xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 0749e8de8370b977962d1cbaa31a8ebbaf755a01)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42 #include <sys/zil.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	&vdev_hole_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 
89 	for (int c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 	vdev_t *pvd = vd->vdev_parent;
107 
108 	/*
109 	 * The our parent is NULL (inactive spare or cache) or is the root,
110 	 * just return our own asize.
111 	 */
112 	if (pvd == NULL)
113 		return (vd->vdev_asize);
114 
115 	/*
116 	 * The top-level vdev just returns the allocatable size rounded
117 	 * to the nearest metaslab.
118 	 */
119 	if (vd == vd->vdev_top)
120 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121 
122 	/*
123 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 	 * so each child must provide at least 1/Nth of its asize.
125 	 */
126 	if (pvd->vdev_ops == &vdev_raidz_ops)
127 		return (pvd->vdev_min_asize / pvd->vdev_children);
128 
129 	return (pvd->vdev_min_asize);
130 }
131 
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 	vd->vdev_min_asize = vdev_get_min_asize(vd);
136 
137 	for (int c = 0; c < vd->vdev_children; c++)
138 		vdev_set_min_asize(vd->vdev_child[c]);
139 }
140 
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 	vdev_t *rvd = spa->spa_root_vdev;
145 
146 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147 
148 	if (vdev < rvd->vdev_children) {
149 		ASSERT(rvd->vdev_child[vdev] != NULL);
150 		return (rvd->vdev_child[vdev]);
151 	}
152 
153 	return (NULL);
154 }
155 
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 	vdev_t *mvd;
160 
161 	if (vd->vdev_guid == guid)
162 		return (vd);
163 
164 	for (int c = 0; c < vd->vdev_children; c++)
165 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 		    NULL)
167 			return (mvd);
168 
169 	return (NULL);
170 }
171 
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 	size_t oldsize, newsize;
176 	uint64_t id = cvd->vdev_id;
177 	vdev_t **newchild;
178 
179 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 	ASSERT(cvd->vdev_parent == NULL);
181 
182 	cvd->vdev_parent = pvd;
183 
184 	if (pvd == NULL)
185 		return;
186 
187 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188 
189 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 	newsize = pvd->vdev_children * sizeof (vdev_t *);
192 
193 	newchild = kmem_zalloc(newsize, KM_SLEEP);
194 	if (pvd->vdev_child != NULL) {
195 		bcopy(pvd->vdev_child, newchild, oldsize);
196 		kmem_free(pvd->vdev_child, oldsize);
197 	}
198 
199 	pvd->vdev_child = newchild;
200 	pvd->vdev_child[id] = cvd;
201 
202 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204 
205 	/*
206 	 * Walk up all ancestors to update guid sum.
207 	 */
208 	for (; pvd != NULL; pvd = pvd->vdev_parent)
209 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 
211 	if (cvd->vdev_ops->vdev_op_leaf)
212 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214 
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 	int c;
219 	uint_t id = cvd->vdev_id;
220 
221 	ASSERT(cvd->vdev_parent == pvd);
222 
223 	if (pvd == NULL)
224 		return;
225 
226 	ASSERT(id < pvd->vdev_children);
227 	ASSERT(pvd->vdev_child[id] == cvd);
228 
229 	pvd->vdev_child[id] = NULL;
230 	cvd->vdev_parent = NULL;
231 
232 	for (c = 0; c < pvd->vdev_children; c++)
233 		if (pvd->vdev_child[c])
234 			break;
235 
236 	if (c == pvd->vdev_children) {
237 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 		pvd->vdev_child = NULL;
239 		pvd->vdev_children = 0;
240 	}
241 
242 	/*
243 	 * Walk up all ancestors to update guid sum.
244 	 */
245 	for (; pvd != NULL; pvd = pvd->vdev_parent)
246 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 
248 	if (cvd->vdev_ops->vdev_op_leaf)
249 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251 
252 /*
253  * Remove any holes in the child array.
254  */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 	vdev_t **newchild, *cvd;
259 	int oldc = pvd->vdev_children;
260 	int newc;
261 
262 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263 
264 	for (int c = newc = 0; c < oldc; c++)
265 		if (pvd->vdev_child[c])
266 			newc++;
267 
268 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269 
270 	for (int c = newc = 0; c < oldc; c++) {
271 		if ((cvd = pvd->vdev_child[c]) != NULL) {
272 			newchild[newc] = cvd;
273 			cvd->vdev_id = newc++;
274 		}
275 	}
276 
277 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 	pvd->vdev_child = newchild;
279 	pvd->vdev_children = newc;
280 }
281 
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 	vdev_t *vd;
289 
290 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291 
292 	if (spa->spa_root_vdev == NULL) {
293 		ASSERT(ops == &vdev_root_ops);
294 		spa->spa_root_vdev = vd;
295 	}
296 
297 	if (guid == 0 && ops != &vdev_hole_ops) {
298 		if (spa->spa_root_vdev == vd) {
299 			/*
300 			 * The root vdev's guid will also be the pool guid,
301 			 * which must be unique among all pools.
302 			 */
303 			guid = spa_generate_guid(NULL);
304 		} else {
305 			/*
306 			 * Any other vdev's guid must be unique within the pool.
307 			 */
308 			guid = spa_generate_guid(spa);
309 		}
310 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 	}
312 
313 	vd->vdev_spa = spa;
314 	vd->vdev_id = id;
315 	vd->vdev_guid = guid;
316 	vd->vdev_guid_sum = guid;
317 	vd->vdev_ops = ops;
318 	vd->vdev_state = VDEV_STATE_CLOSED;
319 	vd->vdev_ishole = (ops == &vdev_hole_ops);
320 
321 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
322 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
323 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
324 	for (int t = 0; t < DTL_TYPES; t++) {
325 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
326 		    &vd->vdev_dtl_lock);
327 	}
328 	txg_list_create(&vd->vdev_ms_list,
329 	    offsetof(struct metaslab, ms_txg_node));
330 	txg_list_create(&vd->vdev_dtl_list,
331 	    offsetof(struct vdev, vdev_dtl_node));
332 	vd->vdev_stat.vs_timestamp = gethrtime();
333 	vdev_queue_init(vd);
334 	vdev_cache_init(vd);
335 
336 	return (vd);
337 }
338 
339 /*
340  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
341  * creating a new vdev or loading an existing one - the behavior is slightly
342  * different for each case.
343  */
344 int
345 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
346     int alloctype)
347 {
348 	vdev_ops_t *ops;
349 	char *type;
350 	uint64_t guid = 0, islog, nparity;
351 	vdev_t *vd;
352 
353 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
354 
355 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
356 		return (EINVAL);
357 
358 	if ((ops = vdev_getops(type)) == NULL)
359 		return (EINVAL);
360 
361 	/*
362 	 * If this is a load, get the vdev guid from the nvlist.
363 	 * Otherwise, vdev_alloc_common() will generate one for us.
364 	 */
365 	if (alloctype == VDEV_ALLOC_LOAD) {
366 		uint64_t label_id;
367 
368 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
369 		    label_id != id)
370 			return (EINVAL);
371 
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (EINVAL);
374 	} else if (alloctype == VDEV_ALLOC_SPARE) {
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (EINVAL);
380 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
381 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 			return (EINVAL);
383 	}
384 
385 	/*
386 	 * The first allocated vdev must be of type 'root'.
387 	 */
388 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
389 		return (EINVAL);
390 
391 	/*
392 	 * Determine whether we're a log vdev.
393 	 */
394 	islog = 0;
395 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
396 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
397 		return (ENOTSUP);
398 
399 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
400 		return (ENOTSUP);
401 
402 	/*
403 	 * Set the nparity property for RAID-Z vdevs.
404 	 */
405 	nparity = -1ULL;
406 	if (ops == &vdev_raidz_ops) {
407 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408 		    &nparity) == 0) {
409 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
410 				return (EINVAL);
411 			/*
412 			 * Previous versions could only support 1 or 2 parity
413 			 * device.
414 			 */
415 			if (nparity > 1 &&
416 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
417 				return (ENOTSUP);
418 			if (nparity > 2 &&
419 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
420 				return (ENOTSUP);
421 		} else {
422 			/*
423 			 * We require the parity to be specified for SPAs that
424 			 * support multiple parity levels.
425 			 */
426 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
427 				return (EINVAL);
428 			/*
429 			 * Otherwise, we default to 1 parity device for RAID-Z.
430 			 */
431 			nparity = 1;
432 		}
433 	} else {
434 		nparity = 0;
435 	}
436 	ASSERT(nparity != -1ULL);
437 
438 	vd = vdev_alloc_common(spa, id, guid, ops);
439 
440 	vd->vdev_islog = islog;
441 	vd->vdev_nparity = nparity;
442 
443 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444 		vd->vdev_path = spa_strdup(vd->vdev_path);
445 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448 	    &vd->vdev_physpath) == 0)
449 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
452 
453 	/*
454 	 * Set the whole_disk property.  If it's not specified, leave the value
455 	 * as -1.
456 	 */
457 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458 	    &vd->vdev_wholedisk) != 0)
459 		vd->vdev_wholedisk = -1ULL;
460 
461 	/*
462 	 * Look for the 'not present' flag.  This will only be set if the device
463 	 * was not present at the time of import.
464 	 */
465 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466 	    &vd->vdev_not_present);
467 
468 	/*
469 	 * Get the alignment requirement.
470 	 */
471 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472 
473 	/*
474 	 * Retrieve the vdev creation time.
475 	 */
476 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
477 	    &vd->vdev_crtxg);
478 
479 	/*
480 	 * If we're a top-level vdev, try to load the allocation parameters.
481 	 */
482 	if (parent && !parent->vdev_parent &&
483 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
484 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
485 		    &vd->vdev_ms_array);
486 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
487 		    &vd->vdev_ms_shift);
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
489 		    &vd->vdev_asize);
490 	}
491 
492 	if (parent && !parent->vdev_parent) {
493 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
494 		    alloctype == VDEV_ALLOC_ADD ||
495 		    alloctype == VDEV_ALLOC_SPLIT ||
496 		    alloctype == VDEV_ALLOC_ROOTPOOL);
497 		vd->vdev_mg = metaslab_group_create(islog ?
498 		    spa_log_class(spa) : spa_normal_class(spa), vd);
499 	}
500 
501 	/*
502 	 * If we're a leaf vdev, try to load the DTL object and other state.
503 	 */
504 	if (vd->vdev_ops->vdev_op_leaf &&
505 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
506 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
507 		if (alloctype == VDEV_ALLOC_LOAD) {
508 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
509 			    &vd->vdev_dtl_smo.smo_object);
510 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
511 			    &vd->vdev_unspare);
512 		}
513 
514 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
515 			uint64_t spare = 0;
516 
517 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
518 			    &spare) == 0 && spare)
519 				spa_spare_add(vd);
520 		}
521 
522 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
523 		    &vd->vdev_offline);
524 
525 		/*
526 		 * When importing a pool, we want to ignore the persistent fault
527 		 * state, as the diagnosis made on another system may not be
528 		 * valid in the current context.  Local vdevs will
529 		 * remain in the faulted state.
530 		 */
531 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
532 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
533 			    &vd->vdev_faulted);
534 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
535 			    &vd->vdev_degraded);
536 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
537 			    &vd->vdev_removed);
538 
539 			if (vd->vdev_faulted || vd->vdev_degraded) {
540 				char *aux;
541 
542 				vd->vdev_label_aux =
543 				    VDEV_AUX_ERR_EXCEEDED;
544 				if (nvlist_lookup_string(nv,
545 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
546 				    strcmp(aux, "external") == 0)
547 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
548 			}
549 		}
550 	}
551 
552 	/*
553 	 * Add ourselves to the parent's list of children.
554 	 */
555 	vdev_add_child(parent, vd);
556 
557 	*vdp = vd;
558 
559 	return (0);
560 }
561 
562 void
563 vdev_free(vdev_t *vd)
564 {
565 	spa_t *spa = vd->vdev_spa;
566 
567 	/*
568 	 * vdev_free() implies closing the vdev first.  This is simpler than
569 	 * trying to ensure complicated semantics for all callers.
570 	 */
571 	vdev_close(vd);
572 
573 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
574 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
575 
576 	/*
577 	 * Free all children.
578 	 */
579 	for (int c = 0; c < vd->vdev_children; c++)
580 		vdev_free(vd->vdev_child[c]);
581 
582 	ASSERT(vd->vdev_child == NULL);
583 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
584 
585 	/*
586 	 * Discard allocation state.
587 	 */
588 	if (vd->vdev_mg != NULL) {
589 		vdev_metaslab_fini(vd);
590 		metaslab_group_destroy(vd->vdev_mg);
591 	}
592 
593 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
594 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
595 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
596 
597 	/*
598 	 * Remove this vdev from its parent's child list.
599 	 */
600 	vdev_remove_child(vd->vdev_parent, vd);
601 
602 	ASSERT(vd->vdev_parent == NULL);
603 
604 	/*
605 	 * Clean up vdev structure.
606 	 */
607 	vdev_queue_fini(vd);
608 	vdev_cache_fini(vd);
609 
610 	if (vd->vdev_path)
611 		spa_strfree(vd->vdev_path);
612 	if (vd->vdev_devid)
613 		spa_strfree(vd->vdev_devid);
614 	if (vd->vdev_physpath)
615 		spa_strfree(vd->vdev_physpath);
616 	if (vd->vdev_fru)
617 		spa_strfree(vd->vdev_fru);
618 
619 	if (vd->vdev_isspare)
620 		spa_spare_remove(vd);
621 	if (vd->vdev_isl2cache)
622 		spa_l2cache_remove(vd);
623 
624 	txg_list_destroy(&vd->vdev_ms_list);
625 	txg_list_destroy(&vd->vdev_dtl_list);
626 
627 	mutex_enter(&vd->vdev_dtl_lock);
628 	for (int t = 0; t < DTL_TYPES; t++) {
629 		space_map_unload(&vd->vdev_dtl[t]);
630 		space_map_destroy(&vd->vdev_dtl[t]);
631 	}
632 	mutex_exit(&vd->vdev_dtl_lock);
633 
634 	mutex_destroy(&vd->vdev_dtl_lock);
635 	mutex_destroy(&vd->vdev_stat_lock);
636 	mutex_destroy(&vd->vdev_probe_lock);
637 
638 	if (vd == spa->spa_root_vdev)
639 		spa->spa_root_vdev = NULL;
640 
641 	kmem_free(vd, sizeof (vdev_t));
642 }
643 
644 /*
645  * Transfer top-level vdev state from svd to tvd.
646  */
647 static void
648 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
649 {
650 	spa_t *spa = svd->vdev_spa;
651 	metaslab_t *msp;
652 	vdev_t *vd;
653 	int t;
654 
655 	ASSERT(tvd == tvd->vdev_top);
656 
657 	tvd->vdev_ms_array = svd->vdev_ms_array;
658 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
659 	tvd->vdev_ms_count = svd->vdev_ms_count;
660 
661 	svd->vdev_ms_array = 0;
662 	svd->vdev_ms_shift = 0;
663 	svd->vdev_ms_count = 0;
664 
665 	tvd->vdev_mg = svd->vdev_mg;
666 	tvd->vdev_ms = svd->vdev_ms;
667 
668 	svd->vdev_mg = NULL;
669 	svd->vdev_ms = NULL;
670 
671 	if (tvd->vdev_mg != NULL)
672 		tvd->vdev_mg->mg_vd = tvd;
673 
674 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
675 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
676 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
677 
678 	svd->vdev_stat.vs_alloc = 0;
679 	svd->vdev_stat.vs_space = 0;
680 	svd->vdev_stat.vs_dspace = 0;
681 
682 	for (t = 0; t < TXG_SIZE; t++) {
683 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
684 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
685 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
686 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
687 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
688 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
689 	}
690 
691 	if (list_link_active(&svd->vdev_config_dirty_node)) {
692 		vdev_config_clean(svd);
693 		vdev_config_dirty(tvd);
694 	}
695 
696 	if (list_link_active(&svd->vdev_state_dirty_node)) {
697 		vdev_state_clean(svd);
698 		vdev_state_dirty(tvd);
699 	}
700 
701 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
702 	svd->vdev_deflate_ratio = 0;
703 
704 	tvd->vdev_islog = svd->vdev_islog;
705 	svd->vdev_islog = 0;
706 }
707 
708 static void
709 vdev_top_update(vdev_t *tvd, vdev_t *vd)
710 {
711 	if (vd == NULL)
712 		return;
713 
714 	vd->vdev_top = tvd;
715 
716 	for (int c = 0; c < vd->vdev_children; c++)
717 		vdev_top_update(tvd, vd->vdev_child[c]);
718 }
719 
720 /*
721  * Add a mirror/replacing vdev above an existing vdev.
722  */
723 vdev_t *
724 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
725 {
726 	spa_t *spa = cvd->vdev_spa;
727 	vdev_t *pvd = cvd->vdev_parent;
728 	vdev_t *mvd;
729 
730 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
731 
732 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
733 
734 	mvd->vdev_asize = cvd->vdev_asize;
735 	mvd->vdev_min_asize = cvd->vdev_min_asize;
736 	mvd->vdev_ashift = cvd->vdev_ashift;
737 	mvd->vdev_state = cvd->vdev_state;
738 	mvd->vdev_crtxg = cvd->vdev_crtxg;
739 
740 	vdev_remove_child(pvd, cvd);
741 	vdev_add_child(pvd, mvd);
742 	cvd->vdev_id = mvd->vdev_children;
743 	vdev_add_child(mvd, cvd);
744 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
745 
746 	if (mvd == mvd->vdev_top)
747 		vdev_top_transfer(cvd, mvd);
748 
749 	return (mvd);
750 }
751 
752 /*
753  * Remove a 1-way mirror/replacing vdev from the tree.
754  */
755 void
756 vdev_remove_parent(vdev_t *cvd)
757 {
758 	vdev_t *mvd = cvd->vdev_parent;
759 	vdev_t *pvd = mvd->vdev_parent;
760 
761 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
762 
763 	ASSERT(mvd->vdev_children == 1);
764 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
765 	    mvd->vdev_ops == &vdev_replacing_ops ||
766 	    mvd->vdev_ops == &vdev_spare_ops);
767 	cvd->vdev_ashift = mvd->vdev_ashift;
768 
769 	vdev_remove_child(mvd, cvd);
770 	vdev_remove_child(pvd, mvd);
771 
772 	/*
773 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
774 	 * Otherwise, we could have detached an offline device, and when we
775 	 * go to import the pool we'll think we have two top-level vdevs,
776 	 * instead of a different version of the same top-level vdev.
777 	 */
778 	if (mvd->vdev_top == mvd) {
779 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
780 		cvd->vdev_orig_guid = cvd->vdev_guid;
781 		cvd->vdev_guid += guid_delta;
782 		cvd->vdev_guid_sum += guid_delta;
783 	}
784 	cvd->vdev_id = mvd->vdev_id;
785 	vdev_add_child(pvd, cvd);
786 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
787 
788 	if (cvd == cvd->vdev_top)
789 		vdev_top_transfer(mvd, cvd);
790 
791 	ASSERT(mvd->vdev_children == 0);
792 	vdev_free(mvd);
793 }
794 
795 int
796 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
797 {
798 	spa_t *spa = vd->vdev_spa;
799 	objset_t *mos = spa->spa_meta_objset;
800 	uint64_t m;
801 	uint64_t oldc = vd->vdev_ms_count;
802 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
803 	metaslab_t **mspp;
804 	int error;
805 
806 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
807 
808 	/*
809 	 * This vdev is not being allocated from yet or is a hole.
810 	 */
811 	if (vd->vdev_ms_shift == 0)
812 		return (0);
813 
814 	ASSERT(!vd->vdev_ishole);
815 
816 	/*
817 	 * Compute the raidz-deflation ratio.  Note, we hard-code
818 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
819 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
820 	 * or we will inconsistently account for existing bp's.
821 	 */
822 	vd->vdev_deflate_ratio = (1 << 17) /
823 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
824 
825 	ASSERT(oldc <= newc);
826 
827 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
828 
829 	if (oldc != 0) {
830 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
831 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
832 	}
833 
834 	vd->vdev_ms = mspp;
835 	vd->vdev_ms_count = newc;
836 
837 	for (m = oldc; m < newc; m++) {
838 		space_map_obj_t smo = { 0, 0, 0 };
839 		if (txg == 0) {
840 			uint64_t object = 0;
841 			error = dmu_read(mos, vd->vdev_ms_array,
842 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
843 			    DMU_READ_PREFETCH);
844 			if (error)
845 				return (error);
846 			if (object != 0) {
847 				dmu_buf_t *db;
848 				error = dmu_bonus_hold(mos, object, FTAG, &db);
849 				if (error)
850 					return (error);
851 				ASSERT3U(db->db_size, >=, sizeof (smo));
852 				bcopy(db->db_data, &smo, sizeof (smo));
853 				ASSERT3U(smo.smo_object, ==, object);
854 				dmu_buf_rele(db, FTAG);
855 			}
856 		}
857 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
858 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
859 	}
860 
861 	if (txg == 0)
862 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
863 
864 	if (oldc == 0)
865 		metaslab_group_activate(vd->vdev_mg);
866 
867 	if (txg == 0)
868 		spa_config_exit(spa, SCL_ALLOC, FTAG);
869 
870 	return (0);
871 }
872 
873 void
874 vdev_metaslab_fini(vdev_t *vd)
875 {
876 	uint64_t m;
877 	uint64_t count = vd->vdev_ms_count;
878 
879 	if (vd->vdev_ms != NULL) {
880 		metaslab_group_passivate(vd->vdev_mg);
881 		for (m = 0; m < count; m++)
882 			if (vd->vdev_ms[m] != NULL)
883 				metaslab_fini(vd->vdev_ms[m]);
884 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
885 		vd->vdev_ms = NULL;
886 	}
887 }
888 
889 typedef struct vdev_probe_stats {
890 	boolean_t	vps_readable;
891 	boolean_t	vps_writeable;
892 	int		vps_flags;
893 } vdev_probe_stats_t;
894 
895 static void
896 vdev_probe_done(zio_t *zio)
897 {
898 	spa_t *spa = zio->io_spa;
899 	vdev_t *vd = zio->io_vd;
900 	vdev_probe_stats_t *vps = zio->io_private;
901 
902 	ASSERT(vd->vdev_probe_zio != NULL);
903 
904 	if (zio->io_type == ZIO_TYPE_READ) {
905 		if (zio->io_error == 0)
906 			vps->vps_readable = 1;
907 		if (zio->io_error == 0 && spa_writeable(spa)) {
908 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
909 			    zio->io_offset, zio->io_size, zio->io_data,
910 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
911 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
912 		} else {
913 			zio_buf_free(zio->io_data, zio->io_size);
914 		}
915 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
916 		if (zio->io_error == 0)
917 			vps->vps_writeable = 1;
918 		zio_buf_free(zio->io_data, zio->io_size);
919 	} else if (zio->io_type == ZIO_TYPE_NULL) {
920 		zio_t *pio;
921 
922 		vd->vdev_cant_read |= !vps->vps_readable;
923 		vd->vdev_cant_write |= !vps->vps_writeable;
924 
925 		if (vdev_readable(vd) &&
926 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
927 			zio->io_error = 0;
928 		} else {
929 			ASSERT(zio->io_error != 0);
930 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
931 			    spa, vd, NULL, 0, 0);
932 			zio->io_error = ENXIO;
933 		}
934 
935 		mutex_enter(&vd->vdev_probe_lock);
936 		ASSERT(vd->vdev_probe_zio == zio);
937 		vd->vdev_probe_zio = NULL;
938 		mutex_exit(&vd->vdev_probe_lock);
939 
940 		while ((pio = zio_walk_parents(zio)) != NULL)
941 			if (!vdev_accessible(vd, pio))
942 				pio->io_error = ENXIO;
943 
944 		kmem_free(vps, sizeof (*vps));
945 	}
946 }
947 
948 /*
949  * Determine whether this device is accessible by reading and writing
950  * to several known locations: the pad regions of each vdev label
951  * but the first (which we leave alone in case it contains a VTOC).
952  */
953 zio_t *
954 vdev_probe(vdev_t *vd, zio_t *zio)
955 {
956 	spa_t *spa = vd->vdev_spa;
957 	vdev_probe_stats_t *vps = NULL;
958 	zio_t *pio;
959 
960 	ASSERT(vd->vdev_ops->vdev_op_leaf);
961 
962 	/*
963 	 * Don't probe the probe.
964 	 */
965 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
966 		return (NULL);
967 
968 	/*
969 	 * To prevent 'probe storms' when a device fails, we create
970 	 * just one probe i/o at a time.  All zios that want to probe
971 	 * this vdev will become parents of the probe io.
972 	 */
973 	mutex_enter(&vd->vdev_probe_lock);
974 
975 	if ((pio = vd->vdev_probe_zio) == NULL) {
976 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
977 
978 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
979 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
980 		    ZIO_FLAG_TRYHARD;
981 
982 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
983 			/*
984 			 * vdev_cant_read and vdev_cant_write can only
985 			 * transition from TRUE to FALSE when we have the
986 			 * SCL_ZIO lock as writer; otherwise they can only
987 			 * transition from FALSE to TRUE.  This ensures that
988 			 * any zio looking at these values can assume that
989 			 * failures persist for the life of the I/O.  That's
990 			 * important because when a device has intermittent
991 			 * connectivity problems, we want to ensure that
992 			 * they're ascribed to the device (ENXIO) and not
993 			 * the zio (EIO).
994 			 *
995 			 * Since we hold SCL_ZIO as writer here, clear both
996 			 * values so the probe can reevaluate from first
997 			 * principles.
998 			 */
999 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1000 			vd->vdev_cant_read = B_FALSE;
1001 			vd->vdev_cant_write = B_FALSE;
1002 		}
1003 
1004 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1005 		    vdev_probe_done, vps,
1006 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1007 
1008 		if (zio != NULL) {
1009 			vd->vdev_probe_wanted = B_TRUE;
1010 			spa_async_request(spa, SPA_ASYNC_PROBE);
1011 		}
1012 	}
1013 
1014 	if (zio != NULL)
1015 		zio_add_child(zio, pio);
1016 
1017 	mutex_exit(&vd->vdev_probe_lock);
1018 
1019 	if (vps == NULL) {
1020 		ASSERT(zio != NULL);
1021 		return (NULL);
1022 	}
1023 
1024 	for (int l = 1; l < VDEV_LABELS; l++) {
1025 		zio_nowait(zio_read_phys(pio, vd,
1026 		    vdev_label_offset(vd->vdev_psize, l,
1027 		    offsetof(vdev_label_t, vl_pad2)),
1028 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1029 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1030 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1031 	}
1032 
1033 	if (zio == NULL)
1034 		return (pio);
1035 
1036 	zio_nowait(pio);
1037 	return (NULL);
1038 }
1039 
1040 static void
1041 vdev_open_child(void *arg)
1042 {
1043 	vdev_t *vd = arg;
1044 
1045 	vd->vdev_open_thread = curthread;
1046 	vd->vdev_open_error = vdev_open(vd);
1047 	vd->vdev_open_thread = NULL;
1048 }
1049 
1050 boolean_t
1051 vdev_uses_zvols(vdev_t *vd)
1052 {
1053 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1054 	    strlen(ZVOL_DIR)) == 0)
1055 		return (B_TRUE);
1056 	for (int c = 0; c < vd->vdev_children; c++)
1057 		if (vdev_uses_zvols(vd->vdev_child[c]))
1058 			return (B_TRUE);
1059 	return (B_FALSE);
1060 }
1061 
1062 void
1063 vdev_open_children(vdev_t *vd)
1064 {
1065 	taskq_t *tq;
1066 	int children = vd->vdev_children;
1067 
1068 	/*
1069 	 * in order to handle pools on top of zvols, do the opens
1070 	 * in a single thread so that the same thread holds the
1071 	 * spa_namespace_lock
1072 	 */
1073 	if (vdev_uses_zvols(vd)) {
1074 		for (int c = 0; c < children; c++)
1075 			vd->vdev_child[c]->vdev_open_error =
1076 			    vdev_open(vd->vdev_child[c]);
1077 		return;
1078 	}
1079 	tq = taskq_create("vdev_open", children, minclsyspri,
1080 	    children, children, TASKQ_PREPOPULATE);
1081 
1082 	for (int c = 0; c < children; c++)
1083 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1084 		    TQ_SLEEP) != NULL);
1085 
1086 	taskq_destroy(tq);
1087 }
1088 
1089 /*
1090  * Prepare a virtual device for access.
1091  */
1092 int
1093 vdev_open(vdev_t *vd)
1094 {
1095 	spa_t *spa = vd->vdev_spa;
1096 	int error;
1097 	uint64_t osize = 0;
1098 	uint64_t asize, psize;
1099 	uint64_t ashift = 0;
1100 
1101 	ASSERT(vd->vdev_open_thread == curthread ||
1102 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1103 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1104 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1105 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1106 
1107 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1108 	vd->vdev_cant_read = B_FALSE;
1109 	vd->vdev_cant_write = B_FALSE;
1110 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1111 
1112 	/*
1113 	 * If this vdev is not removed, check its fault status.  If it's
1114 	 * faulted, bail out of the open.
1115 	 */
1116 	if (!vd->vdev_removed && vd->vdev_faulted) {
1117 		ASSERT(vd->vdev_children == 0);
1118 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1119 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1120 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1121 		    vd->vdev_label_aux);
1122 		return (ENXIO);
1123 	} else if (vd->vdev_offline) {
1124 		ASSERT(vd->vdev_children == 0);
1125 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1126 		return (ENXIO);
1127 	}
1128 
1129 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1130 
1131 	/*
1132 	 * Reset the vdev_reopening flag so that we actually close
1133 	 * the vdev on error.
1134 	 */
1135 	vd->vdev_reopening = B_FALSE;
1136 	if (zio_injection_enabled && error == 0)
1137 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1138 
1139 	if (error) {
1140 		if (vd->vdev_removed &&
1141 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1142 			vd->vdev_removed = B_FALSE;
1143 
1144 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1145 		    vd->vdev_stat.vs_aux);
1146 		return (error);
1147 	}
1148 
1149 	vd->vdev_removed = B_FALSE;
1150 
1151 	/*
1152 	 * Recheck the faulted flag now that we have confirmed that
1153 	 * the vdev is accessible.  If we're faulted, bail.
1154 	 */
1155 	if (vd->vdev_faulted) {
1156 		ASSERT(vd->vdev_children == 0);
1157 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1158 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1159 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1160 		    vd->vdev_label_aux);
1161 		return (ENXIO);
1162 	}
1163 
1164 	if (vd->vdev_degraded) {
1165 		ASSERT(vd->vdev_children == 0);
1166 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1167 		    VDEV_AUX_ERR_EXCEEDED);
1168 	} else {
1169 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1170 	}
1171 
1172 	/*
1173 	 * For hole or missing vdevs we just return success.
1174 	 */
1175 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1176 		return (0);
1177 
1178 	for (int c = 0; c < vd->vdev_children; c++) {
1179 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1180 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1181 			    VDEV_AUX_NONE);
1182 			break;
1183 		}
1184 	}
1185 
1186 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1187 
1188 	if (vd->vdev_children == 0) {
1189 		if (osize < SPA_MINDEVSIZE) {
1190 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1191 			    VDEV_AUX_TOO_SMALL);
1192 			return (EOVERFLOW);
1193 		}
1194 		psize = osize;
1195 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1196 	} else {
1197 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1198 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1199 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1200 			    VDEV_AUX_TOO_SMALL);
1201 			return (EOVERFLOW);
1202 		}
1203 		psize = 0;
1204 		asize = osize;
1205 	}
1206 
1207 	vd->vdev_psize = psize;
1208 
1209 	/*
1210 	 * Make sure the allocatable size hasn't shrunk.
1211 	 */
1212 	if (asize < vd->vdev_min_asize) {
1213 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214 		    VDEV_AUX_BAD_LABEL);
1215 		return (EINVAL);
1216 	}
1217 
1218 	if (vd->vdev_asize == 0) {
1219 		/*
1220 		 * This is the first-ever open, so use the computed values.
1221 		 * For testing purposes, a higher ashift can be requested.
1222 		 */
1223 		vd->vdev_asize = asize;
1224 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1225 	} else {
1226 		/*
1227 		 * Make sure the alignment requirement hasn't increased.
1228 		 */
1229 		if (ashift > vd->vdev_top->vdev_ashift) {
1230 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231 			    VDEV_AUX_BAD_LABEL);
1232 			return (EINVAL);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If all children are healthy and the asize has increased,
1238 	 * then we've experienced dynamic LUN growth.  If automatic
1239 	 * expansion is enabled then use the additional space.
1240 	 */
1241 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1242 	    (vd->vdev_expanding || spa->spa_autoexpand))
1243 		vd->vdev_asize = asize;
1244 
1245 	vdev_set_min_asize(vd);
1246 
1247 	/*
1248 	 * Ensure we can issue some IO before declaring the
1249 	 * vdev open for business.
1250 	 */
1251 	if (vd->vdev_ops->vdev_op_leaf &&
1252 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1253 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1254 		    VDEV_AUX_IO_FAILURE);
1255 		return (error);
1256 	}
1257 
1258 	/*
1259 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1260 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1261 	 * since this would just restart the scrub we are already doing.
1262 	 */
1263 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1264 	    vdev_resilver_needed(vd, NULL, NULL))
1265 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1266 
1267 	return (0);
1268 }
1269 
1270 /*
1271  * Called once the vdevs are all opened, this routine validates the label
1272  * contents.  This needs to be done before vdev_load() so that we don't
1273  * inadvertently do repair I/Os to the wrong device.
1274  *
1275  * This function will only return failure if one of the vdevs indicates that it
1276  * has since been destroyed or exported.  This is only possible if
1277  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1278  * will be updated but the function will return 0.
1279  */
1280 int
1281 vdev_validate(vdev_t *vd)
1282 {
1283 	spa_t *spa = vd->vdev_spa;
1284 	nvlist_t *label;
1285 	uint64_t guid = 0, top_guid;
1286 	uint64_t state;
1287 
1288 	for (int c = 0; c < vd->vdev_children; c++)
1289 		if (vdev_validate(vd->vdev_child[c]) != 0)
1290 			return (EBADF);
1291 
1292 	/*
1293 	 * If the device has already failed, or was marked offline, don't do
1294 	 * any further validation.  Otherwise, label I/O will fail and we will
1295 	 * overwrite the previous state.
1296 	 */
1297 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1298 		uint64_t aux_guid = 0;
1299 		nvlist_t *nvl;
1300 
1301 		if ((label = vdev_label_read_config(vd)) == NULL) {
1302 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303 			    VDEV_AUX_BAD_LABEL);
1304 			return (0);
1305 		}
1306 
1307 		/*
1308 		 * Determine if this vdev has been split off into another
1309 		 * pool.  If so, then refuse to open it.
1310 		 */
1311 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1312 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1313 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1314 			    VDEV_AUX_SPLIT_POOL);
1315 			nvlist_free(label);
1316 			return (0);
1317 		}
1318 
1319 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1320 		    &guid) != 0 || guid != spa_guid(spa)) {
1321 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1322 			    VDEV_AUX_CORRUPT_DATA);
1323 			nvlist_free(label);
1324 			return (0);
1325 		}
1326 
1327 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1328 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1329 		    &aux_guid) != 0)
1330 			aux_guid = 0;
1331 
1332 		/*
1333 		 * If this vdev just became a top-level vdev because its
1334 		 * sibling was detached, it will have adopted the parent's
1335 		 * vdev guid -- but the label may or may not be on disk yet.
1336 		 * Fortunately, either version of the label will have the
1337 		 * same top guid, so if we're a top-level vdev, we can
1338 		 * safely compare to that instead.
1339 		 *
1340 		 * If we split this vdev off instead, then we also check the
1341 		 * original pool's guid.  We don't want to consider the vdev
1342 		 * corrupt if it is partway through a split operation.
1343 		 */
1344 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1345 		    &guid) != 0 ||
1346 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1347 		    &top_guid) != 0 ||
1348 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1349 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1350 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1351 			    VDEV_AUX_CORRUPT_DATA);
1352 			nvlist_free(label);
1353 			return (0);
1354 		}
1355 
1356 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1357 		    &state) != 0) {
1358 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1359 			    VDEV_AUX_CORRUPT_DATA);
1360 			nvlist_free(label);
1361 			return (0);
1362 		}
1363 
1364 		nvlist_free(label);
1365 
1366 		/*
1367 		 * If spa->spa_load_verbatim is true, no need to check the
1368 		 * state of the pool.
1369 		 */
1370 		if (!spa->spa_load_verbatim &&
1371 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1372 		    state != POOL_STATE_ACTIVE)
1373 			return (EBADF);
1374 
1375 		/*
1376 		 * If we were able to open and validate a vdev that was
1377 		 * previously marked permanently unavailable, clear that state
1378 		 * now.
1379 		 */
1380 		if (vd->vdev_not_present)
1381 			vd->vdev_not_present = 0;
1382 	}
1383 
1384 	return (0);
1385 }
1386 
1387 /*
1388  * Close a virtual device.
1389  */
1390 void
1391 vdev_close(vdev_t *vd)
1392 {
1393 	spa_t *spa = vd->vdev_spa;
1394 	vdev_t *pvd = vd->vdev_parent;
1395 
1396 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1397 
1398 	/*
1399 	 * If our parent is reopening, then we are as well, unless we are
1400 	 * going offline.
1401 	 */
1402 	if (pvd != NULL && pvd->vdev_reopening)
1403 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1404 
1405 	vd->vdev_ops->vdev_op_close(vd);
1406 
1407 	vdev_cache_purge(vd);
1408 
1409 	/*
1410 	 * We record the previous state before we close it, so that if we are
1411 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1412 	 * it's still faulted.
1413 	 */
1414 	vd->vdev_prevstate = vd->vdev_state;
1415 
1416 	if (vd->vdev_offline)
1417 		vd->vdev_state = VDEV_STATE_OFFLINE;
1418 	else
1419 		vd->vdev_state = VDEV_STATE_CLOSED;
1420 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1421 }
1422 
1423 void
1424 vdev_hold(vdev_t *vd)
1425 {
1426 	spa_t *spa = vd->vdev_spa;
1427 
1428 	ASSERT(spa_is_root(spa));
1429 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1430 		return;
1431 
1432 	for (int c = 0; c < vd->vdev_children; c++)
1433 		vdev_hold(vd->vdev_child[c]);
1434 
1435 	if (vd->vdev_ops->vdev_op_leaf)
1436 		vd->vdev_ops->vdev_op_hold(vd);
1437 }
1438 
1439 void
1440 vdev_rele(vdev_t *vd)
1441 {
1442 	spa_t *spa = vd->vdev_spa;
1443 
1444 	ASSERT(spa_is_root(spa));
1445 	for (int c = 0; c < vd->vdev_children; c++)
1446 		vdev_rele(vd->vdev_child[c]);
1447 
1448 	if (vd->vdev_ops->vdev_op_leaf)
1449 		vd->vdev_ops->vdev_op_rele(vd);
1450 }
1451 
1452 /*
1453  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1454  * reopen leaf vdevs which had previously been opened as they might deadlock
1455  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1456  * If the leaf has never been opened then open it, as usual.
1457  */
1458 void
1459 vdev_reopen(vdev_t *vd)
1460 {
1461 	spa_t *spa = vd->vdev_spa;
1462 
1463 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1464 
1465 	/* set the reopening flag unless we're taking the vdev offline */
1466 	vd->vdev_reopening = !vd->vdev_offline;
1467 	vdev_close(vd);
1468 	(void) vdev_open(vd);
1469 
1470 	/*
1471 	 * Call vdev_validate() here to make sure we have the same device.
1472 	 * Otherwise, a device with an invalid label could be successfully
1473 	 * opened in response to vdev_reopen().
1474 	 */
1475 	if (vd->vdev_aux) {
1476 		(void) vdev_validate_aux(vd);
1477 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1478 		    vd->vdev_aux == &spa->spa_l2cache &&
1479 		    !l2arc_vdev_present(vd))
1480 			l2arc_add_vdev(spa, vd);
1481 	} else {
1482 		(void) vdev_validate(vd);
1483 	}
1484 
1485 	/*
1486 	 * Reassess parent vdev's health.
1487 	 */
1488 	vdev_propagate_state(vd);
1489 }
1490 
1491 int
1492 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1493 {
1494 	int error;
1495 
1496 	/*
1497 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1498 	 * For a create, however, we want to fail the request if
1499 	 * there are any components we can't open.
1500 	 */
1501 	error = vdev_open(vd);
1502 
1503 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1504 		vdev_close(vd);
1505 		return (error ? error : ENXIO);
1506 	}
1507 
1508 	/*
1509 	 * Recursively initialize all labels.
1510 	 */
1511 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1512 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1513 		vdev_close(vd);
1514 		return (error);
1515 	}
1516 
1517 	return (0);
1518 }
1519 
1520 void
1521 vdev_metaslab_set_size(vdev_t *vd)
1522 {
1523 	/*
1524 	 * Aim for roughly 200 metaslabs per vdev.
1525 	 */
1526 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1527 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1528 }
1529 
1530 void
1531 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1532 {
1533 	ASSERT(vd == vd->vdev_top);
1534 	ASSERT(!vd->vdev_ishole);
1535 	ASSERT(ISP2(flags));
1536 
1537 	if (flags & VDD_METASLAB)
1538 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1539 
1540 	if (flags & VDD_DTL)
1541 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1542 
1543 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1544 }
1545 
1546 /*
1547  * DTLs.
1548  *
1549  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1550  * the vdev has less than perfect replication.  There are four kinds of DTL:
1551  *
1552  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1553  *
1554  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1555  *
1556  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1557  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1558  *	txgs that was scrubbed.
1559  *
1560  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1561  *	persistent errors or just some device being offline.
1562  *	Unlike the other three, the DTL_OUTAGE map is not generally
1563  *	maintained; it's only computed when needed, typically to
1564  *	determine whether a device can be detached.
1565  *
1566  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1567  * either has the data or it doesn't.
1568  *
1569  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1570  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1571  * if any child is less than fully replicated, then so is its parent.
1572  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1573  * comprising only those txgs which appear in 'maxfaults' or more children;
1574  * those are the txgs we don't have enough replication to read.  For example,
1575  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1576  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1577  * two child DTL_MISSING maps.
1578  *
1579  * It should be clear from the above that to compute the DTLs and outage maps
1580  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1581  * Therefore, that is all we keep on disk.  When loading the pool, or after
1582  * a configuration change, we generate all other DTLs from first principles.
1583  */
1584 void
1585 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1586 {
1587 	space_map_t *sm = &vd->vdev_dtl[t];
1588 
1589 	ASSERT(t < DTL_TYPES);
1590 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1591 
1592 	mutex_enter(sm->sm_lock);
1593 	if (!space_map_contains(sm, txg, size))
1594 		space_map_add(sm, txg, size);
1595 	mutex_exit(sm->sm_lock);
1596 }
1597 
1598 boolean_t
1599 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1600 {
1601 	space_map_t *sm = &vd->vdev_dtl[t];
1602 	boolean_t dirty = B_FALSE;
1603 
1604 	ASSERT(t < DTL_TYPES);
1605 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1606 
1607 	mutex_enter(sm->sm_lock);
1608 	if (sm->sm_space != 0)
1609 		dirty = space_map_contains(sm, txg, size);
1610 	mutex_exit(sm->sm_lock);
1611 
1612 	return (dirty);
1613 }
1614 
1615 boolean_t
1616 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1617 {
1618 	space_map_t *sm = &vd->vdev_dtl[t];
1619 	boolean_t empty;
1620 
1621 	mutex_enter(sm->sm_lock);
1622 	empty = (sm->sm_space == 0);
1623 	mutex_exit(sm->sm_lock);
1624 
1625 	return (empty);
1626 }
1627 
1628 /*
1629  * Reassess DTLs after a config change or scrub completion.
1630  */
1631 void
1632 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1633 {
1634 	spa_t *spa = vd->vdev_spa;
1635 	avl_tree_t reftree;
1636 	int minref;
1637 
1638 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1639 
1640 	for (int c = 0; c < vd->vdev_children; c++)
1641 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1642 		    scrub_txg, scrub_done);
1643 
1644 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1645 		return;
1646 
1647 	if (vd->vdev_ops->vdev_op_leaf) {
1648 		mutex_enter(&vd->vdev_dtl_lock);
1649 		if (scrub_txg != 0 &&
1650 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1651 			/*
1652 			 * We completed a scrub up to scrub_txg.  If we
1653 			 * did it without rebooting, then the scrub dtl
1654 			 * will be valid, so excise the old region and
1655 			 * fold in the scrub dtl.  Otherwise, leave the
1656 			 * dtl as-is if there was an error.
1657 			 *
1658 			 * There's little trick here: to excise the beginning
1659 			 * of the DTL_MISSING map, we put it into a reference
1660 			 * tree and then add a segment with refcnt -1 that
1661 			 * covers the range [0, scrub_txg).  This means
1662 			 * that each txg in that range has refcnt -1 or 0.
1663 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1664 			 * entries in the range [0, scrub_txg) will have a
1665 			 * positive refcnt -- either 1 or 2.  We then convert
1666 			 * the reference tree into the new DTL_MISSING map.
1667 			 */
1668 			space_map_ref_create(&reftree);
1669 			space_map_ref_add_map(&reftree,
1670 			    &vd->vdev_dtl[DTL_MISSING], 1);
1671 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1672 			space_map_ref_add_map(&reftree,
1673 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1674 			space_map_ref_generate_map(&reftree,
1675 			    &vd->vdev_dtl[DTL_MISSING], 1);
1676 			space_map_ref_destroy(&reftree);
1677 		}
1678 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1679 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1680 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1681 		if (scrub_done)
1682 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1683 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1684 		if (!vdev_readable(vd))
1685 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1686 		else
1687 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1688 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1689 		mutex_exit(&vd->vdev_dtl_lock);
1690 
1691 		if (txg != 0)
1692 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1693 		return;
1694 	}
1695 
1696 	mutex_enter(&vd->vdev_dtl_lock);
1697 	for (int t = 0; t < DTL_TYPES; t++) {
1698 		/* account for child's outage in parent's missing map */
1699 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1700 		if (t == DTL_SCRUB)
1701 			continue;			/* leaf vdevs only */
1702 		if (t == DTL_PARTIAL)
1703 			minref = 1;			/* i.e. non-zero */
1704 		else if (vd->vdev_nparity != 0)
1705 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1706 		else
1707 			minref = vd->vdev_children;	/* any kind of mirror */
1708 		space_map_ref_create(&reftree);
1709 		for (int c = 0; c < vd->vdev_children; c++) {
1710 			vdev_t *cvd = vd->vdev_child[c];
1711 			mutex_enter(&cvd->vdev_dtl_lock);
1712 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1713 			mutex_exit(&cvd->vdev_dtl_lock);
1714 		}
1715 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1716 		space_map_ref_destroy(&reftree);
1717 	}
1718 	mutex_exit(&vd->vdev_dtl_lock);
1719 }
1720 
1721 static int
1722 vdev_dtl_load(vdev_t *vd)
1723 {
1724 	spa_t *spa = vd->vdev_spa;
1725 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1726 	objset_t *mos = spa->spa_meta_objset;
1727 	dmu_buf_t *db;
1728 	int error;
1729 
1730 	ASSERT(vd->vdev_children == 0);
1731 
1732 	if (smo->smo_object == 0)
1733 		return (0);
1734 
1735 	ASSERT(!vd->vdev_ishole);
1736 
1737 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1738 		return (error);
1739 
1740 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1741 	bcopy(db->db_data, smo, sizeof (*smo));
1742 	dmu_buf_rele(db, FTAG);
1743 
1744 	mutex_enter(&vd->vdev_dtl_lock);
1745 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1746 	    NULL, SM_ALLOC, smo, mos);
1747 	mutex_exit(&vd->vdev_dtl_lock);
1748 
1749 	return (error);
1750 }
1751 
1752 void
1753 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1754 {
1755 	spa_t *spa = vd->vdev_spa;
1756 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1757 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1758 	objset_t *mos = spa->spa_meta_objset;
1759 	space_map_t smsync;
1760 	kmutex_t smlock;
1761 	dmu_buf_t *db;
1762 	dmu_tx_t *tx;
1763 
1764 	ASSERT(!vd->vdev_ishole);
1765 
1766 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1767 
1768 	if (vd->vdev_detached) {
1769 		if (smo->smo_object != 0) {
1770 			int err = dmu_object_free(mos, smo->smo_object, tx);
1771 			ASSERT3U(err, ==, 0);
1772 			smo->smo_object = 0;
1773 		}
1774 		dmu_tx_commit(tx);
1775 		return;
1776 	}
1777 
1778 	if (smo->smo_object == 0) {
1779 		ASSERT(smo->smo_objsize == 0);
1780 		ASSERT(smo->smo_alloc == 0);
1781 		smo->smo_object = dmu_object_alloc(mos,
1782 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1783 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1784 		ASSERT(smo->smo_object != 0);
1785 		vdev_config_dirty(vd->vdev_top);
1786 	}
1787 
1788 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1789 
1790 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1791 	    &smlock);
1792 
1793 	mutex_enter(&smlock);
1794 
1795 	mutex_enter(&vd->vdev_dtl_lock);
1796 	space_map_walk(sm, space_map_add, &smsync);
1797 	mutex_exit(&vd->vdev_dtl_lock);
1798 
1799 	space_map_truncate(smo, mos, tx);
1800 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1801 
1802 	space_map_destroy(&smsync);
1803 
1804 	mutex_exit(&smlock);
1805 	mutex_destroy(&smlock);
1806 
1807 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1808 	dmu_buf_will_dirty(db, tx);
1809 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1810 	bcopy(smo, db->db_data, sizeof (*smo));
1811 	dmu_buf_rele(db, FTAG);
1812 
1813 	dmu_tx_commit(tx);
1814 }
1815 
1816 /*
1817  * Determine whether the specified vdev can be offlined/detached/removed
1818  * without losing data.
1819  */
1820 boolean_t
1821 vdev_dtl_required(vdev_t *vd)
1822 {
1823 	spa_t *spa = vd->vdev_spa;
1824 	vdev_t *tvd = vd->vdev_top;
1825 	uint8_t cant_read = vd->vdev_cant_read;
1826 	boolean_t required;
1827 
1828 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1829 
1830 	if (vd == spa->spa_root_vdev || vd == tvd)
1831 		return (B_TRUE);
1832 
1833 	/*
1834 	 * Temporarily mark the device as unreadable, and then determine
1835 	 * whether this results in any DTL outages in the top-level vdev.
1836 	 * If not, we can safely offline/detach/remove the device.
1837 	 */
1838 	vd->vdev_cant_read = B_TRUE;
1839 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1840 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1841 	vd->vdev_cant_read = cant_read;
1842 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1843 
1844 	return (required);
1845 }
1846 
1847 /*
1848  * Determine if resilver is needed, and if so the txg range.
1849  */
1850 boolean_t
1851 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1852 {
1853 	boolean_t needed = B_FALSE;
1854 	uint64_t thismin = UINT64_MAX;
1855 	uint64_t thismax = 0;
1856 
1857 	if (vd->vdev_children == 0) {
1858 		mutex_enter(&vd->vdev_dtl_lock);
1859 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1860 		    vdev_writeable(vd)) {
1861 			space_seg_t *ss;
1862 
1863 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1864 			thismin = ss->ss_start - 1;
1865 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1866 			thismax = ss->ss_end;
1867 			needed = B_TRUE;
1868 		}
1869 		mutex_exit(&vd->vdev_dtl_lock);
1870 	} else {
1871 		for (int c = 0; c < vd->vdev_children; c++) {
1872 			vdev_t *cvd = vd->vdev_child[c];
1873 			uint64_t cmin, cmax;
1874 
1875 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1876 				thismin = MIN(thismin, cmin);
1877 				thismax = MAX(thismax, cmax);
1878 				needed = B_TRUE;
1879 			}
1880 		}
1881 	}
1882 
1883 	if (needed && minp) {
1884 		*minp = thismin;
1885 		*maxp = thismax;
1886 	}
1887 	return (needed);
1888 }
1889 
1890 void
1891 vdev_load(vdev_t *vd)
1892 {
1893 	/*
1894 	 * Recursively load all children.
1895 	 */
1896 	for (int c = 0; c < vd->vdev_children; c++)
1897 		vdev_load(vd->vdev_child[c]);
1898 
1899 	/*
1900 	 * If this is a top-level vdev, initialize its metaslabs.
1901 	 */
1902 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1903 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1904 	    vdev_metaslab_init(vd, 0) != 0))
1905 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1906 		    VDEV_AUX_CORRUPT_DATA);
1907 
1908 	/*
1909 	 * If this is a leaf vdev, load its DTL.
1910 	 */
1911 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1912 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1913 		    VDEV_AUX_CORRUPT_DATA);
1914 }
1915 
1916 /*
1917  * The special vdev case is used for hot spares and l2cache devices.  Its
1918  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1919  * we make sure that we can open the underlying device, then try to read the
1920  * label, and make sure that the label is sane and that it hasn't been
1921  * repurposed to another pool.
1922  */
1923 int
1924 vdev_validate_aux(vdev_t *vd)
1925 {
1926 	nvlist_t *label;
1927 	uint64_t guid, version;
1928 	uint64_t state;
1929 
1930 	if (!vdev_readable(vd))
1931 		return (0);
1932 
1933 	if ((label = vdev_label_read_config(vd)) == NULL) {
1934 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1935 		    VDEV_AUX_CORRUPT_DATA);
1936 		return (-1);
1937 	}
1938 
1939 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1940 	    version > SPA_VERSION ||
1941 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1942 	    guid != vd->vdev_guid ||
1943 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1944 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1945 		    VDEV_AUX_CORRUPT_DATA);
1946 		nvlist_free(label);
1947 		return (-1);
1948 	}
1949 
1950 	/*
1951 	 * We don't actually check the pool state here.  If it's in fact in
1952 	 * use by another pool, we update this fact on the fly when requested.
1953 	 */
1954 	nvlist_free(label);
1955 	return (0);
1956 }
1957 
1958 void
1959 vdev_remove(vdev_t *vd, uint64_t txg)
1960 {
1961 	spa_t *spa = vd->vdev_spa;
1962 	objset_t *mos = spa->spa_meta_objset;
1963 	dmu_tx_t *tx;
1964 
1965 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1966 
1967 	if (vd->vdev_dtl_smo.smo_object) {
1968 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1969 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1970 		vd->vdev_dtl_smo.smo_object = 0;
1971 	}
1972 
1973 	if (vd->vdev_ms != NULL) {
1974 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1975 			metaslab_t *msp = vd->vdev_ms[m];
1976 
1977 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1978 				continue;
1979 
1980 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1981 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1982 			msp->ms_smo.smo_object = 0;
1983 		}
1984 	}
1985 
1986 	if (vd->vdev_ms_array) {
1987 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1988 		vd->vdev_ms_array = 0;
1989 		vd->vdev_ms_shift = 0;
1990 	}
1991 	dmu_tx_commit(tx);
1992 }
1993 
1994 void
1995 vdev_sync_done(vdev_t *vd, uint64_t txg)
1996 {
1997 	metaslab_t *msp;
1998 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
1999 
2000 	ASSERT(!vd->vdev_ishole);
2001 
2002 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2003 		metaslab_sync_done(msp, txg);
2004 
2005 	if (reassess)
2006 		metaslab_sync_reassess(vd->vdev_mg);
2007 }
2008 
2009 void
2010 vdev_sync(vdev_t *vd, uint64_t txg)
2011 {
2012 	spa_t *spa = vd->vdev_spa;
2013 	vdev_t *lvd;
2014 	metaslab_t *msp;
2015 	dmu_tx_t *tx;
2016 
2017 	ASSERT(!vd->vdev_ishole);
2018 
2019 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2020 		ASSERT(vd == vd->vdev_top);
2021 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2022 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2023 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2024 		ASSERT(vd->vdev_ms_array != 0);
2025 		vdev_config_dirty(vd);
2026 		dmu_tx_commit(tx);
2027 	}
2028 
2029 	if (vd->vdev_removing)
2030 		vdev_remove(vd, txg);
2031 
2032 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2033 		metaslab_sync(msp, txg);
2034 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2035 	}
2036 
2037 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2038 		vdev_dtl_sync(lvd, txg);
2039 
2040 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2041 }
2042 
2043 uint64_t
2044 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2045 {
2046 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2047 }
2048 
2049 /*
2050  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2051  * not be opened, and no I/O is attempted.
2052  */
2053 int
2054 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2055 {
2056 	vdev_t *vd;
2057 
2058 	spa_vdev_state_enter(spa, SCL_NONE);
2059 
2060 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2061 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2062 
2063 	if (!vd->vdev_ops->vdev_op_leaf)
2064 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2065 
2066 	/*
2067 	 * We don't directly use the aux state here, but if we do a
2068 	 * vdev_reopen(), we need this value to be present to remember why we
2069 	 * were faulted.
2070 	 */
2071 	vd->vdev_label_aux = aux;
2072 
2073 	/*
2074 	 * Faulted state takes precedence over degraded.
2075 	 */
2076 	vd->vdev_faulted = 1ULL;
2077 	vd->vdev_degraded = 0ULL;
2078 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2079 
2080 	/*
2081 	 * If marking the vdev as faulted cause the top-level vdev to become
2082 	 * unavailable, then back off and simply mark the vdev as degraded
2083 	 * instead.
2084 	 */
2085 	if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog &&
2086 	    vd->vdev_aux == NULL) {
2087 		vd->vdev_degraded = 1ULL;
2088 		vd->vdev_faulted = 0ULL;
2089 
2090 		/*
2091 		 * If we reopen the device and it's not dead, only then do we
2092 		 * mark it degraded.
2093 		 */
2094 		vdev_reopen(vd);
2095 
2096 		if (vdev_readable(vd))
2097 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2098 	}
2099 
2100 	return (spa_vdev_state_exit(spa, vd, 0));
2101 }
2102 
2103 /*
2104  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2105  * user that something is wrong.  The vdev continues to operate as normal as far
2106  * as I/O is concerned.
2107  */
2108 int
2109 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2110 {
2111 	vdev_t *vd;
2112 
2113 	spa_vdev_state_enter(spa, SCL_NONE);
2114 
2115 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2116 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2117 
2118 	if (!vd->vdev_ops->vdev_op_leaf)
2119 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2120 
2121 	/*
2122 	 * If the vdev is already faulted, then don't do anything.
2123 	 */
2124 	if (vd->vdev_faulted || vd->vdev_degraded)
2125 		return (spa_vdev_state_exit(spa, NULL, 0));
2126 
2127 	vd->vdev_degraded = 1ULL;
2128 	if (!vdev_is_dead(vd))
2129 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2130 		    aux);
2131 
2132 	return (spa_vdev_state_exit(spa, vd, 0));
2133 }
2134 
2135 /*
2136  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2137  * any attached spare device should be detached when the device finishes
2138  * resilvering.  Second, the online should be treated like a 'test' online case,
2139  * so no FMA events are generated if the device fails to open.
2140  */
2141 int
2142 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2143 {
2144 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2145 
2146 	spa_vdev_state_enter(spa, SCL_NONE);
2147 
2148 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2149 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2150 
2151 	if (!vd->vdev_ops->vdev_op_leaf)
2152 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2153 
2154 	tvd = vd->vdev_top;
2155 	vd->vdev_offline = B_FALSE;
2156 	vd->vdev_tmpoffline = B_FALSE;
2157 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2158 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2159 
2160 	/* XXX - L2ARC 1.0 does not support expansion */
2161 	if (!vd->vdev_aux) {
2162 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2163 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2164 	}
2165 
2166 	vdev_reopen(tvd);
2167 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2168 
2169 	if (!vd->vdev_aux) {
2170 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2171 			pvd->vdev_expanding = B_FALSE;
2172 	}
2173 
2174 	if (newstate)
2175 		*newstate = vd->vdev_state;
2176 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2177 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2178 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2179 	    vd->vdev_parent->vdev_child[0] == vd)
2180 		vd->vdev_unspare = B_TRUE;
2181 
2182 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2183 
2184 		/* XXX - L2ARC 1.0 does not support expansion */
2185 		if (vd->vdev_aux)
2186 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2187 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2188 	}
2189 	return (spa_vdev_state_exit(spa, vd, 0));
2190 }
2191 
2192 static int
2193 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2194 {
2195 	vdev_t *vd, *tvd;
2196 	int error = 0;
2197 	uint64_t generation;
2198 	metaslab_group_t *mg;
2199 
2200 top:
2201 	spa_vdev_state_enter(spa, SCL_ALLOC);
2202 
2203 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2204 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2205 
2206 	if (!vd->vdev_ops->vdev_op_leaf)
2207 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2208 
2209 	tvd = vd->vdev_top;
2210 	mg = tvd->vdev_mg;
2211 	generation = spa->spa_config_generation + 1;
2212 
2213 	/*
2214 	 * If the device isn't already offline, try to offline it.
2215 	 */
2216 	if (!vd->vdev_offline) {
2217 		/*
2218 		 * If this device has the only valid copy of some data,
2219 		 * don't allow it to be offlined. Log devices are always
2220 		 * expendable.
2221 		 */
2222 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2223 		    vdev_dtl_required(vd))
2224 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2225 
2226 		/*
2227 		 * If the top-level is a slog and it has had allocations
2228 		 * then proceed.  We check that the vdev's metaslab group
2229 		 * is not NULL since it's possible that we may have just
2230 		 * added this vdev but not yet initialized its metaslabs.
2231 		 */
2232 		if (tvd->vdev_islog && mg != NULL) {
2233 			/*
2234 			 * Prevent any future allocations.
2235 			 */
2236 			metaslab_group_passivate(mg);
2237 			(void) spa_vdev_state_exit(spa, vd, 0);
2238 
2239 			error = spa_offline_log(spa);
2240 
2241 			spa_vdev_state_enter(spa, SCL_ALLOC);
2242 
2243 			/*
2244 			 * Check to see if the config has changed.
2245 			 */
2246 			if (error || generation != spa->spa_config_generation) {
2247 				metaslab_group_activate(mg);
2248 				if (error)
2249 					return (spa_vdev_state_exit(spa,
2250 					    vd, error));
2251 				(void) spa_vdev_state_exit(spa, vd, 0);
2252 				goto top;
2253 			}
2254 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2255 		}
2256 
2257 		/*
2258 		 * Offline this device and reopen its top-level vdev.
2259 		 * If the top-level vdev is a log device then just offline
2260 		 * it. Otherwise, if this action results in the top-level
2261 		 * vdev becoming unusable, undo it and fail the request.
2262 		 */
2263 		vd->vdev_offline = B_TRUE;
2264 		vdev_reopen(tvd);
2265 
2266 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2267 		    vdev_is_dead(tvd)) {
2268 			vd->vdev_offline = B_FALSE;
2269 			vdev_reopen(tvd);
2270 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2271 		}
2272 
2273 		/*
2274 		 * Add the device back into the metaslab rotor so that
2275 		 * once we online the device it's open for business.
2276 		 */
2277 		if (tvd->vdev_islog && mg != NULL)
2278 			metaslab_group_activate(mg);
2279 	}
2280 
2281 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2282 
2283 	return (spa_vdev_state_exit(spa, vd, 0));
2284 }
2285 
2286 int
2287 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2288 {
2289 	int error;
2290 
2291 	mutex_enter(&spa->spa_vdev_top_lock);
2292 	error = vdev_offline_locked(spa, guid, flags);
2293 	mutex_exit(&spa->spa_vdev_top_lock);
2294 
2295 	return (error);
2296 }
2297 
2298 /*
2299  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2300  * vdev_offline(), we assume the spa config is locked.  We also clear all
2301  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2302  */
2303 void
2304 vdev_clear(spa_t *spa, vdev_t *vd)
2305 {
2306 	vdev_t *rvd = spa->spa_root_vdev;
2307 
2308 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2309 
2310 	if (vd == NULL)
2311 		vd = rvd;
2312 
2313 	vd->vdev_stat.vs_read_errors = 0;
2314 	vd->vdev_stat.vs_write_errors = 0;
2315 	vd->vdev_stat.vs_checksum_errors = 0;
2316 
2317 	for (int c = 0; c < vd->vdev_children; c++)
2318 		vdev_clear(spa, vd->vdev_child[c]);
2319 
2320 	/*
2321 	 * If we're in the FAULTED state or have experienced failed I/O, then
2322 	 * clear the persistent state and attempt to reopen the device.  We
2323 	 * also mark the vdev config dirty, so that the new faulted state is
2324 	 * written out to disk.
2325 	 */
2326 	if (vd->vdev_faulted || vd->vdev_degraded ||
2327 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2328 
2329 		/*
2330 		 * When reopening in reponse to a clear event, it may be due to
2331 		 * a fmadm repair request.  In this case, if the device is
2332 		 * still broken, we want to still post the ereport again.
2333 		 */
2334 		vd->vdev_forcefault = B_TRUE;
2335 
2336 		vd->vdev_faulted = vd->vdev_degraded = 0;
2337 		vd->vdev_cant_read = B_FALSE;
2338 		vd->vdev_cant_write = B_FALSE;
2339 
2340 		vdev_reopen(vd);
2341 
2342 		vd->vdev_forcefault = B_FALSE;
2343 
2344 		if (vd != rvd)
2345 			vdev_state_dirty(vd->vdev_top);
2346 
2347 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2348 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2349 
2350 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2351 	}
2352 
2353 	/*
2354 	 * When clearing a FMA-diagnosed fault, we always want to
2355 	 * unspare the device, as we assume that the original spare was
2356 	 * done in response to the FMA fault.
2357 	 */
2358 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2359 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2360 	    vd->vdev_parent->vdev_child[0] == vd)
2361 		vd->vdev_unspare = B_TRUE;
2362 }
2363 
2364 boolean_t
2365 vdev_is_dead(vdev_t *vd)
2366 {
2367 	/*
2368 	 * Holes and missing devices are always considered "dead".
2369 	 * This simplifies the code since we don't have to check for
2370 	 * these types of devices in the various code paths.
2371 	 * Instead we rely on the fact that we skip over dead devices
2372 	 * before issuing I/O to them.
2373 	 */
2374 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2375 	    vd->vdev_ops == &vdev_missing_ops);
2376 }
2377 
2378 boolean_t
2379 vdev_readable(vdev_t *vd)
2380 {
2381 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2382 }
2383 
2384 boolean_t
2385 vdev_writeable(vdev_t *vd)
2386 {
2387 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2388 }
2389 
2390 boolean_t
2391 vdev_allocatable(vdev_t *vd)
2392 {
2393 	uint64_t state = vd->vdev_state;
2394 
2395 	/*
2396 	 * We currently allow allocations from vdevs which may be in the
2397 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2398 	 * fails to reopen then we'll catch it later when we're holding
2399 	 * the proper locks.  Note that we have to get the vdev state
2400 	 * in a local variable because although it changes atomically,
2401 	 * we're asking two separate questions about it.
2402 	 */
2403 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2404 	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2405 }
2406 
2407 boolean_t
2408 vdev_accessible(vdev_t *vd, zio_t *zio)
2409 {
2410 	ASSERT(zio->io_vd == vd);
2411 
2412 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2413 		return (B_FALSE);
2414 
2415 	if (zio->io_type == ZIO_TYPE_READ)
2416 		return (!vd->vdev_cant_read);
2417 
2418 	if (zio->io_type == ZIO_TYPE_WRITE)
2419 		return (!vd->vdev_cant_write);
2420 
2421 	return (B_TRUE);
2422 }
2423 
2424 /*
2425  * Get statistics for the given vdev.
2426  */
2427 void
2428 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2429 {
2430 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2431 
2432 	mutex_enter(&vd->vdev_stat_lock);
2433 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2434 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2435 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2436 	vs->vs_state = vd->vdev_state;
2437 	vs->vs_rsize = vdev_get_min_asize(vd);
2438 	if (vd->vdev_ops->vdev_op_leaf)
2439 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2440 	mutex_exit(&vd->vdev_stat_lock);
2441 
2442 	/*
2443 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2444 	 * over all top-level vdevs (i.e. the direct children of the root).
2445 	 */
2446 	if (vd == rvd) {
2447 		for (int c = 0; c < rvd->vdev_children; c++) {
2448 			vdev_t *cvd = rvd->vdev_child[c];
2449 			vdev_stat_t *cvs = &cvd->vdev_stat;
2450 
2451 			mutex_enter(&vd->vdev_stat_lock);
2452 			for (int t = 0; t < ZIO_TYPES; t++) {
2453 				vs->vs_ops[t] += cvs->vs_ops[t];
2454 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2455 			}
2456 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2457 			mutex_exit(&vd->vdev_stat_lock);
2458 		}
2459 	}
2460 }
2461 
2462 void
2463 vdev_clear_stats(vdev_t *vd)
2464 {
2465 	mutex_enter(&vd->vdev_stat_lock);
2466 	vd->vdev_stat.vs_space = 0;
2467 	vd->vdev_stat.vs_dspace = 0;
2468 	vd->vdev_stat.vs_alloc = 0;
2469 	mutex_exit(&vd->vdev_stat_lock);
2470 }
2471 
2472 void
2473 vdev_stat_update(zio_t *zio, uint64_t psize)
2474 {
2475 	spa_t *spa = zio->io_spa;
2476 	vdev_t *rvd = spa->spa_root_vdev;
2477 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2478 	vdev_t *pvd;
2479 	uint64_t txg = zio->io_txg;
2480 	vdev_stat_t *vs = &vd->vdev_stat;
2481 	zio_type_t type = zio->io_type;
2482 	int flags = zio->io_flags;
2483 
2484 	/*
2485 	 * If this i/o is a gang leader, it didn't do any actual work.
2486 	 */
2487 	if (zio->io_gang_tree)
2488 		return;
2489 
2490 	if (zio->io_error == 0) {
2491 		/*
2492 		 * If this is a root i/o, don't count it -- we've already
2493 		 * counted the top-level vdevs, and vdev_get_stats() will
2494 		 * aggregate them when asked.  This reduces contention on
2495 		 * the root vdev_stat_lock and implicitly handles blocks
2496 		 * that compress away to holes, for which there is no i/o.
2497 		 * (Holes never create vdev children, so all the counters
2498 		 * remain zero, which is what we want.)
2499 		 *
2500 		 * Note: this only applies to successful i/o (io_error == 0)
2501 		 * because unlike i/o counts, errors are not additive.
2502 		 * When reading a ditto block, for example, failure of
2503 		 * one top-level vdev does not imply a root-level error.
2504 		 */
2505 		if (vd == rvd)
2506 			return;
2507 
2508 		ASSERT(vd == zio->io_vd);
2509 
2510 		if (flags & ZIO_FLAG_IO_BYPASS)
2511 			return;
2512 
2513 		mutex_enter(&vd->vdev_stat_lock);
2514 
2515 		if (flags & ZIO_FLAG_IO_REPAIR) {
2516 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2517 				vs->vs_scrub_repaired += psize;
2518 			if (flags & ZIO_FLAG_SELF_HEAL)
2519 				vs->vs_self_healed += psize;
2520 		}
2521 
2522 		vs->vs_ops[type]++;
2523 		vs->vs_bytes[type] += psize;
2524 
2525 		mutex_exit(&vd->vdev_stat_lock);
2526 		return;
2527 	}
2528 
2529 	if (flags & ZIO_FLAG_SPECULATIVE)
2530 		return;
2531 
2532 	/*
2533 	 * If this is an I/O error that is going to be retried, then ignore the
2534 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2535 	 * hard errors, when in reality they can happen for any number of
2536 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2537 	 */
2538 	if (zio->io_error == EIO &&
2539 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2540 		return;
2541 
2542 	/*
2543 	 * Intent logs writes won't propagate their error to the root
2544 	 * I/O so don't mark these types of failures as pool-level
2545 	 * errors.
2546 	 */
2547 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2548 		return;
2549 
2550 	mutex_enter(&vd->vdev_stat_lock);
2551 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2552 		if (zio->io_error == ECKSUM)
2553 			vs->vs_checksum_errors++;
2554 		else
2555 			vs->vs_read_errors++;
2556 	}
2557 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2558 		vs->vs_write_errors++;
2559 	mutex_exit(&vd->vdev_stat_lock);
2560 
2561 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2562 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2563 	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2564 	    spa->spa_claiming)) {
2565 		/*
2566 		 * This is either a normal write (not a repair), or it's
2567 		 * a repair induced by the scrub thread, or it's a repair
2568 		 * made by zil_claim() during spa_load() in the first txg.
2569 		 * In the normal case, we commit the DTL change in the same
2570 		 * txg as the block was born.  In the scrub-induced repair
2571 		 * case, we know that scrubs run in first-pass syncing context,
2572 		 * so we commit the DTL change in spa_syncing_txg(spa).
2573 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2574 		 *
2575 		 * We currently do not make DTL entries for failed spontaneous
2576 		 * self-healing writes triggered by normal (non-scrubbing)
2577 		 * reads, because we have no transactional context in which to
2578 		 * do so -- and it's not clear that it'd be desirable anyway.
2579 		 */
2580 		if (vd->vdev_ops->vdev_op_leaf) {
2581 			uint64_t commit_txg = txg;
2582 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2583 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2584 				ASSERT(spa_sync_pass(spa) == 1);
2585 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2586 				commit_txg = spa_syncing_txg(spa);
2587 			} else if (spa->spa_claiming) {
2588 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2589 				commit_txg = spa_first_txg(spa);
2590 			}
2591 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2592 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2593 				return;
2594 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2595 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2596 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2597 		}
2598 		if (vd != rvd)
2599 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2600 	}
2601 }
2602 
2603 void
2604 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2605 {
2606 	vdev_stat_t *vs = &vd->vdev_stat;
2607 
2608 	for (int c = 0; c < vd->vdev_children; c++)
2609 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2610 
2611 	mutex_enter(&vd->vdev_stat_lock);
2612 
2613 	if (type == POOL_SCRUB_NONE) {
2614 		/*
2615 		 * Update completion and end time.  Leave everything else alone
2616 		 * so we can report what happened during the previous scrub.
2617 		 */
2618 		vs->vs_scrub_complete = complete;
2619 		vs->vs_scrub_end = gethrestime_sec();
2620 	} else {
2621 		vs->vs_scrub_type = type;
2622 		vs->vs_scrub_complete = 0;
2623 		vs->vs_scrub_examined = 0;
2624 		vs->vs_scrub_repaired = 0;
2625 		vs->vs_scrub_start = gethrestime_sec();
2626 		vs->vs_scrub_end = 0;
2627 	}
2628 
2629 	mutex_exit(&vd->vdev_stat_lock);
2630 }
2631 
2632 /*
2633  * Update the in-core space usage stats for this vdev, its metaslab class,
2634  * and the root vdev.
2635  */
2636 void
2637 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2638     int64_t space_delta)
2639 {
2640 	int64_t dspace_delta = space_delta;
2641 	spa_t *spa = vd->vdev_spa;
2642 	vdev_t *rvd = spa->spa_root_vdev;
2643 	metaslab_group_t *mg = vd->vdev_mg;
2644 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2645 
2646 	ASSERT(vd == vd->vdev_top);
2647 
2648 	/*
2649 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2650 	 * factor.  We must calculate this here and not at the root vdev
2651 	 * because the root vdev's psize-to-asize is simply the max of its
2652 	 * childrens', thus not accurate enough for us.
2653 	 */
2654 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2655 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2656 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2657 	    vd->vdev_deflate_ratio;
2658 
2659 	mutex_enter(&vd->vdev_stat_lock);
2660 	vd->vdev_stat.vs_alloc += alloc_delta;
2661 	vd->vdev_stat.vs_space += space_delta;
2662 	vd->vdev_stat.vs_dspace += dspace_delta;
2663 	mutex_exit(&vd->vdev_stat_lock);
2664 
2665 	if (mc == spa_normal_class(spa)) {
2666 		mutex_enter(&rvd->vdev_stat_lock);
2667 		rvd->vdev_stat.vs_alloc += alloc_delta;
2668 		rvd->vdev_stat.vs_space += space_delta;
2669 		rvd->vdev_stat.vs_dspace += dspace_delta;
2670 		mutex_exit(&rvd->vdev_stat_lock);
2671 	}
2672 
2673 	if (mc != NULL) {
2674 		ASSERT(rvd == vd->vdev_parent);
2675 		ASSERT(vd->vdev_ms_count != 0);
2676 
2677 		metaslab_class_space_update(mc,
2678 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2679 	}
2680 }
2681 
2682 /*
2683  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2684  * so that it will be written out next time the vdev configuration is synced.
2685  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2686  */
2687 void
2688 vdev_config_dirty(vdev_t *vd)
2689 {
2690 	spa_t *spa = vd->vdev_spa;
2691 	vdev_t *rvd = spa->spa_root_vdev;
2692 	int c;
2693 
2694 	/*
2695 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2696 	 * update the vdev config manually and set the sync flag.
2697 	 */
2698 	if (vd->vdev_aux != NULL) {
2699 		spa_aux_vdev_t *sav = vd->vdev_aux;
2700 		nvlist_t **aux;
2701 		uint_t naux;
2702 
2703 		for (c = 0; c < sav->sav_count; c++) {
2704 			if (sav->sav_vdevs[c] == vd)
2705 				break;
2706 		}
2707 
2708 		if (c == sav->sav_count) {
2709 			/*
2710 			 * We're being removed.  There's nothing more to do.
2711 			 */
2712 			ASSERT(sav->sav_sync == B_TRUE);
2713 			return;
2714 		}
2715 
2716 		sav->sav_sync = B_TRUE;
2717 
2718 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2719 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2720 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2721 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2722 		}
2723 
2724 		ASSERT(c < naux);
2725 
2726 		/*
2727 		 * Setting the nvlist in the middle if the array is a little
2728 		 * sketchy, but it will work.
2729 		 */
2730 		nvlist_free(aux[c]);
2731 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2732 
2733 		return;
2734 	}
2735 
2736 	/*
2737 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2738 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2739 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2740 	 * so this is sufficient to ensure mutual exclusion.
2741 	 */
2742 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2743 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2744 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2745 
2746 	if (vd == rvd) {
2747 		for (c = 0; c < rvd->vdev_children; c++)
2748 			vdev_config_dirty(rvd->vdev_child[c]);
2749 	} else {
2750 		ASSERT(vd == vd->vdev_top);
2751 
2752 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2753 		    !vd->vdev_ishole)
2754 			list_insert_head(&spa->spa_config_dirty_list, vd);
2755 	}
2756 }
2757 
2758 void
2759 vdev_config_clean(vdev_t *vd)
2760 {
2761 	spa_t *spa = vd->vdev_spa;
2762 
2763 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2764 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2765 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2766 
2767 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2768 	list_remove(&spa->spa_config_dirty_list, vd);
2769 }
2770 
2771 /*
2772  * Mark a top-level vdev's state as dirty, so that the next pass of
2773  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2774  * the state changes from larger config changes because they require
2775  * much less locking, and are often needed for administrative actions.
2776  */
2777 void
2778 vdev_state_dirty(vdev_t *vd)
2779 {
2780 	spa_t *spa = vd->vdev_spa;
2781 
2782 	ASSERT(vd == vd->vdev_top);
2783 
2784 	/*
2785 	 * The state list is protected by the SCL_STATE lock.  The caller
2786 	 * must either hold SCL_STATE as writer, or must be the sync thread
2787 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2788 	 * so this is sufficient to ensure mutual exclusion.
2789 	 */
2790 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2791 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2792 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2793 
2794 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2795 		list_insert_head(&spa->spa_state_dirty_list, vd);
2796 }
2797 
2798 void
2799 vdev_state_clean(vdev_t *vd)
2800 {
2801 	spa_t *spa = vd->vdev_spa;
2802 
2803 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2804 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2805 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2806 
2807 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2808 	list_remove(&spa->spa_state_dirty_list, vd);
2809 }
2810 
2811 /*
2812  * Propagate vdev state up from children to parent.
2813  */
2814 void
2815 vdev_propagate_state(vdev_t *vd)
2816 {
2817 	spa_t *spa = vd->vdev_spa;
2818 	vdev_t *rvd = spa->spa_root_vdev;
2819 	int degraded = 0, faulted = 0;
2820 	int corrupted = 0;
2821 	vdev_t *child;
2822 
2823 	if (vd->vdev_children > 0) {
2824 		for (int c = 0; c < vd->vdev_children; c++) {
2825 			child = vd->vdev_child[c];
2826 
2827 			/*
2828 			 * Don't factor holes into the decision.
2829 			 */
2830 			if (child->vdev_ishole)
2831 				continue;
2832 
2833 			if (!vdev_readable(child) ||
2834 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2835 				/*
2836 				 * Root special: if there is a top-level log
2837 				 * device, treat the root vdev as if it were
2838 				 * degraded.
2839 				 */
2840 				if (child->vdev_islog && vd == rvd)
2841 					degraded++;
2842 				else
2843 					faulted++;
2844 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2845 				degraded++;
2846 			}
2847 
2848 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2849 				corrupted++;
2850 		}
2851 
2852 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2853 
2854 		/*
2855 		 * Root special: if there is a top-level vdev that cannot be
2856 		 * opened due to corrupted metadata, then propagate the root
2857 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2858 		 * replicas'.
2859 		 */
2860 		if (corrupted && vd == rvd &&
2861 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2862 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2863 			    VDEV_AUX_CORRUPT_DATA);
2864 	}
2865 
2866 	if (vd->vdev_parent)
2867 		vdev_propagate_state(vd->vdev_parent);
2868 }
2869 
2870 /*
2871  * Set a vdev's state.  If this is during an open, we don't update the parent
2872  * state, because we're in the process of opening children depth-first.
2873  * Otherwise, we propagate the change to the parent.
2874  *
2875  * If this routine places a device in a faulted state, an appropriate ereport is
2876  * generated.
2877  */
2878 void
2879 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2880 {
2881 	uint64_t save_state;
2882 	spa_t *spa = vd->vdev_spa;
2883 
2884 	if (state == vd->vdev_state) {
2885 		vd->vdev_stat.vs_aux = aux;
2886 		return;
2887 	}
2888 
2889 	save_state = vd->vdev_state;
2890 
2891 	vd->vdev_state = state;
2892 	vd->vdev_stat.vs_aux = aux;
2893 
2894 	/*
2895 	 * If we are setting the vdev state to anything but an open state, then
2896 	 * always close the underlying device.  Otherwise, we keep accessible
2897 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2898 	 * because that implies some extra checks (offline, etc) that we don't
2899 	 * want here.  This is limited to leaf devices, because otherwise
2900 	 * closing the device will affect other children.
2901 	 */
2902 	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2903 		vd->vdev_ops->vdev_op_close(vd);
2904 
2905 	/*
2906 	 * If we have brought this vdev back into service, we need
2907 	 * to notify fmd so that it can gracefully repair any outstanding
2908 	 * cases due to a missing device.  We do this in all cases, even those
2909 	 * that probably don't correlate to a repaired fault.  This is sure to
2910 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2911 	 * this is a transient state it's OK, as the retire agent will
2912 	 * double-check the state of the vdev before repairing it.
2913 	 */
2914 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2915 	    vd->vdev_prevstate != state)
2916 		zfs_post_state_change(spa, vd);
2917 
2918 	if (vd->vdev_removed &&
2919 	    state == VDEV_STATE_CANT_OPEN &&
2920 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2921 		/*
2922 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2923 		 * device was previously marked removed and someone attempted to
2924 		 * reopen it.  If this failed due to a nonexistent device, then
2925 		 * keep the device in the REMOVED state.  We also let this be if
2926 		 * it is one of our special test online cases, which is only
2927 		 * attempting to online the device and shouldn't generate an FMA
2928 		 * fault.
2929 		 */
2930 		vd->vdev_state = VDEV_STATE_REMOVED;
2931 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2932 	} else if (state == VDEV_STATE_REMOVED) {
2933 		vd->vdev_removed = B_TRUE;
2934 	} else if (state == VDEV_STATE_CANT_OPEN) {
2935 		/*
2936 		 * If we fail to open a vdev during an import, we mark it as
2937 		 * "not available", which signifies that it was never there to
2938 		 * begin with.  Failure to open such a device is not considered
2939 		 * an error.
2940 		 */
2941 		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2942 		    vd->vdev_ops->vdev_op_leaf)
2943 			vd->vdev_not_present = 1;
2944 
2945 		/*
2946 		 * Post the appropriate ereport.  If the 'prevstate' field is
2947 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2948 		 * that this is part of a vdev_reopen().  In this case, we don't
2949 		 * want to post the ereport if the device was already in the
2950 		 * CANT_OPEN state beforehand.
2951 		 *
2952 		 * If the 'checkremove' flag is set, then this is an attempt to
2953 		 * online the device in response to an insertion event.  If we
2954 		 * hit this case, then we have detected an insertion event for a
2955 		 * faulted or offline device that wasn't in the removed state.
2956 		 * In this scenario, we don't post an ereport because we are
2957 		 * about to replace the device, or attempt an online with
2958 		 * vdev_forcefault, which will generate the fault for us.
2959 		 */
2960 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2961 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2962 		    vd != spa->spa_root_vdev) {
2963 			const char *class;
2964 
2965 			switch (aux) {
2966 			case VDEV_AUX_OPEN_FAILED:
2967 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2968 				break;
2969 			case VDEV_AUX_CORRUPT_DATA:
2970 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2971 				break;
2972 			case VDEV_AUX_NO_REPLICAS:
2973 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2974 				break;
2975 			case VDEV_AUX_BAD_GUID_SUM:
2976 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2977 				break;
2978 			case VDEV_AUX_TOO_SMALL:
2979 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2980 				break;
2981 			case VDEV_AUX_BAD_LABEL:
2982 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2983 				break;
2984 			case VDEV_AUX_IO_FAILURE:
2985 				class = FM_EREPORT_ZFS_IO_FAILURE;
2986 				break;
2987 			default:
2988 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2989 			}
2990 
2991 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2992 		}
2993 
2994 		/* Erase any notion of persistent removed state */
2995 		vd->vdev_removed = B_FALSE;
2996 	} else {
2997 		vd->vdev_removed = B_FALSE;
2998 	}
2999 
3000 	if (!isopen && vd->vdev_parent)
3001 		vdev_propagate_state(vd->vdev_parent);
3002 }
3003 
3004 /*
3005  * Check the vdev configuration to ensure that it's capable of supporting
3006  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3007  * In addition, only a single top-level vdev is allowed and none of the leaves
3008  * can be wholedisks.
3009  */
3010 boolean_t
3011 vdev_is_bootable(vdev_t *vd)
3012 {
3013 	if (!vd->vdev_ops->vdev_op_leaf) {
3014 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3015 
3016 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3017 		    vd->vdev_children > 1) {
3018 			return (B_FALSE);
3019 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3020 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3021 			return (B_FALSE);
3022 		}
3023 	} else if (vd->vdev_wholedisk == 1) {
3024 		return (B_FALSE);
3025 	}
3026 
3027 	for (int c = 0; c < vd->vdev_children; c++) {
3028 		if (!vdev_is_bootable(vd->vdev_child[c]))
3029 			return (B_FALSE);
3030 	}
3031 	return (B_TRUE);
3032 }
3033 
3034 /*
3035  * Load the state from the original vdev tree (ovd) which
3036  * we've retrieved from the MOS config object. If the original
3037  * vdev was offline then we transfer that state to the device
3038  * in the current vdev tree (nvd).
3039  */
3040 void
3041 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3042 {
3043 	spa_t *spa = nvd->vdev_spa;
3044 
3045 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3046 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3047 
3048 	for (int c = 0; c < nvd->vdev_children; c++)
3049 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3050 
3051 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3052 		/*
3053 		 * It would be nice to call vdev_offline()
3054 		 * directly but the pool isn't fully loaded and
3055 		 * the txg threads have not been started yet.
3056 		 */
3057 		nvd->vdev_offline = ovd->vdev_offline;
3058 		vdev_reopen(nvd->vdev_top);
3059 	}
3060 }
3061 
3062 /*
3063  * Expand a vdev if possible.
3064  */
3065 void
3066 vdev_expand(vdev_t *vd, uint64_t txg)
3067 {
3068 	ASSERT(vd->vdev_top == vd);
3069 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3070 
3071 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3072 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3073 		vdev_config_dirty(vd);
3074 	}
3075 }
3076 
3077 /*
3078  * Split a vdev.
3079  */
3080 void
3081 vdev_split(vdev_t *vd)
3082 {
3083 	vdev_t *cvd, *pvd = vd->vdev_parent;
3084 
3085 	vdev_remove_child(pvd, vd);
3086 	vdev_compact_children(pvd);
3087 
3088 	cvd = pvd->vdev_child[0];
3089 	if (pvd->vdev_children == 1) {
3090 		vdev_remove_parent(cvd);
3091 		cvd->vdev_splitting = B_TRUE;
3092 	}
3093 	vdev_propagate_state(cvd);
3094 }
3095