1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2019 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa.h> 36 #include <sys/spa_impl.h> 37 #include <sys/bpobj.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/uberblock_impl.h> 43 #include <sys/metaslab.h> 44 #include <sys/metaslab_impl.h> 45 #include <sys/space_map.h> 46 #include <sys/space_reftree.h> 47 #include <sys/zio.h> 48 #include <sys/zap.h> 49 #include <sys/fs/zfs.h> 50 #include <sys/arc.h> 51 #include <sys/zil.h> 52 #include <sys/dsl_scan.h> 53 #include <sys/abd.h> 54 #include <sys/vdev_initialize.h> 55 #include <sys/vdev_trim.h> 56 57 /* 58 * Virtual device management. 59 */ 60 61 static vdev_ops_t *vdev_ops_table[] = { 62 &vdev_root_ops, 63 &vdev_raidz_ops, 64 &vdev_mirror_ops, 65 &vdev_replacing_ops, 66 &vdev_spare_ops, 67 &vdev_disk_ops, 68 &vdev_file_ops, 69 &vdev_missing_ops, 70 &vdev_hole_ops, 71 &vdev_indirect_ops, 72 NULL 73 }; 74 75 /* maximum scrub/resilver I/O queue per leaf vdev */ 76 int zfs_scrub_limit = 10; 77 78 /* default target for number of metaslabs per top-level vdev */ 79 int zfs_vdev_default_ms_count = 200; 80 81 /* minimum number of metaslabs per top-level vdev */ 82 int zfs_vdev_min_ms_count = 16; 83 84 /* practical upper limit of total metaslabs per top-level vdev */ 85 int zfs_vdev_ms_count_limit = 1ULL << 17; 86 87 /* lower limit for metaslab size (512M) */ 88 int zfs_vdev_default_ms_shift = 29; 89 90 /* upper limit for metaslab size (16G) */ 91 int zfs_vdev_max_ms_shift = 34; 92 93 boolean_t vdev_validate_skip = B_FALSE; 94 95 /* 96 * Since the DTL space map of a vdev is not expected to have a lot of 97 * entries, we default its block size to 4K. 98 */ 99 int zfs_vdev_dtl_sm_blksz = (1 << 12); 100 101 /* 102 * Ignore errors during scrub/resilver. Allows to work around resilver 103 * upon import when there are pool errors. 104 */ 105 int zfs_scan_ignore_errors = 0; 106 107 /* 108 * vdev-wide space maps that have lots of entries written to them at 109 * the end of each transaction can benefit from a higher I/O bandwidth 110 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 111 */ 112 int zfs_vdev_standard_sm_blksz = (1 << 17); 113 114 int zfs_ashift_min; 115 116 /*PRINTFLIKE2*/ 117 void 118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 119 { 120 va_list adx; 121 char buf[256]; 122 123 va_start(adx, fmt); 124 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 125 va_end(adx); 126 127 if (vd->vdev_path != NULL) { 128 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 129 vd->vdev_path, buf); 130 } else { 131 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 132 vd->vdev_ops->vdev_op_type, 133 (u_longlong_t)vd->vdev_id, 134 (u_longlong_t)vd->vdev_guid, buf); 135 } 136 } 137 138 void 139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 140 { 141 char state[20]; 142 143 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 144 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 145 vd->vdev_ops->vdev_op_type); 146 return; 147 } 148 149 switch (vd->vdev_state) { 150 case VDEV_STATE_UNKNOWN: 151 (void) snprintf(state, sizeof (state), "unknown"); 152 break; 153 case VDEV_STATE_CLOSED: 154 (void) snprintf(state, sizeof (state), "closed"); 155 break; 156 case VDEV_STATE_OFFLINE: 157 (void) snprintf(state, sizeof (state), "offline"); 158 break; 159 case VDEV_STATE_REMOVED: 160 (void) snprintf(state, sizeof (state), "removed"); 161 break; 162 case VDEV_STATE_CANT_OPEN: 163 (void) snprintf(state, sizeof (state), "can't open"); 164 break; 165 case VDEV_STATE_FAULTED: 166 (void) snprintf(state, sizeof (state), "faulted"); 167 break; 168 case VDEV_STATE_DEGRADED: 169 (void) snprintf(state, sizeof (state), "degraded"); 170 break; 171 case VDEV_STATE_HEALTHY: 172 (void) snprintf(state, sizeof (state), "healthy"); 173 break; 174 default: 175 (void) snprintf(state, sizeof (state), "<state %u>", 176 (uint_t)vd->vdev_state); 177 } 178 179 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 180 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 181 vd->vdev_islog ? " (log)" : "", 182 (u_longlong_t)vd->vdev_guid, 183 vd->vdev_path ? vd->vdev_path : "N/A", state); 184 185 for (uint64_t i = 0; i < vd->vdev_children; i++) 186 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 187 } 188 189 /* 190 * Given a vdev type, return the appropriate ops vector. 191 */ 192 static vdev_ops_t * 193 vdev_getops(const char *type) 194 { 195 vdev_ops_t *ops, **opspp; 196 197 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 198 if (strcmp(ops->vdev_op_type, type) == 0) 199 break; 200 201 return (ops); 202 } 203 204 /* 205 * Derive the enumerated alloction bias from string input. 206 * String origin is either the per-vdev zap or zpool(8). 207 */ 208 static vdev_alloc_bias_t 209 vdev_derive_alloc_bias(const char *bias) 210 { 211 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 212 213 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 214 alloc_bias = VDEV_BIAS_LOG; 215 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 216 alloc_bias = VDEV_BIAS_SPECIAL; 217 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 218 alloc_bias = VDEV_BIAS_DEDUP; 219 220 return (alloc_bias); 221 } 222 223 /* ARGSUSED */ 224 void 225 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res) 226 { 227 res->rs_start = in->rs_start; 228 res->rs_end = in->rs_end; 229 } 230 231 /* 232 * Default asize function: return the MAX of psize with the asize of 233 * all children. This is what's used by anything other than RAID-Z. 234 */ 235 uint64_t 236 vdev_default_asize(vdev_t *vd, uint64_t psize) 237 { 238 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 239 uint64_t csize; 240 241 for (int c = 0; c < vd->vdev_children; c++) { 242 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 243 asize = MAX(asize, csize); 244 } 245 246 return (asize); 247 } 248 249 /* 250 * Get the minimum allocatable size. We define the allocatable size as 251 * the vdev's asize rounded to the nearest metaslab. This allows us to 252 * replace or attach devices which don't have the same physical size but 253 * can still satisfy the same number of allocations. 254 */ 255 uint64_t 256 vdev_get_min_asize(vdev_t *vd) 257 { 258 vdev_t *pvd = vd->vdev_parent; 259 260 /* 261 * If our parent is NULL (inactive spare or cache) or is the root, 262 * just return our own asize. 263 */ 264 if (pvd == NULL) 265 return (vd->vdev_asize); 266 267 /* 268 * The top-level vdev just returns the allocatable size rounded 269 * to the nearest metaslab. 270 */ 271 if (vd == vd->vdev_top) 272 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 273 274 /* 275 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 276 * so each child must provide at least 1/Nth of its asize. 277 */ 278 if (pvd->vdev_ops == &vdev_raidz_ops) 279 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 280 pvd->vdev_children); 281 282 return (pvd->vdev_min_asize); 283 } 284 285 void 286 vdev_set_min_asize(vdev_t *vd) 287 { 288 vd->vdev_min_asize = vdev_get_min_asize(vd); 289 290 for (int c = 0; c < vd->vdev_children; c++) 291 vdev_set_min_asize(vd->vdev_child[c]); 292 } 293 294 vdev_t * 295 vdev_lookup_top(spa_t *spa, uint64_t vdev) 296 { 297 vdev_t *rvd = spa->spa_root_vdev; 298 299 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 300 301 if (vdev < rvd->vdev_children) { 302 ASSERT(rvd->vdev_child[vdev] != NULL); 303 return (rvd->vdev_child[vdev]); 304 } 305 306 return (NULL); 307 } 308 309 vdev_t * 310 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 311 { 312 vdev_t *mvd; 313 314 if (vd->vdev_guid == guid) 315 return (vd); 316 317 for (int c = 0; c < vd->vdev_children; c++) 318 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 319 NULL) 320 return (mvd); 321 322 return (NULL); 323 } 324 325 static int 326 vdev_count_leaves_impl(vdev_t *vd) 327 { 328 int n = 0; 329 330 if (vd->vdev_ops->vdev_op_leaf) 331 return (1); 332 333 for (int c = 0; c < vd->vdev_children; c++) 334 n += vdev_count_leaves_impl(vd->vdev_child[c]); 335 336 return (n); 337 } 338 339 int 340 vdev_count_leaves(spa_t *spa) 341 { 342 int rc; 343 344 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 345 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 346 spa_config_exit(spa, SCL_VDEV, FTAG); 347 348 return (rc); 349 } 350 351 void 352 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 353 { 354 size_t oldsize, newsize; 355 uint64_t id = cvd->vdev_id; 356 vdev_t **newchild; 357 spa_t *spa = cvd->vdev_spa; 358 359 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 360 ASSERT(cvd->vdev_parent == NULL); 361 362 cvd->vdev_parent = pvd; 363 364 if (pvd == NULL) 365 return; 366 367 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 368 369 oldsize = pvd->vdev_children * sizeof (vdev_t *); 370 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 371 newsize = pvd->vdev_children * sizeof (vdev_t *); 372 373 newchild = kmem_zalloc(newsize, KM_SLEEP); 374 if (pvd->vdev_child != NULL) { 375 bcopy(pvd->vdev_child, newchild, oldsize); 376 kmem_free(pvd->vdev_child, oldsize); 377 } 378 379 pvd->vdev_child = newchild; 380 pvd->vdev_child[id] = cvd; 381 382 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 383 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 384 385 /* 386 * Walk up all ancestors to update guid sum. 387 */ 388 for (; pvd != NULL; pvd = pvd->vdev_parent) 389 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 390 391 if (cvd->vdev_ops->vdev_op_leaf) { 392 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 393 cvd->vdev_spa->spa_leaf_list_gen++; 394 } 395 } 396 397 void 398 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 399 { 400 int c; 401 uint_t id = cvd->vdev_id; 402 403 ASSERT(cvd->vdev_parent == pvd); 404 405 if (pvd == NULL) 406 return; 407 408 ASSERT(id < pvd->vdev_children); 409 ASSERT(pvd->vdev_child[id] == cvd); 410 411 pvd->vdev_child[id] = NULL; 412 cvd->vdev_parent = NULL; 413 414 for (c = 0; c < pvd->vdev_children; c++) 415 if (pvd->vdev_child[c]) 416 break; 417 418 if (c == pvd->vdev_children) { 419 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 420 pvd->vdev_child = NULL; 421 pvd->vdev_children = 0; 422 } 423 424 if (cvd->vdev_ops->vdev_op_leaf) { 425 spa_t *spa = cvd->vdev_spa; 426 list_remove(&spa->spa_leaf_list, cvd); 427 spa->spa_leaf_list_gen++; 428 } 429 430 /* 431 * Walk up all ancestors to update guid sum. 432 */ 433 for (; pvd != NULL; pvd = pvd->vdev_parent) 434 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 435 } 436 437 /* 438 * Remove any holes in the child array. 439 */ 440 void 441 vdev_compact_children(vdev_t *pvd) 442 { 443 vdev_t **newchild, *cvd; 444 int oldc = pvd->vdev_children; 445 int newc; 446 447 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 448 449 for (int c = newc = 0; c < oldc; c++) 450 if (pvd->vdev_child[c]) 451 newc++; 452 453 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 454 455 for (int c = newc = 0; c < oldc; c++) { 456 if ((cvd = pvd->vdev_child[c]) != NULL) { 457 newchild[newc] = cvd; 458 cvd->vdev_id = newc++; 459 } 460 } 461 462 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 463 pvd->vdev_child = newchild; 464 pvd->vdev_children = newc; 465 } 466 467 /* 468 * Allocate and minimally initialize a vdev_t. 469 */ 470 vdev_t * 471 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 472 { 473 vdev_t *vd; 474 vdev_indirect_config_t *vic; 475 476 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 477 vic = &vd->vdev_indirect_config; 478 479 if (spa->spa_root_vdev == NULL) { 480 ASSERT(ops == &vdev_root_ops); 481 spa->spa_root_vdev = vd; 482 spa->spa_load_guid = spa_generate_guid(NULL); 483 } 484 485 if (guid == 0 && ops != &vdev_hole_ops) { 486 if (spa->spa_root_vdev == vd) { 487 /* 488 * The root vdev's guid will also be the pool guid, 489 * which must be unique among all pools. 490 */ 491 guid = spa_generate_guid(NULL); 492 } else { 493 /* 494 * Any other vdev's guid must be unique within the pool. 495 */ 496 guid = spa_generate_guid(spa); 497 } 498 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 499 } 500 501 vd->vdev_spa = spa; 502 vd->vdev_id = id; 503 vd->vdev_guid = guid; 504 vd->vdev_guid_sum = guid; 505 vd->vdev_ops = ops; 506 vd->vdev_state = VDEV_STATE_CLOSED; 507 vd->vdev_ishole = (ops == &vdev_hole_ops); 508 vic->vic_prev_indirect_vdev = UINT64_MAX; 509 510 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 511 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 512 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 513 0, 0); 514 515 list_link_init(&vd->vdev_initialize_node); 516 list_link_init(&vd->vdev_leaf_node); 517 list_link_init(&vd->vdev_trim_node); 518 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 519 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 520 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 521 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 522 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 523 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 524 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 525 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 526 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 527 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 528 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 529 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 530 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 531 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 532 533 for (int t = 0; t < DTL_TYPES; t++) { 534 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 535 0); 536 } 537 txg_list_create(&vd->vdev_ms_list, spa, 538 offsetof(struct metaslab, ms_txg_node)); 539 txg_list_create(&vd->vdev_dtl_list, spa, 540 offsetof(struct vdev, vdev_dtl_node)); 541 vd->vdev_stat.vs_timestamp = gethrtime(); 542 vdev_queue_init(vd); 543 vdev_cache_init(vd); 544 545 return (vd); 546 } 547 548 /* 549 * Allocate a new vdev. The 'alloctype' is used to control whether we are 550 * creating a new vdev or loading an existing one - the behavior is slightly 551 * different for each case. 552 */ 553 int 554 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 555 int alloctype) 556 { 557 vdev_ops_t *ops; 558 char *type; 559 uint64_t guid = 0, islog, nparity; 560 vdev_t *vd; 561 vdev_indirect_config_t *vic; 562 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 563 boolean_t top_level = (parent && !parent->vdev_parent); 564 565 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 566 567 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 568 return (SET_ERROR(EINVAL)); 569 570 if ((ops = vdev_getops(type)) == NULL) 571 return (SET_ERROR(EINVAL)); 572 573 /* 574 * If this is a load, get the vdev guid from the nvlist. 575 * Otherwise, vdev_alloc_common() will generate one for us. 576 */ 577 if (alloctype == VDEV_ALLOC_LOAD) { 578 uint64_t label_id; 579 580 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 581 label_id != id) 582 return (SET_ERROR(EINVAL)); 583 584 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 585 return (SET_ERROR(EINVAL)); 586 } else if (alloctype == VDEV_ALLOC_SPARE) { 587 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 588 return (SET_ERROR(EINVAL)); 589 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 590 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 591 return (SET_ERROR(EINVAL)); 592 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 593 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 594 return (SET_ERROR(EINVAL)); 595 } 596 597 /* 598 * The first allocated vdev must be of type 'root'. 599 */ 600 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 601 return (SET_ERROR(EINVAL)); 602 603 /* 604 * Determine whether we're a log vdev. 605 */ 606 islog = 0; 607 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 608 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 609 return (SET_ERROR(ENOTSUP)); 610 611 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 612 return (SET_ERROR(ENOTSUP)); 613 614 /* 615 * Set the nparity property for RAID-Z vdevs. 616 */ 617 nparity = -1ULL; 618 if (ops == &vdev_raidz_ops) { 619 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 620 &nparity) == 0) { 621 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 622 return (SET_ERROR(EINVAL)); 623 /* 624 * Previous versions could only support 1 or 2 parity 625 * device. 626 */ 627 if (nparity > 1 && 628 spa_version(spa) < SPA_VERSION_RAIDZ2) 629 return (SET_ERROR(ENOTSUP)); 630 if (nparity > 2 && 631 spa_version(spa) < SPA_VERSION_RAIDZ3) 632 return (SET_ERROR(ENOTSUP)); 633 } else { 634 /* 635 * We require the parity to be specified for SPAs that 636 * support multiple parity levels. 637 */ 638 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 639 return (SET_ERROR(EINVAL)); 640 /* 641 * Otherwise, we default to 1 parity device for RAID-Z. 642 */ 643 nparity = 1; 644 } 645 } else { 646 nparity = 0; 647 } 648 ASSERT(nparity != -1ULL); 649 650 /* 651 * If creating a top-level vdev, check for allocation classes input 652 */ 653 if (top_level && alloctype == VDEV_ALLOC_ADD) { 654 char *bias; 655 656 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 657 &bias) == 0) { 658 alloc_bias = vdev_derive_alloc_bias(bias); 659 660 /* spa_vdev_add() expects feature to be enabled */ 661 if (alloc_bias != VDEV_BIAS_LOG && 662 spa->spa_load_state != SPA_LOAD_CREATE && 663 !spa_feature_is_enabled(spa, 664 SPA_FEATURE_ALLOCATION_CLASSES)) { 665 return (SET_ERROR(ENOTSUP)); 666 } 667 } 668 } 669 670 vd = vdev_alloc_common(spa, id, guid, ops); 671 vic = &vd->vdev_indirect_config; 672 673 vd->vdev_islog = islog; 674 vd->vdev_nparity = nparity; 675 if (top_level && alloc_bias != VDEV_BIAS_NONE) 676 vd->vdev_alloc_bias = alloc_bias; 677 678 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 679 vd->vdev_path = spa_strdup(vd->vdev_path); 680 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 681 vd->vdev_devid = spa_strdup(vd->vdev_devid); 682 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 683 &vd->vdev_physpath) == 0) 684 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 685 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 686 vd->vdev_fru = spa_strdup(vd->vdev_fru); 687 688 /* 689 * Set the whole_disk property. If it's not specified, leave the value 690 * as -1. 691 */ 692 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 693 &vd->vdev_wholedisk) != 0) 694 vd->vdev_wholedisk = -1ULL; 695 696 ASSERT0(vic->vic_mapping_object); 697 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 698 &vic->vic_mapping_object); 699 ASSERT0(vic->vic_births_object); 700 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 701 &vic->vic_births_object); 702 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 703 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 704 &vic->vic_prev_indirect_vdev); 705 706 /* 707 * Look for the 'not present' flag. This will only be set if the device 708 * was not present at the time of import. 709 */ 710 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 711 &vd->vdev_not_present); 712 713 /* 714 * Get the alignment requirement. 715 */ 716 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 717 718 /* 719 * Retrieve the vdev creation time. 720 */ 721 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 722 &vd->vdev_crtxg); 723 724 /* 725 * If we're a top-level vdev, try to load the allocation parameters. 726 */ 727 if (top_level && 728 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 729 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 730 &vd->vdev_ms_array); 731 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 732 &vd->vdev_ms_shift); 733 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 734 &vd->vdev_asize); 735 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 736 &vd->vdev_removing); 737 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 738 &vd->vdev_top_zap); 739 } else { 740 ASSERT0(vd->vdev_top_zap); 741 } 742 743 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 744 ASSERT(alloctype == VDEV_ALLOC_LOAD || 745 alloctype == VDEV_ALLOC_ADD || 746 alloctype == VDEV_ALLOC_SPLIT || 747 alloctype == VDEV_ALLOC_ROOTPOOL); 748 /* Note: metaslab_group_create() is now deferred */ 749 } 750 751 if (vd->vdev_ops->vdev_op_leaf && 752 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 753 (void) nvlist_lookup_uint64(nv, 754 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 755 } else { 756 ASSERT0(vd->vdev_leaf_zap); 757 } 758 759 /* 760 * If we're a leaf vdev, try to load the DTL object and other state. 761 */ 762 763 if (vd->vdev_ops->vdev_op_leaf && 764 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 765 alloctype == VDEV_ALLOC_ROOTPOOL)) { 766 if (alloctype == VDEV_ALLOC_LOAD) { 767 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 768 &vd->vdev_dtl_object); 769 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 770 &vd->vdev_unspare); 771 } 772 773 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 774 uint64_t spare = 0; 775 776 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 777 &spare) == 0 && spare) 778 spa_spare_add(vd); 779 } 780 781 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 782 &vd->vdev_offline); 783 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 785 &vd->vdev_resilver_txg); 786 787 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 788 vdev_defer_resilver(vd); 789 790 /* 791 * When importing a pool, we want to ignore the persistent fault 792 * state, as the diagnosis made on another system may not be 793 * valid in the current context. Local vdevs will 794 * remain in the faulted state. 795 */ 796 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 797 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 798 &vd->vdev_faulted); 799 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 800 &vd->vdev_degraded); 801 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 802 &vd->vdev_removed); 803 804 if (vd->vdev_faulted || vd->vdev_degraded) { 805 char *aux; 806 807 vd->vdev_label_aux = 808 VDEV_AUX_ERR_EXCEEDED; 809 if (nvlist_lookup_string(nv, 810 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 811 strcmp(aux, "external") == 0) 812 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 813 } 814 } 815 } 816 817 /* 818 * Add ourselves to the parent's list of children. 819 */ 820 vdev_add_child(parent, vd); 821 822 *vdp = vd; 823 824 return (0); 825 } 826 827 void 828 vdev_free(vdev_t *vd) 829 { 830 spa_t *spa = vd->vdev_spa; 831 832 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 833 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 834 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 835 836 /* 837 * Scan queues are normally destroyed at the end of a scan. If the 838 * queue exists here, that implies the vdev is being removed while 839 * the scan is still running. 840 */ 841 if (vd->vdev_scan_io_queue != NULL) { 842 mutex_enter(&vd->vdev_scan_io_queue_lock); 843 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 844 vd->vdev_scan_io_queue = NULL; 845 mutex_exit(&vd->vdev_scan_io_queue_lock); 846 } 847 848 /* 849 * vdev_free() implies closing the vdev first. This is simpler than 850 * trying to ensure complicated semantics for all callers. 851 */ 852 vdev_close(vd); 853 854 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 855 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 856 857 /* 858 * Free all children. 859 */ 860 for (int c = 0; c < vd->vdev_children; c++) 861 vdev_free(vd->vdev_child[c]); 862 863 ASSERT(vd->vdev_child == NULL); 864 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 865 866 /* 867 * Discard allocation state. 868 */ 869 if (vd->vdev_mg != NULL) { 870 vdev_metaslab_fini(vd); 871 metaslab_group_destroy(vd->vdev_mg); 872 vd->vdev_mg = NULL; 873 } 874 875 ASSERT0(vd->vdev_stat.vs_space); 876 ASSERT0(vd->vdev_stat.vs_dspace); 877 ASSERT0(vd->vdev_stat.vs_alloc); 878 879 /* 880 * Remove this vdev from its parent's child list. 881 */ 882 vdev_remove_child(vd->vdev_parent, vd); 883 884 ASSERT(vd->vdev_parent == NULL); 885 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 886 887 /* 888 * Clean up vdev structure. 889 */ 890 vdev_queue_fini(vd); 891 vdev_cache_fini(vd); 892 893 if (vd->vdev_path) 894 spa_strfree(vd->vdev_path); 895 if (vd->vdev_devid) 896 spa_strfree(vd->vdev_devid); 897 if (vd->vdev_physpath) 898 spa_strfree(vd->vdev_physpath); 899 if (vd->vdev_fru) 900 spa_strfree(vd->vdev_fru); 901 902 if (vd->vdev_isspare) 903 spa_spare_remove(vd); 904 if (vd->vdev_isl2cache) 905 spa_l2cache_remove(vd); 906 907 txg_list_destroy(&vd->vdev_ms_list); 908 txg_list_destroy(&vd->vdev_dtl_list); 909 910 mutex_enter(&vd->vdev_dtl_lock); 911 space_map_close(vd->vdev_dtl_sm); 912 for (int t = 0; t < DTL_TYPES; t++) { 913 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 914 range_tree_destroy(vd->vdev_dtl[t]); 915 } 916 mutex_exit(&vd->vdev_dtl_lock); 917 918 EQUIV(vd->vdev_indirect_births != NULL, 919 vd->vdev_indirect_mapping != NULL); 920 if (vd->vdev_indirect_births != NULL) { 921 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 922 vdev_indirect_births_close(vd->vdev_indirect_births); 923 } 924 925 if (vd->vdev_obsolete_sm != NULL) { 926 ASSERT(vd->vdev_removing || 927 vd->vdev_ops == &vdev_indirect_ops); 928 space_map_close(vd->vdev_obsolete_sm); 929 vd->vdev_obsolete_sm = NULL; 930 } 931 range_tree_destroy(vd->vdev_obsolete_segments); 932 rw_destroy(&vd->vdev_indirect_rwlock); 933 mutex_destroy(&vd->vdev_obsolete_lock); 934 935 mutex_destroy(&vd->vdev_dtl_lock); 936 mutex_destroy(&vd->vdev_stat_lock); 937 mutex_destroy(&vd->vdev_probe_lock); 938 mutex_destroy(&vd->vdev_scan_io_queue_lock); 939 mutex_destroy(&vd->vdev_initialize_lock); 940 mutex_destroy(&vd->vdev_initialize_io_lock); 941 cv_destroy(&vd->vdev_initialize_io_cv); 942 cv_destroy(&vd->vdev_initialize_cv); 943 mutex_destroy(&vd->vdev_trim_lock); 944 mutex_destroy(&vd->vdev_autotrim_lock); 945 mutex_destroy(&vd->vdev_trim_io_lock); 946 cv_destroy(&vd->vdev_trim_cv); 947 cv_destroy(&vd->vdev_autotrim_cv); 948 cv_destroy(&vd->vdev_trim_io_cv); 949 950 if (vd == spa->spa_root_vdev) 951 spa->spa_root_vdev = NULL; 952 953 kmem_free(vd, sizeof (vdev_t)); 954 } 955 956 /* 957 * Transfer top-level vdev state from svd to tvd. 958 */ 959 static void 960 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 961 { 962 spa_t *spa = svd->vdev_spa; 963 metaslab_t *msp; 964 vdev_t *vd; 965 int t; 966 967 ASSERT(tvd == tvd->vdev_top); 968 969 tvd->vdev_ms_array = svd->vdev_ms_array; 970 tvd->vdev_ms_shift = svd->vdev_ms_shift; 971 tvd->vdev_ms_count = svd->vdev_ms_count; 972 tvd->vdev_top_zap = svd->vdev_top_zap; 973 974 svd->vdev_ms_array = 0; 975 svd->vdev_ms_shift = 0; 976 svd->vdev_ms_count = 0; 977 svd->vdev_top_zap = 0; 978 979 if (tvd->vdev_mg) 980 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 981 tvd->vdev_mg = svd->vdev_mg; 982 tvd->vdev_ms = svd->vdev_ms; 983 984 svd->vdev_mg = NULL; 985 svd->vdev_ms = NULL; 986 987 if (tvd->vdev_mg != NULL) 988 tvd->vdev_mg->mg_vd = tvd; 989 990 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 991 svd->vdev_checkpoint_sm = NULL; 992 993 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 994 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 995 996 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 997 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 998 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 999 1000 svd->vdev_stat.vs_alloc = 0; 1001 svd->vdev_stat.vs_space = 0; 1002 svd->vdev_stat.vs_dspace = 0; 1003 1004 /* 1005 * State which may be set on a top-level vdev that's in the 1006 * process of being removed. 1007 */ 1008 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1009 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1010 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1011 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1012 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1013 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1014 ASSERT0(tvd->vdev_removing); 1015 tvd->vdev_removing = svd->vdev_removing; 1016 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1017 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1018 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1019 range_tree_swap(&svd->vdev_obsolete_segments, 1020 &tvd->vdev_obsolete_segments); 1021 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1022 svd->vdev_indirect_config.vic_mapping_object = 0; 1023 svd->vdev_indirect_config.vic_births_object = 0; 1024 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1025 svd->vdev_indirect_mapping = NULL; 1026 svd->vdev_indirect_births = NULL; 1027 svd->vdev_obsolete_sm = NULL; 1028 svd->vdev_removing = 0; 1029 1030 for (t = 0; t < TXG_SIZE; t++) { 1031 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1032 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1033 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1034 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1035 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1036 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1037 } 1038 1039 if (list_link_active(&svd->vdev_config_dirty_node)) { 1040 vdev_config_clean(svd); 1041 vdev_config_dirty(tvd); 1042 } 1043 1044 if (list_link_active(&svd->vdev_state_dirty_node)) { 1045 vdev_state_clean(svd); 1046 vdev_state_dirty(tvd); 1047 } 1048 1049 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1050 svd->vdev_deflate_ratio = 0; 1051 1052 tvd->vdev_islog = svd->vdev_islog; 1053 svd->vdev_islog = 0; 1054 1055 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1056 } 1057 1058 static void 1059 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1060 { 1061 if (vd == NULL) 1062 return; 1063 1064 vd->vdev_top = tvd; 1065 1066 for (int c = 0; c < vd->vdev_children; c++) 1067 vdev_top_update(tvd, vd->vdev_child[c]); 1068 } 1069 1070 /* 1071 * Add a mirror/replacing vdev above an existing vdev. 1072 */ 1073 vdev_t * 1074 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1075 { 1076 spa_t *spa = cvd->vdev_spa; 1077 vdev_t *pvd = cvd->vdev_parent; 1078 vdev_t *mvd; 1079 1080 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1081 1082 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1083 1084 mvd->vdev_asize = cvd->vdev_asize; 1085 mvd->vdev_min_asize = cvd->vdev_min_asize; 1086 mvd->vdev_max_asize = cvd->vdev_max_asize; 1087 mvd->vdev_psize = cvd->vdev_psize; 1088 mvd->vdev_ashift = cvd->vdev_ashift; 1089 mvd->vdev_state = cvd->vdev_state; 1090 mvd->vdev_crtxg = cvd->vdev_crtxg; 1091 1092 vdev_remove_child(pvd, cvd); 1093 vdev_add_child(pvd, mvd); 1094 cvd->vdev_id = mvd->vdev_children; 1095 vdev_add_child(mvd, cvd); 1096 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1097 1098 if (mvd == mvd->vdev_top) 1099 vdev_top_transfer(cvd, mvd); 1100 1101 return (mvd); 1102 } 1103 1104 /* 1105 * Remove a 1-way mirror/replacing vdev from the tree. 1106 */ 1107 void 1108 vdev_remove_parent(vdev_t *cvd) 1109 { 1110 vdev_t *mvd = cvd->vdev_parent; 1111 vdev_t *pvd = mvd->vdev_parent; 1112 1113 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1114 1115 ASSERT(mvd->vdev_children == 1); 1116 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1117 mvd->vdev_ops == &vdev_replacing_ops || 1118 mvd->vdev_ops == &vdev_spare_ops); 1119 cvd->vdev_ashift = mvd->vdev_ashift; 1120 1121 vdev_remove_child(mvd, cvd); 1122 vdev_remove_child(pvd, mvd); 1123 1124 /* 1125 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1126 * Otherwise, we could have detached an offline device, and when we 1127 * go to import the pool we'll think we have two top-level vdevs, 1128 * instead of a different version of the same top-level vdev. 1129 */ 1130 if (mvd->vdev_top == mvd) { 1131 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1132 cvd->vdev_orig_guid = cvd->vdev_guid; 1133 cvd->vdev_guid += guid_delta; 1134 cvd->vdev_guid_sum += guid_delta; 1135 } 1136 cvd->vdev_id = mvd->vdev_id; 1137 vdev_add_child(pvd, cvd); 1138 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1139 1140 if (cvd == cvd->vdev_top) 1141 vdev_top_transfer(mvd, cvd); 1142 1143 ASSERT(mvd->vdev_children == 0); 1144 vdev_free(mvd); 1145 } 1146 1147 static void 1148 vdev_metaslab_group_create(vdev_t *vd) 1149 { 1150 spa_t *spa = vd->vdev_spa; 1151 1152 /* 1153 * metaslab_group_create was delayed until allocation bias was available 1154 */ 1155 if (vd->vdev_mg == NULL) { 1156 metaslab_class_t *mc; 1157 1158 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1159 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1160 1161 ASSERT3U(vd->vdev_islog, ==, 1162 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1163 1164 switch (vd->vdev_alloc_bias) { 1165 case VDEV_BIAS_LOG: 1166 mc = spa_log_class(spa); 1167 break; 1168 case VDEV_BIAS_SPECIAL: 1169 mc = spa_special_class(spa); 1170 break; 1171 case VDEV_BIAS_DEDUP: 1172 mc = spa_dedup_class(spa); 1173 break; 1174 default: 1175 mc = spa_normal_class(spa); 1176 } 1177 1178 vd->vdev_mg = metaslab_group_create(mc, vd, 1179 spa->spa_alloc_count); 1180 1181 /* 1182 * The spa ashift values currently only reflect the 1183 * general vdev classes. Class destination is late 1184 * binding so ashift checking had to wait until now 1185 */ 1186 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1187 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1188 if (vd->vdev_ashift > spa->spa_max_ashift) 1189 spa->spa_max_ashift = vd->vdev_ashift; 1190 if (vd->vdev_ashift < spa->spa_min_ashift) 1191 spa->spa_min_ashift = vd->vdev_ashift; 1192 } 1193 } 1194 } 1195 1196 int 1197 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1198 { 1199 spa_t *spa = vd->vdev_spa; 1200 objset_t *mos = spa->spa_meta_objset; 1201 uint64_t m; 1202 uint64_t oldc = vd->vdev_ms_count; 1203 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1204 metaslab_t **mspp; 1205 int error; 1206 boolean_t expanding = (oldc != 0); 1207 1208 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1209 1210 /* 1211 * This vdev is not being allocated from yet or is a hole. 1212 */ 1213 if (vd->vdev_ms_shift == 0) 1214 return (0); 1215 1216 ASSERT(!vd->vdev_ishole); 1217 1218 ASSERT(oldc <= newc); 1219 1220 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1221 1222 if (expanding) { 1223 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1224 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1225 } 1226 1227 vd->vdev_ms = mspp; 1228 vd->vdev_ms_count = newc; 1229 for (m = oldc; m < newc; m++) { 1230 uint64_t object = 0; 1231 1232 /* 1233 * vdev_ms_array may be 0 if we are creating the "fake" 1234 * metaslabs for an indirect vdev for zdb's leak detection. 1235 * See zdb_leak_init(). 1236 */ 1237 if (txg == 0 && vd->vdev_ms_array != 0) { 1238 error = dmu_read(mos, vd->vdev_ms_array, 1239 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1240 DMU_READ_PREFETCH); 1241 if (error != 0) { 1242 vdev_dbgmsg(vd, "unable to read the metaslab " 1243 "array [error=%d]", error); 1244 return (error); 1245 } 1246 } 1247 1248 #ifndef _KERNEL 1249 /* 1250 * To accomodate zdb_leak_init() fake indirect 1251 * metaslabs, we allocate a metaslab group for 1252 * indirect vdevs which normally don't have one. 1253 */ 1254 if (vd->vdev_mg == NULL) { 1255 ASSERT0(vdev_is_concrete(vd)); 1256 vdev_metaslab_group_create(vd); 1257 } 1258 #endif 1259 error = metaslab_init(vd->vdev_mg, m, object, txg, 1260 &(vd->vdev_ms[m])); 1261 if (error != 0) { 1262 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1263 error); 1264 return (error); 1265 } 1266 } 1267 1268 if (txg == 0) 1269 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1270 1271 /* 1272 * If the vdev is being removed we don't activate 1273 * the metaslabs since we want to ensure that no new 1274 * allocations are performed on this device. 1275 */ 1276 if (!expanding && !vd->vdev_removing) { 1277 metaslab_group_activate(vd->vdev_mg); 1278 } 1279 1280 if (txg == 0) 1281 spa_config_exit(spa, SCL_ALLOC, FTAG); 1282 1283 /* 1284 * Regardless whether this vdev was just added or it is being 1285 * expanded, the metaslab count has changed. Recalculate the 1286 * block limit. 1287 */ 1288 spa_log_sm_set_blocklimit(spa); 1289 1290 return (0); 1291 } 1292 1293 void 1294 vdev_metaslab_fini(vdev_t *vd) 1295 { 1296 if (vd->vdev_checkpoint_sm != NULL) { 1297 ASSERT(spa_feature_is_active(vd->vdev_spa, 1298 SPA_FEATURE_POOL_CHECKPOINT)); 1299 space_map_close(vd->vdev_checkpoint_sm); 1300 /* 1301 * Even though we close the space map, we need to set its 1302 * pointer to NULL. The reason is that vdev_metaslab_fini() 1303 * may be called multiple times for certain operations 1304 * (i.e. when destroying a pool) so we need to ensure that 1305 * this clause never executes twice. This logic is similar 1306 * to the one used for the vdev_ms clause below. 1307 */ 1308 vd->vdev_checkpoint_sm = NULL; 1309 } 1310 1311 if (vd->vdev_ms != NULL) { 1312 metaslab_group_t *mg = vd->vdev_mg; 1313 metaslab_group_passivate(mg); 1314 1315 uint64_t count = vd->vdev_ms_count; 1316 for (uint64_t m = 0; m < count; m++) { 1317 metaslab_t *msp = vd->vdev_ms[m]; 1318 if (msp != NULL) 1319 metaslab_fini(msp); 1320 } 1321 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1322 vd->vdev_ms = NULL; 1323 1324 vd->vdev_ms_count = 0; 1325 1326 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1327 ASSERT0(mg->mg_histogram[i]); 1328 } 1329 ASSERT0(vd->vdev_ms_count); 1330 } 1331 1332 typedef struct vdev_probe_stats { 1333 boolean_t vps_readable; 1334 boolean_t vps_writeable; 1335 int vps_flags; 1336 } vdev_probe_stats_t; 1337 1338 static void 1339 vdev_probe_done(zio_t *zio) 1340 { 1341 spa_t *spa = zio->io_spa; 1342 vdev_t *vd = zio->io_vd; 1343 vdev_probe_stats_t *vps = zio->io_private; 1344 1345 ASSERT(vd->vdev_probe_zio != NULL); 1346 1347 if (zio->io_type == ZIO_TYPE_READ) { 1348 if (zio->io_error == 0) 1349 vps->vps_readable = 1; 1350 if (zio->io_error == 0 && spa_writeable(spa)) { 1351 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1352 zio->io_offset, zio->io_size, zio->io_abd, 1353 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1354 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1355 } else { 1356 abd_free(zio->io_abd); 1357 } 1358 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1359 if (zio->io_error == 0) 1360 vps->vps_writeable = 1; 1361 abd_free(zio->io_abd); 1362 } else if (zio->io_type == ZIO_TYPE_NULL) { 1363 zio_t *pio; 1364 1365 vd->vdev_cant_read |= !vps->vps_readable; 1366 vd->vdev_cant_write |= !vps->vps_writeable; 1367 1368 if (vdev_readable(vd) && 1369 (vdev_writeable(vd) || !spa_writeable(spa))) { 1370 zio->io_error = 0; 1371 } else { 1372 ASSERT(zio->io_error != 0); 1373 vdev_dbgmsg(vd, "failed probe"); 1374 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1375 spa, vd, NULL, NULL, 0, 0); 1376 zio->io_error = SET_ERROR(ENXIO); 1377 } 1378 1379 mutex_enter(&vd->vdev_probe_lock); 1380 ASSERT(vd->vdev_probe_zio == zio); 1381 vd->vdev_probe_zio = NULL; 1382 mutex_exit(&vd->vdev_probe_lock); 1383 1384 zio_link_t *zl = NULL; 1385 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1386 if (!vdev_accessible(vd, pio)) 1387 pio->io_error = SET_ERROR(ENXIO); 1388 1389 kmem_free(vps, sizeof (*vps)); 1390 } 1391 } 1392 1393 /* 1394 * Determine whether this device is accessible. 1395 * 1396 * Read and write to several known locations: the pad regions of each 1397 * vdev label but the first, which we leave alone in case it contains 1398 * a VTOC. 1399 */ 1400 zio_t * 1401 vdev_probe(vdev_t *vd, zio_t *zio) 1402 { 1403 spa_t *spa = vd->vdev_spa; 1404 vdev_probe_stats_t *vps = NULL; 1405 zio_t *pio; 1406 1407 ASSERT(vd->vdev_ops->vdev_op_leaf); 1408 1409 /* 1410 * Don't probe the probe. 1411 */ 1412 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1413 return (NULL); 1414 1415 /* 1416 * To prevent 'probe storms' when a device fails, we create 1417 * just one probe i/o at a time. All zios that want to probe 1418 * this vdev will become parents of the probe io. 1419 */ 1420 mutex_enter(&vd->vdev_probe_lock); 1421 1422 if ((pio = vd->vdev_probe_zio) == NULL) { 1423 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1424 1425 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1426 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1427 ZIO_FLAG_TRYHARD; 1428 1429 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1430 /* 1431 * vdev_cant_read and vdev_cant_write can only 1432 * transition from TRUE to FALSE when we have the 1433 * SCL_ZIO lock as writer; otherwise they can only 1434 * transition from FALSE to TRUE. This ensures that 1435 * any zio looking at these values can assume that 1436 * failures persist for the life of the I/O. That's 1437 * important because when a device has intermittent 1438 * connectivity problems, we want to ensure that 1439 * they're ascribed to the device (ENXIO) and not 1440 * the zio (EIO). 1441 * 1442 * Since we hold SCL_ZIO as writer here, clear both 1443 * values so the probe can reevaluate from first 1444 * principles. 1445 */ 1446 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1447 vd->vdev_cant_read = B_FALSE; 1448 vd->vdev_cant_write = B_FALSE; 1449 } 1450 1451 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1452 vdev_probe_done, vps, 1453 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1454 1455 /* 1456 * We can't change the vdev state in this context, so we 1457 * kick off an async task to do it on our behalf. 1458 */ 1459 if (zio != NULL) { 1460 vd->vdev_probe_wanted = B_TRUE; 1461 spa_async_request(spa, SPA_ASYNC_PROBE); 1462 } 1463 } 1464 1465 if (zio != NULL) 1466 zio_add_child(zio, pio); 1467 1468 mutex_exit(&vd->vdev_probe_lock); 1469 1470 if (vps == NULL) { 1471 ASSERT(zio != NULL); 1472 return (NULL); 1473 } 1474 1475 for (int l = 1; l < VDEV_LABELS; l++) { 1476 zio_nowait(zio_read_phys(pio, vd, 1477 vdev_label_offset(vd->vdev_psize, l, 1478 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1479 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1480 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1481 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1482 } 1483 1484 if (zio == NULL) 1485 return (pio); 1486 1487 zio_nowait(pio); 1488 return (NULL); 1489 } 1490 1491 static void 1492 vdev_open_child(void *arg) 1493 { 1494 vdev_t *vd = arg; 1495 1496 vd->vdev_open_thread = curthread; 1497 vd->vdev_open_error = vdev_open(vd); 1498 vd->vdev_open_thread = NULL; 1499 } 1500 1501 boolean_t 1502 vdev_uses_zvols(vdev_t *vd) 1503 { 1504 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1505 strlen(ZVOL_DIR)) == 0) 1506 return (B_TRUE); 1507 for (int c = 0; c < vd->vdev_children; c++) 1508 if (vdev_uses_zvols(vd->vdev_child[c])) 1509 return (B_TRUE); 1510 return (B_FALSE); 1511 } 1512 1513 void 1514 vdev_open_children(vdev_t *vd) 1515 { 1516 taskq_t *tq; 1517 int children = vd->vdev_children; 1518 1519 /* 1520 * in order to handle pools on top of zvols, do the opens 1521 * in a single thread so that the same thread holds the 1522 * spa_namespace_lock 1523 */ 1524 if (vdev_uses_zvols(vd)) { 1525 retry_sync: 1526 for (int c = 0; c < children; c++) 1527 vd->vdev_child[c]->vdev_open_error = 1528 vdev_open(vd->vdev_child[c]); 1529 } else { 1530 tq = taskq_create("vdev_open", children, minclsyspri, 1531 children, children, TASKQ_PREPOPULATE); 1532 if (tq == NULL) 1533 goto retry_sync; 1534 1535 for (int c = 0; c < children; c++) 1536 VERIFY(taskq_dispatch(tq, vdev_open_child, 1537 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1538 1539 taskq_destroy(tq); 1540 } 1541 1542 vd->vdev_nonrot = B_TRUE; 1543 1544 for (int c = 0; c < children; c++) 1545 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1546 } 1547 1548 /* 1549 * Compute the raidz-deflation ratio. Note, we hard-code 1550 * in 128k (1 << 17) because it is the "typical" blocksize. 1551 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1552 * otherwise it would inconsistently account for existing bp's. 1553 */ 1554 static void 1555 vdev_set_deflate_ratio(vdev_t *vd) 1556 { 1557 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1558 vd->vdev_deflate_ratio = (1 << 17) / 1559 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1560 } 1561 } 1562 1563 /* 1564 * Prepare a virtual device for access. 1565 */ 1566 int 1567 vdev_open(vdev_t *vd) 1568 { 1569 spa_t *spa = vd->vdev_spa; 1570 int error; 1571 uint64_t osize = 0; 1572 uint64_t max_osize = 0; 1573 uint64_t asize, max_asize, psize; 1574 uint64_t ashift = 0; 1575 1576 ASSERT(vd->vdev_open_thread == curthread || 1577 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1578 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1579 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1580 vd->vdev_state == VDEV_STATE_OFFLINE); 1581 1582 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1583 vd->vdev_cant_read = B_FALSE; 1584 vd->vdev_cant_write = B_FALSE; 1585 vd->vdev_min_asize = vdev_get_min_asize(vd); 1586 1587 /* 1588 * If this vdev is not removed, check its fault status. If it's 1589 * faulted, bail out of the open. 1590 */ 1591 if (!vd->vdev_removed && vd->vdev_faulted) { 1592 ASSERT(vd->vdev_children == 0); 1593 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1594 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1595 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1596 vd->vdev_label_aux); 1597 return (SET_ERROR(ENXIO)); 1598 } else if (vd->vdev_offline) { 1599 ASSERT(vd->vdev_children == 0); 1600 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1601 return (SET_ERROR(ENXIO)); 1602 } 1603 1604 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1605 1606 /* 1607 * Reset the vdev_reopening flag so that we actually close 1608 * the vdev on error. 1609 */ 1610 vd->vdev_reopening = B_FALSE; 1611 if (zio_injection_enabled && error == 0) 1612 error = zio_handle_device_injection(vd, NULL, ENXIO); 1613 1614 if (error) { 1615 if (vd->vdev_removed && 1616 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1617 vd->vdev_removed = B_FALSE; 1618 1619 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1620 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1621 vd->vdev_stat.vs_aux); 1622 } else { 1623 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1624 vd->vdev_stat.vs_aux); 1625 } 1626 return (error); 1627 } 1628 1629 vd->vdev_removed = B_FALSE; 1630 1631 /* 1632 * Recheck the faulted flag now that we have confirmed that 1633 * the vdev is accessible. If we're faulted, bail. 1634 */ 1635 if (vd->vdev_faulted) { 1636 ASSERT(vd->vdev_children == 0); 1637 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1638 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1639 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1640 vd->vdev_label_aux); 1641 return (SET_ERROR(ENXIO)); 1642 } 1643 1644 if (vd->vdev_degraded) { 1645 ASSERT(vd->vdev_children == 0); 1646 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1647 VDEV_AUX_ERR_EXCEEDED); 1648 } else { 1649 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1650 } 1651 1652 /* 1653 * For hole or missing vdevs we just return success. 1654 */ 1655 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1656 return (0); 1657 1658 for (int c = 0; c < vd->vdev_children; c++) { 1659 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1660 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1661 VDEV_AUX_NONE); 1662 break; 1663 } 1664 } 1665 1666 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1667 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1668 1669 if (vd->vdev_children == 0) { 1670 if (osize < SPA_MINDEVSIZE) { 1671 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1672 VDEV_AUX_TOO_SMALL); 1673 return (SET_ERROR(EOVERFLOW)); 1674 } 1675 psize = osize; 1676 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1677 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1678 VDEV_LABEL_END_SIZE); 1679 } else { 1680 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1681 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1682 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1683 VDEV_AUX_TOO_SMALL); 1684 return (SET_ERROR(EOVERFLOW)); 1685 } 1686 psize = 0; 1687 asize = osize; 1688 max_asize = max_osize; 1689 } 1690 1691 vd->vdev_psize = psize; 1692 1693 /* 1694 * Make sure the allocatable size hasn't shrunk too much. 1695 */ 1696 if (asize < vd->vdev_min_asize) { 1697 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1698 VDEV_AUX_BAD_LABEL); 1699 return (SET_ERROR(EINVAL)); 1700 } 1701 1702 if (vd->vdev_asize == 0) { 1703 /* 1704 * This is the first-ever open, so use the computed values. 1705 * For compatibility, a different ashift can be requested. 1706 */ 1707 vd->vdev_asize = asize; 1708 vd->vdev_max_asize = max_asize; 1709 if (vd->vdev_ashift == 0) { 1710 vd->vdev_ashift = ashift; /* use detected value */ 1711 } 1712 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1713 vd->vdev_ashift > ASHIFT_MAX)) { 1714 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1715 VDEV_AUX_BAD_ASHIFT); 1716 return (SET_ERROR(EDOM)); 1717 } 1718 } else { 1719 /* 1720 * Detect if the alignment requirement has increased. 1721 * We don't want to make the pool unavailable, just 1722 * post an event instead. 1723 */ 1724 if (ashift > vd->vdev_top->vdev_ashift && 1725 vd->vdev_ops->vdev_op_leaf) { 1726 (void) zfs_ereport_post( 1727 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1728 spa, vd, NULL, NULL, 0, 0); 1729 } 1730 1731 vd->vdev_max_asize = max_asize; 1732 } 1733 1734 /* 1735 * If all children are healthy we update asize if either: 1736 * The asize has increased, due to a device expansion caused by dynamic 1737 * LUN growth or vdev replacement, and automatic expansion is enabled; 1738 * making the additional space available. 1739 * 1740 * The asize has decreased, due to a device shrink usually caused by a 1741 * vdev replace with a smaller device. This ensures that calculations 1742 * based of max_asize and asize e.g. esize are always valid. It's safe 1743 * to do this as we've already validated that asize is greater than 1744 * vdev_min_asize. 1745 */ 1746 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1747 ((asize > vd->vdev_asize && 1748 (vd->vdev_expanding || spa->spa_autoexpand)) || 1749 (asize < vd->vdev_asize))) 1750 vd->vdev_asize = asize; 1751 1752 vdev_set_min_asize(vd); 1753 1754 /* 1755 * Ensure we can issue some IO before declaring the 1756 * vdev open for business. 1757 */ 1758 if (vd->vdev_ops->vdev_op_leaf && 1759 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1760 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1761 VDEV_AUX_ERR_EXCEEDED); 1762 return (error); 1763 } 1764 1765 /* 1766 * Track the min and max ashift values for normal data devices. 1767 * 1768 * DJB - TBD these should perhaps be tracked per allocation class 1769 * (e.g. spa_min_ashift is used to round up post compression buffers) 1770 */ 1771 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1772 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1773 vd->vdev_aux == NULL) { 1774 if (vd->vdev_ashift > spa->spa_max_ashift) 1775 spa->spa_max_ashift = vd->vdev_ashift; 1776 if (vd->vdev_ashift < spa->spa_min_ashift) 1777 spa->spa_min_ashift = vd->vdev_ashift; 1778 } 1779 1780 /* 1781 * If this is a leaf vdev, assess whether a resilver is needed. 1782 * But don't do this if we are doing a reopen for a scrub, since 1783 * this would just restart the scrub we are already doing. 1784 */ 1785 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 1786 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 1787 1788 return (0); 1789 } 1790 1791 /* 1792 * Called once the vdevs are all opened, this routine validates the label 1793 * contents. This needs to be done before vdev_load() so that we don't 1794 * inadvertently do repair I/Os to the wrong device. 1795 * 1796 * This function will only return failure if one of the vdevs indicates that it 1797 * has since been destroyed or exported. This is only possible if 1798 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1799 * will be updated but the function will return 0. 1800 */ 1801 int 1802 vdev_validate(vdev_t *vd) 1803 { 1804 spa_t *spa = vd->vdev_spa; 1805 nvlist_t *label; 1806 uint64_t guid = 0, aux_guid = 0, top_guid; 1807 uint64_t state; 1808 nvlist_t *nvl; 1809 uint64_t txg; 1810 1811 if (vdev_validate_skip) 1812 return (0); 1813 1814 for (uint64_t c = 0; c < vd->vdev_children; c++) 1815 if (vdev_validate(vd->vdev_child[c]) != 0) 1816 return (SET_ERROR(EBADF)); 1817 1818 /* 1819 * If the device has already failed, or was marked offline, don't do 1820 * any further validation. Otherwise, label I/O will fail and we will 1821 * overwrite the previous state. 1822 */ 1823 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1824 return (0); 1825 1826 /* 1827 * If we are performing an extreme rewind, we allow for a label that 1828 * was modified at a point after the current txg. 1829 * If config lock is not held do not check for the txg. spa_sync could 1830 * be updating the vdev's label before updating spa_last_synced_txg. 1831 */ 1832 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1833 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1834 txg = UINT64_MAX; 1835 else 1836 txg = spa_last_synced_txg(spa); 1837 1838 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1839 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1840 VDEV_AUX_BAD_LABEL); 1841 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1842 "txg %llu", (u_longlong_t)txg); 1843 return (0); 1844 } 1845 1846 /* 1847 * Determine if this vdev has been split off into another 1848 * pool. If so, then refuse to open it. 1849 */ 1850 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1851 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1852 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1853 VDEV_AUX_SPLIT_POOL); 1854 nvlist_free(label); 1855 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1856 return (0); 1857 } 1858 1859 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1860 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1861 VDEV_AUX_CORRUPT_DATA); 1862 nvlist_free(label); 1863 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1864 ZPOOL_CONFIG_POOL_GUID); 1865 return (0); 1866 } 1867 1868 /* 1869 * If config is not trusted then ignore the spa guid check. This is 1870 * necessary because if the machine crashed during a re-guid the new 1871 * guid might have been written to all of the vdev labels, but not the 1872 * cached config. The check will be performed again once we have the 1873 * trusted config from the MOS. 1874 */ 1875 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1876 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1877 VDEV_AUX_CORRUPT_DATA); 1878 nvlist_free(label); 1879 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1880 "match config (%llu != %llu)", (u_longlong_t)guid, 1881 (u_longlong_t)spa_guid(spa)); 1882 return (0); 1883 } 1884 1885 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1886 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1887 &aux_guid) != 0) 1888 aux_guid = 0; 1889 1890 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1891 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1892 VDEV_AUX_CORRUPT_DATA); 1893 nvlist_free(label); 1894 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1895 ZPOOL_CONFIG_GUID); 1896 return (0); 1897 } 1898 1899 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1900 != 0) { 1901 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1902 VDEV_AUX_CORRUPT_DATA); 1903 nvlist_free(label); 1904 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1905 ZPOOL_CONFIG_TOP_GUID); 1906 return (0); 1907 } 1908 1909 /* 1910 * If this vdev just became a top-level vdev because its sibling was 1911 * detached, it will have adopted the parent's vdev guid -- but the 1912 * label may or may not be on disk yet. Fortunately, either version 1913 * of the label will have the same top guid, so if we're a top-level 1914 * vdev, we can safely compare to that instead. 1915 * However, if the config comes from a cachefile that failed to update 1916 * after the detach, a top-level vdev will appear as a non top-level 1917 * vdev in the config. Also relax the constraints if we perform an 1918 * extreme rewind. 1919 * 1920 * If we split this vdev off instead, then we also check the 1921 * original pool's guid. We don't want to consider the vdev 1922 * corrupt if it is partway through a split operation. 1923 */ 1924 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1925 boolean_t mismatch = B_FALSE; 1926 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1927 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1928 mismatch = B_TRUE; 1929 } else { 1930 if (vd->vdev_guid != top_guid && 1931 vd->vdev_top->vdev_guid != guid) 1932 mismatch = B_TRUE; 1933 } 1934 1935 if (mismatch) { 1936 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1937 VDEV_AUX_CORRUPT_DATA); 1938 nvlist_free(label); 1939 vdev_dbgmsg(vd, "vdev_validate: config guid " 1940 "doesn't match label guid"); 1941 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1942 (u_longlong_t)vd->vdev_guid, 1943 (u_longlong_t)vd->vdev_top->vdev_guid); 1944 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1945 "aux_guid %llu", (u_longlong_t)guid, 1946 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1947 return (0); 1948 } 1949 } 1950 1951 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1952 &state) != 0) { 1953 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1954 VDEV_AUX_CORRUPT_DATA); 1955 nvlist_free(label); 1956 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1957 ZPOOL_CONFIG_POOL_STATE); 1958 return (0); 1959 } 1960 1961 nvlist_free(label); 1962 1963 /* 1964 * If this is a verbatim import, no need to check the 1965 * state of the pool. 1966 */ 1967 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1968 spa_load_state(spa) == SPA_LOAD_OPEN && 1969 state != POOL_STATE_ACTIVE) { 1970 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1971 "for spa %s", (u_longlong_t)state, spa->spa_name); 1972 return (SET_ERROR(EBADF)); 1973 } 1974 1975 /* 1976 * If we were able to open and validate a vdev that was 1977 * previously marked permanently unavailable, clear that state 1978 * now. 1979 */ 1980 if (vd->vdev_not_present) 1981 vd->vdev_not_present = 0; 1982 1983 return (0); 1984 } 1985 1986 static void 1987 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1988 { 1989 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1990 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1991 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1992 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1993 dvd->vdev_path, svd->vdev_path); 1994 spa_strfree(dvd->vdev_path); 1995 dvd->vdev_path = spa_strdup(svd->vdev_path); 1996 } 1997 } else if (svd->vdev_path != NULL) { 1998 dvd->vdev_path = spa_strdup(svd->vdev_path); 1999 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2000 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2001 } 2002 } 2003 2004 /* 2005 * Recursively copy vdev paths from one vdev to another. Source and destination 2006 * vdev trees must have same geometry otherwise return error. Intended to copy 2007 * paths from userland config into MOS config. 2008 */ 2009 int 2010 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2011 { 2012 if ((svd->vdev_ops == &vdev_missing_ops) || 2013 (svd->vdev_ishole && dvd->vdev_ishole) || 2014 (dvd->vdev_ops == &vdev_indirect_ops)) 2015 return (0); 2016 2017 if (svd->vdev_ops != dvd->vdev_ops) { 2018 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2019 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2020 return (SET_ERROR(EINVAL)); 2021 } 2022 2023 if (svd->vdev_guid != dvd->vdev_guid) { 2024 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2025 "%llu)", (u_longlong_t)svd->vdev_guid, 2026 (u_longlong_t)dvd->vdev_guid); 2027 return (SET_ERROR(EINVAL)); 2028 } 2029 2030 if (svd->vdev_children != dvd->vdev_children) { 2031 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2032 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2033 (u_longlong_t)dvd->vdev_children); 2034 return (SET_ERROR(EINVAL)); 2035 } 2036 2037 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2038 int error = vdev_copy_path_strict(svd->vdev_child[i], 2039 dvd->vdev_child[i]); 2040 if (error != 0) 2041 return (error); 2042 } 2043 2044 if (svd->vdev_ops->vdev_op_leaf) 2045 vdev_copy_path_impl(svd, dvd); 2046 2047 return (0); 2048 } 2049 2050 static void 2051 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2052 { 2053 ASSERT(stvd->vdev_top == stvd); 2054 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2055 2056 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2057 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2058 } 2059 2060 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2061 return; 2062 2063 /* 2064 * The idea here is that while a vdev can shift positions within 2065 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2066 * step outside of it. 2067 */ 2068 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2069 2070 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2071 return; 2072 2073 ASSERT(vd->vdev_ops->vdev_op_leaf); 2074 2075 vdev_copy_path_impl(vd, dvd); 2076 } 2077 2078 /* 2079 * Recursively copy vdev paths from one root vdev to another. Source and 2080 * destination vdev trees may differ in geometry. For each destination leaf 2081 * vdev, search a vdev with the same guid and top vdev id in the source. 2082 * Intended to copy paths from userland config into MOS config. 2083 */ 2084 void 2085 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2086 { 2087 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2088 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2089 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2090 2091 for (uint64_t i = 0; i < children; i++) { 2092 vdev_copy_path_search(srvd->vdev_child[i], 2093 drvd->vdev_child[i]); 2094 } 2095 } 2096 2097 /* 2098 * Close a virtual device. 2099 */ 2100 void 2101 vdev_close(vdev_t *vd) 2102 { 2103 spa_t *spa = vd->vdev_spa; 2104 vdev_t *pvd = vd->vdev_parent; 2105 2106 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2107 2108 /* 2109 * If our parent is reopening, then we are as well, unless we are 2110 * going offline. 2111 */ 2112 if (pvd != NULL && pvd->vdev_reopening) 2113 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2114 2115 vd->vdev_ops->vdev_op_close(vd); 2116 2117 vdev_cache_purge(vd); 2118 2119 /* 2120 * We record the previous state before we close it, so that if we are 2121 * doing a reopen(), we don't generate FMA ereports if we notice that 2122 * it's still faulted. 2123 */ 2124 vd->vdev_prevstate = vd->vdev_state; 2125 2126 if (vd->vdev_offline) 2127 vd->vdev_state = VDEV_STATE_OFFLINE; 2128 else 2129 vd->vdev_state = VDEV_STATE_CLOSED; 2130 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2131 } 2132 2133 void 2134 vdev_hold(vdev_t *vd) 2135 { 2136 spa_t *spa = vd->vdev_spa; 2137 2138 ASSERT(spa_is_root(spa)); 2139 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2140 return; 2141 2142 for (int c = 0; c < vd->vdev_children; c++) 2143 vdev_hold(vd->vdev_child[c]); 2144 2145 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2146 vd->vdev_ops->vdev_op_hold(vd); 2147 } 2148 2149 void 2150 vdev_rele(vdev_t *vd) 2151 { 2152 spa_t *spa = vd->vdev_spa; 2153 2154 ASSERT(spa_is_root(spa)); 2155 for (int c = 0; c < vd->vdev_children; c++) 2156 vdev_rele(vd->vdev_child[c]); 2157 2158 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2159 vd->vdev_ops->vdev_op_rele(vd); 2160 } 2161 2162 /* 2163 * Reopen all interior vdevs and any unopened leaves. We don't actually 2164 * reopen leaf vdevs which had previously been opened as they might deadlock 2165 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2166 * If the leaf has never been opened then open it, as usual. 2167 */ 2168 void 2169 vdev_reopen(vdev_t *vd) 2170 { 2171 spa_t *spa = vd->vdev_spa; 2172 2173 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2174 2175 /* set the reopening flag unless we're taking the vdev offline */ 2176 vd->vdev_reopening = !vd->vdev_offline; 2177 vdev_close(vd); 2178 (void) vdev_open(vd); 2179 2180 /* 2181 * Call vdev_validate() here to make sure we have the same device. 2182 * Otherwise, a device with an invalid label could be successfully 2183 * opened in response to vdev_reopen(). 2184 */ 2185 if (vd->vdev_aux) { 2186 (void) vdev_validate_aux(vd); 2187 if (vdev_readable(vd) && vdev_writeable(vd) && 2188 vd->vdev_aux == &spa->spa_l2cache) { 2189 /* 2190 * When reopening we can assume the device label has 2191 * already the attribute l2cache_persistent, since we've 2192 * opened the device in the past and updated the label. 2193 * In case the vdev is present we should evict all ARC 2194 * buffers and pointers to log blocks and reclaim their 2195 * space before restoring its contents to L2ARC. 2196 */ 2197 if (l2arc_vdev_present(vd)) { 2198 l2arc_rebuild_vdev(vd, B_TRUE); 2199 } else { 2200 l2arc_add_vdev(spa, vd); 2201 } 2202 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2203 } 2204 } else { 2205 (void) vdev_validate(vd); 2206 } 2207 2208 /* 2209 * Reassess parent vdev's health. 2210 */ 2211 vdev_propagate_state(vd); 2212 } 2213 2214 int 2215 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2216 { 2217 int error; 2218 2219 /* 2220 * Normally, partial opens (e.g. of a mirror) are allowed. 2221 * For a create, however, we want to fail the request if 2222 * there are any components we can't open. 2223 */ 2224 error = vdev_open(vd); 2225 2226 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2227 vdev_close(vd); 2228 return (error ? error : ENXIO); 2229 } 2230 2231 /* 2232 * Recursively load DTLs and initialize all labels. 2233 */ 2234 if ((error = vdev_dtl_load(vd)) != 0 || 2235 (error = vdev_label_init(vd, txg, isreplacing ? 2236 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2237 vdev_close(vd); 2238 return (error); 2239 } 2240 2241 return (0); 2242 } 2243 2244 void 2245 vdev_metaslab_set_size(vdev_t *vd) 2246 { 2247 uint64_t asize = vd->vdev_asize; 2248 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2249 uint64_t ms_shift; 2250 2251 /* BEGIN CSTYLED */ 2252 /* 2253 * There are two dimensions to the metaslab sizing calculation: 2254 * the size of the metaslab and the count of metaslabs per vdev. 2255 * 2256 * The default values used below are a good balance between memory 2257 * usage (larger metaslab size means more memory needed for loaded 2258 * metaslabs; more metaslabs means more memory needed for the 2259 * metaslab_t structs), metaslab load time (larger metaslabs take 2260 * longer to load), and metaslab sync time (more metaslabs means 2261 * more time spent syncing all of them). 2262 * 2263 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2264 * The range of the dimensions are as follows: 2265 * 2266 * 2^29 <= ms_size <= 2^34 2267 * 16 <= ms_count <= 131,072 2268 * 2269 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2270 * at least 512MB (2^29) to minimize fragmentation effects when 2271 * testing with smaller devices. However, the count constraint 2272 * of at least 16 metaslabs will override this minimum size goal. 2273 * 2274 * On the upper end of vdev sizes, we aim for a maximum metaslab 2275 * size of 16GB. However, we will cap the total count to 2^17 2276 * metaslabs to keep our memory footprint in check and let the 2277 * metaslab size grow from there if that limit is hit. 2278 * 2279 * The net effect of applying above constrains is summarized below. 2280 * 2281 * vdev size metaslab count 2282 * --------------|----------------- 2283 * < 8GB ~16 2284 * 8GB - 100GB one per 512MB 2285 * 100GB - 3TB ~200 2286 * 3TB - 2PB one per 16GB 2287 * > 2PB ~131,072 2288 * -------------------------------- 2289 * 2290 * Finally, note that all of the above calculate the initial 2291 * number of metaslabs. Expanding a top-level vdev will result 2292 * in additional metaslabs being allocated making it possible 2293 * to exceed the zfs_vdev_ms_count_limit. 2294 */ 2295 /* END CSTYLED */ 2296 2297 if (ms_count < zfs_vdev_min_ms_count) 2298 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2299 else if (ms_count > zfs_vdev_default_ms_count) 2300 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2301 else 2302 ms_shift = zfs_vdev_default_ms_shift; 2303 2304 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2305 ms_shift = SPA_MAXBLOCKSHIFT; 2306 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2307 ms_shift = zfs_vdev_max_ms_shift; 2308 /* cap the total count to constrain memory footprint */ 2309 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2310 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2311 } 2312 2313 vd->vdev_ms_shift = ms_shift; 2314 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2315 } 2316 2317 void 2318 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2319 { 2320 ASSERT(vd == vd->vdev_top); 2321 /* indirect vdevs don't have metaslabs or dtls */ 2322 ASSERT(vdev_is_concrete(vd) || flags == 0); 2323 ASSERT(ISP2(flags)); 2324 ASSERT(spa_writeable(vd->vdev_spa)); 2325 2326 if (flags & VDD_METASLAB) 2327 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2328 2329 if (flags & VDD_DTL) 2330 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2331 2332 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2333 } 2334 2335 void 2336 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2337 { 2338 for (int c = 0; c < vd->vdev_children; c++) 2339 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2340 2341 if (vd->vdev_ops->vdev_op_leaf) 2342 vdev_dirty(vd->vdev_top, flags, vd, txg); 2343 } 2344 2345 /* 2346 * DTLs. 2347 * 2348 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2349 * the vdev has less than perfect replication. There are four kinds of DTL: 2350 * 2351 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2352 * 2353 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2354 * 2355 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2356 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2357 * txgs that was scrubbed. 2358 * 2359 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2360 * persistent errors or just some device being offline. 2361 * Unlike the other three, the DTL_OUTAGE map is not generally 2362 * maintained; it's only computed when needed, typically to 2363 * determine whether a device can be detached. 2364 * 2365 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2366 * either has the data or it doesn't. 2367 * 2368 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2369 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2370 * if any child is less than fully replicated, then so is its parent. 2371 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2372 * comprising only those txgs which appear in 'maxfaults' or more children; 2373 * those are the txgs we don't have enough replication to read. For example, 2374 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2375 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2376 * two child DTL_MISSING maps. 2377 * 2378 * It should be clear from the above that to compute the DTLs and outage maps 2379 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2380 * Therefore, that is all we keep on disk. When loading the pool, or after 2381 * a configuration change, we generate all other DTLs from first principles. 2382 */ 2383 void 2384 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2385 { 2386 range_tree_t *rt = vd->vdev_dtl[t]; 2387 2388 ASSERT(t < DTL_TYPES); 2389 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2390 ASSERT(spa_writeable(vd->vdev_spa)); 2391 2392 mutex_enter(&vd->vdev_dtl_lock); 2393 if (!range_tree_contains(rt, txg, size)) 2394 range_tree_add(rt, txg, size); 2395 mutex_exit(&vd->vdev_dtl_lock); 2396 } 2397 2398 boolean_t 2399 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2400 { 2401 range_tree_t *rt = vd->vdev_dtl[t]; 2402 boolean_t dirty = B_FALSE; 2403 2404 ASSERT(t < DTL_TYPES); 2405 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2406 2407 /* 2408 * While we are loading the pool, the DTLs have not been loaded yet. 2409 * Ignore the DTLs and try all devices. This avoids a recursive 2410 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2411 * when loading the pool (relying on the checksum to ensure that 2412 * we get the right data -- note that we while loading, we are 2413 * only reading the MOS, which is always checksummed). 2414 */ 2415 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2416 return (B_FALSE); 2417 2418 mutex_enter(&vd->vdev_dtl_lock); 2419 if (!range_tree_is_empty(rt)) 2420 dirty = range_tree_contains(rt, txg, size); 2421 mutex_exit(&vd->vdev_dtl_lock); 2422 2423 return (dirty); 2424 } 2425 2426 boolean_t 2427 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2428 { 2429 range_tree_t *rt = vd->vdev_dtl[t]; 2430 boolean_t empty; 2431 2432 mutex_enter(&vd->vdev_dtl_lock); 2433 empty = range_tree_is_empty(rt); 2434 mutex_exit(&vd->vdev_dtl_lock); 2435 2436 return (empty); 2437 } 2438 2439 /* 2440 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2441 */ 2442 boolean_t 2443 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2444 { 2445 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2446 2447 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2448 vd->vdev_ops->vdev_op_leaf) 2449 return (B_TRUE); 2450 2451 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2452 } 2453 2454 /* 2455 * Returns the lowest txg in the DTL range. 2456 */ 2457 static uint64_t 2458 vdev_dtl_min(vdev_t *vd) 2459 { 2460 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2461 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2462 ASSERT0(vd->vdev_children); 2463 2464 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2465 } 2466 2467 /* 2468 * Returns the highest txg in the DTL. 2469 */ 2470 static uint64_t 2471 vdev_dtl_max(vdev_t *vd) 2472 { 2473 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2474 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2475 ASSERT0(vd->vdev_children); 2476 2477 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2478 } 2479 2480 /* 2481 * Determine if a resilvering vdev should remove any DTL entries from 2482 * its range. If the vdev was resilvering for the entire duration of the 2483 * scan then it should excise that range from its DTLs. Otherwise, this 2484 * vdev is considered partially resilvered and should leave its DTL 2485 * entries intact. The comment in vdev_dtl_reassess() describes how we 2486 * excise the DTLs. 2487 */ 2488 static boolean_t 2489 vdev_dtl_should_excise(vdev_t *vd) 2490 { 2491 spa_t *spa = vd->vdev_spa; 2492 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2493 2494 ASSERT0(vd->vdev_children); 2495 2496 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2497 return (B_FALSE); 2498 2499 if (vd->vdev_resilver_deferred) 2500 return (B_FALSE); 2501 2502 if (vd->vdev_resilver_txg == 0 || 2503 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2504 return (B_TRUE); 2505 2506 /* 2507 * When a resilver is initiated the scan will assign the scn_max_txg 2508 * value to the highest txg value that exists in all DTLs. If this 2509 * device's max DTL is not part of this scan (i.e. it is not in 2510 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2511 * for excision. 2512 */ 2513 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2514 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2515 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2516 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2517 return (B_TRUE); 2518 } 2519 return (B_FALSE); 2520 } 2521 2522 /* 2523 * Reassess DTLs after a config change or scrub completion. 2524 */ 2525 void 2526 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2527 { 2528 spa_t *spa = vd->vdev_spa; 2529 avl_tree_t reftree; 2530 int minref; 2531 2532 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2533 2534 for (int c = 0; c < vd->vdev_children; c++) 2535 vdev_dtl_reassess(vd->vdev_child[c], txg, 2536 scrub_txg, scrub_done); 2537 2538 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2539 return; 2540 2541 if (vd->vdev_ops->vdev_op_leaf) { 2542 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2543 boolean_t wasempty = B_TRUE; 2544 2545 mutex_enter(&vd->vdev_dtl_lock); 2546 2547 /* 2548 * If requested, pretend the scan completed cleanly. 2549 */ 2550 if (zfs_scan_ignore_errors && scn) 2551 scn->scn_phys.scn_errors = 0; 2552 2553 if (scrub_txg != 0 && 2554 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2555 wasempty = B_FALSE; 2556 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2557 "dtl:%llu/%llu errors:%llu", 2558 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2559 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2560 (u_longlong_t)vdev_dtl_min(vd), 2561 (u_longlong_t)vdev_dtl_max(vd), 2562 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2563 } 2564 2565 /* 2566 * If we've completed a scan cleanly then determine 2567 * if this vdev should remove any DTLs. We only want to 2568 * excise regions on vdevs that were available during 2569 * the entire duration of this scan. 2570 */ 2571 if (scrub_txg != 0 && 2572 (spa->spa_scrub_started || 2573 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2574 vdev_dtl_should_excise(vd)) { 2575 /* 2576 * We completed a scrub up to scrub_txg. If we 2577 * did it without rebooting, then the scrub dtl 2578 * will be valid, so excise the old region and 2579 * fold in the scrub dtl. Otherwise, leave the 2580 * dtl as-is if there was an error. 2581 * 2582 * There's little trick here: to excise the beginning 2583 * of the DTL_MISSING map, we put it into a reference 2584 * tree and then add a segment with refcnt -1 that 2585 * covers the range [0, scrub_txg). This means 2586 * that each txg in that range has refcnt -1 or 0. 2587 * We then add DTL_SCRUB with a refcnt of 2, so that 2588 * entries in the range [0, scrub_txg) will have a 2589 * positive refcnt -- either 1 or 2. We then convert 2590 * the reference tree into the new DTL_MISSING map. 2591 */ 2592 space_reftree_create(&reftree); 2593 space_reftree_add_map(&reftree, 2594 vd->vdev_dtl[DTL_MISSING], 1); 2595 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2596 space_reftree_add_map(&reftree, 2597 vd->vdev_dtl[DTL_SCRUB], 2); 2598 space_reftree_generate_map(&reftree, 2599 vd->vdev_dtl[DTL_MISSING], 1); 2600 space_reftree_destroy(&reftree); 2601 2602 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2603 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 2604 (u_longlong_t)vdev_dtl_min(vd), 2605 (u_longlong_t)vdev_dtl_max(vd)); 2606 } else if (!wasempty) { 2607 zfs_dbgmsg("DTL_MISSING is now empty"); 2608 } 2609 } 2610 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2611 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2612 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2613 if (scrub_done) 2614 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2615 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2616 if (!vdev_readable(vd)) 2617 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2618 else 2619 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2620 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2621 2622 /* 2623 * If the vdev was resilvering and no longer has any 2624 * DTLs then reset its resilvering flag. 2625 */ 2626 if (vd->vdev_resilver_txg != 0 && 2627 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2628 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2629 vd->vdev_resilver_txg = 0; 2630 2631 mutex_exit(&vd->vdev_dtl_lock); 2632 2633 if (txg != 0) 2634 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2635 return; 2636 } 2637 2638 mutex_enter(&vd->vdev_dtl_lock); 2639 for (int t = 0; t < DTL_TYPES; t++) { 2640 /* account for child's outage in parent's missing map */ 2641 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2642 if (t == DTL_SCRUB) 2643 continue; /* leaf vdevs only */ 2644 if (t == DTL_PARTIAL) 2645 minref = 1; /* i.e. non-zero */ 2646 else if (vd->vdev_nparity != 0) 2647 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2648 else 2649 minref = vd->vdev_children; /* any kind of mirror */ 2650 space_reftree_create(&reftree); 2651 for (int c = 0; c < vd->vdev_children; c++) { 2652 vdev_t *cvd = vd->vdev_child[c]; 2653 mutex_enter(&cvd->vdev_dtl_lock); 2654 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2655 mutex_exit(&cvd->vdev_dtl_lock); 2656 } 2657 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2658 space_reftree_destroy(&reftree); 2659 } 2660 mutex_exit(&vd->vdev_dtl_lock); 2661 } 2662 2663 int 2664 vdev_dtl_load(vdev_t *vd) 2665 { 2666 spa_t *spa = vd->vdev_spa; 2667 objset_t *mos = spa->spa_meta_objset; 2668 int error = 0; 2669 2670 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2671 ASSERT(vdev_is_concrete(vd)); 2672 2673 error = space_map_open(&vd->vdev_dtl_sm, mos, 2674 vd->vdev_dtl_object, 0, -1ULL, 0); 2675 if (error) 2676 return (error); 2677 ASSERT(vd->vdev_dtl_sm != NULL); 2678 2679 mutex_enter(&vd->vdev_dtl_lock); 2680 error = space_map_load(vd->vdev_dtl_sm, 2681 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2682 mutex_exit(&vd->vdev_dtl_lock); 2683 2684 return (error); 2685 } 2686 2687 for (int c = 0; c < vd->vdev_children; c++) { 2688 error = vdev_dtl_load(vd->vdev_child[c]); 2689 if (error != 0) 2690 break; 2691 } 2692 2693 return (error); 2694 } 2695 2696 static void 2697 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2698 { 2699 spa_t *spa = vd->vdev_spa; 2700 objset_t *mos = spa->spa_meta_objset; 2701 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2702 const char *string; 2703 2704 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2705 2706 string = 2707 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2708 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2709 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2710 2711 ASSERT(string != NULL); 2712 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2713 1, strlen(string) + 1, string, tx)); 2714 2715 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2716 spa_activate_allocation_classes(spa, tx); 2717 } 2718 } 2719 2720 void 2721 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2722 { 2723 spa_t *spa = vd->vdev_spa; 2724 2725 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2726 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2727 zapobj, tx)); 2728 } 2729 2730 uint64_t 2731 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2732 { 2733 spa_t *spa = vd->vdev_spa; 2734 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2735 DMU_OT_NONE, 0, tx); 2736 2737 ASSERT(zap != 0); 2738 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2739 zap, tx)); 2740 2741 return (zap); 2742 } 2743 2744 void 2745 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2746 { 2747 if (vd->vdev_ops != &vdev_hole_ops && 2748 vd->vdev_ops != &vdev_missing_ops && 2749 vd->vdev_ops != &vdev_root_ops && 2750 !vd->vdev_top->vdev_removing) { 2751 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2752 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2753 } 2754 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2755 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2756 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2757 vdev_zap_allocation_data(vd, tx); 2758 } 2759 } 2760 2761 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2762 vdev_construct_zaps(vd->vdev_child[i], tx); 2763 } 2764 } 2765 2766 void 2767 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2768 { 2769 spa_t *spa = vd->vdev_spa; 2770 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2771 objset_t *mos = spa->spa_meta_objset; 2772 range_tree_t *rtsync; 2773 dmu_tx_t *tx; 2774 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2775 2776 ASSERT(vdev_is_concrete(vd)); 2777 ASSERT(vd->vdev_ops->vdev_op_leaf); 2778 2779 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2780 2781 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2782 mutex_enter(&vd->vdev_dtl_lock); 2783 space_map_free(vd->vdev_dtl_sm, tx); 2784 space_map_close(vd->vdev_dtl_sm); 2785 vd->vdev_dtl_sm = NULL; 2786 mutex_exit(&vd->vdev_dtl_lock); 2787 2788 /* 2789 * We only destroy the leaf ZAP for detached leaves or for 2790 * removed log devices. Removed data devices handle leaf ZAP 2791 * cleanup later, once cancellation is no longer possible. 2792 */ 2793 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2794 vd->vdev_top->vdev_islog)) { 2795 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2796 vd->vdev_leaf_zap = 0; 2797 } 2798 2799 dmu_tx_commit(tx); 2800 return; 2801 } 2802 2803 if (vd->vdev_dtl_sm == NULL) { 2804 uint64_t new_object; 2805 2806 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 2807 VERIFY3U(new_object, !=, 0); 2808 2809 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2810 0, -1ULL, 0)); 2811 ASSERT(vd->vdev_dtl_sm != NULL); 2812 } 2813 2814 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 2815 2816 mutex_enter(&vd->vdev_dtl_lock); 2817 range_tree_walk(rt, range_tree_add, rtsync); 2818 mutex_exit(&vd->vdev_dtl_lock); 2819 2820 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 2821 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2822 range_tree_vacate(rtsync, NULL, NULL); 2823 2824 range_tree_destroy(rtsync); 2825 2826 /* 2827 * If the object for the space map has changed then dirty 2828 * the top level so that we update the config. 2829 */ 2830 if (object != space_map_object(vd->vdev_dtl_sm)) { 2831 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2832 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2833 (u_longlong_t)object, 2834 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2835 vdev_config_dirty(vd->vdev_top); 2836 } 2837 2838 dmu_tx_commit(tx); 2839 } 2840 2841 /* 2842 * Determine whether the specified vdev can be offlined/detached/removed 2843 * without losing data. 2844 */ 2845 boolean_t 2846 vdev_dtl_required(vdev_t *vd) 2847 { 2848 spa_t *spa = vd->vdev_spa; 2849 vdev_t *tvd = vd->vdev_top; 2850 uint8_t cant_read = vd->vdev_cant_read; 2851 boolean_t required; 2852 2853 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2854 2855 if (vd == spa->spa_root_vdev || vd == tvd) 2856 return (B_TRUE); 2857 2858 /* 2859 * Temporarily mark the device as unreadable, and then determine 2860 * whether this results in any DTL outages in the top-level vdev. 2861 * If not, we can safely offline/detach/remove the device. 2862 */ 2863 vd->vdev_cant_read = B_TRUE; 2864 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2865 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2866 vd->vdev_cant_read = cant_read; 2867 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2868 2869 if (!required && zio_injection_enabled) 2870 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2871 2872 return (required); 2873 } 2874 2875 /* 2876 * Determine if resilver is needed, and if so the txg range. 2877 */ 2878 boolean_t 2879 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2880 { 2881 boolean_t needed = B_FALSE; 2882 uint64_t thismin = UINT64_MAX; 2883 uint64_t thismax = 0; 2884 2885 if (vd->vdev_children == 0) { 2886 mutex_enter(&vd->vdev_dtl_lock); 2887 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2888 vdev_writeable(vd)) { 2889 2890 thismin = vdev_dtl_min(vd); 2891 thismax = vdev_dtl_max(vd); 2892 needed = B_TRUE; 2893 } 2894 mutex_exit(&vd->vdev_dtl_lock); 2895 } else { 2896 for (int c = 0; c < vd->vdev_children; c++) { 2897 vdev_t *cvd = vd->vdev_child[c]; 2898 uint64_t cmin, cmax; 2899 2900 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2901 thismin = MIN(thismin, cmin); 2902 thismax = MAX(thismax, cmax); 2903 needed = B_TRUE; 2904 } 2905 } 2906 } 2907 2908 if (needed && minp) { 2909 *minp = thismin; 2910 *maxp = thismax; 2911 } 2912 return (needed); 2913 } 2914 2915 /* 2916 * Gets the checkpoint space map object from the vdev's ZAP. 2917 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2918 * or the ZAP doesn't exist yet. 2919 */ 2920 int 2921 vdev_checkpoint_sm_object(vdev_t *vd) 2922 { 2923 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2924 if (vd->vdev_top_zap == 0) { 2925 return (0); 2926 } 2927 2928 uint64_t sm_obj = 0; 2929 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2930 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2931 2932 ASSERT(err == 0 || err == ENOENT); 2933 2934 return (sm_obj); 2935 } 2936 2937 int 2938 vdev_load(vdev_t *vd) 2939 { 2940 int error = 0; 2941 /* 2942 * Recursively load all children. 2943 */ 2944 for (int c = 0; c < vd->vdev_children; c++) { 2945 error = vdev_load(vd->vdev_child[c]); 2946 if (error != 0) { 2947 return (error); 2948 } 2949 } 2950 2951 vdev_set_deflate_ratio(vd); 2952 2953 /* 2954 * On spa_load path, grab the allocation bias from our zap 2955 */ 2956 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2957 spa_t *spa = vd->vdev_spa; 2958 char bias_str[64]; 2959 2960 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2961 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2962 bias_str) == 0) { 2963 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2964 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2965 } 2966 } 2967 2968 /* 2969 * If this is a top-level vdev, initialize its metaslabs. 2970 */ 2971 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2972 vdev_metaslab_group_create(vd); 2973 2974 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2975 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2976 VDEV_AUX_CORRUPT_DATA); 2977 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2978 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2979 (u_longlong_t)vd->vdev_asize); 2980 return (SET_ERROR(ENXIO)); 2981 } 2982 2983 error = vdev_metaslab_init(vd, 0); 2984 if (error != 0) { 2985 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2986 "[error=%d]", error); 2987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2988 VDEV_AUX_CORRUPT_DATA); 2989 return (error); 2990 } 2991 2992 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2993 if (checkpoint_sm_obj != 0) { 2994 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2995 ASSERT(vd->vdev_asize != 0); 2996 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2997 2998 error = space_map_open(&vd->vdev_checkpoint_sm, 2999 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3000 vd->vdev_ashift); 3001 if (error != 0) { 3002 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3003 "failed for checkpoint spacemap (obj %llu) " 3004 "[error=%d]", 3005 (u_longlong_t)checkpoint_sm_obj, error); 3006 return (error); 3007 } 3008 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3009 3010 /* 3011 * Since the checkpoint_sm contains free entries 3012 * exclusively we can use space_map_allocated() to 3013 * indicate the cumulative checkpointed space that 3014 * has been freed. 3015 */ 3016 vd->vdev_stat.vs_checkpoint_space = 3017 -space_map_allocated(vd->vdev_checkpoint_sm); 3018 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3019 vd->vdev_stat.vs_checkpoint_space; 3020 } 3021 } 3022 3023 /* 3024 * If this is a leaf vdev, load its DTL. 3025 */ 3026 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3027 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3028 VDEV_AUX_CORRUPT_DATA); 3029 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3030 "[error=%d]", error); 3031 return (error); 3032 } 3033 3034 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 3035 if (obsolete_sm_object != 0) { 3036 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3037 ASSERT(vd->vdev_asize != 0); 3038 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3039 3040 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3041 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3042 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3043 VDEV_AUX_CORRUPT_DATA); 3044 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3045 "obsolete spacemap (obj %llu) [error=%d]", 3046 (u_longlong_t)obsolete_sm_object, error); 3047 return (error); 3048 } 3049 } 3050 3051 return (0); 3052 } 3053 3054 /* 3055 * The special vdev case is used for hot spares and l2cache devices. Its 3056 * sole purpose it to set the vdev state for the associated vdev. To do this, 3057 * we make sure that we can open the underlying device, then try to read the 3058 * label, and make sure that the label is sane and that it hasn't been 3059 * repurposed to another pool. 3060 */ 3061 int 3062 vdev_validate_aux(vdev_t *vd) 3063 { 3064 nvlist_t *label; 3065 uint64_t guid, version; 3066 uint64_t state; 3067 3068 if (!vdev_readable(vd)) 3069 return (0); 3070 3071 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3072 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3073 VDEV_AUX_CORRUPT_DATA); 3074 return (-1); 3075 } 3076 3077 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3078 !SPA_VERSION_IS_SUPPORTED(version) || 3079 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3080 guid != vd->vdev_guid || 3081 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3082 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3083 VDEV_AUX_CORRUPT_DATA); 3084 nvlist_free(label); 3085 return (-1); 3086 } 3087 3088 /* 3089 * We don't actually check the pool state here. If it's in fact in 3090 * use by another pool, we update this fact on the fly when requested. 3091 */ 3092 nvlist_free(label); 3093 return (0); 3094 } 3095 3096 static void 3097 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3098 { 3099 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3100 3101 if (vd->vdev_top_zap == 0) 3102 return; 3103 3104 uint64_t object = 0; 3105 int err = zap_lookup(mos, vd->vdev_top_zap, 3106 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3107 if (err == ENOENT) 3108 return; 3109 3110 VERIFY0(dmu_object_free(mos, object, tx)); 3111 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3112 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3113 } 3114 3115 /* 3116 * Free the objects used to store this vdev's spacemaps, and the array 3117 * that points to them. 3118 */ 3119 void 3120 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3121 { 3122 if (vd->vdev_ms_array == 0) 3123 return; 3124 3125 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3126 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3127 size_t array_bytes = array_count * sizeof (uint64_t); 3128 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3129 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3130 array_bytes, smobj_array, 0)); 3131 3132 for (uint64_t i = 0; i < array_count; i++) { 3133 uint64_t smobj = smobj_array[i]; 3134 if (smobj == 0) 3135 continue; 3136 3137 space_map_free_obj(mos, smobj, tx); 3138 } 3139 3140 kmem_free(smobj_array, array_bytes); 3141 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3142 vdev_destroy_ms_flush_data(vd, tx); 3143 vd->vdev_ms_array = 0; 3144 } 3145 3146 static void 3147 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3148 { 3149 spa_t *spa = vd->vdev_spa; 3150 3151 ASSERT(vd->vdev_islog); 3152 ASSERT(vd == vd->vdev_top); 3153 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3154 3155 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3156 3157 vdev_destroy_spacemaps(vd, tx); 3158 if (vd->vdev_top_zap != 0) { 3159 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3160 vd->vdev_top_zap = 0; 3161 } 3162 3163 dmu_tx_commit(tx); 3164 } 3165 3166 void 3167 vdev_sync_done(vdev_t *vd, uint64_t txg) 3168 { 3169 metaslab_t *msp; 3170 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3171 3172 ASSERT(vdev_is_concrete(vd)); 3173 3174 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3175 != NULL) 3176 metaslab_sync_done(msp, txg); 3177 3178 if (reassess) 3179 metaslab_sync_reassess(vd->vdev_mg); 3180 } 3181 3182 void 3183 vdev_sync(vdev_t *vd, uint64_t txg) 3184 { 3185 spa_t *spa = vd->vdev_spa; 3186 vdev_t *lvd; 3187 metaslab_t *msp; 3188 3189 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3190 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3191 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3192 ASSERT(vd->vdev_removing || 3193 vd->vdev_ops == &vdev_indirect_ops); 3194 3195 vdev_indirect_sync_obsolete(vd, tx); 3196 3197 /* 3198 * If the vdev is indirect, it can't have dirty 3199 * metaslabs or DTLs. 3200 */ 3201 if (vd->vdev_ops == &vdev_indirect_ops) { 3202 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3203 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3204 dmu_tx_commit(tx); 3205 return; 3206 } 3207 } 3208 3209 ASSERT(vdev_is_concrete(vd)); 3210 3211 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3212 !vd->vdev_removing) { 3213 ASSERT(vd == vd->vdev_top); 3214 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3215 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3216 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3217 ASSERT(vd->vdev_ms_array != 0); 3218 vdev_config_dirty(vd); 3219 } 3220 3221 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3222 metaslab_sync(msp, txg); 3223 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3224 } 3225 3226 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3227 vdev_dtl_sync(lvd, txg); 3228 3229 /* 3230 * If this is an empty log device being removed, destroy the 3231 * metadata associated with it. 3232 */ 3233 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3234 vdev_remove_empty_log(vd, txg); 3235 3236 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3237 dmu_tx_commit(tx); 3238 } 3239 3240 uint64_t 3241 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3242 { 3243 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3244 } 3245 3246 /* 3247 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3248 * not be opened, and no I/O is attempted. 3249 */ 3250 int 3251 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3252 { 3253 vdev_t *vd, *tvd; 3254 3255 spa_vdev_state_enter(spa, SCL_NONE); 3256 3257 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3258 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3259 3260 if (!vd->vdev_ops->vdev_op_leaf) 3261 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3262 3263 tvd = vd->vdev_top; 3264 3265 /* 3266 * We don't directly use the aux state here, but if we do a 3267 * vdev_reopen(), we need this value to be present to remember why we 3268 * were faulted. 3269 */ 3270 vd->vdev_label_aux = aux; 3271 3272 /* 3273 * Faulted state takes precedence over degraded. 3274 */ 3275 vd->vdev_delayed_close = B_FALSE; 3276 vd->vdev_faulted = 1ULL; 3277 vd->vdev_degraded = 0ULL; 3278 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3279 3280 /* 3281 * If this device has the only valid copy of the data, then 3282 * back off and simply mark the vdev as degraded instead. 3283 */ 3284 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3285 vd->vdev_degraded = 1ULL; 3286 vd->vdev_faulted = 0ULL; 3287 3288 /* 3289 * If we reopen the device and it's not dead, only then do we 3290 * mark it degraded. 3291 */ 3292 vdev_reopen(tvd); 3293 3294 if (vdev_readable(vd)) 3295 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3296 } 3297 3298 return (spa_vdev_state_exit(spa, vd, 0)); 3299 } 3300 3301 /* 3302 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3303 * user that something is wrong. The vdev continues to operate as normal as far 3304 * as I/O is concerned. 3305 */ 3306 int 3307 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3308 { 3309 vdev_t *vd; 3310 3311 spa_vdev_state_enter(spa, SCL_NONE); 3312 3313 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3314 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3315 3316 if (!vd->vdev_ops->vdev_op_leaf) 3317 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3318 3319 /* 3320 * If the vdev is already faulted, then don't do anything. 3321 */ 3322 if (vd->vdev_faulted || vd->vdev_degraded) 3323 return (spa_vdev_state_exit(spa, NULL, 0)); 3324 3325 vd->vdev_degraded = 1ULL; 3326 if (!vdev_is_dead(vd)) 3327 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3328 aux); 3329 3330 return (spa_vdev_state_exit(spa, vd, 0)); 3331 } 3332 3333 /* 3334 * Online the given vdev. 3335 * 3336 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3337 * spare device should be detached when the device finishes resilvering. 3338 * Second, the online should be treated like a 'test' online case, so no FMA 3339 * events are generated if the device fails to open. 3340 */ 3341 int 3342 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3343 { 3344 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3345 boolean_t wasoffline; 3346 vdev_state_t oldstate; 3347 3348 spa_vdev_state_enter(spa, SCL_NONE); 3349 3350 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3351 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3352 3353 if (!vd->vdev_ops->vdev_op_leaf) 3354 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3355 3356 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3357 oldstate = vd->vdev_state; 3358 3359 tvd = vd->vdev_top; 3360 vd->vdev_offline = B_FALSE; 3361 vd->vdev_tmpoffline = B_FALSE; 3362 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3363 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3364 3365 /* XXX - L2ARC 1.0 does not support expansion */ 3366 if (!vd->vdev_aux) { 3367 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3368 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3369 } 3370 3371 vdev_reopen(tvd); 3372 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3373 3374 if (!vd->vdev_aux) { 3375 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3376 pvd->vdev_expanding = B_FALSE; 3377 } 3378 3379 if (newstate) 3380 *newstate = vd->vdev_state; 3381 if ((flags & ZFS_ONLINE_UNSPARE) && 3382 !vdev_is_dead(vd) && vd->vdev_parent && 3383 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3384 vd->vdev_parent->vdev_child[0] == vd) 3385 vd->vdev_unspare = B_TRUE; 3386 3387 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3388 3389 /* XXX - L2ARC 1.0 does not support expansion */ 3390 if (vd->vdev_aux) 3391 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3392 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3393 } 3394 3395 /* Restart initializing if necessary */ 3396 mutex_enter(&vd->vdev_initialize_lock); 3397 if (vdev_writeable(vd) && 3398 vd->vdev_initialize_thread == NULL && 3399 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3400 (void) vdev_initialize(vd); 3401 } 3402 mutex_exit(&vd->vdev_initialize_lock); 3403 3404 /* Restart trimming if necessary */ 3405 mutex_enter(&vd->vdev_trim_lock); 3406 if (vdev_writeable(vd) && 3407 vd->vdev_trim_thread == NULL && 3408 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3409 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3410 vd->vdev_trim_secure); 3411 } 3412 mutex_exit(&vd->vdev_trim_lock); 3413 3414 if (wasoffline || 3415 (oldstate < VDEV_STATE_DEGRADED && 3416 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3417 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3418 3419 return (spa_vdev_state_exit(spa, vd, 0)); 3420 } 3421 3422 static int 3423 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3424 { 3425 vdev_t *vd, *tvd; 3426 int error = 0; 3427 uint64_t generation; 3428 metaslab_group_t *mg; 3429 3430 top: 3431 spa_vdev_state_enter(spa, SCL_ALLOC); 3432 3433 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3434 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3435 3436 if (!vd->vdev_ops->vdev_op_leaf) 3437 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3438 3439 tvd = vd->vdev_top; 3440 mg = tvd->vdev_mg; 3441 generation = spa->spa_config_generation + 1; 3442 3443 /* 3444 * If the device isn't already offline, try to offline it. 3445 */ 3446 if (!vd->vdev_offline) { 3447 /* 3448 * If this device has the only valid copy of some data, 3449 * don't allow it to be offlined. Log devices are always 3450 * expendable. 3451 */ 3452 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3453 vdev_dtl_required(vd)) 3454 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3455 3456 /* 3457 * If the top-level is a slog and it has had allocations 3458 * then proceed. We check that the vdev's metaslab group 3459 * is not NULL since it's possible that we may have just 3460 * added this vdev but not yet initialized its metaslabs. 3461 */ 3462 if (tvd->vdev_islog && mg != NULL) { 3463 /* 3464 * Prevent any future allocations. 3465 */ 3466 metaslab_group_passivate(mg); 3467 (void) spa_vdev_state_exit(spa, vd, 0); 3468 3469 error = spa_reset_logs(spa); 3470 3471 /* 3472 * If the log device was successfully reset but has 3473 * checkpointed data, do not offline it. 3474 */ 3475 if (error == 0 && 3476 tvd->vdev_checkpoint_sm != NULL) { 3477 error = ZFS_ERR_CHECKPOINT_EXISTS; 3478 } 3479 3480 spa_vdev_state_enter(spa, SCL_ALLOC); 3481 3482 /* 3483 * Check to see if the config has changed. 3484 */ 3485 if (error || generation != spa->spa_config_generation) { 3486 metaslab_group_activate(mg); 3487 if (error) 3488 return (spa_vdev_state_exit(spa, 3489 vd, error)); 3490 (void) spa_vdev_state_exit(spa, vd, 0); 3491 goto top; 3492 } 3493 ASSERT0(tvd->vdev_stat.vs_alloc); 3494 } 3495 3496 /* 3497 * Offline this device and reopen its top-level vdev. 3498 * If the top-level vdev is a log device then just offline 3499 * it. Otherwise, if this action results in the top-level 3500 * vdev becoming unusable, undo it and fail the request. 3501 */ 3502 vd->vdev_offline = B_TRUE; 3503 vdev_reopen(tvd); 3504 3505 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3506 vdev_is_dead(tvd)) { 3507 vd->vdev_offline = B_FALSE; 3508 vdev_reopen(tvd); 3509 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3510 } 3511 3512 /* 3513 * Add the device back into the metaslab rotor so that 3514 * once we online the device it's open for business. 3515 */ 3516 if (tvd->vdev_islog && mg != NULL) 3517 metaslab_group_activate(mg); 3518 } 3519 3520 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3521 3522 return (spa_vdev_state_exit(spa, vd, 0)); 3523 } 3524 3525 int 3526 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3527 { 3528 int error; 3529 3530 mutex_enter(&spa->spa_vdev_top_lock); 3531 error = vdev_offline_locked(spa, guid, flags); 3532 mutex_exit(&spa->spa_vdev_top_lock); 3533 3534 return (error); 3535 } 3536 3537 /* 3538 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3539 * vdev_offline(), we assume the spa config is locked. We also clear all 3540 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3541 */ 3542 void 3543 vdev_clear(spa_t *spa, vdev_t *vd) 3544 { 3545 vdev_t *rvd = spa->spa_root_vdev; 3546 3547 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3548 3549 if (vd == NULL) 3550 vd = rvd; 3551 3552 vd->vdev_stat.vs_read_errors = 0; 3553 vd->vdev_stat.vs_write_errors = 0; 3554 vd->vdev_stat.vs_checksum_errors = 0; 3555 vd->vdev_stat.vs_slow_ios = 0; 3556 3557 for (int c = 0; c < vd->vdev_children; c++) 3558 vdev_clear(spa, vd->vdev_child[c]); 3559 3560 /* 3561 * It makes no sense to "clear" an indirect vdev. 3562 */ 3563 if (!vdev_is_concrete(vd)) 3564 return; 3565 3566 /* 3567 * If we're in the FAULTED state or have experienced failed I/O, then 3568 * clear the persistent state and attempt to reopen the device. We 3569 * also mark the vdev config dirty, so that the new faulted state is 3570 * written out to disk. 3571 */ 3572 if (vd->vdev_faulted || vd->vdev_degraded || 3573 !vdev_readable(vd) || !vdev_writeable(vd)) { 3574 3575 /* 3576 * When reopening in reponse to a clear event, it may be due to 3577 * a fmadm repair request. In this case, if the device is 3578 * still broken, we want to still post the ereport again. 3579 */ 3580 vd->vdev_forcefault = B_TRUE; 3581 3582 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3583 vd->vdev_cant_read = B_FALSE; 3584 vd->vdev_cant_write = B_FALSE; 3585 3586 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3587 3588 vd->vdev_forcefault = B_FALSE; 3589 3590 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3591 vdev_state_dirty(vd->vdev_top); 3592 3593 /* If a resilver isn't required, check if vdevs can be culled */ 3594 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 3595 !dsl_scan_resilvering(spa->spa_dsl_pool) && 3596 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 3597 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3598 3599 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3600 } 3601 3602 /* 3603 * When clearing a FMA-diagnosed fault, we always want to 3604 * unspare the device, as we assume that the original spare was 3605 * done in response to the FMA fault. 3606 */ 3607 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3608 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3609 vd->vdev_parent->vdev_child[0] == vd) 3610 vd->vdev_unspare = B_TRUE; 3611 } 3612 3613 boolean_t 3614 vdev_is_dead(vdev_t *vd) 3615 { 3616 /* 3617 * Holes and missing devices are always considered "dead". 3618 * This simplifies the code since we don't have to check for 3619 * these types of devices in the various code paths. 3620 * Instead we rely on the fact that we skip over dead devices 3621 * before issuing I/O to them. 3622 */ 3623 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3624 vd->vdev_ops == &vdev_hole_ops || 3625 vd->vdev_ops == &vdev_missing_ops); 3626 } 3627 3628 boolean_t 3629 vdev_readable(vdev_t *vd) 3630 { 3631 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3632 } 3633 3634 boolean_t 3635 vdev_writeable(vdev_t *vd) 3636 { 3637 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3638 vdev_is_concrete(vd)); 3639 } 3640 3641 boolean_t 3642 vdev_allocatable(vdev_t *vd) 3643 { 3644 uint64_t state = vd->vdev_state; 3645 3646 /* 3647 * We currently allow allocations from vdevs which may be in the 3648 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3649 * fails to reopen then we'll catch it later when we're holding 3650 * the proper locks. Note that we have to get the vdev state 3651 * in a local variable because although it changes atomically, 3652 * we're asking two separate questions about it. 3653 */ 3654 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3655 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3656 vd->vdev_mg->mg_initialized); 3657 } 3658 3659 boolean_t 3660 vdev_accessible(vdev_t *vd, zio_t *zio) 3661 { 3662 ASSERT(zio->io_vd == vd); 3663 3664 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3665 return (B_FALSE); 3666 3667 if (zio->io_type == ZIO_TYPE_READ) 3668 return (!vd->vdev_cant_read); 3669 3670 if (zio->io_type == ZIO_TYPE_WRITE) 3671 return (!vd->vdev_cant_write); 3672 3673 return (B_TRUE); 3674 } 3675 3676 static void 3677 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 3678 { 3679 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3680 vs->vs_ops[t] += cvs->vs_ops[t]; 3681 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3682 } 3683 3684 cvs->vs_scan_removing = cvd->vdev_removing; 3685 } 3686 3687 /* 3688 * Get extended stats 3689 */ 3690 static void 3691 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 3692 { 3693 int t, b; 3694 for (t = 0; t < ZIO_TYPES; t++) { 3695 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 3696 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 3697 3698 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 3699 vsx->vsx_total_histo[t][b] += 3700 cvsx->vsx_total_histo[t][b]; 3701 } 3702 } 3703 3704 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 3705 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 3706 vsx->vsx_queue_histo[t][b] += 3707 cvsx->vsx_queue_histo[t][b]; 3708 } 3709 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 3710 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 3711 3712 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 3713 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 3714 3715 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 3716 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 3717 } 3718 3719 } 3720 3721 boolean_t 3722 vdev_is_spacemap_addressable(vdev_t *vd) 3723 { 3724 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3725 return (B_TRUE); 3726 3727 /* 3728 * If double-word space map entries are not enabled we assume 3729 * 47 bits of the space map entry are dedicated to the entry's 3730 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3731 * to calculate the maximum address that can be described by a 3732 * space map entry for the given device. 3733 */ 3734 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3735 3736 if (shift >= 63) /* detect potential overflow */ 3737 return (B_TRUE); 3738 3739 return (vd->vdev_asize < (1ULL << shift)); 3740 } 3741 3742 /* 3743 * Get statistics for the given vdev. 3744 */ 3745 static void 3746 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3747 { 3748 int t; 3749 /* 3750 * If we're getting stats on the root vdev, aggregate the I/O counts 3751 * over all top-level vdevs (i.e. the direct children of the root). 3752 */ 3753 if (!vd->vdev_ops->vdev_op_leaf) { 3754 if (vs) { 3755 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 3756 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 3757 } 3758 if (vsx) 3759 memset(vsx, 0, sizeof (*vsx)); 3760 3761 for (int c = 0; c < vd->vdev_children; c++) { 3762 vdev_t *cvd = vd->vdev_child[c]; 3763 vdev_stat_t *cvs = &cvd->vdev_stat; 3764 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 3765 3766 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 3767 if (vs) 3768 vdev_get_child_stat(cvd, vs, cvs); 3769 if (vsx) 3770 vdev_get_child_stat_ex(cvd, vsx, cvsx); 3771 3772 } 3773 } else { 3774 /* 3775 * We're a leaf. Just copy our ZIO active queue stats in. The 3776 * other leaf stats are updated in vdev_stat_update(). 3777 */ 3778 if (!vsx) 3779 return; 3780 3781 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 3782 3783 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 3784 vsx->vsx_active_queue[t] = 3785 vd->vdev_queue.vq_class[t].vqc_active; 3786 vsx->vsx_pend_queue[t] = avl_numnodes( 3787 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 3788 } 3789 } 3790 } 3791 3792 void 3793 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 3794 { 3795 vdev_t *tvd = vd->vdev_top; 3796 spa_t *spa = vd->vdev_spa; 3797 3798 mutex_enter(&vd->vdev_stat_lock); 3799 if (vs) { 3800 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3801 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3802 vs->vs_state = vd->vdev_state; 3803 vs->vs_rsize = vdev_get_min_asize(vd); 3804 if (vd->vdev_ops->vdev_op_leaf) { 3805 vs->vs_rsize += VDEV_LABEL_START_SIZE + 3806 VDEV_LABEL_END_SIZE; 3807 /* 3808 * Report initializing progress. Since we don't 3809 * have the initializing locks held, this is only 3810 * an estimate (although a fairly accurate one). 3811 */ 3812 vs->vs_initialize_bytes_done = 3813 vd->vdev_initialize_bytes_done; 3814 vs->vs_initialize_bytes_est = 3815 vd->vdev_initialize_bytes_est; 3816 vs->vs_initialize_state = vd->vdev_initialize_state; 3817 vs->vs_initialize_action_time = 3818 vd->vdev_initialize_action_time; 3819 3820 /* 3821 * Report manual TRIM progress. Since we don't have 3822 * the manual TRIM locks held, this is only an 3823 * estimate (although fairly accurate one). 3824 */ 3825 vs->vs_trim_notsup = !vd->vdev_has_trim; 3826 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 3827 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 3828 vs->vs_trim_state = vd->vdev_trim_state; 3829 vs->vs_trim_action_time = vd->vdev_trim_action_time; 3830 } 3831 /* 3832 * Report expandable space on top-level, non-auxiliary devices 3833 * only. The expandable space is reported in terms of metaslab 3834 * sized units since that determines how much space the pool 3835 * can expand. 3836 */ 3837 if (vd->vdev_aux == NULL && tvd != NULL) { 3838 vs->vs_esize = P2ALIGN( 3839 vd->vdev_max_asize - vd->vdev_asize - 3840 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3841 } 3842 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3843 vdev_is_concrete(vd)) { 3844 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3845 vd->vdev_mg->mg_fragmentation : 0; 3846 } 3847 if (vd->vdev_ops->vdev_op_leaf) 3848 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 3849 } 3850 3851 vdev_get_stats_ex_impl(vd, vs, vsx); 3852 mutex_exit(&vd->vdev_stat_lock); 3853 } 3854 3855 void 3856 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3857 { 3858 return (vdev_get_stats_ex(vd, vs, NULL)); 3859 } 3860 3861 void 3862 vdev_clear_stats(vdev_t *vd) 3863 { 3864 mutex_enter(&vd->vdev_stat_lock); 3865 vd->vdev_stat.vs_space = 0; 3866 vd->vdev_stat.vs_dspace = 0; 3867 vd->vdev_stat.vs_alloc = 0; 3868 mutex_exit(&vd->vdev_stat_lock); 3869 } 3870 3871 void 3872 vdev_scan_stat_init(vdev_t *vd) 3873 { 3874 vdev_stat_t *vs = &vd->vdev_stat; 3875 3876 for (int c = 0; c < vd->vdev_children; c++) 3877 vdev_scan_stat_init(vd->vdev_child[c]); 3878 3879 mutex_enter(&vd->vdev_stat_lock); 3880 vs->vs_scan_processed = 0; 3881 mutex_exit(&vd->vdev_stat_lock); 3882 } 3883 3884 void 3885 vdev_stat_update(zio_t *zio, uint64_t psize) 3886 { 3887 spa_t *spa = zio->io_spa; 3888 vdev_t *rvd = spa->spa_root_vdev; 3889 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3890 vdev_t *pvd; 3891 uint64_t txg = zio->io_txg; 3892 vdev_stat_t *vs = &vd->vdev_stat; 3893 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 3894 zio_type_t type = zio->io_type; 3895 int flags = zio->io_flags; 3896 3897 /* 3898 * If this i/o is a gang leader, it didn't do any actual work. 3899 */ 3900 if (zio->io_gang_tree) 3901 return; 3902 3903 if (zio->io_error == 0) { 3904 /* 3905 * If this is a root i/o, don't count it -- we've already 3906 * counted the top-level vdevs, and vdev_get_stats() will 3907 * aggregate them when asked. This reduces contention on 3908 * the root vdev_stat_lock and implicitly handles blocks 3909 * that compress away to holes, for which there is no i/o. 3910 * (Holes never create vdev children, so all the counters 3911 * remain zero, which is what we want.) 3912 * 3913 * Note: this only applies to successful i/o (io_error == 0) 3914 * because unlike i/o counts, errors are not additive. 3915 * When reading a ditto block, for example, failure of 3916 * one top-level vdev does not imply a root-level error. 3917 */ 3918 if (vd == rvd) 3919 return; 3920 3921 ASSERT(vd == zio->io_vd); 3922 3923 if (flags & ZIO_FLAG_IO_BYPASS) 3924 return; 3925 3926 mutex_enter(&vd->vdev_stat_lock); 3927 3928 if (flags & ZIO_FLAG_IO_REPAIR) { 3929 if (flags & ZIO_FLAG_SCAN_THREAD) { 3930 dsl_scan_phys_t *scn_phys = 3931 &spa->spa_dsl_pool->dp_scan->scn_phys; 3932 uint64_t *processed = &scn_phys->scn_processed; 3933 3934 /* XXX cleanup? */ 3935 if (vd->vdev_ops->vdev_op_leaf) 3936 atomic_add_64(processed, psize); 3937 vs->vs_scan_processed += psize; 3938 } 3939 3940 if (flags & ZIO_FLAG_SELF_HEAL) 3941 vs->vs_self_healed += psize; 3942 } 3943 3944 /* 3945 * The bytes/ops/histograms are recorded at the leaf level and 3946 * aggregated into the higher level vdevs in vdev_get_stats(). 3947 */ 3948 if (vd->vdev_ops->vdev_op_leaf && 3949 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 3950 zio_type_t vs_type = type; 3951 3952 /* 3953 * TRIM ops and bytes are reported to user space as 3954 * ZIO_TYPE_IOCTL. This is done to preserve the 3955 * vdev_stat_t structure layout for user space. 3956 */ 3957 if (type == ZIO_TYPE_TRIM) 3958 vs_type = ZIO_TYPE_IOCTL; 3959 3960 vs->vs_ops[vs_type]++; 3961 vs->vs_bytes[vs_type] += psize; 3962 3963 if (flags & ZIO_FLAG_DELEGATED) { 3964 vsx->vsx_agg_histo[zio->io_priority] 3965 [RQ_HISTO(zio->io_size)]++; 3966 } else { 3967 vsx->vsx_ind_histo[zio->io_priority] 3968 [RQ_HISTO(zio->io_size)]++; 3969 } 3970 3971 if (zio->io_delta && zio->io_delay) { 3972 vsx->vsx_queue_histo[zio->io_priority] 3973 [L_HISTO(zio->io_delta - zio->io_delay)]++; 3974 vsx->vsx_disk_histo[type] 3975 [L_HISTO(zio->io_delay)]++; 3976 vsx->vsx_total_histo[type] 3977 [L_HISTO(zio->io_delta)]++; 3978 } 3979 } 3980 3981 mutex_exit(&vd->vdev_stat_lock); 3982 return; 3983 } 3984 3985 if (flags & ZIO_FLAG_SPECULATIVE) 3986 return; 3987 3988 /* 3989 * If this is an I/O error that is going to be retried, then ignore the 3990 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3991 * hard errors, when in reality they can happen for any number of 3992 * innocuous reasons (bus resets, MPxIO link failure, etc). 3993 */ 3994 if (zio->io_error == EIO && 3995 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3996 return; 3997 3998 /* 3999 * Intent logs writes won't propagate their error to the root 4000 * I/O so don't mark these types of failures as pool-level 4001 * errors. 4002 */ 4003 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4004 return; 4005 4006 mutex_enter(&vd->vdev_stat_lock); 4007 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 4008 if (zio->io_error == ECKSUM) 4009 vs->vs_checksum_errors++; 4010 else 4011 vs->vs_read_errors++; 4012 } 4013 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 4014 vs->vs_write_errors++; 4015 mutex_exit(&vd->vdev_stat_lock); 4016 4017 if (spa->spa_load_state == SPA_LOAD_NONE && 4018 type == ZIO_TYPE_WRITE && txg != 0 && 4019 (!(flags & ZIO_FLAG_IO_REPAIR) || 4020 (flags & ZIO_FLAG_SCAN_THREAD) || 4021 spa->spa_claiming)) { 4022 /* 4023 * This is either a normal write (not a repair), or it's 4024 * a repair induced by the scrub thread, or it's a repair 4025 * made by zil_claim() during spa_load() in the first txg. 4026 * In the normal case, we commit the DTL change in the same 4027 * txg as the block was born. In the scrub-induced repair 4028 * case, we know that scrubs run in first-pass syncing context, 4029 * so we commit the DTL change in spa_syncing_txg(spa). 4030 * In the zil_claim() case, we commit in spa_first_txg(spa). 4031 * 4032 * We currently do not make DTL entries for failed spontaneous 4033 * self-healing writes triggered by normal (non-scrubbing) 4034 * reads, because we have no transactional context in which to 4035 * do so -- and it's not clear that it'd be desirable anyway. 4036 */ 4037 if (vd->vdev_ops->vdev_op_leaf) { 4038 uint64_t commit_txg = txg; 4039 if (flags & ZIO_FLAG_SCAN_THREAD) { 4040 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4041 ASSERT(spa_sync_pass(spa) == 1); 4042 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4043 commit_txg = spa_syncing_txg(spa); 4044 } else if (spa->spa_claiming) { 4045 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4046 commit_txg = spa_first_txg(spa); 4047 } 4048 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4049 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4050 return; 4051 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4052 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4053 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4054 } 4055 if (vd != rvd) 4056 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4057 } 4058 } 4059 4060 int64_t 4061 vdev_deflated_space(vdev_t *vd, int64_t space) 4062 { 4063 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4064 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4065 4066 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4067 } 4068 4069 /* 4070 * Update the in-core space usage stats for this vdev, its metaslab class, 4071 * and the root vdev. 4072 */ 4073 void 4074 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4075 int64_t space_delta) 4076 { 4077 int64_t dspace_delta; 4078 spa_t *spa = vd->vdev_spa; 4079 vdev_t *rvd = spa->spa_root_vdev; 4080 4081 ASSERT(vd == vd->vdev_top); 4082 4083 /* 4084 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4085 * factor. We must calculate this here and not at the root vdev 4086 * because the root vdev's psize-to-asize is simply the max of its 4087 * childrens', thus not accurate enough for us. 4088 */ 4089 dspace_delta = vdev_deflated_space(vd, space_delta); 4090 4091 mutex_enter(&vd->vdev_stat_lock); 4092 /* ensure we won't underflow */ 4093 if (alloc_delta < 0) { 4094 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4095 } 4096 4097 vd->vdev_stat.vs_alloc += alloc_delta; 4098 vd->vdev_stat.vs_space += space_delta; 4099 vd->vdev_stat.vs_dspace += dspace_delta; 4100 mutex_exit(&vd->vdev_stat_lock); 4101 4102 /* every class but log contributes to root space stats */ 4103 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4104 ASSERT(!vd->vdev_isl2cache); 4105 mutex_enter(&rvd->vdev_stat_lock); 4106 rvd->vdev_stat.vs_alloc += alloc_delta; 4107 rvd->vdev_stat.vs_space += space_delta; 4108 rvd->vdev_stat.vs_dspace += dspace_delta; 4109 mutex_exit(&rvd->vdev_stat_lock); 4110 } 4111 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4112 } 4113 4114 /* 4115 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4116 * so that it will be written out next time the vdev configuration is synced. 4117 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4118 */ 4119 void 4120 vdev_config_dirty(vdev_t *vd) 4121 { 4122 spa_t *spa = vd->vdev_spa; 4123 vdev_t *rvd = spa->spa_root_vdev; 4124 int c; 4125 4126 ASSERT(spa_writeable(spa)); 4127 4128 /* 4129 * If this is an aux vdev (as with l2cache and spare devices), then we 4130 * update the vdev config manually and set the sync flag. 4131 */ 4132 if (vd->vdev_aux != NULL) { 4133 spa_aux_vdev_t *sav = vd->vdev_aux; 4134 nvlist_t **aux; 4135 uint_t naux; 4136 4137 for (c = 0; c < sav->sav_count; c++) { 4138 if (sav->sav_vdevs[c] == vd) 4139 break; 4140 } 4141 4142 if (c == sav->sav_count) { 4143 /* 4144 * We're being removed. There's nothing more to do. 4145 */ 4146 ASSERT(sav->sav_sync == B_TRUE); 4147 return; 4148 } 4149 4150 sav->sav_sync = B_TRUE; 4151 4152 if (nvlist_lookup_nvlist_array(sav->sav_config, 4153 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4154 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4155 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4156 } 4157 4158 ASSERT(c < naux); 4159 4160 /* 4161 * Setting the nvlist in the middle if the array is a little 4162 * sketchy, but it will work. 4163 */ 4164 nvlist_free(aux[c]); 4165 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4166 4167 return; 4168 } 4169 4170 /* 4171 * The dirty list is protected by the SCL_CONFIG lock. The caller 4172 * must either hold SCL_CONFIG as writer, or must be the sync thread 4173 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4174 * so this is sufficient to ensure mutual exclusion. 4175 */ 4176 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4177 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4178 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4179 4180 if (vd == rvd) { 4181 for (c = 0; c < rvd->vdev_children; c++) 4182 vdev_config_dirty(rvd->vdev_child[c]); 4183 } else { 4184 ASSERT(vd == vd->vdev_top); 4185 4186 if (!list_link_active(&vd->vdev_config_dirty_node) && 4187 vdev_is_concrete(vd)) { 4188 list_insert_head(&spa->spa_config_dirty_list, vd); 4189 } 4190 } 4191 } 4192 4193 void 4194 vdev_config_clean(vdev_t *vd) 4195 { 4196 spa_t *spa = vd->vdev_spa; 4197 4198 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4199 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4200 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4201 4202 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4203 list_remove(&spa->spa_config_dirty_list, vd); 4204 } 4205 4206 /* 4207 * Mark a top-level vdev's state as dirty, so that the next pass of 4208 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4209 * the state changes from larger config changes because they require 4210 * much less locking, and are often needed for administrative actions. 4211 */ 4212 void 4213 vdev_state_dirty(vdev_t *vd) 4214 { 4215 spa_t *spa = vd->vdev_spa; 4216 4217 ASSERT(spa_writeable(spa)); 4218 ASSERT(vd == vd->vdev_top); 4219 4220 /* 4221 * The state list is protected by the SCL_STATE lock. The caller 4222 * must either hold SCL_STATE as writer, or must be the sync thread 4223 * (which holds SCL_STATE as reader). There's only one sync thread, 4224 * so this is sufficient to ensure mutual exclusion. 4225 */ 4226 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4227 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4228 spa_config_held(spa, SCL_STATE, RW_READER))); 4229 4230 if (!list_link_active(&vd->vdev_state_dirty_node) && 4231 vdev_is_concrete(vd)) 4232 list_insert_head(&spa->spa_state_dirty_list, vd); 4233 } 4234 4235 void 4236 vdev_state_clean(vdev_t *vd) 4237 { 4238 spa_t *spa = vd->vdev_spa; 4239 4240 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4241 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4242 spa_config_held(spa, SCL_STATE, RW_READER))); 4243 4244 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4245 list_remove(&spa->spa_state_dirty_list, vd); 4246 } 4247 4248 /* 4249 * Propagate vdev state up from children to parent. 4250 */ 4251 void 4252 vdev_propagate_state(vdev_t *vd) 4253 { 4254 spa_t *spa = vd->vdev_spa; 4255 vdev_t *rvd = spa->spa_root_vdev; 4256 int degraded = 0, faulted = 0; 4257 int corrupted = 0; 4258 vdev_t *child; 4259 4260 if (vd->vdev_children > 0) { 4261 for (int c = 0; c < vd->vdev_children; c++) { 4262 child = vd->vdev_child[c]; 4263 4264 /* 4265 * Don't factor holes or indirect vdevs into the 4266 * decision. 4267 */ 4268 if (!vdev_is_concrete(child)) 4269 continue; 4270 4271 if (!vdev_readable(child) || 4272 (!vdev_writeable(child) && spa_writeable(spa))) { 4273 /* 4274 * Root special: if there is a top-level log 4275 * device, treat the root vdev as if it were 4276 * degraded. 4277 */ 4278 if (child->vdev_islog && vd == rvd) 4279 degraded++; 4280 else 4281 faulted++; 4282 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4283 degraded++; 4284 } 4285 4286 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4287 corrupted++; 4288 } 4289 4290 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4291 4292 /* 4293 * Root special: if there is a top-level vdev that cannot be 4294 * opened due to corrupted metadata, then propagate the root 4295 * vdev's aux state as 'corrupt' rather than 'insufficient 4296 * replicas'. 4297 */ 4298 if (corrupted && vd == rvd && 4299 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4300 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4301 VDEV_AUX_CORRUPT_DATA); 4302 } 4303 4304 if (vd->vdev_parent) 4305 vdev_propagate_state(vd->vdev_parent); 4306 } 4307 4308 /* 4309 * Set a vdev's state. If this is during an open, we don't update the parent 4310 * state, because we're in the process of opening children depth-first. 4311 * Otherwise, we propagate the change to the parent. 4312 * 4313 * If this routine places a device in a faulted state, an appropriate ereport is 4314 * generated. 4315 */ 4316 void 4317 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4318 { 4319 uint64_t save_state; 4320 spa_t *spa = vd->vdev_spa; 4321 4322 if (state == vd->vdev_state) { 4323 vd->vdev_stat.vs_aux = aux; 4324 return; 4325 } 4326 4327 save_state = vd->vdev_state; 4328 4329 vd->vdev_state = state; 4330 vd->vdev_stat.vs_aux = aux; 4331 4332 /* 4333 * If we are setting the vdev state to anything but an open state, then 4334 * always close the underlying device unless the device has requested 4335 * a delayed close (i.e. we're about to remove or fault the device). 4336 * Otherwise, we keep accessible but invalid devices open forever. 4337 * We don't call vdev_close() itself, because that implies some extra 4338 * checks (offline, etc) that we don't want here. This is limited to 4339 * leaf devices, because otherwise closing the device will affect other 4340 * children. 4341 */ 4342 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4343 vd->vdev_ops->vdev_op_leaf) 4344 vd->vdev_ops->vdev_op_close(vd); 4345 4346 /* 4347 * If we have brought this vdev back into service, we need 4348 * to notify fmd so that it can gracefully repair any outstanding 4349 * cases due to a missing device. We do this in all cases, even those 4350 * that probably don't correlate to a repaired fault. This is sure to 4351 * catch all cases, and we let the zfs-retire agent sort it out. If 4352 * this is a transient state it's OK, as the retire agent will 4353 * double-check the state of the vdev before repairing it. 4354 */ 4355 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4356 vd->vdev_prevstate != state) 4357 zfs_post_state_change(spa, vd); 4358 4359 if (vd->vdev_removed && 4360 state == VDEV_STATE_CANT_OPEN && 4361 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4362 /* 4363 * If the previous state is set to VDEV_STATE_REMOVED, then this 4364 * device was previously marked removed and someone attempted to 4365 * reopen it. If this failed due to a nonexistent device, then 4366 * keep the device in the REMOVED state. We also let this be if 4367 * it is one of our special test online cases, which is only 4368 * attempting to online the device and shouldn't generate an FMA 4369 * fault. 4370 */ 4371 vd->vdev_state = VDEV_STATE_REMOVED; 4372 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4373 } else if (state == VDEV_STATE_REMOVED) { 4374 vd->vdev_removed = B_TRUE; 4375 } else if (state == VDEV_STATE_CANT_OPEN) { 4376 /* 4377 * If we fail to open a vdev during an import or recovery, we 4378 * mark it as "not available", which signifies that it was 4379 * never there to begin with. Failure to open such a device 4380 * is not considered an error. 4381 */ 4382 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4383 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4384 vd->vdev_ops->vdev_op_leaf) 4385 vd->vdev_not_present = 1; 4386 4387 /* 4388 * Post the appropriate ereport. If the 'prevstate' field is 4389 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4390 * that this is part of a vdev_reopen(). In this case, we don't 4391 * want to post the ereport if the device was already in the 4392 * CANT_OPEN state beforehand. 4393 * 4394 * If the 'checkremove' flag is set, then this is an attempt to 4395 * online the device in response to an insertion event. If we 4396 * hit this case, then we have detected an insertion event for a 4397 * faulted or offline device that wasn't in the removed state. 4398 * In this scenario, we don't post an ereport because we are 4399 * about to replace the device, or attempt an online with 4400 * vdev_forcefault, which will generate the fault for us. 4401 */ 4402 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4403 !vd->vdev_not_present && !vd->vdev_checkremove && 4404 vd != spa->spa_root_vdev) { 4405 const char *class; 4406 4407 switch (aux) { 4408 case VDEV_AUX_OPEN_FAILED: 4409 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4410 break; 4411 case VDEV_AUX_CORRUPT_DATA: 4412 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4413 break; 4414 case VDEV_AUX_NO_REPLICAS: 4415 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4416 break; 4417 case VDEV_AUX_BAD_GUID_SUM: 4418 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4419 break; 4420 case VDEV_AUX_TOO_SMALL: 4421 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4422 break; 4423 case VDEV_AUX_BAD_LABEL: 4424 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4425 break; 4426 case VDEV_AUX_BAD_ASHIFT: 4427 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4428 break; 4429 default: 4430 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4431 } 4432 4433 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 4434 save_state, 0); 4435 } 4436 4437 /* Erase any notion of persistent removed state */ 4438 vd->vdev_removed = B_FALSE; 4439 } else { 4440 vd->vdev_removed = B_FALSE; 4441 } 4442 4443 if (!isopen && vd->vdev_parent) 4444 vdev_propagate_state(vd->vdev_parent); 4445 } 4446 4447 boolean_t 4448 vdev_children_are_offline(vdev_t *vd) 4449 { 4450 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4451 4452 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4453 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4454 return (B_FALSE); 4455 } 4456 4457 return (B_TRUE); 4458 } 4459 4460 /* 4461 * Check the vdev configuration to ensure that it's capable of supporting 4462 * a root pool. We do not support partial configuration. 4463 */ 4464 boolean_t 4465 vdev_is_bootable(vdev_t *vd) 4466 { 4467 if (!vd->vdev_ops->vdev_op_leaf) { 4468 char *vdev_type = vd->vdev_ops->vdev_op_type; 4469 4470 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 4471 return (B_FALSE); 4472 } 4473 } 4474 4475 for (int c = 0; c < vd->vdev_children; c++) { 4476 if (!vdev_is_bootable(vd->vdev_child[c])) 4477 return (B_FALSE); 4478 } 4479 return (B_TRUE); 4480 } 4481 4482 boolean_t 4483 vdev_is_concrete(vdev_t *vd) 4484 { 4485 vdev_ops_t *ops = vd->vdev_ops; 4486 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4487 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4488 return (B_FALSE); 4489 } else { 4490 return (B_TRUE); 4491 } 4492 } 4493 4494 /* 4495 * Determine if a log device has valid content. If the vdev was 4496 * removed or faulted in the MOS config then we know that 4497 * the content on the log device has already been written to the pool. 4498 */ 4499 boolean_t 4500 vdev_log_state_valid(vdev_t *vd) 4501 { 4502 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4503 !vd->vdev_removed) 4504 return (B_TRUE); 4505 4506 for (int c = 0; c < vd->vdev_children; c++) 4507 if (vdev_log_state_valid(vd->vdev_child[c])) 4508 return (B_TRUE); 4509 4510 return (B_FALSE); 4511 } 4512 4513 /* 4514 * Expand a vdev if possible. 4515 */ 4516 void 4517 vdev_expand(vdev_t *vd, uint64_t txg) 4518 { 4519 ASSERT(vd->vdev_top == vd); 4520 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4521 ASSERT(vdev_is_concrete(vd)); 4522 4523 vdev_set_deflate_ratio(vd); 4524 4525 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4526 vdev_is_concrete(vd)) { 4527 vdev_metaslab_group_create(vd); 4528 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4529 vdev_config_dirty(vd); 4530 } 4531 } 4532 4533 /* 4534 * Split a vdev. 4535 */ 4536 void 4537 vdev_split(vdev_t *vd) 4538 { 4539 vdev_t *cvd, *pvd = vd->vdev_parent; 4540 4541 vdev_remove_child(pvd, vd); 4542 vdev_compact_children(pvd); 4543 4544 cvd = pvd->vdev_child[0]; 4545 if (pvd->vdev_children == 1) { 4546 vdev_remove_parent(cvd); 4547 cvd->vdev_splitting = B_TRUE; 4548 } 4549 vdev_propagate_state(cvd); 4550 } 4551 4552 void 4553 vdev_deadman(vdev_t *vd) 4554 { 4555 for (int c = 0; c < vd->vdev_children; c++) { 4556 vdev_t *cvd = vd->vdev_child[c]; 4557 4558 vdev_deadman(cvd); 4559 } 4560 4561 if (vd->vdev_ops->vdev_op_leaf) { 4562 vdev_queue_t *vq = &vd->vdev_queue; 4563 4564 mutex_enter(&vq->vq_lock); 4565 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4566 spa_t *spa = vd->vdev_spa; 4567 zio_t *fio; 4568 uint64_t delta; 4569 4570 /* 4571 * Look at the head of all the pending queues, 4572 * if any I/O has been outstanding for longer than 4573 * the spa_deadman_synctime we panic the system. 4574 */ 4575 fio = avl_first(&vq->vq_active_tree); 4576 delta = gethrtime() - fio->io_timestamp; 4577 if (delta > spa_deadman_synctime(spa)) { 4578 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4579 "%lluns, delta %lluns, last io %lluns", 4580 fio->io_timestamp, (u_longlong_t)delta, 4581 vq->vq_io_complete_ts); 4582 fm_panic("I/O to pool '%s' appears to be " 4583 "hung.", spa_name(spa)); 4584 } 4585 } 4586 mutex_exit(&vq->vq_lock); 4587 } 4588 } 4589 4590 void 4591 vdev_defer_resilver(vdev_t *vd) 4592 { 4593 ASSERT(vd->vdev_ops->vdev_op_leaf); 4594 4595 vd->vdev_resilver_deferred = B_TRUE; 4596 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 4597 } 4598 4599 /* 4600 * Clears the resilver deferred flag on all leaf devs under vd. Returns 4601 * B_TRUE if we have devices that need to be resilvered and are available to 4602 * accept resilver I/Os. 4603 */ 4604 boolean_t 4605 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 4606 { 4607 boolean_t resilver_needed = B_FALSE; 4608 spa_t *spa = vd->vdev_spa; 4609 4610 for (int c = 0; c < vd->vdev_children; c++) { 4611 vdev_t *cvd = vd->vdev_child[c]; 4612 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 4613 } 4614 4615 if (vd == spa->spa_root_vdev && 4616 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 4617 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4618 vdev_config_dirty(vd); 4619 spa->spa_resilver_deferred = B_FALSE; 4620 return (resilver_needed); 4621 } 4622 4623 if (!vdev_is_concrete(vd) || vd->vdev_aux || 4624 !vd->vdev_ops->vdev_op_leaf) 4625 return (resilver_needed); 4626 4627 vd->vdev_resilver_deferred = B_FALSE; 4628 4629 return (!vdev_is_dead(vd) && !vd->vdev_offline && 4630 vdev_resilver_needed(vd, NULL, NULL)); 4631 } 4632 4633 /* 4634 * Translate a logical range to the physical range for the specified vdev_t. 4635 * This function is initially called with a leaf vdev and will walk each 4636 * parent vdev until it reaches a top-level vdev. Once the top-level is 4637 * reached the physical range is initialized and the recursive function 4638 * begins to unwind. As it unwinds it calls the parent's vdev specific 4639 * translation function to do the real conversion. 4640 */ 4641 void 4642 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 4643 range_seg64_t *physical_rs) 4644 { 4645 /* 4646 * Walk up the vdev tree 4647 */ 4648 if (vd != vd->vdev_top) { 4649 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 4650 } else { 4651 /* 4652 * We've reached the top-level vdev, initialize the 4653 * physical range to the logical range and start to 4654 * unwind. 4655 */ 4656 physical_rs->rs_start = logical_rs->rs_start; 4657 physical_rs->rs_end = logical_rs->rs_end; 4658 return; 4659 } 4660 4661 vdev_t *pvd = vd->vdev_parent; 4662 ASSERT3P(pvd, !=, NULL); 4663 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 4664 4665 /* 4666 * As this recursive function unwinds, translate the logical 4667 * range into its physical components by calling the 4668 * vdev specific translate function. 4669 */ 4670 range_seg64_t intermediate = { 0 }; 4671 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 4672 4673 physical_rs->rs_start = intermediate.rs_start; 4674 physical_rs->rs_end = intermediate.rs_end; 4675 } 4676