xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 2f0b63d22a9a05291df8f83619060f9805eb7581)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2019 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/vdev_trim.h>
55 
56 /*
57  * Virtual device management.
58  */
59 
60 static vdev_ops_t *vdev_ops_table[] = {
61 	&vdev_root_ops,
62 	&vdev_raidz_ops,
63 	&vdev_mirror_ops,
64 	&vdev_replacing_ops,
65 	&vdev_spare_ops,
66 	&vdev_disk_ops,
67 	&vdev_file_ops,
68 	&vdev_missing_ops,
69 	&vdev_hole_ops,
70 	&vdev_indirect_ops,
71 	NULL
72 };
73 
74 /* maximum scrub/resilver I/O queue per leaf vdev */
75 int zfs_scrub_limit = 10;
76 
77 /* default target for number of metaslabs per top-level vdev */
78 int zfs_vdev_default_ms_count = 200;
79 
80 /* minimum number of metaslabs per top-level vdev */
81 int zfs_vdev_min_ms_count = 16;
82 
83 /* practical upper limit of total metaslabs per top-level vdev */
84 int zfs_vdev_ms_count_limit = 1ULL << 17;
85 
86 /* lower limit for metaslab size (512M) */
87 int zfs_vdev_default_ms_shift = 29;
88 
89 /* upper limit for metaslab size (16G) */
90 int zfs_vdev_max_ms_shift = 34;
91 
92 boolean_t vdev_validate_skip = B_FALSE;
93 
94 /*
95  * Since the DTL space map of a vdev is not expected to have a lot of
96  * entries, we default its block size to 4K.
97  */
98 int zfs_vdev_dtl_sm_blksz = (1 << 12);
99 
100 /*
101  * vdev-wide space maps that have lots of entries written to them at
102  * the end of each transaction can benefit from a higher I/O bandwidth
103  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
104  */
105 int zfs_vdev_standard_sm_blksz = (1 << 17);
106 
107 int zfs_ashift_min;
108 
109 /*PRINTFLIKE2*/
110 void
111 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
112 {
113 	va_list adx;
114 	char buf[256];
115 
116 	va_start(adx, fmt);
117 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
118 	va_end(adx);
119 
120 	if (vd->vdev_path != NULL) {
121 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
122 		    vd->vdev_path, buf);
123 	} else {
124 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
125 		    vd->vdev_ops->vdev_op_type,
126 		    (u_longlong_t)vd->vdev_id,
127 		    (u_longlong_t)vd->vdev_guid, buf);
128 	}
129 }
130 
131 void
132 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
133 {
134 	char state[20];
135 
136 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
137 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
138 		    vd->vdev_ops->vdev_op_type);
139 		return;
140 	}
141 
142 	switch (vd->vdev_state) {
143 	case VDEV_STATE_UNKNOWN:
144 		(void) snprintf(state, sizeof (state), "unknown");
145 		break;
146 	case VDEV_STATE_CLOSED:
147 		(void) snprintf(state, sizeof (state), "closed");
148 		break;
149 	case VDEV_STATE_OFFLINE:
150 		(void) snprintf(state, sizeof (state), "offline");
151 		break;
152 	case VDEV_STATE_REMOVED:
153 		(void) snprintf(state, sizeof (state), "removed");
154 		break;
155 	case VDEV_STATE_CANT_OPEN:
156 		(void) snprintf(state, sizeof (state), "can't open");
157 		break;
158 	case VDEV_STATE_FAULTED:
159 		(void) snprintf(state, sizeof (state), "faulted");
160 		break;
161 	case VDEV_STATE_DEGRADED:
162 		(void) snprintf(state, sizeof (state), "degraded");
163 		break;
164 	case VDEV_STATE_HEALTHY:
165 		(void) snprintf(state, sizeof (state), "healthy");
166 		break;
167 	default:
168 		(void) snprintf(state, sizeof (state), "<state %u>",
169 		    (uint_t)vd->vdev_state);
170 	}
171 
172 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
173 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
174 	    vd->vdev_islog ? " (log)" : "",
175 	    (u_longlong_t)vd->vdev_guid,
176 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
177 
178 	for (uint64_t i = 0; i < vd->vdev_children; i++)
179 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
180 }
181 
182 /*
183  * Given a vdev type, return the appropriate ops vector.
184  */
185 static vdev_ops_t *
186 vdev_getops(const char *type)
187 {
188 	vdev_ops_t *ops, **opspp;
189 
190 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
191 		if (strcmp(ops->vdev_op_type, type) == 0)
192 			break;
193 
194 	return (ops);
195 }
196 
197 /*
198  * Derive the enumerated alloction bias from string input.
199  * String origin is either the per-vdev zap or zpool(1M).
200  */
201 static vdev_alloc_bias_t
202 vdev_derive_alloc_bias(const char *bias)
203 {
204 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
205 
206 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
207 		alloc_bias = VDEV_BIAS_LOG;
208 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
209 		alloc_bias = VDEV_BIAS_SPECIAL;
210 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
211 		alloc_bias = VDEV_BIAS_DEDUP;
212 
213 	return (alloc_bias);
214 }
215 
216 /* ARGSUSED */
217 void
218 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
219 {
220 	res->rs_start = in->rs_start;
221 	res->rs_end = in->rs_end;
222 }
223 
224 /*
225  * Default asize function: return the MAX of psize with the asize of
226  * all children.  This is what's used by anything other than RAID-Z.
227  */
228 uint64_t
229 vdev_default_asize(vdev_t *vd, uint64_t psize)
230 {
231 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
232 	uint64_t csize;
233 
234 	for (int c = 0; c < vd->vdev_children; c++) {
235 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
236 		asize = MAX(asize, csize);
237 	}
238 
239 	return (asize);
240 }
241 
242 /*
243  * Get the minimum allocatable size. We define the allocatable size as
244  * the vdev's asize rounded to the nearest metaslab. This allows us to
245  * replace or attach devices which don't have the same physical size but
246  * can still satisfy the same number of allocations.
247  */
248 uint64_t
249 vdev_get_min_asize(vdev_t *vd)
250 {
251 	vdev_t *pvd = vd->vdev_parent;
252 
253 	/*
254 	 * If our parent is NULL (inactive spare or cache) or is the root,
255 	 * just return our own asize.
256 	 */
257 	if (pvd == NULL)
258 		return (vd->vdev_asize);
259 
260 	/*
261 	 * The top-level vdev just returns the allocatable size rounded
262 	 * to the nearest metaslab.
263 	 */
264 	if (vd == vd->vdev_top)
265 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
266 
267 	/*
268 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
269 	 * so each child must provide at least 1/Nth of its asize.
270 	 */
271 	if (pvd->vdev_ops == &vdev_raidz_ops)
272 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
273 		    pvd->vdev_children);
274 
275 	return (pvd->vdev_min_asize);
276 }
277 
278 void
279 vdev_set_min_asize(vdev_t *vd)
280 {
281 	vd->vdev_min_asize = vdev_get_min_asize(vd);
282 
283 	for (int c = 0; c < vd->vdev_children; c++)
284 		vdev_set_min_asize(vd->vdev_child[c]);
285 }
286 
287 vdev_t *
288 vdev_lookup_top(spa_t *spa, uint64_t vdev)
289 {
290 	vdev_t *rvd = spa->spa_root_vdev;
291 
292 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
293 
294 	if (vdev < rvd->vdev_children) {
295 		ASSERT(rvd->vdev_child[vdev] != NULL);
296 		return (rvd->vdev_child[vdev]);
297 	}
298 
299 	return (NULL);
300 }
301 
302 vdev_t *
303 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
304 {
305 	vdev_t *mvd;
306 
307 	if (vd->vdev_guid == guid)
308 		return (vd);
309 
310 	for (int c = 0; c < vd->vdev_children; c++)
311 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
312 		    NULL)
313 			return (mvd);
314 
315 	return (NULL);
316 }
317 
318 static int
319 vdev_count_leaves_impl(vdev_t *vd)
320 {
321 	int n = 0;
322 
323 	if (vd->vdev_ops->vdev_op_leaf)
324 		return (1);
325 
326 	for (int c = 0; c < vd->vdev_children; c++)
327 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
328 
329 	return (n);
330 }
331 
332 int
333 vdev_count_leaves(spa_t *spa)
334 {
335 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
336 }
337 
338 void
339 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
340 {
341 	size_t oldsize, newsize;
342 	uint64_t id = cvd->vdev_id;
343 	vdev_t **newchild;
344 	spa_t *spa = cvd->vdev_spa;
345 
346 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
347 	ASSERT(cvd->vdev_parent == NULL);
348 
349 	cvd->vdev_parent = pvd;
350 
351 	if (pvd == NULL)
352 		return;
353 
354 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
355 
356 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
357 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
358 	newsize = pvd->vdev_children * sizeof (vdev_t *);
359 
360 	newchild = kmem_zalloc(newsize, KM_SLEEP);
361 	if (pvd->vdev_child != NULL) {
362 		bcopy(pvd->vdev_child, newchild, oldsize);
363 		kmem_free(pvd->vdev_child, oldsize);
364 	}
365 
366 	pvd->vdev_child = newchild;
367 	pvd->vdev_child[id] = cvd;
368 
369 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
370 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
371 
372 	/*
373 	 * Walk up all ancestors to update guid sum.
374 	 */
375 	for (; pvd != NULL; pvd = pvd->vdev_parent)
376 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
377 
378 	if (cvd->vdev_ops->vdev_op_leaf) {
379 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
380 		cvd->vdev_spa->spa_leaf_list_gen++;
381 	}
382 }
383 
384 void
385 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
386 {
387 	int c;
388 	uint_t id = cvd->vdev_id;
389 
390 	ASSERT(cvd->vdev_parent == pvd);
391 
392 	if (pvd == NULL)
393 		return;
394 
395 	ASSERT(id < pvd->vdev_children);
396 	ASSERT(pvd->vdev_child[id] == cvd);
397 
398 	pvd->vdev_child[id] = NULL;
399 	cvd->vdev_parent = NULL;
400 
401 	for (c = 0; c < pvd->vdev_children; c++)
402 		if (pvd->vdev_child[c])
403 			break;
404 
405 	if (c == pvd->vdev_children) {
406 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
407 		pvd->vdev_child = NULL;
408 		pvd->vdev_children = 0;
409 	}
410 
411 	if (cvd->vdev_ops->vdev_op_leaf) {
412 		spa_t *spa = cvd->vdev_spa;
413 		list_remove(&spa->spa_leaf_list, cvd);
414 		spa->spa_leaf_list_gen++;
415 	}
416 
417 	/*
418 	 * Walk up all ancestors to update guid sum.
419 	 */
420 	for (; pvd != NULL; pvd = pvd->vdev_parent)
421 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
422 }
423 
424 /*
425  * Remove any holes in the child array.
426  */
427 void
428 vdev_compact_children(vdev_t *pvd)
429 {
430 	vdev_t **newchild, *cvd;
431 	int oldc = pvd->vdev_children;
432 	int newc;
433 
434 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
435 
436 	for (int c = newc = 0; c < oldc; c++)
437 		if (pvd->vdev_child[c])
438 			newc++;
439 
440 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
441 
442 	for (int c = newc = 0; c < oldc; c++) {
443 		if ((cvd = pvd->vdev_child[c]) != NULL) {
444 			newchild[newc] = cvd;
445 			cvd->vdev_id = newc++;
446 		}
447 	}
448 
449 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
450 	pvd->vdev_child = newchild;
451 	pvd->vdev_children = newc;
452 }
453 
454 /*
455  * Allocate and minimally initialize a vdev_t.
456  */
457 vdev_t *
458 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
459 {
460 	vdev_t *vd;
461 	vdev_indirect_config_t *vic;
462 
463 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
464 	vic = &vd->vdev_indirect_config;
465 
466 	if (spa->spa_root_vdev == NULL) {
467 		ASSERT(ops == &vdev_root_ops);
468 		spa->spa_root_vdev = vd;
469 		spa->spa_load_guid = spa_generate_guid(NULL);
470 	}
471 
472 	if (guid == 0 && ops != &vdev_hole_ops) {
473 		if (spa->spa_root_vdev == vd) {
474 			/*
475 			 * The root vdev's guid will also be the pool guid,
476 			 * which must be unique among all pools.
477 			 */
478 			guid = spa_generate_guid(NULL);
479 		} else {
480 			/*
481 			 * Any other vdev's guid must be unique within the pool.
482 			 */
483 			guid = spa_generate_guid(spa);
484 		}
485 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
486 	}
487 
488 	vd->vdev_spa = spa;
489 	vd->vdev_id = id;
490 	vd->vdev_guid = guid;
491 	vd->vdev_guid_sum = guid;
492 	vd->vdev_ops = ops;
493 	vd->vdev_state = VDEV_STATE_CLOSED;
494 	vd->vdev_ishole = (ops == &vdev_hole_ops);
495 	vic->vic_prev_indirect_vdev = UINT64_MAX;
496 
497 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
498 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
499 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
500 	    0, 0);
501 
502 	list_link_init(&vd->vdev_initialize_node);
503 	list_link_init(&vd->vdev_leaf_node);
504 	list_link_init(&vd->vdev_trim_node);
505 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
506 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
507 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
508 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
509 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
510 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
511 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
512 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
513 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
514 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
515 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
516 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
517 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
518 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
519 
520 	for (int t = 0; t < DTL_TYPES; t++) {
521 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
522 		    0);
523 	}
524 	txg_list_create(&vd->vdev_ms_list, spa,
525 	    offsetof(struct metaslab, ms_txg_node));
526 	txg_list_create(&vd->vdev_dtl_list, spa,
527 	    offsetof(struct vdev, vdev_dtl_node));
528 	vd->vdev_stat.vs_timestamp = gethrtime();
529 	vdev_queue_init(vd);
530 	vdev_cache_init(vd);
531 
532 	return (vd);
533 }
534 
535 /*
536  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
537  * creating a new vdev or loading an existing one - the behavior is slightly
538  * different for each case.
539  */
540 int
541 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
542     int alloctype)
543 {
544 	vdev_ops_t *ops;
545 	char *type;
546 	uint64_t guid = 0, islog, nparity;
547 	vdev_t *vd;
548 	vdev_indirect_config_t *vic;
549 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
550 	boolean_t top_level = (parent && !parent->vdev_parent);
551 
552 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
553 
554 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
555 		return (SET_ERROR(EINVAL));
556 
557 	if ((ops = vdev_getops(type)) == NULL)
558 		return (SET_ERROR(EINVAL));
559 
560 	/*
561 	 * If this is a load, get the vdev guid from the nvlist.
562 	 * Otherwise, vdev_alloc_common() will generate one for us.
563 	 */
564 	if (alloctype == VDEV_ALLOC_LOAD) {
565 		uint64_t label_id;
566 
567 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
568 		    label_id != id)
569 			return (SET_ERROR(EINVAL));
570 
571 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
572 			return (SET_ERROR(EINVAL));
573 	} else if (alloctype == VDEV_ALLOC_SPARE) {
574 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
575 			return (SET_ERROR(EINVAL));
576 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
577 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
578 			return (SET_ERROR(EINVAL));
579 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
580 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
581 			return (SET_ERROR(EINVAL));
582 	}
583 
584 	/*
585 	 * The first allocated vdev must be of type 'root'.
586 	 */
587 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
588 		return (SET_ERROR(EINVAL));
589 
590 	/*
591 	 * Determine whether we're a log vdev.
592 	 */
593 	islog = 0;
594 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
595 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
596 		return (SET_ERROR(ENOTSUP));
597 
598 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
599 		return (SET_ERROR(ENOTSUP));
600 
601 	/*
602 	 * Set the nparity property for RAID-Z vdevs.
603 	 */
604 	nparity = -1ULL;
605 	if (ops == &vdev_raidz_ops) {
606 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
607 		    &nparity) == 0) {
608 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
609 				return (SET_ERROR(EINVAL));
610 			/*
611 			 * Previous versions could only support 1 or 2 parity
612 			 * device.
613 			 */
614 			if (nparity > 1 &&
615 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
616 				return (SET_ERROR(ENOTSUP));
617 			if (nparity > 2 &&
618 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
619 				return (SET_ERROR(ENOTSUP));
620 		} else {
621 			/*
622 			 * We require the parity to be specified for SPAs that
623 			 * support multiple parity levels.
624 			 */
625 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
626 				return (SET_ERROR(EINVAL));
627 			/*
628 			 * Otherwise, we default to 1 parity device for RAID-Z.
629 			 */
630 			nparity = 1;
631 		}
632 	} else {
633 		nparity = 0;
634 	}
635 	ASSERT(nparity != -1ULL);
636 
637 	/*
638 	 * If creating a top-level vdev, check for allocation classes input
639 	 */
640 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
641 		char *bias;
642 
643 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
644 		    &bias) == 0) {
645 			alloc_bias = vdev_derive_alloc_bias(bias);
646 
647 			/* spa_vdev_add() expects feature to be enabled */
648 			if (alloc_bias != VDEV_BIAS_LOG &&
649 			    spa->spa_load_state != SPA_LOAD_CREATE &&
650 			    !spa_feature_is_enabled(spa,
651 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
652 				return (SET_ERROR(ENOTSUP));
653 			}
654 		}
655 	}
656 
657 	vd = vdev_alloc_common(spa, id, guid, ops);
658 	vic = &vd->vdev_indirect_config;
659 
660 	vd->vdev_islog = islog;
661 	vd->vdev_nparity = nparity;
662 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
663 		vd->vdev_alloc_bias = alloc_bias;
664 
665 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
666 		vd->vdev_path = spa_strdup(vd->vdev_path);
667 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
668 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
669 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
670 	    &vd->vdev_physpath) == 0)
671 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
672 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
673 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
674 
675 	/*
676 	 * Set the whole_disk property.  If it's not specified, leave the value
677 	 * as -1.
678 	 */
679 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
680 	    &vd->vdev_wholedisk) != 0)
681 		vd->vdev_wholedisk = -1ULL;
682 
683 	ASSERT0(vic->vic_mapping_object);
684 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
685 	    &vic->vic_mapping_object);
686 	ASSERT0(vic->vic_births_object);
687 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
688 	    &vic->vic_births_object);
689 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
690 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
691 	    &vic->vic_prev_indirect_vdev);
692 
693 	/*
694 	 * Look for the 'not present' flag.  This will only be set if the device
695 	 * was not present at the time of import.
696 	 */
697 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
698 	    &vd->vdev_not_present);
699 
700 	/*
701 	 * Get the alignment requirement.
702 	 */
703 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
704 
705 	/*
706 	 * Retrieve the vdev creation time.
707 	 */
708 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
709 	    &vd->vdev_crtxg);
710 
711 	/*
712 	 * If we're a top-level vdev, try to load the allocation parameters.
713 	 */
714 	if (top_level &&
715 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
716 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
717 		    &vd->vdev_ms_array);
718 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
719 		    &vd->vdev_ms_shift);
720 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
721 		    &vd->vdev_asize);
722 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
723 		    &vd->vdev_removing);
724 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
725 		    &vd->vdev_top_zap);
726 	} else {
727 		ASSERT0(vd->vdev_top_zap);
728 	}
729 
730 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
731 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
732 		    alloctype == VDEV_ALLOC_ADD ||
733 		    alloctype == VDEV_ALLOC_SPLIT ||
734 		    alloctype == VDEV_ALLOC_ROOTPOOL);
735 		/* Note: metaslab_group_create() is now deferred */
736 	}
737 
738 	if (vd->vdev_ops->vdev_op_leaf &&
739 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
740 		(void) nvlist_lookup_uint64(nv,
741 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
742 	} else {
743 		ASSERT0(vd->vdev_leaf_zap);
744 	}
745 
746 	/*
747 	 * If we're a leaf vdev, try to load the DTL object and other state.
748 	 */
749 
750 	if (vd->vdev_ops->vdev_op_leaf &&
751 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
752 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
753 		if (alloctype == VDEV_ALLOC_LOAD) {
754 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
755 			    &vd->vdev_dtl_object);
756 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
757 			    &vd->vdev_unspare);
758 		}
759 
760 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
761 			uint64_t spare = 0;
762 
763 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
764 			    &spare) == 0 && spare)
765 				spa_spare_add(vd);
766 		}
767 
768 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
769 		    &vd->vdev_offline);
770 
771 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
772 		    &vd->vdev_resilver_txg);
773 
774 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
775 			vdev_set_deferred_resilver(spa, vd);
776 
777 		/*
778 		 * When importing a pool, we want to ignore the persistent fault
779 		 * state, as the diagnosis made on another system may not be
780 		 * valid in the current context.  Local vdevs will
781 		 * remain in the faulted state.
782 		 */
783 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
784 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
785 			    &vd->vdev_faulted);
786 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
787 			    &vd->vdev_degraded);
788 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
789 			    &vd->vdev_removed);
790 
791 			if (vd->vdev_faulted || vd->vdev_degraded) {
792 				char *aux;
793 
794 				vd->vdev_label_aux =
795 				    VDEV_AUX_ERR_EXCEEDED;
796 				if (nvlist_lookup_string(nv,
797 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
798 				    strcmp(aux, "external") == 0)
799 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
800 			}
801 		}
802 	}
803 
804 	/*
805 	 * Add ourselves to the parent's list of children.
806 	 */
807 	vdev_add_child(parent, vd);
808 
809 	*vdp = vd;
810 
811 	return (0);
812 }
813 
814 void
815 vdev_free(vdev_t *vd)
816 {
817 	spa_t *spa = vd->vdev_spa;
818 
819 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
820 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
821 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
822 
823 	/*
824 	 * Scan queues are normally destroyed at the end of a scan. If the
825 	 * queue exists here, that implies the vdev is being removed while
826 	 * the scan is still running.
827 	 */
828 	if (vd->vdev_scan_io_queue != NULL) {
829 		mutex_enter(&vd->vdev_scan_io_queue_lock);
830 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
831 		vd->vdev_scan_io_queue = NULL;
832 		mutex_exit(&vd->vdev_scan_io_queue_lock);
833 	}
834 
835 	/*
836 	 * vdev_free() implies closing the vdev first.  This is simpler than
837 	 * trying to ensure complicated semantics for all callers.
838 	 */
839 	vdev_close(vd);
840 
841 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
842 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
843 
844 	/*
845 	 * Free all children.
846 	 */
847 	for (int c = 0; c < vd->vdev_children; c++)
848 		vdev_free(vd->vdev_child[c]);
849 
850 	ASSERT(vd->vdev_child == NULL);
851 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
852 
853 	/*
854 	 * Discard allocation state.
855 	 */
856 	if (vd->vdev_mg != NULL) {
857 		vdev_metaslab_fini(vd);
858 		metaslab_group_destroy(vd->vdev_mg);
859 		vd->vdev_mg = NULL;
860 	}
861 
862 	ASSERT0(vd->vdev_stat.vs_space);
863 	ASSERT0(vd->vdev_stat.vs_dspace);
864 	ASSERT0(vd->vdev_stat.vs_alloc);
865 
866 	/*
867 	 * Remove this vdev from its parent's child list.
868 	 */
869 	vdev_remove_child(vd->vdev_parent, vd);
870 
871 	ASSERT(vd->vdev_parent == NULL);
872 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
873 
874 	/*
875 	 * Clean up vdev structure.
876 	 */
877 	vdev_queue_fini(vd);
878 	vdev_cache_fini(vd);
879 
880 	if (vd->vdev_path)
881 		spa_strfree(vd->vdev_path);
882 	if (vd->vdev_devid)
883 		spa_strfree(vd->vdev_devid);
884 	if (vd->vdev_physpath)
885 		spa_strfree(vd->vdev_physpath);
886 	if (vd->vdev_fru)
887 		spa_strfree(vd->vdev_fru);
888 
889 	if (vd->vdev_isspare)
890 		spa_spare_remove(vd);
891 	if (vd->vdev_isl2cache)
892 		spa_l2cache_remove(vd);
893 
894 	txg_list_destroy(&vd->vdev_ms_list);
895 	txg_list_destroy(&vd->vdev_dtl_list);
896 
897 	mutex_enter(&vd->vdev_dtl_lock);
898 	space_map_close(vd->vdev_dtl_sm);
899 	for (int t = 0; t < DTL_TYPES; t++) {
900 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
901 		range_tree_destroy(vd->vdev_dtl[t]);
902 	}
903 	mutex_exit(&vd->vdev_dtl_lock);
904 
905 	EQUIV(vd->vdev_indirect_births != NULL,
906 	    vd->vdev_indirect_mapping != NULL);
907 	if (vd->vdev_indirect_births != NULL) {
908 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
909 		vdev_indirect_births_close(vd->vdev_indirect_births);
910 	}
911 
912 	if (vd->vdev_obsolete_sm != NULL) {
913 		ASSERT(vd->vdev_removing ||
914 		    vd->vdev_ops == &vdev_indirect_ops);
915 		space_map_close(vd->vdev_obsolete_sm);
916 		vd->vdev_obsolete_sm = NULL;
917 	}
918 	range_tree_destroy(vd->vdev_obsolete_segments);
919 	rw_destroy(&vd->vdev_indirect_rwlock);
920 	mutex_destroy(&vd->vdev_obsolete_lock);
921 
922 	mutex_destroy(&vd->vdev_dtl_lock);
923 	mutex_destroy(&vd->vdev_stat_lock);
924 	mutex_destroy(&vd->vdev_probe_lock);
925 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
926 	mutex_destroy(&vd->vdev_initialize_lock);
927 	mutex_destroy(&vd->vdev_initialize_io_lock);
928 	cv_destroy(&vd->vdev_initialize_io_cv);
929 	cv_destroy(&vd->vdev_initialize_cv);
930 	mutex_destroy(&vd->vdev_trim_lock);
931 	mutex_destroy(&vd->vdev_autotrim_lock);
932 	mutex_destroy(&vd->vdev_trim_io_lock);
933 	cv_destroy(&vd->vdev_trim_cv);
934 	cv_destroy(&vd->vdev_autotrim_cv);
935 	cv_destroy(&vd->vdev_trim_io_cv);
936 
937 	if (vd == spa->spa_root_vdev)
938 		spa->spa_root_vdev = NULL;
939 
940 	kmem_free(vd, sizeof (vdev_t));
941 }
942 
943 /*
944  * Transfer top-level vdev state from svd to tvd.
945  */
946 static void
947 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
948 {
949 	spa_t *spa = svd->vdev_spa;
950 	metaslab_t *msp;
951 	vdev_t *vd;
952 	int t;
953 
954 	ASSERT(tvd == tvd->vdev_top);
955 
956 	tvd->vdev_ms_array = svd->vdev_ms_array;
957 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
958 	tvd->vdev_ms_count = svd->vdev_ms_count;
959 	tvd->vdev_top_zap = svd->vdev_top_zap;
960 
961 	svd->vdev_ms_array = 0;
962 	svd->vdev_ms_shift = 0;
963 	svd->vdev_ms_count = 0;
964 	svd->vdev_top_zap = 0;
965 
966 	if (tvd->vdev_mg)
967 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
968 	tvd->vdev_mg = svd->vdev_mg;
969 	tvd->vdev_ms = svd->vdev_ms;
970 
971 	svd->vdev_mg = NULL;
972 	svd->vdev_ms = NULL;
973 
974 	if (tvd->vdev_mg != NULL)
975 		tvd->vdev_mg->mg_vd = tvd;
976 
977 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
978 	svd->vdev_checkpoint_sm = NULL;
979 
980 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
981 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
982 
983 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
984 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
985 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
986 
987 	svd->vdev_stat.vs_alloc = 0;
988 	svd->vdev_stat.vs_space = 0;
989 	svd->vdev_stat.vs_dspace = 0;
990 
991 	/*
992 	 * State which may be set on a top-level vdev that's in the
993 	 * process of being removed.
994 	 */
995 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
996 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
997 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
998 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
999 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1000 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1001 	ASSERT0(tvd->vdev_removing);
1002 	tvd->vdev_removing = svd->vdev_removing;
1003 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1004 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1005 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1006 	range_tree_swap(&svd->vdev_obsolete_segments,
1007 	    &tvd->vdev_obsolete_segments);
1008 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1009 	svd->vdev_indirect_config.vic_mapping_object = 0;
1010 	svd->vdev_indirect_config.vic_births_object = 0;
1011 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1012 	svd->vdev_indirect_mapping = NULL;
1013 	svd->vdev_indirect_births = NULL;
1014 	svd->vdev_obsolete_sm = NULL;
1015 	svd->vdev_removing = 0;
1016 
1017 	for (t = 0; t < TXG_SIZE; t++) {
1018 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1019 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1020 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1021 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1022 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1023 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1024 	}
1025 
1026 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1027 		vdev_config_clean(svd);
1028 		vdev_config_dirty(tvd);
1029 	}
1030 
1031 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1032 		vdev_state_clean(svd);
1033 		vdev_state_dirty(tvd);
1034 	}
1035 
1036 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1037 	svd->vdev_deflate_ratio = 0;
1038 
1039 	tvd->vdev_islog = svd->vdev_islog;
1040 	svd->vdev_islog = 0;
1041 
1042 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1043 }
1044 
1045 static void
1046 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1047 {
1048 	if (vd == NULL)
1049 		return;
1050 
1051 	vd->vdev_top = tvd;
1052 
1053 	for (int c = 0; c < vd->vdev_children; c++)
1054 		vdev_top_update(tvd, vd->vdev_child[c]);
1055 }
1056 
1057 /*
1058  * Add a mirror/replacing vdev above an existing vdev.
1059  */
1060 vdev_t *
1061 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1062 {
1063 	spa_t *spa = cvd->vdev_spa;
1064 	vdev_t *pvd = cvd->vdev_parent;
1065 	vdev_t *mvd;
1066 
1067 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1068 
1069 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1070 
1071 	mvd->vdev_asize = cvd->vdev_asize;
1072 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1073 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1074 	mvd->vdev_psize = cvd->vdev_psize;
1075 	mvd->vdev_ashift = cvd->vdev_ashift;
1076 	mvd->vdev_state = cvd->vdev_state;
1077 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1078 
1079 	vdev_remove_child(pvd, cvd);
1080 	vdev_add_child(pvd, mvd);
1081 	cvd->vdev_id = mvd->vdev_children;
1082 	vdev_add_child(mvd, cvd);
1083 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1084 
1085 	if (mvd == mvd->vdev_top)
1086 		vdev_top_transfer(cvd, mvd);
1087 
1088 	return (mvd);
1089 }
1090 
1091 /*
1092  * Remove a 1-way mirror/replacing vdev from the tree.
1093  */
1094 void
1095 vdev_remove_parent(vdev_t *cvd)
1096 {
1097 	vdev_t *mvd = cvd->vdev_parent;
1098 	vdev_t *pvd = mvd->vdev_parent;
1099 
1100 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1101 
1102 	ASSERT(mvd->vdev_children == 1);
1103 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1104 	    mvd->vdev_ops == &vdev_replacing_ops ||
1105 	    mvd->vdev_ops == &vdev_spare_ops);
1106 	cvd->vdev_ashift = mvd->vdev_ashift;
1107 
1108 	vdev_remove_child(mvd, cvd);
1109 	vdev_remove_child(pvd, mvd);
1110 
1111 	/*
1112 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1113 	 * Otherwise, we could have detached an offline device, and when we
1114 	 * go to import the pool we'll think we have two top-level vdevs,
1115 	 * instead of a different version of the same top-level vdev.
1116 	 */
1117 	if (mvd->vdev_top == mvd) {
1118 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1119 		cvd->vdev_orig_guid = cvd->vdev_guid;
1120 		cvd->vdev_guid += guid_delta;
1121 		cvd->vdev_guid_sum += guid_delta;
1122 	}
1123 	cvd->vdev_id = mvd->vdev_id;
1124 	vdev_add_child(pvd, cvd);
1125 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1126 
1127 	if (cvd == cvd->vdev_top)
1128 		vdev_top_transfer(mvd, cvd);
1129 
1130 	ASSERT(mvd->vdev_children == 0);
1131 	vdev_free(mvd);
1132 }
1133 
1134 static void
1135 vdev_metaslab_group_create(vdev_t *vd)
1136 {
1137 	spa_t *spa = vd->vdev_spa;
1138 
1139 	/*
1140 	 * metaslab_group_create was delayed until allocation bias was available
1141 	 */
1142 	if (vd->vdev_mg == NULL) {
1143 		metaslab_class_t *mc;
1144 
1145 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1146 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1147 
1148 		ASSERT3U(vd->vdev_islog, ==,
1149 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1150 
1151 		switch (vd->vdev_alloc_bias) {
1152 		case VDEV_BIAS_LOG:
1153 			mc = spa_log_class(spa);
1154 			break;
1155 		case VDEV_BIAS_SPECIAL:
1156 			mc = spa_special_class(spa);
1157 			break;
1158 		case VDEV_BIAS_DEDUP:
1159 			mc = spa_dedup_class(spa);
1160 			break;
1161 		default:
1162 			mc = spa_normal_class(spa);
1163 		}
1164 
1165 		vd->vdev_mg = metaslab_group_create(mc, vd,
1166 		    spa->spa_alloc_count);
1167 
1168 		/*
1169 		 * The spa ashift values currently only reflect the
1170 		 * general vdev classes. Class destination is late
1171 		 * binding so ashift checking had to wait until now
1172 		 */
1173 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1174 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1175 			if (vd->vdev_ashift > spa->spa_max_ashift)
1176 				spa->spa_max_ashift = vd->vdev_ashift;
1177 			if (vd->vdev_ashift < spa->spa_min_ashift)
1178 				spa->spa_min_ashift = vd->vdev_ashift;
1179 		}
1180 	}
1181 }
1182 
1183 int
1184 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1185 {
1186 	spa_t *spa = vd->vdev_spa;
1187 	objset_t *mos = spa->spa_meta_objset;
1188 	uint64_t m;
1189 	uint64_t oldc = vd->vdev_ms_count;
1190 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1191 	metaslab_t **mspp;
1192 	int error;
1193 	boolean_t expanding = (oldc != 0);
1194 
1195 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1196 
1197 	/*
1198 	 * This vdev is not being allocated from yet or is a hole.
1199 	 */
1200 	if (vd->vdev_ms_shift == 0)
1201 		return (0);
1202 
1203 	ASSERT(!vd->vdev_ishole);
1204 
1205 	ASSERT(oldc <= newc);
1206 
1207 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1208 
1209 	if (expanding) {
1210 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1211 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1212 	}
1213 
1214 	vd->vdev_ms = mspp;
1215 	vd->vdev_ms_count = newc;
1216 	for (m = oldc; m < newc; m++) {
1217 		uint64_t object = 0;
1218 
1219 		/*
1220 		 * vdev_ms_array may be 0 if we are creating the "fake"
1221 		 * metaslabs for an indirect vdev for zdb's leak detection.
1222 		 * See zdb_leak_init().
1223 		 */
1224 		if (txg == 0 && vd->vdev_ms_array != 0) {
1225 			error = dmu_read(mos, vd->vdev_ms_array,
1226 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1227 			    DMU_READ_PREFETCH);
1228 			if (error != 0) {
1229 				vdev_dbgmsg(vd, "unable to read the metaslab "
1230 				    "array [error=%d]", error);
1231 				return (error);
1232 			}
1233 		}
1234 
1235 #ifndef _KERNEL
1236 		/*
1237 		 * To accomodate zdb_leak_init() fake indirect
1238 		 * metaslabs, we allocate a metaslab group for
1239 		 * indirect vdevs which normally don't have one.
1240 		 */
1241 		if (vd->vdev_mg == NULL) {
1242 			ASSERT0(vdev_is_concrete(vd));
1243 			vdev_metaslab_group_create(vd);
1244 		}
1245 #endif
1246 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1247 		    &(vd->vdev_ms[m]));
1248 		if (error != 0) {
1249 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1250 			    error);
1251 			return (error);
1252 		}
1253 	}
1254 
1255 	if (txg == 0)
1256 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1257 
1258 	/*
1259 	 * If the vdev is being removed we don't activate
1260 	 * the metaslabs since we want to ensure that no new
1261 	 * allocations are performed on this device.
1262 	 */
1263 	if (!expanding && !vd->vdev_removing) {
1264 		metaslab_group_activate(vd->vdev_mg);
1265 	}
1266 
1267 	if (txg == 0)
1268 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1269 
1270 	/*
1271 	 * Regardless whether this vdev was just added or it is being
1272 	 * expanded, the metaslab count has changed. Recalculate the
1273 	 * block limit.
1274 	 */
1275 	spa_log_sm_set_blocklimit(spa);
1276 
1277 	return (0);
1278 }
1279 
1280 void
1281 vdev_metaslab_fini(vdev_t *vd)
1282 {
1283 	if (vd->vdev_checkpoint_sm != NULL) {
1284 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1285 		    SPA_FEATURE_POOL_CHECKPOINT));
1286 		space_map_close(vd->vdev_checkpoint_sm);
1287 		/*
1288 		 * Even though we close the space map, we need to set its
1289 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1290 		 * may be called multiple times for certain operations
1291 		 * (i.e. when destroying a pool) so we need to ensure that
1292 		 * this clause never executes twice. This logic is similar
1293 		 * to the one used for the vdev_ms clause below.
1294 		 */
1295 		vd->vdev_checkpoint_sm = NULL;
1296 	}
1297 
1298 	if (vd->vdev_ms != NULL) {
1299 		metaslab_group_t *mg = vd->vdev_mg;
1300 		metaslab_group_passivate(mg);
1301 
1302 		uint64_t count = vd->vdev_ms_count;
1303 		for (uint64_t m = 0; m < count; m++) {
1304 			metaslab_t *msp = vd->vdev_ms[m];
1305 			if (msp != NULL)
1306 				metaslab_fini(msp);
1307 		}
1308 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1309 		vd->vdev_ms = NULL;
1310 
1311 		vd->vdev_ms_count = 0;
1312 
1313 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1314 			ASSERT0(mg->mg_histogram[i]);
1315 	}
1316 	ASSERT0(vd->vdev_ms_count);
1317 }
1318 
1319 typedef struct vdev_probe_stats {
1320 	boolean_t	vps_readable;
1321 	boolean_t	vps_writeable;
1322 	int		vps_flags;
1323 } vdev_probe_stats_t;
1324 
1325 static void
1326 vdev_probe_done(zio_t *zio)
1327 {
1328 	spa_t *spa = zio->io_spa;
1329 	vdev_t *vd = zio->io_vd;
1330 	vdev_probe_stats_t *vps = zio->io_private;
1331 
1332 	ASSERT(vd->vdev_probe_zio != NULL);
1333 
1334 	if (zio->io_type == ZIO_TYPE_READ) {
1335 		if (zio->io_error == 0)
1336 			vps->vps_readable = 1;
1337 		if (zio->io_error == 0 && spa_writeable(spa)) {
1338 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1339 			    zio->io_offset, zio->io_size, zio->io_abd,
1340 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1341 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1342 		} else {
1343 			abd_free(zio->io_abd);
1344 		}
1345 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1346 		if (zio->io_error == 0)
1347 			vps->vps_writeable = 1;
1348 		abd_free(zio->io_abd);
1349 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1350 		zio_t *pio;
1351 
1352 		vd->vdev_cant_read |= !vps->vps_readable;
1353 		vd->vdev_cant_write |= !vps->vps_writeable;
1354 
1355 		if (vdev_readable(vd) &&
1356 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1357 			zio->io_error = 0;
1358 		} else {
1359 			ASSERT(zio->io_error != 0);
1360 			vdev_dbgmsg(vd, "failed probe");
1361 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1362 			    spa, vd, NULL, NULL, 0, 0);
1363 			zio->io_error = SET_ERROR(ENXIO);
1364 		}
1365 
1366 		mutex_enter(&vd->vdev_probe_lock);
1367 		ASSERT(vd->vdev_probe_zio == zio);
1368 		vd->vdev_probe_zio = NULL;
1369 		mutex_exit(&vd->vdev_probe_lock);
1370 
1371 		zio_link_t *zl = NULL;
1372 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1373 			if (!vdev_accessible(vd, pio))
1374 				pio->io_error = SET_ERROR(ENXIO);
1375 
1376 		kmem_free(vps, sizeof (*vps));
1377 	}
1378 }
1379 
1380 /*
1381  * Determine whether this device is accessible.
1382  *
1383  * Read and write to several known locations: the pad regions of each
1384  * vdev label but the first, which we leave alone in case it contains
1385  * a VTOC.
1386  */
1387 zio_t *
1388 vdev_probe(vdev_t *vd, zio_t *zio)
1389 {
1390 	spa_t *spa = vd->vdev_spa;
1391 	vdev_probe_stats_t *vps = NULL;
1392 	zio_t *pio;
1393 
1394 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1395 
1396 	/*
1397 	 * Don't probe the probe.
1398 	 */
1399 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1400 		return (NULL);
1401 
1402 	/*
1403 	 * To prevent 'probe storms' when a device fails, we create
1404 	 * just one probe i/o at a time.  All zios that want to probe
1405 	 * this vdev will become parents of the probe io.
1406 	 */
1407 	mutex_enter(&vd->vdev_probe_lock);
1408 
1409 	if ((pio = vd->vdev_probe_zio) == NULL) {
1410 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1411 
1412 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1413 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1414 		    ZIO_FLAG_TRYHARD;
1415 
1416 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1417 			/*
1418 			 * vdev_cant_read and vdev_cant_write can only
1419 			 * transition from TRUE to FALSE when we have the
1420 			 * SCL_ZIO lock as writer; otherwise they can only
1421 			 * transition from FALSE to TRUE.  This ensures that
1422 			 * any zio looking at these values can assume that
1423 			 * failures persist for the life of the I/O.  That's
1424 			 * important because when a device has intermittent
1425 			 * connectivity problems, we want to ensure that
1426 			 * they're ascribed to the device (ENXIO) and not
1427 			 * the zio (EIO).
1428 			 *
1429 			 * Since we hold SCL_ZIO as writer here, clear both
1430 			 * values so the probe can reevaluate from first
1431 			 * principles.
1432 			 */
1433 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1434 			vd->vdev_cant_read = B_FALSE;
1435 			vd->vdev_cant_write = B_FALSE;
1436 		}
1437 
1438 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1439 		    vdev_probe_done, vps,
1440 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1441 
1442 		/*
1443 		 * We can't change the vdev state in this context, so we
1444 		 * kick off an async task to do it on our behalf.
1445 		 */
1446 		if (zio != NULL) {
1447 			vd->vdev_probe_wanted = B_TRUE;
1448 			spa_async_request(spa, SPA_ASYNC_PROBE);
1449 		}
1450 	}
1451 
1452 	if (zio != NULL)
1453 		zio_add_child(zio, pio);
1454 
1455 	mutex_exit(&vd->vdev_probe_lock);
1456 
1457 	if (vps == NULL) {
1458 		ASSERT(zio != NULL);
1459 		return (NULL);
1460 	}
1461 
1462 	for (int l = 1; l < VDEV_LABELS; l++) {
1463 		zio_nowait(zio_read_phys(pio, vd,
1464 		    vdev_label_offset(vd->vdev_psize, l,
1465 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1466 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1467 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1468 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1469 	}
1470 
1471 	if (zio == NULL)
1472 		return (pio);
1473 
1474 	zio_nowait(pio);
1475 	return (NULL);
1476 }
1477 
1478 static void
1479 vdev_open_child(void *arg)
1480 {
1481 	vdev_t *vd = arg;
1482 
1483 	vd->vdev_open_thread = curthread;
1484 	vd->vdev_open_error = vdev_open(vd);
1485 	vd->vdev_open_thread = NULL;
1486 }
1487 
1488 boolean_t
1489 vdev_uses_zvols(vdev_t *vd)
1490 {
1491 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1492 	    strlen(ZVOL_DIR)) == 0)
1493 		return (B_TRUE);
1494 	for (int c = 0; c < vd->vdev_children; c++)
1495 		if (vdev_uses_zvols(vd->vdev_child[c]))
1496 			return (B_TRUE);
1497 	return (B_FALSE);
1498 }
1499 
1500 void
1501 vdev_open_children(vdev_t *vd)
1502 {
1503 	taskq_t *tq;
1504 	int children = vd->vdev_children;
1505 
1506 	/*
1507 	 * in order to handle pools on top of zvols, do the opens
1508 	 * in a single thread so that the same thread holds the
1509 	 * spa_namespace_lock
1510 	 */
1511 	if (vdev_uses_zvols(vd)) {
1512 retry_sync:
1513 		for (int c = 0; c < children; c++)
1514 			vd->vdev_child[c]->vdev_open_error =
1515 			    vdev_open(vd->vdev_child[c]);
1516 	} else {
1517 		tq = taskq_create("vdev_open", children, minclsyspri,
1518 		    children, children, TASKQ_PREPOPULATE);
1519 		if (tq == NULL)
1520 			goto retry_sync;
1521 
1522 		for (int c = 0; c < children; c++)
1523 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1524 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1525 
1526 		taskq_destroy(tq);
1527 	}
1528 
1529 	vd->vdev_nonrot = B_TRUE;
1530 
1531 	for (int c = 0; c < children; c++)
1532 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1533 }
1534 
1535 /*
1536  * Compute the raidz-deflation ratio.  Note, we hard-code
1537  * in 128k (1 << 17) because it is the "typical" blocksize.
1538  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1539  * otherwise it would inconsistently account for existing bp's.
1540  */
1541 static void
1542 vdev_set_deflate_ratio(vdev_t *vd)
1543 {
1544 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1545 		vd->vdev_deflate_ratio = (1 << 17) /
1546 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1547 	}
1548 }
1549 
1550 /*
1551  * Prepare a virtual device for access.
1552  */
1553 int
1554 vdev_open(vdev_t *vd)
1555 {
1556 	spa_t *spa = vd->vdev_spa;
1557 	int error;
1558 	uint64_t osize = 0;
1559 	uint64_t max_osize = 0;
1560 	uint64_t asize, max_asize, psize;
1561 	uint64_t ashift = 0;
1562 
1563 	ASSERT(vd->vdev_open_thread == curthread ||
1564 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1565 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1566 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1567 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1568 
1569 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1570 	vd->vdev_cant_read = B_FALSE;
1571 	vd->vdev_cant_write = B_FALSE;
1572 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1573 
1574 	/*
1575 	 * If this vdev is not removed, check its fault status.  If it's
1576 	 * faulted, bail out of the open.
1577 	 */
1578 	if (!vd->vdev_removed && vd->vdev_faulted) {
1579 		ASSERT(vd->vdev_children == 0);
1580 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1581 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1582 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1583 		    vd->vdev_label_aux);
1584 		return (SET_ERROR(ENXIO));
1585 	} else if (vd->vdev_offline) {
1586 		ASSERT(vd->vdev_children == 0);
1587 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1588 		return (SET_ERROR(ENXIO));
1589 	}
1590 
1591 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1592 
1593 	/*
1594 	 * Reset the vdev_reopening flag so that we actually close
1595 	 * the vdev on error.
1596 	 */
1597 	vd->vdev_reopening = B_FALSE;
1598 	if (zio_injection_enabled && error == 0)
1599 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1600 
1601 	if (error) {
1602 		if (vd->vdev_removed &&
1603 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1604 			vd->vdev_removed = B_FALSE;
1605 
1606 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1607 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1608 			    vd->vdev_stat.vs_aux);
1609 		} else {
1610 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1611 			    vd->vdev_stat.vs_aux);
1612 		}
1613 		return (error);
1614 	}
1615 
1616 	vd->vdev_removed = B_FALSE;
1617 
1618 	/*
1619 	 * Recheck the faulted flag now that we have confirmed that
1620 	 * the vdev is accessible.  If we're faulted, bail.
1621 	 */
1622 	if (vd->vdev_faulted) {
1623 		ASSERT(vd->vdev_children == 0);
1624 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1625 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1626 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1627 		    vd->vdev_label_aux);
1628 		return (SET_ERROR(ENXIO));
1629 	}
1630 
1631 	if (vd->vdev_degraded) {
1632 		ASSERT(vd->vdev_children == 0);
1633 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1634 		    VDEV_AUX_ERR_EXCEEDED);
1635 	} else {
1636 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1637 	}
1638 
1639 	/*
1640 	 * For hole or missing vdevs we just return success.
1641 	 */
1642 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1643 		return (0);
1644 
1645 	for (int c = 0; c < vd->vdev_children; c++) {
1646 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1647 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1648 			    VDEV_AUX_NONE);
1649 			break;
1650 		}
1651 	}
1652 
1653 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1654 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1655 
1656 	if (vd->vdev_children == 0) {
1657 		if (osize < SPA_MINDEVSIZE) {
1658 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1659 			    VDEV_AUX_TOO_SMALL);
1660 			return (SET_ERROR(EOVERFLOW));
1661 		}
1662 		psize = osize;
1663 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1664 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1665 		    VDEV_LABEL_END_SIZE);
1666 	} else {
1667 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1668 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1669 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1670 			    VDEV_AUX_TOO_SMALL);
1671 			return (SET_ERROR(EOVERFLOW));
1672 		}
1673 		psize = 0;
1674 		asize = osize;
1675 		max_asize = max_osize;
1676 	}
1677 
1678 	vd->vdev_psize = psize;
1679 
1680 	/*
1681 	 * Make sure the allocatable size hasn't shrunk too much.
1682 	 */
1683 	if (asize < vd->vdev_min_asize) {
1684 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1685 		    VDEV_AUX_BAD_LABEL);
1686 		return (SET_ERROR(EINVAL));
1687 	}
1688 
1689 	if (vd->vdev_asize == 0) {
1690 		/*
1691 		 * This is the first-ever open, so use the computed values.
1692 		 * For compatibility, a different ashift can be requested.
1693 		 */
1694 		vd->vdev_asize = asize;
1695 		vd->vdev_max_asize = max_asize;
1696 		if (vd->vdev_ashift == 0) {
1697 			vd->vdev_ashift = ashift; /* use detected value */
1698 		}
1699 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1700 		    vd->vdev_ashift > ASHIFT_MAX)) {
1701 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1702 			    VDEV_AUX_BAD_ASHIFT);
1703 			return (SET_ERROR(EDOM));
1704 		}
1705 	} else {
1706 		/*
1707 		 * Detect if the alignment requirement has increased.
1708 		 * We don't want to make the pool unavailable, just
1709 		 * post an event instead.
1710 		 */
1711 		if (ashift > vd->vdev_top->vdev_ashift &&
1712 		    vd->vdev_ops->vdev_op_leaf) {
1713 			zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1714 			    spa, vd, NULL, NULL, 0, 0);
1715 		}
1716 
1717 		vd->vdev_max_asize = max_asize;
1718 	}
1719 
1720 	/*
1721 	 * If all children are healthy we update asize if either:
1722 	 * The asize has increased, due to a device expansion caused by dynamic
1723 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1724 	 * making the additional space available.
1725 	 *
1726 	 * The asize has decreased, due to a device shrink usually caused by a
1727 	 * vdev replace with a smaller device. This ensures that calculations
1728 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1729 	 * to do this as we've already validated that asize is greater than
1730 	 * vdev_min_asize.
1731 	 */
1732 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1733 	    ((asize > vd->vdev_asize &&
1734 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1735 	    (asize < vd->vdev_asize)))
1736 		vd->vdev_asize = asize;
1737 
1738 	vdev_set_min_asize(vd);
1739 
1740 	/*
1741 	 * Ensure we can issue some IO before declaring the
1742 	 * vdev open for business.
1743 	 */
1744 	if (vd->vdev_ops->vdev_op_leaf &&
1745 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1746 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1747 		    VDEV_AUX_ERR_EXCEEDED);
1748 		return (error);
1749 	}
1750 
1751 	/*
1752 	 * Track the min and max ashift values for normal data devices.
1753 	 *
1754 	 * DJB - TBD these should perhaps be tracked per allocation class
1755 	 * (e.g. spa_min_ashift is used to round up post compression buffers)
1756 	 */
1757 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1758 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1759 	    vd->vdev_aux == NULL) {
1760 		if (vd->vdev_ashift > spa->spa_max_ashift)
1761 			spa->spa_max_ashift = vd->vdev_ashift;
1762 		if (vd->vdev_ashift < spa->spa_min_ashift)
1763 			spa->spa_min_ashift = vd->vdev_ashift;
1764 	}
1765 
1766 	/*
1767 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1768 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1769 	 * since this would just restart the scrub we are already doing.
1770 	 */
1771 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1772 	    vdev_resilver_needed(vd, NULL, NULL)) {
1773 		if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1774 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1775 			vdev_set_deferred_resilver(spa, vd);
1776 		else
1777 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1778 	}
1779 
1780 	return (0);
1781 }
1782 
1783 /*
1784  * Called once the vdevs are all opened, this routine validates the label
1785  * contents. This needs to be done before vdev_load() so that we don't
1786  * inadvertently do repair I/Os to the wrong device.
1787  *
1788  * This function will only return failure if one of the vdevs indicates that it
1789  * has since been destroyed or exported.  This is only possible if
1790  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1791  * will be updated but the function will return 0.
1792  */
1793 int
1794 vdev_validate(vdev_t *vd)
1795 {
1796 	spa_t *spa = vd->vdev_spa;
1797 	nvlist_t *label;
1798 	uint64_t guid = 0, aux_guid = 0, top_guid;
1799 	uint64_t state;
1800 	nvlist_t *nvl;
1801 	uint64_t txg;
1802 
1803 	if (vdev_validate_skip)
1804 		return (0);
1805 
1806 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1807 		if (vdev_validate(vd->vdev_child[c]) != 0)
1808 			return (SET_ERROR(EBADF));
1809 
1810 	/*
1811 	 * If the device has already failed, or was marked offline, don't do
1812 	 * any further validation.  Otherwise, label I/O will fail and we will
1813 	 * overwrite the previous state.
1814 	 */
1815 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1816 		return (0);
1817 
1818 	/*
1819 	 * If we are performing an extreme rewind, we allow for a label that
1820 	 * was modified at a point after the current txg.
1821 	 * If config lock is not held do not check for the txg. spa_sync could
1822 	 * be updating the vdev's label before updating spa_last_synced_txg.
1823 	 */
1824 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1825 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1826 		txg = UINT64_MAX;
1827 	else
1828 		txg = spa_last_synced_txg(spa);
1829 
1830 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1831 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1832 		    VDEV_AUX_BAD_LABEL);
1833 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1834 		    "txg %llu", (u_longlong_t)txg);
1835 		return (0);
1836 	}
1837 
1838 	/*
1839 	 * Determine if this vdev has been split off into another
1840 	 * pool.  If so, then refuse to open it.
1841 	 */
1842 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1843 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1844 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1845 		    VDEV_AUX_SPLIT_POOL);
1846 		nvlist_free(label);
1847 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1848 		return (0);
1849 	}
1850 
1851 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1852 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1853 		    VDEV_AUX_CORRUPT_DATA);
1854 		nvlist_free(label);
1855 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1856 		    ZPOOL_CONFIG_POOL_GUID);
1857 		return (0);
1858 	}
1859 
1860 	/*
1861 	 * If config is not trusted then ignore the spa guid check. This is
1862 	 * necessary because if the machine crashed during a re-guid the new
1863 	 * guid might have been written to all of the vdev labels, but not the
1864 	 * cached config. The check will be performed again once we have the
1865 	 * trusted config from the MOS.
1866 	 */
1867 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1868 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1869 		    VDEV_AUX_CORRUPT_DATA);
1870 		nvlist_free(label);
1871 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1872 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1873 		    (u_longlong_t)spa_guid(spa));
1874 		return (0);
1875 	}
1876 
1877 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1878 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1879 	    &aux_guid) != 0)
1880 		aux_guid = 0;
1881 
1882 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1883 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1884 		    VDEV_AUX_CORRUPT_DATA);
1885 		nvlist_free(label);
1886 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1887 		    ZPOOL_CONFIG_GUID);
1888 		return (0);
1889 	}
1890 
1891 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1892 	    != 0) {
1893 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1894 		    VDEV_AUX_CORRUPT_DATA);
1895 		nvlist_free(label);
1896 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1897 		    ZPOOL_CONFIG_TOP_GUID);
1898 		return (0);
1899 	}
1900 
1901 	/*
1902 	 * If this vdev just became a top-level vdev because its sibling was
1903 	 * detached, it will have adopted the parent's vdev guid -- but the
1904 	 * label may or may not be on disk yet. Fortunately, either version
1905 	 * of the label will have the same top guid, so if we're a top-level
1906 	 * vdev, we can safely compare to that instead.
1907 	 * However, if the config comes from a cachefile that failed to update
1908 	 * after the detach, a top-level vdev will appear as a non top-level
1909 	 * vdev in the config. Also relax the constraints if we perform an
1910 	 * extreme rewind.
1911 	 *
1912 	 * If we split this vdev off instead, then we also check the
1913 	 * original pool's guid. We don't want to consider the vdev
1914 	 * corrupt if it is partway through a split operation.
1915 	 */
1916 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1917 		boolean_t mismatch = B_FALSE;
1918 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1919 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1920 				mismatch = B_TRUE;
1921 		} else {
1922 			if (vd->vdev_guid != top_guid &&
1923 			    vd->vdev_top->vdev_guid != guid)
1924 				mismatch = B_TRUE;
1925 		}
1926 
1927 		if (mismatch) {
1928 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1929 			    VDEV_AUX_CORRUPT_DATA);
1930 			nvlist_free(label);
1931 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1932 			    "doesn't match label guid");
1933 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1934 			    (u_longlong_t)vd->vdev_guid,
1935 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1936 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1937 			    "aux_guid %llu", (u_longlong_t)guid,
1938 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1939 			return (0);
1940 		}
1941 	}
1942 
1943 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1944 	    &state) != 0) {
1945 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1946 		    VDEV_AUX_CORRUPT_DATA);
1947 		nvlist_free(label);
1948 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1949 		    ZPOOL_CONFIG_POOL_STATE);
1950 		return (0);
1951 	}
1952 
1953 	nvlist_free(label);
1954 
1955 	/*
1956 	 * If this is a verbatim import, no need to check the
1957 	 * state of the pool.
1958 	 */
1959 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1960 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1961 	    state != POOL_STATE_ACTIVE) {
1962 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1963 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1964 		return (SET_ERROR(EBADF));
1965 	}
1966 
1967 	/*
1968 	 * If we were able to open and validate a vdev that was
1969 	 * previously marked permanently unavailable, clear that state
1970 	 * now.
1971 	 */
1972 	if (vd->vdev_not_present)
1973 		vd->vdev_not_present = 0;
1974 
1975 	return (0);
1976 }
1977 
1978 static void
1979 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1980 {
1981 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1982 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1983 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1984 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1985 			    dvd->vdev_path, svd->vdev_path);
1986 			spa_strfree(dvd->vdev_path);
1987 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1988 		}
1989 	} else if (svd->vdev_path != NULL) {
1990 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1991 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1992 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1993 	}
1994 }
1995 
1996 /*
1997  * Recursively copy vdev paths from one vdev to another. Source and destination
1998  * vdev trees must have same geometry otherwise return error. Intended to copy
1999  * paths from userland config into MOS config.
2000  */
2001 int
2002 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2003 {
2004 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2005 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2006 	    (dvd->vdev_ops == &vdev_indirect_ops))
2007 		return (0);
2008 
2009 	if (svd->vdev_ops != dvd->vdev_ops) {
2010 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2011 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2012 		return (SET_ERROR(EINVAL));
2013 	}
2014 
2015 	if (svd->vdev_guid != dvd->vdev_guid) {
2016 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2017 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2018 		    (u_longlong_t)dvd->vdev_guid);
2019 		return (SET_ERROR(EINVAL));
2020 	}
2021 
2022 	if (svd->vdev_children != dvd->vdev_children) {
2023 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2024 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2025 		    (u_longlong_t)dvd->vdev_children);
2026 		return (SET_ERROR(EINVAL));
2027 	}
2028 
2029 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2030 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2031 		    dvd->vdev_child[i]);
2032 		if (error != 0)
2033 			return (error);
2034 	}
2035 
2036 	if (svd->vdev_ops->vdev_op_leaf)
2037 		vdev_copy_path_impl(svd, dvd);
2038 
2039 	return (0);
2040 }
2041 
2042 static void
2043 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2044 {
2045 	ASSERT(stvd->vdev_top == stvd);
2046 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2047 
2048 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2049 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2050 	}
2051 
2052 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2053 		return;
2054 
2055 	/*
2056 	 * The idea here is that while a vdev can shift positions within
2057 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2058 	 * step outside of it.
2059 	 */
2060 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2061 
2062 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2063 		return;
2064 
2065 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2066 
2067 	vdev_copy_path_impl(vd, dvd);
2068 }
2069 
2070 /*
2071  * Recursively copy vdev paths from one root vdev to another. Source and
2072  * destination vdev trees may differ in geometry. For each destination leaf
2073  * vdev, search a vdev with the same guid and top vdev id in the source.
2074  * Intended to copy paths from userland config into MOS config.
2075  */
2076 void
2077 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2078 {
2079 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2080 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2081 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2082 
2083 	for (uint64_t i = 0; i < children; i++) {
2084 		vdev_copy_path_search(srvd->vdev_child[i],
2085 		    drvd->vdev_child[i]);
2086 	}
2087 }
2088 
2089 /*
2090  * Close a virtual device.
2091  */
2092 void
2093 vdev_close(vdev_t *vd)
2094 {
2095 	spa_t *spa = vd->vdev_spa;
2096 	vdev_t *pvd = vd->vdev_parent;
2097 
2098 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2099 
2100 	/*
2101 	 * If our parent is reopening, then we are as well, unless we are
2102 	 * going offline.
2103 	 */
2104 	if (pvd != NULL && pvd->vdev_reopening)
2105 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2106 
2107 	vd->vdev_ops->vdev_op_close(vd);
2108 
2109 	vdev_cache_purge(vd);
2110 
2111 	/*
2112 	 * We record the previous state before we close it, so that if we are
2113 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2114 	 * it's still faulted.
2115 	 */
2116 	vd->vdev_prevstate = vd->vdev_state;
2117 
2118 	if (vd->vdev_offline)
2119 		vd->vdev_state = VDEV_STATE_OFFLINE;
2120 	else
2121 		vd->vdev_state = VDEV_STATE_CLOSED;
2122 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2123 }
2124 
2125 void
2126 vdev_hold(vdev_t *vd)
2127 {
2128 	spa_t *spa = vd->vdev_spa;
2129 
2130 	ASSERT(spa_is_root(spa));
2131 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2132 		return;
2133 
2134 	for (int c = 0; c < vd->vdev_children; c++)
2135 		vdev_hold(vd->vdev_child[c]);
2136 
2137 	if (vd->vdev_ops->vdev_op_leaf)
2138 		vd->vdev_ops->vdev_op_hold(vd);
2139 }
2140 
2141 void
2142 vdev_rele(vdev_t *vd)
2143 {
2144 	spa_t *spa = vd->vdev_spa;
2145 
2146 	ASSERT(spa_is_root(spa));
2147 	for (int c = 0; c < vd->vdev_children; c++)
2148 		vdev_rele(vd->vdev_child[c]);
2149 
2150 	if (vd->vdev_ops->vdev_op_leaf)
2151 		vd->vdev_ops->vdev_op_rele(vd);
2152 }
2153 
2154 /*
2155  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2156  * reopen leaf vdevs which had previously been opened as they might deadlock
2157  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2158  * If the leaf has never been opened then open it, as usual.
2159  */
2160 void
2161 vdev_reopen(vdev_t *vd)
2162 {
2163 	spa_t *spa = vd->vdev_spa;
2164 
2165 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2166 
2167 	/* set the reopening flag unless we're taking the vdev offline */
2168 	vd->vdev_reopening = !vd->vdev_offline;
2169 	vdev_close(vd);
2170 	(void) vdev_open(vd);
2171 
2172 	/*
2173 	 * Call vdev_validate() here to make sure we have the same device.
2174 	 * Otherwise, a device with an invalid label could be successfully
2175 	 * opened in response to vdev_reopen().
2176 	 */
2177 	if (vd->vdev_aux) {
2178 		(void) vdev_validate_aux(vd);
2179 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2180 		    vd->vdev_aux == &spa->spa_l2cache &&
2181 		    !l2arc_vdev_present(vd))
2182 			l2arc_add_vdev(spa, vd);
2183 	} else {
2184 		(void) vdev_validate(vd);
2185 	}
2186 
2187 	/*
2188 	 * Reassess parent vdev's health.
2189 	 */
2190 	vdev_propagate_state(vd);
2191 }
2192 
2193 int
2194 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2195 {
2196 	int error;
2197 
2198 	/*
2199 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2200 	 * For a create, however, we want to fail the request if
2201 	 * there are any components we can't open.
2202 	 */
2203 	error = vdev_open(vd);
2204 
2205 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2206 		vdev_close(vd);
2207 		return (error ? error : ENXIO);
2208 	}
2209 
2210 	/*
2211 	 * Recursively load DTLs and initialize all labels.
2212 	 */
2213 	if ((error = vdev_dtl_load(vd)) != 0 ||
2214 	    (error = vdev_label_init(vd, txg, isreplacing ?
2215 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2216 		vdev_close(vd);
2217 		return (error);
2218 	}
2219 
2220 	return (0);
2221 }
2222 
2223 void
2224 vdev_metaslab_set_size(vdev_t *vd)
2225 {
2226 	uint64_t asize = vd->vdev_asize;
2227 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2228 	uint64_t ms_shift;
2229 
2230 	/* BEGIN CSTYLED */
2231 	/*
2232 	 * There are two dimensions to the metaslab sizing calculation:
2233 	 * the size of the metaslab and the count of metaslabs per vdev.
2234 	 *
2235 	 * The default values used below are a good balance between memory
2236 	 * usage (larger metaslab size means more memory needed for loaded
2237 	 * metaslabs; more metaslabs means more memory needed for the
2238 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2239 	 * longer to load), and metaslab sync time (more metaslabs means
2240 	 * more time spent syncing all of them).
2241 	 *
2242 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2243 	 * The range of the dimensions are as follows:
2244 	 *
2245 	 *	2^29 <= ms_size  <= 2^34
2246 	 *	  16 <= ms_count <= 131,072
2247 	 *
2248 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2249 	 * at least 512MB (2^29) to minimize fragmentation effects when
2250 	 * testing with smaller devices.  However, the count constraint
2251 	 * of at least 16 metaslabs will override this minimum size goal.
2252 	 *
2253 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2254 	 * size of 16GB.  However, we will cap the total count to 2^17
2255 	 * metaslabs to keep our memory footprint in check and let the
2256 	 * metaslab size grow from there if that limit is hit.
2257 	 *
2258 	 * The net effect of applying above constrains is summarized below.
2259 	 *
2260 	 *   vdev size	    metaslab count
2261 	 *  --------------|-----------------
2262 	 *	< 8GB		~16
2263 	 *  8GB   - 100GB	one per 512MB
2264 	 *  100GB - 3TB		~200
2265 	 *  3TB   - 2PB		one per 16GB
2266 	 *	> 2PB		~131,072
2267 	 *  --------------------------------
2268 	 *
2269 	 *  Finally, note that all of the above calculate the initial
2270 	 *  number of metaslabs. Expanding a top-level vdev will result
2271 	 *  in additional metaslabs being allocated making it possible
2272 	 *  to exceed the zfs_vdev_ms_count_limit.
2273 	 */
2274 	/* END CSTYLED */
2275 
2276 	if (ms_count < zfs_vdev_min_ms_count)
2277 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2278 	else if (ms_count > zfs_vdev_default_ms_count)
2279 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2280 	else
2281 		ms_shift = zfs_vdev_default_ms_shift;
2282 
2283 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2284 		ms_shift = SPA_MAXBLOCKSHIFT;
2285 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2286 		ms_shift = zfs_vdev_max_ms_shift;
2287 		/* cap the total count to constrain memory footprint */
2288 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2289 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2290 	}
2291 
2292 	vd->vdev_ms_shift = ms_shift;
2293 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2294 }
2295 
2296 void
2297 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2298 {
2299 	ASSERT(vd == vd->vdev_top);
2300 	/* indirect vdevs don't have metaslabs or dtls */
2301 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2302 	ASSERT(ISP2(flags));
2303 	ASSERT(spa_writeable(vd->vdev_spa));
2304 
2305 	if (flags & VDD_METASLAB)
2306 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2307 
2308 	if (flags & VDD_DTL)
2309 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2310 
2311 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2312 }
2313 
2314 void
2315 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2316 {
2317 	for (int c = 0; c < vd->vdev_children; c++)
2318 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2319 
2320 	if (vd->vdev_ops->vdev_op_leaf)
2321 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2322 }
2323 
2324 /*
2325  * DTLs.
2326  *
2327  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2328  * the vdev has less than perfect replication.  There are four kinds of DTL:
2329  *
2330  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2331  *
2332  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2333  *
2334  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2335  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2336  *	txgs that was scrubbed.
2337  *
2338  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2339  *	persistent errors or just some device being offline.
2340  *	Unlike the other three, the DTL_OUTAGE map is not generally
2341  *	maintained; it's only computed when needed, typically to
2342  *	determine whether a device can be detached.
2343  *
2344  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2345  * either has the data or it doesn't.
2346  *
2347  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2348  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2349  * if any child is less than fully replicated, then so is its parent.
2350  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2351  * comprising only those txgs which appear in 'maxfaults' or more children;
2352  * those are the txgs we don't have enough replication to read.  For example,
2353  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2354  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2355  * two child DTL_MISSING maps.
2356  *
2357  * It should be clear from the above that to compute the DTLs and outage maps
2358  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2359  * Therefore, that is all we keep on disk.  When loading the pool, or after
2360  * a configuration change, we generate all other DTLs from first principles.
2361  */
2362 void
2363 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2364 {
2365 	range_tree_t *rt = vd->vdev_dtl[t];
2366 
2367 	ASSERT(t < DTL_TYPES);
2368 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2369 	ASSERT(spa_writeable(vd->vdev_spa));
2370 
2371 	mutex_enter(&vd->vdev_dtl_lock);
2372 	if (!range_tree_contains(rt, txg, size))
2373 		range_tree_add(rt, txg, size);
2374 	mutex_exit(&vd->vdev_dtl_lock);
2375 }
2376 
2377 boolean_t
2378 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2379 {
2380 	range_tree_t *rt = vd->vdev_dtl[t];
2381 	boolean_t dirty = B_FALSE;
2382 
2383 	ASSERT(t < DTL_TYPES);
2384 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2385 
2386 	/*
2387 	 * While we are loading the pool, the DTLs have not been loaded yet.
2388 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2389 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2390 	 * when loading the pool (relying on the checksum to ensure that
2391 	 * we get the right data -- note that we while loading, we are
2392 	 * only reading the MOS, which is always checksummed).
2393 	 */
2394 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2395 		return (B_FALSE);
2396 
2397 	mutex_enter(&vd->vdev_dtl_lock);
2398 	if (!range_tree_is_empty(rt))
2399 		dirty = range_tree_contains(rt, txg, size);
2400 	mutex_exit(&vd->vdev_dtl_lock);
2401 
2402 	return (dirty);
2403 }
2404 
2405 boolean_t
2406 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2407 {
2408 	range_tree_t *rt = vd->vdev_dtl[t];
2409 	boolean_t empty;
2410 
2411 	mutex_enter(&vd->vdev_dtl_lock);
2412 	empty = range_tree_is_empty(rt);
2413 	mutex_exit(&vd->vdev_dtl_lock);
2414 
2415 	return (empty);
2416 }
2417 
2418 /*
2419  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2420  */
2421 boolean_t
2422 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2423 {
2424 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2425 
2426 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2427 	    vd->vdev_ops->vdev_op_leaf)
2428 		return (B_TRUE);
2429 
2430 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2431 }
2432 
2433 /*
2434  * Returns the lowest txg in the DTL range.
2435  */
2436 static uint64_t
2437 vdev_dtl_min(vdev_t *vd)
2438 {
2439 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2440 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2441 	ASSERT0(vd->vdev_children);
2442 
2443 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2444 }
2445 
2446 /*
2447  * Returns the highest txg in the DTL.
2448  */
2449 static uint64_t
2450 vdev_dtl_max(vdev_t *vd)
2451 {
2452 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2453 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2454 	ASSERT0(vd->vdev_children);
2455 
2456 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2457 }
2458 
2459 /*
2460  * Determine if a resilvering vdev should remove any DTL entries from
2461  * its range. If the vdev was resilvering for the entire duration of the
2462  * scan then it should excise that range from its DTLs. Otherwise, this
2463  * vdev is considered partially resilvered and should leave its DTL
2464  * entries intact. The comment in vdev_dtl_reassess() describes how we
2465  * excise the DTLs.
2466  */
2467 static boolean_t
2468 vdev_dtl_should_excise(vdev_t *vd)
2469 {
2470 	spa_t *spa = vd->vdev_spa;
2471 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2472 
2473 	ASSERT0(scn->scn_phys.scn_errors);
2474 	ASSERT0(vd->vdev_children);
2475 
2476 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2477 		return (B_FALSE);
2478 
2479 	if (vd->vdev_resilver_deferred)
2480 		return (B_FALSE);
2481 
2482 	if (vd->vdev_resilver_txg == 0 ||
2483 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2484 		return (B_TRUE);
2485 
2486 	/*
2487 	 * When a resilver is initiated the scan will assign the scn_max_txg
2488 	 * value to the highest txg value that exists in all DTLs. If this
2489 	 * device's max DTL is not part of this scan (i.e. it is not in
2490 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2491 	 * for excision.
2492 	 */
2493 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2494 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2495 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2496 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2497 		return (B_TRUE);
2498 	}
2499 	return (B_FALSE);
2500 }
2501 
2502 /*
2503  * Reassess DTLs after a config change or scrub completion.
2504  */
2505 void
2506 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2507 {
2508 	spa_t *spa = vd->vdev_spa;
2509 	avl_tree_t reftree;
2510 	int minref;
2511 
2512 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2513 
2514 	for (int c = 0; c < vd->vdev_children; c++)
2515 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2516 		    scrub_txg, scrub_done);
2517 
2518 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2519 		return;
2520 
2521 	if (vd->vdev_ops->vdev_op_leaf) {
2522 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2523 
2524 		mutex_enter(&vd->vdev_dtl_lock);
2525 
2526 		/*
2527 		 * If we've completed a scan cleanly then determine
2528 		 * if this vdev should remove any DTLs. We only want to
2529 		 * excise regions on vdevs that were available during
2530 		 * the entire duration of this scan.
2531 		 */
2532 		if (scrub_txg != 0 &&
2533 		    (spa->spa_scrub_started ||
2534 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2535 		    vdev_dtl_should_excise(vd)) {
2536 			/*
2537 			 * We completed a scrub up to scrub_txg.  If we
2538 			 * did it without rebooting, then the scrub dtl
2539 			 * will be valid, so excise the old region and
2540 			 * fold in the scrub dtl.  Otherwise, leave the
2541 			 * dtl as-is if there was an error.
2542 			 *
2543 			 * There's little trick here: to excise the beginning
2544 			 * of the DTL_MISSING map, we put it into a reference
2545 			 * tree and then add a segment with refcnt -1 that
2546 			 * covers the range [0, scrub_txg).  This means
2547 			 * that each txg in that range has refcnt -1 or 0.
2548 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2549 			 * entries in the range [0, scrub_txg) will have a
2550 			 * positive refcnt -- either 1 or 2.  We then convert
2551 			 * the reference tree into the new DTL_MISSING map.
2552 			 */
2553 			space_reftree_create(&reftree);
2554 			space_reftree_add_map(&reftree,
2555 			    vd->vdev_dtl[DTL_MISSING], 1);
2556 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2557 			space_reftree_add_map(&reftree,
2558 			    vd->vdev_dtl[DTL_SCRUB], 2);
2559 			space_reftree_generate_map(&reftree,
2560 			    vd->vdev_dtl[DTL_MISSING], 1);
2561 			space_reftree_destroy(&reftree);
2562 		}
2563 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2564 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2565 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2566 		if (scrub_done)
2567 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2568 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2569 		if (!vdev_readable(vd))
2570 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2571 		else
2572 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2573 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2574 
2575 		/*
2576 		 * If the vdev was resilvering and no longer has any
2577 		 * DTLs then reset its resilvering flag.
2578 		 */
2579 		if (vd->vdev_resilver_txg != 0 &&
2580 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2581 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2582 			vd->vdev_resilver_txg = 0;
2583 
2584 		mutex_exit(&vd->vdev_dtl_lock);
2585 
2586 		if (txg != 0)
2587 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2588 		return;
2589 	}
2590 
2591 	mutex_enter(&vd->vdev_dtl_lock);
2592 	for (int t = 0; t < DTL_TYPES; t++) {
2593 		/* account for child's outage in parent's missing map */
2594 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2595 		if (t == DTL_SCRUB)
2596 			continue;			/* leaf vdevs only */
2597 		if (t == DTL_PARTIAL)
2598 			minref = 1;			/* i.e. non-zero */
2599 		else if (vd->vdev_nparity != 0)
2600 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2601 		else
2602 			minref = vd->vdev_children;	/* any kind of mirror */
2603 		space_reftree_create(&reftree);
2604 		for (int c = 0; c < vd->vdev_children; c++) {
2605 			vdev_t *cvd = vd->vdev_child[c];
2606 			mutex_enter(&cvd->vdev_dtl_lock);
2607 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2608 			mutex_exit(&cvd->vdev_dtl_lock);
2609 		}
2610 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2611 		space_reftree_destroy(&reftree);
2612 	}
2613 	mutex_exit(&vd->vdev_dtl_lock);
2614 }
2615 
2616 int
2617 vdev_dtl_load(vdev_t *vd)
2618 {
2619 	spa_t *spa = vd->vdev_spa;
2620 	objset_t *mos = spa->spa_meta_objset;
2621 	int error = 0;
2622 
2623 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2624 		ASSERT(vdev_is_concrete(vd));
2625 
2626 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2627 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2628 		if (error)
2629 			return (error);
2630 		ASSERT(vd->vdev_dtl_sm != NULL);
2631 
2632 		mutex_enter(&vd->vdev_dtl_lock);
2633 		error = space_map_load(vd->vdev_dtl_sm,
2634 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2635 		mutex_exit(&vd->vdev_dtl_lock);
2636 
2637 		return (error);
2638 	}
2639 
2640 	for (int c = 0; c < vd->vdev_children; c++) {
2641 		error = vdev_dtl_load(vd->vdev_child[c]);
2642 		if (error != 0)
2643 			break;
2644 	}
2645 
2646 	return (error);
2647 }
2648 
2649 static void
2650 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2651 {
2652 	spa_t *spa = vd->vdev_spa;
2653 	objset_t *mos = spa->spa_meta_objset;
2654 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2655 	const char *string;
2656 
2657 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2658 
2659 	string =
2660 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2661 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2662 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2663 
2664 	ASSERT(string != NULL);
2665 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2666 	    1, strlen(string) + 1, string, tx));
2667 
2668 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2669 		spa_activate_allocation_classes(spa, tx);
2670 	}
2671 }
2672 
2673 void
2674 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2675 {
2676 	spa_t *spa = vd->vdev_spa;
2677 
2678 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2679 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2680 	    zapobj, tx));
2681 }
2682 
2683 uint64_t
2684 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2685 {
2686 	spa_t *spa = vd->vdev_spa;
2687 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2688 	    DMU_OT_NONE, 0, tx);
2689 
2690 	ASSERT(zap != 0);
2691 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2692 	    zap, tx));
2693 
2694 	return (zap);
2695 }
2696 
2697 void
2698 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2699 {
2700 	if (vd->vdev_ops != &vdev_hole_ops &&
2701 	    vd->vdev_ops != &vdev_missing_ops &&
2702 	    vd->vdev_ops != &vdev_root_ops &&
2703 	    !vd->vdev_top->vdev_removing) {
2704 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2705 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2706 		}
2707 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2708 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2709 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2710 				vdev_zap_allocation_data(vd, tx);
2711 		}
2712 	}
2713 
2714 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2715 		vdev_construct_zaps(vd->vdev_child[i], tx);
2716 	}
2717 }
2718 
2719 void
2720 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2721 {
2722 	spa_t *spa = vd->vdev_spa;
2723 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2724 	objset_t *mos = spa->spa_meta_objset;
2725 	range_tree_t *rtsync;
2726 	dmu_tx_t *tx;
2727 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2728 
2729 	ASSERT(vdev_is_concrete(vd));
2730 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2731 
2732 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2733 
2734 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2735 		mutex_enter(&vd->vdev_dtl_lock);
2736 		space_map_free(vd->vdev_dtl_sm, tx);
2737 		space_map_close(vd->vdev_dtl_sm);
2738 		vd->vdev_dtl_sm = NULL;
2739 		mutex_exit(&vd->vdev_dtl_lock);
2740 
2741 		/*
2742 		 * We only destroy the leaf ZAP for detached leaves or for
2743 		 * removed log devices. Removed data devices handle leaf ZAP
2744 		 * cleanup later, once cancellation is no longer possible.
2745 		 */
2746 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2747 		    vd->vdev_top->vdev_islog)) {
2748 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2749 			vd->vdev_leaf_zap = 0;
2750 		}
2751 
2752 		dmu_tx_commit(tx);
2753 		return;
2754 	}
2755 
2756 	if (vd->vdev_dtl_sm == NULL) {
2757 		uint64_t new_object;
2758 
2759 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
2760 		VERIFY3U(new_object, !=, 0);
2761 
2762 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2763 		    0, -1ULL, 0));
2764 		ASSERT(vd->vdev_dtl_sm != NULL);
2765 	}
2766 
2767 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
2768 
2769 	mutex_enter(&vd->vdev_dtl_lock);
2770 	range_tree_walk(rt, range_tree_add, rtsync);
2771 	mutex_exit(&vd->vdev_dtl_lock);
2772 
2773 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
2774 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2775 	range_tree_vacate(rtsync, NULL, NULL);
2776 
2777 	range_tree_destroy(rtsync);
2778 
2779 	/*
2780 	 * If the object for the space map has changed then dirty
2781 	 * the top level so that we update the config.
2782 	 */
2783 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2784 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2785 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2786 		    (u_longlong_t)object,
2787 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2788 		vdev_config_dirty(vd->vdev_top);
2789 	}
2790 
2791 	dmu_tx_commit(tx);
2792 }
2793 
2794 /*
2795  * Determine whether the specified vdev can be offlined/detached/removed
2796  * without losing data.
2797  */
2798 boolean_t
2799 vdev_dtl_required(vdev_t *vd)
2800 {
2801 	spa_t *spa = vd->vdev_spa;
2802 	vdev_t *tvd = vd->vdev_top;
2803 	uint8_t cant_read = vd->vdev_cant_read;
2804 	boolean_t required;
2805 
2806 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2807 
2808 	if (vd == spa->spa_root_vdev || vd == tvd)
2809 		return (B_TRUE);
2810 
2811 	/*
2812 	 * Temporarily mark the device as unreadable, and then determine
2813 	 * whether this results in any DTL outages in the top-level vdev.
2814 	 * If not, we can safely offline/detach/remove the device.
2815 	 */
2816 	vd->vdev_cant_read = B_TRUE;
2817 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2818 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2819 	vd->vdev_cant_read = cant_read;
2820 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2821 
2822 	if (!required && zio_injection_enabled)
2823 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2824 
2825 	return (required);
2826 }
2827 
2828 /*
2829  * Determine if resilver is needed, and if so the txg range.
2830  */
2831 boolean_t
2832 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2833 {
2834 	boolean_t needed = B_FALSE;
2835 	uint64_t thismin = UINT64_MAX;
2836 	uint64_t thismax = 0;
2837 
2838 	if (vd->vdev_children == 0) {
2839 		mutex_enter(&vd->vdev_dtl_lock);
2840 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2841 		    vdev_writeable(vd)) {
2842 
2843 			thismin = vdev_dtl_min(vd);
2844 			thismax = vdev_dtl_max(vd);
2845 			needed = B_TRUE;
2846 		}
2847 		mutex_exit(&vd->vdev_dtl_lock);
2848 	} else {
2849 		for (int c = 0; c < vd->vdev_children; c++) {
2850 			vdev_t *cvd = vd->vdev_child[c];
2851 			uint64_t cmin, cmax;
2852 
2853 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2854 				thismin = MIN(thismin, cmin);
2855 				thismax = MAX(thismax, cmax);
2856 				needed = B_TRUE;
2857 			}
2858 		}
2859 	}
2860 
2861 	if (needed && minp) {
2862 		*minp = thismin;
2863 		*maxp = thismax;
2864 	}
2865 	return (needed);
2866 }
2867 
2868 /*
2869  * Gets the checkpoint space map object from the vdev's ZAP.
2870  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2871  * or the ZAP doesn't exist yet.
2872  */
2873 int
2874 vdev_checkpoint_sm_object(vdev_t *vd)
2875 {
2876 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2877 	if (vd->vdev_top_zap == 0) {
2878 		return (0);
2879 	}
2880 
2881 	uint64_t sm_obj = 0;
2882 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2883 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2884 
2885 	ASSERT(err == 0 || err == ENOENT);
2886 
2887 	return (sm_obj);
2888 }
2889 
2890 int
2891 vdev_load(vdev_t *vd)
2892 {
2893 	int error = 0;
2894 	/*
2895 	 * Recursively load all children.
2896 	 */
2897 	for (int c = 0; c < vd->vdev_children; c++) {
2898 		error = vdev_load(vd->vdev_child[c]);
2899 		if (error != 0) {
2900 			return (error);
2901 		}
2902 	}
2903 
2904 	vdev_set_deflate_ratio(vd);
2905 
2906 	/*
2907 	 * On spa_load path, grab the allocation bias from our zap
2908 	 */
2909 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2910 		spa_t *spa = vd->vdev_spa;
2911 		char bias_str[64];
2912 
2913 		if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2914 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2915 		    bias_str) == 0) {
2916 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2917 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2918 		}
2919 	}
2920 
2921 	/*
2922 	 * If this is a top-level vdev, initialize its metaslabs.
2923 	 */
2924 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2925 		vdev_metaslab_group_create(vd);
2926 
2927 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2928 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2929 			    VDEV_AUX_CORRUPT_DATA);
2930 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2931 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2932 			    (u_longlong_t)vd->vdev_asize);
2933 			return (SET_ERROR(ENXIO));
2934 		}
2935 
2936 		error = vdev_metaslab_init(vd, 0);
2937 		if (error != 0) {
2938 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2939 			    "[error=%d]", error);
2940 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2941 			    VDEV_AUX_CORRUPT_DATA);
2942 			return (error);
2943 		}
2944 
2945 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2946 		if (checkpoint_sm_obj != 0) {
2947 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2948 			ASSERT(vd->vdev_asize != 0);
2949 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2950 
2951 			error = space_map_open(&vd->vdev_checkpoint_sm,
2952 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2953 			    vd->vdev_ashift);
2954 			if (error != 0) {
2955 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2956 				    "failed for checkpoint spacemap (obj %llu) "
2957 				    "[error=%d]",
2958 				    (u_longlong_t)checkpoint_sm_obj, error);
2959 				return (error);
2960 			}
2961 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2962 
2963 			/*
2964 			 * Since the checkpoint_sm contains free entries
2965 			 * exclusively we can use space_map_allocated() to
2966 			 * indicate the cumulative checkpointed space that
2967 			 * has been freed.
2968 			 */
2969 			vd->vdev_stat.vs_checkpoint_space =
2970 			    -space_map_allocated(vd->vdev_checkpoint_sm);
2971 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2972 			    vd->vdev_stat.vs_checkpoint_space;
2973 		}
2974 	}
2975 
2976 	/*
2977 	 * If this is a leaf vdev, load its DTL.
2978 	 */
2979 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2980 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2981 		    VDEV_AUX_CORRUPT_DATA);
2982 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2983 		    "[error=%d]", error);
2984 		return (error);
2985 	}
2986 
2987 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2988 	if (obsolete_sm_object != 0) {
2989 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2990 		ASSERT(vd->vdev_asize != 0);
2991 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2992 
2993 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2994 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2995 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2996 			    VDEV_AUX_CORRUPT_DATA);
2997 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2998 			    "obsolete spacemap (obj %llu) [error=%d]",
2999 			    (u_longlong_t)obsolete_sm_object, error);
3000 			return (error);
3001 		}
3002 	}
3003 
3004 	return (0);
3005 }
3006 
3007 /*
3008  * The special vdev case is used for hot spares and l2cache devices.  Its
3009  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3010  * we make sure that we can open the underlying device, then try to read the
3011  * label, and make sure that the label is sane and that it hasn't been
3012  * repurposed to another pool.
3013  */
3014 int
3015 vdev_validate_aux(vdev_t *vd)
3016 {
3017 	nvlist_t *label;
3018 	uint64_t guid, version;
3019 	uint64_t state;
3020 
3021 	if (!vdev_readable(vd))
3022 		return (0);
3023 
3024 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3025 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3026 		    VDEV_AUX_CORRUPT_DATA);
3027 		return (-1);
3028 	}
3029 
3030 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3031 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3032 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3033 	    guid != vd->vdev_guid ||
3034 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3035 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3036 		    VDEV_AUX_CORRUPT_DATA);
3037 		nvlist_free(label);
3038 		return (-1);
3039 	}
3040 
3041 	/*
3042 	 * We don't actually check the pool state here.  If it's in fact in
3043 	 * use by another pool, we update this fact on the fly when requested.
3044 	 */
3045 	nvlist_free(label);
3046 	return (0);
3047 }
3048 
3049 static void
3050 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3051 {
3052 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3053 
3054 	if (vd->vdev_top_zap == 0)
3055 		return;
3056 
3057 	uint64_t object = 0;
3058 	int err = zap_lookup(mos, vd->vdev_top_zap,
3059 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3060 	if (err == ENOENT)
3061 		return;
3062 
3063 	VERIFY0(dmu_object_free(mos, object, tx));
3064 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3065 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3066 }
3067 
3068 /*
3069  * Free the objects used to store this vdev's spacemaps, and the array
3070  * that points to them.
3071  */
3072 void
3073 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3074 {
3075 	if (vd->vdev_ms_array == 0)
3076 		return;
3077 
3078 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3079 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3080 	size_t array_bytes = array_count * sizeof (uint64_t);
3081 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3082 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3083 	    array_bytes, smobj_array, 0));
3084 
3085 	for (uint64_t i = 0; i < array_count; i++) {
3086 		uint64_t smobj = smobj_array[i];
3087 		if (smobj == 0)
3088 			continue;
3089 
3090 		space_map_free_obj(mos, smobj, tx);
3091 	}
3092 
3093 	kmem_free(smobj_array, array_bytes);
3094 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3095 	vdev_destroy_ms_flush_data(vd, tx);
3096 	vd->vdev_ms_array = 0;
3097 }
3098 
3099 static void
3100 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3101 {
3102 	spa_t *spa = vd->vdev_spa;
3103 
3104 	ASSERT(vd->vdev_islog);
3105 	ASSERT(vd == vd->vdev_top);
3106 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3107 
3108 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3109 
3110 	vdev_destroy_spacemaps(vd, tx);
3111 	if (vd->vdev_top_zap != 0) {
3112 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3113 		vd->vdev_top_zap = 0;
3114 	}
3115 
3116 	dmu_tx_commit(tx);
3117 }
3118 
3119 void
3120 vdev_sync_done(vdev_t *vd, uint64_t txg)
3121 {
3122 	metaslab_t *msp;
3123 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3124 
3125 	ASSERT(vdev_is_concrete(vd));
3126 
3127 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3128 	    != NULL)
3129 		metaslab_sync_done(msp, txg);
3130 
3131 	if (reassess)
3132 		metaslab_sync_reassess(vd->vdev_mg);
3133 }
3134 
3135 void
3136 vdev_sync(vdev_t *vd, uint64_t txg)
3137 {
3138 	spa_t *spa = vd->vdev_spa;
3139 	vdev_t *lvd;
3140 	metaslab_t *msp;
3141 
3142 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3143 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3144 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3145 		ASSERT(vd->vdev_removing ||
3146 		    vd->vdev_ops == &vdev_indirect_ops);
3147 
3148 		vdev_indirect_sync_obsolete(vd, tx);
3149 
3150 		/*
3151 		 * If the vdev is indirect, it can't have dirty
3152 		 * metaslabs or DTLs.
3153 		 */
3154 		if (vd->vdev_ops == &vdev_indirect_ops) {
3155 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3156 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3157 			dmu_tx_commit(tx);
3158 			return;
3159 		}
3160 	}
3161 
3162 	ASSERT(vdev_is_concrete(vd));
3163 
3164 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3165 	    !vd->vdev_removing) {
3166 		ASSERT(vd == vd->vdev_top);
3167 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3168 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3169 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3170 		ASSERT(vd->vdev_ms_array != 0);
3171 		vdev_config_dirty(vd);
3172 	}
3173 
3174 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3175 		metaslab_sync(msp, txg);
3176 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3177 	}
3178 
3179 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3180 		vdev_dtl_sync(lvd, txg);
3181 
3182 	/*
3183 	 * If this is an empty log device being removed, destroy the
3184 	 * metadata associated with it.
3185 	 */
3186 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3187 		vdev_remove_empty_log(vd, txg);
3188 
3189 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3190 	dmu_tx_commit(tx);
3191 }
3192 
3193 uint64_t
3194 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3195 {
3196 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3197 }
3198 
3199 /*
3200  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3201  * not be opened, and no I/O is attempted.
3202  */
3203 int
3204 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3205 {
3206 	vdev_t *vd, *tvd;
3207 
3208 	spa_vdev_state_enter(spa, SCL_NONE);
3209 
3210 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3211 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3212 
3213 	if (!vd->vdev_ops->vdev_op_leaf)
3214 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3215 
3216 	tvd = vd->vdev_top;
3217 
3218 	/*
3219 	 * We don't directly use the aux state here, but if we do a
3220 	 * vdev_reopen(), we need this value to be present to remember why we
3221 	 * were faulted.
3222 	 */
3223 	vd->vdev_label_aux = aux;
3224 
3225 	/*
3226 	 * Faulted state takes precedence over degraded.
3227 	 */
3228 	vd->vdev_delayed_close = B_FALSE;
3229 	vd->vdev_faulted = 1ULL;
3230 	vd->vdev_degraded = 0ULL;
3231 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3232 
3233 	/*
3234 	 * If this device has the only valid copy of the data, then
3235 	 * back off and simply mark the vdev as degraded instead.
3236 	 */
3237 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3238 		vd->vdev_degraded = 1ULL;
3239 		vd->vdev_faulted = 0ULL;
3240 
3241 		/*
3242 		 * If we reopen the device and it's not dead, only then do we
3243 		 * mark it degraded.
3244 		 */
3245 		vdev_reopen(tvd);
3246 
3247 		if (vdev_readable(vd))
3248 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3249 	}
3250 
3251 	return (spa_vdev_state_exit(spa, vd, 0));
3252 }
3253 
3254 /*
3255  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3256  * user that something is wrong.  The vdev continues to operate as normal as far
3257  * as I/O is concerned.
3258  */
3259 int
3260 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3261 {
3262 	vdev_t *vd;
3263 
3264 	spa_vdev_state_enter(spa, SCL_NONE);
3265 
3266 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3267 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3268 
3269 	if (!vd->vdev_ops->vdev_op_leaf)
3270 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3271 
3272 	/*
3273 	 * If the vdev is already faulted, then don't do anything.
3274 	 */
3275 	if (vd->vdev_faulted || vd->vdev_degraded)
3276 		return (spa_vdev_state_exit(spa, NULL, 0));
3277 
3278 	vd->vdev_degraded = 1ULL;
3279 	if (!vdev_is_dead(vd))
3280 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3281 		    aux);
3282 
3283 	return (spa_vdev_state_exit(spa, vd, 0));
3284 }
3285 
3286 /*
3287  * Online the given vdev.
3288  *
3289  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3290  * spare device should be detached when the device finishes resilvering.
3291  * Second, the online should be treated like a 'test' online case, so no FMA
3292  * events are generated if the device fails to open.
3293  */
3294 int
3295 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3296 {
3297 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3298 	boolean_t wasoffline;
3299 	vdev_state_t oldstate;
3300 
3301 	spa_vdev_state_enter(spa, SCL_NONE);
3302 
3303 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3304 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3305 
3306 	if (!vd->vdev_ops->vdev_op_leaf)
3307 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3308 
3309 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3310 	oldstate = vd->vdev_state;
3311 
3312 	tvd = vd->vdev_top;
3313 	vd->vdev_offline = B_FALSE;
3314 	vd->vdev_tmpoffline = B_FALSE;
3315 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3316 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3317 
3318 	/* XXX - L2ARC 1.0 does not support expansion */
3319 	if (!vd->vdev_aux) {
3320 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3321 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3322 	}
3323 
3324 	vdev_reopen(tvd);
3325 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3326 
3327 	if (!vd->vdev_aux) {
3328 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3329 			pvd->vdev_expanding = B_FALSE;
3330 	}
3331 
3332 	if (newstate)
3333 		*newstate = vd->vdev_state;
3334 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3335 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3336 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3337 	    vd->vdev_parent->vdev_child[0] == vd)
3338 		vd->vdev_unspare = B_TRUE;
3339 
3340 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3341 
3342 		/* XXX - L2ARC 1.0 does not support expansion */
3343 		if (vd->vdev_aux)
3344 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3345 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3346 	}
3347 
3348 	/* Restart initializing if necessary */
3349 	mutex_enter(&vd->vdev_initialize_lock);
3350 	if (vdev_writeable(vd) &&
3351 	    vd->vdev_initialize_thread == NULL &&
3352 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3353 		(void) vdev_initialize(vd);
3354 	}
3355 	mutex_exit(&vd->vdev_initialize_lock);
3356 
3357 	/* Restart trimming if necessary */
3358 	mutex_enter(&vd->vdev_trim_lock);
3359 	if (vdev_writeable(vd) &&
3360 	    vd->vdev_trim_thread == NULL &&
3361 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3362 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3363 		    vd->vdev_trim_secure);
3364 	}
3365 	mutex_exit(&vd->vdev_trim_lock);
3366 
3367 	if (wasoffline ||
3368 	    (oldstate < VDEV_STATE_DEGRADED &&
3369 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3370 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3371 
3372 	return (spa_vdev_state_exit(spa, vd, 0));
3373 }
3374 
3375 static int
3376 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3377 {
3378 	vdev_t *vd, *tvd;
3379 	int error = 0;
3380 	uint64_t generation;
3381 	metaslab_group_t *mg;
3382 
3383 top:
3384 	spa_vdev_state_enter(spa, SCL_ALLOC);
3385 
3386 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3387 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3388 
3389 	if (!vd->vdev_ops->vdev_op_leaf)
3390 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3391 
3392 	tvd = vd->vdev_top;
3393 	mg = tvd->vdev_mg;
3394 	generation = spa->spa_config_generation + 1;
3395 
3396 	/*
3397 	 * If the device isn't already offline, try to offline it.
3398 	 */
3399 	if (!vd->vdev_offline) {
3400 		/*
3401 		 * If this device has the only valid copy of some data,
3402 		 * don't allow it to be offlined. Log devices are always
3403 		 * expendable.
3404 		 */
3405 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3406 		    vdev_dtl_required(vd))
3407 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3408 
3409 		/*
3410 		 * If the top-level is a slog and it has had allocations
3411 		 * then proceed.  We check that the vdev's metaslab group
3412 		 * is not NULL since it's possible that we may have just
3413 		 * added this vdev but not yet initialized its metaslabs.
3414 		 */
3415 		if (tvd->vdev_islog && mg != NULL) {
3416 			/*
3417 			 * Prevent any future allocations.
3418 			 */
3419 			metaslab_group_passivate(mg);
3420 			(void) spa_vdev_state_exit(spa, vd, 0);
3421 
3422 			error = spa_reset_logs(spa);
3423 
3424 			/*
3425 			 * If the log device was successfully reset but has
3426 			 * checkpointed data, do not offline it.
3427 			 */
3428 			if (error == 0 &&
3429 			    tvd->vdev_checkpoint_sm != NULL) {
3430 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3431 			}
3432 
3433 			spa_vdev_state_enter(spa, SCL_ALLOC);
3434 
3435 			/*
3436 			 * Check to see if the config has changed.
3437 			 */
3438 			if (error || generation != spa->spa_config_generation) {
3439 				metaslab_group_activate(mg);
3440 				if (error)
3441 					return (spa_vdev_state_exit(spa,
3442 					    vd, error));
3443 				(void) spa_vdev_state_exit(spa, vd, 0);
3444 				goto top;
3445 			}
3446 			ASSERT0(tvd->vdev_stat.vs_alloc);
3447 		}
3448 
3449 		/*
3450 		 * Offline this device and reopen its top-level vdev.
3451 		 * If the top-level vdev is a log device then just offline
3452 		 * it. Otherwise, if this action results in the top-level
3453 		 * vdev becoming unusable, undo it and fail the request.
3454 		 */
3455 		vd->vdev_offline = B_TRUE;
3456 		vdev_reopen(tvd);
3457 
3458 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3459 		    vdev_is_dead(tvd)) {
3460 			vd->vdev_offline = B_FALSE;
3461 			vdev_reopen(tvd);
3462 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3463 		}
3464 
3465 		/*
3466 		 * Add the device back into the metaslab rotor so that
3467 		 * once we online the device it's open for business.
3468 		 */
3469 		if (tvd->vdev_islog && mg != NULL)
3470 			metaslab_group_activate(mg);
3471 	}
3472 
3473 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3474 
3475 	return (spa_vdev_state_exit(spa, vd, 0));
3476 }
3477 
3478 int
3479 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3480 {
3481 	int error;
3482 
3483 	mutex_enter(&spa->spa_vdev_top_lock);
3484 	error = vdev_offline_locked(spa, guid, flags);
3485 	mutex_exit(&spa->spa_vdev_top_lock);
3486 
3487 	return (error);
3488 }
3489 
3490 /*
3491  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3492  * vdev_offline(), we assume the spa config is locked.  We also clear all
3493  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3494  */
3495 void
3496 vdev_clear(spa_t *spa, vdev_t *vd)
3497 {
3498 	vdev_t *rvd = spa->spa_root_vdev;
3499 
3500 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3501 
3502 	if (vd == NULL)
3503 		vd = rvd;
3504 
3505 	vd->vdev_stat.vs_read_errors = 0;
3506 	vd->vdev_stat.vs_write_errors = 0;
3507 	vd->vdev_stat.vs_checksum_errors = 0;
3508 
3509 	for (int c = 0; c < vd->vdev_children; c++)
3510 		vdev_clear(spa, vd->vdev_child[c]);
3511 
3512 	/*
3513 	 * It makes no sense to "clear" an indirect vdev.
3514 	 */
3515 	if (!vdev_is_concrete(vd))
3516 		return;
3517 
3518 	/*
3519 	 * If we're in the FAULTED state or have experienced failed I/O, then
3520 	 * clear the persistent state and attempt to reopen the device.  We
3521 	 * also mark the vdev config dirty, so that the new faulted state is
3522 	 * written out to disk.
3523 	 */
3524 	if (vd->vdev_faulted || vd->vdev_degraded ||
3525 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3526 
3527 		/*
3528 		 * When reopening in reponse to a clear event, it may be due to
3529 		 * a fmadm repair request.  In this case, if the device is
3530 		 * still broken, we want to still post the ereport again.
3531 		 */
3532 		vd->vdev_forcefault = B_TRUE;
3533 
3534 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3535 		vd->vdev_cant_read = B_FALSE;
3536 		vd->vdev_cant_write = B_FALSE;
3537 
3538 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3539 
3540 		vd->vdev_forcefault = B_FALSE;
3541 
3542 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3543 			vdev_state_dirty(vd->vdev_top);
3544 
3545 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3546 			if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3547 			    spa_feature_is_enabled(spa,
3548 			    SPA_FEATURE_RESILVER_DEFER))
3549 				vdev_set_deferred_resilver(spa, vd);
3550 			else
3551 				spa_async_request(spa, SPA_ASYNC_RESILVER);
3552 		}
3553 
3554 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3555 	}
3556 
3557 	/*
3558 	 * When clearing a FMA-diagnosed fault, we always want to
3559 	 * unspare the device, as we assume that the original spare was
3560 	 * done in response to the FMA fault.
3561 	 */
3562 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3563 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3564 	    vd->vdev_parent->vdev_child[0] == vd)
3565 		vd->vdev_unspare = B_TRUE;
3566 }
3567 
3568 boolean_t
3569 vdev_is_dead(vdev_t *vd)
3570 {
3571 	/*
3572 	 * Holes and missing devices are always considered "dead".
3573 	 * This simplifies the code since we don't have to check for
3574 	 * these types of devices in the various code paths.
3575 	 * Instead we rely on the fact that we skip over dead devices
3576 	 * before issuing I/O to them.
3577 	 */
3578 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3579 	    vd->vdev_ops == &vdev_hole_ops ||
3580 	    vd->vdev_ops == &vdev_missing_ops);
3581 }
3582 
3583 boolean_t
3584 vdev_readable(vdev_t *vd)
3585 {
3586 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3587 }
3588 
3589 boolean_t
3590 vdev_writeable(vdev_t *vd)
3591 {
3592 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3593 	    vdev_is_concrete(vd));
3594 }
3595 
3596 boolean_t
3597 vdev_allocatable(vdev_t *vd)
3598 {
3599 	uint64_t state = vd->vdev_state;
3600 
3601 	/*
3602 	 * We currently allow allocations from vdevs which may be in the
3603 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3604 	 * fails to reopen then we'll catch it later when we're holding
3605 	 * the proper locks.  Note that we have to get the vdev state
3606 	 * in a local variable because although it changes atomically,
3607 	 * we're asking two separate questions about it.
3608 	 */
3609 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3610 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3611 	    vd->vdev_mg->mg_initialized);
3612 }
3613 
3614 boolean_t
3615 vdev_accessible(vdev_t *vd, zio_t *zio)
3616 {
3617 	ASSERT(zio->io_vd == vd);
3618 
3619 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3620 		return (B_FALSE);
3621 
3622 	if (zio->io_type == ZIO_TYPE_READ)
3623 		return (!vd->vdev_cant_read);
3624 
3625 	if (zio->io_type == ZIO_TYPE_WRITE)
3626 		return (!vd->vdev_cant_write);
3627 
3628 	return (B_TRUE);
3629 }
3630 
3631 boolean_t
3632 vdev_is_spacemap_addressable(vdev_t *vd)
3633 {
3634 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3635 		return (B_TRUE);
3636 
3637 	/*
3638 	 * If double-word space map entries are not enabled we assume
3639 	 * 47 bits of the space map entry are dedicated to the entry's
3640 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3641 	 * to calculate the maximum address that can be described by a
3642 	 * space map entry for the given device.
3643 	 */
3644 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3645 
3646 	if (shift >= 63) /* detect potential overflow */
3647 		return (B_TRUE);
3648 
3649 	return (vd->vdev_asize < (1ULL << shift));
3650 }
3651 
3652 /*
3653  * Get statistics for the given vdev.
3654  */
3655 void
3656 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3657 {
3658 	spa_t *spa = vd->vdev_spa;
3659 	vdev_t *rvd = spa->spa_root_vdev;
3660 	vdev_t *tvd = vd->vdev_top;
3661 
3662 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3663 
3664 	mutex_enter(&vd->vdev_stat_lock);
3665 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3666 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3667 	vs->vs_state = vd->vdev_state;
3668 	vs->vs_rsize = vdev_get_min_asize(vd);
3669 	if (vd->vdev_ops->vdev_op_leaf) {
3670 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3671 		/*
3672 		 * Report intializing progress. Since we don't have the
3673 		 * initializing locks held, this is only an estimate (although a
3674 		 * fairly accurate one).
3675 		 */
3676 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3677 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3678 		vs->vs_initialize_state = vd->vdev_initialize_state;
3679 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3680 	}
3681 
3682 	/*
3683 	 * Report manual TRIM progress. Since we don't have
3684 	 * the manual TRIM locks held, this is only an
3685 	 * estimate (although fairly accurate one).
3686 	 */
3687 	vs->vs_trim_notsup = !vd->vdev_has_trim;
3688 	vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
3689 	vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
3690 	vs->vs_trim_state = vd->vdev_trim_state;
3691 	vs->vs_trim_action_time = vd->vdev_trim_action_time;
3692 
3693 	/*
3694 	 * Report expandable space on top-level, non-auxillary devices only.
3695 	 * The expandable space is reported in terms of metaslab sized units
3696 	 * since that determines how much space the pool can expand.
3697 	 */
3698 	if (vd->vdev_aux == NULL && tvd != NULL) {
3699 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3700 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3701 	}
3702 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3703 	    vdev_is_concrete(vd)) {
3704 		vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3705 		    vd->vdev_mg->mg_fragmentation : 0;
3706 	}
3707 	if (vd->vdev_ops->vdev_op_leaf)
3708 		vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3709 
3710 	/*
3711 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3712 	 * over all top-level vdevs (i.e. the direct children of the root).
3713 	 */
3714 	if (vd == rvd) {
3715 		for (int c = 0; c < rvd->vdev_children; c++) {
3716 			vdev_t *cvd = rvd->vdev_child[c];
3717 			vdev_stat_t *cvs = &cvd->vdev_stat;
3718 
3719 			for (int t = 0; t < VS_ZIO_TYPES; t++) {
3720 				vs->vs_ops[t] += cvs->vs_ops[t];
3721 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3722 			}
3723 			cvs->vs_scan_removing = cvd->vdev_removing;
3724 		}
3725 	}
3726 	mutex_exit(&vd->vdev_stat_lock);
3727 }
3728 
3729 void
3730 vdev_clear_stats(vdev_t *vd)
3731 {
3732 	mutex_enter(&vd->vdev_stat_lock);
3733 	vd->vdev_stat.vs_space = 0;
3734 	vd->vdev_stat.vs_dspace = 0;
3735 	vd->vdev_stat.vs_alloc = 0;
3736 	mutex_exit(&vd->vdev_stat_lock);
3737 }
3738 
3739 void
3740 vdev_scan_stat_init(vdev_t *vd)
3741 {
3742 	vdev_stat_t *vs = &vd->vdev_stat;
3743 
3744 	for (int c = 0; c < vd->vdev_children; c++)
3745 		vdev_scan_stat_init(vd->vdev_child[c]);
3746 
3747 	mutex_enter(&vd->vdev_stat_lock);
3748 	vs->vs_scan_processed = 0;
3749 	mutex_exit(&vd->vdev_stat_lock);
3750 }
3751 
3752 void
3753 vdev_stat_update(zio_t *zio, uint64_t psize)
3754 {
3755 	spa_t *spa = zio->io_spa;
3756 	vdev_t *rvd = spa->spa_root_vdev;
3757 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3758 	vdev_t *pvd;
3759 	uint64_t txg = zio->io_txg;
3760 	vdev_stat_t *vs = &vd->vdev_stat;
3761 	zio_type_t type = zio->io_type;
3762 	int flags = zio->io_flags;
3763 
3764 	/*
3765 	 * If this i/o is a gang leader, it didn't do any actual work.
3766 	 */
3767 	if (zio->io_gang_tree)
3768 		return;
3769 
3770 	if (zio->io_error == 0) {
3771 		/*
3772 		 * If this is a root i/o, don't count it -- we've already
3773 		 * counted the top-level vdevs, and vdev_get_stats() will
3774 		 * aggregate them when asked.  This reduces contention on
3775 		 * the root vdev_stat_lock and implicitly handles blocks
3776 		 * that compress away to holes, for which there is no i/o.
3777 		 * (Holes never create vdev children, so all the counters
3778 		 * remain zero, which is what we want.)
3779 		 *
3780 		 * Note: this only applies to successful i/o (io_error == 0)
3781 		 * because unlike i/o counts, errors are not additive.
3782 		 * When reading a ditto block, for example, failure of
3783 		 * one top-level vdev does not imply a root-level error.
3784 		 */
3785 		if (vd == rvd)
3786 			return;
3787 
3788 		ASSERT(vd == zio->io_vd);
3789 
3790 		if (flags & ZIO_FLAG_IO_BYPASS)
3791 			return;
3792 
3793 		mutex_enter(&vd->vdev_stat_lock);
3794 
3795 		if (flags & ZIO_FLAG_IO_REPAIR) {
3796 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3797 				dsl_scan_phys_t *scn_phys =
3798 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3799 				uint64_t *processed = &scn_phys->scn_processed;
3800 
3801 				/* XXX cleanup? */
3802 				if (vd->vdev_ops->vdev_op_leaf)
3803 					atomic_add_64(processed, psize);
3804 				vs->vs_scan_processed += psize;
3805 			}
3806 
3807 			if (flags & ZIO_FLAG_SELF_HEAL)
3808 				vs->vs_self_healed += psize;
3809 		}
3810 
3811 		zio_type_t vs_type = type;
3812 
3813 		/*
3814 		 * TRIM ops and bytes are reported to user space as
3815 		 * ZIO_TYPE_IOCTL.  This is done to preserve the
3816 		 * vdev_stat_t structure layout for user space.
3817 		 */
3818 		if (type == ZIO_TYPE_TRIM)
3819 			vs_type = ZIO_TYPE_IOCTL;
3820 
3821 		vs->vs_ops[vs_type]++;
3822 		vs->vs_bytes[vs_type] += psize;
3823 
3824 		mutex_exit(&vd->vdev_stat_lock);
3825 		return;
3826 	}
3827 
3828 	if (flags & ZIO_FLAG_SPECULATIVE)
3829 		return;
3830 
3831 	/*
3832 	 * If this is an I/O error that is going to be retried, then ignore the
3833 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3834 	 * hard errors, when in reality they can happen for any number of
3835 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3836 	 */
3837 	if (zio->io_error == EIO &&
3838 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3839 		return;
3840 
3841 	/*
3842 	 * Intent logs writes won't propagate their error to the root
3843 	 * I/O so don't mark these types of failures as pool-level
3844 	 * errors.
3845 	 */
3846 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3847 		return;
3848 
3849 	mutex_enter(&vd->vdev_stat_lock);
3850 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3851 		if (zio->io_error == ECKSUM)
3852 			vs->vs_checksum_errors++;
3853 		else
3854 			vs->vs_read_errors++;
3855 	}
3856 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3857 		vs->vs_write_errors++;
3858 	mutex_exit(&vd->vdev_stat_lock);
3859 
3860 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3861 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3862 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3863 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3864 	    spa->spa_claiming)) {
3865 		/*
3866 		 * This is either a normal write (not a repair), or it's
3867 		 * a repair induced by the scrub thread, or it's a repair
3868 		 * made by zil_claim() during spa_load() in the first txg.
3869 		 * In the normal case, we commit the DTL change in the same
3870 		 * txg as the block was born.  In the scrub-induced repair
3871 		 * case, we know that scrubs run in first-pass syncing context,
3872 		 * so we commit the DTL change in spa_syncing_txg(spa).
3873 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3874 		 *
3875 		 * We currently do not make DTL entries for failed spontaneous
3876 		 * self-healing writes triggered by normal (non-scrubbing)
3877 		 * reads, because we have no transactional context in which to
3878 		 * do so -- and it's not clear that it'd be desirable anyway.
3879 		 */
3880 		if (vd->vdev_ops->vdev_op_leaf) {
3881 			uint64_t commit_txg = txg;
3882 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3883 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3884 				ASSERT(spa_sync_pass(spa) == 1);
3885 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3886 				commit_txg = spa_syncing_txg(spa);
3887 			} else if (spa->spa_claiming) {
3888 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3889 				commit_txg = spa_first_txg(spa);
3890 			}
3891 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3892 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3893 				return;
3894 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3895 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3896 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3897 		}
3898 		if (vd != rvd)
3899 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3900 	}
3901 }
3902 
3903 int64_t
3904 vdev_deflated_space(vdev_t *vd, int64_t space)
3905 {
3906 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
3907 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3908 
3909 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
3910 }
3911 
3912 /*
3913  * Update the in-core space usage stats for this vdev, its metaslab class,
3914  * and the root vdev.
3915  */
3916 void
3917 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3918     int64_t space_delta)
3919 {
3920 	int64_t dspace_delta;
3921 	spa_t *spa = vd->vdev_spa;
3922 	vdev_t *rvd = spa->spa_root_vdev;
3923 
3924 	ASSERT(vd == vd->vdev_top);
3925 
3926 	/*
3927 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3928 	 * factor.  We must calculate this here and not at the root vdev
3929 	 * because the root vdev's psize-to-asize is simply the max of its
3930 	 * childrens', thus not accurate enough for us.
3931 	 */
3932 	dspace_delta = vdev_deflated_space(vd, space_delta);
3933 
3934 	mutex_enter(&vd->vdev_stat_lock);
3935 	/* ensure we won't underflow */
3936 	if (alloc_delta < 0) {
3937 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
3938 	}
3939 
3940 	vd->vdev_stat.vs_alloc += alloc_delta;
3941 	vd->vdev_stat.vs_space += space_delta;
3942 	vd->vdev_stat.vs_dspace += dspace_delta;
3943 	mutex_exit(&vd->vdev_stat_lock);
3944 
3945 	/* every class but log contributes to root space stats */
3946 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
3947 		ASSERT(!vd->vdev_isl2cache);
3948 		mutex_enter(&rvd->vdev_stat_lock);
3949 		rvd->vdev_stat.vs_alloc += alloc_delta;
3950 		rvd->vdev_stat.vs_space += space_delta;
3951 		rvd->vdev_stat.vs_dspace += dspace_delta;
3952 		mutex_exit(&rvd->vdev_stat_lock);
3953 	}
3954 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
3955 }
3956 
3957 /*
3958  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3959  * so that it will be written out next time the vdev configuration is synced.
3960  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3961  */
3962 void
3963 vdev_config_dirty(vdev_t *vd)
3964 {
3965 	spa_t *spa = vd->vdev_spa;
3966 	vdev_t *rvd = spa->spa_root_vdev;
3967 	int c;
3968 
3969 	ASSERT(spa_writeable(spa));
3970 
3971 	/*
3972 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3973 	 * update the vdev config manually and set the sync flag.
3974 	 */
3975 	if (vd->vdev_aux != NULL) {
3976 		spa_aux_vdev_t *sav = vd->vdev_aux;
3977 		nvlist_t **aux;
3978 		uint_t naux;
3979 
3980 		for (c = 0; c < sav->sav_count; c++) {
3981 			if (sav->sav_vdevs[c] == vd)
3982 				break;
3983 		}
3984 
3985 		if (c == sav->sav_count) {
3986 			/*
3987 			 * We're being removed.  There's nothing more to do.
3988 			 */
3989 			ASSERT(sav->sav_sync == B_TRUE);
3990 			return;
3991 		}
3992 
3993 		sav->sav_sync = B_TRUE;
3994 
3995 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3996 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3997 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3998 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3999 		}
4000 
4001 		ASSERT(c < naux);
4002 
4003 		/*
4004 		 * Setting the nvlist in the middle if the array is a little
4005 		 * sketchy, but it will work.
4006 		 */
4007 		nvlist_free(aux[c]);
4008 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4009 
4010 		return;
4011 	}
4012 
4013 	/*
4014 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4015 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4016 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4017 	 * so this is sufficient to ensure mutual exclusion.
4018 	 */
4019 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4020 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4021 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4022 
4023 	if (vd == rvd) {
4024 		for (c = 0; c < rvd->vdev_children; c++)
4025 			vdev_config_dirty(rvd->vdev_child[c]);
4026 	} else {
4027 		ASSERT(vd == vd->vdev_top);
4028 
4029 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4030 		    vdev_is_concrete(vd)) {
4031 			list_insert_head(&spa->spa_config_dirty_list, vd);
4032 		}
4033 	}
4034 }
4035 
4036 void
4037 vdev_config_clean(vdev_t *vd)
4038 {
4039 	spa_t *spa = vd->vdev_spa;
4040 
4041 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4042 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4043 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4044 
4045 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4046 	list_remove(&spa->spa_config_dirty_list, vd);
4047 }
4048 
4049 /*
4050  * Mark a top-level vdev's state as dirty, so that the next pass of
4051  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4052  * the state changes from larger config changes because they require
4053  * much less locking, and are often needed for administrative actions.
4054  */
4055 void
4056 vdev_state_dirty(vdev_t *vd)
4057 {
4058 	spa_t *spa = vd->vdev_spa;
4059 
4060 	ASSERT(spa_writeable(spa));
4061 	ASSERT(vd == vd->vdev_top);
4062 
4063 	/*
4064 	 * The state list is protected by the SCL_STATE lock.  The caller
4065 	 * must either hold SCL_STATE as writer, or must be the sync thread
4066 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4067 	 * so this is sufficient to ensure mutual exclusion.
4068 	 */
4069 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4070 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4071 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4072 
4073 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4074 	    vdev_is_concrete(vd))
4075 		list_insert_head(&spa->spa_state_dirty_list, vd);
4076 }
4077 
4078 void
4079 vdev_state_clean(vdev_t *vd)
4080 {
4081 	spa_t *spa = vd->vdev_spa;
4082 
4083 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4084 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4085 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4086 
4087 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4088 	list_remove(&spa->spa_state_dirty_list, vd);
4089 }
4090 
4091 /*
4092  * Propagate vdev state up from children to parent.
4093  */
4094 void
4095 vdev_propagate_state(vdev_t *vd)
4096 {
4097 	spa_t *spa = vd->vdev_spa;
4098 	vdev_t *rvd = spa->spa_root_vdev;
4099 	int degraded = 0, faulted = 0;
4100 	int corrupted = 0;
4101 	vdev_t *child;
4102 
4103 	if (vd->vdev_children > 0) {
4104 		for (int c = 0; c < vd->vdev_children; c++) {
4105 			child = vd->vdev_child[c];
4106 
4107 			/*
4108 			 * Don't factor holes or indirect vdevs into the
4109 			 * decision.
4110 			 */
4111 			if (!vdev_is_concrete(child))
4112 				continue;
4113 
4114 			if (!vdev_readable(child) ||
4115 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4116 				/*
4117 				 * Root special: if there is a top-level log
4118 				 * device, treat the root vdev as if it were
4119 				 * degraded.
4120 				 */
4121 				if (child->vdev_islog && vd == rvd)
4122 					degraded++;
4123 				else
4124 					faulted++;
4125 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4126 				degraded++;
4127 			}
4128 
4129 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4130 				corrupted++;
4131 		}
4132 
4133 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4134 
4135 		/*
4136 		 * Root special: if there is a top-level vdev that cannot be
4137 		 * opened due to corrupted metadata, then propagate the root
4138 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4139 		 * replicas'.
4140 		 */
4141 		if (corrupted && vd == rvd &&
4142 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4143 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4144 			    VDEV_AUX_CORRUPT_DATA);
4145 	}
4146 
4147 	if (vd->vdev_parent)
4148 		vdev_propagate_state(vd->vdev_parent);
4149 }
4150 
4151 /*
4152  * Set a vdev's state.  If this is during an open, we don't update the parent
4153  * state, because we're in the process of opening children depth-first.
4154  * Otherwise, we propagate the change to the parent.
4155  *
4156  * If this routine places a device in a faulted state, an appropriate ereport is
4157  * generated.
4158  */
4159 void
4160 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4161 {
4162 	uint64_t save_state;
4163 	spa_t *spa = vd->vdev_spa;
4164 
4165 	if (state == vd->vdev_state) {
4166 		vd->vdev_stat.vs_aux = aux;
4167 		return;
4168 	}
4169 
4170 	save_state = vd->vdev_state;
4171 
4172 	vd->vdev_state = state;
4173 	vd->vdev_stat.vs_aux = aux;
4174 
4175 	/*
4176 	 * If we are setting the vdev state to anything but an open state, then
4177 	 * always close the underlying device unless the device has requested
4178 	 * a delayed close (i.e. we're about to remove or fault the device).
4179 	 * Otherwise, we keep accessible but invalid devices open forever.
4180 	 * We don't call vdev_close() itself, because that implies some extra
4181 	 * checks (offline, etc) that we don't want here.  This is limited to
4182 	 * leaf devices, because otherwise closing the device will affect other
4183 	 * children.
4184 	 */
4185 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4186 	    vd->vdev_ops->vdev_op_leaf)
4187 		vd->vdev_ops->vdev_op_close(vd);
4188 
4189 	/*
4190 	 * If we have brought this vdev back into service, we need
4191 	 * to notify fmd so that it can gracefully repair any outstanding
4192 	 * cases due to a missing device.  We do this in all cases, even those
4193 	 * that probably don't correlate to a repaired fault.  This is sure to
4194 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
4195 	 * this is a transient state it's OK, as the retire agent will
4196 	 * double-check the state of the vdev before repairing it.
4197 	 */
4198 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
4199 	    vd->vdev_prevstate != state)
4200 		zfs_post_state_change(spa, vd);
4201 
4202 	if (vd->vdev_removed &&
4203 	    state == VDEV_STATE_CANT_OPEN &&
4204 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4205 		/*
4206 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4207 		 * device was previously marked removed and someone attempted to
4208 		 * reopen it.  If this failed due to a nonexistent device, then
4209 		 * keep the device in the REMOVED state.  We also let this be if
4210 		 * it is one of our special test online cases, which is only
4211 		 * attempting to online the device and shouldn't generate an FMA
4212 		 * fault.
4213 		 */
4214 		vd->vdev_state = VDEV_STATE_REMOVED;
4215 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4216 	} else if (state == VDEV_STATE_REMOVED) {
4217 		vd->vdev_removed = B_TRUE;
4218 	} else if (state == VDEV_STATE_CANT_OPEN) {
4219 		/*
4220 		 * If we fail to open a vdev during an import or recovery, we
4221 		 * mark it as "not available", which signifies that it was
4222 		 * never there to begin with.  Failure to open such a device
4223 		 * is not considered an error.
4224 		 */
4225 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4226 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4227 		    vd->vdev_ops->vdev_op_leaf)
4228 			vd->vdev_not_present = 1;
4229 
4230 		/*
4231 		 * Post the appropriate ereport.  If the 'prevstate' field is
4232 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4233 		 * that this is part of a vdev_reopen().  In this case, we don't
4234 		 * want to post the ereport if the device was already in the
4235 		 * CANT_OPEN state beforehand.
4236 		 *
4237 		 * If the 'checkremove' flag is set, then this is an attempt to
4238 		 * online the device in response to an insertion event.  If we
4239 		 * hit this case, then we have detected an insertion event for a
4240 		 * faulted or offline device that wasn't in the removed state.
4241 		 * In this scenario, we don't post an ereport because we are
4242 		 * about to replace the device, or attempt an online with
4243 		 * vdev_forcefault, which will generate the fault for us.
4244 		 */
4245 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4246 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4247 		    vd != spa->spa_root_vdev) {
4248 			const char *class;
4249 
4250 			switch (aux) {
4251 			case VDEV_AUX_OPEN_FAILED:
4252 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4253 				break;
4254 			case VDEV_AUX_CORRUPT_DATA:
4255 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4256 				break;
4257 			case VDEV_AUX_NO_REPLICAS:
4258 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4259 				break;
4260 			case VDEV_AUX_BAD_GUID_SUM:
4261 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4262 				break;
4263 			case VDEV_AUX_TOO_SMALL:
4264 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4265 				break;
4266 			case VDEV_AUX_BAD_LABEL:
4267 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4268 				break;
4269 			case VDEV_AUX_BAD_ASHIFT:
4270 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4271 				break;
4272 			default:
4273 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4274 			}
4275 
4276 			zfs_ereport_post(class, spa, vd, NULL, NULL,
4277 			    save_state, 0);
4278 		}
4279 
4280 		/* Erase any notion of persistent removed state */
4281 		vd->vdev_removed = B_FALSE;
4282 	} else {
4283 		vd->vdev_removed = B_FALSE;
4284 	}
4285 
4286 	if (!isopen && vd->vdev_parent)
4287 		vdev_propagate_state(vd->vdev_parent);
4288 }
4289 
4290 boolean_t
4291 vdev_children_are_offline(vdev_t *vd)
4292 {
4293 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4294 
4295 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4296 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4297 			return (B_FALSE);
4298 	}
4299 
4300 	return (B_TRUE);
4301 }
4302 
4303 /*
4304  * Check the vdev configuration to ensure that it's capable of supporting
4305  * a root pool. We do not support partial configuration.
4306  * In addition, only a single top-level vdev is allowed.
4307  */
4308 boolean_t
4309 vdev_is_bootable(vdev_t *vd)
4310 {
4311 	if (!vd->vdev_ops->vdev_op_leaf) {
4312 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4313 
4314 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4315 		    vd->vdev_children > 1) {
4316 			int non_indirect = 0;
4317 
4318 			for (int c = 0; c < vd->vdev_children; c++) {
4319 				vdev_type =
4320 				    vd->vdev_child[c]->vdev_ops->vdev_op_type;
4321 				if (strcmp(vdev_type, VDEV_TYPE_INDIRECT) != 0)
4322 					non_indirect++;
4323 			}
4324 			/*
4325 			 * non_indirect > 1 means we have more than one
4326 			 * top-level vdev, so we stop here.
4327 			 */
4328 			if (non_indirect > 1)
4329 				return (B_FALSE);
4330 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
4331 			return (B_FALSE);
4332 		}
4333 	}
4334 
4335 	for (int c = 0; c < vd->vdev_children; c++) {
4336 		if (!vdev_is_bootable(vd->vdev_child[c]))
4337 			return (B_FALSE);
4338 	}
4339 	return (B_TRUE);
4340 }
4341 
4342 boolean_t
4343 vdev_is_concrete(vdev_t *vd)
4344 {
4345 	vdev_ops_t *ops = vd->vdev_ops;
4346 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4347 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4348 		return (B_FALSE);
4349 	} else {
4350 		return (B_TRUE);
4351 	}
4352 }
4353 
4354 /*
4355  * Determine if a log device has valid content.  If the vdev was
4356  * removed or faulted in the MOS config then we know that
4357  * the content on the log device has already been written to the pool.
4358  */
4359 boolean_t
4360 vdev_log_state_valid(vdev_t *vd)
4361 {
4362 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4363 	    !vd->vdev_removed)
4364 		return (B_TRUE);
4365 
4366 	for (int c = 0; c < vd->vdev_children; c++)
4367 		if (vdev_log_state_valid(vd->vdev_child[c]))
4368 			return (B_TRUE);
4369 
4370 	return (B_FALSE);
4371 }
4372 
4373 /*
4374  * Expand a vdev if possible.
4375  */
4376 void
4377 vdev_expand(vdev_t *vd, uint64_t txg)
4378 {
4379 	ASSERT(vd->vdev_top == vd);
4380 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4381 	ASSERT(vdev_is_concrete(vd));
4382 
4383 	vdev_set_deflate_ratio(vd);
4384 
4385 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4386 	    vdev_is_concrete(vd)) {
4387 		vdev_metaslab_group_create(vd);
4388 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4389 		vdev_config_dirty(vd);
4390 	}
4391 }
4392 
4393 /*
4394  * Split a vdev.
4395  */
4396 void
4397 vdev_split(vdev_t *vd)
4398 {
4399 	vdev_t *cvd, *pvd = vd->vdev_parent;
4400 
4401 	vdev_remove_child(pvd, vd);
4402 	vdev_compact_children(pvd);
4403 
4404 	cvd = pvd->vdev_child[0];
4405 	if (pvd->vdev_children == 1) {
4406 		vdev_remove_parent(cvd);
4407 		cvd->vdev_splitting = B_TRUE;
4408 	}
4409 	vdev_propagate_state(cvd);
4410 }
4411 
4412 void
4413 vdev_deadman(vdev_t *vd)
4414 {
4415 	for (int c = 0; c < vd->vdev_children; c++) {
4416 		vdev_t *cvd = vd->vdev_child[c];
4417 
4418 		vdev_deadman(cvd);
4419 	}
4420 
4421 	if (vd->vdev_ops->vdev_op_leaf) {
4422 		vdev_queue_t *vq = &vd->vdev_queue;
4423 
4424 		mutex_enter(&vq->vq_lock);
4425 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4426 			spa_t *spa = vd->vdev_spa;
4427 			zio_t *fio;
4428 			uint64_t delta;
4429 
4430 			/*
4431 			 * Look at the head of all the pending queues,
4432 			 * if any I/O has been outstanding for longer than
4433 			 * the spa_deadman_synctime we panic the system.
4434 			 */
4435 			fio = avl_first(&vq->vq_active_tree);
4436 			delta = gethrtime() - fio->io_timestamp;
4437 			if (delta > spa_deadman_synctime(spa)) {
4438 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4439 				    "%lluns, delta %lluns, last io %lluns",
4440 				    fio->io_timestamp, (u_longlong_t)delta,
4441 				    vq->vq_io_complete_ts);
4442 				fm_panic("I/O to pool '%s' appears to be "
4443 				    "hung.", spa_name(spa));
4444 			}
4445 		}
4446 		mutex_exit(&vq->vq_lock);
4447 	}
4448 }
4449 
4450 void
4451 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4452 {
4453 	for (uint64_t i = 0; i < vd->vdev_children; i++)
4454 		vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4455 
4456 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4457 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4458 		return;
4459 	}
4460 
4461 	vd->vdev_resilver_deferred = B_TRUE;
4462 	spa->spa_resilver_deferred = B_TRUE;
4463 }
4464 
4465 /*
4466  * Translate a logical range to the physical range for the specified vdev_t.
4467  * This function is initially called with a leaf vdev and will walk each
4468  * parent vdev until it reaches a top-level vdev. Once the top-level is
4469  * reached the physical range is initialized and the recursive function
4470  * begins to unwind. As it unwinds it calls the parent's vdev specific
4471  * translation function to do the real conversion.
4472  */
4473 void
4474 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
4475     range_seg64_t *physical_rs)
4476 {
4477 	/*
4478 	 * Walk up the vdev tree
4479 	 */
4480 	if (vd != vd->vdev_top) {
4481 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4482 	} else {
4483 		/*
4484 		 * We've reached the top-level vdev, initialize the
4485 		 * physical range to the logical range and start to
4486 		 * unwind.
4487 		 */
4488 		physical_rs->rs_start = logical_rs->rs_start;
4489 		physical_rs->rs_end = logical_rs->rs_end;
4490 		return;
4491 	}
4492 
4493 	vdev_t *pvd = vd->vdev_parent;
4494 	ASSERT3P(pvd, !=, NULL);
4495 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
4496 
4497 	/*
4498 	 * As this recursive function unwinds, translate the logical
4499 	 * range into its physical components by calling the
4500 	 * vdev specific translate function.
4501 	 */
4502 	range_seg64_t intermediate = { 0 };
4503 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
4504 
4505 	physical_rs->rs_start = intermediate.rs_start;
4506 	physical_rs->rs_end = intermediate.rs_end;
4507 }
4508