xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 29bd28862cfb8abbd3a0f0a4b17e08bbc3652836)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 
88 	for (int c = 0; c < vd->vdev_children; c++) {
89 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 		asize = MAX(asize, csize);
91 	}
92 
93 	return (asize);
94 }
95 
96 /*
97  * Get the minimum allocatable size. We define the allocatable size as
98  * the vdev's asize rounded to the nearest metaslab. This allows us to
99  * replace or attach devices which don't have the same physical size but
100  * can still satisfy the same number of allocations.
101  */
102 uint64_t
103 vdev_get_min_asize(vdev_t *vd)
104 {
105 	vdev_t *pvd = vd->vdev_parent;
106 
107 	/*
108 	 * The our parent is NULL (inactive spare or cache) or is the root,
109 	 * just return our own asize.
110 	 */
111 	if (pvd == NULL)
112 		return (vd->vdev_asize);
113 
114 	/*
115 	 * The top-level vdev just returns the allocatable size rounded
116 	 * to the nearest metaslab.
117 	 */
118 	if (vd == vd->vdev_top)
119 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120 
121 	/*
122 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123 	 * so each child must provide at least 1/Nth of its asize.
124 	 */
125 	if (pvd->vdev_ops == &vdev_raidz_ops)
126 		return (pvd->vdev_min_asize / pvd->vdev_children);
127 
128 	return (pvd->vdev_min_asize);
129 }
130 
131 void
132 vdev_set_min_asize(vdev_t *vd)
133 {
134 	vd->vdev_min_asize = vdev_get_min_asize(vd);
135 
136 	for (int c = 0; c < vd->vdev_children; c++)
137 		vdev_set_min_asize(vd->vdev_child[c]);
138 }
139 
140 vdev_t *
141 vdev_lookup_top(spa_t *spa, uint64_t vdev)
142 {
143 	vdev_t *rvd = spa->spa_root_vdev;
144 
145 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146 
147 	if (vdev < rvd->vdev_children) {
148 		ASSERT(rvd->vdev_child[vdev] != NULL);
149 		return (rvd->vdev_child[vdev]);
150 	}
151 
152 	return (NULL);
153 }
154 
155 vdev_t *
156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157 {
158 	vdev_t *mvd;
159 
160 	if (vd->vdev_guid == guid)
161 		return (vd);
162 
163 	for (int c = 0; c < vd->vdev_children; c++)
164 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165 		    NULL)
166 			return (mvd);
167 
168 	return (NULL);
169 }
170 
171 void
172 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173 {
174 	size_t oldsize, newsize;
175 	uint64_t id = cvd->vdev_id;
176 	vdev_t **newchild;
177 
178 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179 	ASSERT(cvd->vdev_parent == NULL);
180 
181 	cvd->vdev_parent = pvd;
182 
183 	if (pvd == NULL)
184 		return;
185 
186 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187 
188 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
189 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190 	newsize = pvd->vdev_children * sizeof (vdev_t *);
191 
192 	newchild = kmem_zalloc(newsize, KM_SLEEP);
193 	if (pvd->vdev_child != NULL) {
194 		bcopy(pvd->vdev_child, newchild, oldsize);
195 		kmem_free(pvd->vdev_child, oldsize);
196 	}
197 
198 	pvd->vdev_child = newchild;
199 	pvd->vdev_child[id] = cvd;
200 
201 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203 
204 	/*
205 	 * Walk up all ancestors to update guid sum.
206 	 */
207 	for (; pvd != NULL; pvd = pvd->vdev_parent)
208 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209 
210 	if (cvd->vdev_ops->vdev_op_leaf)
211 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212 }
213 
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 	int c;
218 	uint_t id = cvd->vdev_id;
219 
220 	ASSERT(cvd->vdev_parent == pvd);
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id < pvd->vdev_children);
226 	ASSERT(pvd->vdev_child[id] == cvd);
227 
228 	pvd->vdev_child[id] = NULL;
229 	cvd->vdev_parent = NULL;
230 
231 	for (c = 0; c < pvd->vdev_children; c++)
232 		if (pvd->vdev_child[c])
233 			break;
234 
235 	if (c == pvd->vdev_children) {
236 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 		pvd->vdev_child = NULL;
238 		pvd->vdev_children = 0;
239 	}
240 
241 	/*
242 	 * Walk up all ancestors to update guid sum.
243 	 */
244 	for (; pvd != NULL; pvd = pvd->vdev_parent)
245 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 
247 	if (cvd->vdev_ops->vdev_op_leaf)
248 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249 }
250 
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257 	vdev_t **newchild, *cvd;
258 	int oldc = pvd->vdev_children;
259 	int newc;
260 
261 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262 
263 	for (int c = newc = 0; c < oldc; c++)
264 		if (pvd->vdev_child[c])
265 			newc++;
266 
267 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268 
269 	for (int c = newc = 0; c < oldc; c++) {
270 		if ((cvd = pvd->vdev_child[c]) != NULL) {
271 			newchild[newc] = cvd;
272 			cvd->vdev_id = newc++;
273 		}
274 	}
275 
276 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277 	pvd->vdev_child = newchild;
278 	pvd->vdev_children = newc;
279 }
280 
281 /*
282  * Allocate and minimally initialize a vdev_t.
283  */
284 static vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287 	vdev_t *vd;
288 
289 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290 
291 	if (spa->spa_root_vdev == NULL) {
292 		ASSERT(ops == &vdev_root_ops);
293 		spa->spa_root_vdev = vd;
294 	}
295 
296 	if (guid == 0) {
297 		if (spa->spa_root_vdev == vd) {
298 			/*
299 			 * The root vdev's guid will also be the pool guid,
300 			 * which must be unique among all pools.
301 			 */
302 			while (guid == 0 || spa_guid_exists(guid, 0))
303 				guid = spa_get_random(-1ULL);
304 		} else {
305 			/*
306 			 * Any other vdev's guid must be unique within the pool.
307 			 */
308 			while (guid == 0 ||
309 			    spa_guid_exists(spa_guid(spa), guid))
310 				guid = spa_get_random(-1ULL);
311 		}
312 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
313 	}
314 
315 	vd->vdev_spa = spa;
316 	vd->vdev_id = id;
317 	vd->vdev_guid = guid;
318 	vd->vdev_guid_sum = guid;
319 	vd->vdev_ops = ops;
320 	vd->vdev_state = VDEV_STATE_CLOSED;
321 
322 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
323 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
324 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
325 	for (int t = 0; t < DTL_TYPES; t++) {
326 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
327 		    &vd->vdev_dtl_lock);
328 	}
329 	txg_list_create(&vd->vdev_ms_list,
330 	    offsetof(struct metaslab, ms_txg_node));
331 	txg_list_create(&vd->vdev_dtl_list,
332 	    offsetof(struct vdev, vdev_dtl_node));
333 	vd->vdev_stat.vs_timestamp = gethrtime();
334 	vdev_queue_init(vd);
335 	vdev_cache_init(vd);
336 
337 	return (vd);
338 }
339 
340 /*
341  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
342  * creating a new vdev or loading an existing one - the behavior is slightly
343  * different for each case.
344  */
345 int
346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
347     int alloctype)
348 {
349 	vdev_ops_t *ops;
350 	char *type;
351 	uint64_t guid = 0, islog, nparity;
352 	vdev_t *vd;
353 
354 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355 
356 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
357 		return (EINVAL);
358 
359 	if ((ops = vdev_getops(type)) == NULL)
360 		return (EINVAL);
361 
362 	/*
363 	 * If this is a load, get the vdev guid from the nvlist.
364 	 * Otherwise, vdev_alloc_common() will generate one for us.
365 	 */
366 	if (alloctype == VDEV_ALLOC_LOAD) {
367 		uint64_t label_id;
368 
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
370 		    label_id != id)
371 			return (EINVAL);
372 
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 			return (EINVAL);
375 	} else if (alloctype == VDEV_ALLOC_SPARE) {
376 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 			return (EINVAL);
378 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
379 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 			return (EINVAL);
381 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
382 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
383 			return (EINVAL);
384 	}
385 
386 	/*
387 	 * The first allocated vdev must be of type 'root'.
388 	 */
389 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
390 		return (EINVAL);
391 
392 	/*
393 	 * Determine whether we're a log vdev.
394 	 */
395 	islog = 0;
396 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
397 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
398 		return (ENOTSUP);
399 
400 	/*
401 	 * Set the nparity property for RAID-Z vdevs.
402 	 */
403 	nparity = -1ULL;
404 	if (ops == &vdev_raidz_ops) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406 		    &nparity) == 0) {
407 			/*
408 			 * Currently, we can only support 2 parity devices.
409 			 */
410 			if (nparity == 0 || nparity > 2)
411 				return (EINVAL);
412 			/*
413 			 * Older versions can only support 1 parity device.
414 			 */
415 			if (nparity == 2 &&
416 			    spa_version(spa) < SPA_VERSION_RAID6)
417 				return (ENOTSUP);
418 		} else {
419 			/*
420 			 * We require the parity to be specified for SPAs that
421 			 * support multiple parity levels.
422 			 */
423 			if (spa_version(spa) >= SPA_VERSION_RAID6)
424 				return (EINVAL);
425 			/*
426 			 * Otherwise, we default to 1 parity device for RAID-Z.
427 			 */
428 			nparity = 1;
429 		}
430 	} else {
431 		nparity = 0;
432 	}
433 	ASSERT(nparity != -1ULL);
434 
435 	vd = vdev_alloc_common(spa, id, guid, ops);
436 
437 	vd->vdev_islog = islog;
438 	vd->vdev_nparity = nparity;
439 
440 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 		vd->vdev_path = spa_strdup(vd->vdev_path);
442 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 	    &vd->vdev_physpath) == 0)
446 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
449 
450 	/*
451 	 * Set the whole_disk property.  If it's not specified, leave the value
452 	 * as -1.
453 	 */
454 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 	    &vd->vdev_wholedisk) != 0)
456 		vd->vdev_wholedisk = -1ULL;
457 
458 	/*
459 	 * Look for the 'not present' flag.  This will only be set if the device
460 	 * was not present at the time of import.
461 	 */
462 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 	    &vd->vdev_not_present);
464 
465 	/*
466 	 * Get the alignment requirement.
467 	 */
468 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469 
470 	/*
471 	 * If we're a top-level vdev, try to load the allocation parameters.
472 	 */
473 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
474 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
475 		    &vd->vdev_ms_array);
476 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
477 		    &vd->vdev_ms_shift);
478 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
479 		    &vd->vdev_asize);
480 	}
481 
482 	/*
483 	 * If we're a leaf vdev, try to load the DTL object and other state.
484 	 */
485 	if (vd->vdev_ops->vdev_op_leaf &&
486 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
487 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
488 		if (alloctype == VDEV_ALLOC_LOAD) {
489 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
490 			    &vd->vdev_dtl_smo.smo_object);
491 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
492 			    &vd->vdev_unspare);
493 		}
494 
495 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
496 			uint64_t spare = 0;
497 
498 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
499 			    &spare) == 0 && spare)
500 				spa_spare_add(vd);
501 		}
502 
503 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
504 		    &vd->vdev_offline);
505 
506 		/*
507 		 * When importing a pool, we want to ignore the persistent fault
508 		 * state, as the diagnosis made on another system may not be
509 		 * valid in the current context.
510 		 */
511 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
512 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
513 			    &vd->vdev_faulted);
514 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
515 			    &vd->vdev_degraded);
516 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
517 			    &vd->vdev_removed);
518 		}
519 	}
520 
521 	/*
522 	 * Add ourselves to the parent's list of children.
523 	 */
524 	vdev_add_child(parent, vd);
525 
526 	*vdp = vd;
527 
528 	return (0);
529 }
530 
531 void
532 vdev_free(vdev_t *vd)
533 {
534 	spa_t *spa = vd->vdev_spa;
535 
536 	/*
537 	 * vdev_free() implies closing the vdev first.  This is simpler than
538 	 * trying to ensure complicated semantics for all callers.
539 	 */
540 	vdev_close(vd);
541 
542 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
543 
544 	/*
545 	 * Free all children.
546 	 */
547 	for (int c = 0; c < vd->vdev_children; c++)
548 		vdev_free(vd->vdev_child[c]);
549 
550 	ASSERT(vd->vdev_child == NULL);
551 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
552 
553 	/*
554 	 * Discard allocation state.
555 	 */
556 	if (vd == vd->vdev_top)
557 		vdev_metaslab_fini(vd);
558 
559 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
560 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
561 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
562 
563 	/*
564 	 * Remove this vdev from its parent's child list.
565 	 */
566 	vdev_remove_child(vd->vdev_parent, vd);
567 
568 	ASSERT(vd->vdev_parent == NULL);
569 
570 	/*
571 	 * Clean up vdev structure.
572 	 */
573 	vdev_queue_fini(vd);
574 	vdev_cache_fini(vd);
575 
576 	if (vd->vdev_path)
577 		spa_strfree(vd->vdev_path);
578 	if (vd->vdev_devid)
579 		spa_strfree(vd->vdev_devid);
580 	if (vd->vdev_physpath)
581 		spa_strfree(vd->vdev_physpath);
582 	if (vd->vdev_fru)
583 		spa_strfree(vd->vdev_fru);
584 
585 	if (vd->vdev_isspare)
586 		spa_spare_remove(vd);
587 	if (vd->vdev_isl2cache)
588 		spa_l2cache_remove(vd);
589 
590 	txg_list_destroy(&vd->vdev_ms_list);
591 	txg_list_destroy(&vd->vdev_dtl_list);
592 
593 	mutex_enter(&vd->vdev_dtl_lock);
594 	for (int t = 0; t < DTL_TYPES; t++) {
595 		space_map_unload(&vd->vdev_dtl[t]);
596 		space_map_destroy(&vd->vdev_dtl[t]);
597 	}
598 	mutex_exit(&vd->vdev_dtl_lock);
599 
600 	mutex_destroy(&vd->vdev_dtl_lock);
601 	mutex_destroy(&vd->vdev_stat_lock);
602 	mutex_destroy(&vd->vdev_probe_lock);
603 
604 	if (vd == spa->spa_root_vdev)
605 		spa->spa_root_vdev = NULL;
606 
607 	kmem_free(vd, sizeof (vdev_t));
608 }
609 
610 /*
611  * Transfer top-level vdev state from svd to tvd.
612  */
613 static void
614 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
615 {
616 	spa_t *spa = svd->vdev_spa;
617 	metaslab_t *msp;
618 	vdev_t *vd;
619 	int t;
620 
621 	ASSERT(tvd == tvd->vdev_top);
622 
623 	tvd->vdev_ms_array = svd->vdev_ms_array;
624 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
625 	tvd->vdev_ms_count = svd->vdev_ms_count;
626 
627 	svd->vdev_ms_array = 0;
628 	svd->vdev_ms_shift = 0;
629 	svd->vdev_ms_count = 0;
630 
631 	tvd->vdev_mg = svd->vdev_mg;
632 	tvd->vdev_ms = svd->vdev_ms;
633 
634 	svd->vdev_mg = NULL;
635 	svd->vdev_ms = NULL;
636 
637 	if (tvd->vdev_mg != NULL)
638 		tvd->vdev_mg->mg_vd = tvd;
639 
640 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
641 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
642 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
643 
644 	svd->vdev_stat.vs_alloc = 0;
645 	svd->vdev_stat.vs_space = 0;
646 	svd->vdev_stat.vs_dspace = 0;
647 
648 	for (t = 0; t < TXG_SIZE; t++) {
649 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
650 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
651 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
652 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
653 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
654 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
655 	}
656 
657 	if (list_link_active(&svd->vdev_config_dirty_node)) {
658 		vdev_config_clean(svd);
659 		vdev_config_dirty(tvd);
660 	}
661 
662 	if (list_link_active(&svd->vdev_state_dirty_node)) {
663 		vdev_state_clean(svd);
664 		vdev_state_dirty(tvd);
665 	}
666 
667 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
668 	svd->vdev_deflate_ratio = 0;
669 
670 	tvd->vdev_islog = svd->vdev_islog;
671 	svd->vdev_islog = 0;
672 }
673 
674 static void
675 vdev_top_update(vdev_t *tvd, vdev_t *vd)
676 {
677 	if (vd == NULL)
678 		return;
679 
680 	vd->vdev_top = tvd;
681 
682 	for (int c = 0; c < vd->vdev_children; c++)
683 		vdev_top_update(tvd, vd->vdev_child[c]);
684 }
685 
686 /*
687  * Add a mirror/replacing vdev above an existing vdev.
688  */
689 vdev_t *
690 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
691 {
692 	spa_t *spa = cvd->vdev_spa;
693 	vdev_t *pvd = cvd->vdev_parent;
694 	vdev_t *mvd;
695 
696 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
697 
698 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
699 
700 	mvd->vdev_asize = cvd->vdev_asize;
701 	mvd->vdev_min_asize = cvd->vdev_min_asize;
702 	mvd->vdev_ashift = cvd->vdev_ashift;
703 	mvd->vdev_state = cvd->vdev_state;
704 
705 	vdev_remove_child(pvd, cvd);
706 	vdev_add_child(pvd, mvd);
707 	cvd->vdev_id = mvd->vdev_children;
708 	vdev_add_child(mvd, cvd);
709 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
710 
711 	if (mvd == mvd->vdev_top)
712 		vdev_top_transfer(cvd, mvd);
713 
714 	return (mvd);
715 }
716 
717 /*
718  * Remove a 1-way mirror/replacing vdev from the tree.
719  */
720 void
721 vdev_remove_parent(vdev_t *cvd)
722 {
723 	vdev_t *mvd = cvd->vdev_parent;
724 	vdev_t *pvd = mvd->vdev_parent;
725 
726 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
727 
728 	ASSERT(mvd->vdev_children == 1);
729 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
730 	    mvd->vdev_ops == &vdev_replacing_ops ||
731 	    mvd->vdev_ops == &vdev_spare_ops);
732 	cvd->vdev_ashift = mvd->vdev_ashift;
733 
734 	vdev_remove_child(mvd, cvd);
735 	vdev_remove_child(pvd, mvd);
736 
737 	/*
738 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
739 	 * Otherwise, we could have detached an offline device, and when we
740 	 * go to import the pool we'll think we have two top-level vdevs,
741 	 * instead of a different version of the same top-level vdev.
742 	 */
743 	if (mvd->vdev_top == mvd) {
744 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
745 		cvd->vdev_guid += guid_delta;
746 		cvd->vdev_guid_sum += guid_delta;
747 	}
748 	cvd->vdev_id = mvd->vdev_id;
749 	vdev_add_child(pvd, cvd);
750 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
751 
752 	if (cvd == cvd->vdev_top)
753 		vdev_top_transfer(mvd, cvd);
754 
755 	ASSERT(mvd->vdev_children == 0);
756 	vdev_free(mvd);
757 }
758 
759 int
760 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
761 {
762 	spa_t *spa = vd->vdev_spa;
763 	objset_t *mos = spa->spa_meta_objset;
764 	metaslab_class_t *mc;
765 	uint64_t m;
766 	uint64_t oldc = vd->vdev_ms_count;
767 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
768 	metaslab_t **mspp;
769 	int error;
770 
771 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
772 		return (0);
773 
774 	/*
775 	 * Compute the raidz-deflation ratio.  Note, we hard-code
776 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
777 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
778 	 * or we will inconsistently account for existing bp's.
779 	 */
780 	vd->vdev_deflate_ratio = (1 << 17) /
781 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
782 
783 	ASSERT(oldc <= newc);
784 
785 	if (vd->vdev_islog)
786 		mc = spa->spa_log_class;
787 	else
788 		mc = spa->spa_normal_class;
789 
790 	if (vd->vdev_mg == NULL)
791 		vd->vdev_mg = metaslab_group_create(mc, vd);
792 
793 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
794 
795 	if (oldc != 0) {
796 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
797 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
798 	}
799 
800 	vd->vdev_ms = mspp;
801 	vd->vdev_ms_count = newc;
802 
803 	for (m = oldc; m < newc; m++) {
804 		space_map_obj_t smo = { 0, 0, 0 };
805 		if (txg == 0) {
806 			uint64_t object = 0;
807 			error = dmu_read(mos, vd->vdev_ms_array,
808 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
809 			    DMU_READ_PREFETCH);
810 			if (error)
811 				return (error);
812 			if (object != 0) {
813 				dmu_buf_t *db;
814 				error = dmu_bonus_hold(mos, object, FTAG, &db);
815 				if (error)
816 					return (error);
817 				ASSERT3U(db->db_size, >=, sizeof (smo));
818 				bcopy(db->db_data, &smo, sizeof (smo));
819 				ASSERT3U(smo.smo_object, ==, object);
820 				dmu_buf_rele(db, FTAG);
821 			}
822 		}
823 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
824 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
825 	}
826 
827 	return (0);
828 }
829 
830 void
831 vdev_metaslab_fini(vdev_t *vd)
832 {
833 	uint64_t m;
834 	uint64_t count = vd->vdev_ms_count;
835 
836 	if (vd->vdev_ms != NULL) {
837 		for (m = 0; m < count; m++)
838 			if (vd->vdev_ms[m] != NULL)
839 				metaslab_fini(vd->vdev_ms[m]);
840 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
841 		vd->vdev_ms = NULL;
842 	}
843 }
844 
845 typedef struct vdev_probe_stats {
846 	boolean_t	vps_readable;
847 	boolean_t	vps_writeable;
848 	int		vps_flags;
849 } vdev_probe_stats_t;
850 
851 static void
852 vdev_probe_done(zio_t *zio)
853 {
854 	spa_t *spa = zio->io_spa;
855 	vdev_t *vd = zio->io_vd;
856 	vdev_probe_stats_t *vps = zio->io_private;
857 
858 	ASSERT(vd->vdev_probe_zio != NULL);
859 
860 	if (zio->io_type == ZIO_TYPE_READ) {
861 		if (zio->io_error == 0)
862 			vps->vps_readable = 1;
863 		if (zio->io_error == 0 && spa_writeable(spa)) {
864 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
865 			    zio->io_offset, zio->io_size, zio->io_data,
866 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
867 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
868 		} else {
869 			zio_buf_free(zio->io_data, zio->io_size);
870 		}
871 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
872 		if (zio->io_error == 0)
873 			vps->vps_writeable = 1;
874 		zio_buf_free(zio->io_data, zio->io_size);
875 	} else if (zio->io_type == ZIO_TYPE_NULL) {
876 		zio_t *pio;
877 
878 		vd->vdev_cant_read |= !vps->vps_readable;
879 		vd->vdev_cant_write |= !vps->vps_writeable;
880 
881 		if (vdev_readable(vd) &&
882 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
883 			zio->io_error = 0;
884 		} else {
885 			ASSERT(zio->io_error != 0);
886 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
887 			    spa, vd, NULL, 0, 0);
888 			zio->io_error = ENXIO;
889 		}
890 
891 		mutex_enter(&vd->vdev_probe_lock);
892 		ASSERT(vd->vdev_probe_zio == zio);
893 		vd->vdev_probe_zio = NULL;
894 		mutex_exit(&vd->vdev_probe_lock);
895 
896 		while ((pio = zio_walk_parents(zio)) != NULL)
897 			if (!vdev_accessible(vd, pio))
898 				pio->io_error = ENXIO;
899 
900 		kmem_free(vps, sizeof (*vps));
901 	}
902 }
903 
904 /*
905  * Determine whether this device is accessible by reading and writing
906  * to several known locations: the pad regions of each vdev label
907  * but the first (which we leave alone in case it contains a VTOC).
908  */
909 zio_t *
910 vdev_probe(vdev_t *vd, zio_t *zio)
911 {
912 	spa_t *spa = vd->vdev_spa;
913 	vdev_probe_stats_t *vps = NULL;
914 	zio_t *pio;
915 
916 	ASSERT(vd->vdev_ops->vdev_op_leaf);
917 
918 	/*
919 	 * Don't probe the probe.
920 	 */
921 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
922 		return (NULL);
923 
924 	/*
925 	 * To prevent 'probe storms' when a device fails, we create
926 	 * just one probe i/o at a time.  All zios that want to probe
927 	 * this vdev will become parents of the probe io.
928 	 */
929 	mutex_enter(&vd->vdev_probe_lock);
930 
931 	if ((pio = vd->vdev_probe_zio) == NULL) {
932 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
933 
934 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
935 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
936 		    ZIO_FLAG_TRYHARD;
937 
938 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
939 			/*
940 			 * vdev_cant_read and vdev_cant_write can only
941 			 * transition from TRUE to FALSE when we have the
942 			 * SCL_ZIO lock as writer; otherwise they can only
943 			 * transition from FALSE to TRUE.  This ensures that
944 			 * any zio looking at these values can assume that
945 			 * failures persist for the life of the I/O.  That's
946 			 * important because when a device has intermittent
947 			 * connectivity problems, we want to ensure that
948 			 * they're ascribed to the device (ENXIO) and not
949 			 * the zio (EIO).
950 			 *
951 			 * Since we hold SCL_ZIO as writer here, clear both
952 			 * values so the probe can reevaluate from first
953 			 * principles.
954 			 */
955 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
956 			vd->vdev_cant_read = B_FALSE;
957 			vd->vdev_cant_write = B_FALSE;
958 		}
959 
960 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
961 		    vdev_probe_done, vps,
962 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
963 
964 		if (zio != NULL) {
965 			vd->vdev_probe_wanted = B_TRUE;
966 			spa_async_request(spa, SPA_ASYNC_PROBE);
967 		}
968 	}
969 
970 	if (zio != NULL)
971 		zio_add_child(zio, pio);
972 
973 	mutex_exit(&vd->vdev_probe_lock);
974 
975 	if (vps == NULL) {
976 		ASSERT(zio != NULL);
977 		return (NULL);
978 	}
979 
980 	for (int l = 1; l < VDEV_LABELS; l++) {
981 		zio_nowait(zio_read_phys(pio, vd,
982 		    vdev_label_offset(vd->vdev_psize, l,
983 		    offsetof(vdev_label_t, vl_pad2)),
984 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
985 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
986 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
987 	}
988 
989 	if (zio == NULL)
990 		return (pio);
991 
992 	zio_nowait(pio);
993 	return (NULL);
994 }
995 
996 /*
997  * Prepare a virtual device for access.
998  */
999 int
1000 vdev_open(vdev_t *vd)
1001 {
1002 	spa_t *spa = vd->vdev_spa;
1003 	int error;
1004 	uint64_t osize = 0;
1005 	uint64_t asize, psize;
1006 	uint64_t ashift = 0;
1007 
1008 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1009 
1010 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1011 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1012 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1013 
1014 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1015 	vd->vdev_cant_read = B_FALSE;
1016 	vd->vdev_cant_write = B_FALSE;
1017 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1018 
1019 	if (!vd->vdev_removed && vd->vdev_faulted) {
1020 		ASSERT(vd->vdev_children == 0);
1021 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1022 		    VDEV_AUX_ERR_EXCEEDED);
1023 		return (ENXIO);
1024 	} else if (vd->vdev_offline) {
1025 		ASSERT(vd->vdev_children == 0);
1026 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1027 		return (ENXIO);
1028 	}
1029 
1030 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1031 
1032 	if (zio_injection_enabled && error == 0)
1033 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1034 
1035 	if (error) {
1036 		if (vd->vdev_removed &&
1037 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1038 			vd->vdev_removed = B_FALSE;
1039 
1040 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1041 		    vd->vdev_stat.vs_aux);
1042 		return (error);
1043 	}
1044 
1045 	vd->vdev_removed = B_FALSE;
1046 
1047 	if (vd->vdev_degraded) {
1048 		ASSERT(vd->vdev_children == 0);
1049 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1050 		    VDEV_AUX_ERR_EXCEEDED);
1051 	} else {
1052 		vd->vdev_state = VDEV_STATE_HEALTHY;
1053 	}
1054 
1055 	for (int c = 0; c < vd->vdev_children; c++) {
1056 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1057 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1058 			    VDEV_AUX_NONE);
1059 			break;
1060 		}
1061 	}
1062 
1063 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1064 
1065 	if (vd->vdev_children == 0) {
1066 		if (osize < SPA_MINDEVSIZE) {
1067 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1068 			    VDEV_AUX_TOO_SMALL);
1069 			return (EOVERFLOW);
1070 		}
1071 		psize = osize;
1072 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1073 	} else {
1074 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1075 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1076 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1077 			    VDEV_AUX_TOO_SMALL);
1078 			return (EOVERFLOW);
1079 		}
1080 		psize = 0;
1081 		asize = osize;
1082 	}
1083 
1084 	vd->vdev_psize = psize;
1085 
1086 	/*
1087 	 * Make sure the allocatable size hasn't shrunk.
1088 	 */
1089 	if (asize < vd->vdev_min_asize) {
1090 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091 		    VDEV_AUX_BAD_LABEL);
1092 		return (EINVAL);
1093 	}
1094 
1095 	if (vd->vdev_asize == 0) {
1096 		/*
1097 		 * This is the first-ever open, so use the computed values.
1098 		 * For testing purposes, a higher ashift can be requested.
1099 		 */
1100 		vd->vdev_asize = asize;
1101 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1102 	} else {
1103 		/*
1104 		 * Make sure the alignment requirement hasn't increased.
1105 		 */
1106 		if (ashift > vd->vdev_top->vdev_ashift) {
1107 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1108 			    VDEV_AUX_BAD_LABEL);
1109 			return (EINVAL);
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * If all children are healthy and the asize has increased,
1115 	 * then we've experienced dynamic LUN growth.  If automatic
1116 	 * expansion is enabled then use the additional space.
1117 	 */
1118 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1119 	    (vd->vdev_expanding || spa->spa_autoexpand))
1120 		vd->vdev_asize = asize;
1121 
1122 	vdev_set_min_asize(vd);
1123 
1124 	/*
1125 	 * Ensure we can issue some IO before declaring the
1126 	 * vdev open for business.
1127 	 */
1128 	if (vd->vdev_ops->vdev_op_leaf &&
1129 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1130 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1131 		    VDEV_AUX_IO_FAILURE);
1132 		return (error);
1133 	}
1134 
1135 	/*
1136 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1137 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1138 	 * since this would just restart the scrub we are already doing.
1139 	 */
1140 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1141 	    vdev_resilver_needed(vd, NULL, NULL))
1142 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1143 
1144 	return (0);
1145 }
1146 
1147 /*
1148  * Called once the vdevs are all opened, this routine validates the label
1149  * contents.  This needs to be done before vdev_load() so that we don't
1150  * inadvertently do repair I/Os to the wrong device.
1151  *
1152  * This function will only return failure if one of the vdevs indicates that it
1153  * has since been destroyed or exported.  This is only possible if
1154  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1155  * will be updated but the function will return 0.
1156  */
1157 int
1158 vdev_validate(vdev_t *vd)
1159 {
1160 	spa_t *spa = vd->vdev_spa;
1161 	nvlist_t *label;
1162 	uint64_t guid, top_guid;
1163 	uint64_t state;
1164 
1165 	for (int c = 0; c < vd->vdev_children; c++)
1166 		if (vdev_validate(vd->vdev_child[c]) != 0)
1167 			return (EBADF);
1168 
1169 	/*
1170 	 * If the device has already failed, or was marked offline, don't do
1171 	 * any further validation.  Otherwise, label I/O will fail and we will
1172 	 * overwrite the previous state.
1173 	 */
1174 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1175 
1176 		if ((label = vdev_label_read_config(vd)) == NULL) {
1177 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 			    VDEV_AUX_BAD_LABEL);
1179 			return (0);
1180 		}
1181 
1182 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1183 		    &guid) != 0 || guid != spa_guid(spa)) {
1184 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1185 			    VDEV_AUX_CORRUPT_DATA);
1186 			nvlist_free(label);
1187 			return (0);
1188 		}
1189 
1190 		/*
1191 		 * If this vdev just became a top-level vdev because its
1192 		 * sibling was detached, it will have adopted the parent's
1193 		 * vdev guid -- but the label may or may not be on disk yet.
1194 		 * Fortunately, either version of the label will have the
1195 		 * same top guid, so if we're a top-level vdev, we can
1196 		 * safely compare to that instead.
1197 		 */
1198 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1199 		    &guid) != 0 ||
1200 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1201 		    &top_guid) != 0 ||
1202 		    (vd->vdev_guid != guid &&
1203 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1204 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1205 			    VDEV_AUX_CORRUPT_DATA);
1206 			nvlist_free(label);
1207 			return (0);
1208 		}
1209 
1210 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1211 		    &state) != 0) {
1212 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1213 			    VDEV_AUX_CORRUPT_DATA);
1214 			nvlist_free(label);
1215 			return (0);
1216 		}
1217 
1218 		nvlist_free(label);
1219 
1220 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1221 		    state != POOL_STATE_ACTIVE)
1222 			return (EBADF);
1223 
1224 		/*
1225 		 * If we were able to open and validate a vdev that was
1226 		 * previously marked permanently unavailable, clear that state
1227 		 * now.
1228 		 */
1229 		if (vd->vdev_not_present)
1230 			vd->vdev_not_present = 0;
1231 	}
1232 
1233 	return (0);
1234 }
1235 
1236 /*
1237  * Close a virtual device.
1238  */
1239 void
1240 vdev_close(vdev_t *vd)
1241 {
1242 	spa_t *spa = vd->vdev_spa;
1243 
1244 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1245 
1246 	vd->vdev_ops->vdev_op_close(vd);
1247 
1248 	vdev_cache_purge(vd);
1249 
1250 	/*
1251 	 * We record the previous state before we close it, so that if we are
1252 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1253 	 * it's still faulted.
1254 	 */
1255 	vd->vdev_prevstate = vd->vdev_state;
1256 
1257 	if (vd->vdev_offline)
1258 		vd->vdev_state = VDEV_STATE_OFFLINE;
1259 	else
1260 		vd->vdev_state = VDEV_STATE_CLOSED;
1261 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1262 }
1263 
1264 void
1265 vdev_reopen(vdev_t *vd)
1266 {
1267 	spa_t *spa = vd->vdev_spa;
1268 
1269 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1270 
1271 	vdev_close(vd);
1272 	(void) vdev_open(vd);
1273 
1274 	/*
1275 	 * Call vdev_validate() here to make sure we have the same device.
1276 	 * Otherwise, a device with an invalid label could be successfully
1277 	 * opened in response to vdev_reopen().
1278 	 */
1279 	if (vd->vdev_aux) {
1280 		(void) vdev_validate_aux(vd);
1281 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1282 		    vd->vdev_aux == &spa->spa_l2cache &&
1283 		    !l2arc_vdev_present(vd))
1284 			l2arc_add_vdev(spa, vd);
1285 	} else {
1286 		(void) vdev_validate(vd);
1287 	}
1288 
1289 	/*
1290 	 * Reassess parent vdev's health.
1291 	 */
1292 	vdev_propagate_state(vd);
1293 }
1294 
1295 int
1296 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1297 {
1298 	int error;
1299 
1300 	/*
1301 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1302 	 * For a create, however, we want to fail the request if
1303 	 * there are any components we can't open.
1304 	 */
1305 	error = vdev_open(vd);
1306 
1307 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1308 		vdev_close(vd);
1309 		return (error ? error : ENXIO);
1310 	}
1311 
1312 	/*
1313 	 * Recursively initialize all labels.
1314 	 */
1315 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1316 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1317 		vdev_close(vd);
1318 		return (error);
1319 	}
1320 
1321 	return (0);
1322 }
1323 
1324 void
1325 vdev_metaslab_set_size(vdev_t *vd)
1326 {
1327 	/*
1328 	 * Aim for roughly 200 metaslabs per vdev.
1329 	 */
1330 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1331 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1332 }
1333 
1334 void
1335 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1336 {
1337 	ASSERT(vd == vd->vdev_top);
1338 	ASSERT(ISP2(flags));
1339 
1340 	if (flags & VDD_METASLAB)
1341 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1342 
1343 	if (flags & VDD_DTL)
1344 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1345 
1346 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1347 }
1348 
1349 /*
1350  * DTLs.
1351  *
1352  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1353  * the vdev has less than perfect replication.  There are three kinds of DTL:
1354  *
1355  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1356  *
1357  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1358  *
1359  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1360  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1361  *	txgs that was scrubbed.
1362  *
1363  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1364  *	persistent errors or just some device being offline.
1365  *	Unlike the other three, the DTL_OUTAGE map is not generally
1366  *	maintained; it's only computed when needed, typically to
1367  *	determine whether a device can be detached.
1368  *
1369  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1370  * either has the data or it doesn't.
1371  *
1372  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1373  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1374  * if any child is less than fully replicated, then so is its parent.
1375  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1376  * comprising only those txgs which appear in 'maxfaults' or more children;
1377  * those are the txgs we don't have enough replication to read.  For example,
1378  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1379  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1380  * two child DTL_MISSING maps.
1381  *
1382  * It should be clear from the above that to compute the DTLs and outage maps
1383  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1384  * Therefore, that is all we keep on disk.  When loading the pool, or after
1385  * a configuration change, we generate all other DTLs from first principles.
1386  */
1387 void
1388 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1389 {
1390 	space_map_t *sm = &vd->vdev_dtl[t];
1391 
1392 	ASSERT(t < DTL_TYPES);
1393 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1394 
1395 	mutex_enter(sm->sm_lock);
1396 	if (!space_map_contains(sm, txg, size))
1397 		space_map_add(sm, txg, size);
1398 	mutex_exit(sm->sm_lock);
1399 }
1400 
1401 boolean_t
1402 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1403 {
1404 	space_map_t *sm = &vd->vdev_dtl[t];
1405 	boolean_t dirty = B_FALSE;
1406 
1407 	ASSERT(t < DTL_TYPES);
1408 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1409 
1410 	mutex_enter(sm->sm_lock);
1411 	if (sm->sm_space != 0)
1412 		dirty = space_map_contains(sm, txg, size);
1413 	mutex_exit(sm->sm_lock);
1414 
1415 	return (dirty);
1416 }
1417 
1418 boolean_t
1419 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1420 {
1421 	space_map_t *sm = &vd->vdev_dtl[t];
1422 	boolean_t empty;
1423 
1424 	mutex_enter(sm->sm_lock);
1425 	empty = (sm->sm_space == 0);
1426 	mutex_exit(sm->sm_lock);
1427 
1428 	return (empty);
1429 }
1430 
1431 /*
1432  * Reassess DTLs after a config change or scrub completion.
1433  */
1434 void
1435 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1436 {
1437 	spa_t *spa = vd->vdev_spa;
1438 	avl_tree_t reftree;
1439 	int minref;
1440 
1441 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1442 
1443 	for (int c = 0; c < vd->vdev_children; c++)
1444 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1445 		    scrub_txg, scrub_done);
1446 
1447 	if (vd == spa->spa_root_vdev)
1448 		return;
1449 
1450 	if (vd->vdev_ops->vdev_op_leaf) {
1451 		mutex_enter(&vd->vdev_dtl_lock);
1452 		if (scrub_txg != 0 &&
1453 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1454 			/* XXX should check scrub_done? */
1455 			/*
1456 			 * We completed a scrub up to scrub_txg.  If we
1457 			 * did it without rebooting, then the scrub dtl
1458 			 * will be valid, so excise the old region and
1459 			 * fold in the scrub dtl.  Otherwise, leave the
1460 			 * dtl as-is if there was an error.
1461 			 *
1462 			 * There's little trick here: to excise the beginning
1463 			 * of the DTL_MISSING map, we put it into a reference
1464 			 * tree and then add a segment with refcnt -1 that
1465 			 * covers the range [0, scrub_txg).  This means
1466 			 * that each txg in that range has refcnt -1 or 0.
1467 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1468 			 * entries in the range [0, scrub_txg) will have a
1469 			 * positive refcnt -- either 1 or 2.  We then convert
1470 			 * the reference tree into the new DTL_MISSING map.
1471 			 */
1472 			space_map_ref_create(&reftree);
1473 			space_map_ref_add_map(&reftree,
1474 			    &vd->vdev_dtl[DTL_MISSING], 1);
1475 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1476 			space_map_ref_add_map(&reftree,
1477 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1478 			space_map_ref_generate_map(&reftree,
1479 			    &vd->vdev_dtl[DTL_MISSING], 1);
1480 			space_map_ref_destroy(&reftree);
1481 		}
1482 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1483 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1484 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1485 		if (scrub_done)
1486 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1487 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1488 		if (!vdev_readable(vd))
1489 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1490 		else
1491 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1492 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1493 		mutex_exit(&vd->vdev_dtl_lock);
1494 
1495 		if (txg != 0)
1496 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1497 		return;
1498 	}
1499 
1500 	mutex_enter(&vd->vdev_dtl_lock);
1501 	for (int t = 0; t < DTL_TYPES; t++) {
1502 		if (t == DTL_SCRUB)
1503 			continue;			/* leaf vdevs only */
1504 		if (t == DTL_PARTIAL)
1505 			minref = 1;			/* i.e. non-zero */
1506 		else if (vd->vdev_nparity != 0)
1507 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1508 		else
1509 			minref = vd->vdev_children;	/* any kind of mirror */
1510 		space_map_ref_create(&reftree);
1511 		for (int c = 0; c < vd->vdev_children; c++) {
1512 			vdev_t *cvd = vd->vdev_child[c];
1513 			mutex_enter(&cvd->vdev_dtl_lock);
1514 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1515 			mutex_exit(&cvd->vdev_dtl_lock);
1516 		}
1517 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1518 		space_map_ref_destroy(&reftree);
1519 	}
1520 	mutex_exit(&vd->vdev_dtl_lock);
1521 }
1522 
1523 static int
1524 vdev_dtl_load(vdev_t *vd)
1525 {
1526 	spa_t *spa = vd->vdev_spa;
1527 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1528 	objset_t *mos = spa->spa_meta_objset;
1529 	dmu_buf_t *db;
1530 	int error;
1531 
1532 	ASSERT(vd->vdev_children == 0);
1533 
1534 	if (smo->smo_object == 0)
1535 		return (0);
1536 
1537 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1538 		return (error);
1539 
1540 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1541 	bcopy(db->db_data, smo, sizeof (*smo));
1542 	dmu_buf_rele(db, FTAG);
1543 
1544 	mutex_enter(&vd->vdev_dtl_lock);
1545 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1546 	    NULL, SM_ALLOC, smo, mos);
1547 	mutex_exit(&vd->vdev_dtl_lock);
1548 
1549 	return (error);
1550 }
1551 
1552 void
1553 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1554 {
1555 	spa_t *spa = vd->vdev_spa;
1556 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1557 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1558 	objset_t *mos = spa->spa_meta_objset;
1559 	space_map_t smsync;
1560 	kmutex_t smlock;
1561 	dmu_buf_t *db;
1562 	dmu_tx_t *tx;
1563 
1564 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1565 
1566 	if (vd->vdev_detached) {
1567 		if (smo->smo_object != 0) {
1568 			int err = dmu_object_free(mos, smo->smo_object, tx);
1569 			ASSERT3U(err, ==, 0);
1570 			smo->smo_object = 0;
1571 		}
1572 		dmu_tx_commit(tx);
1573 		return;
1574 	}
1575 
1576 	if (smo->smo_object == 0) {
1577 		ASSERT(smo->smo_objsize == 0);
1578 		ASSERT(smo->smo_alloc == 0);
1579 		smo->smo_object = dmu_object_alloc(mos,
1580 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1581 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1582 		ASSERT(smo->smo_object != 0);
1583 		vdev_config_dirty(vd->vdev_top);
1584 	}
1585 
1586 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1587 
1588 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1589 	    &smlock);
1590 
1591 	mutex_enter(&smlock);
1592 
1593 	mutex_enter(&vd->vdev_dtl_lock);
1594 	space_map_walk(sm, space_map_add, &smsync);
1595 	mutex_exit(&vd->vdev_dtl_lock);
1596 
1597 	space_map_truncate(smo, mos, tx);
1598 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1599 
1600 	space_map_destroy(&smsync);
1601 
1602 	mutex_exit(&smlock);
1603 	mutex_destroy(&smlock);
1604 
1605 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1606 	dmu_buf_will_dirty(db, tx);
1607 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1608 	bcopy(smo, db->db_data, sizeof (*smo));
1609 	dmu_buf_rele(db, FTAG);
1610 
1611 	dmu_tx_commit(tx);
1612 }
1613 
1614 /*
1615  * Determine whether the specified vdev can be offlined/detached/removed
1616  * without losing data.
1617  */
1618 boolean_t
1619 vdev_dtl_required(vdev_t *vd)
1620 {
1621 	spa_t *spa = vd->vdev_spa;
1622 	vdev_t *tvd = vd->vdev_top;
1623 	uint8_t cant_read = vd->vdev_cant_read;
1624 	boolean_t required;
1625 
1626 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1627 
1628 	if (vd == spa->spa_root_vdev || vd == tvd)
1629 		return (B_TRUE);
1630 
1631 	/*
1632 	 * Temporarily mark the device as unreadable, and then determine
1633 	 * whether this results in any DTL outages in the top-level vdev.
1634 	 * If not, we can safely offline/detach/remove the device.
1635 	 */
1636 	vd->vdev_cant_read = B_TRUE;
1637 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1638 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1639 	vd->vdev_cant_read = cant_read;
1640 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1641 
1642 	return (required);
1643 }
1644 
1645 /*
1646  * Determine if resilver is needed, and if so the txg range.
1647  */
1648 boolean_t
1649 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1650 {
1651 	boolean_t needed = B_FALSE;
1652 	uint64_t thismin = UINT64_MAX;
1653 	uint64_t thismax = 0;
1654 
1655 	if (vd->vdev_children == 0) {
1656 		mutex_enter(&vd->vdev_dtl_lock);
1657 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1658 		    vdev_writeable(vd)) {
1659 			space_seg_t *ss;
1660 
1661 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1662 			thismin = ss->ss_start - 1;
1663 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1664 			thismax = ss->ss_end;
1665 			needed = B_TRUE;
1666 		}
1667 		mutex_exit(&vd->vdev_dtl_lock);
1668 	} else {
1669 		for (int c = 0; c < vd->vdev_children; c++) {
1670 			vdev_t *cvd = vd->vdev_child[c];
1671 			uint64_t cmin, cmax;
1672 
1673 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1674 				thismin = MIN(thismin, cmin);
1675 				thismax = MAX(thismax, cmax);
1676 				needed = B_TRUE;
1677 			}
1678 		}
1679 	}
1680 
1681 	if (needed && minp) {
1682 		*minp = thismin;
1683 		*maxp = thismax;
1684 	}
1685 	return (needed);
1686 }
1687 
1688 void
1689 vdev_load(vdev_t *vd)
1690 {
1691 	/*
1692 	 * Recursively load all children.
1693 	 */
1694 	for (int c = 0; c < vd->vdev_children; c++)
1695 		vdev_load(vd->vdev_child[c]);
1696 
1697 	/*
1698 	 * If this is a top-level vdev, initialize its metaslabs.
1699 	 */
1700 	if (vd == vd->vdev_top &&
1701 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1702 	    vdev_metaslab_init(vd, 0) != 0))
1703 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1704 		    VDEV_AUX_CORRUPT_DATA);
1705 
1706 	/*
1707 	 * If this is a leaf vdev, load its DTL.
1708 	 */
1709 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1710 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1711 		    VDEV_AUX_CORRUPT_DATA);
1712 }
1713 
1714 /*
1715  * The special vdev case is used for hot spares and l2cache devices.  Its
1716  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1717  * we make sure that we can open the underlying device, then try to read the
1718  * label, and make sure that the label is sane and that it hasn't been
1719  * repurposed to another pool.
1720  */
1721 int
1722 vdev_validate_aux(vdev_t *vd)
1723 {
1724 	nvlist_t *label;
1725 	uint64_t guid, version;
1726 	uint64_t state;
1727 
1728 	if (!vdev_readable(vd))
1729 		return (0);
1730 
1731 	if ((label = vdev_label_read_config(vd)) == NULL) {
1732 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1733 		    VDEV_AUX_CORRUPT_DATA);
1734 		return (-1);
1735 	}
1736 
1737 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1738 	    version > SPA_VERSION ||
1739 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1740 	    guid != vd->vdev_guid ||
1741 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1742 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1743 		    VDEV_AUX_CORRUPT_DATA);
1744 		nvlist_free(label);
1745 		return (-1);
1746 	}
1747 
1748 	/*
1749 	 * We don't actually check the pool state here.  If it's in fact in
1750 	 * use by another pool, we update this fact on the fly when requested.
1751 	 */
1752 	nvlist_free(label);
1753 	return (0);
1754 }
1755 
1756 void
1757 vdev_sync_done(vdev_t *vd, uint64_t txg)
1758 {
1759 	metaslab_t *msp;
1760 
1761 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1762 		metaslab_sync_done(msp, txg);
1763 }
1764 
1765 void
1766 vdev_sync(vdev_t *vd, uint64_t txg)
1767 {
1768 	spa_t *spa = vd->vdev_spa;
1769 	vdev_t *lvd;
1770 	metaslab_t *msp;
1771 	dmu_tx_t *tx;
1772 
1773 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1774 		ASSERT(vd == vd->vdev_top);
1775 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1776 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1777 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1778 		ASSERT(vd->vdev_ms_array != 0);
1779 		vdev_config_dirty(vd);
1780 		dmu_tx_commit(tx);
1781 	}
1782 
1783 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1784 		metaslab_sync(msp, txg);
1785 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1786 	}
1787 
1788 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1789 		vdev_dtl_sync(lvd, txg);
1790 
1791 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1792 }
1793 
1794 uint64_t
1795 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1796 {
1797 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1798 }
1799 
1800 /*
1801  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1802  * not be opened, and no I/O is attempted.
1803  */
1804 int
1805 vdev_fault(spa_t *spa, uint64_t guid)
1806 {
1807 	vdev_t *vd;
1808 
1809 	spa_vdev_state_enter(spa);
1810 
1811 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1812 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1813 
1814 	if (!vd->vdev_ops->vdev_op_leaf)
1815 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1816 
1817 	/*
1818 	 * Faulted state takes precedence over degraded.
1819 	 */
1820 	vd->vdev_faulted = 1ULL;
1821 	vd->vdev_degraded = 0ULL;
1822 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1823 
1824 	/*
1825 	 * If marking the vdev as faulted cause the top-level vdev to become
1826 	 * unavailable, then back off and simply mark the vdev as degraded
1827 	 * instead.
1828 	 */
1829 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1830 		vd->vdev_degraded = 1ULL;
1831 		vd->vdev_faulted = 0ULL;
1832 
1833 		/*
1834 		 * If we reopen the device and it's not dead, only then do we
1835 		 * mark it degraded.
1836 		 */
1837 		vdev_reopen(vd);
1838 
1839 		if (vdev_readable(vd)) {
1840 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1841 			    VDEV_AUX_ERR_EXCEEDED);
1842 		}
1843 	}
1844 
1845 	return (spa_vdev_state_exit(spa, vd, 0));
1846 }
1847 
1848 /*
1849  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1850  * user that something is wrong.  The vdev continues to operate as normal as far
1851  * as I/O is concerned.
1852  */
1853 int
1854 vdev_degrade(spa_t *spa, uint64_t guid)
1855 {
1856 	vdev_t *vd;
1857 
1858 	spa_vdev_state_enter(spa);
1859 
1860 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1861 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1862 
1863 	if (!vd->vdev_ops->vdev_op_leaf)
1864 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1865 
1866 	/*
1867 	 * If the vdev is already faulted, then don't do anything.
1868 	 */
1869 	if (vd->vdev_faulted || vd->vdev_degraded)
1870 		return (spa_vdev_state_exit(spa, NULL, 0));
1871 
1872 	vd->vdev_degraded = 1ULL;
1873 	if (!vdev_is_dead(vd))
1874 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1875 		    VDEV_AUX_ERR_EXCEEDED);
1876 
1877 	return (spa_vdev_state_exit(spa, vd, 0));
1878 }
1879 
1880 /*
1881  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1882  * any attached spare device should be detached when the device finishes
1883  * resilvering.  Second, the online should be treated like a 'test' online case,
1884  * so no FMA events are generated if the device fails to open.
1885  */
1886 int
1887 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1888 {
1889 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
1890 
1891 	spa_vdev_state_enter(spa);
1892 
1893 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1894 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1895 
1896 	if (!vd->vdev_ops->vdev_op_leaf)
1897 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1898 
1899 	tvd = vd->vdev_top;
1900 	vd->vdev_offline = B_FALSE;
1901 	vd->vdev_tmpoffline = B_FALSE;
1902 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1903 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1904 
1905 	/* XXX - L2ARC 1.0 does not support expansion */
1906 	if (!vd->vdev_aux) {
1907 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1908 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
1909 	}
1910 
1911 	vdev_reopen(tvd);
1912 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1913 
1914 	if (!vd->vdev_aux) {
1915 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
1916 			pvd->vdev_expanding = B_FALSE;
1917 	}
1918 
1919 	if (newstate)
1920 		*newstate = vd->vdev_state;
1921 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1922 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1923 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1924 	    vd->vdev_parent->vdev_child[0] == vd)
1925 		vd->vdev_unspare = B_TRUE;
1926 
1927 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
1928 
1929 		/* XXX - L2ARC 1.0 does not support expansion */
1930 		if (vd->vdev_aux)
1931 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
1932 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1933 	}
1934 	return (spa_vdev_state_exit(spa, vd, 0));
1935 }
1936 
1937 int
1938 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1939 {
1940 	vdev_t *vd, *tvd;
1941 	int error;
1942 
1943 	spa_vdev_state_enter(spa);
1944 
1945 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1946 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1947 
1948 	if (!vd->vdev_ops->vdev_op_leaf)
1949 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1950 
1951 	tvd = vd->vdev_top;
1952 
1953 	/*
1954 	 * If the device isn't already offline, try to offline it.
1955 	 */
1956 	if (!vd->vdev_offline) {
1957 		/*
1958 		 * If this device has the only valid copy of some data,
1959 		 * don't allow it to be offlined. Log devices are always
1960 		 * expendable.
1961 		 */
1962 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1963 		    vdev_dtl_required(vd))
1964 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1965 
1966 		/*
1967 		 * Offline this device and reopen its top-level vdev.
1968 		 * If the top-level vdev is a log device then just offline
1969 		 * it. Otherwise, if this action results in the top-level
1970 		 * vdev becoming unusable, undo it and fail the request.
1971 		 */
1972 		vd->vdev_offline = B_TRUE;
1973 		vdev_reopen(tvd);
1974 
1975 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
1976 		    vdev_is_dead(tvd)) {
1977 			vd->vdev_offline = B_FALSE;
1978 			vdev_reopen(tvd);
1979 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
1980 		}
1981 	}
1982 
1983 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1984 
1985 	if (!tvd->vdev_islog || !vdev_is_dead(tvd))
1986 		return (spa_vdev_state_exit(spa, vd, 0));
1987 
1988 	(void) spa_vdev_state_exit(spa, vd, 0);
1989 
1990 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1991 	    NULL, DS_FIND_CHILDREN);
1992 	if (error) {
1993 		(void) vdev_online(spa, guid, 0, NULL);
1994 		return (error);
1995 	}
1996 	/*
1997 	 * If we successfully offlined the log device then we need to
1998 	 * sync out the current txg so that the "stubby" block can be
1999 	 * removed by zil_sync().
2000 	 */
2001 	txg_wait_synced(spa->spa_dsl_pool, 0);
2002 	return (0);
2003 }
2004 
2005 /*
2006  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2007  * vdev_offline(), we assume the spa config is locked.  We also clear all
2008  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2009  */
2010 void
2011 vdev_clear(spa_t *spa, vdev_t *vd)
2012 {
2013 	vdev_t *rvd = spa->spa_root_vdev;
2014 
2015 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2016 
2017 	if (vd == NULL)
2018 		vd = rvd;
2019 
2020 	vd->vdev_stat.vs_read_errors = 0;
2021 	vd->vdev_stat.vs_write_errors = 0;
2022 	vd->vdev_stat.vs_checksum_errors = 0;
2023 
2024 	for (int c = 0; c < vd->vdev_children; c++)
2025 		vdev_clear(spa, vd->vdev_child[c]);
2026 
2027 	/*
2028 	 * If we're in the FAULTED state or have experienced failed I/O, then
2029 	 * clear the persistent state and attempt to reopen the device.  We
2030 	 * also mark the vdev config dirty, so that the new faulted state is
2031 	 * written out to disk.
2032 	 */
2033 	if (vd->vdev_faulted || vd->vdev_degraded ||
2034 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2035 
2036 		vd->vdev_faulted = vd->vdev_degraded = 0;
2037 		vd->vdev_cant_read = B_FALSE;
2038 		vd->vdev_cant_write = B_FALSE;
2039 
2040 		vdev_reopen(vd);
2041 
2042 		if (vd != rvd)
2043 			vdev_state_dirty(vd->vdev_top);
2044 
2045 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2046 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2047 
2048 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2049 	}
2050 }
2051 
2052 boolean_t
2053 vdev_is_dead(vdev_t *vd)
2054 {
2055 	return (vd->vdev_state < VDEV_STATE_DEGRADED);
2056 }
2057 
2058 boolean_t
2059 vdev_readable(vdev_t *vd)
2060 {
2061 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2062 }
2063 
2064 boolean_t
2065 vdev_writeable(vdev_t *vd)
2066 {
2067 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2068 }
2069 
2070 boolean_t
2071 vdev_allocatable(vdev_t *vd)
2072 {
2073 	uint64_t state = vd->vdev_state;
2074 
2075 	/*
2076 	 * We currently allow allocations from vdevs which may be in the
2077 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2078 	 * fails to reopen then we'll catch it later when we're holding
2079 	 * the proper locks.  Note that we have to get the vdev state
2080 	 * in a local variable because although it changes atomically,
2081 	 * we're asking two separate questions about it.
2082 	 */
2083 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2084 	    !vd->vdev_cant_write);
2085 }
2086 
2087 boolean_t
2088 vdev_accessible(vdev_t *vd, zio_t *zio)
2089 {
2090 	ASSERT(zio->io_vd == vd);
2091 
2092 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2093 		return (B_FALSE);
2094 
2095 	if (zio->io_type == ZIO_TYPE_READ)
2096 		return (!vd->vdev_cant_read);
2097 
2098 	if (zio->io_type == ZIO_TYPE_WRITE)
2099 		return (!vd->vdev_cant_write);
2100 
2101 	return (B_TRUE);
2102 }
2103 
2104 /*
2105  * Get statistics for the given vdev.
2106  */
2107 void
2108 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2109 {
2110 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2111 
2112 	mutex_enter(&vd->vdev_stat_lock);
2113 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2114 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2115 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2116 	vs->vs_state = vd->vdev_state;
2117 	vs->vs_rsize = vdev_get_min_asize(vd);
2118 	if (vd->vdev_ops->vdev_op_leaf)
2119 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2120 	mutex_exit(&vd->vdev_stat_lock);
2121 
2122 	/*
2123 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2124 	 * over all top-level vdevs (i.e. the direct children of the root).
2125 	 */
2126 	if (vd == rvd) {
2127 		for (int c = 0; c < rvd->vdev_children; c++) {
2128 			vdev_t *cvd = rvd->vdev_child[c];
2129 			vdev_stat_t *cvs = &cvd->vdev_stat;
2130 
2131 			mutex_enter(&vd->vdev_stat_lock);
2132 			for (int t = 0; t < ZIO_TYPES; t++) {
2133 				vs->vs_ops[t] += cvs->vs_ops[t];
2134 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2135 			}
2136 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2137 			mutex_exit(&vd->vdev_stat_lock);
2138 		}
2139 	}
2140 }
2141 
2142 void
2143 vdev_clear_stats(vdev_t *vd)
2144 {
2145 	mutex_enter(&vd->vdev_stat_lock);
2146 	vd->vdev_stat.vs_space = 0;
2147 	vd->vdev_stat.vs_dspace = 0;
2148 	vd->vdev_stat.vs_alloc = 0;
2149 	mutex_exit(&vd->vdev_stat_lock);
2150 }
2151 
2152 void
2153 vdev_stat_update(zio_t *zio, uint64_t psize)
2154 {
2155 	spa_t *spa = zio->io_spa;
2156 	vdev_t *rvd = spa->spa_root_vdev;
2157 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2158 	vdev_t *pvd;
2159 	uint64_t txg = zio->io_txg;
2160 	vdev_stat_t *vs = &vd->vdev_stat;
2161 	zio_type_t type = zio->io_type;
2162 	int flags = zio->io_flags;
2163 
2164 	/*
2165 	 * If this i/o is a gang leader, it didn't do any actual work.
2166 	 */
2167 	if (zio->io_gang_tree)
2168 		return;
2169 
2170 	if (zio->io_error == 0) {
2171 		/*
2172 		 * If this is a root i/o, don't count it -- we've already
2173 		 * counted the top-level vdevs, and vdev_get_stats() will
2174 		 * aggregate them when asked.  This reduces contention on
2175 		 * the root vdev_stat_lock and implicitly handles blocks
2176 		 * that compress away to holes, for which there is no i/o.
2177 		 * (Holes never create vdev children, so all the counters
2178 		 * remain zero, which is what we want.)
2179 		 *
2180 		 * Note: this only applies to successful i/o (io_error == 0)
2181 		 * because unlike i/o counts, errors are not additive.
2182 		 * When reading a ditto block, for example, failure of
2183 		 * one top-level vdev does not imply a root-level error.
2184 		 */
2185 		if (vd == rvd)
2186 			return;
2187 
2188 		ASSERT(vd == zio->io_vd);
2189 
2190 		if (flags & ZIO_FLAG_IO_BYPASS)
2191 			return;
2192 
2193 		mutex_enter(&vd->vdev_stat_lock);
2194 
2195 		if (flags & ZIO_FLAG_IO_REPAIR) {
2196 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2197 				vs->vs_scrub_repaired += psize;
2198 			if (flags & ZIO_FLAG_SELF_HEAL)
2199 				vs->vs_self_healed += psize;
2200 		}
2201 
2202 		vs->vs_ops[type]++;
2203 		vs->vs_bytes[type] += psize;
2204 
2205 		mutex_exit(&vd->vdev_stat_lock);
2206 		return;
2207 	}
2208 
2209 	if (flags & ZIO_FLAG_SPECULATIVE)
2210 		return;
2211 
2212 	/*
2213 	 * If this is an I/O error that is going to be retried, then ignore the
2214 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2215 	 * hard errors, when in reality they can happen for any number of
2216 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2217 	 */
2218 	if (zio->io_error == EIO &&
2219 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2220 		return;
2221 
2222 	mutex_enter(&vd->vdev_stat_lock);
2223 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2224 		if (zio->io_error == ECKSUM)
2225 			vs->vs_checksum_errors++;
2226 		else
2227 			vs->vs_read_errors++;
2228 	}
2229 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2230 		vs->vs_write_errors++;
2231 	mutex_exit(&vd->vdev_stat_lock);
2232 
2233 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2234 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2235 	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2236 		/*
2237 		 * This is either a normal write (not a repair), or it's a
2238 		 * repair induced by the scrub thread.  In the normal case,
2239 		 * we commit the DTL change in the same txg as the block
2240 		 * was born.  In the scrub-induced repair case, we know that
2241 		 * scrubs run in first-pass syncing context, so we commit
2242 		 * the DTL change in spa->spa_syncing_txg.
2243 		 *
2244 		 * We currently do not make DTL entries for failed spontaneous
2245 		 * self-healing writes triggered by normal (non-scrubbing)
2246 		 * reads, because we have no transactional context in which to
2247 		 * do so -- and it's not clear that it'd be desirable anyway.
2248 		 */
2249 		if (vd->vdev_ops->vdev_op_leaf) {
2250 			uint64_t commit_txg = txg;
2251 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2252 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2253 				ASSERT(spa_sync_pass(spa) == 1);
2254 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2255 				commit_txg = spa->spa_syncing_txg;
2256 			}
2257 			ASSERT(commit_txg >= spa->spa_syncing_txg);
2258 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2259 				return;
2260 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2261 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2262 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2263 		}
2264 		if (vd != rvd)
2265 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2266 	}
2267 }
2268 
2269 void
2270 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2271 {
2272 	vdev_stat_t *vs = &vd->vdev_stat;
2273 
2274 	for (int c = 0; c < vd->vdev_children; c++)
2275 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2276 
2277 	mutex_enter(&vd->vdev_stat_lock);
2278 
2279 	if (type == POOL_SCRUB_NONE) {
2280 		/*
2281 		 * Update completion and end time.  Leave everything else alone
2282 		 * so we can report what happened during the previous scrub.
2283 		 */
2284 		vs->vs_scrub_complete = complete;
2285 		vs->vs_scrub_end = gethrestime_sec();
2286 	} else {
2287 		vs->vs_scrub_type = type;
2288 		vs->vs_scrub_complete = 0;
2289 		vs->vs_scrub_examined = 0;
2290 		vs->vs_scrub_repaired = 0;
2291 		vs->vs_scrub_start = gethrestime_sec();
2292 		vs->vs_scrub_end = 0;
2293 	}
2294 
2295 	mutex_exit(&vd->vdev_stat_lock);
2296 }
2297 
2298 /*
2299  * Update the in-core space usage stats for this vdev and the root vdev.
2300  */
2301 void
2302 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2303     boolean_t update_root)
2304 {
2305 	int64_t dspace_delta = space_delta;
2306 	spa_t *spa = vd->vdev_spa;
2307 	vdev_t *rvd = spa->spa_root_vdev;
2308 
2309 	ASSERT(vd == vd->vdev_top);
2310 
2311 	/*
2312 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2313 	 * factor.  We must calculate this here and not at the root vdev
2314 	 * because the root vdev's psize-to-asize is simply the max of its
2315 	 * childrens', thus not accurate enough for us.
2316 	 */
2317 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2318 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2319 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2320 	    vd->vdev_deflate_ratio;
2321 
2322 	mutex_enter(&vd->vdev_stat_lock);
2323 	vd->vdev_stat.vs_space += space_delta;
2324 	vd->vdev_stat.vs_alloc += alloc_delta;
2325 	vd->vdev_stat.vs_dspace += dspace_delta;
2326 	mutex_exit(&vd->vdev_stat_lock);
2327 
2328 	if (update_root) {
2329 		ASSERT(rvd == vd->vdev_parent);
2330 		ASSERT(vd->vdev_ms_count != 0);
2331 
2332 		/*
2333 		 * Don't count non-normal (e.g. intent log) space as part of
2334 		 * the pool's capacity.
2335 		 */
2336 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2337 			return;
2338 
2339 		mutex_enter(&rvd->vdev_stat_lock);
2340 		rvd->vdev_stat.vs_space += space_delta;
2341 		rvd->vdev_stat.vs_alloc += alloc_delta;
2342 		rvd->vdev_stat.vs_dspace += dspace_delta;
2343 		mutex_exit(&rvd->vdev_stat_lock);
2344 	}
2345 }
2346 
2347 /*
2348  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2349  * so that it will be written out next time the vdev configuration is synced.
2350  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2351  */
2352 void
2353 vdev_config_dirty(vdev_t *vd)
2354 {
2355 	spa_t *spa = vd->vdev_spa;
2356 	vdev_t *rvd = spa->spa_root_vdev;
2357 	int c;
2358 
2359 	/*
2360 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2361 	 * update the vdev config manually and set the sync flag.
2362 	 */
2363 	if (vd->vdev_aux != NULL) {
2364 		spa_aux_vdev_t *sav = vd->vdev_aux;
2365 		nvlist_t **aux;
2366 		uint_t naux;
2367 
2368 		for (c = 0; c < sav->sav_count; c++) {
2369 			if (sav->sav_vdevs[c] == vd)
2370 				break;
2371 		}
2372 
2373 		if (c == sav->sav_count) {
2374 			/*
2375 			 * We're being removed.  There's nothing more to do.
2376 			 */
2377 			ASSERT(sav->sav_sync == B_TRUE);
2378 			return;
2379 		}
2380 
2381 		sav->sav_sync = B_TRUE;
2382 
2383 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2384 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2385 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2386 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2387 		}
2388 
2389 		ASSERT(c < naux);
2390 
2391 		/*
2392 		 * Setting the nvlist in the middle if the array is a little
2393 		 * sketchy, but it will work.
2394 		 */
2395 		nvlist_free(aux[c]);
2396 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2397 
2398 		return;
2399 	}
2400 
2401 	/*
2402 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2403 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2404 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2405 	 * so this is sufficient to ensure mutual exclusion.
2406 	 */
2407 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2408 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2409 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2410 
2411 	if (vd == rvd) {
2412 		for (c = 0; c < rvd->vdev_children; c++)
2413 			vdev_config_dirty(rvd->vdev_child[c]);
2414 	} else {
2415 		ASSERT(vd == vd->vdev_top);
2416 
2417 		if (!list_link_active(&vd->vdev_config_dirty_node))
2418 			list_insert_head(&spa->spa_config_dirty_list, vd);
2419 	}
2420 }
2421 
2422 void
2423 vdev_config_clean(vdev_t *vd)
2424 {
2425 	spa_t *spa = vd->vdev_spa;
2426 
2427 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2428 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2429 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2430 
2431 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2432 	list_remove(&spa->spa_config_dirty_list, vd);
2433 }
2434 
2435 /*
2436  * Mark a top-level vdev's state as dirty, so that the next pass of
2437  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2438  * the state changes from larger config changes because they require
2439  * much less locking, and are often needed for administrative actions.
2440  */
2441 void
2442 vdev_state_dirty(vdev_t *vd)
2443 {
2444 	spa_t *spa = vd->vdev_spa;
2445 
2446 	ASSERT(vd == vd->vdev_top);
2447 
2448 	/*
2449 	 * The state list is protected by the SCL_STATE lock.  The caller
2450 	 * must either hold SCL_STATE as writer, or must be the sync thread
2451 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2452 	 * so this is sufficient to ensure mutual exclusion.
2453 	 */
2454 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2455 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2456 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2457 
2458 	if (!list_link_active(&vd->vdev_state_dirty_node))
2459 		list_insert_head(&spa->spa_state_dirty_list, vd);
2460 }
2461 
2462 void
2463 vdev_state_clean(vdev_t *vd)
2464 {
2465 	spa_t *spa = vd->vdev_spa;
2466 
2467 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2468 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2469 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2470 
2471 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2472 	list_remove(&spa->spa_state_dirty_list, vd);
2473 }
2474 
2475 /*
2476  * Propagate vdev state up from children to parent.
2477  */
2478 void
2479 vdev_propagate_state(vdev_t *vd)
2480 {
2481 	spa_t *spa = vd->vdev_spa;
2482 	vdev_t *rvd = spa->spa_root_vdev;
2483 	int degraded = 0, faulted = 0;
2484 	int corrupted = 0;
2485 	vdev_t *child;
2486 
2487 	if (vd->vdev_children > 0) {
2488 		for (int c = 0; c < vd->vdev_children; c++) {
2489 			child = vd->vdev_child[c];
2490 
2491 			if (!vdev_readable(child) ||
2492 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2493 				/*
2494 				 * Root special: if there is a top-level log
2495 				 * device, treat the root vdev as if it were
2496 				 * degraded.
2497 				 */
2498 				if (child->vdev_islog && vd == rvd)
2499 					degraded++;
2500 				else
2501 					faulted++;
2502 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2503 				degraded++;
2504 			}
2505 
2506 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2507 				corrupted++;
2508 		}
2509 
2510 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2511 
2512 		/*
2513 		 * Root special: if there is a top-level vdev that cannot be
2514 		 * opened due to corrupted metadata, then propagate the root
2515 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2516 		 * replicas'.
2517 		 */
2518 		if (corrupted && vd == rvd &&
2519 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2520 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2521 			    VDEV_AUX_CORRUPT_DATA);
2522 	}
2523 
2524 	if (vd->vdev_parent)
2525 		vdev_propagate_state(vd->vdev_parent);
2526 }
2527 
2528 /*
2529  * Set a vdev's state.  If this is during an open, we don't update the parent
2530  * state, because we're in the process of opening children depth-first.
2531  * Otherwise, we propagate the change to the parent.
2532  *
2533  * If this routine places a device in a faulted state, an appropriate ereport is
2534  * generated.
2535  */
2536 void
2537 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2538 {
2539 	uint64_t save_state;
2540 	spa_t *spa = vd->vdev_spa;
2541 
2542 	if (state == vd->vdev_state) {
2543 		vd->vdev_stat.vs_aux = aux;
2544 		return;
2545 	}
2546 
2547 	save_state = vd->vdev_state;
2548 
2549 	vd->vdev_state = state;
2550 	vd->vdev_stat.vs_aux = aux;
2551 
2552 	/*
2553 	 * If we are setting the vdev state to anything but an open state, then
2554 	 * always close the underlying device.  Otherwise, we keep accessible
2555 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2556 	 * because that implies some extra checks (offline, etc) that we don't
2557 	 * want here.  This is limited to leaf devices, because otherwise
2558 	 * closing the device will affect other children.
2559 	 */
2560 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2561 		vd->vdev_ops->vdev_op_close(vd);
2562 
2563 	if (vd->vdev_removed &&
2564 	    state == VDEV_STATE_CANT_OPEN &&
2565 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2566 		/*
2567 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2568 		 * device was previously marked removed and someone attempted to
2569 		 * reopen it.  If this failed due to a nonexistent device, then
2570 		 * keep the device in the REMOVED state.  We also let this be if
2571 		 * it is one of our special test online cases, which is only
2572 		 * attempting to online the device and shouldn't generate an FMA
2573 		 * fault.
2574 		 */
2575 		vd->vdev_state = VDEV_STATE_REMOVED;
2576 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2577 	} else if (state == VDEV_STATE_REMOVED) {
2578 		/*
2579 		 * Indicate to the ZFS DE that this device has been removed, and
2580 		 * any recent errors should be ignored.
2581 		 */
2582 		zfs_post_remove(spa, vd);
2583 		vd->vdev_removed = B_TRUE;
2584 	} else if (state == VDEV_STATE_CANT_OPEN) {
2585 		/*
2586 		 * If we fail to open a vdev during an import, we mark it as
2587 		 * "not available", which signifies that it was never there to
2588 		 * begin with.  Failure to open such a device is not considered
2589 		 * an error.
2590 		 */
2591 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2592 		    vd->vdev_ops->vdev_op_leaf)
2593 			vd->vdev_not_present = 1;
2594 
2595 		/*
2596 		 * Post the appropriate ereport.  If the 'prevstate' field is
2597 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2598 		 * that this is part of a vdev_reopen().  In this case, we don't
2599 		 * want to post the ereport if the device was already in the
2600 		 * CANT_OPEN state beforehand.
2601 		 *
2602 		 * If the 'checkremove' flag is set, then this is an attempt to
2603 		 * online the device in response to an insertion event.  If we
2604 		 * hit this case, then we have detected an insertion event for a
2605 		 * faulted or offline device that wasn't in the removed state.
2606 		 * In this scenario, we don't post an ereport because we are
2607 		 * about to replace the device, or attempt an online with
2608 		 * vdev_forcefault, which will generate the fault for us.
2609 		 */
2610 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2611 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2612 		    vd != spa->spa_root_vdev) {
2613 			const char *class;
2614 
2615 			switch (aux) {
2616 			case VDEV_AUX_OPEN_FAILED:
2617 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2618 				break;
2619 			case VDEV_AUX_CORRUPT_DATA:
2620 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2621 				break;
2622 			case VDEV_AUX_NO_REPLICAS:
2623 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2624 				break;
2625 			case VDEV_AUX_BAD_GUID_SUM:
2626 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2627 				break;
2628 			case VDEV_AUX_TOO_SMALL:
2629 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2630 				break;
2631 			case VDEV_AUX_BAD_LABEL:
2632 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2633 				break;
2634 			case VDEV_AUX_IO_FAILURE:
2635 				class = FM_EREPORT_ZFS_IO_FAILURE;
2636 				break;
2637 			default:
2638 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2639 			}
2640 
2641 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2642 		}
2643 
2644 		/* Erase any notion of persistent removed state */
2645 		vd->vdev_removed = B_FALSE;
2646 	} else {
2647 		vd->vdev_removed = B_FALSE;
2648 	}
2649 
2650 	if (!isopen && vd->vdev_parent)
2651 		vdev_propagate_state(vd->vdev_parent);
2652 }
2653 
2654 /*
2655  * Check the vdev configuration to ensure that it's capable of supporting
2656  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2657  * In addition, only a single top-level vdev is allowed and none of the leaves
2658  * can be wholedisks.
2659  */
2660 boolean_t
2661 vdev_is_bootable(vdev_t *vd)
2662 {
2663 	if (!vd->vdev_ops->vdev_op_leaf) {
2664 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2665 
2666 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2667 		    vd->vdev_children > 1) {
2668 			return (B_FALSE);
2669 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2670 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2671 			return (B_FALSE);
2672 		}
2673 	} else if (vd->vdev_wholedisk == 1) {
2674 		return (B_FALSE);
2675 	}
2676 
2677 	for (int c = 0; c < vd->vdev_children; c++) {
2678 		if (!vdev_is_bootable(vd->vdev_child[c]))
2679 			return (B_FALSE);
2680 	}
2681 	return (B_TRUE);
2682 }
2683 
2684 void
2685 vdev_load_log_state(vdev_t *vd, nvlist_t *nv)
2686 {
2687 	uint_t children;
2688 	nvlist_t **child;
2689 	uint64_t val;
2690 	spa_t *spa = vd->vdev_spa;
2691 
2692 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2693 	    &child, &children) == 0) {
2694 		for (int c = 0; c < children; c++)
2695 			vdev_load_log_state(vd->vdev_child[c], child[c]);
2696 	}
2697 
2698 	if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv,
2699 	    ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) {
2700 
2701 		/*
2702 		 * It would be nice to call vdev_offline()
2703 		 * directly but the pool isn't fully loaded and
2704 		 * the txg threads have not been started yet.
2705 		 */
2706 		spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER);
2707 		vd->vdev_offline = val;
2708 		vdev_reopen(vd->vdev_top);
2709 		spa_config_exit(spa, SCL_STATE_ALL, FTAG);
2710 	}
2711 }
2712 
2713 /*
2714  * Expand a vdev if possible.
2715  */
2716 void
2717 vdev_expand(vdev_t *vd, uint64_t txg)
2718 {
2719 	ASSERT(vd->vdev_top == vd);
2720 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2721 
2722 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
2723 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
2724 		vdev_config_dirty(vd);
2725 	}
2726 }
2727