1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 211 if (cvd->vdev_ops->vdev_op_leaf) 212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 248 if (cvd->vdev_ops->vdev_op_leaf) 249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 250 } 251 252 /* 253 * Remove any holes in the child array. 254 */ 255 void 256 vdev_compact_children(vdev_t *pvd) 257 { 258 vdev_t **newchild, *cvd; 259 int oldc = pvd->vdev_children; 260 int newc; 261 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 263 264 for (int c = newc = 0; c < oldc; c++) 265 if (pvd->vdev_child[c]) 266 newc++; 267 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 269 270 for (int c = newc = 0; c < oldc; c++) { 271 if ((cvd = pvd->vdev_child[c]) != NULL) { 272 newchild[newc] = cvd; 273 cvd->vdev_id = newc++; 274 } 275 } 276 277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 278 pvd->vdev_child = newchild; 279 pvd->vdev_children = newc; 280 } 281 282 /* 283 * Allocate and minimally initialize a vdev_t. 284 */ 285 vdev_t * 286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 287 { 288 vdev_t *vd; 289 290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 291 292 if (spa->spa_root_vdev == NULL) { 293 ASSERT(ops == &vdev_root_ops); 294 spa->spa_root_vdev = vd; 295 } 296 297 if (guid == 0 && ops != &vdev_hole_ops) { 298 if (spa->spa_root_vdev == vd) { 299 /* 300 * The root vdev's guid will also be the pool guid, 301 * which must be unique among all pools. 302 */ 303 while (guid == 0 || spa_guid_exists(guid, 0)) 304 guid = spa_get_random(-1ULL); 305 } else { 306 /* 307 * Any other vdev's guid must be unique within the pool. 308 */ 309 while (guid == 0 || 310 spa_guid_exists(spa_guid(spa), guid)) 311 guid = spa_get_random(-1ULL); 312 } 313 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 314 } 315 316 vd->vdev_spa = spa; 317 vd->vdev_id = id; 318 vd->vdev_guid = guid; 319 vd->vdev_guid_sum = guid; 320 vd->vdev_ops = ops; 321 vd->vdev_state = VDEV_STATE_CLOSED; 322 vd->vdev_ishole = (ops == &vdev_hole_ops); 323 324 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 325 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 327 for (int t = 0; t < DTL_TYPES; t++) { 328 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 329 &vd->vdev_dtl_lock); 330 } 331 txg_list_create(&vd->vdev_ms_list, 332 offsetof(struct metaslab, ms_txg_node)); 333 txg_list_create(&vd->vdev_dtl_list, 334 offsetof(struct vdev, vdev_dtl_node)); 335 vd->vdev_stat.vs_timestamp = gethrtime(); 336 vdev_queue_init(vd); 337 vdev_cache_init(vd); 338 339 return (vd); 340 } 341 342 /* 343 * Allocate a new vdev. The 'alloctype' is used to control whether we are 344 * creating a new vdev or loading an existing one - the behavior is slightly 345 * different for each case. 346 */ 347 int 348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 349 int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0, islog, nparity; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (EINVAL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (EINVAL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (EINVAL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_SPARE) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385 return (EINVAL); 386 } 387 388 /* 389 * The first allocated vdev must be of type 'root'. 390 */ 391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392 return (EINVAL); 393 394 /* 395 * Determine whether we're a log vdev. 396 */ 397 islog = 0; 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 399 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 400 return (ENOTSUP); 401 402 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 403 return (ENOTSUP); 404 405 /* 406 * Set the nparity property for RAID-Z vdevs. 407 */ 408 nparity = -1ULL; 409 if (ops == &vdev_raidz_ops) { 410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 411 &nparity) == 0) { 412 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 413 return (EINVAL); 414 /* 415 * Previous versions could only support 1 or 2 parity 416 * device. 417 */ 418 if (nparity > 1 && 419 spa_version(spa) < SPA_VERSION_RAIDZ2) 420 return (ENOTSUP); 421 if (nparity > 2 && 422 spa_version(spa) < SPA_VERSION_RAIDZ3) 423 return (ENOTSUP); 424 } else { 425 /* 426 * We require the parity to be specified for SPAs that 427 * support multiple parity levels. 428 */ 429 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 430 return (EINVAL); 431 /* 432 * Otherwise, we default to 1 parity device for RAID-Z. 433 */ 434 nparity = 1; 435 } 436 } else { 437 nparity = 0; 438 } 439 ASSERT(nparity != -1ULL); 440 441 vd = vdev_alloc_common(spa, id, guid, ops); 442 443 vd->vdev_islog = islog; 444 vd->vdev_nparity = nparity; 445 446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 447 vd->vdev_path = spa_strdup(vd->vdev_path); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 449 vd->vdev_devid = spa_strdup(vd->vdev_devid); 450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 451 &vd->vdev_physpath) == 0) 452 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 453 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 454 vd->vdev_fru = spa_strdup(vd->vdev_fru); 455 456 /* 457 * Set the whole_disk property. If it's not specified, leave the value 458 * as -1. 459 */ 460 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 461 &vd->vdev_wholedisk) != 0) 462 vd->vdev_wholedisk = -1ULL; 463 464 /* 465 * Look for the 'not present' flag. This will only be set if the device 466 * was not present at the time of import. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 469 &vd->vdev_not_present); 470 471 /* 472 * Get the alignment requirement. 473 */ 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 475 476 /* 477 * Retrieve the vdev creation time. 478 */ 479 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 480 &vd->vdev_crtxg); 481 482 /* 483 * If we're a top-level vdev, try to load the allocation parameters. 484 */ 485 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 487 &vd->vdev_ms_array); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 489 &vd->vdev_ms_shift); 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 491 &vd->vdev_asize); 492 } 493 494 if (parent && !parent->vdev_parent) { 495 ASSERT(alloctype == VDEV_ALLOC_LOAD || 496 alloctype == VDEV_ALLOC_ADD || 497 alloctype == VDEV_ALLOC_ROOTPOOL); 498 vd->vdev_mg = metaslab_group_create(islog ? 499 spa_log_class(spa) : spa_normal_class(spa), vd); 500 } 501 502 /* 503 * If we're a leaf vdev, try to load the DTL object and other state. 504 */ 505 if (vd->vdev_ops->vdev_op_leaf && 506 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 507 alloctype == VDEV_ALLOC_ROOTPOOL)) { 508 if (alloctype == VDEV_ALLOC_LOAD) { 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 510 &vd->vdev_dtl_smo.smo_object); 511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 512 &vd->vdev_unspare); 513 } 514 515 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 516 uint64_t spare = 0; 517 518 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 519 &spare) == 0 && spare) 520 spa_spare_add(vd); 521 } 522 523 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 524 &vd->vdev_offline); 525 526 /* 527 * When importing a pool, we want to ignore the persistent fault 528 * state, as the diagnosis made on another system may not be 529 * valid in the current context. Local vdevs will 530 * remain in the faulted state. 531 */ 532 if (spa->spa_load_state == SPA_LOAD_OPEN) { 533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 534 &vd->vdev_faulted); 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 536 &vd->vdev_degraded); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 538 &vd->vdev_removed); 539 540 if (vd->vdev_faulted || vd->vdev_degraded) { 541 char *aux; 542 543 vd->vdev_label_aux = 544 VDEV_AUX_ERR_EXCEEDED; 545 if (nvlist_lookup_string(nv, 546 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 547 strcmp(aux, "external") == 0) 548 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 549 } 550 } 551 } 552 553 /* 554 * Add ourselves to the parent's list of children. 555 */ 556 vdev_add_child(parent, vd); 557 558 *vdp = vd; 559 560 return (0); 561 } 562 563 void 564 vdev_free(vdev_t *vd) 565 { 566 spa_t *spa = vd->vdev_spa; 567 568 /* 569 * vdev_free() implies closing the vdev first. This is simpler than 570 * trying to ensure complicated semantics for all callers. 571 */ 572 vdev_close(vd); 573 574 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 575 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 576 577 /* 578 * Free all children. 579 */ 580 for (int c = 0; c < vd->vdev_children; c++) 581 vdev_free(vd->vdev_child[c]); 582 583 ASSERT(vd->vdev_child == NULL); 584 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 585 586 /* 587 * Discard allocation state. 588 */ 589 if (vd->vdev_mg != NULL) { 590 vdev_metaslab_fini(vd); 591 metaslab_group_destroy(vd->vdev_mg); 592 } 593 594 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 595 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 596 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 597 598 /* 599 * Remove this vdev from its parent's child list. 600 */ 601 vdev_remove_child(vd->vdev_parent, vd); 602 603 ASSERT(vd->vdev_parent == NULL); 604 605 /* 606 * Clean up vdev structure. 607 */ 608 vdev_queue_fini(vd); 609 vdev_cache_fini(vd); 610 611 if (vd->vdev_path) 612 spa_strfree(vd->vdev_path); 613 if (vd->vdev_devid) 614 spa_strfree(vd->vdev_devid); 615 if (vd->vdev_physpath) 616 spa_strfree(vd->vdev_physpath); 617 if (vd->vdev_fru) 618 spa_strfree(vd->vdev_fru); 619 620 if (vd->vdev_isspare) 621 spa_spare_remove(vd); 622 if (vd->vdev_isl2cache) 623 spa_l2cache_remove(vd); 624 625 txg_list_destroy(&vd->vdev_ms_list); 626 txg_list_destroy(&vd->vdev_dtl_list); 627 628 mutex_enter(&vd->vdev_dtl_lock); 629 for (int t = 0; t < DTL_TYPES; t++) { 630 space_map_unload(&vd->vdev_dtl[t]); 631 space_map_destroy(&vd->vdev_dtl[t]); 632 } 633 mutex_exit(&vd->vdev_dtl_lock); 634 635 mutex_destroy(&vd->vdev_dtl_lock); 636 mutex_destroy(&vd->vdev_stat_lock); 637 mutex_destroy(&vd->vdev_probe_lock); 638 639 if (vd == spa->spa_root_vdev) 640 spa->spa_root_vdev = NULL; 641 642 kmem_free(vd, sizeof (vdev_t)); 643 } 644 645 /* 646 * Transfer top-level vdev state from svd to tvd. 647 */ 648 static void 649 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 650 { 651 spa_t *spa = svd->vdev_spa; 652 metaslab_t *msp; 653 vdev_t *vd; 654 int t; 655 656 ASSERT(tvd == tvd->vdev_top); 657 658 tvd->vdev_ms_array = svd->vdev_ms_array; 659 tvd->vdev_ms_shift = svd->vdev_ms_shift; 660 tvd->vdev_ms_count = svd->vdev_ms_count; 661 662 svd->vdev_ms_array = 0; 663 svd->vdev_ms_shift = 0; 664 svd->vdev_ms_count = 0; 665 666 tvd->vdev_mg = svd->vdev_mg; 667 tvd->vdev_ms = svd->vdev_ms; 668 669 svd->vdev_mg = NULL; 670 svd->vdev_ms = NULL; 671 672 if (tvd->vdev_mg != NULL) 673 tvd->vdev_mg->mg_vd = tvd; 674 675 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 676 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 677 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 678 679 svd->vdev_stat.vs_alloc = 0; 680 svd->vdev_stat.vs_space = 0; 681 svd->vdev_stat.vs_dspace = 0; 682 683 for (t = 0; t < TXG_SIZE; t++) { 684 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 685 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 686 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 687 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 688 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 689 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 690 } 691 692 if (list_link_active(&svd->vdev_config_dirty_node)) { 693 vdev_config_clean(svd); 694 vdev_config_dirty(tvd); 695 } 696 697 if (list_link_active(&svd->vdev_state_dirty_node)) { 698 vdev_state_clean(svd); 699 vdev_state_dirty(tvd); 700 } 701 702 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 703 svd->vdev_deflate_ratio = 0; 704 705 tvd->vdev_islog = svd->vdev_islog; 706 svd->vdev_islog = 0; 707 } 708 709 static void 710 vdev_top_update(vdev_t *tvd, vdev_t *vd) 711 { 712 if (vd == NULL) 713 return; 714 715 vd->vdev_top = tvd; 716 717 for (int c = 0; c < vd->vdev_children; c++) 718 vdev_top_update(tvd, vd->vdev_child[c]); 719 } 720 721 /* 722 * Add a mirror/replacing vdev above an existing vdev. 723 */ 724 vdev_t * 725 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 726 { 727 spa_t *spa = cvd->vdev_spa; 728 vdev_t *pvd = cvd->vdev_parent; 729 vdev_t *mvd; 730 731 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 732 733 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 734 735 mvd->vdev_asize = cvd->vdev_asize; 736 mvd->vdev_min_asize = cvd->vdev_min_asize; 737 mvd->vdev_ashift = cvd->vdev_ashift; 738 mvd->vdev_state = cvd->vdev_state; 739 mvd->vdev_crtxg = cvd->vdev_crtxg; 740 741 vdev_remove_child(pvd, cvd); 742 vdev_add_child(pvd, mvd); 743 cvd->vdev_id = mvd->vdev_children; 744 vdev_add_child(mvd, cvd); 745 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 746 747 if (mvd == mvd->vdev_top) 748 vdev_top_transfer(cvd, mvd); 749 750 return (mvd); 751 } 752 753 /* 754 * Remove a 1-way mirror/replacing vdev from the tree. 755 */ 756 void 757 vdev_remove_parent(vdev_t *cvd) 758 { 759 vdev_t *mvd = cvd->vdev_parent; 760 vdev_t *pvd = mvd->vdev_parent; 761 762 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 763 764 ASSERT(mvd->vdev_children == 1); 765 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 766 mvd->vdev_ops == &vdev_replacing_ops || 767 mvd->vdev_ops == &vdev_spare_ops); 768 cvd->vdev_ashift = mvd->vdev_ashift; 769 770 vdev_remove_child(mvd, cvd); 771 vdev_remove_child(pvd, mvd); 772 773 /* 774 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 775 * Otherwise, we could have detached an offline device, and when we 776 * go to import the pool we'll think we have two top-level vdevs, 777 * instead of a different version of the same top-level vdev. 778 */ 779 if (mvd->vdev_top == mvd) { 780 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 781 cvd->vdev_guid += guid_delta; 782 cvd->vdev_guid_sum += guid_delta; 783 } 784 cvd->vdev_id = mvd->vdev_id; 785 vdev_add_child(pvd, cvd); 786 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 787 788 if (cvd == cvd->vdev_top) 789 vdev_top_transfer(mvd, cvd); 790 791 ASSERT(mvd->vdev_children == 0); 792 vdev_free(mvd); 793 } 794 795 int 796 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 797 { 798 spa_t *spa = vd->vdev_spa; 799 objset_t *mos = spa->spa_meta_objset; 800 uint64_t m; 801 uint64_t oldc = vd->vdev_ms_count; 802 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 803 metaslab_t **mspp; 804 int error; 805 806 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 807 808 /* 809 * This vdev is not being allocated from yet or is a hole. 810 */ 811 if (vd->vdev_ms_shift == 0) 812 return (0); 813 814 ASSERT(!vd->vdev_ishole); 815 816 /* 817 * Compute the raidz-deflation ratio. Note, we hard-code 818 * in 128k (1 << 17) because it is the current "typical" blocksize. 819 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 820 * or we will inconsistently account for existing bp's. 821 */ 822 vd->vdev_deflate_ratio = (1 << 17) / 823 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 824 825 ASSERT(oldc <= newc); 826 827 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 828 829 if (oldc != 0) { 830 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 831 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 832 } 833 834 vd->vdev_ms = mspp; 835 vd->vdev_ms_count = newc; 836 837 for (m = oldc; m < newc; m++) { 838 space_map_obj_t smo = { 0, 0, 0 }; 839 if (txg == 0) { 840 uint64_t object = 0; 841 error = dmu_read(mos, vd->vdev_ms_array, 842 m * sizeof (uint64_t), sizeof (uint64_t), &object, 843 DMU_READ_PREFETCH); 844 if (error) 845 return (error); 846 if (object != 0) { 847 dmu_buf_t *db; 848 error = dmu_bonus_hold(mos, object, FTAG, &db); 849 if (error) 850 return (error); 851 ASSERT3U(db->db_size, >=, sizeof (smo)); 852 bcopy(db->db_data, &smo, sizeof (smo)); 853 ASSERT3U(smo.smo_object, ==, object); 854 dmu_buf_rele(db, FTAG); 855 } 856 } 857 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 858 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 859 } 860 861 if (txg == 0) 862 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 863 864 if (oldc == 0) 865 metaslab_group_activate(vd->vdev_mg); 866 867 if (txg == 0) 868 spa_config_exit(spa, SCL_ALLOC, FTAG); 869 870 return (0); 871 } 872 873 void 874 vdev_metaslab_fini(vdev_t *vd) 875 { 876 uint64_t m; 877 uint64_t count = vd->vdev_ms_count; 878 879 if (vd->vdev_ms != NULL) { 880 metaslab_group_passivate(vd->vdev_mg); 881 for (m = 0; m < count; m++) 882 if (vd->vdev_ms[m] != NULL) 883 metaslab_fini(vd->vdev_ms[m]); 884 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 885 vd->vdev_ms = NULL; 886 } 887 } 888 889 typedef struct vdev_probe_stats { 890 boolean_t vps_readable; 891 boolean_t vps_writeable; 892 int vps_flags; 893 } vdev_probe_stats_t; 894 895 static void 896 vdev_probe_done(zio_t *zio) 897 { 898 spa_t *spa = zio->io_spa; 899 vdev_t *vd = zio->io_vd; 900 vdev_probe_stats_t *vps = zio->io_private; 901 902 ASSERT(vd->vdev_probe_zio != NULL); 903 904 if (zio->io_type == ZIO_TYPE_READ) { 905 if (zio->io_error == 0) 906 vps->vps_readable = 1; 907 if (zio->io_error == 0 && spa_writeable(spa)) { 908 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 909 zio->io_offset, zio->io_size, zio->io_data, 910 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 911 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 912 } else { 913 zio_buf_free(zio->io_data, zio->io_size); 914 } 915 } else if (zio->io_type == ZIO_TYPE_WRITE) { 916 if (zio->io_error == 0) 917 vps->vps_writeable = 1; 918 zio_buf_free(zio->io_data, zio->io_size); 919 } else if (zio->io_type == ZIO_TYPE_NULL) { 920 zio_t *pio; 921 922 vd->vdev_cant_read |= !vps->vps_readable; 923 vd->vdev_cant_write |= !vps->vps_writeable; 924 925 if (vdev_readable(vd) && 926 (vdev_writeable(vd) || !spa_writeable(spa))) { 927 zio->io_error = 0; 928 } else { 929 ASSERT(zio->io_error != 0); 930 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 931 spa, vd, NULL, 0, 0); 932 zio->io_error = ENXIO; 933 } 934 935 mutex_enter(&vd->vdev_probe_lock); 936 ASSERT(vd->vdev_probe_zio == zio); 937 vd->vdev_probe_zio = NULL; 938 mutex_exit(&vd->vdev_probe_lock); 939 940 while ((pio = zio_walk_parents(zio)) != NULL) 941 if (!vdev_accessible(vd, pio)) 942 pio->io_error = ENXIO; 943 944 kmem_free(vps, sizeof (*vps)); 945 } 946 } 947 948 /* 949 * Determine whether this device is accessible by reading and writing 950 * to several known locations: the pad regions of each vdev label 951 * but the first (which we leave alone in case it contains a VTOC). 952 */ 953 zio_t * 954 vdev_probe(vdev_t *vd, zio_t *zio) 955 { 956 spa_t *spa = vd->vdev_spa; 957 vdev_probe_stats_t *vps = NULL; 958 zio_t *pio; 959 960 ASSERT(vd->vdev_ops->vdev_op_leaf); 961 962 /* 963 * Don't probe the probe. 964 */ 965 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 966 return (NULL); 967 968 /* 969 * To prevent 'probe storms' when a device fails, we create 970 * just one probe i/o at a time. All zios that want to probe 971 * this vdev will become parents of the probe io. 972 */ 973 mutex_enter(&vd->vdev_probe_lock); 974 975 if ((pio = vd->vdev_probe_zio) == NULL) { 976 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 977 978 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 979 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 980 ZIO_FLAG_TRYHARD; 981 982 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 983 /* 984 * vdev_cant_read and vdev_cant_write can only 985 * transition from TRUE to FALSE when we have the 986 * SCL_ZIO lock as writer; otherwise they can only 987 * transition from FALSE to TRUE. This ensures that 988 * any zio looking at these values can assume that 989 * failures persist for the life of the I/O. That's 990 * important because when a device has intermittent 991 * connectivity problems, we want to ensure that 992 * they're ascribed to the device (ENXIO) and not 993 * the zio (EIO). 994 * 995 * Since we hold SCL_ZIO as writer here, clear both 996 * values so the probe can reevaluate from first 997 * principles. 998 */ 999 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1000 vd->vdev_cant_read = B_FALSE; 1001 vd->vdev_cant_write = B_FALSE; 1002 } 1003 1004 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1005 vdev_probe_done, vps, 1006 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1007 1008 if (zio != NULL) { 1009 vd->vdev_probe_wanted = B_TRUE; 1010 spa_async_request(spa, SPA_ASYNC_PROBE); 1011 } 1012 } 1013 1014 if (zio != NULL) 1015 zio_add_child(zio, pio); 1016 1017 mutex_exit(&vd->vdev_probe_lock); 1018 1019 if (vps == NULL) { 1020 ASSERT(zio != NULL); 1021 return (NULL); 1022 } 1023 1024 for (int l = 1; l < VDEV_LABELS; l++) { 1025 zio_nowait(zio_read_phys(pio, vd, 1026 vdev_label_offset(vd->vdev_psize, l, 1027 offsetof(vdev_label_t, vl_pad2)), 1028 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1029 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1030 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1031 } 1032 1033 if (zio == NULL) 1034 return (pio); 1035 1036 zio_nowait(pio); 1037 return (NULL); 1038 } 1039 1040 static void 1041 vdev_open_child(void *arg) 1042 { 1043 vdev_t *vd = arg; 1044 1045 vd->vdev_open_thread = curthread; 1046 vd->vdev_open_error = vdev_open(vd); 1047 vd->vdev_open_thread = NULL; 1048 } 1049 1050 boolean_t 1051 vdev_uses_zvols(vdev_t *vd) 1052 { 1053 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1054 strlen(ZVOL_DIR)) == 0) 1055 return (B_TRUE); 1056 for (int c = 0; c < vd->vdev_children; c++) 1057 if (vdev_uses_zvols(vd->vdev_child[c])) 1058 return (B_TRUE); 1059 return (B_FALSE); 1060 } 1061 1062 void 1063 vdev_open_children(vdev_t *vd) 1064 { 1065 taskq_t *tq; 1066 int children = vd->vdev_children; 1067 1068 /* 1069 * in order to handle pools on top of zvols, do the opens 1070 * in a single thread so that the same thread holds the 1071 * spa_namespace_lock 1072 */ 1073 if (vdev_uses_zvols(vd)) { 1074 for (int c = 0; c < children; c++) 1075 vd->vdev_child[c]->vdev_open_error = 1076 vdev_open(vd->vdev_child[c]); 1077 return; 1078 } 1079 tq = taskq_create("vdev_open", children, minclsyspri, 1080 children, children, TASKQ_PREPOPULATE); 1081 1082 for (int c = 0; c < children; c++) 1083 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1084 TQ_SLEEP) != NULL); 1085 1086 taskq_destroy(tq); 1087 } 1088 1089 /* 1090 * Prepare a virtual device for access. 1091 */ 1092 int 1093 vdev_open(vdev_t *vd) 1094 { 1095 spa_t *spa = vd->vdev_spa; 1096 int error; 1097 uint64_t osize = 0; 1098 uint64_t asize, psize; 1099 uint64_t ashift = 0; 1100 1101 ASSERT(vd->vdev_open_thread == curthread || 1102 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1103 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1104 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1105 vd->vdev_state == VDEV_STATE_OFFLINE); 1106 1107 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1108 vd->vdev_cant_read = B_FALSE; 1109 vd->vdev_cant_write = B_FALSE; 1110 vd->vdev_min_asize = vdev_get_min_asize(vd); 1111 1112 /* 1113 * If this vdev is not removed, check its fault status. If it's 1114 * faulted, bail out of the open. 1115 */ 1116 if (!vd->vdev_removed && vd->vdev_faulted) { 1117 ASSERT(vd->vdev_children == 0); 1118 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1119 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1120 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1121 vd->vdev_label_aux); 1122 return (ENXIO); 1123 } else if (vd->vdev_offline) { 1124 ASSERT(vd->vdev_children == 0); 1125 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1126 return (ENXIO); 1127 } 1128 1129 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1130 1131 /* 1132 * Reset the vdev_reopening flag so that we actually close 1133 * the vdev on error. 1134 */ 1135 vd->vdev_reopening = B_FALSE; 1136 if (zio_injection_enabled && error == 0) 1137 error = zio_handle_device_injection(vd, NULL, ENXIO); 1138 1139 if (error) { 1140 if (vd->vdev_removed && 1141 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1142 vd->vdev_removed = B_FALSE; 1143 1144 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1145 vd->vdev_stat.vs_aux); 1146 return (error); 1147 } 1148 1149 vd->vdev_removed = B_FALSE; 1150 1151 /* 1152 * Recheck the faulted flag now that we have confirmed that 1153 * the vdev is accessible. If we're faulted, bail. 1154 */ 1155 if (vd->vdev_faulted) { 1156 ASSERT(vd->vdev_children == 0); 1157 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1158 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1160 vd->vdev_label_aux); 1161 return (ENXIO); 1162 } 1163 1164 if (vd->vdev_degraded) { 1165 ASSERT(vd->vdev_children == 0); 1166 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1167 VDEV_AUX_ERR_EXCEEDED); 1168 } else { 1169 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1170 } 1171 1172 /* 1173 * For hole or missing vdevs we just return success. 1174 */ 1175 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1176 return (0); 1177 1178 for (int c = 0; c < vd->vdev_children; c++) { 1179 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1181 VDEV_AUX_NONE); 1182 break; 1183 } 1184 } 1185 1186 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1187 1188 if (vd->vdev_children == 0) { 1189 if (osize < SPA_MINDEVSIZE) { 1190 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1191 VDEV_AUX_TOO_SMALL); 1192 return (EOVERFLOW); 1193 } 1194 psize = osize; 1195 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1196 } else { 1197 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1198 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1199 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1200 VDEV_AUX_TOO_SMALL); 1201 return (EOVERFLOW); 1202 } 1203 psize = 0; 1204 asize = osize; 1205 } 1206 1207 vd->vdev_psize = psize; 1208 1209 /* 1210 * Make sure the allocatable size hasn't shrunk. 1211 */ 1212 if (asize < vd->vdev_min_asize) { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1214 VDEV_AUX_BAD_LABEL); 1215 return (EINVAL); 1216 } 1217 1218 if (vd->vdev_asize == 0) { 1219 /* 1220 * This is the first-ever open, so use the computed values. 1221 * For testing purposes, a higher ashift can be requested. 1222 */ 1223 vd->vdev_asize = asize; 1224 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1225 } else { 1226 /* 1227 * Make sure the alignment requirement hasn't increased. 1228 */ 1229 if (ashift > vd->vdev_top->vdev_ashift) { 1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1231 VDEV_AUX_BAD_LABEL); 1232 return (EINVAL); 1233 } 1234 } 1235 1236 /* 1237 * If all children are healthy and the asize has increased, 1238 * then we've experienced dynamic LUN growth. If automatic 1239 * expansion is enabled then use the additional space. 1240 */ 1241 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1242 (vd->vdev_expanding || spa->spa_autoexpand)) 1243 vd->vdev_asize = asize; 1244 1245 vdev_set_min_asize(vd); 1246 1247 /* 1248 * Ensure we can issue some IO before declaring the 1249 * vdev open for business. 1250 */ 1251 if (vd->vdev_ops->vdev_op_leaf && 1252 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1253 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1254 VDEV_AUX_IO_FAILURE); 1255 return (error); 1256 } 1257 1258 /* 1259 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1260 * resilver. But don't do this if we are doing a reopen for a scrub, 1261 * since this would just restart the scrub we are already doing. 1262 */ 1263 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1264 vdev_resilver_needed(vd, NULL, NULL)) 1265 spa_async_request(spa, SPA_ASYNC_RESILVER); 1266 1267 return (0); 1268 } 1269 1270 /* 1271 * Called once the vdevs are all opened, this routine validates the label 1272 * contents. This needs to be done before vdev_load() so that we don't 1273 * inadvertently do repair I/Os to the wrong device. 1274 * 1275 * This function will only return failure if one of the vdevs indicates that it 1276 * has since been destroyed or exported. This is only possible if 1277 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1278 * will be updated but the function will return 0. 1279 */ 1280 int 1281 vdev_validate(vdev_t *vd) 1282 { 1283 spa_t *spa = vd->vdev_spa; 1284 nvlist_t *label; 1285 uint64_t guid, top_guid; 1286 uint64_t state; 1287 1288 for (int c = 0; c < vd->vdev_children; c++) 1289 if (vdev_validate(vd->vdev_child[c]) != 0) 1290 return (EBADF); 1291 1292 /* 1293 * If the device has already failed, or was marked offline, don't do 1294 * any further validation. Otherwise, label I/O will fail and we will 1295 * overwrite the previous state. 1296 */ 1297 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1298 1299 if ((label = vdev_label_read_config(vd)) == NULL) { 1300 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1301 VDEV_AUX_BAD_LABEL); 1302 return (0); 1303 } 1304 1305 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1306 &guid) != 0 || guid != spa_guid(spa)) { 1307 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1308 VDEV_AUX_CORRUPT_DATA); 1309 nvlist_free(label); 1310 return (0); 1311 } 1312 1313 /* 1314 * If this vdev just became a top-level vdev because its 1315 * sibling was detached, it will have adopted the parent's 1316 * vdev guid -- but the label may or may not be on disk yet. 1317 * Fortunately, either version of the label will have the 1318 * same top guid, so if we're a top-level vdev, we can 1319 * safely compare to that instead. 1320 */ 1321 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1322 &guid) != 0 || 1323 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1324 &top_guid) != 0 || 1325 (vd->vdev_guid != guid && 1326 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1327 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1328 VDEV_AUX_CORRUPT_DATA); 1329 nvlist_free(label); 1330 return (0); 1331 } 1332 1333 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1334 &state) != 0) { 1335 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1336 VDEV_AUX_CORRUPT_DATA); 1337 nvlist_free(label); 1338 return (0); 1339 } 1340 1341 nvlist_free(label); 1342 1343 /* 1344 * If spa->spa_load_verbatim is true, no need to check the 1345 * state of the pool. 1346 */ 1347 if (!spa->spa_load_verbatim && 1348 spa->spa_load_state == SPA_LOAD_OPEN && 1349 state != POOL_STATE_ACTIVE) 1350 return (EBADF); 1351 1352 /* 1353 * If we were able to open and validate a vdev that was 1354 * previously marked permanently unavailable, clear that state 1355 * now. 1356 */ 1357 if (vd->vdev_not_present) 1358 vd->vdev_not_present = 0; 1359 } 1360 1361 return (0); 1362 } 1363 1364 /* 1365 * Close a virtual device. 1366 */ 1367 void 1368 vdev_close(vdev_t *vd) 1369 { 1370 spa_t *spa = vd->vdev_spa; 1371 vdev_t *pvd = vd->vdev_parent; 1372 1373 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1374 1375 if (pvd != NULL && pvd->vdev_reopening) 1376 vd->vdev_reopening = pvd->vdev_reopening; 1377 1378 vd->vdev_ops->vdev_op_close(vd); 1379 1380 vdev_cache_purge(vd); 1381 1382 /* 1383 * We record the previous state before we close it, so that if we are 1384 * doing a reopen(), we don't generate FMA ereports if we notice that 1385 * it's still faulted. 1386 */ 1387 vd->vdev_prevstate = vd->vdev_state; 1388 1389 if (vd->vdev_offline) 1390 vd->vdev_state = VDEV_STATE_OFFLINE; 1391 else 1392 vd->vdev_state = VDEV_STATE_CLOSED; 1393 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1394 } 1395 1396 /* 1397 * Reopen all interior vdevs and any unopened leaves. We don't actually 1398 * reopen leaf vdevs which had previously been opened as they might deadlock 1399 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1400 * If the leaf has never been opened then open it, as usual. 1401 */ 1402 void 1403 vdev_reopen(vdev_t *vd) 1404 { 1405 spa_t *spa = vd->vdev_spa; 1406 1407 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1408 1409 vd->vdev_reopening = B_TRUE; 1410 vdev_close(vd); 1411 (void) vdev_open(vd); 1412 1413 /* 1414 * Call vdev_validate() here to make sure we have the same device. 1415 * Otherwise, a device with an invalid label could be successfully 1416 * opened in response to vdev_reopen(). 1417 */ 1418 if (vd->vdev_aux) { 1419 (void) vdev_validate_aux(vd); 1420 if (vdev_readable(vd) && vdev_writeable(vd) && 1421 vd->vdev_aux == &spa->spa_l2cache && 1422 !l2arc_vdev_present(vd)) 1423 l2arc_add_vdev(spa, vd); 1424 } else { 1425 (void) vdev_validate(vd); 1426 } 1427 1428 /* 1429 * Reassess parent vdev's health. 1430 */ 1431 vdev_propagate_state(vd); 1432 } 1433 1434 int 1435 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1436 { 1437 int error; 1438 1439 /* 1440 * Normally, partial opens (e.g. of a mirror) are allowed. 1441 * For a create, however, we want to fail the request if 1442 * there are any components we can't open. 1443 */ 1444 error = vdev_open(vd); 1445 1446 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1447 vdev_close(vd); 1448 return (error ? error : ENXIO); 1449 } 1450 1451 /* 1452 * Recursively initialize all labels. 1453 */ 1454 if ((error = vdev_label_init(vd, txg, isreplacing ? 1455 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1456 vdev_close(vd); 1457 return (error); 1458 } 1459 1460 return (0); 1461 } 1462 1463 void 1464 vdev_metaslab_set_size(vdev_t *vd) 1465 { 1466 /* 1467 * Aim for roughly 200 metaslabs per vdev. 1468 */ 1469 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1470 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1471 } 1472 1473 void 1474 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1475 { 1476 ASSERT(vd == vd->vdev_top); 1477 ASSERT(!vd->vdev_ishole); 1478 ASSERT(ISP2(flags)); 1479 1480 if (flags & VDD_METASLAB) 1481 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1482 1483 if (flags & VDD_DTL) 1484 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1485 1486 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1487 } 1488 1489 /* 1490 * DTLs. 1491 * 1492 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1493 * the vdev has less than perfect replication. There are three kinds of DTL: 1494 * 1495 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1496 * 1497 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1498 * 1499 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1500 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1501 * txgs that was scrubbed. 1502 * 1503 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1504 * persistent errors or just some device being offline. 1505 * Unlike the other three, the DTL_OUTAGE map is not generally 1506 * maintained; it's only computed when needed, typically to 1507 * determine whether a device can be detached. 1508 * 1509 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1510 * either has the data or it doesn't. 1511 * 1512 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1513 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1514 * if any child is less than fully replicated, then so is its parent. 1515 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1516 * comprising only those txgs which appear in 'maxfaults' or more children; 1517 * those are the txgs we don't have enough replication to read. For example, 1518 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1519 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1520 * two child DTL_MISSING maps. 1521 * 1522 * It should be clear from the above that to compute the DTLs and outage maps 1523 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1524 * Therefore, that is all we keep on disk. When loading the pool, or after 1525 * a configuration change, we generate all other DTLs from first principles. 1526 */ 1527 void 1528 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1529 { 1530 space_map_t *sm = &vd->vdev_dtl[t]; 1531 1532 ASSERT(t < DTL_TYPES); 1533 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1534 1535 mutex_enter(sm->sm_lock); 1536 if (!space_map_contains(sm, txg, size)) 1537 space_map_add(sm, txg, size); 1538 mutex_exit(sm->sm_lock); 1539 } 1540 1541 boolean_t 1542 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1543 { 1544 space_map_t *sm = &vd->vdev_dtl[t]; 1545 boolean_t dirty = B_FALSE; 1546 1547 ASSERT(t < DTL_TYPES); 1548 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1549 1550 mutex_enter(sm->sm_lock); 1551 if (sm->sm_space != 0) 1552 dirty = space_map_contains(sm, txg, size); 1553 mutex_exit(sm->sm_lock); 1554 1555 return (dirty); 1556 } 1557 1558 boolean_t 1559 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1560 { 1561 space_map_t *sm = &vd->vdev_dtl[t]; 1562 boolean_t empty; 1563 1564 mutex_enter(sm->sm_lock); 1565 empty = (sm->sm_space == 0); 1566 mutex_exit(sm->sm_lock); 1567 1568 return (empty); 1569 } 1570 1571 /* 1572 * Reassess DTLs after a config change or scrub completion. 1573 */ 1574 void 1575 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1576 { 1577 spa_t *spa = vd->vdev_spa; 1578 avl_tree_t reftree; 1579 int minref; 1580 1581 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1582 1583 for (int c = 0; c < vd->vdev_children; c++) 1584 vdev_dtl_reassess(vd->vdev_child[c], txg, 1585 scrub_txg, scrub_done); 1586 1587 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1588 return; 1589 1590 if (vd->vdev_ops->vdev_op_leaf) { 1591 mutex_enter(&vd->vdev_dtl_lock); 1592 if (scrub_txg != 0 && 1593 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1594 /* XXX should check scrub_done? */ 1595 /* 1596 * We completed a scrub up to scrub_txg. If we 1597 * did it without rebooting, then the scrub dtl 1598 * will be valid, so excise the old region and 1599 * fold in the scrub dtl. Otherwise, leave the 1600 * dtl as-is if there was an error. 1601 * 1602 * There's little trick here: to excise the beginning 1603 * of the DTL_MISSING map, we put it into a reference 1604 * tree and then add a segment with refcnt -1 that 1605 * covers the range [0, scrub_txg). This means 1606 * that each txg in that range has refcnt -1 or 0. 1607 * We then add DTL_SCRUB with a refcnt of 2, so that 1608 * entries in the range [0, scrub_txg) will have a 1609 * positive refcnt -- either 1 or 2. We then convert 1610 * the reference tree into the new DTL_MISSING map. 1611 */ 1612 space_map_ref_create(&reftree); 1613 space_map_ref_add_map(&reftree, 1614 &vd->vdev_dtl[DTL_MISSING], 1); 1615 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1616 space_map_ref_add_map(&reftree, 1617 &vd->vdev_dtl[DTL_SCRUB], 2); 1618 space_map_ref_generate_map(&reftree, 1619 &vd->vdev_dtl[DTL_MISSING], 1); 1620 space_map_ref_destroy(&reftree); 1621 } 1622 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1623 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1624 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1625 if (scrub_done) 1626 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1627 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1628 if (!vdev_readable(vd)) 1629 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1630 else 1631 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1632 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1633 mutex_exit(&vd->vdev_dtl_lock); 1634 1635 if (txg != 0) 1636 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1637 return; 1638 } 1639 1640 mutex_enter(&vd->vdev_dtl_lock); 1641 for (int t = 0; t < DTL_TYPES; t++) { 1642 /* account for child's outage in parent's missing map */ 1643 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1644 if (t == DTL_SCRUB) 1645 continue; /* leaf vdevs only */ 1646 if (t == DTL_PARTIAL) 1647 minref = 1; /* i.e. non-zero */ 1648 else if (vd->vdev_nparity != 0) 1649 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1650 else 1651 minref = vd->vdev_children; /* any kind of mirror */ 1652 space_map_ref_create(&reftree); 1653 for (int c = 0; c < vd->vdev_children; c++) { 1654 vdev_t *cvd = vd->vdev_child[c]; 1655 mutex_enter(&cvd->vdev_dtl_lock); 1656 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1657 mutex_exit(&cvd->vdev_dtl_lock); 1658 } 1659 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1660 space_map_ref_destroy(&reftree); 1661 } 1662 mutex_exit(&vd->vdev_dtl_lock); 1663 } 1664 1665 static int 1666 vdev_dtl_load(vdev_t *vd) 1667 { 1668 spa_t *spa = vd->vdev_spa; 1669 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1670 objset_t *mos = spa->spa_meta_objset; 1671 dmu_buf_t *db; 1672 int error; 1673 1674 ASSERT(vd->vdev_children == 0); 1675 1676 if (smo->smo_object == 0) 1677 return (0); 1678 1679 ASSERT(!vd->vdev_ishole); 1680 1681 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1682 return (error); 1683 1684 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1685 bcopy(db->db_data, smo, sizeof (*smo)); 1686 dmu_buf_rele(db, FTAG); 1687 1688 mutex_enter(&vd->vdev_dtl_lock); 1689 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1690 NULL, SM_ALLOC, smo, mos); 1691 mutex_exit(&vd->vdev_dtl_lock); 1692 1693 return (error); 1694 } 1695 1696 void 1697 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1698 { 1699 spa_t *spa = vd->vdev_spa; 1700 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1701 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1702 objset_t *mos = spa->spa_meta_objset; 1703 space_map_t smsync; 1704 kmutex_t smlock; 1705 dmu_buf_t *db; 1706 dmu_tx_t *tx; 1707 1708 ASSERT(!vd->vdev_ishole); 1709 1710 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1711 1712 if (vd->vdev_detached) { 1713 if (smo->smo_object != 0) { 1714 int err = dmu_object_free(mos, smo->smo_object, tx); 1715 ASSERT3U(err, ==, 0); 1716 smo->smo_object = 0; 1717 } 1718 dmu_tx_commit(tx); 1719 return; 1720 } 1721 1722 if (smo->smo_object == 0) { 1723 ASSERT(smo->smo_objsize == 0); 1724 ASSERT(smo->smo_alloc == 0); 1725 smo->smo_object = dmu_object_alloc(mos, 1726 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1727 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1728 ASSERT(smo->smo_object != 0); 1729 vdev_config_dirty(vd->vdev_top); 1730 } 1731 1732 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1733 1734 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1735 &smlock); 1736 1737 mutex_enter(&smlock); 1738 1739 mutex_enter(&vd->vdev_dtl_lock); 1740 space_map_walk(sm, space_map_add, &smsync); 1741 mutex_exit(&vd->vdev_dtl_lock); 1742 1743 space_map_truncate(smo, mos, tx); 1744 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1745 1746 space_map_destroy(&smsync); 1747 1748 mutex_exit(&smlock); 1749 mutex_destroy(&smlock); 1750 1751 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1752 dmu_buf_will_dirty(db, tx); 1753 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1754 bcopy(smo, db->db_data, sizeof (*smo)); 1755 dmu_buf_rele(db, FTAG); 1756 1757 dmu_tx_commit(tx); 1758 } 1759 1760 /* 1761 * Determine whether the specified vdev can be offlined/detached/removed 1762 * without losing data. 1763 */ 1764 boolean_t 1765 vdev_dtl_required(vdev_t *vd) 1766 { 1767 spa_t *spa = vd->vdev_spa; 1768 vdev_t *tvd = vd->vdev_top; 1769 uint8_t cant_read = vd->vdev_cant_read; 1770 boolean_t required; 1771 1772 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1773 1774 if (vd == spa->spa_root_vdev || vd == tvd) 1775 return (B_TRUE); 1776 1777 /* 1778 * Temporarily mark the device as unreadable, and then determine 1779 * whether this results in any DTL outages in the top-level vdev. 1780 * If not, we can safely offline/detach/remove the device. 1781 */ 1782 vd->vdev_cant_read = B_TRUE; 1783 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1784 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1785 vd->vdev_cant_read = cant_read; 1786 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1787 1788 return (required); 1789 } 1790 1791 /* 1792 * Determine if resilver is needed, and if so the txg range. 1793 */ 1794 boolean_t 1795 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1796 { 1797 boolean_t needed = B_FALSE; 1798 uint64_t thismin = UINT64_MAX; 1799 uint64_t thismax = 0; 1800 1801 if (vd->vdev_children == 0) { 1802 mutex_enter(&vd->vdev_dtl_lock); 1803 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1804 vdev_writeable(vd)) { 1805 space_seg_t *ss; 1806 1807 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1808 thismin = ss->ss_start - 1; 1809 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1810 thismax = ss->ss_end; 1811 needed = B_TRUE; 1812 } 1813 mutex_exit(&vd->vdev_dtl_lock); 1814 } else { 1815 for (int c = 0; c < vd->vdev_children; c++) { 1816 vdev_t *cvd = vd->vdev_child[c]; 1817 uint64_t cmin, cmax; 1818 1819 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1820 thismin = MIN(thismin, cmin); 1821 thismax = MAX(thismax, cmax); 1822 needed = B_TRUE; 1823 } 1824 } 1825 } 1826 1827 if (needed && minp) { 1828 *minp = thismin; 1829 *maxp = thismax; 1830 } 1831 return (needed); 1832 } 1833 1834 void 1835 vdev_load(vdev_t *vd) 1836 { 1837 /* 1838 * Recursively load all children. 1839 */ 1840 for (int c = 0; c < vd->vdev_children; c++) 1841 vdev_load(vd->vdev_child[c]); 1842 1843 /* 1844 * If this is a top-level vdev, initialize its metaslabs. 1845 */ 1846 if (vd == vd->vdev_top && !vd->vdev_ishole && 1847 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1848 vdev_metaslab_init(vd, 0) != 0)) 1849 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1850 VDEV_AUX_CORRUPT_DATA); 1851 1852 /* 1853 * If this is a leaf vdev, load its DTL. 1854 */ 1855 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1856 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1857 VDEV_AUX_CORRUPT_DATA); 1858 } 1859 1860 /* 1861 * The special vdev case is used for hot spares and l2cache devices. Its 1862 * sole purpose it to set the vdev state for the associated vdev. To do this, 1863 * we make sure that we can open the underlying device, then try to read the 1864 * label, and make sure that the label is sane and that it hasn't been 1865 * repurposed to another pool. 1866 */ 1867 int 1868 vdev_validate_aux(vdev_t *vd) 1869 { 1870 nvlist_t *label; 1871 uint64_t guid, version; 1872 uint64_t state; 1873 1874 if (!vdev_readable(vd)) 1875 return (0); 1876 1877 if ((label = vdev_label_read_config(vd)) == NULL) { 1878 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1879 VDEV_AUX_CORRUPT_DATA); 1880 return (-1); 1881 } 1882 1883 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1884 version > SPA_VERSION || 1885 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1886 guid != vd->vdev_guid || 1887 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1888 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1889 VDEV_AUX_CORRUPT_DATA); 1890 nvlist_free(label); 1891 return (-1); 1892 } 1893 1894 /* 1895 * We don't actually check the pool state here. If it's in fact in 1896 * use by another pool, we update this fact on the fly when requested. 1897 */ 1898 nvlist_free(label); 1899 return (0); 1900 } 1901 1902 void 1903 vdev_remove(vdev_t *vd, uint64_t txg) 1904 { 1905 spa_t *spa = vd->vdev_spa; 1906 objset_t *mos = spa->spa_meta_objset; 1907 dmu_tx_t *tx; 1908 1909 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1910 1911 if (vd->vdev_dtl_smo.smo_object) { 1912 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1913 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1914 vd->vdev_dtl_smo.smo_object = 0; 1915 } 1916 1917 if (vd->vdev_ms != NULL) { 1918 for (int m = 0; m < vd->vdev_ms_count; m++) { 1919 metaslab_t *msp = vd->vdev_ms[m]; 1920 1921 if (msp == NULL || msp->ms_smo.smo_object == 0) 1922 continue; 1923 1924 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1925 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1926 msp->ms_smo.smo_object = 0; 1927 } 1928 } 1929 1930 if (vd->vdev_ms_array) { 1931 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1932 vd->vdev_ms_array = 0; 1933 vd->vdev_ms_shift = 0; 1934 } 1935 dmu_tx_commit(tx); 1936 } 1937 1938 void 1939 vdev_sync_done(vdev_t *vd, uint64_t txg) 1940 { 1941 metaslab_t *msp; 1942 1943 ASSERT(!vd->vdev_ishole); 1944 1945 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1946 metaslab_sync_done(msp, txg); 1947 } 1948 1949 void 1950 vdev_sync(vdev_t *vd, uint64_t txg) 1951 { 1952 spa_t *spa = vd->vdev_spa; 1953 vdev_t *lvd; 1954 metaslab_t *msp; 1955 dmu_tx_t *tx; 1956 1957 ASSERT(!vd->vdev_ishole); 1958 1959 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1960 ASSERT(vd == vd->vdev_top); 1961 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1962 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1963 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1964 ASSERT(vd->vdev_ms_array != 0); 1965 vdev_config_dirty(vd); 1966 dmu_tx_commit(tx); 1967 } 1968 1969 if (vd->vdev_removing) 1970 vdev_remove(vd, txg); 1971 1972 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1973 metaslab_sync(msp, txg); 1974 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1975 } 1976 1977 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1978 vdev_dtl_sync(lvd, txg); 1979 1980 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1981 } 1982 1983 uint64_t 1984 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1985 { 1986 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1987 } 1988 1989 /* 1990 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1991 * not be opened, and no I/O is attempted. 1992 */ 1993 int 1994 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 1995 { 1996 vdev_t *vd; 1997 1998 spa_vdev_state_enter(spa, SCL_NONE); 1999 2000 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2001 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2002 2003 if (!vd->vdev_ops->vdev_op_leaf) 2004 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2005 2006 /* 2007 * We don't directly use the aux state here, but if we do a 2008 * vdev_reopen(), we need this value to be present to remember why we 2009 * were faulted. 2010 */ 2011 vd->vdev_label_aux = aux; 2012 2013 /* 2014 * Faulted state takes precedence over degraded. 2015 */ 2016 vd->vdev_faulted = 1ULL; 2017 vd->vdev_degraded = 0ULL; 2018 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2019 2020 /* 2021 * If marking the vdev as faulted cause the top-level vdev to become 2022 * unavailable, then back off and simply mark the vdev as degraded 2023 * instead. 2024 */ 2025 if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog && 2026 vd->vdev_aux == NULL) { 2027 vd->vdev_degraded = 1ULL; 2028 vd->vdev_faulted = 0ULL; 2029 2030 /* 2031 * If we reopen the device and it's not dead, only then do we 2032 * mark it degraded. 2033 */ 2034 vdev_reopen(vd); 2035 2036 if (vdev_readable(vd)) 2037 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2038 } 2039 2040 return (spa_vdev_state_exit(spa, vd, 0)); 2041 } 2042 2043 /* 2044 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2045 * user that something is wrong. The vdev continues to operate as normal as far 2046 * as I/O is concerned. 2047 */ 2048 int 2049 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2050 { 2051 vdev_t *vd; 2052 2053 spa_vdev_state_enter(spa, SCL_NONE); 2054 2055 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2056 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2057 2058 if (!vd->vdev_ops->vdev_op_leaf) 2059 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2060 2061 /* 2062 * If the vdev is already faulted, then don't do anything. 2063 */ 2064 if (vd->vdev_faulted || vd->vdev_degraded) 2065 return (spa_vdev_state_exit(spa, NULL, 0)); 2066 2067 vd->vdev_degraded = 1ULL; 2068 if (!vdev_is_dead(vd)) 2069 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2070 aux); 2071 2072 return (spa_vdev_state_exit(spa, vd, 0)); 2073 } 2074 2075 /* 2076 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2077 * any attached spare device should be detached when the device finishes 2078 * resilvering. Second, the online should be treated like a 'test' online case, 2079 * so no FMA events are generated if the device fails to open. 2080 */ 2081 int 2082 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2083 { 2084 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2085 2086 spa_vdev_state_enter(spa, SCL_NONE); 2087 2088 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2089 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2090 2091 if (!vd->vdev_ops->vdev_op_leaf) 2092 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2093 2094 tvd = vd->vdev_top; 2095 vd->vdev_offline = B_FALSE; 2096 vd->vdev_tmpoffline = B_FALSE; 2097 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2098 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2099 2100 /* XXX - L2ARC 1.0 does not support expansion */ 2101 if (!vd->vdev_aux) { 2102 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2103 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2104 } 2105 2106 vdev_reopen(tvd); 2107 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2108 2109 if (!vd->vdev_aux) { 2110 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2111 pvd->vdev_expanding = B_FALSE; 2112 } 2113 2114 if (newstate) 2115 *newstate = vd->vdev_state; 2116 if ((flags & ZFS_ONLINE_UNSPARE) && 2117 !vdev_is_dead(vd) && vd->vdev_parent && 2118 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2119 vd->vdev_parent->vdev_child[0] == vd) 2120 vd->vdev_unspare = B_TRUE; 2121 2122 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2123 2124 /* XXX - L2ARC 1.0 does not support expansion */ 2125 if (vd->vdev_aux) 2126 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2127 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2128 } 2129 return (spa_vdev_state_exit(spa, vd, 0)); 2130 } 2131 2132 int 2133 vdev_offline_log(spa_t *spa) 2134 { 2135 int error = 0; 2136 2137 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2138 NULL, DS_FIND_CHILDREN)) == 0) { 2139 2140 /* 2141 * We successfully offlined the log device, sync out the 2142 * current txg so that the "stubby" block can be removed 2143 * by zil_sync(). 2144 */ 2145 txg_wait_synced(spa->spa_dsl_pool, 0); 2146 } 2147 return (error); 2148 } 2149 2150 static int 2151 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2152 { 2153 vdev_t *vd, *tvd; 2154 int error = 0; 2155 uint64_t generation; 2156 metaslab_group_t *mg; 2157 2158 top: 2159 spa_vdev_state_enter(spa, SCL_ALLOC); 2160 2161 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2162 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2163 2164 if (!vd->vdev_ops->vdev_op_leaf) 2165 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2166 2167 tvd = vd->vdev_top; 2168 mg = tvd->vdev_mg; 2169 generation = spa->spa_config_generation + 1; 2170 2171 /* 2172 * If the device isn't already offline, try to offline it. 2173 */ 2174 if (!vd->vdev_offline) { 2175 /* 2176 * If this device has the only valid copy of some data, 2177 * don't allow it to be offlined. Log devices are always 2178 * expendable. 2179 */ 2180 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2181 vdev_dtl_required(vd)) 2182 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2183 2184 /* 2185 * If the top-level is a slog and it has had allocations 2186 * then proceed. We check that the vdev's metaslab group 2187 * is not NULL since it's possible that we may have just 2188 * added this vdev but not yet initialized its metaslabs. 2189 */ 2190 if (tvd->vdev_islog && mg != NULL) { 2191 /* 2192 * Prevent any future allocations. 2193 */ 2194 metaslab_group_passivate(mg); 2195 (void) spa_vdev_state_exit(spa, vd, 0); 2196 2197 error = vdev_offline_log(spa); 2198 2199 spa_vdev_state_enter(spa, SCL_ALLOC); 2200 2201 /* 2202 * Check to see if the config has changed. 2203 */ 2204 if (error || generation != spa->spa_config_generation) { 2205 metaslab_group_activate(mg); 2206 if (error) 2207 return (spa_vdev_state_exit(spa, 2208 vd, error)); 2209 (void) spa_vdev_state_exit(spa, vd, 0); 2210 goto top; 2211 } 2212 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2213 } 2214 2215 /* 2216 * Offline this device and reopen its top-level vdev. 2217 * If the top-level vdev is a log device then just offline 2218 * it. Otherwise, if this action results in the top-level 2219 * vdev becoming unusable, undo it and fail the request. 2220 */ 2221 vd->vdev_offline = B_TRUE; 2222 vdev_reopen(tvd); 2223 2224 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2225 vdev_is_dead(tvd)) { 2226 vd->vdev_offline = B_FALSE; 2227 vdev_reopen(tvd); 2228 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2229 } 2230 2231 /* 2232 * Add the device back into the metaslab rotor so that 2233 * once we online the device it's open for business. 2234 */ 2235 if (tvd->vdev_islog && mg != NULL) 2236 metaslab_group_activate(mg); 2237 } 2238 2239 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2240 2241 return (spa_vdev_state_exit(spa, vd, 0)); 2242 } 2243 2244 int 2245 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2246 { 2247 int error; 2248 2249 mutex_enter(&spa->spa_vdev_top_lock); 2250 error = vdev_offline_locked(spa, guid, flags); 2251 mutex_exit(&spa->spa_vdev_top_lock); 2252 2253 return (error); 2254 } 2255 2256 /* 2257 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2258 * vdev_offline(), we assume the spa config is locked. We also clear all 2259 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2260 */ 2261 void 2262 vdev_clear(spa_t *spa, vdev_t *vd) 2263 { 2264 vdev_t *rvd = spa->spa_root_vdev; 2265 2266 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2267 2268 if (vd == NULL) 2269 vd = rvd; 2270 2271 vd->vdev_stat.vs_read_errors = 0; 2272 vd->vdev_stat.vs_write_errors = 0; 2273 vd->vdev_stat.vs_checksum_errors = 0; 2274 2275 for (int c = 0; c < vd->vdev_children; c++) 2276 vdev_clear(spa, vd->vdev_child[c]); 2277 2278 /* 2279 * If we're in the FAULTED state or have experienced failed I/O, then 2280 * clear the persistent state and attempt to reopen the device. We 2281 * also mark the vdev config dirty, so that the new faulted state is 2282 * written out to disk. 2283 */ 2284 if (vd->vdev_faulted || vd->vdev_degraded || 2285 !vdev_readable(vd) || !vdev_writeable(vd)) { 2286 2287 /* 2288 * When reopening in reponse to a clear event, it may be due to 2289 * a fmadm repair request. In this case, if the device is 2290 * still broken, we want to still post the ereport again. 2291 */ 2292 vd->vdev_forcefault = B_TRUE; 2293 2294 vd->vdev_faulted = vd->vdev_degraded = 0; 2295 vd->vdev_cant_read = B_FALSE; 2296 vd->vdev_cant_write = B_FALSE; 2297 2298 vdev_reopen(vd); 2299 2300 vd->vdev_forcefault = B_FALSE; 2301 2302 if (vd != rvd) 2303 vdev_state_dirty(vd->vdev_top); 2304 2305 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2306 spa_async_request(spa, SPA_ASYNC_RESILVER); 2307 2308 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2309 } 2310 2311 /* 2312 * When clearing a FMA-diagnosed fault, we always want to 2313 * unspare the device, as we assume that the original spare was 2314 * done in response to the FMA fault. 2315 */ 2316 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2317 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2318 vd->vdev_parent->vdev_child[0] == vd) 2319 vd->vdev_unspare = B_TRUE; 2320 } 2321 2322 boolean_t 2323 vdev_is_dead(vdev_t *vd) 2324 { 2325 /* 2326 * Holes and missing devices are always considered "dead". 2327 * This simplifies the code since we don't have to check for 2328 * these types of devices in the various code paths. 2329 * Instead we rely on the fact that we skip over dead devices 2330 * before issuing I/O to them. 2331 */ 2332 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2333 vd->vdev_ops == &vdev_missing_ops); 2334 } 2335 2336 boolean_t 2337 vdev_readable(vdev_t *vd) 2338 { 2339 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2340 } 2341 2342 boolean_t 2343 vdev_writeable(vdev_t *vd) 2344 { 2345 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2346 } 2347 2348 boolean_t 2349 vdev_allocatable(vdev_t *vd) 2350 { 2351 uint64_t state = vd->vdev_state; 2352 2353 /* 2354 * We currently allow allocations from vdevs which may be in the 2355 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2356 * fails to reopen then we'll catch it later when we're holding 2357 * the proper locks. Note that we have to get the vdev state 2358 * in a local variable because although it changes atomically, 2359 * we're asking two separate questions about it. 2360 */ 2361 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2362 !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing); 2363 } 2364 2365 boolean_t 2366 vdev_accessible(vdev_t *vd, zio_t *zio) 2367 { 2368 ASSERT(zio->io_vd == vd); 2369 2370 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2371 return (B_FALSE); 2372 2373 if (zio->io_type == ZIO_TYPE_READ) 2374 return (!vd->vdev_cant_read); 2375 2376 if (zio->io_type == ZIO_TYPE_WRITE) 2377 return (!vd->vdev_cant_write); 2378 2379 return (B_TRUE); 2380 } 2381 2382 /* 2383 * Get statistics for the given vdev. 2384 */ 2385 void 2386 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2387 { 2388 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2389 2390 mutex_enter(&vd->vdev_stat_lock); 2391 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2392 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2393 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2394 vs->vs_state = vd->vdev_state; 2395 vs->vs_rsize = vdev_get_min_asize(vd); 2396 if (vd->vdev_ops->vdev_op_leaf) 2397 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2398 mutex_exit(&vd->vdev_stat_lock); 2399 2400 /* 2401 * If we're getting stats on the root vdev, aggregate the I/O counts 2402 * over all top-level vdevs (i.e. the direct children of the root). 2403 */ 2404 if (vd == rvd) { 2405 for (int c = 0; c < rvd->vdev_children; c++) { 2406 vdev_t *cvd = rvd->vdev_child[c]; 2407 vdev_stat_t *cvs = &cvd->vdev_stat; 2408 2409 mutex_enter(&vd->vdev_stat_lock); 2410 for (int t = 0; t < ZIO_TYPES; t++) { 2411 vs->vs_ops[t] += cvs->vs_ops[t]; 2412 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2413 } 2414 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2415 mutex_exit(&vd->vdev_stat_lock); 2416 } 2417 } 2418 } 2419 2420 void 2421 vdev_clear_stats(vdev_t *vd) 2422 { 2423 mutex_enter(&vd->vdev_stat_lock); 2424 vd->vdev_stat.vs_space = 0; 2425 vd->vdev_stat.vs_dspace = 0; 2426 vd->vdev_stat.vs_alloc = 0; 2427 mutex_exit(&vd->vdev_stat_lock); 2428 } 2429 2430 void 2431 vdev_stat_update(zio_t *zio, uint64_t psize) 2432 { 2433 spa_t *spa = zio->io_spa; 2434 vdev_t *rvd = spa->spa_root_vdev; 2435 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2436 vdev_t *pvd; 2437 uint64_t txg = zio->io_txg; 2438 vdev_stat_t *vs = &vd->vdev_stat; 2439 zio_type_t type = zio->io_type; 2440 int flags = zio->io_flags; 2441 2442 /* 2443 * If this i/o is a gang leader, it didn't do any actual work. 2444 */ 2445 if (zio->io_gang_tree) 2446 return; 2447 2448 if (zio->io_error == 0) { 2449 /* 2450 * If this is a root i/o, don't count it -- we've already 2451 * counted the top-level vdevs, and vdev_get_stats() will 2452 * aggregate them when asked. This reduces contention on 2453 * the root vdev_stat_lock and implicitly handles blocks 2454 * that compress away to holes, for which there is no i/o. 2455 * (Holes never create vdev children, so all the counters 2456 * remain zero, which is what we want.) 2457 * 2458 * Note: this only applies to successful i/o (io_error == 0) 2459 * because unlike i/o counts, errors are not additive. 2460 * When reading a ditto block, for example, failure of 2461 * one top-level vdev does not imply a root-level error. 2462 */ 2463 if (vd == rvd) 2464 return; 2465 2466 ASSERT(vd == zio->io_vd); 2467 2468 if (flags & ZIO_FLAG_IO_BYPASS) 2469 return; 2470 2471 mutex_enter(&vd->vdev_stat_lock); 2472 2473 if (flags & ZIO_FLAG_IO_REPAIR) { 2474 if (flags & ZIO_FLAG_SCRUB_THREAD) 2475 vs->vs_scrub_repaired += psize; 2476 if (flags & ZIO_FLAG_SELF_HEAL) 2477 vs->vs_self_healed += psize; 2478 } 2479 2480 vs->vs_ops[type]++; 2481 vs->vs_bytes[type] += psize; 2482 2483 mutex_exit(&vd->vdev_stat_lock); 2484 return; 2485 } 2486 2487 if (flags & ZIO_FLAG_SPECULATIVE) 2488 return; 2489 2490 /* 2491 * If this is an I/O error that is going to be retried, then ignore the 2492 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2493 * hard errors, when in reality they can happen for any number of 2494 * innocuous reasons (bus resets, MPxIO link failure, etc). 2495 */ 2496 if (zio->io_error == EIO && 2497 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2498 return; 2499 2500 /* 2501 * Intent logs writes won't propagate their error to the root 2502 * I/O so don't mark these types of failures as pool-level 2503 * errors. 2504 */ 2505 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2506 return; 2507 2508 mutex_enter(&vd->vdev_stat_lock); 2509 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2510 if (zio->io_error == ECKSUM) 2511 vs->vs_checksum_errors++; 2512 else 2513 vs->vs_read_errors++; 2514 } 2515 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2516 vs->vs_write_errors++; 2517 mutex_exit(&vd->vdev_stat_lock); 2518 2519 if (type == ZIO_TYPE_WRITE && txg != 0 && 2520 (!(flags & ZIO_FLAG_IO_REPAIR) || 2521 (flags & ZIO_FLAG_SCRUB_THREAD) || 2522 spa->spa_claiming)) { 2523 /* 2524 * This is either a normal write (not a repair), or it's 2525 * a repair induced by the scrub thread, or it's a repair 2526 * made by zil_claim() during spa_load() in the first txg. 2527 * In the normal case, we commit the DTL change in the same 2528 * txg as the block was born. In the scrub-induced repair 2529 * case, we know that scrubs run in first-pass syncing context, 2530 * so we commit the DTL change in spa_syncing_txg(spa). 2531 * In the zil_claim() case, we commit in spa_first_txg(spa). 2532 * 2533 * We currently do not make DTL entries for failed spontaneous 2534 * self-healing writes triggered by normal (non-scrubbing) 2535 * reads, because we have no transactional context in which to 2536 * do so -- and it's not clear that it'd be desirable anyway. 2537 */ 2538 if (vd->vdev_ops->vdev_op_leaf) { 2539 uint64_t commit_txg = txg; 2540 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2541 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2542 ASSERT(spa_sync_pass(spa) == 1); 2543 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2544 commit_txg = spa_syncing_txg(spa); 2545 } else if (spa->spa_claiming) { 2546 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2547 commit_txg = spa_first_txg(spa); 2548 } 2549 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2550 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2551 return; 2552 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2553 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2554 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2555 } 2556 if (vd != rvd) 2557 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2558 } 2559 } 2560 2561 void 2562 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2563 { 2564 vdev_stat_t *vs = &vd->vdev_stat; 2565 2566 for (int c = 0; c < vd->vdev_children; c++) 2567 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2568 2569 mutex_enter(&vd->vdev_stat_lock); 2570 2571 if (type == POOL_SCRUB_NONE) { 2572 /* 2573 * Update completion and end time. Leave everything else alone 2574 * so we can report what happened during the previous scrub. 2575 */ 2576 vs->vs_scrub_complete = complete; 2577 vs->vs_scrub_end = gethrestime_sec(); 2578 } else { 2579 vs->vs_scrub_type = type; 2580 vs->vs_scrub_complete = 0; 2581 vs->vs_scrub_examined = 0; 2582 vs->vs_scrub_repaired = 0; 2583 vs->vs_scrub_start = gethrestime_sec(); 2584 vs->vs_scrub_end = 0; 2585 } 2586 2587 mutex_exit(&vd->vdev_stat_lock); 2588 } 2589 2590 /* 2591 * Update the in-core space usage stats for this vdev, its metaslab class, 2592 * and the root vdev. 2593 */ 2594 void 2595 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2596 int64_t space_delta) 2597 { 2598 int64_t dspace_delta = space_delta; 2599 spa_t *spa = vd->vdev_spa; 2600 vdev_t *rvd = spa->spa_root_vdev; 2601 metaslab_group_t *mg = vd->vdev_mg; 2602 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2603 2604 ASSERT(vd == vd->vdev_top); 2605 2606 /* 2607 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2608 * factor. We must calculate this here and not at the root vdev 2609 * because the root vdev's psize-to-asize is simply the max of its 2610 * childrens', thus not accurate enough for us. 2611 */ 2612 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2613 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2614 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2615 vd->vdev_deflate_ratio; 2616 2617 mutex_enter(&vd->vdev_stat_lock); 2618 vd->vdev_stat.vs_alloc += alloc_delta; 2619 vd->vdev_stat.vs_space += space_delta; 2620 vd->vdev_stat.vs_dspace += dspace_delta; 2621 mutex_exit(&vd->vdev_stat_lock); 2622 2623 if (mc == spa_normal_class(spa)) { 2624 mutex_enter(&rvd->vdev_stat_lock); 2625 rvd->vdev_stat.vs_alloc += alloc_delta; 2626 rvd->vdev_stat.vs_space += space_delta; 2627 rvd->vdev_stat.vs_dspace += dspace_delta; 2628 mutex_exit(&rvd->vdev_stat_lock); 2629 } 2630 2631 if (mc != NULL) { 2632 ASSERT(rvd == vd->vdev_parent); 2633 ASSERT(vd->vdev_ms_count != 0); 2634 2635 metaslab_class_space_update(mc, 2636 alloc_delta, defer_delta, space_delta, dspace_delta); 2637 } 2638 } 2639 2640 /* 2641 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2642 * so that it will be written out next time the vdev configuration is synced. 2643 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2644 */ 2645 void 2646 vdev_config_dirty(vdev_t *vd) 2647 { 2648 spa_t *spa = vd->vdev_spa; 2649 vdev_t *rvd = spa->spa_root_vdev; 2650 int c; 2651 2652 /* 2653 * If this is an aux vdev (as with l2cache and spare devices), then we 2654 * update the vdev config manually and set the sync flag. 2655 */ 2656 if (vd->vdev_aux != NULL) { 2657 spa_aux_vdev_t *sav = vd->vdev_aux; 2658 nvlist_t **aux; 2659 uint_t naux; 2660 2661 for (c = 0; c < sav->sav_count; c++) { 2662 if (sav->sav_vdevs[c] == vd) 2663 break; 2664 } 2665 2666 if (c == sav->sav_count) { 2667 /* 2668 * We're being removed. There's nothing more to do. 2669 */ 2670 ASSERT(sav->sav_sync == B_TRUE); 2671 return; 2672 } 2673 2674 sav->sav_sync = B_TRUE; 2675 2676 if (nvlist_lookup_nvlist_array(sav->sav_config, 2677 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2678 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2679 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2680 } 2681 2682 ASSERT(c < naux); 2683 2684 /* 2685 * Setting the nvlist in the middle if the array is a little 2686 * sketchy, but it will work. 2687 */ 2688 nvlist_free(aux[c]); 2689 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2690 2691 return; 2692 } 2693 2694 /* 2695 * The dirty list is protected by the SCL_CONFIG lock. The caller 2696 * must either hold SCL_CONFIG as writer, or must be the sync thread 2697 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2698 * so this is sufficient to ensure mutual exclusion. 2699 */ 2700 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2701 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2702 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2703 2704 if (vd == rvd) { 2705 for (c = 0; c < rvd->vdev_children; c++) 2706 vdev_config_dirty(rvd->vdev_child[c]); 2707 } else { 2708 ASSERT(vd == vd->vdev_top); 2709 2710 if (!list_link_active(&vd->vdev_config_dirty_node) && 2711 !vd->vdev_ishole) 2712 list_insert_head(&spa->spa_config_dirty_list, vd); 2713 } 2714 } 2715 2716 void 2717 vdev_config_clean(vdev_t *vd) 2718 { 2719 spa_t *spa = vd->vdev_spa; 2720 2721 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2722 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2723 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2724 2725 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2726 list_remove(&spa->spa_config_dirty_list, vd); 2727 } 2728 2729 /* 2730 * Mark a top-level vdev's state as dirty, so that the next pass of 2731 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2732 * the state changes from larger config changes because they require 2733 * much less locking, and are often needed for administrative actions. 2734 */ 2735 void 2736 vdev_state_dirty(vdev_t *vd) 2737 { 2738 spa_t *spa = vd->vdev_spa; 2739 2740 ASSERT(vd == vd->vdev_top); 2741 2742 /* 2743 * The state list is protected by the SCL_STATE lock. The caller 2744 * must either hold SCL_STATE as writer, or must be the sync thread 2745 * (which holds SCL_STATE as reader). There's only one sync thread, 2746 * so this is sufficient to ensure mutual exclusion. 2747 */ 2748 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2749 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2750 spa_config_held(spa, SCL_STATE, RW_READER))); 2751 2752 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2753 list_insert_head(&spa->spa_state_dirty_list, vd); 2754 } 2755 2756 void 2757 vdev_state_clean(vdev_t *vd) 2758 { 2759 spa_t *spa = vd->vdev_spa; 2760 2761 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2762 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2763 spa_config_held(spa, SCL_STATE, RW_READER))); 2764 2765 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2766 list_remove(&spa->spa_state_dirty_list, vd); 2767 } 2768 2769 /* 2770 * Propagate vdev state up from children to parent. 2771 */ 2772 void 2773 vdev_propagate_state(vdev_t *vd) 2774 { 2775 spa_t *spa = vd->vdev_spa; 2776 vdev_t *rvd = spa->spa_root_vdev; 2777 int degraded = 0, faulted = 0; 2778 int corrupted = 0; 2779 vdev_t *child; 2780 2781 if (vd->vdev_children > 0) { 2782 for (int c = 0; c < vd->vdev_children; c++) { 2783 child = vd->vdev_child[c]; 2784 2785 /* 2786 * Don't factor holes into the decision. 2787 */ 2788 if (child->vdev_ishole) 2789 continue; 2790 2791 if (!vdev_readable(child) || 2792 (!vdev_writeable(child) && spa_writeable(spa))) { 2793 /* 2794 * Root special: if there is a top-level log 2795 * device, treat the root vdev as if it were 2796 * degraded. 2797 */ 2798 if (child->vdev_islog && vd == rvd) 2799 degraded++; 2800 else 2801 faulted++; 2802 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2803 degraded++; 2804 } 2805 2806 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2807 corrupted++; 2808 } 2809 2810 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2811 2812 /* 2813 * Root special: if there is a top-level vdev that cannot be 2814 * opened due to corrupted metadata, then propagate the root 2815 * vdev's aux state as 'corrupt' rather than 'insufficient 2816 * replicas'. 2817 */ 2818 if (corrupted && vd == rvd && 2819 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2820 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2821 VDEV_AUX_CORRUPT_DATA); 2822 } 2823 2824 if (vd->vdev_parent) 2825 vdev_propagate_state(vd->vdev_parent); 2826 } 2827 2828 /* 2829 * Set a vdev's state. If this is during an open, we don't update the parent 2830 * state, because we're in the process of opening children depth-first. 2831 * Otherwise, we propagate the change to the parent. 2832 * 2833 * If this routine places a device in a faulted state, an appropriate ereport is 2834 * generated. 2835 */ 2836 void 2837 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2838 { 2839 uint64_t save_state; 2840 spa_t *spa = vd->vdev_spa; 2841 2842 if (state == vd->vdev_state) { 2843 vd->vdev_stat.vs_aux = aux; 2844 return; 2845 } 2846 2847 save_state = vd->vdev_state; 2848 2849 vd->vdev_state = state; 2850 vd->vdev_stat.vs_aux = aux; 2851 2852 /* 2853 * If we are setting the vdev state to anything but an open state, then 2854 * always close the underlying device. Otherwise, we keep accessible 2855 * but invalid devices open forever. We don't call vdev_close() itself, 2856 * because that implies some extra checks (offline, etc) that we don't 2857 * want here. This is limited to leaf devices, because otherwise 2858 * closing the device will affect other children. 2859 */ 2860 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2861 vd->vdev_ops->vdev_op_close(vd); 2862 2863 /* 2864 * If we have brought this vdev back into service, we need 2865 * to notify fmd so that it can gracefully repair any outstanding 2866 * cases due to a missing device. We do this in all cases, even those 2867 * that probably don't correlate to a repaired fault. This is sure to 2868 * catch all cases, and we let the zfs-retire agent sort it out. If 2869 * this is a transient state it's OK, as the retire agent will 2870 * double-check the state of the vdev before repairing it. 2871 */ 2872 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2873 vd->vdev_prevstate != state) 2874 zfs_post_state_change(spa, vd); 2875 2876 if (vd->vdev_removed && 2877 state == VDEV_STATE_CANT_OPEN && 2878 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2879 /* 2880 * If the previous state is set to VDEV_STATE_REMOVED, then this 2881 * device was previously marked removed and someone attempted to 2882 * reopen it. If this failed due to a nonexistent device, then 2883 * keep the device in the REMOVED state. We also let this be if 2884 * it is one of our special test online cases, which is only 2885 * attempting to online the device and shouldn't generate an FMA 2886 * fault. 2887 */ 2888 vd->vdev_state = VDEV_STATE_REMOVED; 2889 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2890 } else if (state == VDEV_STATE_REMOVED) { 2891 vd->vdev_removed = B_TRUE; 2892 } else if (state == VDEV_STATE_CANT_OPEN) { 2893 /* 2894 * If we fail to open a vdev during an import, we mark it as 2895 * "not available", which signifies that it was never there to 2896 * begin with. Failure to open such a device is not considered 2897 * an error. 2898 */ 2899 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2900 vd->vdev_ops->vdev_op_leaf) 2901 vd->vdev_not_present = 1; 2902 2903 /* 2904 * Post the appropriate ereport. If the 'prevstate' field is 2905 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2906 * that this is part of a vdev_reopen(). In this case, we don't 2907 * want to post the ereport if the device was already in the 2908 * CANT_OPEN state beforehand. 2909 * 2910 * If the 'checkremove' flag is set, then this is an attempt to 2911 * online the device in response to an insertion event. If we 2912 * hit this case, then we have detected an insertion event for a 2913 * faulted or offline device that wasn't in the removed state. 2914 * In this scenario, we don't post an ereport because we are 2915 * about to replace the device, or attempt an online with 2916 * vdev_forcefault, which will generate the fault for us. 2917 */ 2918 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2919 !vd->vdev_not_present && !vd->vdev_checkremove && 2920 vd != spa->spa_root_vdev) { 2921 const char *class; 2922 2923 switch (aux) { 2924 case VDEV_AUX_OPEN_FAILED: 2925 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2926 break; 2927 case VDEV_AUX_CORRUPT_DATA: 2928 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2929 break; 2930 case VDEV_AUX_NO_REPLICAS: 2931 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2932 break; 2933 case VDEV_AUX_BAD_GUID_SUM: 2934 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2935 break; 2936 case VDEV_AUX_TOO_SMALL: 2937 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2938 break; 2939 case VDEV_AUX_BAD_LABEL: 2940 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2941 break; 2942 case VDEV_AUX_IO_FAILURE: 2943 class = FM_EREPORT_ZFS_IO_FAILURE; 2944 break; 2945 default: 2946 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2947 } 2948 2949 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2950 } 2951 2952 /* Erase any notion of persistent removed state */ 2953 vd->vdev_removed = B_FALSE; 2954 } else { 2955 vd->vdev_removed = B_FALSE; 2956 } 2957 2958 if (!isopen && vd->vdev_parent) 2959 vdev_propagate_state(vd->vdev_parent); 2960 } 2961 2962 /* 2963 * Check the vdev configuration to ensure that it's capable of supporting 2964 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2965 * In addition, only a single top-level vdev is allowed and none of the leaves 2966 * can be wholedisks. 2967 */ 2968 boolean_t 2969 vdev_is_bootable(vdev_t *vd) 2970 { 2971 if (!vd->vdev_ops->vdev_op_leaf) { 2972 char *vdev_type = vd->vdev_ops->vdev_op_type; 2973 2974 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2975 vd->vdev_children > 1) { 2976 return (B_FALSE); 2977 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2978 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2979 return (B_FALSE); 2980 } 2981 } else if (vd->vdev_wholedisk == 1) { 2982 return (B_FALSE); 2983 } 2984 2985 for (int c = 0; c < vd->vdev_children; c++) { 2986 if (!vdev_is_bootable(vd->vdev_child[c])) 2987 return (B_FALSE); 2988 } 2989 return (B_TRUE); 2990 } 2991 2992 /* 2993 * Load the state from the original vdev tree (ovd) which 2994 * we've retrieved from the MOS config object. If the original 2995 * vdev was offline then we transfer that state to the device 2996 * in the current vdev tree (nvd). 2997 */ 2998 void 2999 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3000 { 3001 spa_t *spa = nvd->vdev_spa; 3002 3003 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3004 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3005 3006 for (int c = 0; c < nvd->vdev_children; c++) 3007 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3008 3009 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 3010 /* 3011 * It would be nice to call vdev_offline() 3012 * directly but the pool isn't fully loaded and 3013 * the txg threads have not been started yet. 3014 */ 3015 nvd->vdev_offline = ovd->vdev_offline; 3016 vdev_reopen(nvd->vdev_top); 3017 } 3018 } 3019 3020 /* 3021 * Expand a vdev if possible. 3022 */ 3023 void 3024 vdev_expand(vdev_t *vd, uint64_t txg) 3025 { 3026 ASSERT(vd->vdev_top == vd); 3027 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3028 3029 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3030 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3031 vdev_config_dirty(vd); 3032 } 3033 } 3034