1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 88 for (int c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the minimum allocatable size. We define the allocatable size as 98 * the vdev's asize rounded to the nearest metaslab. This allows us to 99 * replace or attach devices which don't have the same physical size but 100 * can still satisfy the same number of allocations. 101 */ 102 uint64_t 103 vdev_get_min_asize(vdev_t *vd) 104 { 105 vdev_t *pvd = vd->vdev_parent; 106 107 /* 108 * The our parent is NULL (inactive spare or cache) or is the root, 109 * just return our own asize. 110 */ 111 if (pvd == NULL) 112 return (vd->vdev_asize); 113 114 /* 115 * The top-level vdev just returns the allocatable size rounded 116 * to the nearest metaslab. 117 */ 118 if (vd == vd->vdev_top) 119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 120 121 /* 122 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 123 * so each child must provide at least 1/Nth of its asize. 124 */ 125 if (pvd->vdev_ops == &vdev_raidz_ops) 126 return (pvd->vdev_min_asize / pvd->vdev_children); 127 128 return (pvd->vdev_min_asize); 129 } 130 131 void 132 vdev_set_min_asize(vdev_t *vd) 133 { 134 vd->vdev_min_asize = vdev_get_min_asize(vd); 135 136 for (int c = 0; c < vd->vdev_children; c++) 137 vdev_set_min_asize(vd->vdev_child[c]); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 146 147 if (vdev < rvd->vdev_children) { 148 ASSERT(rvd->vdev_child[vdev] != NULL); 149 return (rvd->vdev_child[vdev]); 150 } 151 152 return (NULL); 153 } 154 155 vdev_t * 156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 157 { 158 vdev_t *mvd; 159 160 if (vd->vdev_guid == guid) 161 return (vd); 162 163 for (int c = 0; c < vd->vdev_children; c++) 164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 165 NULL) 166 return (mvd); 167 168 return (NULL); 169 } 170 171 void 172 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 173 { 174 size_t oldsize, newsize; 175 uint64_t id = cvd->vdev_id; 176 vdev_t **newchild; 177 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 179 ASSERT(cvd->vdev_parent == NULL); 180 181 cvd->vdev_parent = pvd; 182 183 if (pvd == NULL) 184 return; 185 186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 187 188 oldsize = pvd->vdev_children * sizeof (vdev_t *); 189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 190 newsize = pvd->vdev_children * sizeof (vdev_t *); 191 192 newchild = kmem_zalloc(newsize, KM_SLEEP); 193 if (pvd->vdev_child != NULL) { 194 bcopy(pvd->vdev_child, newchild, oldsize); 195 kmem_free(pvd->vdev_child, oldsize); 196 } 197 198 pvd->vdev_child = newchild; 199 pvd->vdev_child[id] = cvd; 200 201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 209 210 if (cvd->vdev_ops->vdev_op_leaf) 211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 247 if (cvd->vdev_ops->vdev_op_leaf) 248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 249 } 250 251 /* 252 * Remove any holes in the child array. 253 */ 254 void 255 vdev_compact_children(vdev_t *pvd) 256 { 257 vdev_t **newchild, *cvd; 258 int oldc = pvd->vdev_children; 259 int newc; 260 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 262 263 for (int c = newc = 0; c < oldc; c++) 264 if (pvd->vdev_child[c]) 265 newc++; 266 267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 268 269 for (int c = newc = 0; c < oldc; c++) { 270 if ((cvd = pvd->vdev_child[c]) != NULL) { 271 newchild[newc] = cvd; 272 cvd->vdev_id = newc++; 273 } 274 } 275 276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 277 pvd->vdev_child = newchild; 278 pvd->vdev_children = newc; 279 } 280 281 /* 282 * Allocate and minimally initialize a vdev_t. 283 */ 284 static vdev_t * 285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 286 { 287 vdev_t *vd; 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 if (spa->spa_root_vdev == NULL) { 292 ASSERT(ops == &vdev_root_ops); 293 spa->spa_root_vdev = vd; 294 } 295 296 if (guid == 0) { 297 if (spa->spa_root_vdev == vd) { 298 /* 299 * The root vdev's guid will also be the pool guid, 300 * which must be unique among all pools. 301 */ 302 while (guid == 0 || spa_guid_exists(guid, 0)) 303 guid = spa_get_random(-1ULL); 304 } else { 305 /* 306 * Any other vdev's guid must be unique within the pool. 307 */ 308 while (guid == 0 || 309 spa_guid_exists(spa_guid(spa), guid)) 310 guid = spa_get_random(-1ULL); 311 } 312 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 313 } 314 315 vd->vdev_spa = spa; 316 vd->vdev_id = id; 317 vd->vdev_guid = guid; 318 vd->vdev_guid_sum = guid; 319 vd->vdev_ops = ops; 320 vd->vdev_state = VDEV_STATE_CLOSED; 321 322 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 323 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 324 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 325 for (int t = 0; t < DTL_TYPES; t++) { 326 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 327 &vd->vdev_dtl_lock); 328 } 329 txg_list_create(&vd->vdev_ms_list, 330 offsetof(struct metaslab, ms_txg_node)); 331 txg_list_create(&vd->vdev_dtl_list, 332 offsetof(struct vdev, vdev_dtl_node)); 333 vd->vdev_stat.vs_timestamp = gethrtime(); 334 vdev_queue_init(vd); 335 vdev_cache_init(vd); 336 337 return (vd); 338 } 339 340 /* 341 * Allocate a new vdev. The 'alloctype' is used to control whether we are 342 * creating a new vdev or loading an existing one - the behavior is slightly 343 * different for each case. 344 */ 345 int 346 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 347 int alloctype) 348 { 349 vdev_ops_t *ops; 350 char *type; 351 uint64_t guid = 0, islog, nparity; 352 vdev_t *vd; 353 354 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 355 356 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 357 return (EINVAL); 358 359 if ((ops = vdev_getops(type)) == NULL) 360 return (EINVAL); 361 362 /* 363 * If this is a load, get the vdev guid from the nvlist. 364 * Otherwise, vdev_alloc_common() will generate one for us. 365 */ 366 if (alloctype == VDEV_ALLOC_LOAD) { 367 uint64_t label_id; 368 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 370 label_id != id) 371 return (EINVAL); 372 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (EINVAL); 375 } else if (alloctype == VDEV_ALLOC_SPARE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (EINVAL); 378 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (EINVAL); 381 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (EINVAL); 384 } 385 386 /* 387 * The first allocated vdev must be of type 'root'. 388 */ 389 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 390 return (EINVAL); 391 392 /* 393 * Determine whether we're a log vdev. 394 */ 395 islog = 0; 396 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 397 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 398 return (ENOTSUP); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 /* 408 * Currently, we can only support 2 parity devices. 409 */ 410 if (nparity == 0 || nparity > 2) 411 return (EINVAL); 412 /* 413 * Older versions can only support 1 parity device. 414 */ 415 if (nparity == 2 && 416 spa_version(spa) < SPA_VERSION_RAID6) 417 return (ENOTSUP); 418 } else { 419 /* 420 * We require the parity to be specified for SPAs that 421 * support multiple parity levels. 422 */ 423 if (spa_version(spa) >= SPA_VERSION_RAID6) 424 return (EINVAL); 425 /* 426 * Otherwise, we default to 1 parity device for RAID-Z. 427 */ 428 nparity = 1; 429 } 430 } else { 431 nparity = 0; 432 } 433 ASSERT(nparity != -1ULL); 434 435 vd = vdev_alloc_common(spa, id, guid, ops); 436 437 vd->vdev_islog = islog; 438 vd->vdev_nparity = nparity; 439 440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 441 vd->vdev_path = spa_strdup(vd->vdev_path); 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 443 vd->vdev_devid = spa_strdup(vd->vdev_devid); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 &vd->vdev_physpath) == 0) 446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 448 vd->vdev_fru = spa_strdup(vd->vdev_fru); 449 450 /* 451 * Set the whole_disk property. If it's not specified, leave the value 452 * as -1. 453 */ 454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 455 &vd->vdev_wholedisk) != 0) 456 vd->vdev_wholedisk = -1ULL; 457 458 /* 459 * Look for the 'not present' flag. This will only be set if the device 460 * was not present at the time of import. 461 */ 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 463 &vd->vdev_not_present); 464 465 /* 466 * Get the alignment requirement. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 469 470 /* 471 * If we're a top-level vdev, try to load the allocation parameters. 472 */ 473 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 475 &vd->vdev_ms_array); 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 477 &vd->vdev_ms_shift); 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 479 &vd->vdev_asize); 480 } 481 482 /* 483 * If we're a leaf vdev, try to load the DTL object and other state. 484 */ 485 if (vd->vdev_ops->vdev_op_leaf && 486 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 487 alloctype == VDEV_ALLOC_ROOTPOOL)) { 488 if (alloctype == VDEV_ALLOC_LOAD) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 490 &vd->vdev_dtl_smo.smo_object); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 492 &vd->vdev_unspare); 493 } 494 495 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 496 uint64_t spare = 0; 497 498 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 499 &spare) == 0 && spare) 500 spa_spare_add(vd); 501 } 502 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 504 &vd->vdev_offline); 505 506 /* 507 * When importing a pool, we want to ignore the persistent fault 508 * state, as the diagnosis made on another system may not be 509 * valid in the current context. 510 */ 511 if (spa->spa_load_state == SPA_LOAD_OPEN) { 512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 513 &vd->vdev_faulted); 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 515 &vd->vdev_degraded); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 517 &vd->vdev_removed); 518 } 519 } 520 521 /* 522 * Add ourselves to the parent's list of children. 523 */ 524 vdev_add_child(parent, vd); 525 526 *vdp = vd; 527 528 return (0); 529 } 530 531 void 532 vdev_free(vdev_t *vd) 533 { 534 spa_t *spa = vd->vdev_spa; 535 536 /* 537 * vdev_free() implies closing the vdev first. This is simpler than 538 * trying to ensure complicated semantics for all callers. 539 */ 540 vdev_close(vd); 541 542 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 543 544 /* 545 * Free all children. 546 */ 547 for (int c = 0; c < vd->vdev_children; c++) 548 vdev_free(vd->vdev_child[c]); 549 550 ASSERT(vd->vdev_child == NULL); 551 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 552 553 /* 554 * Discard allocation state. 555 */ 556 if (vd == vd->vdev_top) 557 vdev_metaslab_fini(vd); 558 559 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 560 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 561 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 562 563 /* 564 * Remove this vdev from its parent's child list. 565 */ 566 vdev_remove_child(vd->vdev_parent, vd); 567 568 ASSERT(vd->vdev_parent == NULL); 569 570 /* 571 * Clean up vdev structure. 572 */ 573 vdev_queue_fini(vd); 574 vdev_cache_fini(vd); 575 576 if (vd->vdev_path) 577 spa_strfree(vd->vdev_path); 578 if (vd->vdev_devid) 579 spa_strfree(vd->vdev_devid); 580 if (vd->vdev_physpath) 581 spa_strfree(vd->vdev_physpath); 582 if (vd->vdev_fru) 583 spa_strfree(vd->vdev_fru); 584 585 if (vd->vdev_isspare) 586 spa_spare_remove(vd); 587 if (vd->vdev_isl2cache) 588 spa_l2cache_remove(vd); 589 590 txg_list_destroy(&vd->vdev_ms_list); 591 txg_list_destroy(&vd->vdev_dtl_list); 592 593 mutex_enter(&vd->vdev_dtl_lock); 594 for (int t = 0; t < DTL_TYPES; t++) { 595 space_map_unload(&vd->vdev_dtl[t]); 596 space_map_destroy(&vd->vdev_dtl[t]); 597 } 598 mutex_exit(&vd->vdev_dtl_lock); 599 600 mutex_destroy(&vd->vdev_dtl_lock); 601 mutex_destroy(&vd->vdev_stat_lock); 602 mutex_destroy(&vd->vdev_probe_lock); 603 604 if (vd == spa->spa_root_vdev) 605 spa->spa_root_vdev = NULL; 606 607 kmem_free(vd, sizeof (vdev_t)); 608 } 609 610 /* 611 * Transfer top-level vdev state from svd to tvd. 612 */ 613 static void 614 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 615 { 616 spa_t *spa = svd->vdev_spa; 617 metaslab_t *msp; 618 vdev_t *vd; 619 int t; 620 621 ASSERT(tvd == tvd->vdev_top); 622 623 tvd->vdev_ms_array = svd->vdev_ms_array; 624 tvd->vdev_ms_shift = svd->vdev_ms_shift; 625 tvd->vdev_ms_count = svd->vdev_ms_count; 626 627 svd->vdev_ms_array = 0; 628 svd->vdev_ms_shift = 0; 629 svd->vdev_ms_count = 0; 630 631 tvd->vdev_mg = svd->vdev_mg; 632 tvd->vdev_ms = svd->vdev_ms; 633 634 svd->vdev_mg = NULL; 635 svd->vdev_ms = NULL; 636 637 if (tvd->vdev_mg != NULL) 638 tvd->vdev_mg->mg_vd = tvd; 639 640 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 641 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 642 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 643 644 svd->vdev_stat.vs_alloc = 0; 645 svd->vdev_stat.vs_space = 0; 646 svd->vdev_stat.vs_dspace = 0; 647 648 for (t = 0; t < TXG_SIZE; t++) { 649 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 650 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 651 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 652 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 653 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 654 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 655 } 656 657 if (list_link_active(&svd->vdev_config_dirty_node)) { 658 vdev_config_clean(svd); 659 vdev_config_dirty(tvd); 660 } 661 662 if (list_link_active(&svd->vdev_state_dirty_node)) { 663 vdev_state_clean(svd); 664 vdev_state_dirty(tvd); 665 } 666 667 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 668 svd->vdev_deflate_ratio = 0; 669 670 tvd->vdev_islog = svd->vdev_islog; 671 svd->vdev_islog = 0; 672 } 673 674 static void 675 vdev_top_update(vdev_t *tvd, vdev_t *vd) 676 { 677 if (vd == NULL) 678 return; 679 680 vd->vdev_top = tvd; 681 682 for (int c = 0; c < vd->vdev_children; c++) 683 vdev_top_update(tvd, vd->vdev_child[c]); 684 } 685 686 /* 687 * Add a mirror/replacing vdev above an existing vdev. 688 */ 689 vdev_t * 690 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 691 { 692 spa_t *spa = cvd->vdev_spa; 693 vdev_t *pvd = cvd->vdev_parent; 694 vdev_t *mvd; 695 696 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 697 698 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 699 700 mvd->vdev_asize = cvd->vdev_asize; 701 mvd->vdev_min_asize = cvd->vdev_min_asize; 702 mvd->vdev_ashift = cvd->vdev_ashift; 703 mvd->vdev_state = cvd->vdev_state; 704 705 vdev_remove_child(pvd, cvd); 706 vdev_add_child(pvd, mvd); 707 cvd->vdev_id = mvd->vdev_children; 708 vdev_add_child(mvd, cvd); 709 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 710 711 if (mvd == mvd->vdev_top) 712 vdev_top_transfer(cvd, mvd); 713 714 return (mvd); 715 } 716 717 /* 718 * Remove a 1-way mirror/replacing vdev from the tree. 719 */ 720 void 721 vdev_remove_parent(vdev_t *cvd) 722 { 723 vdev_t *mvd = cvd->vdev_parent; 724 vdev_t *pvd = mvd->vdev_parent; 725 726 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 727 728 ASSERT(mvd->vdev_children == 1); 729 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 730 mvd->vdev_ops == &vdev_replacing_ops || 731 mvd->vdev_ops == &vdev_spare_ops); 732 cvd->vdev_ashift = mvd->vdev_ashift; 733 734 vdev_remove_child(mvd, cvd); 735 vdev_remove_child(pvd, mvd); 736 737 /* 738 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 739 * Otherwise, we could have detached an offline device, and when we 740 * go to import the pool we'll think we have two top-level vdevs, 741 * instead of a different version of the same top-level vdev. 742 */ 743 if (mvd->vdev_top == mvd) { 744 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 745 cvd->vdev_guid += guid_delta; 746 cvd->vdev_guid_sum += guid_delta; 747 } 748 cvd->vdev_id = mvd->vdev_id; 749 vdev_add_child(pvd, cvd); 750 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 751 752 if (cvd == cvd->vdev_top) 753 vdev_top_transfer(mvd, cvd); 754 755 ASSERT(mvd->vdev_children == 0); 756 vdev_free(mvd); 757 } 758 759 int 760 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 761 { 762 spa_t *spa = vd->vdev_spa; 763 objset_t *mos = spa->spa_meta_objset; 764 metaslab_class_t *mc; 765 uint64_t m; 766 uint64_t oldc = vd->vdev_ms_count; 767 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 768 metaslab_t **mspp; 769 int error; 770 771 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 772 return (0); 773 774 /* 775 * Compute the raidz-deflation ratio. Note, we hard-code 776 * in 128k (1 << 17) because it is the current "typical" blocksize. 777 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 778 * or we will inconsistently account for existing bp's. 779 */ 780 vd->vdev_deflate_ratio = (1 << 17) / 781 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 782 783 ASSERT(oldc <= newc); 784 785 if (vd->vdev_islog) 786 mc = spa->spa_log_class; 787 else 788 mc = spa->spa_normal_class; 789 790 if (vd->vdev_mg == NULL) 791 vd->vdev_mg = metaslab_group_create(mc, vd); 792 793 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 794 795 if (oldc != 0) { 796 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 797 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 798 } 799 800 vd->vdev_ms = mspp; 801 vd->vdev_ms_count = newc; 802 803 for (m = oldc; m < newc; m++) { 804 space_map_obj_t smo = { 0, 0, 0 }; 805 if (txg == 0) { 806 uint64_t object = 0; 807 error = dmu_read(mos, vd->vdev_ms_array, 808 m * sizeof (uint64_t), sizeof (uint64_t), &object, 809 DMU_READ_PREFETCH); 810 if (error) 811 return (error); 812 if (object != 0) { 813 dmu_buf_t *db; 814 error = dmu_bonus_hold(mos, object, FTAG, &db); 815 if (error) 816 return (error); 817 ASSERT3U(db->db_size, >=, sizeof (smo)); 818 bcopy(db->db_data, &smo, sizeof (smo)); 819 ASSERT3U(smo.smo_object, ==, object); 820 dmu_buf_rele(db, FTAG); 821 } 822 } 823 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 824 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 825 } 826 827 return (0); 828 } 829 830 void 831 vdev_metaslab_fini(vdev_t *vd) 832 { 833 uint64_t m; 834 uint64_t count = vd->vdev_ms_count; 835 836 if (vd->vdev_ms != NULL) { 837 for (m = 0; m < count; m++) 838 if (vd->vdev_ms[m] != NULL) 839 metaslab_fini(vd->vdev_ms[m]); 840 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 841 vd->vdev_ms = NULL; 842 } 843 } 844 845 typedef struct vdev_probe_stats { 846 boolean_t vps_readable; 847 boolean_t vps_writeable; 848 int vps_flags; 849 } vdev_probe_stats_t; 850 851 static void 852 vdev_probe_done(zio_t *zio) 853 { 854 spa_t *spa = zio->io_spa; 855 vdev_t *vd = zio->io_vd; 856 vdev_probe_stats_t *vps = zio->io_private; 857 858 ASSERT(vd->vdev_probe_zio != NULL); 859 860 if (zio->io_type == ZIO_TYPE_READ) { 861 if (zio->io_error == 0) 862 vps->vps_readable = 1; 863 if (zio->io_error == 0 && spa_writeable(spa)) { 864 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 865 zio->io_offset, zio->io_size, zio->io_data, 866 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 867 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 868 } else { 869 zio_buf_free(zio->io_data, zio->io_size); 870 } 871 } else if (zio->io_type == ZIO_TYPE_WRITE) { 872 if (zio->io_error == 0) 873 vps->vps_writeable = 1; 874 zio_buf_free(zio->io_data, zio->io_size); 875 } else if (zio->io_type == ZIO_TYPE_NULL) { 876 zio_t *pio; 877 878 vd->vdev_cant_read |= !vps->vps_readable; 879 vd->vdev_cant_write |= !vps->vps_writeable; 880 881 if (vdev_readable(vd) && 882 (vdev_writeable(vd) || !spa_writeable(spa))) { 883 zio->io_error = 0; 884 } else { 885 ASSERT(zio->io_error != 0); 886 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 887 spa, vd, NULL, 0, 0); 888 zio->io_error = ENXIO; 889 } 890 891 mutex_enter(&vd->vdev_probe_lock); 892 ASSERT(vd->vdev_probe_zio == zio); 893 vd->vdev_probe_zio = NULL; 894 mutex_exit(&vd->vdev_probe_lock); 895 896 while ((pio = zio_walk_parents(zio)) != NULL) 897 if (!vdev_accessible(vd, pio)) 898 pio->io_error = ENXIO; 899 900 kmem_free(vps, sizeof (*vps)); 901 } 902 } 903 904 /* 905 * Determine whether this device is accessible by reading and writing 906 * to several known locations: the pad regions of each vdev label 907 * but the first (which we leave alone in case it contains a VTOC). 908 */ 909 zio_t * 910 vdev_probe(vdev_t *vd, zio_t *zio) 911 { 912 spa_t *spa = vd->vdev_spa; 913 vdev_probe_stats_t *vps = NULL; 914 zio_t *pio; 915 916 ASSERT(vd->vdev_ops->vdev_op_leaf); 917 918 /* 919 * Don't probe the probe. 920 */ 921 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 922 return (NULL); 923 924 /* 925 * To prevent 'probe storms' when a device fails, we create 926 * just one probe i/o at a time. All zios that want to probe 927 * this vdev will become parents of the probe io. 928 */ 929 mutex_enter(&vd->vdev_probe_lock); 930 931 if ((pio = vd->vdev_probe_zio) == NULL) { 932 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 933 934 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 935 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 936 ZIO_FLAG_TRYHARD; 937 938 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 939 /* 940 * vdev_cant_read and vdev_cant_write can only 941 * transition from TRUE to FALSE when we have the 942 * SCL_ZIO lock as writer; otherwise they can only 943 * transition from FALSE to TRUE. This ensures that 944 * any zio looking at these values can assume that 945 * failures persist for the life of the I/O. That's 946 * important because when a device has intermittent 947 * connectivity problems, we want to ensure that 948 * they're ascribed to the device (ENXIO) and not 949 * the zio (EIO). 950 * 951 * Since we hold SCL_ZIO as writer here, clear both 952 * values so the probe can reevaluate from first 953 * principles. 954 */ 955 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 956 vd->vdev_cant_read = B_FALSE; 957 vd->vdev_cant_write = B_FALSE; 958 } 959 960 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 961 vdev_probe_done, vps, 962 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 963 964 if (zio != NULL) { 965 vd->vdev_probe_wanted = B_TRUE; 966 spa_async_request(spa, SPA_ASYNC_PROBE); 967 } 968 } 969 970 if (zio != NULL) 971 zio_add_child(zio, pio); 972 973 mutex_exit(&vd->vdev_probe_lock); 974 975 if (vps == NULL) { 976 ASSERT(zio != NULL); 977 return (NULL); 978 } 979 980 for (int l = 1; l < VDEV_LABELS; l++) { 981 zio_nowait(zio_read_phys(pio, vd, 982 vdev_label_offset(vd->vdev_psize, l, 983 offsetof(vdev_label_t, vl_pad2)), 984 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 985 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 986 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 987 } 988 989 if (zio == NULL) 990 return (pio); 991 992 zio_nowait(pio); 993 return (NULL); 994 } 995 996 /* 997 * Prepare a virtual device for access. 998 */ 999 int 1000 vdev_open(vdev_t *vd) 1001 { 1002 spa_t *spa = vd->vdev_spa; 1003 int error; 1004 uint64_t osize = 0; 1005 uint64_t asize, psize; 1006 uint64_t ashift = 0; 1007 1008 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1009 1010 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1011 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1012 vd->vdev_state == VDEV_STATE_OFFLINE); 1013 1014 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1015 vd->vdev_cant_read = B_FALSE; 1016 vd->vdev_cant_write = B_FALSE; 1017 vd->vdev_min_asize = vdev_get_min_asize(vd); 1018 1019 if (!vd->vdev_removed && vd->vdev_faulted) { 1020 ASSERT(vd->vdev_children == 0); 1021 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1022 VDEV_AUX_ERR_EXCEEDED); 1023 return (ENXIO); 1024 } else if (vd->vdev_offline) { 1025 ASSERT(vd->vdev_children == 0); 1026 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1027 return (ENXIO); 1028 } 1029 1030 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1031 1032 if (zio_injection_enabled && error == 0) 1033 error = zio_handle_device_injection(vd, NULL, ENXIO); 1034 1035 if (error) { 1036 if (vd->vdev_removed && 1037 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1038 vd->vdev_removed = B_FALSE; 1039 1040 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1041 vd->vdev_stat.vs_aux); 1042 return (error); 1043 } 1044 1045 vd->vdev_removed = B_FALSE; 1046 1047 if (vd->vdev_degraded) { 1048 ASSERT(vd->vdev_children == 0); 1049 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1050 VDEV_AUX_ERR_EXCEEDED); 1051 } else { 1052 vd->vdev_state = VDEV_STATE_HEALTHY; 1053 } 1054 1055 for (int c = 0; c < vd->vdev_children; c++) { 1056 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1057 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1058 VDEV_AUX_NONE); 1059 break; 1060 } 1061 } 1062 1063 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1064 1065 if (vd->vdev_children == 0) { 1066 if (osize < SPA_MINDEVSIZE) { 1067 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1068 VDEV_AUX_TOO_SMALL); 1069 return (EOVERFLOW); 1070 } 1071 psize = osize; 1072 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1073 } else { 1074 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1075 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1076 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1077 VDEV_AUX_TOO_SMALL); 1078 return (EOVERFLOW); 1079 } 1080 psize = 0; 1081 asize = osize; 1082 } 1083 1084 vd->vdev_psize = psize; 1085 1086 /* 1087 * Make sure the allocatable size hasn't shrunk. 1088 */ 1089 if (asize < vd->vdev_min_asize) { 1090 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1091 VDEV_AUX_BAD_LABEL); 1092 return (EINVAL); 1093 } 1094 1095 if (vd->vdev_asize == 0) { 1096 /* 1097 * This is the first-ever open, so use the computed values. 1098 * For testing purposes, a higher ashift can be requested. 1099 */ 1100 vd->vdev_asize = asize; 1101 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1102 } else { 1103 /* 1104 * Make sure the alignment requirement hasn't increased. 1105 */ 1106 if (ashift > vd->vdev_top->vdev_ashift) { 1107 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1108 VDEV_AUX_BAD_LABEL); 1109 return (EINVAL); 1110 } 1111 } 1112 1113 /* 1114 * If all children are healthy and the asize has increased, 1115 * then we've experienced dynamic LUN growth. If automatic 1116 * expansion is enabled then use the additional space. 1117 */ 1118 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1119 (vd->vdev_expanding || spa->spa_autoexpand)) 1120 vd->vdev_asize = asize; 1121 1122 vdev_set_min_asize(vd); 1123 1124 /* 1125 * Ensure we can issue some IO before declaring the 1126 * vdev open for business. 1127 */ 1128 if (vd->vdev_ops->vdev_op_leaf && 1129 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1130 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1131 VDEV_AUX_IO_FAILURE); 1132 return (error); 1133 } 1134 1135 /* 1136 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1137 * resilver. But don't do this if we are doing a reopen for a scrub, 1138 * since this would just restart the scrub we are already doing. 1139 */ 1140 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1141 vdev_resilver_needed(vd, NULL, NULL)) 1142 spa_async_request(spa, SPA_ASYNC_RESILVER); 1143 1144 return (0); 1145 } 1146 1147 /* 1148 * Called once the vdevs are all opened, this routine validates the label 1149 * contents. This needs to be done before vdev_load() so that we don't 1150 * inadvertently do repair I/Os to the wrong device. 1151 * 1152 * This function will only return failure if one of the vdevs indicates that it 1153 * has since been destroyed or exported. This is only possible if 1154 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1155 * will be updated but the function will return 0. 1156 */ 1157 int 1158 vdev_validate(vdev_t *vd) 1159 { 1160 spa_t *spa = vd->vdev_spa; 1161 nvlist_t *label; 1162 uint64_t guid, top_guid; 1163 uint64_t state; 1164 1165 for (int c = 0; c < vd->vdev_children; c++) 1166 if (vdev_validate(vd->vdev_child[c]) != 0) 1167 return (EBADF); 1168 1169 /* 1170 * If the device has already failed, or was marked offline, don't do 1171 * any further validation. Otherwise, label I/O will fail and we will 1172 * overwrite the previous state. 1173 */ 1174 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1175 1176 if ((label = vdev_label_read_config(vd)) == NULL) { 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1178 VDEV_AUX_BAD_LABEL); 1179 return (0); 1180 } 1181 1182 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1183 &guid) != 0 || guid != spa_guid(spa)) { 1184 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1185 VDEV_AUX_CORRUPT_DATA); 1186 nvlist_free(label); 1187 return (0); 1188 } 1189 1190 /* 1191 * If this vdev just became a top-level vdev because its 1192 * sibling was detached, it will have adopted the parent's 1193 * vdev guid -- but the label may or may not be on disk yet. 1194 * Fortunately, either version of the label will have the 1195 * same top guid, so if we're a top-level vdev, we can 1196 * safely compare to that instead. 1197 */ 1198 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1199 &guid) != 0 || 1200 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1201 &top_guid) != 0 || 1202 (vd->vdev_guid != guid && 1203 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1204 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1205 VDEV_AUX_CORRUPT_DATA); 1206 nvlist_free(label); 1207 return (0); 1208 } 1209 1210 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1211 &state) != 0) { 1212 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1213 VDEV_AUX_CORRUPT_DATA); 1214 nvlist_free(label); 1215 return (0); 1216 } 1217 1218 nvlist_free(label); 1219 1220 if (spa->spa_load_state == SPA_LOAD_OPEN && 1221 state != POOL_STATE_ACTIVE) 1222 return (EBADF); 1223 1224 /* 1225 * If we were able to open and validate a vdev that was 1226 * previously marked permanently unavailable, clear that state 1227 * now. 1228 */ 1229 if (vd->vdev_not_present) 1230 vd->vdev_not_present = 0; 1231 } 1232 1233 return (0); 1234 } 1235 1236 /* 1237 * Close a virtual device. 1238 */ 1239 void 1240 vdev_close(vdev_t *vd) 1241 { 1242 spa_t *spa = vd->vdev_spa; 1243 1244 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1245 1246 vd->vdev_ops->vdev_op_close(vd); 1247 1248 vdev_cache_purge(vd); 1249 1250 /* 1251 * We record the previous state before we close it, so that if we are 1252 * doing a reopen(), we don't generate FMA ereports if we notice that 1253 * it's still faulted. 1254 */ 1255 vd->vdev_prevstate = vd->vdev_state; 1256 1257 if (vd->vdev_offline) 1258 vd->vdev_state = VDEV_STATE_OFFLINE; 1259 else 1260 vd->vdev_state = VDEV_STATE_CLOSED; 1261 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1262 } 1263 1264 void 1265 vdev_reopen(vdev_t *vd) 1266 { 1267 spa_t *spa = vd->vdev_spa; 1268 1269 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1270 1271 vdev_close(vd); 1272 (void) vdev_open(vd); 1273 1274 /* 1275 * Call vdev_validate() here to make sure we have the same device. 1276 * Otherwise, a device with an invalid label could be successfully 1277 * opened in response to vdev_reopen(). 1278 */ 1279 if (vd->vdev_aux) { 1280 (void) vdev_validate_aux(vd); 1281 if (vdev_readable(vd) && vdev_writeable(vd) && 1282 vd->vdev_aux == &spa->spa_l2cache && 1283 !l2arc_vdev_present(vd)) 1284 l2arc_add_vdev(spa, vd); 1285 } else { 1286 (void) vdev_validate(vd); 1287 } 1288 1289 /* 1290 * Reassess parent vdev's health. 1291 */ 1292 vdev_propagate_state(vd); 1293 } 1294 1295 int 1296 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1297 { 1298 int error; 1299 1300 /* 1301 * Normally, partial opens (e.g. of a mirror) are allowed. 1302 * For a create, however, we want to fail the request if 1303 * there are any components we can't open. 1304 */ 1305 error = vdev_open(vd); 1306 1307 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1308 vdev_close(vd); 1309 return (error ? error : ENXIO); 1310 } 1311 1312 /* 1313 * Recursively initialize all labels. 1314 */ 1315 if ((error = vdev_label_init(vd, txg, isreplacing ? 1316 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1317 vdev_close(vd); 1318 return (error); 1319 } 1320 1321 return (0); 1322 } 1323 1324 void 1325 vdev_metaslab_set_size(vdev_t *vd) 1326 { 1327 /* 1328 * Aim for roughly 200 metaslabs per vdev. 1329 */ 1330 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1331 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1332 } 1333 1334 void 1335 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1336 { 1337 ASSERT(vd == vd->vdev_top); 1338 ASSERT(ISP2(flags)); 1339 1340 if (flags & VDD_METASLAB) 1341 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1342 1343 if (flags & VDD_DTL) 1344 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1345 1346 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1347 } 1348 1349 /* 1350 * DTLs. 1351 * 1352 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1353 * the vdev has less than perfect replication. There are three kinds of DTL: 1354 * 1355 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1356 * 1357 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1358 * 1359 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1360 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1361 * txgs that was scrubbed. 1362 * 1363 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1364 * persistent errors or just some device being offline. 1365 * Unlike the other three, the DTL_OUTAGE map is not generally 1366 * maintained; it's only computed when needed, typically to 1367 * determine whether a device can be detached. 1368 * 1369 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1370 * either has the data or it doesn't. 1371 * 1372 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1373 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1374 * if any child is less than fully replicated, then so is its parent. 1375 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1376 * comprising only those txgs which appear in 'maxfaults' or more children; 1377 * those are the txgs we don't have enough replication to read. For example, 1378 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1379 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1380 * two child DTL_MISSING maps. 1381 * 1382 * It should be clear from the above that to compute the DTLs and outage maps 1383 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1384 * Therefore, that is all we keep on disk. When loading the pool, or after 1385 * a configuration change, we generate all other DTLs from first principles. 1386 */ 1387 void 1388 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1389 { 1390 space_map_t *sm = &vd->vdev_dtl[t]; 1391 1392 ASSERT(t < DTL_TYPES); 1393 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1394 1395 mutex_enter(sm->sm_lock); 1396 if (!space_map_contains(sm, txg, size)) 1397 space_map_add(sm, txg, size); 1398 mutex_exit(sm->sm_lock); 1399 } 1400 1401 boolean_t 1402 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1403 { 1404 space_map_t *sm = &vd->vdev_dtl[t]; 1405 boolean_t dirty = B_FALSE; 1406 1407 ASSERT(t < DTL_TYPES); 1408 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1409 1410 mutex_enter(sm->sm_lock); 1411 if (sm->sm_space != 0) 1412 dirty = space_map_contains(sm, txg, size); 1413 mutex_exit(sm->sm_lock); 1414 1415 return (dirty); 1416 } 1417 1418 boolean_t 1419 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1420 { 1421 space_map_t *sm = &vd->vdev_dtl[t]; 1422 boolean_t empty; 1423 1424 mutex_enter(sm->sm_lock); 1425 empty = (sm->sm_space == 0); 1426 mutex_exit(sm->sm_lock); 1427 1428 return (empty); 1429 } 1430 1431 /* 1432 * Reassess DTLs after a config change or scrub completion. 1433 */ 1434 void 1435 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1436 { 1437 spa_t *spa = vd->vdev_spa; 1438 avl_tree_t reftree; 1439 int minref; 1440 1441 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1442 1443 for (int c = 0; c < vd->vdev_children; c++) 1444 vdev_dtl_reassess(vd->vdev_child[c], txg, 1445 scrub_txg, scrub_done); 1446 1447 if (vd == spa->spa_root_vdev) 1448 return; 1449 1450 if (vd->vdev_ops->vdev_op_leaf) { 1451 mutex_enter(&vd->vdev_dtl_lock); 1452 if (scrub_txg != 0 && 1453 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1454 /* XXX should check scrub_done? */ 1455 /* 1456 * We completed a scrub up to scrub_txg. If we 1457 * did it without rebooting, then the scrub dtl 1458 * will be valid, so excise the old region and 1459 * fold in the scrub dtl. Otherwise, leave the 1460 * dtl as-is if there was an error. 1461 * 1462 * There's little trick here: to excise the beginning 1463 * of the DTL_MISSING map, we put it into a reference 1464 * tree and then add a segment with refcnt -1 that 1465 * covers the range [0, scrub_txg). This means 1466 * that each txg in that range has refcnt -1 or 0. 1467 * We then add DTL_SCRUB with a refcnt of 2, so that 1468 * entries in the range [0, scrub_txg) will have a 1469 * positive refcnt -- either 1 or 2. We then convert 1470 * the reference tree into the new DTL_MISSING map. 1471 */ 1472 space_map_ref_create(&reftree); 1473 space_map_ref_add_map(&reftree, 1474 &vd->vdev_dtl[DTL_MISSING], 1); 1475 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1476 space_map_ref_add_map(&reftree, 1477 &vd->vdev_dtl[DTL_SCRUB], 2); 1478 space_map_ref_generate_map(&reftree, 1479 &vd->vdev_dtl[DTL_MISSING], 1); 1480 space_map_ref_destroy(&reftree); 1481 } 1482 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1483 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1484 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1485 if (scrub_done) 1486 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1487 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1488 if (!vdev_readable(vd)) 1489 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1490 else 1491 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1492 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1493 mutex_exit(&vd->vdev_dtl_lock); 1494 1495 if (txg != 0) 1496 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1497 return; 1498 } 1499 1500 mutex_enter(&vd->vdev_dtl_lock); 1501 for (int t = 0; t < DTL_TYPES; t++) { 1502 if (t == DTL_SCRUB) 1503 continue; /* leaf vdevs only */ 1504 if (t == DTL_PARTIAL) 1505 minref = 1; /* i.e. non-zero */ 1506 else if (vd->vdev_nparity != 0) 1507 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1508 else 1509 minref = vd->vdev_children; /* any kind of mirror */ 1510 space_map_ref_create(&reftree); 1511 for (int c = 0; c < vd->vdev_children; c++) { 1512 vdev_t *cvd = vd->vdev_child[c]; 1513 mutex_enter(&cvd->vdev_dtl_lock); 1514 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1515 mutex_exit(&cvd->vdev_dtl_lock); 1516 } 1517 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1518 space_map_ref_destroy(&reftree); 1519 } 1520 mutex_exit(&vd->vdev_dtl_lock); 1521 } 1522 1523 static int 1524 vdev_dtl_load(vdev_t *vd) 1525 { 1526 spa_t *spa = vd->vdev_spa; 1527 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1528 objset_t *mos = spa->spa_meta_objset; 1529 dmu_buf_t *db; 1530 int error; 1531 1532 ASSERT(vd->vdev_children == 0); 1533 1534 if (smo->smo_object == 0) 1535 return (0); 1536 1537 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1538 return (error); 1539 1540 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1541 bcopy(db->db_data, smo, sizeof (*smo)); 1542 dmu_buf_rele(db, FTAG); 1543 1544 mutex_enter(&vd->vdev_dtl_lock); 1545 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1546 NULL, SM_ALLOC, smo, mos); 1547 mutex_exit(&vd->vdev_dtl_lock); 1548 1549 return (error); 1550 } 1551 1552 void 1553 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1554 { 1555 spa_t *spa = vd->vdev_spa; 1556 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1557 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1558 objset_t *mos = spa->spa_meta_objset; 1559 space_map_t smsync; 1560 kmutex_t smlock; 1561 dmu_buf_t *db; 1562 dmu_tx_t *tx; 1563 1564 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1565 1566 if (vd->vdev_detached) { 1567 if (smo->smo_object != 0) { 1568 int err = dmu_object_free(mos, smo->smo_object, tx); 1569 ASSERT3U(err, ==, 0); 1570 smo->smo_object = 0; 1571 } 1572 dmu_tx_commit(tx); 1573 return; 1574 } 1575 1576 if (smo->smo_object == 0) { 1577 ASSERT(smo->smo_objsize == 0); 1578 ASSERT(smo->smo_alloc == 0); 1579 smo->smo_object = dmu_object_alloc(mos, 1580 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1581 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1582 ASSERT(smo->smo_object != 0); 1583 vdev_config_dirty(vd->vdev_top); 1584 } 1585 1586 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1587 1588 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1589 &smlock); 1590 1591 mutex_enter(&smlock); 1592 1593 mutex_enter(&vd->vdev_dtl_lock); 1594 space_map_walk(sm, space_map_add, &smsync); 1595 mutex_exit(&vd->vdev_dtl_lock); 1596 1597 space_map_truncate(smo, mos, tx); 1598 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1599 1600 space_map_destroy(&smsync); 1601 1602 mutex_exit(&smlock); 1603 mutex_destroy(&smlock); 1604 1605 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1606 dmu_buf_will_dirty(db, tx); 1607 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1608 bcopy(smo, db->db_data, sizeof (*smo)); 1609 dmu_buf_rele(db, FTAG); 1610 1611 dmu_tx_commit(tx); 1612 } 1613 1614 /* 1615 * Determine whether the specified vdev can be offlined/detached/removed 1616 * without losing data. 1617 */ 1618 boolean_t 1619 vdev_dtl_required(vdev_t *vd) 1620 { 1621 spa_t *spa = vd->vdev_spa; 1622 vdev_t *tvd = vd->vdev_top; 1623 uint8_t cant_read = vd->vdev_cant_read; 1624 boolean_t required; 1625 1626 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1627 1628 if (vd == spa->spa_root_vdev || vd == tvd) 1629 return (B_TRUE); 1630 1631 /* 1632 * Temporarily mark the device as unreadable, and then determine 1633 * whether this results in any DTL outages in the top-level vdev. 1634 * If not, we can safely offline/detach/remove the device. 1635 */ 1636 vd->vdev_cant_read = B_TRUE; 1637 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1638 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1639 vd->vdev_cant_read = cant_read; 1640 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1641 1642 return (required); 1643 } 1644 1645 /* 1646 * Determine if resilver is needed, and if so the txg range. 1647 */ 1648 boolean_t 1649 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1650 { 1651 boolean_t needed = B_FALSE; 1652 uint64_t thismin = UINT64_MAX; 1653 uint64_t thismax = 0; 1654 1655 if (vd->vdev_children == 0) { 1656 mutex_enter(&vd->vdev_dtl_lock); 1657 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1658 vdev_writeable(vd)) { 1659 space_seg_t *ss; 1660 1661 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1662 thismin = ss->ss_start - 1; 1663 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1664 thismax = ss->ss_end; 1665 needed = B_TRUE; 1666 } 1667 mutex_exit(&vd->vdev_dtl_lock); 1668 } else { 1669 for (int c = 0; c < vd->vdev_children; c++) { 1670 vdev_t *cvd = vd->vdev_child[c]; 1671 uint64_t cmin, cmax; 1672 1673 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1674 thismin = MIN(thismin, cmin); 1675 thismax = MAX(thismax, cmax); 1676 needed = B_TRUE; 1677 } 1678 } 1679 } 1680 1681 if (needed && minp) { 1682 *minp = thismin; 1683 *maxp = thismax; 1684 } 1685 return (needed); 1686 } 1687 1688 void 1689 vdev_load(vdev_t *vd) 1690 { 1691 /* 1692 * Recursively load all children. 1693 */ 1694 for (int c = 0; c < vd->vdev_children; c++) 1695 vdev_load(vd->vdev_child[c]); 1696 1697 /* 1698 * If this is a top-level vdev, initialize its metaslabs. 1699 */ 1700 if (vd == vd->vdev_top && 1701 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1702 vdev_metaslab_init(vd, 0) != 0)) 1703 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1704 VDEV_AUX_CORRUPT_DATA); 1705 1706 /* 1707 * If this is a leaf vdev, load its DTL. 1708 */ 1709 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1710 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1711 VDEV_AUX_CORRUPT_DATA); 1712 } 1713 1714 /* 1715 * The special vdev case is used for hot spares and l2cache devices. Its 1716 * sole purpose it to set the vdev state for the associated vdev. To do this, 1717 * we make sure that we can open the underlying device, then try to read the 1718 * label, and make sure that the label is sane and that it hasn't been 1719 * repurposed to another pool. 1720 */ 1721 int 1722 vdev_validate_aux(vdev_t *vd) 1723 { 1724 nvlist_t *label; 1725 uint64_t guid, version; 1726 uint64_t state; 1727 1728 if (!vdev_readable(vd)) 1729 return (0); 1730 1731 if ((label = vdev_label_read_config(vd)) == NULL) { 1732 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1733 VDEV_AUX_CORRUPT_DATA); 1734 return (-1); 1735 } 1736 1737 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1738 version > SPA_VERSION || 1739 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1740 guid != vd->vdev_guid || 1741 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1742 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1743 VDEV_AUX_CORRUPT_DATA); 1744 nvlist_free(label); 1745 return (-1); 1746 } 1747 1748 /* 1749 * We don't actually check the pool state here. If it's in fact in 1750 * use by another pool, we update this fact on the fly when requested. 1751 */ 1752 nvlist_free(label); 1753 return (0); 1754 } 1755 1756 void 1757 vdev_sync_done(vdev_t *vd, uint64_t txg) 1758 { 1759 metaslab_t *msp; 1760 1761 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1762 metaslab_sync_done(msp, txg); 1763 } 1764 1765 void 1766 vdev_sync(vdev_t *vd, uint64_t txg) 1767 { 1768 spa_t *spa = vd->vdev_spa; 1769 vdev_t *lvd; 1770 metaslab_t *msp; 1771 dmu_tx_t *tx; 1772 1773 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1774 ASSERT(vd == vd->vdev_top); 1775 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1776 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1777 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1778 ASSERT(vd->vdev_ms_array != 0); 1779 vdev_config_dirty(vd); 1780 dmu_tx_commit(tx); 1781 } 1782 1783 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1784 metaslab_sync(msp, txg); 1785 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1786 } 1787 1788 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1789 vdev_dtl_sync(lvd, txg); 1790 1791 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1792 } 1793 1794 uint64_t 1795 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1796 { 1797 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1798 } 1799 1800 /* 1801 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1802 * not be opened, and no I/O is attempted. 1803 */ 1804 int 1805 vdev_fault(spa_t *spa, uint64_t guid) 1806 { 1807 vdev_t *vd; 1808 1809 spa_vdev_state_enter(spa); 1810 1811 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1812 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1813 1814 if (!vd->vdev_ops->vdev_op_leaf) 1815 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1816 1817 /* 1818 * Faulted state takes precedence over degraded. 1819 */ 1820 vd->vdev_faulted = 1ULL; 1821 vd->vdev_degraded = 0ULL; 1822 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1823 1824 /* 1825 * If marking the vdev as faulted cause the top-level vdev to become 1826 * unavailable, then back off and simply mark the vdev as degraded 1827 * instead. 1828 */ 1829 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1830 vd->vdev_degraded = 1ULL; 1831 vd->vdev_faulted = 0ULL; 1832 1833 /* 1834 * If we reopen the device and it's not dead, only then do we 1835 * mark it degraded. 1836 */ 1837 vdev_reopen(vd); 1838 1839 if (vdev_readable(vd)) { 1840 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1841 VDEV_AUX_ERR_EXCEEDED); 1842 } 1843 } 1844 1845 return (spa_vdev_state_exit(spa, vd, 0)); 1846 } 1847 1848 /* 1849 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1850 * user that something is wrong. The vdev continues to operate as normal as far 1851 * as I/O is concerned. 1852 */ 1853 int 1854 vdev_degrade(spa_t *spa, uint64_t guid) 1855 { 1856 vdev_t *vd; 1857 1858 spa_vdev_state_enter(spa); 1859 1860 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1861 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1862 1863 if (!vd->vdev_ops->vdev_op_leaf) 1864 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1865 1866 /* 1867 * If the vdev is already faulted, then don't do anything. 1868 */ 1869 if (vd->vdev_faulted || vd->vdev_degraded) 1870 return (spa_vdev_state_exit(spa, NULL, 0)); 1871 1872 vd->vdev_degraded = 1ULL; 1873 if (!vdev_is_dead(vd)) 1874 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1875 VDEV_AUX_ERR_EXCEEDED); 1876 1877 return (spa_vdev_state_exit(spa, vd, 0)); 1878 } 1879 1880 /* 1881 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1882 * any attached spare device should be detached when the device finishes 1883 * resilvering. Second, the online should be treated like a 'test' online case, 1884 * so no FMA events are generated if the device fails to open. 1885 */ 1886 int 1887 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1888 { 1889 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 1890 1891 spa_vdev_state_enter(spa); 1892 1893 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1894 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1895 1896 if (!vd->vdev_ops->vdev_op_leaf) 1897 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1898 1899 tvd = vd->vdev_top; 1900 vd->vdev_offline = B_FALSE; 1901 vd->vdev_tmpoffline = B_FALSE; 1902 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1903 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1904 1905 /* XXX - L2ARC 1.0 does not support expansion */ 1906 if (!vd->vdev_aux) { 1907 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1908 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 1909 } 1910 1911 vdev_reopen(tvd); 1912 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1913 1914 if (!vd->vdev_aux) { 1915 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 1916 pvd->vdev_expanding = B_FALSE; 1917 } 1918 1919 if (newstate) 1920 *newstate = vd->vdev_state; 1921 if ((flags & ZFS_ONLINE_UNSPARE) && 1922 !vdev_is_dead(vd) && vd->vdev_parent && 1923 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1924 vd->vdev_parent->vdev_child[0] == vd) 1925 vd->vdev_unspare = B_TRUE; 1926 1927 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 1928 1929 /* XXX - L2ARC 1.0 does not support expansion */ 1930 if (vd->vdev_aux) 1931 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 1932 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1933 } 1934 return (spa_vdev_state_exit(spa, vd, 0)); 1935 } 1936 1937 int 1938 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1939 { 1940 vdev_t *vd, *tvd; 1941 int error; 1942 1943 spa_vdev_state_enter(spa); 1944 1945 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1946 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1947 1948 if (!vd->vdev_ops->vdev_op_leaf) 1949 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1950 1951 tvd = vd->vdev_top; 1952 1953 /* 1954 * If the device isn't already offline, try to offline it. 1955 */ 1956 if (!vd->vdev_offline) { 1957 /* 1958 * If this device has the only valid copy of some data, 1959 * don't allow it to be offlined. Log devices are always 1960 * expendable. 1961 */ 1962 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1963 vdev_dtl_required(vd)) 1964 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1965 1966 /* 1967 * Offline this device and reopen its top-level vdev. 1968 * If the top-level vdev is a log device then just offline 1969 * it. Otherwise, if this action results in the top-level 1970 * vdev becoming unusable, undo it and fail the request. 1971 */ 1972 vd->vdev_offline = B_TRUE; 1973 vdev_reopen(tvd); 1974 1975 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1976 vdev_is_dead(tvd)) { 1977 vd->vdev_offline = B_FALSE; 1978 vdev_reopen(tvd); 1979 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1980 } 1981 } 1982 1983 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 1984 1985 if (!tvd->vdev_islog || !vdev_is_dead(tvd)) 1986 return (spa_vdev_state_exit(spa, vd, 0)); 1987 1988 (void) spa_vdev_state_exit(spa, vd, 0); 1989 1990 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1991 NULL, DS_FIND_CHILDREN); 1992 if (error) { 1993 (void) vdev_online(spa, guid, 0, NULL); 1994 return (error); 1995 } 1996 /* 1997 * If we successfully offlined the log device then we need to 1998 * sync out the current txg so that the "stubby" block can be 1999 * removed by zil_sync(). 2000 */ 2001 txg_wait_synced(spa->spa_dsl_pool, 0); 2002 return (0); 2003 } 2004 2005 /* 2006 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2007 * vdev_offline(), we assume the spa config is locked. We also clear all 2008 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2009 */ 2010 void 2011 vdev_clear(spa_t *spa, vdev_t *vd) 2012 { 2013 vdev_t *rvd = spa->spa_root_vdev; 2014 2015 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2016 2017 if (vd == NULL) 2018 vd = rvd; 2019 2020 vd->vdev_stat.vs_read_errors = 0; 2021 vd->vdev_stat.vs_write_errors = 0; 2022 vd->vdev_stat.vs_checksum_errors = 0; 2023 2024 for (int c = 0; c < vd->vdev_children; c++) 2025 vdev_clear(spa, vd->vdev_child[c]); 2026 2027 /* 2028 * If we're in the FAULTED state or have experienced failed I/O, then 2029 * clear the persistent state and attempt to reopen the device. We 2030 * also mark the vdev config dirty, so that the new faulted state is 2031 * written out to disk. 2032 */ 2033 if (vd->vdev_faulted || vd->vdev_degraded || 2034 !vdev_readable(vd) || !vdev_writeable(vd)) { 2035 2036 vd->vdev_faulted = vd->vdev_degraded = 0; 2037 vd->vdev_cant_read = B_FALSE; 2038 vd->vdev_cant_write = B_FALSE; 2039 2040 vdev_reopen(vd); 2041 2042 if (vd != rvd) 2043 vdev_state_dirty(vd->vdev_top); 2044 2045 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2046 spa_async_request(spa, SPA_ASYNC_RESILVER); 2047 2048 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2049 } 2050 } 2051 2052 boolean_t 2053 vdev_is_dead(vdev_t *vd) 2054 { 2055 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2056 } 2057 2058 boolean_t 2059 vdev_readable(vdev_t *vd) 2060 { 2061 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2062 } 2063 2064 boolean_t 2065 vdev_writeable(vdev_t *vd) 2066 { 2067 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2068 } 2069 2070 boolean_t 2071 vdev_allocatable(vdev_t *vd) 2072 { 2073 uint64_t state = vd->vdev_state; 2074 2075 /* 2076 * We currently allow allocations from vdevs which may be in the 2077 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2078 * fails to reopen then we'll catch it later when we're holding 2079 * the proper locks. Note that we have to get the vdev state 2080 * in a local variable because although it changes atomically, 2081 * we're asking two separate questions about it. 2082 */ 2083 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2084 !vd->vdev_cant_write); 2085 } 2086 2087 boolean_t 2088 vdev_accessible(vdev_t *vd, zio_t *zio) 2089 { 2090 ASSERT(zio->io_vd == vd); 2091 2092 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2093 return (B_FALSE); 2094 2095 if (zio->io_type == ZIO_TYPE_READ) 2096 return (!vd->vdev_cant_read); 2097 2098 if (zio->io_type == ZIO_TYPE_WRITE) 2099 return (!vd->vdev_cant_write); 2100 2101 return (B_TRUE); 2102 } 2103 2104 /* 2105 * Get statistics for the given vdev. 2106 */ 2107 void 2108 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2109 { 2110 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2111 2112 mutex_enter(&vd->vdev_stat_lock); 2113 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2114 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2115 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2116 vs->vs_state = vd->vdev_state; 2117 vs->vs_rsize = vdev_get_min_asize(vd); 2118 if (vd->vdev_ops->vdev_op_leaf) 2119 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2120 mutex_exit(&vd->vdev_stat_lock); 2121 2122 /* 2123 * If we're getting stats on the root vdev, aggregate the I/O counts 2124 * over all top-level vdevs (i.e. the direct children of the root). 2125 */ 2126 if (vd == rvd) { 2127 for (int c = 0; c < rvd->vdev_children; c++) { 2128 vdev_t *cvd = rvd->vdev_child[c]; 2129 vdev_stat_t *cvs = &cvd->vdev_stat; 2130 2131 mutex_enter(&vd->vdev_stat_lock); 2132 for (int t = 0; t < ZIO_TYPES; t++) { 2133 vs->vs_ops[t] += cvs->vs_ops[t]; 2134 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2135 } 2136 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2137 mutex_exit(&vd->vdev_stat_lock); 2138 } 2139 } 2140 } 2141 2142 void 2143 vdev_clear_stats(vdev_t *vd) 2144 { 2145 mutex_enter(&vd->vdev_stat_lock); 2146 vd->vdev_stat.vs_space = 0; 2147 vd->vdev_stat.vs_dspace = 0; 2148 vd->vdev_stat.vs_alloc = 0; 2149 mutex_exit(&vd->vdev_stat_lock); 2150 } 2151 2152 void 2153 vdev_stat_update(zio_t *zio, uint64_t psize) 2154 { 2155 spa_t *spa = zio->io_spa; 2156 vdev_t *rvd = spa->spa_root_vdev; 2157 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2158 vdev_t *pvd; 2159 uint64_t txg = zio->io_txg; 2160 vdev_stat_t *vs = &vd->vdev_stat; 2161 zio_type_t type = zio->io_type; 2162 int flags = zio->io_flags; 2163 2164 /* 2165 * If this i/o is a gang leader, it didn't do any actual work. 2166 */ 2167 if (zio->io_gang_tree) 2168 return; 2169 2170 if (zio->io_error == 0) { 2171 /* 2172 * If this is a root i/o, don't count it -- we've already 2173 * counted the top-level vdevs, and vdev_get_stats() will 2174 * aggregate them when asked. This reduces contention on 2175 * the root vdev_stat_lock and implicitly handles blocks 2176 * that compress away to holes, for which there is no i/o. 2177 * (Holes never create vdev children, so all the counters 2178 * remain zero, which is what we want.) 2179 * 2180 * Note: this only applies to successful i/o (io_error == 0) 2181 * because unlike i/o counts, errors are not additive. 2182 * When reading a ditto block, for example, failure of 2183 * one top-level vdev does not imply a root-level error. 2184 */ 2185 if (vd == rvd) 2186 return; 2187 2188 ASSERT(vd == zio->io_vd); 2189 2190 if (flags & ZIO_FLAG_IO_BYPASS) 2191 return; 2192 2193 mutex_enter(&vd->vdev_stat_lock); 2194 2195 if (flags & ZIO_FLAG_IO_REPAIR) { 2196 if (flags & ZIO_FLAG_SCRUB_THREAD) 2197 vs->vs_scrub_repaired += psize; 2198 if (flags & ZIO_FLAG_SELF_HEAL) 2199 vs->vs_self_healed += psize; 2200 } 2201 2202 vs->vs_ops[type]++; 2203 vs->vs_bytes[type] += psize; 2204 2205 mutex_exit(&vd->vdev_stat_lock); 2206 return; 2207 } 2208 2209 if (flags & ZIO_FLAG_SPECULATIVE) 2210 return; 2211 2212 /* 2213 * If this is an I/O error that is going to be retried, then ignore the 2214 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2215 * hard errors, when in reality they can happen for any number of 2216 * innocuous reasons (bus resets, MPxIO link failure, etc). 2217 */ 2218 if (zio->io_error == EIO && 2219 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2220 return; 2221 2222 mutex_enter(&vd->vdev_stat_lock); 2223 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2224 if (zio->io_error == ECKSUM) 2225 vs->vs_checksum_errors++; 2226 else 2227 vs->vs_read_errors++; 2228 } 2229 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2230 vs->vs_write_errors++; 2231 mutex_exit(&vd->vdev_stat_lock); 2232 2233 if (type == ZIO_TYPE_WRITE && txg != 0 && 2234 (!(flags & ZIO_FLAG_IO_REPAIR) || 2235 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2236 /* 2237 * This is either a normal write (not a repair), or it's a 2238 * repair induced by the scrub thread. In the normal case, 2239 * we commit the DTL change in the same txg as the block 2240 * was born. In the scrub-induced repair case, we know that 2241 * scrubs run in first-pass syncing context, so we commit 2242 * the DTL change in spa->spa_syncing_txg. 2243 * 2244 * We currently do not make DTL entries for failed spontaneous 2245 * self-healing writes triggered by normal (non-scrubbing) 2246 * reads, because we have no transactional context in which to 2247 * do so -- and it's not clear that it'd be desirable anyway. 2248 */ 2249 if (vd->vdev_ops->vdev_op_leaf) { 2250 uint64_t commit_txg = txg; 2251 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2252 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2253 ASSERT(spa_sync_pass(spa) == 1); 2254 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2255 commit_txg = spa->spa_syncing_txg; 2256 } 2257 ASSERT(commit_txg >= spa->spa_syncing_txg); 2258 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2259 return; 2260 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2261 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2262 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2263 } 2264 if (vd != rvd) 2265 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2266 } 2267 } 2268 2269 void 2270 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2271 { 2272 vdev_stat_t *vs = &vd->vdev_stat; 2273 2274 for (int c = 0; c < vd->vdev_children; c++) 2275 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2276 2277 mutex_enter(&vd->vdev_stat_lock); 2278 2279 if (type == POOL_SCRUB_NONE) { 2280 /* 2281 * Update completion and end time. Leave everything else alone 2282 * so we can report what happened during the previous scrub. 2283 */ 2284 vs->vs_scrub_complete = complete; 2285 vs->vs_scrub_end = gethrestime_sec(); 2286 } else { 2287 vs->vs_scrub_type = type; 2288 vs->vs_scrub_complete = 0; 2289 vs->vs_scrub_examined = 0; 2290 vs->vs_scrub_repaired = 0; 2291 vs->vs_scrub_start = gethrestime_sec(); 2292 vs->vs_scrub_end = 0; 2293 } 2294 2295 mutex_exit(&vd->vdev_stat_lock); 2296 } 2297 2298 /* 2299 * Update the in-core space usage stats for this vdev and the root vdev. 2300 */ 2301 void 2302 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2303 boolean_t update_root) 2304 { 2305 int64_t dspace_delta = space_delta; 2306 spa_t *spa = vd->vdev_spa; 2307 vdev_t *rvd = spa->spa_root_vdev; 2308 2309 ASSERT(vd == vd->vdev_top); 2310 2311 /* 2312 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2313 * factor. We must calculate this here and not at the root vdev 2314 * because the root vdev's psize-to-asize is simply the max of its 2315 * childrens', thus not accurate enough for us. 2316 */ 2317 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2318 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2319 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2320 vd->vdev_deflate_ratio; 2321 2322 mutex_enter(&vd->vdev_stat_lock); 2323 vd->vdev_stat.vs_space += space_delta; 2324 vd->vdev_stat.vs_alloc += alloc_delta; 2325 vd->vdev_stat.vs_dspace += dspace_delta; 2326 mutex_exit(&vd->vdev_stat_lock); 2327 2328 if (update_root) { 2329 ASSERT(rvd == vd->vdev_parent); 2330 ASSERT(vd->vdev_ms_count != 0); 2331 2332 /* 2333 * Don't count non-normal (e.g. intent log) space as part of 2334 * the pool's capacity. 2335 */ 2336 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2337 return; 2338 2339 mutex_enter(&rvd->vdev_stat_lock); 2340 rvd->vdev_stat.vs_space += space_delta; 2341 rvd->vdev_stat.vs_alloc += alloc_delta; 2342 rvd->vdev_stat.vs_dspace += dspace_delta; 2343 mutex_exit(&rvd->vdev_stat_lock); 2344 } 2345 } 2346 2347 /* 2348 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2349 * so that it will be written out next time the vdev configuration is synced. 2350 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2351 */ 2352 void 2353 vdev_config_dirty(vdev_t *vd) 2354 { 2355 spa_t *spa = vd->vdev_spa; 2356 vdev_t *rvd = spa->spa_root_vdev; 2357 int c; 2358 2359 /* 2360 * If this is an aux vdev (as with l2cache and spare devices), then we 2361 * update the vdev config manually and set the sync flag. 2362 */ 2363 if (vd->vdev_aux != NULL) { 2364 spa_aux_vdev_t *sav = vd->vdev_aux; 2365 nvlist_t **aux; 2366 uint_t naux; 2367 2368 for (c = 0; c < sav->sav_count; c++) { 2369 if (sav->sav_vdevs[c] == vd) 2370 break; 2371 } 2372 2373 if (c == sav->sav_count) { 2374 /* 2375 * We're being removed. There's nothing more to do. 2376 */ 2377 ASSERT(sav->sav_sync == B_TRUE); 2378 return; 2379 } 2380 2381 sav->sav_sync = B_TRUE; 2382 2383 if (nvlist_lookup_nvlist_array(sav->sav_config, 2384 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2385 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2386 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2387 } 2388 2389 ASSERT(c < naux); 2390 2391 /* 2392 * Setting the nvlist in the middle if the array is a little 2393 * sketchy, but it will work. 2394 */ 2395 nvlist_free(aux[c]); 2396 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2397 2398 return; 2399 } 2400 2401 /* 2402 * The dirty list is protected by the SCL_CONFIG lock. The caller 2403 * must either hold SCL_CONFIG as writer, or must be the sync thread 2404 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2405 * so this is sufficient to ensure mutual exclusion. 2406 */ 2407 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2408 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2409 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2410 2411 if (vd == rvd) { 2412 for (c = 0; c < rvd->vdev_children; c++) 2413 vdev_config_dirty(rvd->vdev_child[c]); 2414 } else { 2415 ASSERT(vd == vd->vdev_top); 2416 2417 if (!list_link_active(&vd->vdev_config_dirty_node)) 2418 list_insert_head(&spa->spa_config_dirty_list, vd); 2419 } 2420 } 2421 2422 void 2423 vdev_config_clean(vdev_t *vd) 2424 { 2425 spa_t *spa = vd->vdev_spa; 2426 2427 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2428 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2429 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2430 2431 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2432 list_remove(&spa->spa_config_dirty_list, vd); 2433 } 2434 2435 /* 2436 * Mark a top-level vdev's state as dirty, so that the next pass of 2437 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2438 * the state changes from larger config changes because they require 2439 * much less locking, and are often needed for administrative actions. 2440 */ 2441 void 2442 vdev_state_dirty(vdev_t *vd) 2443 { 2444 spa_t *spa = vd->vdev_spa; 2445 2446 ASSERT(vd == vd->vdev_top); 2447 2448 /* 2449 * The state list is protected by the SCL_STATE lock. The caller 2450 * must either hold SCL_STATE as writer, or must be the sync thread 2451 * (which holds SCL_STATE as reader). There's only one sync thread, 2452 * so this is sufficient to ensure mutual exclusion. 2453 */ 2454 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2455 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2456 spa_config_held(spa, SCL_STATE, RW_READER))); 2457 2458 if (!list_link_active(&vd->vdev_state_dirty_node)) 2459 list_insert_head(&spa->spa_state_dirty_list, vd); 2460 } 2461 2462 void 2463 vdev_state_clean(vdev_t *vd) 2464 { 2465 spa_t *spa = vd->vdev_spa; 2466 2467 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2468 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2469 spa_config_held(spa, SCL_STATE, RW_READER))); 2470 2471 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2472 list_remove(&spa->spa_state_dirty_list, vd); 2473 } 2474 2475 /* 2476 * Propagate vdev state up from children to parent. 2477 */ 2478 void 2479 vdev_propagate_state(vdev_t *vd) 2480 { 2481 spa_t *spa = vd->vdev_spa; 2482 vdev_t *rvd = spa->spa_root_vdev; 2483 int degraded = 0, faulted = 0; 2484 int corrupted = 0; 2485 vdev_t *child; 2486 2487 if (vd->vdev_children > 0) { 2488 for (int c = 0; c < vd->vdev_children; c++) { 2489 child = vd->vdev_child[c]; 2490 2491 if (!vdev_readable(child) || 2492 (!vdev_writeable(child) && spa_writeable(spa))) { 2493 /* 2494 * Root special: if there is a top-level log 2495 * device, treat the root vdev as if it were 2496 * degraded. 2497 */ 2498 if (child->vdev_islog && vd == rvd) 2499 degraded++; 2500 else 2501 faulted++; 2502 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2503 degraded++; 2504 } 2505 2506 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2507 corrupted++; 2508 } 2509 2510 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2511 2512 /* 2513 * Root special: if there is a top-level vdev that cannot be 2514 * opened due to corrupted metadata, then propagate the root 2515 * vdev's aux state as 'corrupt' rather than 'insufficient 2516 * replicas'. 2517 */ 2518 if (corrupted && vd == rvd && 2519 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2520 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2521 VDEV_AUX_CORRUPT_DATA); 2522 } 2523 2524 if (vd->vdev_parent) 2525 vdev_propagate_state(vd->vdev_parent); 2526 } 2527 2528 /* 2529 * Set a vdev's state. If this is during an open, we don't update the parent 2530 * state, because we're in the process of opening children depth-first. 2531 * Otherwise, we propagate the change to the parent. 2532 * 2533 * If this routine places a device in a faulted state, an appropriate ereport is 2534 * generated. 2535 */ 2536 void 2537 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2538 { 2539 uint64_t save_state; 2540 spa_t *spa = vd->vdev_spa; 2541 2542 if (state == vd->vdev_state) { 2543 vd->vdev_stat.vs_aux = aux; 2544 return; 2545 } 2546 2547 save_state = vd->vdev_state; 2548 2549 vd->vdev_state = state; 2550 vd->vdev_stat.vs_aux = aux; 2551 2552 /* 2553 * If we are setting the vdev state to anything but an open state, then 2554 * always close the underlying device. Otherwise, we keep accessible 2555 * but invalid devices open forever. We don't call vdev_close() itself, 2556 * because that implies some extra checks (offline, etc) that we don't 2557 * want here. This is limited to leaf devices, because otherwise 2558 * closing the device will affect other children. 2559 */ 2560 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2561 vd->vdev_ops->vdev_op_close(vd); 2562 2563 if (vd->vdev_removed && 2564 state == VDEV_STATE_CANT_OPEN && 2565 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2566 /* 2567 * If the previous state is set to VDEV_STATE_REMOVED, then this 2568 * device was previously marked removed and someone attempted to 2569 * reopen it. If this failed due to a nonexistent device, then 2570 * keep the device in the REMOVED state. We also let this be if 2571 * it is one of our special test online cases, which is only 2572 * attempting to online the device and shouldn't generate an FMA 2573 * fault. 2574 */ 2575 vd->vdev_state = VDEV_STATE_REMOVED; 2576 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2577 } else if (state == VDEV_STATE_REMOVED) { 2578 /* 2579 * Indicate to the ZFS DE that this device has been removed, and 2580 * any recent errors should be ignored. 2581 */ 2582 zfs_post_remove(spa, vd); 2583 vd->vdev_removed = B_TRUE; 2584 } else if (state == VDEV_STATE_CANT_OPEN) { 2585 /* 2586 * If we fail to open a vdev during an import, we mark it as 2587 * "not available", which signifies that it was never there to 2588 * begin with. Failure to open such a device is not considered 2589 * an error. 2590 */ 2591 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2592 vd->vdev_ops->vdev_op_leaf) 2593 vd->vdev_not_present = 1; 2594 2595 /* 2596 * Post the appropriate ereport. If the 'prevstate' field is 2597 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2598 * that this is part of a vdev_reopen(). In this case, we don't 2599 * want to post the ereport if the device was already in the 2600 * CANT_OPEN state beforehand. 2601 * 2602 * If the 'checkremove' flag is set, then this is an attempt to 2603 * online the device in response to an insertion event. If we 2604 * hit this case, then we have detected an insertion event for a 2605 * faulted or offline device that wasn't in the removed state. 2606 * In this scenario, we don't post an ereport because we are 2607 * about to replace the device, or attempt an online with 2608 * vdev_forcefault, which will generate the fault for us. 2609 */ 2610 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2611 !vd->vdev_not_present && !vd->vdev_checkremove && 2612 vd != spa->spa_root_vdev) { 2613 const char *class; 2614 2615 switch (aux) { 2616 case VDEV_AUX_OPEN_FAILED: 2617 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2618 break; 2619 case VDEV_AUX_CORRUPT_DATA: 2620 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2621 break; 2622 case VDEV_AUX_NO_REPLICAS: 2623 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2624 break; 2625 case VDEV_AUX_BAD_GUID_SUM: 2626 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2627 break; 2628 case VDEV_AUX_TOO_SMALL: 2629 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2630 break; 2631 case VDEV_AUX_BAD_LABEL: 2632 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2633 break; 2634 case VDEV_AUX_IO_FAILURE: 2635 class = FM_EREPORT_ZFS_IO_FAILURE; 2636 break; 2637 default: 2638 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2639 } 2640 2641 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2642 } 2643 2644 /* Erase any notion of persistent removed state */ 2645 vd->vdev_removed = B_FALSE; 2646 } else { 2647 vd->vdev_removed = B_FALSE; 2648 } 2649 2650 if (!isopen && vd->vdev_parent) 2651 vdev_propagate_state(vd->vdev_parent); 2652 } 2653 2654 /* 2655 * Check the vdev configuration to ensure that it's capable of supporting 2656 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2657 * In addition, only a single top-level vdev is allowed and none of the leaves 2658 * can be wholedisks. 2659 */ 2660 boolean_t 2661 vdev_is_bootable(vdev_t *vd) 2662 { 2663 if (!vd->vdev_ops->vdev_op_leaf) { 2664 char *vdev_type = vd->vdev_ops->vdev_op_type; 2665 2666 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2667 vd->vdev_children > 1) { 2668 return (B_FALSE); 2669 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2670 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2671 return (B_FALSE); 2672 } 2673 } else if (vd->vdev_wholedisk == 1) { 2674 return (B_FALSE); 2675 } 2676 2677 for (int c = 0; c < vd->vdev_children; c++) { 2678 if (!vdev_is_bootable(vd->vdev_child[c])) 2679 return (B_FALSE); 2680 } 2681 return (B_TRUE); 2682 } 2683 2684 void 2685 vdev_load_log_state(vdev_t *vd, nvlist_t *nv) 2686 { 2687 uint_t children; 2688 nvlist_t **child; 2689 uint64_t val; 2690 spa_t *spa = vd->vdev_spa; 2691 2692 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2693 &child, &children) == 0) { 2694 for (int c = 0; c < children; c++) 2695 vdev_load_log_state(vd->vdev_child[c], child[c]); 2696 } 2697 2698 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv, 2699 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) { 2700 2701 /* 2702 * It would be nice to call vdev_offline() 2703 * directly but the pool isn't fully loaded and 2704 * the txg threads have not been started yet. 2705 */ 2706 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER); 2707 vd->vdev_offline = val; 2708 vdev_reopen(vd->vdev_top); 2709 spa_config_exit(spa, SCL_STATE_ALL, FTAG); 2710 } 2711 } 2712 2713 /* 2714 * Expand a vdev if possible. 2715 */ 2716 void 2717 vdev_expand(vdev_t *vd, uint64_t txg) 2718 { 2719 ASSERT(vd->vdev_top == vd); 2720 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2721 2722 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2723 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2724 vdev_config_dirty(vd); 2725 } 2726 } 2727