1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/spa_impl.h> 36 #include <sys/bpobj.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/uberblock_impl.h> 42 #include <sys/metaslab.h> 43 #include <sys/metaslab_impl.h> 44 #include <sys/space_map.h> 45 #include <sys/space_reftree.h> 46 #include <sys/zio.h> 47 #include <sys/zap.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/arc.h> 50 #include <sys/zil.h> 51 #include <sys/dsl_scan.h> 52 #include <sys/abd.h> 53 #include <sys/vdev_initialize.h> 54 55 /* 56 * Virtual device management. 57 */ 58 59 static vdev_ops_t *vdev_ops_table[] = { 60 &vdev_root_ops, 61 &vdev_raidz_ops, 62 &vdev_mirror_ops, 63 &vdev_replacing_ops, 64 &vdev_spare_ops, 65 &vdev_disk_ops, 66 &vdev_file_ops, 67 &vdev_missing_ops, 68 &vdev_hole_ops, 69 &vdev_indirect_ops, 70 NULL 71 }; 72 73 /* maximum scrub/resilver I/O queue per leaf vdev */ 74 int zfs_scrub_limit = 10; 75 76 /* default target for number of metaslabs per top-level vdev */ 77 int zfs_vdev_default_ms_count = 200; 78 79 /* minimum number of metaslabs per top-level vdev */ 80 int zfs_vdev_min_ms_count = 16; 81 82 /* practical upper limit of total metaslabs per top-level vdev */ 83 int zfs_vdev_ms_count_limit = 1ULL << 17; 84 85 /* lower limit for metaslab size (512M) */ 86 int zfs_vdev_default_ms_shift = 29; 87 88 /* upper limit for metaslab size (16G) */ 89 int zfs_vdev_max_ms_shift = 34; 90 91 boolean_t vdev_validate_skip = B_FALSE; 92 93 /* 94 * Since the DTL space map of a vdev is not expected to have a lot of 95 * entries, we default its block size to 4K. 96 */ 97 int vdev_dtl_sm_blksz = (1 << 12); 98 99 /* 100 * vdev-wide space maps that have lots of entries written to them at 101 * the end of each transaction can benefit from a higher I/O bandwidth 102 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 103 */ 104 int vdev_standard_sm_blksz = (1 << 17); 105 106 int zfs_ashift_min; 107 108 /*PRINTFLIKE2*/ 109 void 110 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 111 { 112 va_list adx; 113 char buf[256]; 114 115 va_start(adx, fmt); 116 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 117 va_end(adx); 118 119 if (vd->vdev_path != NULL) { 120 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 121 vd->vdev_path, buf); 122 } else { 123 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 124 vd->vdev_ops->vdev_op_type, 125 (u_longlong_t)vd->vdev_id, 126 (u_longlong_t)vd->vdev_guid, buf); 127 } 128 } 129 130 void 131 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 132 { 133 char state[20]; 134 135 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 136 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 137 vd->vdev_ops->vdev_op_type); 138 return; 139 } 140 141 switch (vd->vdev_state) { 142 case VDEV_STATE_UNKNOWN: 143 (void) snprintf(state, sizeof (state), "unknown"); 144 break; 145 case VDEV_STATE_CLOSED: 146 (void) snprintf(state, sizeof (state), "closed"); 147 break; 148 case VDEV_STATE_OFFLINE: 149 (void) snprintf(state, sizeof (state), "offline"); 150 break; 151 case VDEV_STATE_REMOVED: 152 (void) snprintf(state, sizeof (state), "removed"); 153 break; 154 case VDEV_STATE_CANT_OPEN: 155 (void) snprintf(state, sizeof (state), "can't open"); 156 break; 157 case VDEV_STATE_FAULTED: 158 (void) snprintf(state, sizeof (state), "faulted"); 159 break; 160 case VDEV_STATE_DEGRADED: 161 (void) snprintf(state, sizeof (state), "degraded"); 162 break; 163 case VDEV_STATE_HEALTHY: 164 (void) snprintf(state, sizeof (state), "healthy"); 165 break; 166 default: 167 (void) snprintf(state, sizeof (state), "<state %u>", 168 (uint_t)vd->vdev_state); 169 } 170 171 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 172 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 173 vd->vdev_islog ? " (log)" : "", 174 (u_longlong_t)vd->vdev_guid, 175 vd->vdev_path ? vd->vdev_path : "N/A", state); 176 177 for (uint64_t i = 0; i < vd->vdev_children; i++) 178 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 179 } 180 181 /* 182 * Given a vdev type, return the appropriate ops vector. 183 */ 184 static vdev_ops_t * 185 vdev_getops(const char *type) 186 { 187 vdev_ops_t *ops, **opspp; 188 189 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 190 if (strcmp(ops->vdev_op_type, type) == 0) 191 break; 192 193 return (ops); 194 } 195 196 /* 197 * Derive the enumerated alloction bias from string input. 198 * String origin is either the per-vdev zap or zpool(1M). 199 */ 200 static vdev_alloc_bias_t 201 vdev_derive_alloc_bias(const char *bias) 202 { 203 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 204 205 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 206 alloc_bias = VDEV_BIAS_LOG; 207 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 208 alloc_bias = VDEV_BIAS_SPECIAL; 209 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 210 alloc_bias = VDEV_BIAS_DEDUP; 211 212 return (alloc_bias); 213 } 214 215 /* ARGSUSED */ 216 void 217 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res) 218 { 219 res->rs_start = in->rs_start; 220 res->rs_end = in->rs_end; 221 } 222 223 /* 224 * Default asize function: return the MAX of psize with the asize of 225 * all children. This is what's used by anything other than RAID-Z. 226 */ 227 uint64_t 228 vdev_default_asize(vdev_t *vd, uint64_t psize) 229 { 230 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 231 uint64_t csize; 232 233 for (int c = 0; c < vd->vdev_children; c++) { 234 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 235 asize = MAX(asize, csize); 236 } 237 238 return (asize); 239 } 240 241 /* 242 * Get the minimum allocatable size. We define the allocatable size as 243 * the vdev's asize rounded to the nearest metaslab. This allows us to 244 * replace or attach devices which don't have the same physical size but 245 * can still satisfy the same number of allocations. 246 */ 247 uint64_t 248 vdev_get_min_asize(vdev_t *vd) 249 { 250 vdev_t *pvd = vd->vdev_parent; 251 252 /* 253 * If our parent is NULL (inactive spare or cache) or is the root, 254 * just return our own asize. 255 */ 256 if (pvd == NULL) 257 return (vd->vdev_asize); 258 259 /* 260 * The top-level vdev just returns the allocatable size rounded 261 * to the nearest metaslab. 262 */ 263 if (vd == vd->vdev_top) 264 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 265 266 /* 267 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 268 * so each child must provide at least 1/Nth of its asize. 269 */ 270 if (pvd->vdev_ops == &vdev_raidz_ops) 271 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 272 pvd->vdev_children); 273 274 return (pvd->vdev_min_asize); 275 } 276 277 void 278 vdev_set_min_asize(vdev_t *vd) 279 { 280 vd->vdev_min_asize = vdev_get_min_asize(vd); 281 282 for (int c = 0; c < vd->vdev_children; c++) 283 vdev_set_min_asize(vd->vdev_child[c]); 284 } 285 286 vdev_t * 287 vdev_lookup_top(spa_t *spa, uint64_t vdev) 288 { 289 vdev_t *rvd = spa->spa_root_vdev; 290 291 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 292 293 if (vdev < rvd->vdev_children) { 294 ASSERT(rvd->vdev_child[vdev] != NULL); 295 return (rvd->vdev_child[vdev]); 296 } 297 298 return (NULL); 299 } 300 301 vdev_t * 302 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 303 { 304 vdev_t *mvd; 305 306 if (vd->vdev_guid == guid) 307 return (vd); 308 309 for (int c = 0; c < vd->vdev_children; c++) 310 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 311 NULL) 312 return (mvd); 313 314 return (NULL); 315 } 316 317 static int 318 vdev_count_leaves_impl(vdev_t *vd) 319 { 320 int n = 0; 321 322 if (vd->vdev_ops->vdev_op_leaf) 323 return (1); 324 325 for (int c = 0; c < vd->vdev_children; c++) 326 n += vdev_count_leaves_impl(vd->vdev_child[c]); 327 328 return (n); 329 } 330 331 int 332 vdev_count_leaves(spa_t *spa) 333 { 334 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 335 } 336 337 void 338 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 339 { 340 size_t oldsize, newsize; 341 uint64_t id = cvd->vdev_id; 342 vdev_t **newchild; 343 spa_t *spa = cvd->vdev_spa; 344 345 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 346 ASSERT(cvd->vdev_parent == NULL); 347 348 cvd->vdev_parent = pvd; 349 350 if (pvd == NULL) 351 return; 352 353 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 354 355 oldsize = pvd->vdev_children * sizeof (vdev_t *); 356 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 357 newsize = pvd->vdev_children * sizeof (vdev_t *); 358 359 newchild = kmem_zalloc(newsize, KM_SLEEP); 360 if (pvd->vdev_child != NULL) { 361 bcopy(pvd->vdev_child, newchild, oldsize); 362 kmem_free(pvd->vdev_child, oldsize); 363 } 364 365 pvd->vdev_child = newchild; 366 pvd->vdev_child[id] = cvd; 367 368 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 369 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 370 371 /* 372 * Walk up all ancestors to update guid sum. 373 */ 374 for (; pvd != NULL; pvd = pvd->vdev_parent) 375 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 376 377 if (cvd->vdev_ops->vdev_op_leaf) { 378 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 379 cvd->vdev_spa->spa_leaf_list_gen++; 380 } 381 } 382 383 void 384 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 385 { 386 int c; 387 uint_t id = cvd->vdev_id; 388 389 ASSERT(cvd->vdev_parent == pvd); 390 391 if (pvd == NULL) 392 return; 393 394 ASSERT(id < pvd->vdev_children); 395 ASSERT(pvd->vdev_child[id] == cvd); 396 397 pvd->vdev_child[id] = NULL; 398 cvd->vdev_parent = NULL; 399 400 for (c = 0; c < pvd->vdev_children; c++) 401 if (pvd->vdev_child[c]) 402 break; 403 404 if (c == pvd->vdev_children) { 405 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 406 pvd->vdev_child = NULL; 407 pvd->vdev_children = 0; 408 } 409 410 if (cvd->vdev_ops->vdev_op_leaf) { 411 spa_t *spa = cvd->vdev_spa; 412 list_remove(&spa->spa_leaf_list, cvd); 413 spa->spa_leaf_list_gen++; 414 } 415 416 /* 417 * Walk up all ancestors to update guid sum. 418 */ 419 for (; pvd != NULL; pvd = pvd->vdev_parent) 420 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 421 } 422 423 /* 424 * Remove any holes in the child array. 425 */ 426 void 427 vdev_compact_children(vdev_t *pvd) 428 { 429 vdev_t **newchild, *cvd; 430 int oldc = pvd->vdev_children; 431 int newc; 432 433 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 434 435 for (int c = newc = 0; c < oldc; c++) 436 if (pvd->vdev_child[c]) 437 newc++; 438 439 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 440 441 for (int c = newc = 0; c < oldc; c++) { 442 if ((cvd = pvd->vdev_child[c]) != NULL) { 443 newchild[newc] = cvd; 444 cvd->vdev_id = newc++; 445 } 446 } 447 448 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 449 pvd->vdev_child = newchild; 450 pvd->vdev_children = newc; 451 } 452 453 /* 454 * Allocate and minimally initialize a vdev_t. 455 */ 456 vdev_t * 457 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 458 { 459 vdev_t *vd; 460 vdev_indirect_config_t *vic; 461 462 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 463 vic = &vd->vdev_indirect_config; 464 465 if (spa->spa_root_vdev == NULL) { 466 ASSERT(ops == &vdev_root_ops); 467 spa->spa_root_vdev = vd; 468 spa->spa_load_guid = spa_generate_guid(NULL); 469 } 470 471 if (guid == 0 && ops != &vdev_hole_ops) { 472 if (spa->spa_root_vdev == vd) { 473 /* 474 * The root vdev's guid will also be the pool guid, 475 * which must be unique among all pools. 476 */ 477 guid = spa_generate_guid(NULL); 478 } else { 479 /* 480 * Any other vdev's guid must be unique within the pool. 481 */ 482 guid = spa_generate_guid(spa); 483 } 484 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 485 } 486 487 vd->vdev_spa = spa; 488 vd->vdev_id = id; 489 vd->vdev_guid = guid; 490 vd->vdev_guid_sum = guid; 491 vd->vdev_ops = ops; 492 vd->vdev_state = VDEV_STATE_CLOSED; 493 vd->vdev_ishole = (ops == &vdev_hole_ops); 494 vic->vic_prev_indirect_vdev = UINT64_MAX; 495 496 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 497 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 498 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL); 499 500 list_link_init(&vd->vdev_leaf_node); 501 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 502 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 503 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 504 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 505 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 506 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 507 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 508 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 509 510 for (int t = 0; t < DTL_TYPES; t++) { 511 vd->vdev_dtl[t] = range_tree_create(NULL, NULL); 512 } 513 txg_list_create(&vd->vdev_ms_list, spa, 514 offsetof(struct metaslab, ms_txg_node)); 515 txg_list_create(&vd->vdev_dtl_list, spa, 516 offsetof(struct vdev, vdev_dtl_node)); 517 vd->vdev_stat.vs_timestamp = gethrtime(); 518 vdev_queue_init(vd); 519 vdev_cache_init(vd); 520 521 return (vd); 522 } 523 524 /* 525 * Allocate a new vdev. The 'alloctype' is used to control whether we are 526 * creating a new vdev or loading an existing one - the behavior is slightly 527 * different for each case. 528 */ 529 int 530 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 531 int alloctype) 532 { 533 vdev_ops_t *ops; 534 char *type; 535 uint64_t guid = 0, islog, nparity; 536 vdev_t *vd; 537 vdev_indirect_config_t *vic; 538 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 539 boolean_t top_level = (parent && !parent->vdev_parent); 540 541 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 542 543 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 544 return (SET_ERROR(EINVAL)); 545 546 if ((ops = vdev_getops(type)) == NULL) 547 return (SET_ERROR(EINVAL)); 548 549 /* 550 * If this is a load, get the vdev guid from the nvlist. 551 * Otherwise, vdev_alloc_common() will generate one for us. 552 */ 553 if (alloctype == VDEV_ALLOC_LOAD) { 554 uint64_t label_id; 555 556 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 557 label_id != id) 558 return (SET_ERROR(EINVAL)); 559 560 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 561 return (SET_ERROR(EINVAL)); 562 } else if (alloctype == VDEV_ALLOC_SPARE) { 563 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 564 return (SET_ERROR(EINVAL)); 565 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 566 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 567 return (SET_ERROR(EINVAL)); 568 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 569 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 570 return (SET_ERROR(EINVAL)); 571 } 572 573 /* 574 * The first allocated vdev must be of type 'root'. 575 */ 576 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 577 return (SET_ERROR(EINVAL)); 578 579 /* 580 * Determine whether we're a log vdev. 581 */ 582 islog = 0; 583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 584 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 585 return (SET_ERROR(ENOTSUP)); 586 587 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 588 return (SET_ERROR(ENOTSUP)); 589 590 /* 591 * Set the nparity property for RAID-Z vdevs. 592 */ 593 nparity = -1ULL; 594 if (ops == &vdev_raidz_ops) { 595 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 596 &nparity) == 0) { 597 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 598 return (SET_ERROR(EINVAL)); 599 /* 600 * Previous versions could only support 1 or 2 parity 601 * device. 602 */ 603 if (nparity > 1 && 604 spa_version(spa) < SPA_VERSION_RAIDZ2) 605 return (SET_ERROR(ENOTSUP)); 606 if (nparity > 2 && 607 spa_version(spa) < SPA_VERSION_RAIDZ3) 608 return (SET_ERROR(ENOTSUP)); 609 } else { 610 /* 611 * We require the parity to be specified for SPAs that 612 * support multiple parity levels. 613 */ 614 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 615 return (SET_ERROR(EINVAL)); 616 /* 617 * Otherwise, we default to 1 parity device for RAID-Z. 618 */ 619 nparity = 1; 620 } 621 } else { 622 nparity = 0; 623 } 624 ASSERT(nparity != -1ULL); 625 626 /* 627 * If creating a top-level vdev, check for allocation classes input 628 */ 629 if (top_level && alloctype == VDEV_ALLOC_ADD) { 630 char *bias; 631 632 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 633 &bias) == 0) { 634 alloc_bias = vdev_derive_alloc_bias(bias); 635 636 /* spa_vdev_add() expects feature to be enabled */ 637 if (spa->spa_load_state != SPA_LOAD_CREATE && 638 !spa_feature_is_enabled(spa, 639 SPA_FEATURE_ALLOCATION_CLASSES)) { 640 return (SET_ERROR(ENOTSUP)); 641 } 642 } 643 } 644 645 vd = vdev_alloc_common(spa, id, guid, ops); 646 vic = &vd->vdev_indirect_config; 647 648 vd->vdev_islog = islog; 649 vd->vdev_nparity = nparity; 650 if (top_level && alloc_bias != VDEV_BIAS_NONE) 651 vd->vdev_alloc_bias = alloc_bias; 652 653 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 654 vd->vdev_path = spa_strdup(vd->vdev_path); 655 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 656 vd->vdev_devid = spa_strdup(vd->vdev_devid); 657 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 658 &vd->vdev_physpath) == 0) 659 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 660 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 661 vd->vdev_fru = spa_strdup(vd->vdev_fru); 662 663 /* 664 * Set the whole_disk property. If it's not specified, leave the value 665 * as -1. 666 */ 667 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 668 &vd->vdev_wholedisk) != 0) 669 vd->vdev_wholedisk = -1ULL; 670 671 ASSERT0(vic->vic_mapping_object); 672 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 673 &vic->vic_mapping_object); 674 ASSERT0(vic->vic_births_object); 675 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 676 &vic->vic_births_object); 677 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 678 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 679 &vic->vic_prev_indirect_vdev); 680 681 /* 682 * Look for the 'not present' flag. This will only be set if the device 683 * was not present at the time of import. 684 */ 685 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 686 &vd->vdev_not_present); 687 688 /* 689 * Get the alignment requirement. 690 */ 691 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 692 693 /* 694 * Retrieve the vdev creation time. 695 */ 696 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 697 &vd->vdev_crtxg); 698 699 /* 700 * If we're a top-level vdev, try to load the allocation parameters. 701 */ 702 if (top_level && 703 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 704 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 705 &vd->vdev_ms_array); 706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 707 &vd->vdev_ms_shift); 708 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 709 &vd->vdev_asize); 710 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 711 &vd->vdev_removing); 712 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 713 &vd->vdev_top_zap); 714 } else { 715 ASSERT0(vd->vdev_top_zap); 716 } 717 718 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 719 ASSERT(alloctype == VDEV_ALLOC_LOAD || 720 alloctype == VDEV_ALLOC_ADD || 721 alloctype == VDEV_ALLOC_SPLIT || 722 alloctype == VDEV_ALLOC_ROOTPOOL); 723 /* Note: metaslab_group_create() is now deferred */ 724 } 725 726 if (vd->vdev_ops->vdev_op_leaf && 727 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 728 (void) nvlist_lookup_uint64(nv, 729 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 730 } else { 731 ASSERT0(vd->vdev_leaf_zap); 732 } 733 734 /* 735 * If we're a leaf vdev, try to load the DTL object and other state. 736 */ 737 738 if (vd->vdev_ops->vdev_op_leaf && 739 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 740 alloctype == VDEV_ALLOC_ROOTPOOL)) { 741 if (alloctype == VDEV_ALLOC_LOAD) { 742 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 743 &vd->vdev_dtl_object); 744 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 745 &vd->vdev_unspare); 746 } 747 748 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 749 uint64_t spare = 0; 750 751 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 752 &spare) == 0 && spare) 753 spa_spare_add(vd); 754 } 755 756 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 757 &vd->vdev_offline); 758 759 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 760 &vd->vdev_resilver_txg); 761 762 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 763 vdev_set_deferred_resilver(spa, vd); 764 765 /* 766 * When importing a pool, we want to ignore the persistent fault 767 * state, as the diagnosis made on another system may not be 768 * valid in the current context. Local vdevs will 769 * remain in the faulted state. 770 */ 771 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 772 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 773 &vd->vdev_faulted); 774 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 775 &vd->vdev_degraded); 776 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 777 &vd->vdev_removed); 778 779 if (vd->vdev_faulted || vd->vdev_degraded) { 780 char *aux; 781 782 vd->vdev_label_aux = 783 VDEV_AUX_ERR_EXCEEDED; 784 if (nvlist_lookup_string(nv, 785 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 786 strcmp(aux, "external") == 0) 787 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 788 } 789 } 790 } 791 792 /* 793 * Add ourselves to the parent's list of children. 794 */ 795 vdev_add_child(parent, vd); 796 797 *vdp = vd; 798 799 return (0); 800 } 801 802 void 803 vdev_free(vdev_t *vd) 804 { 805 spa_t *spa = vd->vdev_spa; 806 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 807 808 /* 809 * Scan queues are normally destroyed at the end of a scan. If the 810 * queue exists here, that implies the vdev is being removed while 811 * the scan is still running. 812 */ 813 if (vd->vdev_scan_io_queue != NULL) { 814 mutex_enter(&vd->vdev_scan_io_queue_lock); 815 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 816 vd->vdev_scan_io_queue = NULL; 817 mutex_exit(&vd->vdev_scan_io_queue_lock); 818 } 819 820 /* 821 * vdev_free() implies closing the vdev first. This is simpler than 822 * trying to ensure complicated semantics for all callers. 823 */ 824 vdev_close(vd); 825 826 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 827 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 828 829 /* 830 * Free all children. 831 */ 832 for (int c = 0; c < vd->vdev_children; c++) 833 vdev_free(vd->vdev_child[c]); 834 835 ASSERT(vd->vdev_child == NULL); 836 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 837 ASSERT(vd->vdev_initialize_thread == NULL); 838 839 /* 840 * Discard allocation state. 841 */ 842 if (vd->vdev_mg != NULL) { 843 vdev_metaslab_fini(vd); 844 metaslab_group_destroy(vd->vdev_mg); 845 } 846 847 ASSERT0(vd->vdev_stat.vs_space); 848 ASSERT0(vd->vdev_stat.vs_dspace); 849 ASSERT0(vd->vdev_stat.vs_alloc); 850 851 /* 852 * Remove this vdev from its parent's child list. 853 */ 854 vdev_remove_child(vd->vdev_parent, vd); 855 856 ASSERT(vd->vdev_parent == NULL); 857 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 858 859 /* 860 * Clean up vdev structure. 861 */ 862 vdev_queue_fini(vd); 863 vdev_cache_fini(vd); 864 865 if (vd->vdev_path) 866 spa_strfree(vd->vdev_path); 867 if (vd->vdev_devid) 868 spa_strfree(vd->vdev_devid); 869 if (vd->vdev_physpath) 870 spa_strfree(vd->vdev_physpath); 871 if (vd->vdev_fru) 872 spa_strfree(vd->vdev_fru); 873 874 if (vd->vdev_isspare) 875 spa_spare_remove(vd); 876 if (vd->vdev_isl2cache) 877 spa_l2cache_remove(vd); 878 879 txg_list_destroy(&vd->vdev_ms_list); 880 txg_list_destroy(&vd->vdev_dtl_list); 881 882 mutex_enter(&vd->vdev_dtl_lock); 883 space_map_close(vd->vdev_dtl_sm); 884 for (int t = 0; t < DTL_TYPES; t++) { 885 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 886 range_tree_destroy(vd->vdev_dtl[t]); 887 } 888 mutex_exit(&vd->vdev_dtl_lock); 889 890 EQUIV(vd->vdev_indirect_births != NULL, 891 vd->vdev_indirect_mapping != NULL); 892 if (vd->vdev_indirect_births != NULL) { 893 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 894 vdev_indirect_births_close(vd->vdev_indirect_births); 895 } 896 897 if (vd->vdev_obsolete_sm != NULL) { 898 ASSERT(vd->vdev_removing || 899 vd->vdev_ops == &vdev_indirect_ops); 900 space_map_close(vd->vdev_obsolete_sm); 901 vd->vdev_obsolete_sm = NULL; 902 } 903 range_tree_destroy(vd->vdev_obsolete_segments); 904 rw_destroy(&vd->vdev_indirect_rwlock); 905 mutex_destroy(&vd->vdev_obsolete_lock); 906 907 mutex_destroy(&vd->vdev_dtl_lock); 908 mutex_destroy(&vd->vdev_stat_lock); 909 mutex_destroy(&vd->vdev_probe_lock); 910 mutex_destroy(&vd->vdev_scan_io_queue_lock); 911 mutex_destroy(&vd->vdev_initialize_lock); 912 mutex_destroy(&vd->vdev_initialize_io_lock); 913 cv_destroy(&vd->vdev_initialize_io_cv); 914 cv_destroy(&vd->vdev_initialize_cv); 915 916 if (vd == spa->spa_root_vdev) 917 spa->spa_root_vdev = NULL; 918 919 kmem_free(vd, sizeof (vdev_t)); 920 } 921 922 /* 923 * Transfer top-level vdev state from svd to tvd. 924 */ 925 static void 926 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 927 { 928 spa_t *spa = svd->vdev_spa; 929 metaslab_t *msp; 930 vdev_t *vd; 931 int t; 932 933 ASSERT(tvd == tvd->vdev_top); 934 935 tvd->vdev_ms_array = svd->vdev_ms_array; 936 tvd->vdev_ms_shift = svd->vdev_ms_shift; 937 tvd->vdev_ms_count = svd->vdev_ms_count; 938 tvd->vdev_top_zap = svd->vdev_top_zap; 939 940 svd->vdev_ms_array = 0; 941 svd->vdev_ms_shift = 0; 942 svd->vdev_ms_count = 0; 943 svd->vdev_top_zap = 0; 944 945 if (tvd->vdev_mg) 946 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 947 tvd->vdev_mg = svd->vdev_mg; 948 tvd->vdev_ms = svd->vdev_ms; 949 950 svd->vdev_mg = NULL; 951 svd->vdev_ms = NULL; 952 953 if (tvd->vdev_mg != NULL) 954 tvd->vdev_mg->mg_vd = tvd; 955 956 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 957 svd->vdev_checkpoint_sm = NULL; 958 959 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 960 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 961 962 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 963 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 964 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 965 966 svd->vdev_stat.vs_alloc = 0; 967 svd->vdev_stat.vs_space = 0; 968 svd->vdev_stat.vs_dspace = 0; 969 970 /* 971 * State which may be set on a top-level vdev that's in the 972 * process of being removed. 973 */ 974 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 975 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 976 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 977 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 978 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 979 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 980 ASSERT0(tvd->vdev_removing); 981 tvd->vdev_removing = svd->vdev_removing; 982 tvd->vdev_indirect_config = svd->vdev_indirect_config; 983 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 984 tvd->vdev_indirect_births = svd->vdev_indirect_births; 985 range_tree_swap(&svd->vdev_obsolete_segments, 986 &tvd->vdev_obsolete_segments); 987 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 988 svd->vdev_indirect_config.vic_mapping_object = 0; 989 svd->vdev_indirect_config.vic_births_object = 0; 990 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 991 svd->vdev_indirect_mapping = NULL; 992 svd->vdev_indirect_births = NULL; 993 svd->vdev_obsolete_sm = NULL; 994 svd->vdev_removing = 0; 995 996 for (t = 0; t < TXG_SIZE; t++) { 997 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 998 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 999 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1000 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1001 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1002 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1003 } 1004 1005 if (list_link_active(&svd->vdev_config_dirty_node)) { 1006 vdev_config_clean(svd); 1007 vdev_config_dirty(tvd); 1008 } 1009 1010 if (list_link_active(&svd->vdev_state_dirty_node)) { 1011 vdev_state_clean(svd); 1012 vdev_state_dirty(tvd); 1013 } 1014 1015 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1016 svd->vdev_deflate_ratio = 0; 1017 1018 tvd->vdev_islog = svd->vdev_islog; 1019 svd->vdev_islog = 0; 1020 1021 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1022 } 1023 1024 static void 1025 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1026 { 1027 if (vd == NULL) 1028 return; 1029 1030 vd->vdev_top = tvd; 1031 1032 for (int c = 0; c < vd->vdev_children; c++) 1033 vdev_top_update(tvd, vd->vdev_child[c]); 1034 } 1035 1036 /* 1037 * Add a mirror/replacing vdev above an existing vdev. 1038 */ 1039 vdev_t * 1040 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1041 { 1042 spa_t *spa = cvd->vdev_spa; 1043 vdev_t *pvd = cvd->vdev_parent; 1044 vdev_t *mvd; 1045 1046 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1047 1048 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1049 1050 mvd->vdev_asize = cvd->vdev_asize; 1051 mvd->vdev_min_asize = cvd->vdev_min_asize; 1052 mvd->vdev_max_asize = cvd->vdev_max_asize; 1053 mvd->vdev_psize = cvd->vdev_psize; 1054 mvd->vdev_ashift = cvd->vdev_ashift; 1055 mvd->vdev_state = cvd->vdev_state; 1056 mvd->vdev_crtxg = cvd->vdev_crtxg; 1057 1058 vdev_remove_child(pvd, cvd); 1059 vdev_add_child(pvd, mvd); 1060 cvd->vdev_id = mvd->vdev_children; 1061 vdev_add_child(mvd, cvd); 1062 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1063 1064 if (mvd == mvd->vdev_top) 1065 vdev_top_transfer(cvd, mvd); 1066 1067 return (mvd); 1068 } 1069 1070 /* 1071 * Remove a 1-way mirror/replacing vdev from the tree. 1072 */ 1073 void 1074 vdev_remove_parent(vdev_t *cvd) 1075 { 1076 vdev_t *mvd = cvd->vdev_parent; 1077 vdev_t *pvd = mvd->vdev_parent; 1078 1079 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1080 1081 ASSERT(mvd->vdev_children == 1); 1082 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1083 mvd->vdev_ops == &vdev_replacing_ops || 1084 mvd->vdev_ops == &vdev_spare_ops); 1085 cvd->vdev_ashift = mvd->vdev_ashift; 1086 1087 vdev_remove_child(mvd, cvd); 1088 vdev_remove_child(pvd, mvd); 1089 1090 /* 1091 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1092 * Otherwise, we could have detached an offline device, and when we 1093 * go to import the pool we'll think we have two top-level vdevs, 1094 * instead of a different version of the same top-level vdev. 1095 */ 1096 if (mvd->vdev_top == mvd) { 1097 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1098 cvd->vdev_orig_guid = cvd->vdev_guid; 1099 cvd->vdev_guid += guid_delta; 1100 cvd->vdev_guid_sum += guid_delta; 1101 } 1102 cvd->vdev_id = mvd->vdev_id; 1103 vdev_add_child(pvd, cvd); 1104 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1105 1106 if (cvd == cvd->vdev_top) 1107 vdev_top_transfer(mvd, cvd); 1108 1109 ASSERT(mvd->vdev_children == 0); 1110 vdev_free(mvd); 1111 } 1112 1113 static void 1114 vdev_metaslab_group_create(vdev_t *vd) 1115 { 1116 spa_t *spa = vd->vdev_spa; 1117 1118 /* 1119 * metaslab_group_create was delayed until allocation bias was available 1120 */ 1121 if (vd->vdev_mg == NULL) { 1122 metaslab_class_t *mc; 1123 1124 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1125 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1126 1127 ASSERT3U(vd->vdev_islog, ==, 1128 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1129 1130 switch (vd->vdev_alloc_bias) { 1131 case VDEV_BIAS_LOG: 1132 mc = spa_log_class(spa); 1133 break; 1134 case VDEV_BIAS_SPECIAL: 1135 mc = spa_special_class(spa); 1136 break; 1137 case VDEV_BIAS_DEDUP: 1138 mc = spa_dedup_class(spa); 1139 break; 1140 default: 1141 mc = spa_normal_class(spa); 1142 } 1143 1144 vd->vdev_mg = metaslab_group_create(mc, vd, 1145 spa->spa_alloc_count); 1146 1147 /* 1148 * The spa ashift values currently only reflect the 1149 * general vdev classes. Class destination is late 1150 * binding so ashift checking had to wait until now 1151 */ 1152 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1153 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1154 if (vd->vdev_ashift > spa->spa_max_ashift) 1155 spa->spa_max_ashift = vd->vdev_ashift; 1156 if (vd->vdev_ashift < spa->spa_min_ashift) 1157 spa->spa_min_ashift = vd->vdev_ashift; 1158 } 1159 } 1160 } 1161 1162 int 1163 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1164 { 1165 spa_t *spa = vd->vdev_spa; 1166 objset_t *mos = spa->spa_meta_objset; 1167 uint64_t m; 1168 uint64_t oldc = vd->vdev_ms_count; 1169 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1170 metaslab_t **mspp; 1171 int error; 1172 boolean_t expanding = (oldc != 0); 1173 1174 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1175 1176 /* 1177 * This vdev is not being allocated from yet or is a hole. 1178 */ 1179 if (vd->vdev_ms_shift == 0) 1180 return (0); 1181 1182 ASSERT(!vd->vdev_ishole); 1183 1184 ASSERT(oldc <= newc); 1185 1186 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1187 1188 if (expanding) { 1189 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1190 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1191 } 1192 1193 vd->vdev_ms = mspp; 1194 vd->vdev_ms_count = newc; 1195 for (m = oldc; m < newc; m++) { 1196 uint64_t object = 0; 1197 1198 /* 1199 * vdev_ms_array may be 0 if we are creating the "fake" 1200 * metaslabs for an indirect vdev for zdb's leak detection. 1201 * See zdb_leak_init(). 1202 */ 1203 if (txg == 0 && vd->vdev_ms_array != 0) { 1204 error = dmu_read(mos, vd->vdev_ms_array, 1205 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1206 DMU_READ_PREFETCH); 1207 if (error != 0) { 1208 vdev_dbgmsg(vd, "unable to read the metaslab " 1209 "array [error=%d]", error); 1210 return (error); 1211 } 1212 } 1213 1214 #ifndef _KERNEL 1215 /* 1216 * To accomodate zdb_leak_init() fake indirect 1217 * metaslabs, we allocate a metaslab group for 1218 * indirect vdevs which normally don't have one. 1219 */ 1220 if (vd->vdev_mg == NULL) { 1221 ASSERT0(vdev_is_concrete(vd)); 1222 vdev_metaslab_group_create(vd); 1223 } 1224 #endif 1225 error = metaslab_init(vd->vdev_mg, m, object, txg, 1226 &(vd->vdev_ms[m])); 1227 if (error != 0) { 1228 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1229 error); 1230 return (error); 1231 } 1232 } 1233 1234 if (txg == 0) 1235 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1236 1237 /* 1238 * If the vdev is being removed we don't activate 1239 * the metaslabs since we want to ensure that no new 1240 * allocations are performed on this device. 1241 */ 1242 if (!expanding && !vd->vdev_removing) { 1243 metaslab_group_activate(vd->vdev_mg); 1244 } 1245 1246 if (txg == 0) 1247 spa_config_exit(spa, SCL_ALLOC, FTAG); 1248 1249 return (0); 1250 } 1251 1252 void 1253 vdev_metaslab_fini(vdev_t *vd) 1254 { 1255 if (vd->vdev_checkpoint_sm != NULL) { 1256 ASSERT(spa_feature_is_active(vd->vdev_spa, 1257 SPA_FEATURE_POOL_CHECKPOINT)); 1258 space_map_close(vd->vdev_checkpoint_sm); 1259 /* 1260 * Even though we close the space map, we need to set its 1261 * pointer to NULL. The reason is that vdev_metaslab_fini() 1262 * may be called multiple times for certain operations 1263 * (i.e. when destroying a pool) so we need to ensure that 1264 * this clause never executes twice. This logic is similar 1265 * to the one used for the vdev_ms clause below. 1266 */ 1267 vd->vdev_checkpoint_sm = NULL; 1268 } 1269 1270 if (vd->vdev_ms != NULL) { 1271 metaslab_group_t *mg = vd->vdev_mg; 1272 metaslab_group_passivate(mg); 1273 1274 uint64_t count = vd->vdev_ms_count; 1275 for (uint64_t m = 0; m < count; m++) { 1276 metaslab_t *msp = vd->vdev_ms[m]; 1277 if (msp != NULL) 1278 metaslab_fini(msp); 1279 } 1280 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1281 vd->vdev_ms = NULL; 1282 1283 vd->vdev_ms_count = 0; 1284 1285 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1286 ASSERT0(mg->mg_histogram[i]); 1287 } 1288 ASSERT0(vd->vdev_ms_count); 1289 } 1290 1291 typedef struct vdev_probe_stats { 1292 boolean_t vps_readable; 1293 boolean_t vps_writeable; 1294 int vps_flags; 1295 } vdev_probe_stats_t; 1296 1297 static void 1298 vdev_probe_done(zio_t *zio) 1299 { 1300 spa_t *spa = zio->io_spa; 1301 vdev_t *vd = zio->io_vd; 1302 vdev_probe_stats_t *vps = zio->io_private; 1303 1304 ASSERT(vd->vdev_probe_zio != NULL); 1305 1306 if (zio->io_type == ZIO_TYPE_READ) { 1307 if (zio->io_error == 0) 1308 vps->vps_readable = 1; 1309 if (zio->io_error == 0 && spa_writeable(spa)) { 1310 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1311 zio->io_offset, zio->io_size, zio->io_abd, 1312 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1313 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1314 } else { 1315 abd_free(zio->io_abd); 1316 } 1317 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1318 if (zio->io_error == 0) 1319 vps->vps_writeable = 1; 1320 abd_free(zio->io_abd); 1321 } else if (zio->io_type == ZIO_TYPE_NULL) { 1322 zio_t *pio; 1323 1324 vd->vdev_cant_read |= !vps->vps_readable; 1325 vd->vdev_cant_write |= !vps->vps_writeable; 1326 1327 if (vdev_readable(vd) && 1328 (vdev_writeable(vd) || !spa_writeable(spa))) { 1329 zio->io_error = 0; 1330 } else { 1331 ASSERT(zio->io_error != 0); 1332 vdev_dbgmsg(vd, "failed probe"); 1333 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1334 spa, vd, NULL, 0, 0); 1335 zio->io_error = SET_ERROR(ENXIO); 1336 } 1337 1338 mutex_enter(&vd->vdev_probe_lock); 1339 ASSERT(vd->vdev_probe_zio == zio); 1340 vd->vdev_probe_zio = NULL; 1341 mutex_exit(&vd->vdev_probe_lock); 1342 1343 zio_link_t *zl = NULL; 1344 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1345 if (!vdev_accessible(vd, pio)) 1346 pio->io_error = SET_ERROR(ENXIO); 1347 1348 kmem_free(vps, sizeof (*vps)); 1349 } 1350 } 1351 1352 /* 1353 * Determine whether this device is accessible. 1354 * 1355 * Read and write to several known locations: the pad regions of each 1356 * vdev label but the first, which we leave alone in case it contains 1357 * a VTOC. 1358 */ 1359 zio_t * 1360 vdev_probe(vdev_t *vd, zio_t *zio) 1361 { 1362 spa_t *spa = vd->vdev_spa; 1363 vdev_probe_stats_t *vps = NULL; 1364 zio_t *pio; 1365 1366 ASSERT(vd->vdev_ops->vdev_op_leaf); 1367 1368 /* 1369 * Don't probe the probe. 1370 */ 1371 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1372 return (NULL); 1373 1374 /* 1375 * To prevent 'probe storms' when a device fails, we create 1376 * just one probe i/o at a time. All zios that want to probe 1377 * this vdev will become parents of the probe io. 1378 */ 1379 mutex_enter(&vd->vdev_probe_lock); 1380 1381 if ((pio = vd->vdev_probe_zio) == NULL) { 1382 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1383 1384 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1385 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1386 ZIO_FLAG_TRYHARD; 1387 1388 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1389 /* 1390 * vdev_cant_read and vdev_cant_write can only 1391 * transition from TRUE to FALSE when we have the 1392 * SCL_ZIO lock as writer; otherwise they can only 1393 * transition from FALSE to TRUE. This ensures that 1394 * any zio looking at these values can assume that 1395 * failures persist for the life of the I/O. That's 1396 * important because when a device has intermittent 1397 * connectivity problems, we want to ensure that 1398 * they're ascribed to the device (ENXIO) and not 1399 * the zio (EIO). 1400 * 1401 * Since we hold SCL_ZIO as writer here, clear both 1402 * values so the probe can reevaluate from first 1403 * principles. 1404 */ 1405 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1406 vd->vdev_cant_read = B_FALSE; 1407 vd->vdev_cant_write = B_FALSE; 1408 } 1409 1410 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1411 vdev_probe_done, vps, 1412 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1413 1414 /* 1415 * We can't change the vdev state in this context, so we 1416 * kick off an async task to do it on our behalf. 1417 */ 1418 if (zio != NULL) { 1419 vd->vdev_probe_wanted = B_TRUE; 1420 spa_async_request(spa, SPA_ASYNC_PROBE); 1421 } 1422 } 1423 1424 if (zio != NULL) 1425 zio_add_child(zio, pio); 1426 1427 mutex_exit(&vd->vdev_probe_lock); 1428 1429 if (vps == NULL) { 1430 ASSERT(zio != NULL); 1431 return (NULL); 1432 } 1433 1434 for (int l = 1; l < VDEV_LABELS; l++) { 1435 zio_nowait(zio_read_phys(pio, vd, 1436 vdev_label_offset(vd->vdev_psize, l, 1437 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE, 1438 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1439 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1440 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1441 } 1442 1443 if (zio == NULL) 1444 return (pio); 1445 1446 zio_nowait(pio); 1447 return (NULL); 1448 } 1449 1450 static void 1451 vdev_open_child(void *arg) 1452 { 1453 vdev_t *vd = arg; 1454 1455 vd->vdev_open_thread = curthread; 1456 vd->vdev_open_error = vdev_open(vd); 1457 vd->vdev_open_thread = NULL; 1458 } 1459 1460 boolean_t 1461 vdev_uses_zvols(vdev_t *vd) 1462 { 1463 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1464 strlen(ZVOL_DIR)) == 0) 1465 return (B_TRUE); 1466 for (int c = 0; c < vd->vdev_children; c++) 1467 if (vdev_uses_zvols(vd->vdev_child[c])) 1468 return (B_TRUE); 1469 return (B_FALSE); 1470 } 1471 1472 void 1473 vdev_open_children(vdev_t *vd) 1474 { 1475 taskq_t *tq; 1476 int children = vd->vdev_children; 1477 1478 /* 1479 * in order to handle pools on top of zvols, do the opens 1480 * in a single thread so that the same thread holds the 1481 * spa_namespace_lock 1482 */ 1483 if (vdev_uses_zvols(vd)) { 1484 retry_sync: 1485 for (int c = 0; c < children; c++) 1486 vd->vdev_child[c]->vdev_open_error = 1487 vdev_open(vd->vdev_child[c]); 1488 } else { 1489 tq = taskq_create("vdev_open", children, minclsyspri, 1490 children, children, TASKQ_PREPOPULATE); 1491 if (tq == NULL) 1492 goto retry_sync; 1493 1494 for (int c = 0; c < children; c++) 1495 VERIFY(taskq_dispatch(tq, vdev_open_child, 1496 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1497 1498 taskq_destroy(tq); 1499 } 1500 1501 vd->vdev_nonrot = B_TRUE; 1502 1503 for (int c = 0; c < children; c++) 1504 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1505 } 1506 1507 /* 1508 * Compute the raidz-deflation ratio. Note, we hard-code 1509 * in 128k (1 << 17) because it is the "typical" blocksize. 1510 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1511 * otherwise it would inconsistently account for existing bp's. 1512 */ 1513 static void 1514 vdev_set_deflate_ratio(vdev_t *vd) 1515 { 1516 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1517 vd->vdev_deflate_ratio = (1 << 17) / 1518 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1519 } 1520 } 1521 1522 /* 1523 * Prepare a virtual device for access. 1524 */ 1525 int 1526 vdev_open(vdev_t *vd) 1527 { 1528 spa_t *spa = vd->vdev_spa; 1529 int error; 1530 uint64_t osize = 0; 1531 uint64_t max_osize = 0; 1532 uint64_t asize, max_asize, psize; 1533 uint64_t ashift = 0; 1534 1535 ASSERT(vd->vdev_open_thread == curthread || 1536 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1537 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1538 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1539 vd->vdev_state == VDEV_STATE_OFFLINE); 1540 1541 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1542 vd->vdev_cant_read = B_FALSE; 1543 vd->vdev_cant_write = B_FALSE; 1544 vd->vdev_min_asize = vdev_get_min_asize(vd); 1545 1546 /* 1547 * If this vdev is not removed, check its fault status. If it's 1548 * faulted, bail out of the open. 1549 */ 1550 if (!vd->vdev_removed && vd->vdev_faulted) { 1551 ASSERT(vd->vdev_children == 0); 1552 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1553 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1554 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1555 vd->vdev_label_aux); 1556 return (SET_ERROR(ENXIO)); 1557 } else if (vd->vdev_offline) { 1558 ASSERT(vd->vdev_children == 0); 1559 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1560 return (SET_ERROR(ENXIO)); 1561 } 1562 1563 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1564 1565 /* 1566 * Reset the vdev_reopening flag so that we actually close 1567 * the vdev on error. 1568 */ 1569 vd->vdev_reopening = B_FALSE; 1570 if (zio_injection_enabled && error == 0) 1571 error = zio_handle_device_injection(vd, NULL, ENXIO); 1572 1573 if (error) { 1574 if (vd->vdev_removed && 1575 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1576 vd->vdev_removed = B_FALSE; 1577 1578 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1579 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1580 vd->vdev_stat.vs_aux); 1581 } else { 1582 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1583 vd->vdev_stat.vs_aux); 1584 } 1585 return (error); 1586 } 1587 1588 vd->vdev_removed = B_FALSE; 1589 1590 /* 1591 * Recheck the faulted flag now that we have confirmed that 1592 * the vdev is accessible. If we're faulted, bail. 1593 */ 1594 if (vd->vdev_faulted) { 1595 ASSERT(vd->vdev_children == 0); 1596 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1597 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1598 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1599 vd->vdev_label_aux); 1600 return (SET_ERROR(ENXIO)); 1601 } 1602 1603 if (vd->vdev_degraded) { 1604 ASSERT(vd->vdev_children == 0); 1605 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1606 VDEV_AUX_ERR_EXCEEDED); 1607 } else { 1608 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1609 } 1610 1611 /* 1612 * For hole or missing vdevs we just return success. 1613 */ 1614 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1615 return (0); 1616 1617 for (int c = 0; c < vd->vdev_children; c++) { 1618 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1619 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1620 VDEV_AUX_NONE); 1621 break; 1622 } 1623 } 1624 1625 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1626 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1627 1628 if (vd->vdev_children == 0) { 1629 if (osize < SPA_MINDEVSIZE) { 1630 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1631 VDEV_AUX_TOO_SMALL); 1632 return (SET_ERROR(EOVERFLOW)); 1633 } 1634 psize = osize; 1635 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1636 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1637 VDEV_LABEL_END_SIZE); 1638 } else { 1639 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1640 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1641 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1642 VDEV_AUX_TOO_SMALL); 1643 return (SET_ERROR(EOVERFLOW)); 1644 } 1645 psize = 0; 1646 asize = osize; 1647 max_asize = max_osize; 1648 } 1649 1650 vd->vdev_psize = psize; 1651 1652 /* 1653 * Make sure the allocatable size hasn't shrunk too much. 1654 */ 1655 if (asize < vd->vdev_min_asize) { 1656 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1657 VDEV_AUX_BAD_LABEL); 1658 return (SET_ERROR(EINVAL)); 1659 } 1660 1661 if (vd->vdev_asize == 0) { 1662 /* 1663 * This is the first-ever open, so use the computed values. 1664 * For testing purposes, a higher ashift can be requested. 1665 */ 1666 vd->vdev_asize = asize; 1667 vd->vdev_max_asize = max_asize; 1668 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1669 vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift); 1670 } else { 1671 /* 1672 * Detect if the alignment requirement has increased. 1673 * We don't want to make the pool unavailable, just 1674 * issue a warning instead. 1675 */ 1676 if (ashift > vd->vdev_top->vdev_ashift && 1677 vd->vdev_ops->vdev_op_leaf) { 1678 cmn_err(CE_WARN, 1679 "Disk, '%s', has a block alignment that is " 1680 "larger than the pool's alignment\n", 1681 vd->vdev_path); 1682 } 1683 vd->vdev_max_asize = max_asize; 1684 } 1685 1686 /* 1687 * If all children are healthy we update asize if either: 1688 * The asize has increased, due to a device expansion caused by dynamic 1689 * LUN growth or vdev replacement, and automatic expansion is enabled; 1690 * making the additional space available. 1691 * 1692 * The asize has decreased, due to a device shrink usually caused by a 1693 * vdev replace with a smaller device. This ensures that calculations 1694 * based of max_asize and asize e.g. esize are always valid. It's safe 1695 * to do this as we've already validated that asize is greater than 1696 * vdev_min_asize. 1697 */ 1698 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1699 ((asize > vd->vdev_asize && 1700 (vd->vdev_expanding || spa->spa_autoexpand)) || 1701 (asize < vd->vdev_asize))) 1702 vd->vdev_asize = asize; 1703 1704 vdev_set_min_asize(vd); 1705 1706 /* 1707 * Ensure we can issue some IO before declaring the 1708 * vdev open for business. 1709 */ 1710 if (vd->vdev_ops->vdev_op_leaf && 1711 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1712 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1713 VDEV_AUX_ERR_EXCEEDED); 1714 return (error); 1715 } 1716 1717 /* 1718 * Track the min and max ashift values for normal data devices. 1719 * 1720 * DJB - TBD these should perhaps be tracked per allocation class 1721 * (e.g. spa_min_ashift is used to round up post compression buffers) 1722 */ 1723 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1724 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1725 vd->vdev_aux == NULL) { 1726 if (vd->vdev_ashift > spa->spa_max_ashift) 1727 spa->spa_max_ashift = vd->vdev_ashift; 1728 if (vd->vdev_ashift < spa->spa_min_ashift) 1729 spa->spa_min_ashift = vd->vdev_ashift; 1730 } 1731 1732 /* 1733 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1734 * resilver. But don't do this if we are doing a reopen for a scrub, 1735 * since this would just restart the scrub we are already doing. 1736 */ 1737 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1738 vdev_resilver_needed(vd, NULL, NULL)) { 1739 if (dsl_scan_resilvering(spa->spa_dsl_pool) && 1740 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 1741 vdev_set_deferred_resilver(spa, vd); 1742 else 1743 spa_async_request(spa, SPA_ASYNC_RESILVER); 1744 } 1745 1746 return (0); 1747 } 1748 1749 /* 1750 * Called once the vdevs are all opened, this routine validates the label 1751 * contents. This needs to be done before vdev_load() so that we don't 1752 * inadvertently do repair I/Os to the wrong device. 1753 * 1754 * This function will only return failure if one of the vdevs indicates that it 1755 * has since been destroyed or exported. This is only possible if 1756 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1757 * will be updated but the function will return 0. 1758 */ 1759 int 1760 vdev_validate(vdev_t *vd) 1761 { 1762 spa_t *spa = vd->vdev_spa; 1763 nvlist_t *label; 1764 uint64_t guid = 0, aux_guid = 0, top_guid; 1765 uint64_t state; 1766 nvlist_t *nvl; 1767 uint64_t txg; 1768 1769 if (vdev_validate_skip) 1770 return (0); 1771 1772 for (uint64_t c = 0; c < vd->vdev_children; c++) 1773 if (vdev_validate(vd->vdev_child[c]) != 0) 1774 return (SET_ERROR(EBADF)); 1775 1776 /* 1777 * If the device has already failed, or was marked offline, don't do 1778 * any further validation. Otherwise, label I/O will fail and we will 1779 * overwrite the previous state. 1780 */ 1781 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1782 return (0); 1783 1784 /* 1785 * If we are performing an extreme rewind, we allow for a label that 1786 * was modified at a point after the current txg. 1787 * If config lock is not held do not check for the txg. spa_sync could 1788 * be updating the vdev's label before updating spa_last_synced_txg. 1789 */ 1790 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 1791 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 1792 txg = UINT64_MAX; 1793 else 1794 txg = spa_last_synced_txg(spa); 1795 1796 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1797 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1798 VDEV_AUX_BAD_LABEL); 1799 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 1800 "txg %llu", (u_longlong_t)txg); 1801 return (0); 1802 } 1803 1804 /* 1805 * Determine if this vdev has been split off into another 1806 * pool. If so, then refuse to open it. 1807 */ 1808 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1809 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1810 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1811 VDEV_AUX_SPLIT_POOL); 1812 nvlist_free(label); 1813 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 1814 return (0); 1815 } 1816 1817 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 1818 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1819 VDEV_AUX_CORRUPT_DATA); 1820 nvlist_free(label); 1821 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1822 ZPOOL_CONFIG_POOL_GUID); 1823 return (0); 1824 } 1825 1826 /* 1827 * If config is not trusted then ignore the spa guid check. This is 1828 * necessary because if the machine crashed during a re-guid the new 1829 * guid might have been written to all of the vdev labels, but not the 1830 * cached config. The check will be performed again once we have the 1831 * trusted config from the MOS. 1832 */ 1833 if (spa->spa_trust_config && guid != spa_guid(spa)) { 1834 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1835 VDEV_AUX_CORRUPT_DATA); 1836 nvlist_free(label); 1837 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 1838 "match config (%llu != %llu)", (u_longlong_t)guid, 1839 (u_longlong_t)spa_guid(spa)); 1840 return (0); 1841 } 1842 1843 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1844 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1845 &aux_guid) != 0) 1846 aux_guid = 0; 1847 1848 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 1849 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1850 VDEV_AUX_CORRUPT_DATA); 1851 nvlist_free(label); 1852 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1853 ZPOOL_CONFIG_GUID); 1854 return (0); 1855 } 1856 1857 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 1858 != 0) { 1859 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1860 VDEV_AUX_CORRUPT_DATA); 1861 nvlist_free(label); 1862 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1863 ZPOOL_CONFIG_TOP_GUID); 1864 return (0); 1865 } 1866 1867 /* 1868 * If this vdev just became a top-level vdev because its sibling was 1869 * detached, it will have adopted the parent's vdev guid -- but the 1870 * label may or may not be on disk yet. Fortunately, either version 1871 * of the label will have the same top guid, so if we're a top-level 1872 * vdev, we can safely compare to that instead. 1873 * However, if the config comes from a cachefile that failed to update 1874 * after the detach, a top-level vdev will appear as a non top-level 1875 * vdev in the config. Also relax the constraints if we perform an 1876 * extreme rewind. 1877 * 1878 * If we split this vdev off instead, then we also check the 1879 * original pool's guid. We don't want to consider the vdev 1880 * corrupt if it is partway through a split operation. 1881 */ 1882 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 1883 boolean_t mismatch = B_FALSE; 1884 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 1885 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 1886 mismatch = B_TRUE; 1887 } else { 1888 if (vd->vdev_guid != top_guid && 1889 vd->vdev_top->vdev_guid != guid) 1890 mismatch = B_TRUE; 1891 } 1892 1893 if (mismatch) { 1894 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1895 VDEV_AUX_CORRUPT_DATA); 1896 nvlist_free(label); 1897 vdev_dbgmsg(vd, "vdev_validate: config guid " 1898 "doesn't match label guid"); 1899 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 1900 (u_longlong_t)vd->vdev_guid, 1901 (u_longlong_t)vd->vdev_top->vdev_guid); 1902 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 1903 "aux_guid %llu", (u_longlong_t)guid, 1904 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 1905 return (0); 1906 } 1907 } 1908 1909 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1910 &state) != 0) { 1911 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1912 VDEV_AUX_CORRUPT_DATA); 1913 nvlist_free(label); 1914 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 1915 ZPOOL_CONFIG_POOL_STATE); 1916 return (0); 1917 } 1918 1919 nvlist_free(label); 1920 1921 /* 1922 * If this is a verbatim import, no need to check the 1923 * state of the pool. 1924 */ 1925 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1926 spa_load_state(spa) == SPA_LOAD_OPEN && 1927 state != POOL_STATE_ACTIVE) { 1928 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 1929 "for spa %s", (u_longlong_t)state, spa->spa_name); 1930 return (SET_ERROR(EBADF)); 1931 } 1932 1933 /* 1934 * If we were able to open and validate a vdev that was 1935 * previously marked permanently unavailable, clear that state 1936 * now. 1937 */ 1938 if (vd->vdev_not_present) 1939 vd->vdev_not_present = 0; 1940 1941 return (0); 1942 } 1943 1944 static void 1945 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 1946 { 1947 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 1948 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 1949 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 1950 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 1951 dvd->vdev_path, svd->vdev_path); 1952 spa_strfree(dvd->vdev_path); 1953 dvd->vdev_path = spa_strdup(svd->vdev_path); 1954 } 1955 } else if (svd->vdev_path != NULL) { 1956 dvd->vdev_path = spa_strdup(svd->vdev_path); 1957 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 1958 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 1959 } 1960 } 1961 1962 /* 1963 * Recursively copy vdev paths from one vdev to another. Source and destination 1964 * vdev trees must have same geometry otherwise return error. Intended to copy 1965 * paths from userland config into MOS config. 1966 */ 1967 int 1968 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 1969 { 1970 if ((svd->vdev_ops == &vdev_missing_ops) || 1971 (svd->vdev_ishole && dvd->vdev_ishole) || 1972 (dvd->vdev_ops == &vdev_indirect_ops)) 1973 return (0); 1974 1975 if (svd->vdev_ops != dvd->vdev_ops) { 1976 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 1977 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 1978 return (SET_ERROR(EINVAL)); 1979 } 1980 1981 if (svd->vdev_guid != dvd->vdev_guid) { 1982 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 1983 "%llu)", (u_longlong_t)svd->vdev_guid, 1984 (u_longlong_t)dvd->vdev_guid); 1985 return (SET_ERROR(EINVAL)); 1986 } 1987 1988 if (svd->vdev_children != dvd->vdev_children) { 1989 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 1990 "%llu != %llu", (u_longlong_t)svd->vdev_children, 1991 (u_longlong_t)dvd->vdev_children); 1992 return (SET_ERROR(EINVAL)); 1993 } 1994 1995 for (uint64_t i = 0; i < svd->vdev_children; i++) { 1996 int error = vdev_copy_path_strict(svd->vdev_child[i], 1997 dvd->vdev_child[i]); 1998 if (error != 0) 1999 return (error); 2000 } 2001 2002 if (svd->vdev_ops->vdev_op_leaf) 2003 vdev_copy_path_impl(svd, dvd); 2004 2005 return (0); 2006 } 2007 2008 static void 2009 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2010 { 2011 ASSERT(stvd->vdev_top == stvd); 2012 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2013 2014 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2015 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2016 } 2017 2018 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2019 return; 2020 2021 /* 2022 * The idea here is that while a vdev can shift positions within 2023 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2024 * step outside of it. 2025 */ 2026 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2027 2028 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2029 return; 2030 2031 ASSERT(vd->vdev_ops->vdev_op_leaf); 2032 2033 vdev_copy_path_impl(vd, dvd); 2034 } 2035 2036 /* 2037 * Recursively copy vdev paths from one root vdev to another. Source and 2038 * destination vdev trees may differ in geometry. For each destination leaf 2039 * vdev, search a vdev with the same guid and top vdev id in the source. 2040 * Intended to copy paths from userland config into MOS config. 2041 */ 2042 void 2043 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2044 { 2045 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2046 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2047 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2048 2049 for (uint64_t i = 0; i < children; i++) { 2050 vdev_copy_path_search(srvd->vdev_child[i], 2051 drvd->vdev_child[i]); 2052 } 2053 } 2054 2055 /* 2056 * Close a virtual device. 2057 */ 2058 void 2059 vdev_close(vdev_t *vd) 2060 { 2061 spa_t *spa = vd->vdev_spa; 2062 vdev_t *pvd = vd->vdev_parent; 2063 2064 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2065 2066 /* 2067 * If our parent is reopening, then we are as well, unless we are 2068 * going offline. 2069 */ 2070 if (pvd != NULL && pvd->vdev_reopening) 2071 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2072 2073 vd->vdev_ops->vdev_op_close(vd); 2074 2075 vdev_cache_purge(vd); 2076 2077 /* 2078 * We record the previous state before we close it, so that if we are 2079 * doing a reopen(), we don't generate FMA ereports if we notice that 2080 * it's still faulted. 2081 */ 2082 vd->vdev_prevstate = vd->vdev_state; 2083 2084 if (vd->vdev_offline) 2085 vd->vdev_state = VDEV_STATE_OFFLINE; 2086 else 2087 vd->vdev_state = VDEV_STATE_CLOSED; 2088 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2089 } 2090 2091 void 2092 vdev_hold(vdev_t *vd) 2093 { 2094 spa_t *spa = vd->vdev_spa; 2095 2096 ASSERT(spa_is_root(spa)); 2097 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2098 return; 2099 2100 for (int c = 0; c < vd->vdev_children; c++) 2101 vdev_hold(vd->vdev_child[c]); 2102 2103 if (vd->vdev_ops->vdev_op_leaf) 2104 vd->vdev_ops->vdev_op_hold(vd); 2105 } 2106 2107 void 2108 vdev_rele(vdev_t *vd) 2109 { 2110 spa_t *spa = vd->vdev_spa; 2111 2112 ASSERT(spa_is_root(spa)); 2113 for (int c = 0; c < vd->vdev_children; c++) 2114 vdev_rele(vd->vdev_child[c]); 2115 2116 if (vd->vdev_ops->vdev_op_leaf) 2117 vd->vdev_ops->vdev_op_rele(vd); 2118 } 2119 2120 /* 2121 * Reopen all interior vdevs and any unopened leaves. We don't actually 2122 * reopen leaf vdevs which had previously been opened as they might deadlock 2123 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2124 * If the leaf has never been opened then open it, as usual. 2125 */ 2126 void 2127 vdev_reopen(vdev_t *vd) 2128 { 2129 spa_t *spa = vd->vdev_spa; 2130 2131 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2132 2133 /* set the reopening flag unless we're taking the vdev offline */ 2134 vd->vdev_reopening = !vd->vdev_offline; 2135 vdev_close(vd); 2136 (void) vdev_open(vd); 2137 2138 /* 2139 * Call vdev_validate() here to make sure we have the same device. 2140 * Otherwise, a device with an invalid label could be successfully 2141 * opened in response to vdev_reopen(). 2142 */ 2143 if (vd->vdev_aux) { 2144 (void) vdev_validate_aux(vd); 2145 if (vdev_readable(vd) && vdev_writeable(vd) && 2146 vd->vdev_aux == &spa->spa_l2cache && 2147 !l2arc_vdev_present(vd)) 2148 l2arc_add_vdev(spa, vd); 2149 } else { 2150 (void) vdev_validate(vd); 2151 } 2152 2153 /* 2154 * Reassess parent vdev's health. 2155 */ 2156 vdev_propagate_state(vd); 2157 } 2158 2159 int 2160 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2161 { 2162 int error; 2163 2164 /* 2165 * Normally, partial opens (e.g. of a mirror) are allowed. 2166 * For a create, however, we want to fail the request if 2167 * there are any components we can't open. 2168 */ 2169 error = vdev_open(vd); 2170 2171 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2172 vdev_close(vd); 2173 return (error ? error : ENXIO); 2174 } 2175 2176 /* 2177 * Recursively load DTLs and initialize all labels. 2178 */ 2179 if ((error = vdev_dtl_load(vd)) != 0 || 2180 (error = vdev_label_init(vd, txg, isreplacing ? 2181 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2182 vdev_close(vd); 2183 return (error); 2184 } 2185 2186 return (0); 2187 } 2188 2189 void 2190 vdev_metaslab_set_size(vdev_t *vd) 2191 { 2192 uint64_t asize = vd->vdev_asize; 2193 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2194 uint64_t ms_shift; 2195 2196 /* BEGIN CSTYLED */ 2197 /* 2198 * There are two dimensions to the metaslab sizing calculation: 2199 * the size of the metaslab and the count of metaslabs per vdev. 2200 * 2201 * The default values used below are a good balance between memory 2202 * usage (larger metaslab size means more memory needed for loaded 2203 * metaslabs; more metaslabs means more memory needed for the 2204 * metaslab_t structs), metaslab load time (larger metaslabs take 2205 * longer to load), and metaslab sync time (more metaslabs means 2206 * more time spent syncing all of them). 2207 * 2208 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2209 * The range of the dimensions are as follows: 2210 * 2211 * 2^29 <= ms_size <= 2^34 2212 * 16 <= ms_count <= 131,072 2213 * 2214 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2215 * at least 512MB (2^29) to minimize fragmentation effects when 2216 * testing with smaller devices. However, the count constraint 2217 * of at least 16 metaslabs will override this minimum size goal. 2218 * 2219 * On the upper end of vdev sizes, we aim for a maximum metaslab 2220 * size of 16GB. However, we will cap the total count to 2^17 2221 * metaslabs to keep our memory footprint in check and let the 2222 * metaslab size grow from there if that limit is hit. 2223 * 2224 * The net effect of applying above constrains is summarized below. 2225 * 2226 * vdev size metaslab count 2227 * --------------|----------------- 2228 * < 8GB ~16 2229 * 8GB - 100GB one per 512MB 2230 * 100GB - 3TB ~200 2231 * 3TB - 2PB one per 16GB 2232 * > 2PB ~131,072 2233 * -------------------------------- 2234 * 2235 * Finally, note that all of the above calculate the initial 2236 * number of metaslabs. Expanding a top-level vdev will result 2237 * in additional metaslabs being allocated making it possible 2238 * to exceed the zfs_vdev_ms_count_limit. 2239 */ 2240 /* END CSTYLED */ 2241 2242 if (ms_count < zfs_vdev_min_ms_count) 2243 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2244 else if (ms_count > zfs_vdev_default_ms_count) 2245 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2246 else 2247 ms_shift = zfs_vdev_default_ms_shift; 2248 2249 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2250 ms_shift = SPA_MAXBLOCKSHIFT; 2251 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2252 ms_shift = zfs_vdev_max_ms_shift; 2253 /* cap the total count to constrain memory footprint */ 2254 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2255 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2256 } 2257 2258 vd->vdev_ms_shift = ms_shift; 2259 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2260 } 2261 2262 void 2263 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2264 { 2265 ASSERT(vd == vd->vdev_top); 2266 /* indirect vdevs don't have metaslabs or dtls */ 2267 ASSERT(vdev_is_concrete(vd) || flags == 0); 2268 ASSERT(ISP2(flags)); 2269 ASSERT(spa_writeable(vd->vdev_spa)); 2270 2271 if (flags & VDD_METASLAB) 2272 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2273 2274 if (flags & VDD_DTL) 2275 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2276 2277 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2278 } 2279 2280 void 2281 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2282 { 2283 for (int c = 0; c < vd->vdev_children; c++) 2284 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2285 2286 if (vd->vdev_ops->vdev_op_leaf) 2287 vdev_dirty(vd->vdev_top, flags, vd, txg); 2288 } 2289 2290 /* 2291 * DTLs. 2292 * 2293 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2294 * the vdev has less than perfect replication. There are four kinds of DTL: 2295 * 2296 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2297 * 2298 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2299 * 2300 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2301 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2302 * txgs that was scrubbed. 2303 * 2304 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2305 * persistent errors or just some device being offline. 2306 * Unlike the other three, the DTL_OUTAGE map is not generally 2307 * maintained; it's only computed when needed, typically to 2308 * determine whether a device can be detached. 2309 * 2310 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2311 * either has the data or it doesn't. 2312 * 2313 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2314 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2315 * if any child is less than fully replicated, then so is its parent. 2316 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2317 * comprising only those txgs which appear in 'maxfaults' or more children; 2318 * those are the txgs we don't have enough replication to read. For example, 2319 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2320 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2321 * two child DTL_MISSING maps. 2322 * 2323 * It should be clear from the above that to compute the DTLs and outage maps 2324 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2325 * Therefore, that is all we keep on disk. When loading the pool, or after 2326 * a configuration change, we generate all other DTLs from first principles. 2327 */ 2328 void 2329 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2330 { 2331 range_tree_t *rt = vd->vdev_dtl[t]; 2332 2333 ASSERT(t < DTL_TYPES); 2334 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2335 ASSERT(spa_writeable(vd->vdev_spa)); 2336 2337 mutex_enter(&vd->vdev_dtl_lock); 2338 if (!range_tree_contains(rt, txg, size)) 2339 range_tree_add(rt, txg, size); 2340 mutex_exit(&vd->vdev_dtl_lock); 2341 } 2342 2343 boolean_t 2344 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2345 { 2346 range_tree_t *rt = vd->vdev_dtl[t]; 2347 boolean_t dirty = B_FALSE; 2348 2349 ASSERT(t < DTL_TYPES); 2350 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2351 2352 /* 2353 * While we are loading the pool, the DTLs have not been loaded yet. 2354 * Ignore the DTLs and try all devices. This avoids a recursive 2355 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2356 * when loading the pool (relying on the checksum to ensure that 2357 * we get the right data -- note that we while loading, we are 2358 * only reading the MOS, which is always checksummed). 2359 */ 2360 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2361 return (B_FALSE); 2362 2363 mutex_enter(&vd->vdev_dtl_lock); 2364 if (!range_tree_is_empty(rt)) 2365 dirty = range_tree_contains(rt, txg, size); 2366 mutex_exit(&vd->vdev_dtl_lock); 2367 2368 return (dirty); 2369 } 2370 2371 boolean_t 2372 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2373 { 2374 range_tree_t *rt = vd->vdev_dtl[t]; 2375 boolean_t empty; 2376 2377 mutex_enter(&vd->vdev_dtl_lock); 2378 empty = range_tree_is_empty(rt); 2379 mutex_exit(&vd->vdev_dtl_lock); 2380 2381 return (empty); 2382 } 2383 2384 /* 2385 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2386 */ 2387 boolean_t 2388 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2389 { 2390 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2391 2392 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2393 vd->vdev_ops->vdev_op_leaf) 2394 return (B_TRUE); 2395 2396 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2397 } 2398 2399 /* 2400 * Returns the lowest txg in the DTL range. 2401 */ 2402 static uint64_t 2403 vdev_dtl_min(vdev_t *vd) 2404 { 2405 range_seg_t *rs; 2406 2407 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2408 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2409 ASSERT0(vd->vdev_children); 2410 2411 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2412 return (rs->rs_start - 1); 2413 } 2414 2415 /* 2416 * Returns the highest txg in the DTL. 2417 */ 2418 static uint64_t 2419 vdev_dtl_max(vdev_t *vd) 2420 { 2421 range_seg_t *rs; 2422 2423 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2424 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2425 ASSERT0(vd->vdev_children); 2426 2427 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 2428 return (rs->rs_end); 2429 } 2430 2431 /* 2432 * Determine if a resilvering vdev should remove any DTL entries from 2433 * its range. If the vdev was resilvering for the entire duration of the 2434 * scan then it should excise that range from its DTLs. Otherwise, this 2435 * vdev is considered partially resilvered and should leave its DTL 2436 * entries intact. The comment in vdev_dtl_reassess() describes how we 2437 * excise the DTLs. 2438 */ 2439 static boolean_t 2440 vdev_dtl_should_excise(vdev_t *vd) 2441 { 2442 spa_t *spa = vd->vdev_spa; 2443 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2444 2445 ASSERT0(scn->scn_phys.scn_errors); 2446 ASSERT0(vd->vdev_children); 2447 2448 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2449 return (B_FALSE); 2450 2451 if (vd->vdev_resilver_deferred) 2452 return (B_FALSE); 2453 2454 if (vd->vdev_resilver_txg == 0 || 2455 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2456 return (B_TRUE); 2457 2458 /* 2459 * When a resilver is initiated the scan will assign the scn_max_txg 2460 * value to the highest txg value that exists in all DTLs. If this 2461 * device's max DTL is not part of this scan (i.e. it is not in 2462 * the range (scn_min_txg, scn_max_txg] then it is not eligible 2463 * for excision. 2464 */ 2465 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2466 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 2467 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 2468 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 2469 return (B_TRUE); 2470 } 2471 return (B_FALSE); 2472 } 2473 2474 /* 2475 * Reassess DTLs after a config change or scrub completion. 2476 */ 2477 void 2478 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 2479 { 2480 spa_t *spa = vd->vdev_spa; 2481 avl_tree_t reftree; 2482 int minref; 2483 2484 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2485 2486 for (int c = 0; c < vd->vdev_children; c++) 2487 vdev_dtl_reassess(vd->vdev_child[c], txg, 2488 scrub_txg, scrub_done); 2489 2490 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2491 return; 2492 2493 if (vd->vdev_ops->vdev_op_leaf) { 2494 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2495 2496 mutex_enter(&vd->vdev_dtl_lock); 2497 2498 /* 2499 * If we've completed a scan cleanly then determine 2500 * if this vdev should remove any DTLs. We only want to 2501 * excise regions on vdevs that were available during 2502 * the entire duration of this scan. 2503 */ 2504 if (scrub_txg != 0 && 2505 (spa->spa_scrub_started || 2506 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 2507 vdev_dtl_should_excise(vd)) { 2508 /* 2509 * We completed a scrub up to scrub_txg. If we 2510 * did it without rebooting, then the scrub dtl 2511 * will be valid, so excise the old region and 2512 * fold in the scrub dtl. Otherwise, leave the 2513 * dtl as-is if there was an error. 2514 * 2515 * There's little trick here: to excise the beginning 2516 * of the DTL_MISSING map, we put it into a reference 2517 * tree and then add a segment with refcnt -1 that 2518 * covers the range [0, scrub_txg). This means 2519 * that each txg in that range has refcnt -1 or 0. 2520 * We then add DTL_SCRUB with a refcnt of 2, so that 2521 * entries in the range [0, scrub_txg) will have a 2522 * positive refcnt -- either 1 or 2. We then convert 2523 * the reference tree into the new DTL_MISSING map. 2524 */ 2525 space_reftree_create(&reftree); 2526 space_reftree_add_map(&reftree, 2527 vd->vdev_dtl[DTL_MISSING], 1); 2528 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2529 space_reftree_add_map(&reftree, 2530 vd->vdev_dtl[DTL_SCRUB], 2); 2531 space_reftree_generate_map(&reftree, 2532 vd->vdev_dtl[DTL_MISSING], 1); 2533 space_reftree_destroy(&reftree); 2534 } 2535 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2536 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2537 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2538 if (scrub_done) 2539 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2540 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2541 if (!vdev_readable(vd)) 2542 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2543 else 2544 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2545 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2546 2547 /* 2548 * If the vdev was resilvering and no longer has any 2549 * DTLs then reset its resilvering flag. 2550 */ 2551 if (vd->vdev_resilver_txg != 0 && 2552 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2553 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) 2554 vd->vdev_resilver_txg = 0; 2555 2556 mutex_exit(&vd->vdev_dtl_lock); 2557 2558 if (txg != 0) 2559 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2560 return; 2561 } 2562 2563 mutex_enter(&vd->vdev_dtl_lock); 2564 for (int t = 0; t < DTL_TYPES; t++) { 2565 /* account for child's outage in parent's missing map */ 2566 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2567 if (t == DTL_SCRUB) 2568 continue; /* leaf vdevs only */ 2569 if (t == DTL_PARTIAL) 2570 minref = 1; /* i.e. non-zero */ 2571 else if (vd->vdev_nparity != 0) 2572 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2573 else 2574 minref = vd->vdev_children; /* any kind of mirror */ 2575 space_reftree_create(&reftree); 2576 for (int c = 0; c < vd->vdev_children; c++) { 2577 vdev_t *cvd = vd->vdev_child[c]; 2578 mutex_enter(&cvd->vdev_dtl_lock); 2579 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2580 mutex_exit(&cvd->vdev_dtl_lock); 2581 } 2582 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2583 space_reftree_destroy(&reftree); 2584 } 2585 mutex_exit(&vd->vdev_dtl_lock); 2586 } 2587 2588 int 2589 vdev_dtl_load(vdev_t *vd) 2590 { 2591 spa_t *spa = vd->vdev_spa; 2592 objset_t *mos = spa->spa_meta_objset; 2593 int error = 0; 2594 2595 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2596 ASSERT(vdev_is_concrete(vd)); 2597 2598 error = space_map_open(&vd->vdev_dtl_sm, mos, 2599 vd->vdev_dtl_object, 0, -1ULL, 0); 2600 if (error) 2601 return (error); 2602 ASSERT(vd->vdev_dtl_sm != NULL); 2603 2604 mutex_enter(&vd->vdev_dtl_lock); 2605 error = space_map_load(vd->vdev_dtl_sm, 2606 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2607 mutex_exit(&vd->vdev_dtl_lock); 2608 2609 return (error); 2610 } 2611 2612 for (int c = 0; c < vd->vdev_children; c++) { 2613 error = vdev_dtl_load(vd->vdev_child[c]); 2614 if (error != 0) 2615 break; 2616 } 2617 2618 return (error); 2619 } 2620 2621 static void 2622 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2623 { 2624 spa_t *spa = vd->vdev_spa; 2625 objset_t *mos = spa->spa_meta_objset; 2626 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2627 const char *string; 2628 2629 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2630 2631 string = 2632 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2633 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2634 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2635 2636 ASSERT(string != NULL); 2637 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2638 1, strlen(string) + 1, string, tx)); 2639 2640 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2641 spa_activate_allocation_classes(spa, tx); 2642 } 2643 } 2644 2645 void 2646 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2647 { 2648 spa_t *spa = vd->vdev_spa; 2649 2650 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2651 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2652 zapobj, tx)); 2653 } 2654 2655 uint64_t 2656 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2657 { 2658 spa_t *spa = vd->vdev_spa; 2659 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2660 DMU_OT_NONE, 0, tx); 2661 2662 ASSERT(zap != 0); 2663 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2664 zap, tx)); 2665 2666 return (zap); 2667 } 2668 2669 void 2670 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2671 { 2672 if (vd->vdev_ops != &vdev_hole_ops && 2673 vd->vdev_ops != &vdev_missing_ops && 2674 vd->vdev_ops != &vdev_root_ops && 2675 !vd->vdev_top->vdev_removing) { 2676 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2677 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2678 } 2679 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2680 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2681 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2682 vdev_zap_allocation_data(vd, tx); 2683 } 2684 } 2685 2686 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2687 vdev_construct_zaps(vd->vdev_child[i], tx); 2688 } 2689 } 2690 2691 void 2692 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2693 { 2694 spa_t *spa = vd->vdev_spa; 2695 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2696 objset_t *mos = spa->spa_meta_objset; 2697 range_tree_t *rtsync; 2698 dmu_tx_t *tx; 2699 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2700 2701 ASSERT(vdev_is_concrete(vd)); 2702 ASSERT(vd->vdev_ops->vdev_op_leaf); 2703 2704 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2705 2706 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 2707 mutex_enter(&vd->vdev_dtl_lock); 2708 space_map_free(vd->vdev_dtl_sm, tx); 2709 space_map_close(vd->vdev_dtl_sm); 2710 vd->vdev_dtl_sm = NULL; 2711 mutex_exit(&vd->vdev_dtl_lock); 2712 2713 /* 2714 * We only destroy the leaf ZAP for detached leaves or for 2715 * removed log devices. Removed data devices handle leaf ZAP 2716 * cleanup later, once cancellation is no longer possible. 2717 */ 2718 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 2719 vd->vdev_top->vdev_islog)) { 2720 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 2721 vd->vdev_leaf_zap = 0; 2722 } 2723 2724 dmu_tx_commit(tx); 2725 return; 2726 } 2727 2728 if (vd->vdev_dtl_sm == NULL) { 2729 uint64_t new_object; 2730 2731 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx); 2732 VERIFY3U(new_object, !=, 0); 2733 2734 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 2735 0, -1ULL, 0)); 2736 ASSERT(vd->vdev_dtl_sm != NULL); 2737 } 2738 2739 rtsync = range_tree_create(NULL, NULL); 2740 2741 mutex_enter(&vd->vdev_dtl_lock); 2742 range_tree_walk(rt, range_tree_add, rtsync); 2743 mutex_exit(&vd->vdev_dtl_lock); 2744 2745 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx); 2746 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 2747 range_tree_vacate(rtsync, NULL, NULL); 2748 2749 range_tree_destroy(rtsync); 2750 2751 /* 2752 * If the object for the space map has changed then dirty 2753 * the top level so that we update the config. 2754 */ 2755 if (object != space_map_object(vd->vdev_dtl_sm)) { 2756 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 2757 "new object %llu", (u_longlong_t)txg, spa_name(spa), 2758 (u_longlong_t)object, 2759 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 2760 vdev_config_dirty(vd->vdev_top); 2761 } 2762 2763 dmu_tx_commit(tx); 2764 } 2765 2766 /* 2767 * Determine whether the specified vdev can be offlined/detached/removed 2768 * without losing data. 2769 */ 2770 boolean_t 2771 vdev_dtl_required(vdev_t *vd) 2772 { 2773 spa_t *spa = vd->vdev_spa; 2774 vdev_t *tvd = vd->vdev_top; 2775 uint8_t cant_read = vd->vdev_cant_read; 2776 boolean_t required; 2777 2778 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2779 2780 if (vd == spa->spa_root_vdev || vd == tvd) 2781 return (B_TRUE); 2782 2783 /* 2784 * Temporarily mark the device as unreadable, and then determine 2785 * whether this results in any DTL outages in the top-level vdev. 2786 * If not, we can safely offline/detach/remove the device. 2787 */ 2788 vd->vdev_cant_read = B_TRUE; 2789 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2790 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2791 vd->vdev_cant_read = cant_read; 2792 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2793 2794 if (!required && zio_injection_enabled) 2795 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2796 2797 return (required); 2798 } 2799 2800 /* 2801 * Determine if resilver is needed, and if so the txg range. 2802 */ 2803 boolean_t 2804 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2805 { 2806 boolean_t needed = B_FALSE; 2807 uint64_t thismin = UINT64_MAX; 2808 uint64_t thismax = 0; 2809 2810 if (vd->vdev_children == 0) { 2811 mutex_enter(&vd->vdev_dtl_lock); 2812 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2813 vdev_writeable(vd)) { 2814 2815 thismin = vdev_dtl_min(vd); 2816 thismax = vdev_dtl_max(vd); 2817 needed = B_TRUE; 2818 } 2819 mutex_exit(&vd->vdev_dtl_lock); 2820 } else { 2821 for (int c = 0; c < vd->vdev_children; c++) { 2822 vdev_t *cvd = vd->vdev_child[c]; 2823 uint64_t cmin, cmax; 2824 2825 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2826 thismin = MIN(thismin, cmin); 2827 thismax = MAX(thismax, cmax); 2828 needed = B_TRUE; 2829 } 2830 } 2831 } 2832 2833 if (needed && minp) { 2834 *minp = thismin; 2835 *maxp = thismax; 2836 } 2837 return (needed); 2838 } 2839 2840 /* 2841 * Gets the checkpoint space map object from the vdev's ZAP. 2842 * Returns the spacemap object, or 0 if it wasn't in the ZAP 2843 * or the ZAP doesn't exist yet. 2844 */ 2845 int 2846 vdev_checkpoint_sm_object(vdev_t *vd) 2847 { 2848 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 2849 if (vd->vdev_top_zap == 0) { 2850 return (0); 2851 } 2852 2853 uint64_t sm_obj = 0; 2854 int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 2855 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj); 2856 2857 ASSERT(err == 0 || err == ENOENT); 2858 2859 return (sm_obj); 2860 } 2861 2862 int 2863 vdev_load(vdev_t *vd) 2864 { 2865 int error = 0; 2866 /* 2867 * Recursively load all children. 2868 */ 2869 for (int c = 0; c < vd->vdev_children; c++) { 2870 error = vdev_load(vd->vdev_child[c]); 2871 if (error != 0) { 2872 return (error); 2873 } 2874 } 2875 2876 vdev_set_deflate_ratio(vd); 2877 2878 /* 2879 * On spa_load path, grab the allocation bias from our zap 2880 */ 2881 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 2882 spa_t *spa = vd->vdev_spa; 2883 char bias_str[64]; 2884 2885 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 2886 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 2887 bias_str) == 0) { 2888 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 2889 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 2890 } 2891 } 2892 2893 /* 2894 * If this is a top-level vdev, initialize its metaslabs. 2895 */ 2896 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 2897 vdev_metaslab_group_create(vd); 2898 2899 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 2900 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2901 VDEV_AUX_CORRUPT_DATA); 2902 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 2903 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 2904 (u_longlong_t)vd->vdev_asize); 2905 return (SET_ERROR(ENXIO)); 2906 } 2907 2908 error = vdev_metaslab_init(vd, 0); 2909 if (error != 0) { 2910 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 2911 "[error=%d]", error); 2912 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2913 VDEV_AUX_CORRUPT_DATA); 2914 return (error); 2915 } 2916 2917 uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd); 2918 if (checkpoint_sm_obj != 0) { 2919 objset_t *mos = spa_meta_objset(vd->vdev_spa); 2920 ASSERT(vd->vdev_asize != 0); 2921 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 2922 2923 error = space_map_open(&vd->vdev_checkpoint_sm, 2924 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 2925 vd->vdev_ashift); 2926 if (error != 0) { 2927 vdev_dbgmsg(vd, "vdev_load: space_map_open " 2928 "failed for checkpoint spacemap (obj %llu) " 2929 "[error=%d]", 2930 (u_longlong_t)checkpoint_sm_obj, error); 2931 return (error); 2932 } 2933 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 2934 2935 /* 2936 * Since the checkpoint_sm contains free entries 2937 * exclusively we can use space_map_allocated() to 2938 * indicate the cumulative checkpointed space that 2939 * has been freed. 2940 */ 2941 vd->vdev_stat.vs_checkpoint_space = 2942 -space_map_allocated(vd->vdev_checkpoint_sm); 2943 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 2944 vd->vdev_stat.vs_checkpoint_space; 2945 } 2946 } 2947 2948 /* 2949 * If this is a leaf vdev, load its DTL. 2950 */ 2951 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 2952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2953 VDEV_AUX_CORRUPT_DATA); 2954 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 2955 "[error=%d]", error); 2956 return (error); 2957 } 2958 2959 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd); 2960 if (obsolete_sm_object != 0) { 2961 objset_t *mos = vd->vdev_spa->spa_meta_objset; 2962 ASSERT(vd->vdev_asize != 0); 2963 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 2964 2965 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 2966 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 2967 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2968 VDEV_AUX_CORRUPT_DATA); 2969 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 2970 "obsolete spacemap (obj %llu) [error=%d]", 2971 (u_longlong_t)obsolete_sm_object, error); 2972 return (error); 2973 } 2974 } 2975 2976 return (0); 2977 } 2978 2979 /* 2980 * The special vdev case is used for hot spares and l2cache devices. Its 2981 * sole purpose it to set the vdev state for the associated vdev. To do this, 2982 * we make sure that we can open the underlying device, then try to read the 2983 * label, and make sure that the label is sane and that it hasn't been 2984 * repurposed to another pool. 2985 */ 2986 int 2987 vdev_validate_aux(vdev_t *vd) 2988 { 2989 nvlist_t *label; 2990 uint64_t guid, version; 2991 uint64_t state; 2992 2993 if (!vdev_readable(vd)) 2994 return (0); 2995 2996 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2997 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2998 VDEV_AUX_CORRUPT_DATA); 2999 return (-1); 3000 } 3001 3002 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3003 !SPA_VERSION_IS_SUPPORTED(version) || 3004 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3005 guid != vd->vdev_guid || 3006 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3007 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3008 VDEV_AUX_CORRUPT_DATA); 3009 nvlist_free(label); 3010 return (-1); 3011 } 3012 3013 /* 3014 * We don't actually check the pool state here. If it's in fact in 3015 * use by another pool, we update this fact on the fly when requested. 3016 */ 3017 nvlist_free(label); 3018 return (0); 3019 } 3020 3021 /* 3022 * Free the objects used to store this vdev's spacemaps, and the array 3023 * that points to them. 3024 */ 3025 void 3026 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3027 { 3028 if (vd->vdev_ms_array == 0) 3029 return; 3030 3031 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3032 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3033 size_t array_bytes = array_count * sizeof (uint64_t); 3034 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3035 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3036 array_bytes, smobj_array, 0)); 3037 3038 for (uint64_t i = 0; i < array_count; i++) { 3039 uint64_t smobj = smobj_array[i]; 3040 if (smobj == 0) 3041 continue; 3042 3043 space_map_free_obj(mos, smobj, tx); 3044 } 3045 3046 kmem_free(smobj_array, array_bytes); 3047 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3048 vd->vdev_ms_array = 0; 3049 } 3050 3051 static void 3052 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3053 { 3054 spa_t *spa = vd->vdev_spa; 3055 3056 ASSERT(vd->vdev_islog); 3057 ASSERT(vd == vd->vdev_top); 3058 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3059 3060 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3061 3062 vdev_destroy_spacemaps(vd, tx); 3063 if (vd->vdev_top_zap != 0) { 3064 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3065 vd->vdev_top_zap = 0; 3066 } 3067 3068 dmu_tx_commit(tx); 3069 } 3070 3071 void 3072 vdev_sync_done(vdev_t *vd, uint64_t txg) 3073 { 3074 metaslab_t *msp; 3075 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3076 3077 ASSERT(vdev_is_concrete(vd)); 3078 3079 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3080 != NULL) 3081 metaslab_sync_done(msp, txg); 3082 3083 if (reassess) 3084 metaslab_sync_reassess(vd->vdev_mg); 3085 } 3086 3087 void 3088 vdev_sync(vdev_t *vd, uint64_t txg) 3089 { 3090 spa_t *spa = vd->vdev_spa; 3091 vdev_t *lvd; 3092 metaslab_t *msp; 3093 3094 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3095 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3096 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3097 ASSERT(vd->vdev_removing || 3098 vd->vdev_ops == &vdev_indirect_ops); 3099 3100 vdev_indirect_sync_obsolete(vd, tx); 3101 3102 /* 3103 * If the vdev is indirect, it can't have dirty 3104 * metaslabs or DTLs. 3105 */ 3106 if (vd->vdev_ops == &vdev_indirect_ops) { 3107 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3108 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3109 dmu_tx_commit(tx); 3110 return; 3111 } 3112 } 3113 3114 ASSERT(vdev_is_concrete(vd)); 3115 3116 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3117 !vd->vdev_removing) { 3118 ASSERT(vd == vd->vdev_top); 3119 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3120 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3121 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3122 ASSERT(vd->vdev_ms_array != 0); 3123 vdev_config_dirty(vd); 3124 } 3125 3126 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3127 metaslab_sync(msp, txg); 3128 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3129 } 3130 3131 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3132 vdev_dtl_sync(lvd, txg); 3133 3134 /* 3135 * If this is an empty log device being removed, destroy the 3136 * metadata associated with it. 3137 */ 3138 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3139 vdev_remove_empty_log(vd, txg); 3140 3141 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3142 dmu_tx_commit(tx); 3143 } 3144 3145 uint64_t 3146 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3147 { 3148 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3149 } 3150 3151 /* 3152 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3153 * not be opened, and no I/O is attempted. 3154 */ 3155 int 3156 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3157 { 3158 vdev_t *vd, *tvd; 3159 3160 spa_vdev_state_enter(spa, SCL_NONE); 3161 3162 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3163 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3164 3165 if (!vd->vdev_ops->vdev_op_leaf) 3166 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3167 3168 tvd = vd->vdev_top; 3169 3170 /* 3171 * We don't directly use the aux state here, but if we do a 3172 * vdev_reopen(), we need this value to be present to remember why we 3173 * were faulted. 3174 */ 3175 vd->vdev_label_aux = aux; 3176 3177 /* 3178 * Faulted state takes precedence over degraded. 3179 */ 3180 vd->vdev_delayed_close = B_FALSE; 3181 vd->vdev_faulted = 1ULL; 3182 vd->vdev_degraded = 0ULL; 3183 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3184 3185 /* 3186 * If this device has the only valid copy of the data, then 3187 * back off and simply mark the vdev as degraded instead. 3188 */ 3189 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3190 vd->vdev_degraded = 1ULL; 3191 vd->vdev_faulted = 0ULL; 3192 3193 /* 3194 * If we reopen the device and it's not dead, only then do we 3195 * mark it degraded. 3196 */ 3197 vdev_reopen(tvd); 3198 3199 if (vdev_readable(vd)) 3200 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3201 } 3202 3203 return (spa_vdev_state_exit(spa, vd, 0)); 3204 } 3205 3206 /* 3207 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3208 * user that something is wrong. The vdev continues to operate as normal as far 3209 * as I/O is concerned. 3210 */ 3211 int 3212 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3213 { 3214 vdev_t *vd; 3215 3216 spa_vdev_state_enter(spa, SCL_NONE); 3217 3218 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3219 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3220 3221 if (!vd->vdev_ops->vdev_op_leaf) 3222 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3223 3224 /* 3225 * If the vdev is already faulted, then don't do anything. 3226 */ 3227 if (vd->vdev_faulted || vd->vdev_degraded) 3228 return (spa_vdev_state_exit(spa, NULL, 0)); 3229 3230 vd->vdev_degraded = 1ULL; 3231 if (!vdev_is_dead(vd)) 3232 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3233 aux); 3234 3235 return (spa_vdev_state_exit(spa, vd, 0)); 3236 } 3237 3238 /* 3239 * Online the given vdev. 3240 * 3241 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3242 * spare device should be detached when the device finishes resilvering. 3243 * Second, the online should be treated like a 'test' online case, so no FMA 3244 * events are generated if the device fails to open. 3245 */ 3246 int 3247 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3248 { 3249 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3250 boolean_t wasoffline; 3251 vdev_state_t oldstate; 3252 3253 spa_vdev_state_enter(spa, SCL_NONE); 3254 3255 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3256 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3257 3258 if (!vd->vdev_ops->vdev_op_leaf) 3259 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3260 3261 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3262 oldstate = vd->vdev_state; 3263 3264 tvd = vd->vdev_top; 3265 vd->vdev_offline = B_FALSE; 3266 vd->vdev_tmpoffline = B_FALSE; 3267 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3268 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3269 3270 /* XXX - L2ARC 1.0 does not support expansion */ 3271 if (!vd->vdev_aux) { 3272 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3273 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 3274 } 3275 3276 vdev_reopen(tvd); 3277 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3278 3279 if (!vd->vdev_aux) { 3280 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3281 pvd->vdev_expanding = B_FALSE; 3282 } 3283 3284 if (newstate) 3285 *newstate = vd->vdev_state; 3286 if ((flags & ZFS_ONLINE_UNSPARE) && 3287 !vdev_is_dead(vd) && vd->vdev_parent && 3288 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3289 vd->vdev_parent->vdev_child[0] == vd) 3290 vd->vdev_unspare = B_TRUE; 3291 3292 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3293 3294 /* XXX - L2ARC 1.0 does not support expansion */ 3295 if (vd->vdev_aux) 3296 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3297 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3298 } 3299 3300 /* Restart initializing if necessary */ 3301 mutex_enter(&vd->vdev_initialize_lock); 3302 if (vdev_writeable(vd) && 3303 vd->vdev_initialize_thread == NULL && 3304 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3305 (void) vdev_initialize(vd); 3306 } 3307 mutex_exit(&vd->vdev_initialize_lock); 3308 3309 if (wasoffline || 3310 (oldstate < VDEV_STATE_DEGRADED && 3311 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3312 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3313 3314 return (spa_vdev_state_exit(spa, vd, 0)); 3315 } 3316 3317 static int 3318 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3319 { 3320 vdev_t *vd, *tvd; 3321 int error = 0; 3322 uint64_t generation; 3323 metaslab_group_t *mg; 3324 3325 top: 3326 spa_vdev_state_enter(spa, SCL_ALLOC); 3327 3328 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3329 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 3330 3331 if (!vd->vdev_ops->vdev_op_leaf) 3332 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 3333 3334 tvd = vd->vdev_top; 3335 mg = tvd->vdev_mg; 3336 generation = spa->spa_config_generation + 1; 3337 3338 /* 3339 * If the device isn't already offline, try to offline it. 3340 */ 3341 if (!vd->vdev_offline) { 3342 /* 3343 * If this device has the only valid copy of some data, 3344 * don't allow it to be offlined. Log devices are always 3345 * expendable. 3346 */ 3347 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3348 vdev_dtl_required(vd)) 3349 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3350 3351 /* 3352 * If the top-level is a slog and it has had allocations 3353 * then proceed. We check that the vdev's metaslab group 3354 * is not NULL since it's possible that we may have just 3355 * added this vdev but not yet initialized its metaslabs. 3356 */ 3357 if (tvd->vdev_islog && mg != NULL) { 3358 /* 3359 * Prevent any future allocations. 3360 */ 3361 metaslab_group_passivate(mg); 3362 (void) spa_vdev_state_exit(spa, vd, 0); 3363 3364 error = spa_reset_logs(spa); 3365 3366 /* 3367 * If the log device was successfully reset but has 3368 * checkpointed data, do not offline it. 3369 */ 3370 if (error == 0 && 3371 tvd->vdev_checkpoint_sm != NULL) { 3372 error = ZFS_ERR_CHECKPOINT_EXISTS; 3373 } 3374 3375 spa_vdev_state_enter(spa, SCL_ALLOC); 3376 3377 /* 3378 * Check to see if the config has changed. 3379 */ 3380 if (error || generation != spa->spa_config_generation) { 3381 metaslab_group_activate(mg); 3382 if (error) 3383 return (spa_vdev_state_exit(spa, 3384 vd, error)); 3385 (void) spa_vdev_state_exit(spa, vd, 0); 3386 goto top; 3387 } 3388 ASSERT0(tvd->vdev_stat.vs_alloc); 3389 } 3390 3391 /* 3392 * Offline this device and reopen its top-level vdev. 3393 * If the top-level vdev is a log device then just offline 3394 * it. Otherwise, if this action results in the top-level 3395 * vdev becoming unusable, undo it and fail the request. 3396 */ 3397 vd->vdev_offline = B_TRUE; 3398 vdev_reopen(tvd); 3399 3400 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3401 vdev_is_dead(tvd)) { 3402 vd->vdev_offline = B_FALSE; 3403 vdev_reopen(tvd); 3404 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 3405 } 3406 3407 /* 3408 * Add the device back into the metaslab rotor so that 3409 * once we online the device it's open for business. 3410 */ 3411 if (tvd->vdev_islog && mg != NULL) 3412 metaslab_group_activate(mg); 3413 } 3414 3415 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3416 3417 return (spa_vdev_state_exit(spa, vd, 0)); 3418 } 3419 3420 int 3421 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3422 { 3423 int error; 3424 3425 mutex_enter(&spa->spa_vdev_top_lock); 3426 error = vdev_offline_locked(spa, guid, flags); 3427 mutex_exit(&spa->spa_vdev_top_lock); 3428 3429 return (error); 3430 } 3431 3432 /* 3433 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3434 * vdev_offline(), we assume the spa config is locked. We also clear all 3435 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3436 */ 3437 void 3438 vdev_clear(spa_t *spa, vdev_t *vd) 3439 { 3440 vdev_t *rvd = spa->spa_root_vdev; 3441 3442 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3443 3444 if (vd == NULL) 3445 vd = rvd; 3446 3447 vd->vdev_stat.vs_read_errors = 0; 3448 vd->vdev_stat.vs_write_errors = 0; 3449 vd->vdev_stat.vs_checksum_errors = 0; 3450 3451 for (int c = 0; c < vd->vdev_children; c++) 3452 vdev_clear(spa, vd->vdev_child[c]); 3453 3454 /* 3455 * It makes no sense to "clear" an indirect vdev. 3456 */ 3457 if (!vdev_is_concrete(vd)) 3458 return; 3459 3460 /* 3461 * If we're in the FAULTED state or have experienced failed I/O, then 3462 * clear the persistent state and attempt to reopen the device. We 3463 * also mark the vdev config dirty, so that the new faulted state is 3464 * written out to disk. 3465 */ 3466 if (vd->vdev_faulted || vd->vdev_degraded || 3467 !vdev_readable(vd) || !vdev_writeable(vd)) { 3468 3469 /* 3470 * When reopening in reponse to a clear event, it may be due to 3471 * a fmadm repair request. In this case, if the device is 3472 * still broken, we want to still post the ereport again. 3473 */ 3474 vd->vdev_forcefault = B_TRUE; 3475 3476 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3477 vd->vdev_cant_read = B_FALSE; 3478 vd->vdev_cant_write = B_FALSE; 3479 3480 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3481 3482 vd->vdev_forcefault = B_FALSE; 3483 3484 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3485 vdev_state_dirty(vd->vdev_top); 3486 3487 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) { 3488 if (dsl_scan_resilvering(spa->spa_dsl_pool) && 3489 spa_feature_is_enabled(spa, 3490 SPA_FEATURE_RESILVER_DEFER)) 3491 vdev_set_deferred_resilver(spa, vd); 3492 else 3493 spa_async_request(spa, SPA_ASYNC_RESILVER); 3494 } 3495 3496 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3497 } 3498 3499 /* 3500 * When clearing a FMA-diagnosed fault, we always want to 3501 * unspare the device, as we assume that the original spare was 3502 * done in response to the FMA fault. 3503 */ 3504 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3505 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3506 vd->vdev_parent->vdev_child[0] == vd) 3507 vd->vdev_unspare = B_TRUE; 3508 } 3509 3510 boolean_t 3511 vdev_is_dead(vdev_t *vd) 3512 { 3513 /* 3514 * Holes and missing devices are always considered "dead". 3515 * This simplifies the code since we don't have to check for 3516 * these types of devices in the various code paths. 3517 * Instead we rely on the fact that we skip over dead devices 3518 * before issuing I/O to them. 3519 */ 3520 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3521 vd->vdev_ops == &vdev_hole_ops || 3522 vd->vdev_ops == &vdev_missing_ops); 3523 } 3524 3525 boolean_t 3526 vdev_readable(vdev_t *vd) 3527 { 3528 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3529 } 3530 3531 boolean_t 3532 vdev_writeable(vdev_t *vd) 3533 { 3534 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3535 vdev_is_concrete(vd)); 3536 } 3537 3538 boolean_t 3539 vdev_allocatable(vdev_t *vd) 3540 { 3541 uint64_t state = vd->vdev_state; 3542 3543 /* 3544 * We currently allow allocations from vdevs which may be in the 3545 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3546 * fails to reopen then we'll catch it later when we're holding 3547 * the proper locks. Note that we have to get the vdev state 3548 * in a local variable because although it changes atomically, 3549 * we're asking two separate questions about it. 3550 */ 3551 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3552 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3553 vd->vdev_mg->mg_initialized); 3554 } 3555 3556 boolean_t 3557 vdev_accessible(vdev_t *vd, zio_t *zio) 3558 { 3559 ASSERT(zio->io_vd == vd); 3560 3561 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3562 return (B_FALSE); 3563 3564 if (zio->io_type == ZIO_TYPE_READ) 3565 return (!vd->vdev_cant_read); 3566 3567 if (zio->io_type == ZIO_TYPE_WRITE) 3568 return (!vd->vdev_cant_write); 3569 3570 return (B_TRUE); 3571 } 3572 3573 boolean_t 3574 vdev_is_spacemap_addressable(vdev_t *vd) 3575 { 3576 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 3577 return (B_TRUE); 3578 3579 /* 3580 * If double-word space map entries are not enabled we assume 3581 * 47 bits of the space map entry are dedicated to the entry's 3582 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 3583 * to calculate the maximum address that can be described by a 3584 * space map entry for the given device. 3585 */ 3586 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 3587 3588 if (shift >= 63) /* detect potential overflow */ 3589 return (B_TRUE); 3590 3591 return (vd->vdev_asize < (1ULL << shift)); 3592 } 3593 3594 /* 3595 * Get statistics for the given vdev. 3596 */ 3597 void 3598 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 3599 { 3600 spa_t *spa = vd->vdev_spa; 3601 vdev_t *rvd = spa->spa_root_vdev; 3602 vdev_t *tvd = vd->vdev_top; 3603 3604 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3605 3606 mutex_enter(&vd->vdev_stat_lock); 3607 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 3608 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 3609 vs->vs_state = vd->vdev_state; 3610 vs->vs_rsize = vdev_get_min_asize(vd); 3611 if (vd->vdev_ops->vdev_op_leaf) { 3612 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 3613 /* 3614 * Report intializing progress. Since we don't have the 3615 * initializing locks held, this is only an estimate (although a 3616 * fairly accurate one). 3617 */ 3618 vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done; 3619 vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est; 3620 vs->vs_initialize_state = vd->vdev_initialize_state; 3621 vs->vs_initialize_action_time = vd->vdev_initialize_action_time; 3622 } 3623 /* 3624 * Report expandable space on top-level, non-auxillary devices only. 3625 * The expandable space is reported in terms of metaslab sized units 3626 * since that determines how much space the pool can expand. 3627 */ 3628 if (vd->vdev_aux == NULL && tvd != NULL) { 3629 vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize - 3630 spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift); 3631 } 3632 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 3633 vdev_is_concrete(vd)) { 3634 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 3635 vd->vdev_mg->mg_fragmentation : 0; 3636 } 3637 if (vd->vdev_ops->vdev_op_leaf) 3638 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 3639 3640 /* 3641 * If we're getting stats on the root vdev, aggregate the I/O counts 3642 * over all top-level vdevs (i.e. the direct children of the root). 3643 */ 3644 if (vd == rvd) { 3645 for (int c = 0; c < rvd->vdev_children; c++) { 3646 vdev_t *cvd = rvd->vdev_child[c]; 3647 vdev_stat_t *cvs = &cvd->vdev_stat; 3648 3649 for (int t = 0; t < ZIO_TYPES; t++) { 3650 vs->vs_ops[t] += cvs->vs_ops[t]; 3651 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3652 } 3653 cvs->vs_scan_removing = cvd->vdev_removing; 3654 } 3655 } 3656 mutex_exit(&vd->vdev_stat_lock); 3657 } 3658 3659 void 3660 vdev_clear_stats(vdev_t *vd) 3661 { 3662 mutex_enter(&vd->vdev_stat_lock); 3663 vd->vdev_stat.vs_space = 0; 3664 vd->vdev_stat.vs_dspace = 0; 3665 vd->vdev_stat.vs_alloc = 0; 3666 mutex_exit(&vd->vdev_stat_lock); 3667 } 3668 3669 void 3670 vdev_scan_stat_init(vdev_t *vd) 3671 { 3672 vdev_stat_t *vs = &vd->vdev_stat; 3673 3674 for (int c = 0; c < vd->vdev_children; c++) 3675 vdev_scan_stat_init(vd->vdev_child[c]); 3676 3677 mutex_enter(&vd->vdev_stat_lock); 3678 vs->vs_scan_processed = 0; 3679 mutex_exit(&vd->vdev_stat_lock); 3680 } 3681 3682 void 3683 vdev_stat_update(zio_t *zio, uint64_t psize) 3684 { 3685 spa_t *spa = zio->io_spa; 3686 vdev_t *rvd = spa->spa_root_vdev; 3687 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 3688 vdev_t *pvd; 3689 uint64_t txg = zio->io_txg; 3690 vdev_stat_t *vs = &vd->vdev_stat; 3691 zio_type_t type = zio->io_type; 3692 int flags = zio->io_flags; 3693 3694 /* 3695 * If this i/o is a gang leader, it didn't do any actual work. 3696 */ 3697 if (zio->io_gang_tree) 3698 return; 3699 3700 if (zio->io_error == 0) { 3701 /* 3702 * If this is a root i/o, don't count it -- we've already 3703 * counted the top-level vdevs, and vdev_get_stats() will 3704 * aggregate them when asked. This reduces contention on 3705 * the root vdev_stat_lock and implicitly handles blocks 3706 * that compress away to holes, for which there is no i/o. 3707 * (Holes never create vdev children, so all the counters 3708 * remain zero, which is what we want.) 3709 * 3710 * Note: this only applies to successful i/o (io_error == 0) 3711 * because unlike i/o counts, errors are not additive. 3712 * When reading a ditto block, for example, failure of 3713 * one top-level vdev does not imply a root-level error. 3714 */ 3715 if (vd == rvd) 3716 return; 3717 3718 ASSERT(vd == zio->io_vd); 3719 3720 if (flags & ZIO_FLAG_IO_BYPASS) 3721 return; 3722 3723 mutex_enter(&vd->vdev_stat_lock); 3724 3725 if (flags & ZIO_FLAG_IO_REPAIR) { 3726 if (flags & ZIO_FLAG_SCAN_THREAD) { 3727 dsl_scan_phys_t *scn_phys = 3728 &spa->spa_dsl_pool->dp_scan->scn_phys; 3729 uint64_t *processed = &scn_phys->scn_processed; 3730 3731 /* XXX cleanup? */ 3732 if (vd->vdev_ops->vdev_op_leaf) 3733 atomic_add_64(processed, psize); 3734 vs->vs_scan_processed += psize; 3735 } 3736 3737 if (flags & ZIO_FLAG_SELF_HEAL) 3738 vs->vs_self_healed += psize; 3739 } 3740 3741 vs->vs_ops[type]++; 3742 vs->vs_bytes[type] += psize; 3743 3744 mutex_exit(&vd->vdev_stat_lock); 3745 return; 3746 } 3747 3748 if (flags & ZIO_FLAG_SPECULATIVE) 3749 return; 3750 3751 /* 3752 * If this is an I/O error that is going to be retried, then ignore the 3753 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 3754 * hard errors, when in reality they can happen for any number of 3755 * innocuous reasons (bus resets, MPxIO link failure, etc). 3756 */ 3757 if (zio->io_error == EIO && 3758 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 3759 return; 3760 3761 /* 3762 * Intent logs writes won't propagate their error to the root 3763 * I/O so don't mark these types of failures as pool-level 3764 * errors. 3765 */ 3766 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 3767 return; 3768 3769 mutex_enter(&vd->vdev_stat_lock); 3770 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 3771 if (zio->io_error == ECKSUM) 3772 vs->vs_checksum_errors++; 3773 else 3774 vs->vs_read_errors++; 3775 } 3776 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 3777 vs->vs_write_errors++; 3778 mutex_exit(&vd->vdev_stat_lock); 3779 3780 if (spa->spa_load_state == SPA_LOAD_NONE && 3781 type == ZIO_TYPE_WRITE && txg != 0 && 3782 (!(flags & ZIO_FLAG_IO_REPAIR) || 3783 (flags & ZIO_FLAG_SCAN_THREAD) || 3784 spa->spa_claiming)) { 3785 /* 3786 * This is either a normal write (not a repair), or it's 3787 * a repair induced by the scrub thread, or it's a repair 3788 * made by zil_claim() during spa_load() in the first txg. 3789 * In the normal case, we commit the DTL change in the same 3790 * txg as the block was born. In the scrub-induced repair 3791 * case, we know that scrubs run in first-pass syncing context, 3792 * so we commit the DTL change in spa_syncing_txg(spa). 3793 * In the zil_claim() case, we commit in spa_first_txg(spa). 3794 * 3795 * We currently do not make DTL entries for failed spontaneous 3796 * self-healing writes triggered by normal (non-scrubbing) 3797 * reads, because we have no transactional context in which to 3798 * do so -- and it's not clear that it'd be desirable anyway. 3799 */ 3800 if (vd->vdev_ops->vdev_op_leaf) { 3801 uint64_t commit_txg = txg; 3802 if (flags & ZIO_FLAG_SCAN_THREAD) { 3803 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3804 ASSERT(spa_sync_pass(spa) == 1); 3805 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 3806 commit_txg = spa_syncing_txg(spa); 3807 } else if (spa->spa_claiming) { 3808 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 3809 commit_txg = spa_first_txg(spa); 3810 } 3811 ASSERT(commit_txg >= spa_syncing_txg(spa)); 3812 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 3813 return; 3814 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3815 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 3816 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 3817 } 3818 if (vd != rvd) 3819 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 3820 } 3821 } 3822 3823 int64_t 3824 vdev_deflated_space(vdev_t *vd, int64_t space) 3825 { 3826 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 3827 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 3828 3829 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 3830 } 3831 3832 /* 3833 * Update the in-core space usage stats for this vdev and the root vdev. 3834 */ 3835 void 3836 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 3837 int64_t space_delta) 3838 { 3839 int64_t dspace_delta; 3840 spa_t *spa = vd->vdev_spa; 3841 vdev_t *rvd = spa->spa_root_vdev; 3842 3843 ASSERT(vd == vd->vdev_top); 3844 3845 /* 3846 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 3847 * factor. We must calculate this here and not at the root vdev 3848 * because the root vdev's psize-to-asize is simply the max of its 3849 * childrens', thus not accurate enough for us. 3850 */ 3851 dspace_delta = vdev_deflated_space(vd, space_delta); 3852 3853 mutex_enter(&vd->vdev_stat_lock); 3854 /* ensure we won't underflow */ 3855 if (alloc_delta < 0) { 3856 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 3857 } 3858 3859 vd->vdev_stat.vs_alloc += alloc_delta; 3860 vd->vdev_stat.vs_space += space_delta; 3861 vd->vdev_stat.vs_dspace += dspace_delta; 3862 mutex_exit(&vd->vdev_stat_lock); 3863 3864 /* every class but log contributes to root space stats */ 3865 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 3866 ASSERT(!vd->vdev_isl2cache); 3867 mutex_enter(&rvd->vdev_stat_lock); 3868 rvd->vdev_stat.vs_alloc += alloc_delta; 3869 rvd->vdev_stat.vs_space += space_delta; 3870 rvd->vdev_stat.vs_dspace += dspace_delta; 3871 mutex_exit(&rvd->vdev_stat_lock); 3872 } 3873 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 3874 } 3875 3876 /* 3877 * Mark a top-level vdev's config as dirty, placing it on the dirty list 3878 * so that it will be written out next time the vdev configuration is synced. 3879 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 3880 */ 3881 void 3882 vdev_config_dirty(vdev_t *vd) 3883 { 3884 spa_t *spa = vd->vdev_spa; 3885 vdev_t *rvd = spa->spa_root_vdev; 3886 int c; 3887 3888 ASSERT(spa_writeable(spa)); 3889 3890 /* 3891 * If this is an aux vdev (as with l2cache and spare devices), then we 3892 * update the vdev config manually and set the sync flag. 3893 */ 3894 if (vd->vdev_aux != NULL) { 3895 spa_aux_vdev_t *sav = vd->vdev_aux; 3896 nvlist_t **aux; 3897 uint_t naux; 3898 3899 for (c = 0; c < sav->sav_count; c++) { 3900 if (sav->sav_vdevs[c] == vd) 3901 break; 3902 } 3903 3904 if (c == sav->sav_count) { 3905 /* 3906 * We're being removed. There's nothing more to do. 3907 */ 3908 ASSERT(sav->sav_sync == B_TRUE); 3909 return; 3910 } 3911 3912 sav->sav_sync = B_TRUE; 3913 3914 if (nvlist_lookup_nvlist_array(sav->sav_config, 3915 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 3916 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 3917 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 3918 } 3919 3920 ASSERT(c < naux); 3921 3922 /* 3923 * Setting the nvlist in the middle if the array is a little 3924 * sketchy, but it will work. 3925 */ 3926 nvlist_free(aux[c]); 3927 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 3928 3929 return; 3930 } 3931 3932 /* 3933 * The dirty list is protected by the SCL_CONFIG lock. The caller 3934 * must either hold SCL_CONFIG as writer, or must be the sync thread 3935 * (which holds SCL_CONFIG as reader). There's only one sync thread, 3936 * so this is sufficient to ensure mutual exclusion. 3937 */ 3938 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3939 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3940 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3941 3942 if (vd == rvd) { 3943 for (c = 0; c < rvd->vdev_children; c++) 3944 vdev_config_dirty(rvd->vdev_child[c]); 3945 } else { 3946 ASSERT(vd == vd->vdev_top); 3947 3948 if (!list_link_active(&vd->vdev_config_dirty_node) && 3949 vdev_is_concrete(vd)) { 3950 list_insert_head(&spa->spa_config_dirty_list, vd); 3951 } 3952 } 3953 } 3954 3955 void 3956 vdev_config_clean(vdev_t *vd) 3957 { 3958 spa_t *spa = vd->vdev_spa; 3959 3960 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 3961 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3962 spa_config_held(spa, SCL_CONFIG, RW_READER))); 3963 3964 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 3965 list_remove(&spa->spa_config_dirty_list, vd); 3966 } 3967 3968 /* 3969 * Mark a top-level vdev's state as dirty, so that the next pass of 3970 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3971 * the state changes from larger config changes because they require 3972 * much less locking, and are often needed for administrative actions. 3973 */ 3974 void 3975 vdev_state_dirty(vdev_t *vd) 3976 { 3977 spa_t *spa = vd->vdev_spa; 3978 3979 ASSERT(spa_writeable(spa)); 3980 ASSERT(vd == vd->vdev_top); 3981 3982 /* 3983 * The state list is protected by the SCL_STATE lock. The caller 3984 * must either hold SCL_STATE as writer, or must be the sync thread 3985 * (which holds SCL_STATE as reader). There's only one sync thread, 3986 * so this is sufficient to ensure mutual exclusion. 3987 */ 3988 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3989 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3990 spa_config_held(spa, SCL_STATE, RW_READER))); 3991 3992 if (!list_link_active(&vd->vdev_state_dirty_node) && 3993 vdev_is_concrete(vd)) 3994 list_insert_head(&spa->spa_state_dirty_list, vd); 3995 } 3996 3997 void 3998 vdev_state_clean(vdev_t *vd) 3999 { 4000 spa_t *spa = vd->vdev_spa; 4001 4002 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4003 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4004 spa_config_held(spa, SCL_STATE, RW_READER))); 4005 4006 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4007 list_remove(&spa->spa_state_dirty_list, vd); 4008 } 4009 4010 /* 4011 * Propagate vdev state up from children to parent. 4012 */ 4013 void 4014 vdev_propagate_state(vdev_t *vd) 4015 { 4016 spa_t *spa = vd->vdev_spa; 4017 vdev_t *rvd = spa->spa_root_vdev; 4018 int degraded = 0, faulted = 0; 4019 int corrupted = 0; 4020 vdev_t *child; 4021 4022 if (vd->vdev_children > 0) { 4023 for (int c = 0; c < vd->vdev_children; c++) { 4024 child = vd->vdev_child[c]; 4025 4026 /* 4027 * Don't factor holes or indirect vdevs into the 4028 * decision. 4029 */ 4030 if (!vdev_is_concrete(child)) 4031 continue; 4032 4033 if (!vdev_readable(child) || 4034 (!vdev_writeable(child) && spa_writeable(spa))) { 4035 /* 4036 * Root special: if there is a top-level log 4037 * device, treat the root vdev as if it were 4038 * degraded. 4039 */ 4040 if (child->vdev_islog && vd == rvd) 4041 degraded++; 4042 else 4043 faulted++; 4044 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4045 degraded++; 4046 } 4047 4048 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4049 corrupted++; 4050 } 4051 4052 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4053 4054 /* 4055 * Root special: if there is a top-level vdev that cannot be 4056 * opened due to corrupted metadata, then propagate the root 4057 * vdev's aux state as 'corrupt' rather than 'insufficient 4058 * replicas'. 4059 */ 4060 if (corrupted && vd == rvd && 4061 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4062 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4063 VDEV_AUX_CORRUPT_DATA); 4064 } 4065 4066 if (vd->vdev_parent) 4067 vdev_propagate_state(vd->vdev_parent); 4068 } 4069 4070 /* 4071 * Set a vdev's state. If this is during an open, we don't update the parent 4072 * state, because we're in the process of opening children depth-first. 4073 * Otherwise, we propagate the change to the parent. 4074 * 4075 * If this routine places a device in a faulted state, an appropriate ereport is 4076 * generated. 4077 */ 4078 void 4079 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4080 { 4081 uint64_t save_state; 4082 spa_t *spa = vd->vdev_spa; 4083 4084 if (state == vd->vdev_state) { 4085 vd->vdev_stat.vs_aux = aux; 4086 return; 4087 } 4088 4089 save_state = vd->vdev_state; 4090 4091 vd->vdev_state = state; 4092 vd->vdev_stat.vs_aux = aux; 4093 4094 /* 4095 * If we are setting the vdev state to anything but an open state, then 4096 * always close the underlying device unless the device has requested 4097 * a delayed close (i.e. we're about to remove or fault the device). 4098 * Otherwise, we keep accessible but invalid devices open forever. 4099 * We don't call vdev_close() itself, because that implies some extra 4100 * checks (offline, etc) that we don't want here. This is limited to 4101 * leaf devices, because otherwise closing the device will affect other 4102 * children. 4103 */ 4104 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4105 vd->vdev_ops->vdev_op_leaf) 4106 vd->vdev_ops->vdev_op_close(vd); 4107 4108 /* 4109 * If we have brought this vdev back into service, we need 4110 * to notify fmd so that it can gracefully repair any outstanding 4111 * cases due to a missing device. We do this in all cases, even those 4112 * that probably don't correlate to a repaired fault. This is sure to 4113 * catch all cases, and we let the zfs-retire agent sort it out. If 4114 * this is a transient state it's OK, as the retire agent will 4115 * double-check the state of the vdev before repairing it. 4116 */ 4117 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 4118 vd->vdev_prevstate != state) 4119 zfs_post_state_change(spa, vd); 4120 4121 if (vd->vdev_removed && 4122 state == VDEV_STATE_CANT_OPEN && 4123 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4124 /* 4125 * If the previous state is set to VDEV_STATE_REMOVED, then this 4126 * device was previously marked removed and someone attempted to 4127 * reopen it. If this failed due to a nonexistent device, then 4128 * keep the device in the REMOVED state. We also let this be if 4129 * it is one of our special test online cases, which is only 4130 * attempting to online the device and shouldn't generate an FMA 4131 * fault. 4132 */ 4133 vd->vdev_state = VDEV_STATE_REMOVED; 4134 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4135 } else if (state == VDEV_STATE_REMOVED) { 4136 vd->vdev_removed = B_TRUE; 4137 } else if (state == VDEV_STATE_CANT_OPEN) { 4138 /* 4139 * If we fail to open a vdev during an import or recovery, we 4140 * mark it as "not available", which signifies that it was 4141 * never there to begin with. Failure to open such a device 4142 * is not considered an error. 4143 */ 4144 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4145 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4146 vd->vdev_ops->vdev_op_leaf) 4147 vd->vdev_not_present = 1; 4148 4149 /* 4150 * Post the appropriate ereport. If the 'prevstate' field is 4151 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4152 * that this is part of a vdev_reopen(). In this case, we don't 4153 * want to post the ereport if the device was already in the 4154 * CANT_OPEN state beforehand. 4155 * 4156 * If the 'checkremove' flag is set, then this is an attempt to 4157 * online the device in response to an insertion event. If we 4158 * hit this case, then we have detected an insertion event for a 4159 * faulted or offline device that wasn't in the removed state. 4160 * In this scenario, we don't post an ereport because we are 4161 * about to replace the device, or attempt an online with 4162 * vdev_forcefault, which will generate the fault for us. 4163 */ 4164 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4165 !vd->vdev_not_present && !vd->vdev_checkremove && 4166 vd != spa->spa_root_vdev) { 4167 const char *class; 4168 4169 switch (aux) { 4170 case VDEV_AUX_OPEN_FAILED: 4171 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4172 break; 4173 case VDEV_AUX_CORRUPT_DATA: 4174 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4175 break; 4176 case VDEV_AUX_NO_REPLICAS: 4177 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4178 break; 4179 case VDEV_AUX_BAD_GUID_SUM: 4180 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4181 break; 4182 case VDEV_AUX_TOO_SMALL: 4183 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4184 break; 4185 case VDEV_AUX_BAD_LABEL: 4186 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4187 break; 4188 default: 4189 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4190 } 4191 4192 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 4193 } 4194 4195 /* Erase any notion of persistent removed state */ 4196 vd->vdev_removed = B_FALSE; 4197 } else { 4198 vd->vdev_removed = B_FALSE; 4199 } 4200 4201 if (!isopen && vd->vdev_parent) 4202 vdev_propagate_state(vd->vdev_parent); 4203 } 4204 4205 boolean_t 4206 vdev_children_are_offline(vdev_t *vd) 4207 { 4208 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4209 4210 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4211 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4212 return (B_FALSE); 4213 } 4214 4215 return (B_TRUE); 4216 } 4217 4218 /* 4219 * Check the vdev configuration to ensure that it's capable of supporting 4220 * a root pool. We do not support partial configuration. 4221 * In addition, only a single top-level vdev is allowed. 4222 */ 4223 boolean_t 4224 vdev_is_bootable(vdev_t *vd) 4225 { 4226 if (!vd->vdev_ops->vdev_op_leaf) { 4227 char *vdev_type = vd->vdev_ops->vdev_op_type; 4228 4229 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 4230 vd->vdev_children > 1) { 4231 return (B_FALSE); 4232 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 4233 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 4234 return (B_FALSE); 4235 } 4236 } 4237 4238 for (int c = 0; c < vd->vdev_children; c++) { 4239 if (!vdev_is_bootable(vd->vdev_child[c])) 4240 return (B_FALSE); 4241 } 4242 return (B_TRUE); 4243 } 4244 4245 boolean_t 4246 vdev_is_concrete(vdev_t *vd) 4247 { 4248 vdev_ops_t *ops = vd->vdev_ops; 4249 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4250 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4251 return (B_FALSE); 4252 } else { 4253 return (B_TRUE); 4254 } 4255 } 4256 4257 /* 4258 * Determine if a log device has valid content. If the vdev was 4259 * removed or faulted in the MOS config then we know that 4260 * the content on the log device has already been written to the pool. 4261 */ 4262 boolean_t 4263 vdev_log_state_valid(vdev_t *vd) 4264 { 4265 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4266 !vd->vdev_removed) 4267 return (B_TRUE); 4268 4269 for (int c = 0; c < vd->vdev_children; c++) 4270 if (vdev_log_state_valid(vd->vdev_child[c])) 4271 return (B_TRUE); 4272 4273 return (B_FALSE); 4274 } 4275 4276 /* 4277 * Expand a vdev if possible. 4278 */ 4279 void 4280 vdev_expand(vdev_t *vd, uint64_t txg) 4281 { 4282 ASSERT(vd->vdev_top == vd); 4283 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4284 ASSERT(vdev_is_concrete(vd)); 4285 4286 vdev_set_deflate_ratio(vd); 4287 4288 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4289 vdev_is_concrete(vd)) { 4290 vdev_metaslab_group_create(vd); 4291 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4292 vdev_config_dirty(vd); 4293 } 4294 } 4295 4296 /* 4297 * Split a vdev. 4298 */ 4299 void 4300 vdev_split(vdev_t *vd) 4301 { 4302 vdev_t *cvd, *pvd = vd->vdev_parent; 4303 4304 vdev_remove_child(pvd, vd); 4305 vdev_compact_children(pvd); 4306 4307 cvd = pvd->vdev_child[0]; 4308 if (pvd->vdev_children == 1) { 4309 vdev_remove_parent(cvd); 4310 cvd->vdev_splitting = B_TRUE; 4311 } 4312 vdev_propagate_state(cvd); 4313 } 4314 4315 void 4316 vdev_deadman(vdev_t *vd) 4317 { 4318 for (int c = 0; c < vd->vdev_children; c++) { 4319 vdev_t *cvd = vd->vdev_child[c]; 4320 4321 vdev_deadman(cvd); 4322 } 4323 4324 if (vd->vdev_ops->vdev_op_leaf) { 4325 vdev_queue_t *vq = &vd->vdev_queue; 4326 4327 mutex_enter(&vq->vq_lock); 4328 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4329 spa_t *spa = vd->vdev_spa; 4330 zio_t *fio; 4331 uint64_t delta; 4332 4333 /* 4334 * Look at the head of all the pending queues, 4335 * if any I/O has been outstanding for longer than 4336 * the spa_deadman_synctime we panic the system. 4337 */ 4338 fio = avl_first(&vq->vq_active_tree); 4339 delta = gethrtime() - fio->io_timestamp; 4340 if (delta > spa_deadman_synctime(spa)) { 4341 vdev_dbgmsg(vd, "SLOW IO: zio timestamp " 4342 "%lluns, delta %lluns, last io %lluns", 4343 fio->io_timestamp, (u_longlong_t)delta, 4344 vq->vq_io_complete_ts); 4345 fm_panic("I/O to pool '%s' appears to be " 4346 "hung.", spa_name(spa)); 4347 } 4348 } 4349 mutex_exit(&vq->vq_lock); 4350 } 4351 } 4352 4353 void 4354 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd) 4355 { 4356 for (uint64_t i = 0; i < vd->vdev_children; i++) 4357 vdev_set_deferred_resilver(spa, vd->vdev_child[i]); 4358 4359 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) || 4360 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 4361 return; 4362 } 4363 4364 vd->vdev_resilver_deferred = B_TRUE; 4365 spa->spa_resilver_deferred = B_TRUE; 4366 } 4367