 	int c;
515 	spa_t *spa = vd->vdev_spa;
516 
517 	/*
518 	 * vdev_free() implies closing the vdev first.  This is simpler than
519 	 * trying to ensure complicated semantics for all callers.
520 	 */
521 	vdev_close(vd);
522 
523 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
524 
525 	/*
526 	 * Free all children.
527 	 */
528 	for (c = 0; c < vd->vdev_children; c++)
529 		vdev_free(vd->vdev_child[c]);
530 
531 	ASSERT(vd->vdev_child == NULL);
532 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533 
534 	/*
535 	 * Discard allocation state.
536 	 */
537 	if (vd == vd->vdev_top)
538 		vdev_metaslab_fini(vd);
539 
540 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
541 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543 
544 	/*
545 	 * Remove this vdev from its parent's child list.
546 	 */
547 	vdev_remove_child(vd->vdev_parent, vd);
548 
549 	ASSERT(vd->vdev_parent == NULL);
550 
551 	/*
552 	 * Clean up vdev structure.
553 	 */
554 	vdev_queue_fini(vd);
555 	vdev_cache_fini(vd);
556 
557 	if (vd->vdev_path)
558 		spa_strfree(vd->vdev_path);
559 	if (vd->vdev_devid)
560 		spa_strfree(vd->vdev_devid);
561 	if (vd->vdev_physpath)
562 		spa_strfree(vd->vdev_physpath);
563 
564 	if (vd->vdev_isspare)
565 		spa_spare_remove(vd);
566 	if (vd->vdev_isl2cache)
567 		spa_l2cache_remove(vd);
568 
569 	txg_list_destroy(&vd->vdev_ms_list);
570 	txg_list_destroy(&vd->vdev_dtl_list);
571 
572 	mutex_enter(&vd->vdev_dtl_lock);
573 	for (int t = 0; t < DTL_TYPES; t++) {
574 		space_map_unload(&vd->vdev_dtl[t]);
575 		space_map_destroy(&vd->vdev_dtl[t]);
576 	}
577 	mutex_exit(&vd->vdev_dtl_lock);
578 
579 	mutex_destroy(&vd->vdev_dtl_lock);
580 	mutex_destroy(&vd->vdev_stat_lock);
581 	mutex_destroy(&vd->vdev_probe_lock);
582 
583 	if (vd == spa->spa_root_vdev)
584 		spa->spa_root_vdev = NULL;
585 
586 	kmem_free(vd, sizeof (vdev_t));
587 }
588 
589 /*
590  * Transfer top-level vdev state from svd to tvd.
591  */
592 static void
593 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
594 {
595 	spa_t *spa = svd->vdev_spa;
596 	metaslab_t *msp;
597 	vdev_t *vd;
598 	int t;
599 
600 	ASSERT(tvd == tvd->vdev_top);
601 
602 	tvd->vdev_ms_array = svd->vdev_ms_array;
603 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
604 	tvd->vdev_ms_count = svd->vdev_ms_count;
605 
606 	svd->vdev_ms_array = 0;
607 	svd->vdev_ms_shift = 0;
608 	svd->vdev_ms_count = 0;
609 
610 	tvd->vdev_mg = svd->vdev_mg;
611 	tvd->vdev_ms = svd->vdev_ms;
612 
613 	svd->vdev_mg = NULL;
614 	svd->vdev_ms = NULL;
615 
616 	if (tvd->vdev_mg != NULL)
617 		tvd->vdev_mg->mg_vd = tvd;
618 
619 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
620 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
621 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
622 
623 	svd->vdev_stat.vs_alloc = 0;
624 	svd->vdev_stat.vs_space = 0;
625 	svd->vdev_stat.vs_dspace = 0;
626 
627 	for (t = 0; t < TXG_SIZE; t++) {
628 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
629 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
630 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
631 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
632 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
633 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
634 	}
635 
636 	if (list_link_active(&svd->vdev_config_dirty_node)) {
637 		vdev_config_clean(svd);
638 		vdev_config_dirty(tvd);
639 	}
640 
641 	if (list_link_active(&svd->vdev_state_dirty_node)) {
642 		vdev_state_clean(svd);
643 		vdev_state_dirty(tvd);
644 	}
645 
646 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
647 	svd->vdev_deflate_ratio = 0;
648 
649 	tvd->vdev_islog = svd->vdev_islog;
650 	svd->vdev_islog = 0;
651 }
652 
653 static void
654 vdev_top_update(vdev_t *tvd, vdev_t *vd)
655 {
656 	int c;
657 
658 	if (vd == NULL)
659 		return;
660 
661 	vd->vdev_top = tvd;
662 
663 	for (c = 0; c < vd->vdev_children; c++)
664 		vdev_top_update(tvd, vd->vdev_child[c]);
665 }
666 
667 /*
668  * Add a mirror/replacing vdev above an existing vdev.
669  */
670 vdev_t *
671 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
672 {
673 	spa_t *spa = cvd->vdev_spa;
674 	vdev_t *pvd = cvd->vdev_parent;
675 	vdev_t *mvd;
676 
677 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
678 
679 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
680 
681 	mvd->vdev_asize = cvd->vdev_asize;
682 	mvd->vdev_ashift = cvd->vdev_ashift;
683 	mvd->vdev_state = cvd->vdev_state;
684 
685 	vdev_remove_child(pvd, cvd);
686 	vdev_add_child(pvd, mvd);
687 	cvd->vdev_id = mvd->vdev_children;
688 	vdev_add_child(mvd, cvd);
689 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
690 
691 	if (mvd == mvd->vdev_top)
692 		vdev_top_transfer(cvd, mvd);
693 
694 	return (mvd);
695 }
696 
697 /*
698  * Remove a 1-way mirror/replacing vdev from the tree.
699  */
700 void
701 vdev_remove_parent(vdev_t *cvd)
702 {
703 	vdev_t *mvd = cvd->vdev_parent;
704 	vdev_t *pvd = mvd->vdev_parent;
705 
706 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
707 
708 	ASSERT(mvd->vdev_children == 1);
709 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
710 	    mvd->vdev_ops == &vdev_replacing_ops ||
711 	    mvd->vdev_ops == &vdev_spare_ops);
712 	cvd->vdev_ashift = mvd->vdev_ashift;
713 
714 	vdev_remove_child(mvd, cvd);
715 	vdev_remove_child(pvd, mvd);
716 
717 	/*
718 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
719 	 * Otherwise, we could have detached an offline device, and when we
720 	 * go to import the pool we'll think we have two top-level vdevs,
721 	 * instead of a different version of the same top-level vdev.
722 	 */
723 	if (mvd->vdev_top == mvd) {
724 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
725 		cvd->vdev_guid += guid_delta;
726 		cvd->vdev_guid_sum += guid_delta;
727 	}
728 	cvd->vdev_id = mvd->vdev_id;
729 	vdev_add_child(pvd, cvd);
730 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
731 
732 	if (cvd == cvd->vdev_top)
733 		vdev_top_transfer(mvd, cvd);
734 
735 	ASSERT(mvd->vdev_children == 0);
736 	vdev_free(mvd);
737 }
738 
739 int
740 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
741 {
742 	spa_t *spa = vd->vdev_spa;
743 	objset_t *mos = spa->spa_meta_objset;
744 	metaslab_class_t *mc;
745 	uint64_t m;
746 	uint64_t oldc = vd->vdev_ms_count;
747 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
748 	metaslab_t **mspp;
749 	int error;
750 
751 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
752 		return (0);
753 
754 	ASSERT(oldc <= newc);
755 
756 	if (vd->vdev_islog)
757 		mc = spa->spa_log_class;
758 	else
759 		mc = spa->spa_normal_class;
760 
761 	if (vd->vdev_mg == NULL)
762 		vd->vdev_mg = metaslab_group_create(mc, vd);
763 
764 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
765 
766 	if (oldc != 0) {
767 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
768 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
769 	}
770 
771 	vd->vdev_ms = mspp;
772 	vd->vdev_ms_count = newc;
773 
774 	for (m = oldc; m < newc; m++) {
775 		space_map_obj_t smo = { 0, 0, 0 };
776 		if (txg == 0) {
777 			uint64_t object = 0;
778 			error = dmu_read(mos, vd->vdev_ms_array,
779 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
780 			if (error)
781 				return (error);
782 			if (object != 0) {
783 				dmu_buf_t *db;
784 				error = dmu_bonus_hold(mos, object, FTAG, &db);
785 				if (error)
786 					return (error);
787 				ASSERT3U(db->db_size, >=, sizeof (smo));
788 				bcopy(db->db_data, &smo, sizeof (smo));
789 				ASSERT3U(smo.smo_object, ==, object);
790 				dmu_buf_rele(db, FTAG);
791 			}
792 		}
793 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
794 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
795 	}
796 
797 	return (0);
798 }
799 
800 void
801 vdev_metaslab_fini(vdev_t *vd)
802 {
803 	uint64_t m;
804 	uint64_t count = vd->vdev_ms_count;
805 
806 	if (vd->vdev_ms != NULL) {
807 		for (m = 0; m < count; m++)
808 			if (vd->vdev_ms[m] != NULL)
809 				metaslab_fini(vd->vdev_ms[m]);
810 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
811 		vd->vdev_ms = NULL;
812 	}
813 }
814 
815 typedef struct vdev_probe_stats {
816 	boolean_t	vps_readable;
817 	boolean_t	vps_writeable;
818 	int		vps_flags;
819 	zio_t		*vps_root;
820 	vdev_t		*vps_vd;
821 } vdev_probe_stats_t;
822 
823 static void
824 vdev_probe_done(zio_t *zio)
825 {
826 	spa_t *spa = zio->io_spa;
827 	vdev_probe_stats_t *vps = zio->io_private;
828 	vdev_t *vd = vps->vps_vd;
829 
830 	if (zio->io_type == ZIO_TYPE_READ) {
831 		ASSERT(zio->io_vd == vd);
832 		if (zio->io_error == 0)
833 			vps->vps_readable = 1;
834 		if (zio->io_error == 0 && spa_writeable(spa)) {
835 			zio_nowait(zio_write_phys(vps->vps_root, vd,
836 			    zio->io_offset, zio->io_size, zio->io_data,
837 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
838 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
839 		} else {
840 			zio_buf_free(zio->io_data, zio->io_size);
841 		}
842 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
843 		ASSERT(zio->io_vd == vd);
844 		if (zio->io_error == 0)
845 			vps->vps_writeable = 1;
846 		zio_buf_free(zio->io_data, zio->io_size);
847 	} else if (zio->io_type == ZIO_TYPE_NULL) {
848 		ASSERT(zio->io_vd == NULL);
849 		ASSERT(zio == vps->vps_root);
850 
851 		vd->vdev_cant_read |= !vps->vps_readable;
852 		vd->vdev_cant_write |= !vps->vps_writeable;
853 
854 		if (vdev_readable(vd) &&
855 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
856 			zio->io_error = 0;
857 		} else {
858 			ASSERT(zio->io_error != 0);
859 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
860 			    spa, vd, NULL, 0, 0);
861 			zio->io_error = ENXIO;
862 		}
863 		kmem_free(vps, sizeof (*vps));
864 	}
865 }
866 
867 /*
868  * Determine whether this device is accessible by reading and writing
869  * to several known locations: the pad regions of each vdev label
870  * but the first (which we leave alone in case it contains a VTOC).
871  */
872 zio_t *
873 vdev_probe(vdev_t *vd, zio_t *pio)
874 {
875 	spa_t *spa = vd->vdev_spa;
876 	vdev_probe_stats_t *vps;
877 	zio_t *zio;
878 
879 	vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
880 
881 	vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
882 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
883 
884 	if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
885 		/*
886 		 * vdev_cant_read and vdev_cant_write can only transition
887 		 * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
888 		 * otherwise they can only transition from FALSE to TRUE.
889 		 * This ensures that any zio looking at these values can
890 		 * assume that failures persist for the life of the I/O.
891 		 * That's important because when a device has intermittent
892 		 * connectivity problems, we want to ensure that they're
893 		 * ascribed to the device (ENXIO) and not the zio (EIO).
894 		 *
895 		 * Since we hold SCL_ZIO as writer here, clear both values
896 		 * so the probe can reevaluate from first principles.
897 		 */
898 		vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
899 		vd->vdev_cant_read = B_FALSE;
900 		vd->vdev_cant_write = B_FALSE;
901 	}
902 
903 	ASSERT(vd->vdev_ops->vdev_op_leaf);
904 
905 	zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
906 
907 	vps->vps_root = zio;
908 	vps->vps_vd = vd;
909 
910 	for (int l = 1; l < VDEV_LABELS; l++) {
911 		zio_nowait(zio_read_phys(zio, vd,
912 		    vdev_label_offset(vd->vdev_psize, l,
913 		    offsetof(vdev_label_t, vl_pad)),
914 		    VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
915 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
916 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
917 	}
918 
919 	return (zio);
920 }
921 
922 /*
923  * Prepare a virtual device for access.
924  */
925 int
926 vdev_open(vdev_t *vd)
927 {
928 	spa_t *spa = vd->vdev_spa;
929 	int error;
930 	int c;
931 	uint64_t osize = 0;
932 	uint64_t asize, psize;
933 	uint64_t ashift = 0;
934 
935 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
936 
937 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
938 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
939 	    vd->vdev_state == VDEV_STATE_OFFLINE);
940 
941 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
942 
943 	if (!vd->vdev_removed && vd->vdev_faulted) {
944 		ASSERT(vd->vdev_children == 0);
945 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
946 		    VDEV_AUX_ERR_EXCEEDED);
947 		return (ENXIO);
948 	} else if (vd->vdev_offline) {
949 		ASSERT(vd->vdev_children == 0);
950 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
951 		return (ENXIO);
952 	}
953 
954 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
955 
956 	if (zio_injection_enabled && error == 0)
957 		error = zio_handle_device_injection(vd, ENXIO);
958 
959 	if (error) {
960 		if (vd->vdev_removed &&
961 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
962 			vd->vdev_removed = B_FALSE;
963 
964 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
965 		    vd->vdev_stat.vs_aux);
966 		return (error);
967 	}
968 
969 	vd->vdev_removed = B_FALSE;
970 
971 	if (vd->vdev_degraded) {
972 		ASSERT(vd->vdev_children == 0);
973 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
974 		    VDEV_AUX_ERR_EXCEEDED);
975 	} else {
976 		vd->vdev_state = VDEV_STATE_HEALTHY;
977 	}
978 
979 	for (c = 0; c < vd->vdev_children; c++)
980 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
981 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
982 			    VDEV_AUX_NONE);
983 			break;
984 		}
985 
986 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
987 
988 	if (vd->vdev_children == 0) {
989 		if (osize < SPA_MINDEVSIZE) {
990 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
991 			    VDEV_AUX_TOO_SMALL);
992 			return (EOVERFLOW);
993 		}
994 		psize = osize;
995 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
996 	} else {
997 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
998 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
999 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1000 			    VDEV_AUX_TOO_SMALL);
1001 			return (EOVERFLOW);
1002 		}
1003 		psize = 0;
1004 		asize = osize;
1005 	}
1006 
1007 	vd->vdev_psize = psize;
1008 
1009 	if (vd->vdev_asize == 0) {
1010 		/*
1011 		 * This is the first-ever open, so use the computed values.
1012 		 * For testing purposes, a higher ashift can be requested.
1013 		 */
1014 		vd->vdev_asize = asize;
1015 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1016 	} else {
1017 		/*
1018 		 * Make sure the alignment requirement hasn't increased.
1019 		 */
1020 		if (ashift > vd->vdev_top->vdev_ashift) {
1021 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1022 			    VDEV_AUX_BAD_LABEL);
1023 			return (EINVAL);
1024 		}
1025 
1026 		/*
1027 		 * Make sure the device hasn't shrunk.
1028 		 */
1029 		if (asize < vd->vdev_asize) {
1030 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1031 			    VDEV_AUX_BAD_LABEL);
1032 			return (EINVAL);
1033 		}
1034 
1035 		/*
1036 		 * If all children are healthy and the asize has increased,
1037 		 * then we've experienced dynamic LUN growth.
1038 		 */
1039 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1040 		    asize > vd->vdev_asize) {
1041 			vd->vdev_asize = asize;
1042 		}
1043 	}
1044 
1045 	/*
1046 	 * Ensure we can issue some IO before declaring the
1047 	 * vdev open for business.
1048 	 */
1049 	if (vd->vdev_ops->vdev_op_leaf &&
1050 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1051 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1052 		    VDEV_AUX_IO_FAILURE);
1053 		return (error);
1054 	}
1055 
1056 	/*
1057 	 * If this is a top-level vdev, compute the raidz-deflation
1058 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1059 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1060 	 * changes, this algorithm must never change, or we will
1061 	 * inconsistently account for existing bp's.
1062 	 */
1063 	if (vd->vdev_top == vd) {
1064 		vd->vdev_deflate_ratio = (1<<17) /
1065 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1066 	}
1067 
1068 	/*
1069 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1070 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1071 	 * since this would just restart the scrub we are already doing.
1072 	 */
1073 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1074 	    vdev_resilver_needed(vd, NULL, NULL))
1075 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1076 
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Called once the vdevs are all opened, this routine validates the label
1082  * contents.  This needs to be done before vdev_load() so that we don't
1083  * inadvertently do repair I/Os to the wrong device.
1084  *
1085  * This function will only return failure if one of the vdevs indicates that it
1086  * has since been destroyed or exported.  This is only possible if
1087  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1088  * will be updated but the function will return 0.
1089  */
1090 int
1091 vdev_validate(vdev_t *vd)
1092 {
1093 	spa_t *spa = vd->vdev_spa;
1094 	int c;
1095 	nvlist_t *label;
1096 	uint64_t guid, top_guid;
1097 	uint64_t state;
1098 
1099 	for (c = 0; c < vd->vdev_children; c++)
1100 		if (vdev_validate(vd->vdev_child[c]) != 0)
1101 			return (EBADF);
1102 
1103 	/*
1104 	 * If the device has already failed, or was marked offline, don't do
1105 	 * any further validation.  Otherwise, label I/O will fail and we will
1106 	 * overwrite the previous state.
1107 	 */
1108 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1109 
1110 		if ((label = vdev_label_read_config(vd)) == NULL) {
1111 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1112 			    VDEV_AUX_BAD_LABEL);
1113 			return (0);
1114 		}
1115 
1116 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1117 		    &guid) != 0 || guid != spa_guid(spa)) {
1118 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1119 			    VDEV_AUX_CORRUPT_DATA);
1120 			nvlist_free(label);
1121 			return (0);
1122 		}
1123 
1124 		/*
1125 		 * If this vdev just became a top-level vdev because its
1126 		 * sibling was detached, it will have adopted the parent's
1127 		 * vdev guid -- but the label may or may not be on disk yet.
1128 		 * Fortunately, either version of the label will have the
1129 		 * same top guid, so if we're a top-level vdev, we can
1130 		 * safely compare to that instead.
1131 		 */
1132 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1133 		    &guid) != 0 ||
1134 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1135 		    &top_guid) != 0 ||
1136 		    (vd->vdev_guid != guid &&
1137 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1138 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1139 			    VDEV_AUX_CORRUPT_DATA);
1140 			nvlist_free(label);
1141 			return (0);
1142 		}
1143 
1144 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1145 		    &state) != 0) {
1146 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1147 			    VDEV_AUX_CORRUPT_DATA);
1148 			nvlist_free(label);
1149 			return (0);
1150 		}
1151 
1152 		nvlist_free(label);
1153 
1154 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1155 		    state != POOL_STATE_ACTIVE)
1156 			return (EBADF);
1157 
1158 		/*
1159 		 * If we were able to open and validate a vdev that was
1160 		 * previously marked permanently unavailable, clear that state
1161 		 * now.
1162 		 */
1163 		if (vd->vdev_not_present)
1164 			vd->vdev_not_present = 0;
1165 	}
1166 
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Close a virtual device.
1172  */
1173 void
1174 vdev_close(vdev_t *vd)
1175 {
1176 	spa_t *spa = vd->vdev_spa;
1177 
1178 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1179 
1180 	vd->vdev_ops->vdev_op_close(vd);
1181 
1182 	vdev_cache_purge(vd);
1183 
1184 	/*
1185 	 * We record the previous state before we close it, so  that if we are
1186 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1187 	 * it's still faulted.
1188 	 */
1189 	vd->vdev_prevstate = vd->vdev_state;
1190 
1191 	if (vd->vdev_offline)
1192 		vd->vdev_state = VDEV_STATE_OFFLINE;
1193 	else
1194 		vd->vdev_state = VDEV_STATE_CLOSED;
1195 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1196 }
1197 
1198 void
1199 vdev_reopen(vdev_t *vd)
1200 {
1201 	spa_t *spa = vd->vdev_spa;
1202 
1203 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1204 
1205 	vdev_close(vd);
1206 	(void) vdev_open(vd);
1207 
1208 	/*
1209 	 * Call vdev_validate() here to make sure we have the same device.
1210 	 * Otherwise, a device with an invalid label could be successfully
1211 	 * opened in response to vdev_reopen().
1212 	 */
1213 	if (vd->vdev_aux) {
1214 		(void) vdev_validate_aux(vd);
1215 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1216 		    !l2arc_vdev_present(vd)) {
1217 			uint64_t size = vdev_get_rsize(vd);
1218 			l2arc_add_vdev(spa, vd,
1219 			    VDEV_LABEL_START_SIZE,
1220 			    size - VDEV_LABEL_START_SIZE);
1221 		}
1222 	} else {
1223 		(void) vdev_validate(vd);
1224 	}
1225 
1226 	/*
1227 	 * Reassess parent vdev's health.
1228 	 */
1229 	vdev_propagate_state(vd);
1230 }
1231 
1232 int
1233 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1234 {
1235 	int error;
1236 
1237 	/*
1238 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1239 	 * For a create, however, we want to fail the request if
1240 	 * there are any components we can't open.
1241 	 */
1242 	error = vdev_open(vd);
1243 
1244 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1245 		vdev_close(vd);
1246 		return (error ? error : ENXIO);
1247 	}
1248 
1249 	/*
1250 	 * Recursively initialize all labels.
1251 	 */
1252 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1253 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1254 		vdev_close(vd);
1255 		return (error);
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 /*
1262  * The is the latter half of vdev_create().  It is distinct because it
1263  * involves initiating transactions in order to do metaslab creation.
1264  * For creation, we want to try to create all vdevs at once and then undo it
1265  * if anything fails; this is much harder if we have pending transactions.
1266  */
1267 void
1268 vdev_init(vdev_t *vd, uint64_t txg)
1269 {
1270 	/*
1271 	 * Aim for roughly 200 metaslabs per vdev.
1272 	 */
1273 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1274 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1275 
1276 	/*
1277 	 * Initialize the vdev's metaslabs.  This can't fail because
1278 	 * there's nothing to read when creating all new metaslabs.
1279 	 */
1280 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1281 }
1282 
1283 void
1284 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1285 {
1286 	ASSERT(vd == vd->vdev_top);
1287 	ASSERT(ISP2(flags));
1288 
1289 	if (flags & VDD_METASLAB)
1290 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1291 
1292 	if (flags & VDD_DTL)
1293 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1294 
1295 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1296 }
1297 
1298 /*
1299  * DTLs.
1300  *
1301  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1302  * the vdev has less than perfect replication.  There are three kinds of DTL:
1303  *
1304  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1305  *
1306  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1307  *
1308  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1309  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1310  *	txgs that was scrubbed.
1311  *
1312  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1313  *	persistent errors or just some device being offline.
1314  *	Unlike the other three, the DTL_OUTAGE map is not generally
1315  *	maintained; it's only computed when needed, typically to
1316  *	determine whether a device can be detached.
1317  *
1318  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1319  * either has the data or it doesn't.
1320  *
1321  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1322  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1323  * if any child is less than fully replicated, then so is its parent.
1324  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1325  * comprising only those txgs which appear in 'maxfaults' or more children;
1326  * those are the txgs we don't have enough replication to read.  For example,
1327  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1328  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1329  * two child DTL_MISSING maps.
1330  *
1331  * It should be clear from the above that to compute the DTLs and outage maps
1332  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1333  * Therefore, that is all we keep on disk.  When loading the pool, or after
1334  * a configuration change, we generate all other DTLs from first principles.
1335  */
1336 void
1337 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1338 {
1339 	space_map_t *sm = &vd->vdev_dtl[t];
1340 
1341 	ASSERT(t < DTL_TYPES);
1342 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1343 
1344 	mutex_enter(sm->sm_lock);
1345 	if (!space_map_contains(sm, txg, size))
1346 		space_map_add(sm, txg, size);
1347 	mutex_exit(sm->sm_lock);
1348 }
1349 
1350 boolean_t
1351 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1352 {
1353 	space_map_t *sm = &vd->vdev_dtl[t];
1354 	boolean_t dirty = B_FALSE;
1355 
1356 	ASSERT(t < DTL_TYPES);
1357 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1358 
1359 	mutex_enter(sm->sm_lock);
1360 	if (sm->sm_space != 0)
1361 		dirty = space_map_contains(sm, txg, size);
1362 	mutex_exit(sm->sm_lock);
1363 
1364 	return (dirty);
1365 }
1366 
1367 boolean_t
1368 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1369 {
1370 	space_map_t *sm = &vd->vdev_dtl[t];
1371 	boolean_t empty;
1372 
1373 	mutex_enter(sm->sm_lock);
1374 	empty = (sm->sm_space == 0);
1375 	mutex_exit(sm->sm_lock);
1376 
1377 	return (empty);
1378 }
1379 
1380 /*
1381  * Reassess DTLs after a config change or scrub completion.
1382  */
1383 void
1384 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1385 {
1386 	spa_t *spa = vd->vdev_spa;
1387 	avl_tree_t reftree;
1388 	int minref;
1389 
1390 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1391 
1392 	for (int c = 0; c < vd->vdev_children; c++)
1393 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1394 		    scrub_txg, scrub_done);
1395 
1396 	if (vd == spa->spa_root_vdev)
1397 		return;
1398 
1399 	if (vd->vdev_ops->vdev_op_leaf) {
1400 		mutex_enter(&vd->vdev_dtl_lock);
1401 		if (scrub_txg != 0 &&
1402 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1403 			/* XXX should check scrub_done? */
1404 			/*
1405 			 * We completed a scrub up to scrub_txg.  If we
1406 			 * did it without rebooting, then the scrub dtl
1407 			 * will be valid, so excise the old region and
1408 			 * fold in the scrub dtl.  Otherwise, leave the
1409 			 * dtl as-is if there was an error.
1410 			 *
1411 			 * There's little trick here: to excise the beginning
1412 			 * of the DTL_MISSING map, we put it into a reference
1413 			 * tree and then add a segment with refcnt -1 that
1414 			 * covers the range [0, scrub_txg).  This means
1415 			 * that each txg in that range has refcnt -1 or 0.
1416 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1417 			 * entries in the range [0, scrub_txg) will have a
1418 			 * positive refcnt -- either 1 or 2.  We then convert
1419 			 * the reference tree into the new DTL_MISSING map.
1420 			 */
1421 			space_map_ref_create(&reftree);
1422 			space_map_ref_add_map(&reftree,
1423 			    &vd->vdev_dtl[DTL_MISSING], 1);
1424 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1425 			space_map_ref_add_map(&reftree,
1426 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1427 			space_map_ref_generate_map(&reftree,
1428 			    &vd->vdev_dtl[DTL_MISSING], 1);
1429 			space_map_ref_destroy(&reftree);
1430 		}
1431 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1432 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1433 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1434 		if (scrub_done)
1435 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1436 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1437 		if (!vdev_readable(vd))
1438 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1439 		else
1440 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1441 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1442 		mutex_exit(&vd->vdev_dtl_lock);
1443 
1444 		if (txg != 0)
1445 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1446 		return;
1447 	}
1448 
1449 	mutex_enter(&vd->vdev_dtl_lock);
1450 	for (int t = 0; t < DTL_TYPES; t++) {
1451 		if (t == DTL_SCRUB)
1452 			continue;			/* leaf vdevs only */
1453 		if (t == DTL_PARTIAL)
1454 			minref = 1;			/* i.e. non-zero */
1455 		else if (vd->vdev_nparity != 0)
1456 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1457 		else
1458 			minref = vd->vdev_children;	/* any kind of mirror */
1459 		space_map_ref_create(&reftree);
1460 		for (int c = 0; c < vd->vdev_children; c++) {
1461 			vdev_t *cvd = vd->vdev_child[c];
1462 			mutex_enter(&cvd->vdev_dtl_lock);
1463 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1464 			mutex_exit(&cvd->vdev_dtl_lock);
1465 		}
1466 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1467 		space_map_ref_destroy(&reftree);
1468 	}
1469 	mutex_exit(&vd->vdev_dtl_lock);
1470 }
1471 
1472 static int
1473 vdev_dtl_load(vdev_t *vd)
1474 {
1475 	spa_t *spa = vd->vdev_spa;
1476 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1477 	objset_t *mos = spa->spa_meta_objset;
1478 	dmu_buf_t *db;
1479 	int error;
1480 
1481 	ASSERT(vd->vdev_children == 0);
1482 
1483 	if (smo->smo_object == 0)
1484 		return (0);
1485 
1486 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1487 		return (error);
1488 
1489 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1490 	bcopy(db->db_data, smo, sizeof (*smo));
1491 	dmu_buf_rele(db, FTAG);
1492 
1493 	mutex_enter(&vd->vdev_dtl_lock);
1494 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1495 	    NULL, SM_ALLOC, smo, mos);
1496 	mutex_exit(&vd->vdev_dtl_lock);
1497 
1498 	return (error);
1499 }
1500 
1501 void
1502 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1503 {
1504 	spa_t *spa = vd->vdev_spa;
1505 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1506 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1507 	objset_t *mos = spa->spa_meta_objset;
1508 	space_map_t smsync;
1509 	kmutex_t smlock;
1510 	dmu_buf_t *db;
1511 	dmu_tx_t *tx;
1512 
1513 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1514 
1515 	if (vd->vdev_detached) {
1516 		if (smo->smo_object != 0) {
1517 			int err = dmu_object_free(mos, smo->smo_object, tx);
1518 			ASSERT3U(err, ==, 0);
1519 			smo->smo_object = 0;
1520 		}
1521 		dmu_tx_commit(tx);
1522 		return;
1523 	}
1524 
1525 	if (smo->smo_object == 0) {
1526 		ASSERT(smo->smo_objsize == 0);
1527 		ASSERT(smo->smo_alloc == 0);
1528 		smo->smo_object = dmu_object_alloc(mos,
1529 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1530 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1531 		ASSERT(smo->smo_object != 0);
1532 		vdev_config_dirty(vd->vdev_top);
1533 	}
1534 
1535 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1536 
1537 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1538 	    &smlock);
1539 
1540 	mutex_enter(&smlock);
1541 
1542 	mutex_enter(&vd->vdev_dtl_lock);
1543 	space_map_walk(sm, space_map_add, &smsync);
1544 	mutex_exit(&vd->vdev_dtl_lock);
1545 
1546 	space_map_truncate(smo, mos, tx);
1547 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1548 
1549 	space_map_destroy(&smsync);
1550 
1551 	mutex_exit(&smlock);
1552 	mutex_destroy(&smlock);
1553 
1554 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1555 	dmu_buf_will_dirty(db, tx);
1556 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1557 	bcopy(smo, db->db_data, sizeof (*smo));
1558 	dmu_buf_rele(db, FTAG);
1559 
1560 	dmu_tx_commit(tx);
1561 }
1562 
1563 /*
1564  * Determine whether the specified vdev can be offlined/detached/removed
1565  * without losing data.
1566  */
1567 boolean_t
1568 vdev_dtl_required(vdev_t *vd)
1569 {
1570 	spa_t *spa = vd->vdev_spa;
1571 	vdev_t *tvd = vd->vdev_top;
1572 	uint8_t cant_read = vd->vdev_cant_read;
1573 	boolean_t required;
1574 
1575 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1576 
1577 	if (vd == spa->spa_root_vdev || vd == tvd)
1578 		return (B_TRUE);
1579 
1580 	/*
1581 	 * Temporarily mark the device as unreadable, and then determine
1582 	 * whether this results in any DTL outages in the top-level vdev.
1583 	 * If not, we can safely offline/detach/remove the device.
1584 	 */
1585 	vd->vdev_cant_read = B_TRUE;
1586 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1587 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1588 	vd->vdev_cant_read = cant_read;
1589 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1590 
1591 	return (required);
1592 }
1593 
1594 /*
1595  * Determine if resilver is needed, and if so the txg range.
1596  */
1597 boolean_t
1598 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1599 {
1600 	boolean_t needed = B_FALSE;
1601 	uint64_t thismin = UINT64_MAX;
1602 	uint64_t thismax = 0;
1603 
1604 	if (vd->vdev_children == 0) {
1605 		mutex_enter(&vd->vdev_dtl_lock);
1606 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1607 		    vdev_writeable(vd)) {
1608 			space_seg_t *ss;
1609 
1610 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1611 			thismin = ss->ss_start - 1;
1612 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1613 			thismax = ss->ss_end;
1614 			needed = B_TRUE;
1615 		}
1616 		mutex_exit(&vd->vdev_dtl_lock);
1617 	} else {
1618 		for (int c = 0; c < vd->vdev_children; c++) {
1619 			vdev_t *cvd = vd->vdev_child[c];
1620 			uint64_t cmin, cmax;
1621 
1622 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1623 				thismin = MIN(thismin, cmin);
1624 				thismax = MAX(thismax, cmax);
1625 				needed = B_TRUE;
1626 			}
1627 		}
1628 	}
1629 
1630 	if (needed && minp) {
1631 		*minp = thismin;
1632 		*maxp = thismax;
1633 	}
1634 	return (needed);
1635 }
1636 
1637 void
1638 vdev_load(vdev_t *vd)
1639 {
1640 	/*
1641 	 * Recursively load all children.
1642 	 */
1643 	for (int c = 0; c < vd->vdev_children; c++)
1644 		vdev_load(vd->vdev_child[c]);
1645 
1646 	/*
1647 	 * If this is a top-level vdev, initialize its metaslabs.
1648 	 */
1649 	if (vd == vd->vdev_top &&
1650 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1651 	    vdev_metaslab_init(vd, 0) != 0))
1652 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1653 		    VDEV_AUX_CORRUPT_DATA);
1654 
1655 	/*
1656 	 * If this is a leaf vdev, load its DTL.
1657 	 */
1658 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1659 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1660 		    VDEV_AUX_CORRUPT_DATA);
1661 }
1662 
1663 /*
1664  * The special vdev case is used for hot spares and l2cache devices.  Its
1665  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1666  * we make sure that we can open the underlying device, then try to read the
1667  * label, and make sure that the label is sane and that it hasn't been
1668  * repurposed to another pool.
1669  */
1670 int
1671 vdev_validate_aux(vdev_t *vd)
1672 {
1673 	nvlist_t *label;
1674 	uint64_t guid, version;
1675 	uint64_t state;
1676 
1677 	if (!vdev_readable(vd))
1678 		return (0);
1679 
1680 	if ((label = vdev_label_read_config(vd)) == NULL) {
1681 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1682 		    VDEV_AUX_CORRUPT_DATA);
1683 		return (-1);
1684 	}
1685 
1686 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1687 	    version > SPA_VERSION ||
1688 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1689 	    guid != vd->vdev_guid ||
1690 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1691 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692 		    VDEV_AUX_CORRUPT_DATA);
1693 		nvlist_free(label);
1694 		return (-1);
1695 	}
1696 
1697 	/*
1698 	 * We don't actually check the pool state here.  If it's in fact in
1699 	 * use by another pool, we update this fact on the fly when requested.
1700 	 */
1701 	nvlist_free(label);
1702 	return (0);
1703 }
1704 
1705 void
1706 vdev_sync_done(vdev_t *vd, uint64_t txg)
1707 {
1708 	metaslab_t *msp;
1709 
1710 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1711 		metaslab_sync_done(msp, txg);
1712 }
1713 
1714 void
1715 vdev_sync(vdev_t *vd, uint64_t txg)
1716 {
1717 	spa_t *spa = vd->vdev_spa;
1718 	vdev_t *lvd;
1719 	metaslab_t *msp;
1720 	dmu_tx_t *tx;
1721 
1722 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1723 		ASSERT(vd == vd->vdev_top);
1724 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1725 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1726 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1727 		ASSERT(vd->vdev_ms_array != 0);
1728 		vdev_config_dirty(vd);
1729 		dmu_tx_commit(tx);
1730 	}
1731 
1732 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1733 		metaslab_sync(msp, txg);
1734 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1735 	}
1736 
1737 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1738 		vdev_dtl_sync(lvd, txg);
1739 
1740 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1741 }
1742 
1743 uint64_t
1744 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1745 {
1746 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1747 }
1748 
1749 /*
1750  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1751  * not be opened, and no I/O is attempted.
1752  */
1753 int
1754 vdev_fault(spa_t *spa, uint64_t guid)
1755 {
1756 	vdev_t *vd;
1757 
1758 	spa_vdev_state_enter(spa);
1759 
1760 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1761 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1762 
1763 	if (!vd->vdev_ops->vdev_op_leaf)
1764 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1765 
1766 	/*
1767 	 * Faulted state takes precedence over degraded.
1768 	 */
1769 	vd->vdev_faulted = 1ULL;
1770 	vd->vdev_degraded = 0ULL;
1771 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1772 
1773 	/*
1774 	 * If marking the vdev as faulted cause the top-level vdev to become
1775 	 * unavailable, then back off and simply mark the vdev as degraded
1776 	 * instead.
1777 	 */
1778 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1779 		vd->vdev_degraded = 1ULL;
1780 		vd->vdev_faulted = 0ULL;
1781 
1782 		/*
1783 		 * If we reopen the device and it's not dead, only then do we
1784 		 * mark it degraded.
1785 		 */
1786 		vdev_reopen(vd);
1787 
1788 		if (vdev_readable(vd)) {
1789 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1790 			    VDEV_AUX_ERR_EXCEEDED);
1791 		}
1792 	}
1793 
1794 	return (spa_vdev_state_exit(spa, vd, 0));
1795 }
1796 
1797 /*
1798  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1799  * user that something is wrong.  The vdev continues to operate as normal as far
1800  * as I/O is concerned.
1801  */
1802 int
1803 vdev_degrade(spa_t *spa, uint64_t guid)
1804 {
1805 	vdev_t *vd;
1806 
1807 	spa_vdev_state_enter(spa);
1808 
1809 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1810 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1811 
1812 	if (!vd->vdev_ops->vdev_op_leaf)
1813 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1814 
1815 	/*
1816 	 * If the vdev is already faulted, then don't do anything.
1817 	 */
1818 	if (vd->vdev_faulted || vd->vdev_degraded)
1819 		return (spa_vdev_state_exit(spa, NULL, 0));
1820 
1821 	vd->vdev_degraded = 1ULL;
1822 	if (!vdev_is_dead(vd))
1823 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1824 		    VDEV_AUX_ERR_EXCEEDED);
1825 
1826 	return (spa_vdev_state_exit(spa, vd, 0));
1827 }
1828 
1829 /*
1830  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1831  * any attached spare device should be detached when the device finishes
1832  * resilvering.  Second, the online should be treated like a 'test' online case,
1833  * so no FMA events are generated if the device fails to open.
1834  */
1835 int
1836 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1837 {
1838 	vdev_t *vd;
1839 
1840 	spa_vdev_state_enter(spa);
1841 
1842 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1843 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1844 
1845 	if (!vd->vdev_ops->vdev_op_leaf)
1846 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1847 
1848 	vd->vdev_offline = B_FALSE;
1849 	vd->vdev_tmpoffline = B_FALSE;
1850 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1851 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1852 	vdev_reopen(vd->vdev_top);
1853 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1854 
1855 	if (newstate)
1856 		*newstate = vd->vdev_state;
1857 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1858 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1859 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1860 	    vd->vdev_parent->vdev_child[0] == vd)
1861 		vd->vdev_unspare = B_TRUE;
1862 
1863 	return (spa_vdev_state_exit(spa, vd, 0));
1864 }
1865 
1866 int
1867 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1868 {
1869 	vdev_t *vd;
1870 
1871 	spa_vdev_state_enter(spa);
1872 
1873 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1874 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1875 
1876 	if (!vd->vdev_ops->vdev_op_leaf)
1877 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1878 
1879 	/*
1880 	 * If the device isn't already offline, try to offline it.
1881 	 */
1882 	if (!vd->vdev_offline) {
1883 		/*
1884 		 * If this device has the only valid copy of some data,
1885 		 * don't allow it to be offlined.
1886 		 */
1887 		if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1888 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1889 
1890 		/*
1891 		 * Offline this device and reopen its top-level vdev.
1892 		 * If this action results in the top-level vdev becoming
1893 		 * unusable, undo it and fail the request.
1894 		 */
1895 		vd->vdev_offline = B_TRUE;
1896 		vdev_reopen(vd->vdev_top);
1897 		if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1898 			vd->vdev_offline = B_FALSE;
1899 			vdev_reopen(vd->vdev_top);
1900 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1901 		}
1902 	}
1903 
1904 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1905 
1906 	return (spa_vdev_state_exit(spa, vd, 0));
1907 }
1908 
1909 /*
1910  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1911  * vdev_offline(), we assume the spa config is locked.  We also clear all
1912  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1913  */
1914 void
1915 vdev_clear(spa_t *spa, vdev_t *vd)
1916 {
1917 	vdev_t *rvd = spa->spa_root_vdev;
1918 
1919 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1920 
1921 	if (vd == NULL)
1922 		vd = rvd;
1923 
1924 	vd->vdev_stat.vs_read_errors = 0;
1925 	vd->vdev_stat.vs_write_errors = 0;
1926 	vd->vdev_stat.vs_checksum_errors = 0;
1927 
1928 	for (int c = 0; c < vd->vdev_children; c++)
1929 		vdev_clear(spa, vd->vdev_child[c]);
1930 
1931 	/*
1932 	 * If we're in the FAULTED state or have experienced failed I/O, then
1933 	 * clear the persistent state and attempt to reopen the device.  We
1934 	 * also mark the vdev config dirty, so that the new faulted state is
1935 	 * written out to disk.
1936 	 */
1937 	if (vd->vdev_faulted || vd->vdev_degraded ||
1938 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
1939 
1940 		vd->vdev_faulted = vd->vdev_degraded = 0;
1941 		vd->vdev_cant_read = B_FALSE;
1942 		vd->vdev_cant_write = B_FALSE;
1943 
1944 		vdev_reopen(vd);
1945 
1946 		if (vd != rvd)
1947 			vdev_state_dirty(vd->vdev_top);
1948 
1949 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1950 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1951 
1952 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1953 	}
1954 }
1955 
1956 boolean_t
1957 vdev_is_dead(vdev_t *vd)
1958 {
1959 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
1960 }
1961 
1962 boolean_t
1963 vdev_readable(vdev_t *vd)
1964 {
1965 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
1966 }
1967 
1968 boolean_t
1969 vdev_writeable(vdev_t *vd)
1970 {
1971 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1972 }
1973 
1974 boolean_t
1975 vdev_allocatable(vdev_t *vd)
1976 {
1977 	uint64_t state = vd->vdev_state;
1978 
1979 	/*
1980 	 * We currently allow allocations from vdevs which may be in the
1981 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
1982 	 * fails to reopen then we'll catch it later when we're holding
1983 	 * the proper locks.  Note that we have to get the vdev state
1984 	 * in a local variable because although it changes atomically,
1985 	 * we're asking two separate questions about it.
1986 	 */
1987 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
1988 	    !vd->vdev_cant_write);
1989 }
1990 
1991 boolean_t
1992 vdev_accessible(vdev_t *vd, zio_t *zio)
1993 {
1994 	ASSERT(zio->io_vd == vd);
1995 
1996 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
1997 		return (B_FALSE);
1998 
1999 	if (zio->io_type == ZIO_TYPE_READ)
2000 		return (!vd->vdev_cant_read);
2001 
2002 	if (zio->io_type == ZIO_TYPE_WRITE)
2003 		return (!vd->vdev_cant_write);
2004 
2005 	return (B_TRUE);
2006 }
2007 
2008 /*
2009  * Get statistics for the given vdev.
2010  */
2011 void
2012 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2013 {
2014 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2015 
2016 	mutex_enter(&vd->vdev_stat_lock);
2017 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2018 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2019 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2020 	vs->vs_state = vd->vdev_state;
2021 	vs->vs_rsize = vdev_get_rsize(vd);
2022 	mutex_exit(&vd->vdev_stat_lock);
2023 
2024 	/*
2025 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2026 	 * over all top-level vdevs (i.e. the direct children of the root).
2027 	 */
2028 	if (vd == rvd) {
2029 		for (int c = 0; c < rvd->vdev_children; c++) {
2030 			vdev_t *cvd = rvd->vdev_child[c];
2031 			vdev_stat_t *cvs = &cvd->vdev_stat;
2032 
2033 			mutex_enter(&vd->vdev_stat_lock);
2034 			for (int t = 0; t < ZIO_TYPES; t++) {
2035 				vs->vs_ops[t] += cvs->vs_ops[t];
2036 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2037 			}
2038 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2039 			mutex_exit(&vd->vdev_stat_lock);
2040 		}
2041 	}
2042 }
2043 
2044 void
2045 vdev_clear_stats(vdev_t *vd)
2046 {
2047 	mutex_enter(&vd->vdev_stat_lock);
2048 	vd->vdev_stat.vs_space = 0;
2049 	vd->vdev_stat.vs_dspace = 0;
2050 	vd->vdev_stat.vs_alloc = 0;
2051 	mutex_exit(&vd->vdev_stat_lock);
2052 }
2053 
2054 void
2055 vdev_stat_update(zio_t *zio, uint64_t psize)
2056 {
2057 	spa_t *spa = zio->io_spa;
2058 	vdev_t *rvd = spa->spa_root_vdev;
2059 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2060 	vdev_t *pvd;
2061 	uint64_t txg = zio->io_txg;
2062 	vdev_stat_t *vs = &vd->vdev_stat;
2063 	zio_type_t type = zio->io_type;
2064 	int flags = zio->io_flags;
2065 
2066 	/*
2067 	 * If this i/o is a gang leader, it didn't do any actual work.
2068 	 */
2069 	if (zio->io_gang_tree)
2070 		return;
2071 
2072 	if (zio->io_error == 0) {
2073 		/*
2074 		 * If this is a root i/o, don't count it -- we've already
2075 		 * counted the top-level vdevs, and vdev_get_stats() will
2076 		 * aggregate them when asked.  This reduces contention on
2077 		 * the root vdev_stat_lock and implicitly handles blocks
2078 		 * that compress away to holes, for which there is no i/o.
2079 		 * (Holes never create vdev children, so all the counters
2080 		 * remain zero, which is what we want.)
2081 		 *
2082 		 * Note: this only applies to successful i/o (io_error == 0)
2083 		 * because unlike i/o counts, errors are not additive.
2084 		 * When reading a ditto block, for example, failure of
2085 		 * one top-level vdev does not imply a root-level error.
2086 		 */
2087 		if (vd == rvd)
2088 			return;
2089 
2090 		ASSERT(vd == zio->io_vd);
2091 
2092 		if (flags & ZIO_FLAG_IO_BYPASS)
2093 			return;
2094 
2095 		mutex_enter(&vd->vdev_stat_lock);
2096 
2097 		if (flags & ZIO_FLAG_IO_REPAIR) {
2098 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2099 				vs->vs_scrub_repaired += psize;
2100 			if (flags & ZIO_FLAG_SELF_HEAL)
2101 				vs->vs_self_healed += psize;
2102 		}
2103 
2104 		vs->vs_ops[type]++;
2105 		vs->vs_bytes[type] += psize;
2106 
2107 		mutex_exit(&vd->vdev_stat_lock);
2108 		return;
2109 	}
2110 
2111 	if (flags & ZIO_FLAG_SPECULATIVE)
2112 		return;
2113 
2114 	mutex_enter(&vd->vdev_stat_lock);
2115 	if (type == ZIO_TYPE_READ) {
2116 		if (zio->io_error == ECKSUM)
2117 			vs->vs_checksum_errors++;
2118 		else
2119 			vs->vs_read_errors++;
2120 	}
2121 	if (type == ZIO_TYPE_WRITE)
2122 		vs->vs_write_errors++;
2123 	mutex_exit(&vd->vdev_stat_lock);
2124 
2125 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2126 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2127 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2128 		/*
2129 		 * This is either a normal write (not a repair), or it's a
2130 		 * repair induced by the scrub thread.  In the normal case,
2131 		 * we commit the DTL change in the same txg as the block
2132 		 * was born.  In the scrub-induced repair case, we know that
2133 		 * scrubs run in first-pass syncing context, so we commit
2134 		 * the DTL change in spa->spa_syncing_txg.
2135 		 *
2136 		 * We currently do not make DTL entries for failed spontaneous
2137 		 * self-healing writes triggered by normal (non-scrubbing)
2138 		 * reads, because we have no transactional context in which to
2139 		 * do so -- and it's not clear that it'd be desirable anyway.
2140 		 */
2141 		if (vd->vdev_ops->vdev_op_leaf) {
2142 			uint64_t commit_txg = txg;
2143 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2144 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2145 				ASSERT(spa_sync_pass(spa) == 1);
2146 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2147 				commit_txg = spa->spa_syncing_txg;
2148 			}
2149 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2150 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2151 				return;
2152 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2153 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2154 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2155 		}
2156 		if (vd != rvd)
2157 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2158 	}
2159 }
2160 
2161 void
2162 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2163 {
2164 	int c;
2165 	vdev_stat_t *vs = &vd->vdev_stat;
2166 
2167 	for (c = 0; c < vd->vdev_children; c++)
2168 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2169 
2170 	mutex_enter(&vd->vdev_stat_lock);
2171 
2172 	if (type == POOL_SCRUB_NONE) {
2173 		/*
2174 		 * Update completion and end time.  Leave everything else alone
2175 		 * so we can report what happened during the previous scrub.
2176 		 */
2177 		vs->vs_scrub_complete = complete;
2178 		vs->vs_scrub_end = gethrestime_sec();
2179 	} else {
2180 		vs->vs_scrub_type = type;
2181 		vs->vs_scrub_complete = 0;
2182 		vs->vs_scrub_examined = 0;
2183 		vs->vs_scrub_repaired = 0;
2184 		vs->vs_scrub_start = gethrestime_sec();
2185 		vs->vs_scrub_end = 0;
2186 	}
2187 
2188 	mutex_exit(&vd->vdev_stat_lock);
2189 }
2190 
2191 /*
2192  * Update the in-core space usage stats for this vdev and the root vdev.
2193  */
2194 void
2195 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2196     boolean_t update_root)
2197 {
2198 	int64_t dspace_delta = space_delta;
2199 	spa_t *spa = vd->vdev_spa;
2200 	vdev_t *rvd = spa->spa_root_vdev;
2201 
2202 	ASSERT(vd == vd->vdev_top);
2203 
2204 	/*
2205 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2206 	 * factor.  We must calculate this here and not at the root vdev
2207 	 * because the root vdev's psize-to-asize is simply the max of its
2208 	 * childrens', thus not accurate enough for us.
2209 	 */
2210 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2211 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2212 	    vd->vdev_deflate_ratio;
2213 
2214 	mutex_enter(&vd->vdev_stat_lock);
2215 	vd->vdev_stat.vs_space += space_delta;
2216 	vd->vdev_stat.vs_alloc += alloc_delta;
2217 	vd->vdev_stat.vs_dspace += dspace_delta;
2218 	mutex_exit(&vd->vdev_stat_lock);
2219 
2220 	if (update_root) {
2221 		ASSERT(rvd == vd->vdev_parent);
2222 		ASSERT(vd->vdev_ms_count != 0);
2223 
2224 		/*
2225 		 * Don't count non-normal (e.g. intent log) space as part of
2226 		 * the pool's capacity.
2227 		 */
2228 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2229 			return;
2230 
2231 		mutex_enter(&rvd->vdev_stat_lock);
2232 		rvd->vdev_stat.vs_space += space_delta;
2233 		rvd->vdev_stat.vs_alloc += alloc_delta;
2234 		rvd->vdev_stat.vs_dspace += dspace_delta;
2235 		mutex_exit(&rvd->vdev_stat_lock);
2236 	}
2237 }
2238 
2239 /*
2240  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2241  * so that it will be written out next time the vdev configuration is synced.
2242  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2243  */
2244 void
2245 vdev_config_dirty(vdev_t *vd)
2246 {
2247 	spa_t *spa = vd->vdev_spa;
2248 	vdev_t *rvd = spa->spa_root_vdev;
2249 	int c;
2250 
2251 	/*
2252 	 * If this is an aux vdev (as with l2cache devices), then we update the
2253 	 * vdev config manually and set the sync flag.
2254 	 */
2255 	if (vd->vdev_aux != NULL) {
2256 		spa_aux_vdev_t *sav = vd->vdev_aux;
2257 		nvlist_t **aux;
2258 		uint_t naux;
2259 
2260 		for (c = 0; c < sav->sav_count; c++) {
2261 			if (sav->sav_vdevs[c] == vd)
2262 				break;
2263 		}
2264 
2265 		if (c == sav->sav_count) {
2266 			/*
2267 			 * We're being removed.  There's nothing more to do.
2268 			 */
2269 			ASSERT(sav->sav_sync == B_TRUE);
2270 			return;
2271 		}
2272 
2273 		sav->sav_sync = B_TRUE;
2274 
2275 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2276 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2277 
2278 		ASSERT(c < naux);
2279 
2280 		/*
2281 		 * Setting the nvlist in the middle if the array is a little
2282 		 * sketchy, but it will work.
2283 		 */
2284 		nvlist_free(aux[c]);
2285 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2286 
2287 		return;
2288 	}
2289 
2290 	/*
2291 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2292 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2293 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2294 	 * so this is sufficient to ensure mutual exclusion.
2295 	 */
2296 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2297 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2298 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2299 
2300 	if (vd == rvd) {
2301 		for (c = 0; c < rvd->vdev_children; c++)
2302 			vdev_config_dirty(rvd->vdev_child[c]);
2303 	} else {
2304 		ASSERT(vd == vd->vdev_top);
2305 
2306 		if (!list_link_active(&vd->vdev_config_dirty_node))
2307 			list_insert_head(&spa->spa_config_dirty_list, vd);
2308 	}
2309 }
2310 
2311 void
2312 vdev_config_clean(vdev_t *vd)
2313 {
2314 	spa_t *spa = vd->vdev_spa;
2315 
2316 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2317 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2318 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2319 
2320 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2321 	list_remove(&spa->spa_config_dirty_list, vd);
2322 }
2323 
2324 /*
2325  * Mark a top-level vdev's state as dirty, so that the next pass of
2326  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2327  * the state changes from larger config changes because they require
2328  * much less locking, and are often needed for administrative actions.
2329  */
2330 void
2331 vdev_state_dirty(vdev_t *vd)
2332 {
2333 	spa_t *spa = vd->vdev_spa;
2334 
2335 	ASSERT(vd == vd->vdev_top);
2336 
2337 	/*
2338 	 * The state list is protected by the SCL_STATE lock.  The caller
2339 	 * must either hold SCL_STATE as writer, or must be the sync thread
2340 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2341 	 * so this is sufficient to ensure mutual exclusion.
2342 	 */
2343 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2344 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2345 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2346 
2347 	if (!list_link_active(&vd->vdev_state_dirty_node))
2348 		list_insert_head(&spa->spa_state_dirty_list, vd);
2349 }
2350 
2351 void
2352 vdev_state_clean(vdev_t *vd)
2353 {
2354 	spa_t *spa = vd->vdev_spa;
2355 
2356 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2357 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2358 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2359 
2360 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2361 	list_remove(&spa->spa_state_dirty_list, vd);
2362 }
2363 
2364 /*
2365  * Propagate vdev state up from children to parent.
2366  */
2367 void
2368 vdev_propagate_state(vdev_t *vd)
2369 {
2370 	spa_t *spa = vd->vdev_spa;
2371 	vdev_t *rvd = spa->spa_root_vdev;
2372 	int degraded = 0, faulted = 0;
2373 	int corrupted = 0;
2374 	int c;
2375 	vdev_t *child;
2376 
2377 	if (vd->vdev_children > 0) {
2378 		for (c = 0; c < vd->vdev_children; c++) {
2379 			child = vd->vdev_child[c];
2380 
2381 			if (!vdev_readable(child) ||
2382 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2383 				/*
2384 				 * Root special: if there is a top-level log
2385 				 * device, treat the root vdev as if it were
2386 				 * degraded.
2387 				 */
2388 				if (child->vdev_islog && vd == rvd)
2389 					degraded++;
2390 				else
2391 					faulted++;
2392 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2393 				degraded++;
2394 			}
2395 
2396 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2397 				corrupted++;
2398 		}
2399 
2400 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2401 
2402 		/*
2403 		 * Root special: if there is a top-level vdev that cannot be
2404 		 * opened due to corrupted metadata, then propagate the root
2405 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2406 		 * replicas'.
2407 		 */
2408 		if (corrupted && vd == rvd &&
2409 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2410 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2411 			    VDEV_AUX_CORRUPT_DATA);
2412 	}
2413 
2414 	if (vd->vdev_parent)
2415 		vdev_propagate_state(vd->vdev_parent);
2416 }
2417 
2418 /*
2419  * Set a vdev's state.  If this is during an open, we don't update the parent
2420  * state, because we're in the process of opening children depth-first.
2421  * Otherwise, we propagate the change to the parent.
2422  *
2423  * If this routine places a device in a faulted state, an appropriate ereport is
2424  * generated.
2425  */
2426 void
2427 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2428 {
2429 	uint64_t save_state;
2430 	spa_t *spa = vd->vdev_spa;
2431 
2432 	if (state == vd->vdev_state) {
2433 		vd->vdev_stat.vs_aux = aux;
2434 		return;
2435 	}
2436 
2437 	save_state = vd->vdev_state;
2438 
2439 	vd->vdev_state = state;
2440 	vd->vdev_stat.vs_aux = aux;
2441 
2442 	/*
2443 	 * If we are setting the vdev state to anything but an open state, then
2444 	 * always close the underlying device.  Otherwise, we keep accessible
2445 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2446 	 * because that implies some extra checks (offline, etc) that we don't
2447 	 * want here.  This is limited to leaf devices, because otherwise
2448 	 * closing the device will affect other children.
2449 	 */
2450 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2451 		vd->vdev_ops->vdev_op_close(vd);
2452 
2453 	if (vd->vdev_removed &&
2454 	    state == VDEV_STATE_CANT_OPEN &&
2455 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2456 		/*
2457 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2458 		 * device was previously marked removed and someone attempted to
2459 		 * reopen it.  If this failed due to a nonexistent device, then
2460 		 * keep the device in the REMOVED state.  We also let this be if
2461 		 * it is one of our special test online cases, which is only
2462 		 * attempting to online the device and shouldn't generate an FMA
2463 		 * fault.
2464 		 */
2465 		vd->vdev_state = VDEV_STATE_REMOVED;
2466 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2467 	} else if (state == VDEV_STATE_REMOVED) {
2468 		/*
2469 		 * Indicate to the ZFS DE that this device has been removed, and
2470 		 * any recent errors should be ignored.
2471 		 */
2472 		zfs_post_remove(spa, vd);
2473 		vd->vdev_removed = B_TRUE;
2474 	} else if (state == VDEV_STATE_CANT_OPEN) {
2475 		/*
2476 		 * If we fail to open a vdev during an import, we mark it as
2477 		 * "not available", which signifies that it was never there to
2478 		 * begin with.  Failure to open such a device is not considered
2479 		 * an error.
2480 		 */
2481 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2482 		    !spa->spa_import_faulted &&
2483 		    vd->vdev_ops->vdev_op_leaf)
2484 			vd->vdev_not_present = 1;
2485 
2486 		/*
2487 		 * Post the appropriate ereport.  If the 'prevstate' field is
2488 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2489 		 * that this is part of a vdev_reopen().  In this case, we don't
2490 		 * want to post the ereport if the device was already in the
2491 		 * CANT_OPEN state beforehand.
2492 		 *
2493 		 * If the 'checkremove' flag is set, then this is an attempt to
2494 		 * online the device in response to an insertion event.  If we
2495 		 * hit this case, then we have detected an insertion event for a
2496 		 * faulted or offline device that wasn't in the removed state.
2497 		 * In this scenario, we don't post an ereport because we are
2498 		 * about to replace the device, or attempt an online with
2499 		 * vdev_forcefault, which will generate the fault for us.
2500 		 */
2501 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2502 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2503 		    vd != spa->spa_root_vdev) {
2504 			const char *class;
2505 
2506 			switch (aux) {
2507 			case VDEV_AUX_OPEN_FAILED:
2508 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2509 				break;
2510 			case VDEV_AUX_CORRUPT_DATA:
2511 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2512 				break;
2513 			case VDEV_AUX_NO_REPLICAS:
2514 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2515 				break;
2516 			case VDEV_AUX_BAD_GUID_SUM:
2517 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2518 				break;
2519 			case VDEV_AUX_TOO_SMALL:
2520 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2521 				break;
2522 			case VDEV_AUX_BAD_LABEL:
2523 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2524 				break;
2525 			case VDEV_AUX_IO_FAILURE:
2526 				class = FM_EREPORT_ZFS_IO_FAILURE;
2527 				break;
2528 			default:
2529 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2530 			}
2531 
2532 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2533 		}
2534 
2535 		/* Erase any notion of persistent removed state */
2536 		vd->vdev_removed = B_FALSE;
2537 	} else {
2538 		vd->vdev_removed = B_FALSE;
2539 	}
2540 
2541 	if (!isopen)
2542 		vdev_propagate_state(vd);
2543 }
2544 
2545 /*
2546  * Check the vdev configuration to ensure that it's capable of supporting
2547  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2548  * In addition, only a single top-level vdev is allowed and none of the leaves
2549  * can be wholedisks.
2550  */
2551 boolean_t
2552 vdev_is_bootable(vdev_t *vd)
2553 {
2554 	int c;
2555 
2556 	if (!vd->vdev_ops->vdev_op_leaf) {
2557 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2558 
2559 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2560 		    vd->vdev_children > 1) {
2561 			return (B_FALSE);
2562 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2563 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2564 			return (B_FALSE);
2565 		}
2566 	} else if (vd->vdev_wholedisk == 1) {
2567 		return (B_FALSE);
2568 	}
2569 
2570 	for (c = 0; c < vd->vdev_children; c++) {
2571 		if (!vdev_is_bootable(vd->vdev_child[c]))
2572 			return (B_FALSE);
2573 	}
2574 	return (B_TRUE);
2575 }
2576