1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/uberblock_impl.h> 34 #include <sys/metaslab.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/space_map.h> 37 #include <sys/zio.h> 38 #include <sys/zap.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/arc.h> 41 #include <sys/zil.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_spare_ops, 53 &vdev_disk_ops, 54 &vdev_file_ops, 55 &vdev_missing_ops, 56 &vdev_hole_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 88 for (int c = 0; c < vd->vdev_children; c++) { 89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 90 asize = MAX(asize, csize); 91 } 92 93 return (asize); 94 } 95 96 /* 97 * Get the minimum allocatable size. We define the allocatable size as 98 * the vdev's asize rounded to the nearest metaslab. This allows us to 99 * replace or attach devices which don't have the same physical size but 100 * can still satisfy the same number of allocations. 101 */ 102 uint64_t 103 vdev_get_min_asize(vdev_t *vd) 104 { 105 vdev_t *pvd = vd->vdev_parent; 106 107 /* 108 * The our parent is NULL (inactive spare or cache) or is the root, 109 * just return our own asize. 110 */ 111 if (pvd == NULL) 112 return (vd->vdev_asize); 113 114 /* 115 * The top-level vdev just returns the allocatable size rounded 116 * to the nearest metaslab. 117 */ 118 if (vd == vd->vdev_top) 119 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 120 121 /* 122 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 123 * so each child must provide at least 1/Nth of its asize. 124 */ 125 if (pvd->vdev_ops == &vdev_raidz_ops) 126 return (pvd->vdev_min_asize / pvd->vdev_children); 127 128 return (pvd->vdev_min_asize); 129 } 130 131 void 132 vdev_set_min_asize(vdev_t *vd) 133 { 134 vd->vdev_min_asize = vdev_get_min_asize(vd); 135 136 for (int c = 0; c < vd->vdev_children; c++) 137 vdev_set_min_asize(vd->vdev_child[c]); 138 } 139 140 vdev_t * 141 vdev_lookup_top(spa_t *spa, uint64_t vdev) 142 { 143 vdev_t *rvd = spa->spa_root_vdev; 144 145 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 146 147 if (vdev < rvd->vdev_children) { 148 ASSERT(rvd->vdev_child[vdev] != NULL); 149 return (rvd->vdev_child[vdev]); 150 } 151 152 return (NULL); 153 } 154 155 vdev_t * 156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 157 { 158 vdev_t *mvd; 159 160 if (vd->vdev_guid == guid) 161 return (vd); 162 163 for (int c = 0; c < vd->vdev_children; c++) 164 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 165 NULL) 166 return (mvd); 167 168 return (NULL); 169 } 170 171 void 172 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 173 { 174 size_t oldsize, newsize; 175 uint64_t id = cvd->vdev_id; 176 vdev_t **newchild; 177 178 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 179 ASSERT(cvd->vdev_parent == NULL); 180 181 cvd->vdev_parent = pvd; 182 183 if (pvd == NULL) 184 return; 185 186 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 187 188 oldsize = pvd->vdev_children * sizeof (vdev_t *); 189 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 190 newsize = pvd->vdev_children * sizeof (vdev_t *); 191 192 newchild = kmem_zalloc(newsize, KM_SLEEP); 193 if (pvd->vdev_child != NULL) { 194 bcopy(pvd->vdev_child, newchild, oldsize); 195 kmem_free(pvd->vdev_child, oldsize); 196 } 197 198 pvd->vdev_child = newchild; 199 pvd->vdev_child[id] = cvd; 200 201 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 202 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 209 210 if (cvd->vdev_ops->vdev_op_leaf) 211 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 212 } 213 214 void 215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 216 { 217 int c; 218 uint_t id = cvd->vdev_id; 219 220 ASSERT(cvd->vdev_parent == pvd); 221 222 if (pvd == NULL) 223 return; 224 225 ASSERT(id < pvd->vdev_children); 226 ASSERT(pvd->vdev_child[id] == cvd); 227 228 pvd->vdev_child[id] = NULL; 229 cvd->vdev_parent = NULL; 230 231 for (c = 0; c < pvd->vdev_children; c++) 232 if (pvd->vdev_child[c]) 233 break; 234 235 if (c == pvd->vdev_children) { 236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 237 pvd->vdev_child = NULL; 238 pvd->vdev_children = 0; 239 } 240 241 /* 242 * Walk up all ancestors to update guid sum. 243 */ 244 for (; pvd != NULL; pvd = pvd->vdev_parent) 245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 246 247 if (cvd->vdev_ops->vdev_op_leaf) 248 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 249 } 250 251 /* 252 * Remove any holes in the child array. 253 */ 254 void 255 vdev_compact_children(vdev_t *pvd) 256 { 257 vdev_t **newchild, *cvd; 258 int oldc = pvd->vdev_children; 259 int newc; 260 261 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 262 263 for (int c = newc = 0; c < oldc; c++) 264 if (pvd->vdev_child[c]) 265 newc++; 266 267 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 268 269 for (int c = newc = 0; c < oldc; c++) { 270 if ((cvd = pvd->vdev_child[c]) != NULL) { 271 newchild[newc] = cvd; 272 cvd->vdev_id = newc++; 273 } 274 } 275 276 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 277 pvd->vdev_child = newchild; 278 pvd->vdev_children = newc; 279 } 280 281 /* 282 * Allocate and minimally initialize a vdev_t. 283 */ 284 vdev_t * 285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 286 { 287 vdev_t *vd; 288 289 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 290 291 if (spa->spa_root_vdev == NULL) { 292 ASSERT(ops == &vdev_root_ops); 293 spa->spa_root_vdev = vd; 294 } 295 296 if (guid == 0 && ops != &vdev_hole_ops) { 297 if (spa->spa_root_vdev == vd) { 298 /* 299 * The root vdev's guid will also be the pool guid, 300 * which must be unique among all pools. 301 */ 302 guid = spa_generate_guid(NULL); 303 } else { 304 /* 305 * Any other vdev's guid must be unique within the pool. 306 */ 307 guid = spa_generate_guid(spa); 308 } 309 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 310 } 311 312 vd->vdev_spa = spa; 313 vd->vdev_id = id; 314 vd->vdev_guid = guid; 315 vd->vdev_guid_sum = guid; 316 vd->vdev_ops = ops; 317 vd->vdev_state = VDEV_STATE_CLOSED; 318 vd->vdev_ishole = (ops == &vdev_hole_ops); 319 320 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 321 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 322 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 323 for (int t = 0; t < DTL_TYPES; t++) { 324 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 325 &vd->vdev_dtl_lock); 326 } 327 txg_list_create(&vd->vdev_ms_list, 328 offsetof(struct metaslab, ms_txg_node)); 329 txg_list_create(&vd->vdev_dtl_list, 330 offsetof(struct vdev, vdev_dtl_node)); 331 vd->vdev_stat.vs_timestamp = gethrtime(); 332 vdev_queue_init(vd); 333 vdev_cache_init(vd); 334 335 return (vd); 336 } 337 338 /* 339 * Allocate a new vdev. The 'alloctype' is used to control whether we are 340 * creating a new vdev or loading an existing one - the behavior is slightly 341 * different for each case. 342 */ 343 int 344 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 345 int alloctype) 346 { 347 vdev_ops_t *ops; 348 char *type; 349 uint64_t guid = 0, islog, nparity; 350 vdev_t *vd; 351 352 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 353 354 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 355 return (EINVAL); 356 357 if ((ops = vdev_getops(type)) == NULL) 358 return (EINVAL); 359 360 /* 361 * If this is a load, get the vdev guid from the nvlist. 362 * Otherwise, vdev_alloc_common() will generate one for us. 363 */ 364 if (alloctype == VDEV_ALLOC_LOAD) { 365 uint64_t label_id; 366 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 368 label_id != id) 369 return (EINVAL); 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 372 return (EINVAL); 373 } else if (alloctype == VDEV_ALLOC_SPARE) { 374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 375 return (EINVAL); 376 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 378 return (EINVAL); 379 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 381 return (EINVAL); 382 } 383 384 /* 385 * The first allocated vdev must be of type 'root'. 386 */ 387 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 388 return (EINVAL); 389 390 /* 391 * Determine whether we're a log vdev. 392 */ 393 islog = 0; 394 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 395 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 396 return (ENOTSUP); 397 398 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 399 return (ENOTSUP); 400 401 /* 402 * Set the nparity property for RAID-Z vdevs. 403 */ 404 nparity = -1ULL; 405 if (ops == &vdev_raidz_ops) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 407 &nparity) == 0) { 408 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 409 return (EINVAL); 410 /* 411 * Previous versions could only support 1 or 2 parity 412 * device. 413 */ 414 if (nparity > 1 && 415 spa_version(spa) < SPA_VERSION_RAIDZ2) 416 return (ENOTSUP); 417 if (nparity > 2 && 418 spa_version(spa) < SPA_VERSION_RAIDZ3) 419 return (ENOTSUP); 420 } else { 421 /* 422 * We require the parity to be specified for SPAs that 423 * support multiple parity levels. 424 */ 425 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 426 return (EINVAL); 427 /* 428 * Otherwise, we default to 1 parity device for RAID-Z. 429 */ 430 nparity = 1; 431 } 432 } else { 433 nparity = 0; 434 } 435 ASSERT(nparity != -1ULL); 436 437 vd = vdev_alloc_common(spa, id, guid, ops); 438 439 vd->vdev_islog = islog; 440 vd->vdev_nparity = nparity; 441 442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 443 vd->vdev_path = spa_strdup(vd->vdev_path); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 445 vd->vdev_devid = spa_strdup(vd->vdev_devid); 446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 447 &vd->vdev_physpath) == 0) 448 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 450 vd->vdev_fru = spa_strdup(vd->vdev_fru); 451 452 /* 453 * Set the whole_disk property. If it's not specified, leave the value 454 * as -1. 455 */ 456 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 457 &vd->vdev_wholedisk) != 0) 458 vd->vdev_wholedisk = -1ULL; 459 460 /* 461 * Look for the 'not present' flag. This will only be set if the device 462 * was not present at the time of import. 463 */ 464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 465 &vd->vdev_not_present); 466 467 /* 468 * Get the alignment requirement. 469 */ 470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 471 472 /* 473 * Retrieve the vdev creation time. 474 */ 475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 476 &vd->vdev_crtxg); 477 478 /* 479 * If we're a top-level vdev, try to load the allocation parameters. 480 */ 481 if (parent && !parent->vdev_parent && 482 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 484 &vd->vdev_ms_array); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 486 &vd->vdev_ms_shift); 487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 488 &vd->vdev_asize); 489 } 490 491 if (parent && !parent->vdev_parent) { 492 ASSERT(alloctype == VDEV_ALLOC_LOAD || 493 alloctype == VDEV_ALLOC_ADD || 494 alloctype == VDEV_ALLOC_SPLIT || 495 alloctype == VDEV_ALLOC_ROOTPOOL); 496 vd->vdev_mg = metaslab_group_create(islog ? 497 spa_log_class(spa) : spa_normal_class(spa), vd); 498 } 499 500 /* 501 * If we're a leaf vdev, try to load the DTL object and other state. 502 */ 503 if (vd->vdev_ops->vdev_op_leaf && 504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 505 alloctype == VDEV_ALLOC_ROOTPOOL)) { 506 if (alloctype == VDEV_ALLOC_LOAD) { 507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 508 &vd->vdev_dtl_smo.smo_object); 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 510 &vd->vdev_unspare); 511 } 512 513 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 514 uint64_t spare = 0; 515 516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 517 &spare) == 0 && spare) 518 spa_spare_add(vd); 519 } 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 522 &vd->vdev_offline); 523 524 /* 525 * When importing a pool, we want to ignore the persistent fault 526 * state, as the diagnosis made on another system may not be 527 * valid in the current context. Local vdevs will 528 * remain in the faulted state. 529 */ 530 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 532 &vd->vdev_faulted); 533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 534 &vd->vdev_degraded); 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 536 &vd->vdev_removed); 537 538 if (vd->vdev_faulted || vd->vdev_degraded) { 539 char *aux; 540 541 vd->vdev_label_aux = 542 VDEV_AUX_ERR_EXCEEDED; 543 if (nvlist_lookup_string(nv, 544 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 545 strcmp(aux, "external") == 0) 546 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 547 } 548 } 549 } 550 551 /* 552 * Add ourselves to the parent's list of children. 553 */ 554 vdev_add_child(parent, vd); 555 556 *vdp = vd; 557 558 return (0); 559 } 560 561 void 562 vdev_free(vdev_t *vd) 563 { 564 spa_t *spa = vd->vdev_spa; 565 566 /* 567 * vdev_free() implies closing the vdev first. This is simpler than 568 * trying to ensure complicated semantics for all callers. 569 */ 570 vdev_close(vd); 571 572 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 573 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 574 575 /* 576 * Free all children. 577 */ 578 for (int c = 0; c < vd->vdev_children; c++) 579 vdev_free(vd->vdev_child[c]); 580 581 ASSERT(vd->vdev_child == NULL); 582 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 583 584 /* 585 * Discard allocation state. 586 */ 587 if (vd->vdev_mg != NULL) { 588 vdev_metaslab_fini(vd); 589 metaslab_group_destroy(vd->vdev_mg); 590 } 591 592 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 593 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 594 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 595 596 /* 597 * Remove this vdev from its parent's child list. 598 */ 599 vdev_remove_child(vd->vdev_parent, vd); 600 601 ASSERT(vd->vdev_parent == NULL); 602 603 /* 604 * Clean up vdev structure. 605 */ 606 vdev_queue_fini(vd); 607 vdev_cache_fini(vd); 608 609 if (vd->vdev_path) 610 spa_strfree(vd->vdev_path); 611 if (vd->vdev_devid) 612 spa_strfree(vd->vdev_devid); 613 if (vd->vdev_physpath) 614 spa_strfree(vd->vdev_physpath); 615 if (vd->vdev_fru) 616 spa_strfree(vd->vdev_fru); 617 618 if (vd->vdev_isspare) 619 spa_spare_remove(vd); 620 if (vd->vdev_isl2cache) 621 spa_l2cache_remove(vd); 622 623 txg_list_destroy(&vd->vdev_ms_list); 624 txg_list_destroy(&vd->vdev_dtl_list); 625 626 mutex_enter(&vd->vdev_dtl_lock); 627 for (int t = 0; t < DTL_TYPES; t++) { 628 space_map_unload(&vd->vdev_dtl[t]); 629 space_map_destroy(&vd->vdev_dtl[t]); 630 } 631 mutex_exit(&vd->vdev_dtl_lock); 632 633 mutex_destroy(&vd->vdev_dtl_lock); 634 mutex_destroy(&vd->vdev_stat_lock); 635 mutex_destroy(&vd->vdev_probe_lock); 636 637 if (vd == spa->spa_root_vdev) 638 spa->spa_root_vdev = NULL; 639 640 kmem_free(vd, sizeof (vdev_t)); 641 } 642 643 /* 644 * Transfer top-level vdev state from svd to tvd. 645 */ 646 static void 647 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 648 { 649 spa_t *spa = svd->vdev_spa; 650 metaslab_t *msp; 651 vdev_t *vd; 652 int t; 653 654 ASSERT(tvd == tvd->vdev_top); 655 656 tvd->vdev_ms_array = svd->vdev_ms_array; 657 tvd->vdev_ms_shift = svd->vdev_ms_shift; 658 tvd->vdev_ms_count = svd->vdev_ms_count; 659 660 svd->vdev_ms_array = 0; 661 svd->vdev_ms_shift = 0; 662 svd->vdev_ms_count = 0; 663 664 tvd->vdev_mg = svd->vdev_mg; 665 tvd->vdev_ms = svd->vdev_ms; 666 667 svd->vdev_mg = NULL; 668 svd->vdev_ms = NULL; 669 670 if (tvd->vdev_mg != NULL) 671 tvd->vdev_mg->mg_vd = tvd; 672 673 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 674 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 675 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 676 677 svd->vdev_stat.vs_alloc = 0; 678 svd->vdev_stat.vs_space = 0; 679 svd->vdev_stat.vs_dspace = 0; 680 681 for (t = 0; t < TXG_SIZE; t++) { 682 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 683 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 684 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 685 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 686 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 687 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 688 } 689 690 if (list_link_active(&svd->vdev_config_dirty_node)) { 691 vdev_config_clean(svd); 692 vdev_config_dirty(tvd); 693 } 694 695 if (list_link_active(&svd->vdev_state_dirty_node)) { 696 vdev_state_clean(svd); 697 vdev_state_dirty(tvd); 698 } 699 700 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 701 svd->vdev_deflate_ratio = 0; 702 703 tvd->vdev_islog = svd->vdev_islog; 704 svd->vdev_islog = 0; 705 } 706 707 static void 708 vdev_top_update(vdev_t *tvd, vdev_t *vd) 709 { 710 if (vd == NULL) 711 return; 712 713 vd->vdev_top = tvd; 714 715 for (int c = 0; c < vd->vdev_children; c++) 716 vdev_top_update(tvd, vd->vdev_child[c]); 717 } 718 719 /* 720 * Add a mirror/replacing vdev above an existing vdev. 721 */ 722 vdev_t * 723 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 724 { 725 spa_t *spa = cvd->vdev_spa; 726 vdev_t *pvd = cvd->vdev_parent; 727 vdev_t *mvd; 728 729 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 730 731 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 732 733 mvd->vdev_asize = cvd->vdev_asize; 734 mvd->vdev_min_asize = cvd->vdev_min_asize; 735 mvd->vdev_ashift = cvd->vdev_ashift; 736 mvd->vdev_state = cvd->vdev_state; 737 mvd->vdev_crtxg = cvd->vdev_crtxg; 738 739 vdev_remove_child(pvd, cvd); 740 vdev_add_child(pvd, mvd); 741 cvd->vdev_id = mvd->vdev_children; 742 vdev_add_child(mvd, cvd); 743 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 744 745 if (mvd == mvd->vdev_top) 746 vdev_top_transfer(cvd, mvd); 747 748 return (mvd); 749 } 750 751 /* 752 * Remove a 1-way mirror/replacing vdev from the tree. 753 */ 754 void 755 vdev_remove_parent(vdev_t *cvd) 756 { 757 vdev_t *mvd = cvd->vdev_parent; 758 vdev_t *pvd = mvd->vdev_parent; 759 760 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 761 762 ASSERT(mvd->vdev_children == 1); 763 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 764 mvd->vdev_ops == &vdev_replacing_ops || 765 mvd->vdev_ops == &vdev_spare_ops); 766 cvd->vdev_ashift = mvd->vdev_ashift; 767 768 vdev_remove_child(mvd, cvd); 769 vdev_remove_child(pvd, mvd); 770 771 /* 772 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 773 * Otherwise, we could have detached an offline device, and when we 774 * go to import the pool we'll think we have two top-level vdevs, 775 * instead of a different version of the same top-level vdev. 776 */ 777 if (mvd->vdev_top == mvd) { 778 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 779 cvd->vdev_orig_guid = cvd->vdev_guid; 780 cvd->vdev_guid += guid_delta; 781 cvd->vdev_guid_sum += guid_delta; 782 } 783 cvd->vdev_id = mvd->vdev_id; 784 vdev_add_child(pvd, cvd); 785 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 786 787 if (cvd == cvd->vdev_top) 788 vdev_top_transfer(mvd, cvd); 789 790 ASSERT(mvd->vdev_children == 0); 791 vdev_free(mvd); 792 } 793 794 int 795 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 796 { 797 spa_t *spa = vd->vdev_spa; 798 objset_t *mos = spa->spa_meta_objset; 799 uint64_t m; 800 uint64_t oldc = vd->vdev_ms_count; 801 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 802 metaslab_t **mspp; 803 int error; 804 805 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 806 807 /* 808 * This vdev is not being allocated from yet or is a hole. 809 */ 810 if (vd->vdev_ms_shift == 0) 811 return (0); 812 813 ASSERT(!vd->vdev_ishole); 814 815 /* 816 * Compute the raidz-deflation ratio. Note, we hard-code 817 * in 128k (1 << 17) because it is the current "typical" blocksize. 818 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 819 * or we will inconsistently account for existing bp's. 820 */ 821 vd->vdev_deflate_ratio = (1 << 17) / 822 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 823 824 ASSERT(oldc <= newc); 825 826 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 827 828 if (oldc != 0) { 829 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 830 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 831 } 832 833 vd->vdev_ms = mspp; 834 vd->vdev_ms_count = newc; 835 836 for (m = oldc; m < newc; m++) { 837 space_map_obj_t smo = { 0, 0, 0 }; 838 if (txg == 0) { 839 uint64_t object = 0; 840 error = dmu_read(mos, vd->vdev_ms_array, 841 m * sizeof (uint64_t), sizeof (uint64_t), &object, 842 DMU_READ_PREFETCH); 843 if (error) 844 return (error); 845 if (object != 0) { 846 dmu_buf_t *db; 847 error = dmu_bonus_hold(mos, object, FTAG, &db); 848 if (error) 849 return (error); 850 ASSERT3U(db->db_size, >=, sizeof (smo)); 851 bcopy(db->db_data, &smo, sizeof (smo)); 852 ASSERT3U(smo.smo_object, ==, object); 853 dmu_buf_rele(db, FTAG); 854 } 855 } 856 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 857 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 858 } 859 860 if (txg == 0) 861 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 862 863 if (oldc == 0) 864 metaslab_group_activate(vd->vdev_mg); 865 866 if (txg == 0) 867 spa_config_exit(spa, SCL_ALLOC, FTAG); 868 869 return (0); 870 } 871 872 void 873 vdev_metaslab_fini(vdev_t *vd) 874 { 875 uint64_t m; 876 uint64_t count = vd->vdev_ms_count; 877 878 if (vd->vdev_ms != NULL) { 879 metaslab_group_passivate(vd->vdev_mg); 880 for (m = 0; m < count; m++) 881 if (vd->vdev_ms[m] != NULL) 882 metaslab_fini(vd->vdev_ms[m]); 883 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 884 vd->vdev_ms = NULL; 885 } 886 } 887 888 typedef struct vdev_probe_stats { 889 boolean_t vps_readable; 890 boolean_t vps_writeable; 891 int vps_flags; 892 } vdev_probe_stats_t; 893 894 static void 895 vdev_probe_done(zio_t *zio) 896 { 897 spa_t *spa = zio->io_spa; 898 vdev_t *vd = zio->io_vd; 899 vdev_probe_stats_t *vps = zio->io_private; 900 901 ASSERT(vd->vdev_probe_zio != NULL); 902 903 if (zio->io_type == ZIO_TYPE_READ) { 904 if (zio->io_error == 0) 905 vps->vps_readable = 1; 906 if (zio->io_error == 0 && spa_writeable(spa)) { 907 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 908 zio->io_offset, zio->io_size, zio->io_data, 909 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 910 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 911 } else { 912 zio_buf_free(zio->io_data, zio->io_size); 913 } 914 } else if (zio->io_type == ZIO_TYPE_WRITE) { 915 if (zio->io_error == 0) 916 vps->vps_writeable = 1; 917 zio_buf_free(zio->io_data, zio->io_size); 918 } else if (zio->io_type == ZIO_TYPE_NULL) { 919 zio_t *pio; 920 921 vd->vdev_cant_read |= !vps->vps_readable; 922 vd->vdev_cant_write |= !vps->vps_writeable; 923 924 if (vdev_readable(vd) && 925 (vdev_writeable(vd) || !spa_writeable(spa))) { 926 zio->io_error = 0; 927 } else { 928 ASSERT(zio->io_error != 0); 929 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 930 spa, vd, NULL, 0, 0); 931 zio->io_error = ENXIO; 932 } 933 934 mutex_enter(&vd->vdev_probe_lock); 935 ASSERT(vd->vdev_probe_zio == zio); 936 vd->vdev_probe_zio = NULL; 937 mutex_exit(&vd->vdev_probe_lock); 938 939 while ((pio = zio_walk_parents(zio)) != NULL) 940 if (!vdev_accessible(vd, pio)) 941 pio->io_error = ENXIO; 942 943 kmem_free(vps, sizeof (*vps)); 944 } 945 } 946 947 /* 948 * Determine whether this device is accessible by reading and writing 949 * to several known locations: the pad regions of each vdev label 950 * but the first (which we leave alone in case it contains a VTOC). 951 */ 952 zio_t * 953 vdev_probe(vdev_t *vd, zio_t *zio) 954 { 955 spa_t *spa = vd->vdev_spa; 956 vdev_probe_stats_t *vps = NULL; 957 zio_t *pio; 958 959 ASSERT(vd->vdev_ops->vdev_op_leaf); 960 961 /* 962 * Don't probe the probe. 963 */ 964 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 965 return (NULL); 966 967 /* 968 * To prevent 'probe storms' when a device fails, we create 969 * just one probe i/o at a time. All zios that want to probe 970 * this vdev will become parents of the probe io. 971 */ 972 mutex_enter(&vd->vdev_probe_lock); 973 974 if ((pio = vd->vdev_probe_zio) == NULL) { 975 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 976 977 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 978 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 979 ZIO_FLAG_TRYHARD; 980 981 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 982 /* 983 * vdev_cant_read and vdev_cant_write can only 984 * transition from TRUE to FALSE when we have the 985 * SCL_ZIO lock as writer; otherwise they can only 986 * transition from FALSE to TRUE. This ensures that 987 * any zio looking at these values can assume that 988 * failures persist for the life of the I/O. That's 989 * important because when a device has intermittent 990 * connectivity problems, we want to ensure that 991 * they're ascribed to the device (ENXIO) and not 992 * the zio (EIO). 993 * 994 * Since we hold SCL_ZIO as writer here, clear both 995 * values so the probe can reevaluate from first 996 * principles. 997 */ 998 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 999 vd->vdev_cant_read = B_FALSE; 1000 vd->vdev_cant_write = B_FALSE; 1001 } 1002 1003 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1004 vdev_probe_done, vps, 1005 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1006 1007 /* 1008 * We can't change the vdev state in this context, so we 1009 * kick off an async task to do it on our behalf. 1010 */ 1011 if (zio != NULL) { 1012 vd->vdev_probe_wanted = B_TRUE; 1013 spa_async_request(spa, SPA_ASYNC_PROBE); 1014 } 1015 } 1016 1017 if (zio != NULL) 1018 zio_add_child(zio, pio); 1019 1020 mutex_exit(&vd->vdev_probe_lock); 1021 1022 if (vps == NULL) { 1023 ASSERT(zio != NULL); 1024 return (NULL); 1025 } 1026 1027 for (int l = 1; l < VDEV_LABELS; l++) { 1028 zio_nowait(zio_read_phys(pio, vd, 1029 vdev_label_offset(vd->vdev_psize, l, 1030 offsetof(vdev_label_t, vl_pad2)), 1031 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1032 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1033 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1034 } 1035 1036 if (zio == NULL) 1037 return (pio); 1038 1039 zio_nowait(pio); 1040 return (NULL); 1041 } 1042 1043 static void 1044 vdev_open_child(void *arg) 1045 { 1046 vdev_t *vd = arg; 1047 1048 vd->vdev_open_thread = curthread; 1049 vd->vdev_open_error = vdev_open(vd); 1050 vd->vdev_open_thread = NULL; 1051 } 1052 1053 boolean_t 1054 vdev_uses_zvols(vdev_t *vd) 1055 { 1056 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1057 strlen(ZVOL_DIR)) == 0) 1058 return (B_TRUE); 1059 for (int c = 0; c < vd->vdev_children; c++) 1060 if (vdev_uses_zvols(vd->vdev_child[c])) 1061 return (B_TRUE); 1062 return (B_FALSE); 1063 } 1064 1065 void 1066 vdev_open_children(vdev_t *vd) 1067 { 1068 taskq_t *tq; 1069 int children = vd->vdev_children; 1070 1071 /* 1072 * in order to handle pools on top of zvols, do the opens 1073 * in a single thread so that the same thread holds the 1074 * spa_namespace_lock 1075 */ 1076 if (vdev_uses_zvols(vd)) { 1077 for (int c = 0; c < children; c++) 1078 vd->vdev_child[c]->vdev_open_error = 1079 vdev_open(vd->vdev_child[c]); 1080 return; 1081 } 1082 tq = taskq_create("vdev_open", children, minclsyspri, 1083 children, children, TASKQ_PREPOPULATE); 1084 1085 for (int c = 0; c < children; c++) 1086 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1087 TQ_SLEEP) != NULL); 1088 1089 taskq_destroy(tq); 1090 } 1091 1092 /* 1093 * Prepare a virtual device for access. 1094 */ 1095 int 1096 vdev_open(vdev_t *vd) 1097 { 1098 spa_t *spa = vd->vdev_spa; 1099 int error; 1100 uint64_t osize = 0; 1101 uint64_t asize, psize; 1102 uint64_t ashift = 0; 1103 1104 ASSERT(vd->vdev_open_thread == curthread || 1105 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1106 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1107 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1108 vd->vdev_state == VDEV_STATE_OFFLINE); 1109 1110 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1111 vd->vdev_cant_read = B_FALSE; 1112 vd->vdev_cant_write = B_FALSE; 1113 vd->vdev_min_asize = vdev_get_min_asize(vd); 1114 1115 /* 1116 * If this vdev is not removed, check its fault status. If it's 1117 * faulted, bail out of the open. 1118 */ 1119 if (!vd->vdev_removed && vd->vdev_faulted) { 1120 ASSERT(vd->vdev_children == 0); 1121 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1122 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1123 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1124 vd->vdev_label_aux); 1125 return (ENXIO); 1126 } else if (vd->vdev_offline) { 1127 ASSERT(vd->vdev_children == 0); 1128 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1129 return (ENXIO); 1130 } 1131 1132 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1133 1134 /* 1135 * Reset the vdev_reopening flag so that we actually close 1136 * the vdev on error. 1137 */ 1138 vd->vdev_reopening = B_FALSE; 1139 if (zio_injection_enabled && error == 0) 1140 error = zio_handle_device_injection(vd, NULL, ENXIO); 1141 1142 if (error) { 1143 if (vd->vdev_removed && 1144 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1145 vd->vdev_removed = B_FALSE; 1146 1147 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1148 vd->vdev_stat.vs_aux); 1149 return (error); 1150 } 1151 1152 vd->vdev_removed = B_FALSE; 1153 1154 /* 1155 * Recheck the faulted flag now that we have confirmed that 1156 * the vdev is accessible. If we're faulted, bail. 1157 */ 1158 if (vd->vdev_faulted) { 1159 ASSERT(vd->vdev_children == 0); 1160 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1161 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1162 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1163 vd->vdev_label_aux); 1164 return (ENXIO); 1165 } 1166 1167 if (vd->vdev_degraded) { 1168 ASSERT(vd->vdev_children == 0); 1169 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1170 VDEV_AUX_ERR_EXCEEDED); 1171 } else { 1172 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1173 } 1174 1175 /* 1176 * For hole or missing vdevs we just return success. 1177 */ 1178 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1179 return (0); 1180 1181 for (int c = 0; c < vd->vdev_children; c++) { 1182 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1184 VDEV_AUX_NONE); 1185 break; 1186 } 1187 } 1188 1189 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1190 1191 if (vd->vdev_children == 0) { 1192 if (osize < SPA_MINDEVSIZE) { 1193 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1194 VDEV_AUX_TOO_SMALL); 1195 return (EOVERFLOW); 1196 } 1197 psize = osize; 1198 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1199 } else { 1200 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1201 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1203 VDEV_AUX_TOO_SMALL); 1204 return (EOVERFLOW); 1205 } 1206 psize = 0; 1207 asize = osize; 1208 } 1209 1210 vd->vdev_psize = psize; 1211 1212 /* 1213 * Make sure the allocatable size hasn't shrunk. 1214 */ 1215 if (asize < vd->vdev_min_asize) { 1216 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1217 VDEV_AUX_BAD_LABEL); 1218 return (EINVAL); 1219 } 1220 1221 if (vd->vdev_asize == 0) { 1222 /* 1223 * This is the first-ever open, so use the computed values. 1224 * For testing purposes, a higher ashift can be requested. 1225 */ 1226 vd->vdev_asize = asize; 1227 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1228 } else { 1229 /* 1230 * Make sure the alignment requirement hasn't increased. 1231 */ 1232 if (ashift > vd->vdev_top->vdev_ashift) { 1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1234 VDEV_AUX_BAD_LABEL); 1235 return (EINVAL); 1236 } 1237 } 1238 1239 /* 1240 * If all children are healthy and the asize has increased, 1241 * then we've experienced dynamic LUN growth. If automatic 1242 * expansion is enabled then use the additional space. 1243 */ 1244 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1245 (vd->vdev_expanding || spa->spa_autoexpand)) 1246 vd->vdev_asize = asize; 1247 1248 vdev_set_min_asize(vd); 1249 1250 /* 1251 * Ensure we can issue some IO before declaring the 1252 * vdev open for business. 1253 */ 1254 if (vd->vdev_ops->vdev_op_leaf && 1255 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1256 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1257 VDEV_AUX_ERR_EXCEEDED); 1258 return (error); 1259 } 1260 1261 /* 1262 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1263 * resilver. But don't do this if we are doing a reopen for a scrub, 1264 * since this would just restart the scrub we are already doing. 1265 */ 1266 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1267 vdev_resilver_needed(vd, NULL, NULL)) 1268 spa_async_request(spa, SPA_ASYNC_RESILVER); 1269 1270 return (0); 1271 } 1272 1273 /* 1274 * Called once the vdevs are all opened, this routine validates the label 1275 * contents. This needs to be done before vdev_load() so that we don't 1276 * inadvertently do repair I/Os to the wrong device. 1277 * 1278 * This function will only return failure if one of the vdevs indicates that it 1279 * has since been destroyed or exported. This is only possible if 1280 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1281 * will be updated but the function will return 0. 1282 */ 1283 int 1284 vdev_validate(vdev_t *vd) 1285 { 1286 spa_t *spa = vd->vdev_spa; 1287 nvlist_t *label; 1288 uint64_t guid = 0, top_guid; 1289 uint64_t state; 1290 1291 for (int c = 0; c < vd->vdev_children; c++) 1292 if (vdev_validate(vd->vdev_child[c]) != 0) 1293 return (EBADF); 1294 1295 /* 1296 * If the device has already failed, or was marked offline, don't do 1297 * any further validation. Otherwise, label I/O will fail and we will 1298 * overwrite the previous state. 1299 */ 1300 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1301 uint64_t aux_guid = 0; 1302 nvlist_t *nvl; 1303 1304 if ((label = vdev_label_read_config(vd)) == NULL) { 1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1306 VDEV_AUX_BAD_LABEL); 1307 return (0); 1308 } 1309 1310 /* 1311 * Determine if this vdev has been split off into another 1312 * pool. If so, then refuse to open it. 1313 */ 1314 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1315 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1316 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1317 VDEV_AUX_SPLIT_POOL); 1318 nvlist_free(label); 1319 return (0); 1320 } 1321 1322 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1323 &guid) != 0 || guid != spa_guid(spa)) { 1324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1325 VDEV_AUX_CORRUPT_DATA); 1326 nvlist_free(label); 1327 return (0); 1328 } 1329 1330 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1331 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1332 &aux_guid) != 0) 1333 aux_guid = 0; 1334 1335 /* 1336 * If this vdev just became a top-level vdev because its 1337 * sibling was detached, it will have adopted the parent's 1338 * vdev guid -- but the label may or may not be on disk yet. 1339 * Fortunately, either version of the label will have the 1340 * same top guid, so if we're a top-level vdev, we can 1341 * safely compare to that instead. 1342 * 1343 * If we split this vdev off instead, then we also check the 1344 * original pool's guid. We don't want to consider the vdev 1345 * corrupt if it is partway through a split operation. 1346 */ 1347 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1348 &guid) != 0 || 1349 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1350 &top_guid) != 0 || 1351 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1352 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1354 VDEV_AUX_CORRUPT_DATA); 1355 nvlist_free(label); 1356 return (0); 1357 } 1358 1359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1360 &state) != 0) { 1361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1362 VDEV_AUX_CORRUPT_DATA); 1363 nvlist_free(label); 1364 return (0); 1365 } 1366 1367 nvlist_free(label); 1368 1369 /* 1370 * If spa->spa_load_verbatim is true, no need to check the 1371 * state of the pool. 1372 */ 1373 if (!spa->spa_load_verbatim && 1374 spa_load_state(spa) == SPA_LOAD_OPEN && 1375 state != POOL_STATE_ACTIVE) 1376 return (EBADF); 1377 1378 /* 1379 * If we were able to open and validate a vdev that was 1380 * previously marked permanently unavailable, clear that state 1381 * now. 1382 */ 1383 if (vd->vdev_not_present) 1384 vd->vdev_not_present = 0; 1385 } 1386 1387 return (0); 1388 } 1389 1390 /* 1391 * Close a virtual device. 1392 */ 1393 void 1394 vdev_close(vdev_t *vd) 1395 { 1396 spa_t *spa = vd->vdev_spa; 1397 vdev_t *pvd = vd->vdev_parent; 1398 1399 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1400 1401 /* 1402 * If our parent is reopening, then we are as well, unless we are 1403 * going offline. 1404 */ 1405 if (pvd != NULL && pvd->vdev_reopening) 1406 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1407 1408 vd->vdev_ops->vdev_op_close(vd); 1409 1410 vdev_cache_purge(vd); 1411 1412 /* 1413 * We record the previous state before we close it, so that if we are 1414 * doing a reopen(), we don't generate FMA ereports if we notice that 1415 * it's still faulted. 1416 */ 1417 vd->vdev_prevstate = vd->vdev_state; 1418 1419 if (vd->vdev_offline) 1420 vd->vdev_state = VDEV_STATE_OFFLINE; 1421 else 1422 vd->vdev_state = VDEV_STATE_CLOSED; 1423 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1424 } 1425 1426 void 1427 vdev_hold(vdev_t *vd) 1428 { 1429 spa_t *spa = vd->vdev_spa; 1430 1431 ASSERT(spa_is_root(spa)); 1432 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1433 return; 1434 1435 for (int c = 0; c < vd->vdev_children; c++) 1436 vdev_hold(vd->vdev_child[c]); 1437 1438 if (vd->vdev_ops->vdev_op_leaf) 1439 vd->vdev_ops->vdev_op_hold(vd); 1440 } 1441 1442 void 1443 vdev_rele(vdev_t *vd) 1444 { 1445 spa_t *spa = vd->vdev_spa; 1446 1447 ASSERT(spa_is_root(spa)); 1448 for (int c = 0; c < vd->vdev_children; c++) 1449 vdev_rele(vd->vdev_child[c]); 1450 1451 if (vd->vdev_ops->vdev_op_leaf) 1452 vd->vdev_ops->vdev_op_rele(vd); 1453 } 1454 1455 /* 1456 * Reopen all interior vdevs and any unopened leaves. We don't actually 1457 * reopen leaf vdevs which had previously been opened as they might deadlock 1458 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1459 * If the leaf has never been opened then open it, as usual. 1460 */ 1461 void 1462 vdev_reopen(vdev_t *vd) 1463 { 1464 spa_t *spa = vd->vdev_spa; 1465 1466 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1467 1468 /* set the reopening flag unless we're taking the vdev offline */ 1469 vd->vdev_reopening = !vd->vdev_offline; 1470 vdev_close(vd); 1471 (void) vdev_open(vd); 1472 1473 /* 1474 * Call vdev_validate() here to make sure we have the same device. 1475 * Otherwise, a device with an invalid label could be successfully 1476 * opened in response to vdev_reopen(). 1477 */ 1478 if (vd->vdev_aux) { 1479 (void) vdev_validate_aux(vd); 1480 if (vdev_readable(vd) && vdev_writeable(vd) && 1481 vd->vdev_aux == &spa->spa_l2cache && 1482 !l2arc_vdev_present(vd)) 1483 l2arc_add_vdev(spa, vd); 1484 } else { 1485 (void) vdev_validate(vd); 1486 } 1487 1488 /* 1489 * Reassess parent vdev's health. 1490 */ 1491 vdev_propagate_state(vd); 1492 } 1493 1494 int 1495 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1496 { 1497 int error; 1498 1499 /* 1500 * Normally, partial opens (e.g. of a mirror) are allowed. 1501 * For a create, however, we want to fail the request if 1502 * there are any components we can't open. 1503 */ 1504 error = vdev_open(vd); 1505 1506 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1507 vdev_close(vd); 1508 return (error ? error : ENXIO); 1509 } 1510 1511 /* 1512 * Recursively initialize all labels. 1513 */ 1514 if ((error = vdev_label_init(vd, txg, isreplacing ? 1515 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1516 vdev_close(vd); 1517 return (error); 1518 } 1519 1520 return (0); 1521 } 1522 1523 void 1524 vdev_metaslab_set_size(vdev_t *vd) 1525 { 1526 /* 1527 * Aim for roughly 200 metaslabs per vdev. 1528 */ 1529 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1530 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1531 } 1532 1533 void 1534 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1535 { 1536 ASSERT(vd == vd->vdev_top); 1537 ASSERT(!vd->vdev_ishole); 1538 ASSERT(ISP2(flags)); 1539 1540 if (flags & VDD_METASLAB) 1541 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1542 1543 if (flags & VDD_DTL) 1544 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1545 1546 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1547 } 1548 1549 /* 1550 * DTLs. 1551 * 1552 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1553 * the vdev has less than perfect replication. There are four kinds of DTL: 1554 * 1555 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1556 * 1557 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1558 * 1559 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1560 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1561 * txgs that was scrubbed. 1562 * 1563 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1564 * persistent errors or just some device being offline. 1565 * Unlike the other three, the DTL_OUTAGE map is not generally 1566 * maintained; it's only computed when needed, typically to 1567 * determine whether a device can be detached. 1568 * 1569 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1570 * either has the data or it doesn't. 1571 * 1572 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1573 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1574 * if any child is less than fully replicated, then so is its parent. 1575 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1576 * comprising only those txgs which appear in 'maxfaults' or more children; 1577 * those are the txgs we don't have enough replication to read. For example, 1578 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1579 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1580 * two child DTL_MISSING maps. 1581 * 1582 * It should be clear from the above that to compute the DTLs and outage maps 1583 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1584 * Therefore, that is all we keep on disk. When loading the pool, or after 1585 * a configuration change, we generate all other DTLs from first principles. 1586 */ 1587 void 1588 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1589 { 1590 space_map_t *sm = &vd->vdev_dtl[t]; 1591 1592 ASSERT(t < DTL_TYPES); 1593 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1594 1595 mutex_enter(sm->sm_lock); 1596 if (!space_map_contains(sm, txg, size)) 1597 space_map_add(sm, txg, size); 1598 mutex_exit(sm->sm_lock); 1599 } 1600 1601 boolean_t 1602 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1603 { 1604 space_map_t *sm = &vd->vdev_dtl[t]; 1605 boolean_t dirty = B_FALSE; 1606 1607 ASSERT(t < DTL_TYPES); 1608 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1609 1610 mutex_enter(sm->sm_lock); 1611 if (sm->sm_space != 0) 1612 dirty = space_map_contains(sm, txg, size); 1613 mutex_exit(sm->sm_lock); 1614 1615 return (dirty); 1616 } 1617 1618 boolean_t 1619 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1620 { 1621 space_map_t *sm = &vd->vdev_dtl[t]; 1622 boolean_t empty; 1623 1624 mutex_enter(sm->sm_lock); 1625 empty = (sm->sm_space == 0); 1626 mutex_exit(sm->sm_lock); 1627 1628 return (empty); 1629 } 1630 1631 /* 1632 * Reassess DTLs after a config change or scrub completion. 1633 */ 1634 void 1635 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1636 { 1637 spa_t *spa = vd->vdev_spa; 1638 avl_tree_t reftree; 1639 int minref; 1640 1641 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1642 1643 for (int c = 0; c < vd->vdev_children; c++) 1644 vdev_dtl_reassess(vd->vdev_child[c], txg, 1645 scrub_txg, scrub_done); 1646 1647 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1648 return; 1649 1650 if (vd->vdev_ops->vdev_op_leaf) { 1651 mutex_enter(&vd->vdev_dtl_lock); 1652 if (scrub_txg != 0 && 1653 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1654 /* 1655 * We completed a scrub up to scrub_txg. If we 1656 * did it without rebooting, then the scrub dtl 1657 * will be valid, so excise the old region and 1658 * fold in the scrub dtl. Otherwise, leave the 1659 * dtl as-is if there was an error. 1660 * 1661 * There's little trick here: to excise the beginning 1662 * of the DTL_MISSING map, we put it into a reference 1663 * tree and then add a segment with refcnt -1 that 1664 * covers the range [0, scrub_txg). This means 1665 * that each txg in that range has refcnt -1 or 0. 1666 * We then add DTL_SCRUB with a refcnt of 2, so that 1667 * entries in the range [0, scrub_txg) will have a 1668 * positive refcnt -- either 1 or 2. We then convert 1669 * the reference tree into the new DTL_MISSING map. 1670 */ 1671 space_map_ref_create(&reftree); 1672 space_map_ref_add_map(&reftree, 1673 &vd->vdev_dtl[DTL_MISSING], 1); 1674 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1675 space_map_ref_add_map(&reftree, 1676 &vd->vdev_dtl[DTL_SCRUB], 2); 1677 space_map_ref_generate_map(&reftree, 1678 &vd->vdev_dtl[DTL_MISSING], 1); 1679 space_map_ref_destroy(&reftree); 1680 } 1681 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1682 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1683 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1684 if (scrub_done) 1685 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1686 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1687 if (!vdev_readable(vd)) 1688 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1689 else 1690 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1691 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1692 mutex_exit(&vd->vdev_dtl_lock); 1693 1694 if (txg != 0) 1695 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1696 return; 1697 } 1698 1699 mutex_enter(&vd->vdev_dtl_lock); 1700 for (int t = 0; t < DTL_TYPES; t++) { 1701 /* account for child's outage in parent's missing map */ 1702 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1703 if (t == DTL_SCRUB) 1704 continue; /* leaf vdevs only */ 1705 if (t == DTL_PARTIAL) 1706 minref = 1; /* i.e. non-zero */ 1707 else if (vd->vdev_nparity != 0) 1708 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1709 else 1710 minref = vd->vdev_children; /* any kind of mirror */ 1711 space_map_ref_create(&reftree); 1712 for (int c = 0; c < vd->vdev_children; c++) { 1713 vdev_t *cvd = vd->vdev_child[c]; 1714 mutex_enter(&cvd->vdev_dtl_lock); 1715 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1716 mutex_exit(&cvd->vdev_dtl_lock); 1717 } 1718 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1719 space_map_ref_destroy(&reftree); 1720 } 1721 mutex_exit(&vd->vdev_dtl_lock); 1722 } 1723 1724 static int 1725 vdev_dtl_load(vdev_t *vd) 1726 { 1727 spa_t *spa = vd->vdev_spa; 1728 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1729 objset_t *mos = spa->spa_meta_objset; 1730 dmu_buf_t *db; 1731 int error; 1732 1733 ASSERT(vd->vdev_children == 0); 1734 1735 if (smo->smo_object == 0) 1736 return (0); 1737 1738 ASSERT(!vd->vdev_ishole); 1739 1740 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1741 return (error); 1742 1743 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1744 bcopy(db->db_data, smo, sizeof (*smo)); 1745 dmu_buf_rele(db, FTAG); 1746 1747 mutex_enter(&vd->vdev_dtl_lock); 1748 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1749 NULL, SM_ALLOC, smo, mos); 1750 mutex_exit(&vd->vdev_dtl_lock); 1751 1752 return (error); 1753 } 1754 1755 void 1756 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1757 { 1758 spa_t *spa = vd->vdev_spa; 1759 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1760 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1761 objset_t *mos = spa->spa_meta_objset; 1762 space_map_t smsync; 1763 kmutex_t smlock; 1764 dmu_buf_t *db; 1765 dmu_tx_t *tx; 1766 1767 ASSERT(!vd->vdev_ishole); 1768 1769 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1770 1771 if (vd->vdev_detached) { 1772 if (smo->smo_object != 0) { 1773 int err = dmu_object_free(mos, smo->smo_object, tx); 1774 ASSERT3U(err, ==, 0); 1775 smo->smo_object = 0; 1776 } 1777 dmu_tx_commit(tx); 1778 return; 1779 } 1780 1781 if (smo->smo_object == 0) { 1782 ASSERT(smo->smo_objsize == 0); 1783 ASSERT(smo->smo_alloc == 0); 1784 smo->smo_object = dmu_object_alloc(mos, 1785 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1786 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1787 ASSERT(smo->smo_object != 0); 1788 vdev_config_dirty(vd->vdev_top); 1789 } 1790 1791 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1792 1793 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1794 &smlock); 1795 1796 mutex_enter(&smlock); 1797 1798 mutex_enter(&vd->vdev_dtl_lock); 1799 space_map_walk(sm, space_map_add, &smsync); 1800 mutex_exit(&vd->vdev_dtl_lock); 1801 1802 space_map_truncate(smo, mos, tx); 1803 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1804 1805 space_map_destroy(&smsync); 1806 1807 mutex_exit(&smlock); 1808 mutex_destroy(&smlock); 1809 1810 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1811 dmu_buf_will_dirty(db, tx); 1812 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1813 bcopy(smo, db->db_data, sizeof (*smo)); 1814 dmu_buf_rele(db, FTAG); 1815 1816 dmu_tx_commit(tx); 1817 } 1818 1819 /* 1820 * Determine whether the specified vdev can be offlined/detached/removed 1821 * without losing data. 1822 */ 1823 boolean_t 1824 vdev_dtl_required(vdev_t *vd) 1825 { 1826 spa_t *spa = vd->vdev_spa; 1827 vdev_t *tvd = vd->vdev_top; 1828 uint8_t cant_read = vd->vdev_cant_read; 1829 boolean_t required; 1830 1831 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1832 1833 if (vd == spa->spa_root_vdev || vd == tvd) 1834 return (B_TRUE); 1835 1836 /* 1837 * Temporarily mark the device as unreadable, and then determine 1838 * whether this results in any DTL outages in the top-level vdev. 1839 * If not, we can safely offline/detach/remove the device. 1840 */ 1841 vd->vdev_cant_read = B_TRUE; 1842 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1843 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1844 vd->vdev_cant_read = cant_read; 1845 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1846 1847 return (required); 1848 } 1849 1850 /* 1851 * Determine if resilver is needed, and if so the txg range. 1852 */ 1853 boolean_t 1854 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1855 { 1856 boolean_t needed = B_FALSE; 1857 uint64_t thismin = UINT64_MAX; 1858 uint64_t thismax = 0; 1859 1860 if (vd->vdev_children == 0) { 1861 mutex_enter(&vd->vdev_dtl_lock); 1862 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1863 vdev_writeable(vd)) { 1864 space_seg_t *ss; 1865 1866 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1867 thismin = ss->ss_start - 1; 1868 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1869 thismax = ss->ss_end; 1870 needed = B_TRUE; 1871 } 1872 mutex_exit(&vd->vdev_dtl_lock); 1873 } else { 1874 for (int c = 0; c < vd->vdev_children; c++) { 1875 vdev_t *cvd = vd->vdev_child[c]; 1876 uint64_t cmin, cmax; 1877 1878 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1879 thismin = MIN(thismin, cmin); 1880 thismax = MAX(thismax, cmax); 1881 needed = B_TRUE; 1882 } 1883 } 1884 } 1885 1886 if (needed && minp) { 1887 *minp = thismin; 1888 *maxp = thismax; 1889 } 1890 return (needed); 1891 } 1892 1893 void 1894 vdev_load(vdev_t *vd) 1895 { 1896 /* 1897 * Recursively load all children. 1898 */ 1899 for (int c = 0; c < vd->vdev_children; c++) 1900 vdev_load(vd->vdev_child[c]); 1901 1902 /* 1903 * If this is a top-level vdev, initialize its metaslabs. 1904 */ 1905 if (vd == vd->vdev_top && !vd->vdev_ishole && 1906 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1907 vdev_metaslab_init(vd, 0) != 0)) 1908 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1909 VDEV_AUX_CORRUPT_DATA); 1910 1911 /* 1912 * If this is a leaf vdev, load its DTL. 1913 */ 1914 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1915 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1916 VDEV_AUX_CORRUPT_DATA); 1917 } 1918 1919 /* 1920 * The special vdev case is used for hot spares and l2cache devices. Its 1921 * sole purpose it to set the vdev state for the associated vdev. To do this, 1922 * we make sure that we can open the underlying device, then try to read the 1923 * label, and make sure that the label is sane and that it hasn't been 1924 * repurposed to another pool. 1925 */ 1926 int 1927 vdev_validate_aux(vdev_t *vd) 1928 { 1929 nvlist_t *label; 1930 uint64_t guid, version; 1931 uint64_t state; 1932 1933 if (!vdev_readable(vd)) 1934 return (0); 1935 1936 if ((label = vdev_label_read_config(vd)) == NULL) { 1937 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1938 VDEV_AUX_CORRUPT_DATA); 1939 return (-1); 1940 } 1941 1942 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1943 version > SPA_VERSION || 1944 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1945 guid != vd->vdev_guid || 1946 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1947 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1948 VDEV_AUX_CORRUPT_DATA); 1949 nvlist_free(label); 1950 return (-1); 1951 } 1952 1953 /* 1954 * We don't actually check the pool state here. If it's in fact in 1955 * use by another pool, we update this fact on the fly when requested. 1956 */ 1957 nvlist_free(label); 1958 return (0); 1959 } 1960 1961 void 1962 vdev_remove(vdev_t *vd, uint64_t txg) 1963 { 1964 spa_t *spa = vd->vdev_spa; 1965 objset_t *mos = spa->spa_meta_objset; 1966 dmu_tx_t *tx; 1967 1968 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1969 1970 if (vd->vdev_dtl_smo.smo_object) { 1971 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1972 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1973 vd->vdev_dtl_smo.smo_object = 0; 1974 } 1975 1976 if (vd->vdev_ms != NULL) { 1977 for (int m = 0; m < vd->vdev_ms_count; m++) { 1978 metaslab_t *msp = vd->vdev_ms[m]; 1979 1980 if (msp == NULL || msp->ms_smo.smo_object == 0) 1981 continue; 1982 1983 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1984 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1985 msp->ms_smo.smo_object = 0; 1986 } 1987 } 1988 1989 if (vd->vdev_ms_array) { 1990 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1991 vd->vdev_ms_array = 0; 1992 vd->vdev_ms_shift = 0; 1993 } 1994 dmu_tx_commit(tx); 1995 } 1996 1997 void 1998 vdev_sync_done(vdev_t *vd, uint64_t txg) 1999 { 2000 metaslab_t *msp; 2001 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2002 2003 ASSERT(!vd->vdev_ishole); 2004 2005 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2006 metaslab_sync_done(msp, txg); 2007 2008 if (reassess) 2009 metaslab_sync_reassess(vd->vdev_mg); 2010 } 2011 2012 void 2013 vdev_sync(vdev_t *vd, uint64_t txg) 2014 { 2015 spa_t *spa = vd->vdev_spa; 2016 vdev_t *lvd; 2017 metaslab_t *msp; 2018 dmu_tx_t *tx; 2019 2020 ASSERT(!vd->vdev_ishole); 2021 2022 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2023 ASSERT(vd == vd->vdev_top); 2024 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2025 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2026 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2027 ASSERT(vd->vdev_ms_array != 0); 2028 vdev_config_dirty(vd); 2029 dmu_tx_commit(tx); 2030 } 2031 2032 if (vd->vdev_removing) 2033 vdev_remove(vd, txg); 2034 2035 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2036 metaslab_sync(msp, txg); 2037 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2038 } 2039 2040 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2041 vdev_dtl_sync(lvd, txg); 2042 2043 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2044 } 2045 2046 uint64_t 2047 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2048 { 2049 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2050 } 2051 2052 /* 2053 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2054 * not be opened, and no I/O is attempted. 2055 */ 2056 int 2057 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2058 { 2059 vdev_t *vd; 2060 2061 spa_vdev_state_enter(spa, SCL_NONE); 2062 2063 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2064 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2065 2066 if (!vd->vdev_ops->vdev_op_leaf) 2067 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2068 2069 /* 2070 * We don't directly use the aux state here, but if we do a 2071 * vdev_reopen(), we need this value to be present to remember why we 2072 * were faulted. 2073 */ 2074 vd->vdev_label_aux = aux; 2075 2076 /* 2077 * Faulted state takes precedence over degraded. 2078 */ 2079 vd->vdev_delayed_close = B_FALSE; 2080 vd->vdev_faulted = 1ULL; 2081 vd->vdev_degraded = 0ULL; 2082 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2083 2084 /* 2085 * If this device has the only valid copy of the data, then 2086 * back off and simply mark the vdev as degraded instead. 2087 */ 2088 if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2089 vd->vdev_degraded = 1ULL; 2090 vd->vdev_faulted = 0ULL; 2091 2092 /* 2093 * If we reopen the device and it's not dead, only then do we 2094 * mark it degraded. 2095 */ 2096 vdev_reopen(vd); 2097 2098 if (vdev_readable(vd)) 2099 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2100 } 2101 2102 return (spa_vdev_state_exit(spa, vd, 0)); 2103 } 2104 2105 /* 2106 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2107 * user that something is wrong. The vdev continues to operate as normal as far 2108 * as I/O is concerned. 2109 */ 2110 int 2111 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2112 { 2113 vdev_t *vd; 2114 2115 spa_vdev_state_enter(spa, SCL_NONE); 2116 2117 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2118 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2119 2120 if (!vd->vdev_ops->vdev_op_leaf) 2121 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2122 2123 /* 2124 * If the vdev is already faulted, then don't do anything. 2125 */ 2126 if (vd->vdev_faulted || vd->vdev_degraded) 2127 return (spa_vdev_state_exit(spa, NULL, 0)); 2128 2129 vd->vdev_degraded = 1ULL; 2130 if (!vdev_is_dead(vd)) 2131 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2132 aux); 2133 2134 return (spa_vdev_state_exit(spa, vd, 0)); 2135 } 2136 2137 /* 2138 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2139 * any attached spare device should be detached when the device finishes 2140 * resilvering. Second, the online should be treated like a 'test' online case, 2141 * so no FMA events are generated if the device fails to open. 2142 */ 2143 int 2144 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2145 { 2146 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2147 2148 spa_vdev_state_enter(spa, SCL_NONE); 2149 2150 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2151 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2152 2153 if (!vd->vdev_ops->vdev_op_leaf) 2154 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2155 2156 tvd = vd->vdev_top; 2157 vd->vdev_offline = B_FALSE; 2158 vd->vdev_tmpoffline = B_FALSE; 2159 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2160 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2161 2162 /* XXX - L2ARC 1.0 does not support expansion */ 2163 if (!vd->vdev_aux) { 2164 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2165 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2166 } 2167 2168 vdev_reopen(tvd); 2169 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2170 2171 if (!vd->vdev_aux) { 2172 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2173 pvd->vdev_expanding = B_FALSE; 2174 } 2175 2176 if (newstate) 2177 *newstate = vd->vdev_state; 2178 if ((flags & ZFS_ONLINE_UNSPARE) && 2179 !vdev_is_dead(vd) && vd->vdev_parent && 2180 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2181 vd->vdev_parent->vdev_child[0] == vd) 2182 vd->vdev_unspare = B_TRUE; 2183 2184 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2185 2186 /* XXX - L2ARC 1.0 does not support expansion */ 2187 if (vd->vdev_aux) 2188 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2189 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2190 } 2191 return (spa_vdev_state_exit(spa, vd, 0)); 2192 } 2193 2194 static int 2195 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2196 { 2197 vdev_t *vd, *tvd; 2198 int error = 0; 2199 uint64_t generation; 2200 metaslab_group_t *mg; 2201 2202 top: 2203 spa_vdev_state_enter(spa, SCL_ALLOC); 2204 2205 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2206 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2207 2208 if (!vd->vdev_ops->vdev_op_leaf) 2209 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2210 2211 tvd = vd->vdev_top; 2212 mg = tvd->vdev_mg; 2213 generation = spa->spa_config_generation + 1; 2214 2215 /* 2216 * If the device isn't already offline, try to offline it. 2217 */ 2218 if (!vd->vdev_offline) { 2219 /* 2220 * If this device has the only valid copy of some data, 2221 * don't allow it to be offlined. Log devices are always 2222 * expendable. 2223 */ 2224 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2225 vdev_dtl_required(vd)) 2226 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2227 2228 /* 2229 * If the top-level is a slog and it has had allocations 2230 * then proceed. We check that the vdev's metaslab group 2231 * is not NULL since it's possible that we may have just 2232 * added this vdev but not yet initialized its metaslabs. 2233 */ 2234 if (tvd->vdev_islog && mg != NULL) { 2235 /* 2236 * Prevent any future allocations. 2237 */ 2238 metaslab_group_passivate(mg); 2239 (void) spa_vdev_state_exit(spa, vd, 0); 2240 2241 error = spa_offline_log(spa); 2242 2243 spa_vdev_state_enter(spa, SCL_ALLOC); 2244 2245 /* 2246 * Check to see if the config has changed. 2247 */ 2248 if (error || generation != spa->spa_config_generation) { 2249 metaslab_group_activate(mg); 2250 if (error) 2251 return (spa_vdev_state_exit(spa, 2252 vd, error)); 2253 (void) spa_vdev_state_exit(spa, vd, 0); 2254 goto top; 2255 } 2256 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2257 } 2258 2259 /* 2260 * Offline this device and reopen its top-level vdev. 2261 * If the top-level vdev is a log device then just offline 2262 * it. Otherwise, if this action results in the top-level 2263 * vdev becoming unusable, undo it and fail the request. 2264 */ 2265 vd->vdev_offline = B_TRUE; 2266 vdev_reopen(tvd); 2267 2268 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2269 vdev_is_dead(tvd)) { 2270 vd->vdev_offline = B_FALSE; 2271 vdev_reopen(tvd); 2272 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2273 } 2274 2275 /* 2276 * Add the device back into the metaslab rotor so that 2277 * once we online the device it's open for business. 2278 */ 2279 if (tvd->vdev_islog && mg != NULL) 2280 metaslab_group_activate(mg); 2281 } 2282 2283 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2284 2285 return (spa_vdev_state_exit(spa, vd, 0)); 2286 } 2287 2288 int 2289 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2290 { 2291 int error; 2292 2293 mutex_enter(&spa->spa_vdev_top_lock); 2294 error = vdev_offline_locked(spa, guid, flags); 2295 mutex_exit(&spa->spa_vdev_top_lock); 2296 2297 return (error); 2298 } 2299 2300 /* 2301 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2302 * vdev_offline(), we assume the spa config is locked. We also clear all 2303 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2304 */ 2305 void 2306 vdev_clear(spa_t *spa, vdev_t *vd) 2307 { 2308 vdev_t *rvd = spa->spa_root_vdev; 2309 2310 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2311 2312 if (vd == NULL) 2313 vd = rvd; 2314 2315 vd->vdev_stat.vs_read_errors = 0; 2316 vd->vdev_stat.vs_write_errors = 0; 2317 vd->vdev_stat.vs_checksum_errors = 0; 2318 2319 for (int c = 0; c < vd->vdev_children; c++) 2320 vdev_clear(spa, vd->vdev_child[c]); 2321 2322 /* 2323 * If we're in the FAULTED state or have experienced failed I/O, then 2324 * clear the persistent state and attempt to reopen the device. We 2325 * also mark the vdev config dirty, so that the new faulted state is 2326 * written out to disk. 2327 */ 2328 if (vd->vdev_faulted || vd->vdev_degraded || 2329 !vdev_readable(vd) || !vdev_writeable(vd)) { 2330 2331 /* 2332 * When reopening in reponse to a clear event, it may be due to 2333 * a fmadm repair request. In this case, if the device is 2334 * still broken, we want to still post the ereport again. 2335 */ 2336 vd->vdev_forcefault = B_TRUE; 2337 2338 vd->vdev_faulted = vd->vdev_degraded = 0; 2339 vd->vdev_cant_read = B_FALSE; 2340 vd->vdev_cant_write = B_FALSE; 2341 2342 vdev_reopen(vd); 2343 2344 vd->vdev_forcefault = B_FALSE; 2345 2346 if (vd != rvd) 2347 vdev_state_dirty(vd->vdev_top); 2348 2349 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2350 spa_async_request(spa, SPA_ASYNC_RESILVER); 2351 2352 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2353 } 2354 2355 /* 2356 * When clearing a FMA-diagnosed fault, we always want to 2357 * unspare the device, as we assume that the original spare was 2358 * done in response to the FMA fault. 2359 */ 2360 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2361 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2362 vd->vdev_parent->vdev_child[0] == vd) 2363 vd->vdev_unspare = B_TRUE; 2364 } 2365 2366 boolean_t 2367 vdev_is_dead(vdev_t *vd) 2368 { 2369 /* 2370 * Holes and missing devices are always considered "dead". 2371 * This simplifies the code since we don't have to check for 2372 * these types of devices in the various code paths. 2373 * Instead we rely on the fact that we skip over dead devices 2374 * before issuing I/O to them. 2375 */ 2376 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2377 vd->vdev_ops == &vdev_missing_ops); 2378 } 2379 2380 boolean_t 2381 vdev_readable(vdev_t *vd) 2382 { 2383 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2384 } 2385 2386 boolean_t 2387 vdev_writeable(vdev_t *vd) 2388 { 2389 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2390 } 2391 2392 boolean_t 2393 vdev_allocatable(vdev_t *vd) 2394 { 2395 uint64_t state = vd->vdev_state; 2396 2397 /* 2398 * We currently allow allocations from vdevs which may be in the 2399 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2400 * fails to reopen then we'll catch it later when we're holding 2401 * the proper locks. Note that we have to get the vdev state 2402 * in a local variable because although it changes atomically, 2403 * we're asking two separate questions about it. 2404 */ 2405 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2406 !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing); 2407 } 2408 2409 boolean_t 2410 vdev_accessible(vdev_t *vd, zio_t *zio) 2411 { 2412 ASSERT(zio->io_vd == vd); 2413 2414 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2415 return (B_FALSE); 2416 2417 if (zio->io_type == ZIO_TYPE_READ) 2418 return (!vd->vdev_cant_read); 2419 2420 if (zio->io_type == ZIO_TYPE_WRITE) 2421 return (!vd->vdev_cant_write); 2422 2423 return (B_TRUE); 2424 } 2425 2426 /* 2427 * Get statistics for the given vdev. 2428 */ 2429 void 2430 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2431 { 2432 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2433 2434 mutex_enter(&vd->vdev_stat_lock); 2435 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2436 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2437 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2438 vs->vs_state = vd->vdev_state; 2439 vs->vs_rsize = vdev_get_min_asize(vd); 2440 if (vd->vdev_ops->vdev_op_leaf) 2441 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2442 mutex_exit(&vd->vdev_stat_lock); 2443 2444 /* 2445 * If we're getting stats on the root vdev, aggregate the I/O counts 2446 * over all top-level vdevs (i.e. the direct children of the root). 2447 */ 2448 if (vd == rvd) { 2449 for (int c = 0; c < rvd->vdev_children; c++) { 2450 vdev_t *cvd = rvd->vdev_child[c]; 2451 vdev_stat_t *cvs = &cvd->vdev_stat; 2452 2453 mutex_enter(&vd->vdev_stat_lock); 2454 for (int t = 0; t < ZIO_TYPES; t++) { 2455 vs->vs_ops[t] += cvs->vs_ops[t]; 2456 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2457 } 2458 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2459 mutex_exit(&vd->vdev_stat_lock); 2460 } 2461 } 2462 } 2463 2464 void 2465 vdev_clear_stats(vdev_t *vd) 2466 { 2467 mutex_enter(&vd->vdev_stat_lock); 2468 vd->vdev_stat.vs_space = 0; 2469 vd->vdev_stat.vs_dspace = 0; 2470 vd->vdev_stat.vs_alloc = 0; 2471 mutex_exit(&vd->vdev_stat_lock); 2472 } 2473 2474 void 2475 vdev_stat_update(zio_t *zio, uint64_t psize) 2476 { 2477 spa_t *spa = zio->io_spa; 2478 vdev_t *rvd = spa->spa_root_vdev; 2479 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2480 vdev_t *pvd; 2481 uint64_t txg = zio->io_txg; 2482 vdev_stat_t *vs = &vd->vdev_stat; 2483 zio_type_t type = zio->io_type; 2484 int flags = zio->io_flags; 2485 2486 /* 2487 * If this i/o is a gang leader, it didn't do any actual work. 2488 */ 2489 if (zio->io_gang_tree) 2490 return; 2491 2492 if (zio->io_error == 0) { 2493 /* 2494 * If this is a root i/o, don't count it -- we've already 2495 * counted the top-level vdevs, and vdev_get_stats() will 2496 * aggregate them when asked. This reduces contention on 2497 * the root vdev_stat_lock and implicitly handles blocks 2498 * that compress away to holes, for which there is no i/o. 2499 * (Holes never create vdev children, so all the counters 2500 * remain zero, which is what we want.) 2501 * 2502 * Note: this only applies to successful i/o (io_error == 0) 2503 * because unlike i/o counts, errors are not additive. 2504 * When reading a ditto block, for example, failure of 2505 * one top-level vdev does not imply a root-level error. 2506 */ 2507 if (vd == rvd) 2508 return; 2509 2510 ASSERT(vd == zio->io_vd); 2511 2512 if (flags & ZIO_FLAG_IO_BYPASS) 2513 return; 2514 2515 mutex_enter(&vd->vdev_stat_lock); 2516 2517 if (flags & ZIO_FLAG_IO_REPAIR) { 2518 if (flags & ZIO_FLAG_SCRUB_THREAD) 2519 vs->vs_scrub_repaired += psize; 2520 if (flags & ZIO_FLAG_SELF_HEAL) 2521 vs->vs_self_healed += psize; 2522 } 2523 2524 vs->vs_ops[type]++; 2525 vs->vs_bytes[type] += psize; 2526 2527 mutex_exit(&vd->vdev_stat_lock); 2528 return; 2529 } 2530 2531 if (flags & ZIO_FLAG_SPECULATIVE) 2532 return; 2533 2534 /* 2535 * If this is an I/O error that is going to be retried, then ignore the 2536 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2537 * hard errors, when in reality they can happen for any number of 2538 * innocuous reasons (bus resets, MPxIO link failure, etc). 2539 */ 2540 if (zio->io_error == EIO && 2541 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2542 return; 2543 2544 /* 2545 * Intent logs writes won't propagate their error to the root 2546 * I/O so don't mark these types of failures as pool-level 2547 * errors. 2548 */ 2549 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2550 return; 2551 2552 mutex_enter(&vd->vdev_stat_lock); 2553 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2554 if (zio->io_error == ECKSUM) 2555 vs->vs_checksum_errors++; 2556 else 2557 vs->vs_read_errors++; 2558 } 2559 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2560 vs->vs_write_errors++; 2561 mutex_exit(&vd->vdev_stat_lock); 2562 2563 if (type == ZIO_TYPE_WRITE && txg != 0 && 2564 (!(flags & ZIO_FLAG_IO_REPAIR) || 2565 (flags & ZIO_FLAG_SCRUB_THREAD) || 2566 spa->spa_claiming)) { 2567 /* 2568 * This is either a normal write (not a repair), or it's 2569 * a repair induced by the scrub thread, or it's a repair 2570 * made by zil_claim() during spa_load() in the first txg. 2571 * In the normal case, we commit the DTL change in the same 2572 * txg as the block was born. In the scrub-induced repair 2573 * case, we know that scrubs run in first-pass syncing context, 2574 * so we commit the DTL change in spa_syncing_txg(spa). 2575 * In the zil_claim() case, we commit in spa_first_txg(spa). 2576 * 2577 * We currently do not make DTL entries for failed spontaneous 2578 * self-healing writes triggered by normal (non-scrubbing) 2579 * reads, because we have no transactional context in which to 2580 * do so -- and it's not clear that it'd be desirable anyway. 2581 */ 2582 if (vd->vdev_ops->vdev_op_leaf) { 2583 uint64_t commit_txg = txg; 2584 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2585 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2586 ASSERT(spa_sync_pass(spa) == 1); 2587 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2588 commit_txg = spa_syncing_txg(spa); 2589 } else if (spa->spa_claiming) { 2590 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2591 commit_txg = spa_first_txg(spa); 2592 } 2593 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2594 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2595 return; 2596 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2597 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2598 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2599 } 2600 if (vd != rvd) 2601 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2602 } 2603 } 2604 2605 void 2606 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2607 { 2608 vdev_stat_t *vs = &vd->vdev_stat; 2609 2610 for (int c = 0; c < vd->vdev_children; c++) 2611 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2612 2613 mutex_enter(&vd->vdev_stat_lock); 2614 2615 if (type == POOL_SCRUB_NONE) { 2616 /* 2617 * Update completion and end time. Leave everything else alone 2618 * so we can report what happened during the previous scrub. 2619 */ 2620 vs->vs_scrub_complete = complete; 2621 vs->vs_scrub_end = gethrestime_sec(); 2622 } else { 2623 vs->vs_scrub_type = type; 2624 vs->vs_scrub_complete = 0; 2625 vs->vs_scrub_examined = 0; 2626 vs->vs_scrub_repaired = 0; 2627 vs->vs_scrub_start = gethrestime_sec(); 2628 vs->vs_scrub_end = 0; 2629 } 2630 2631 mutex_exit(&vd->vdev_stat_lock); 2632 } 2633 2634 /* 2635 * Update the in-core space usage stats for this vdev, its metaslab class, 2636 * and the root vdev. 2637 */ 2638 void 2639 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2640 int64_t space_delta) 2641 { 2642 int64_t dspace_delta = space_delta; 2643 spa_t *spa = vd->vdev_spa; 2644 vdev_t *rvd = spa->spa_root_vdev; 2645 metaslab_group_t *mg = vd->vdev_mg; 2646 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2647 2648 ASSERT(vd == vd->vdev_top); 2649 2650 /* 2651 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2652 * factor. We must calculate this here and not at the root vdev 2653 * because the root vdev's psize-to-asize is simply the max of its 2654 * childrens', thus not accurate enough for us. 2655 */ 2656 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2657 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2658 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2659 vd->vdev_deflate_ratio; 2660 2661 mutex_enter(&vd->vdev_stat_lock); 2662 vd->vdev_stat.vs_alloc += alloc_delta; 2663 vd->vdev_stat.vs_space += space_delta; 2664 vd->vdev_stat.vs_dspace += dspace_delta; 2665 mutex_exit(&vd->vdev_stat_lock); 2666 2667 if (mc == spa_normal_class(spa)) { 2668 mutex_enter(&rvd->vdev_stat_lock); 2669 rvd->vdev_stat.vs_alloc += alloc_delta; 2670 rvd->vdev_stat.vs_space += space_delta; 2671 rvd->vdev_stat.vs_dspace += dspace_delta; 2672 mutex_exit(&rvd->vdev_stat_lock); 2673 } 2674 2675 if (mc != NULL) { 2676 ASSERT(rvd == vd->vdev_parent); 2677 ASSERT(vd->vdev_ms_count != 0); 2678 2679 metaslab_class_space_update(mc, 2680 alloc_delta, defer_delta, space_delta, dspace_delta); 2681 } 2682 } 2683 2684 /* 2685 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2686 * so that it will be written out next time the vdev configuration is synced. 2687 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2688 */ 2689 void 2690 vdev_config_dirty(vdev_t *vd) 2691 { 2692 spa_t *spa = vd->vdev_spa; 2693 vdev_t *rvd = spa->spa_root_vdev; 2694 int c; 2695 2696 /* 2697 * If this is an aux vdev (as with l2cache and spare devices), then we 2698 * update the vdev config manually and set the sync flag. 2699 */ 2700 if (vd->vdev_aux != NULL) { 2701 spa_aux_vdev_t *sav = vd->vdev_aux; 2702 nvlist_t **aux; 2703 uint_t naux; 2704 2705 for (c = 0; c < sav->sav_count; c++) { 2706 if (sav->sav_vdevs[c] == vd) 2707 break; 2708 } 2709 2710 if (c == sav->sav_count) { 2711 /* 2712 * We're being removed. There's nothing more to do. 2713 */ 2714 ASSERT(sav->sav_sync == B_TRUE); 2715 return; 2716 } 2717 2718 sav->sav_sync = B_TRUE; 2719 2720 if (nvlist_lookup_nvlist_array(sav->sav_config, 2721 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2722 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2723 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2724 } 2725 2726 ASSERT(c < naux); 2727 2728 /* 2729 * Setting the nvlist in the middle if the array is a little 2730 * sketchy, but it will work. 2731 */ 2732 nvlist_free(aux[c]); 2733 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2734 2735 return; 2736 } 2737 2738 /* 2739 * The dirty list is protected by the SCL_CONFIG lock. The caller 2740 * must either hold SCL_CONFIG as writer, or must be the sync thread 2741 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2742 * so this is sufficient to ensure mutual exclusion. 2743 */ 2744 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2745 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2746 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2747 2748 if (vd == rvd) { 2749 for (c = 0; c < rvd->vdev_children; c++) 2750 vdev_config_dirty(rvd->vdev_child[c]); 2751 } else { 2752 ASSERT(vd == vd->vdev_top); 2753 2754 if (!list_link_active(&vd->vdev_config_dirty_node) && 2755 !vd->vdev_ishole) 2756 list_insert_head(&spa->spa_config_dirty_list, vd); 2757 } 2758 } 2759 2760 void 2761 vdev_config_clean(vdev_t *vd) 2762 { 2763 spa_t *spa = vd->vdev_spa; 2764 2765 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2766 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2767 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2768 2769 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2770 list_remove(&spa->spa_config_dirty_list, vd); 2771 } 2772 2773 /* 2774 * Mark a top-level vdev's state as dirty, so that the next pass of 2775 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2776 * the state changes from larger config changes because they require 2777 * much less locking, and are often needed for administrative actions. 2778 */ 2779 void 2780 vdev_state_dirty(vdev_t *vd) 2781 { 2782 spa_t *spa = vd->vdev_spa; 2783 2784 ASSERT(vd == vd->vdev_top); 2785 2786 /* 2787 * The state list is protected by the SCL_STATE lock. The caller 2788 * must either hold SCL_STATE as writer, or must be the sync thread 2789 * (which holds SCL_STATE as reader). There's only one sync thread, 2790 * so this is sufficient to ensure mutual exclusion. 2791 */ 2792 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2793 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2794 spa_config_held(spa, SCL_STATE, RW_READER))); 2795 2796 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2797 list_insert_head(&spa->spa_state_dirty_list, vd); 2798 } 2799 2800 void 2801 vdev_state_clean(vdev_t *vd) 2802 { 2803 spa_t *spa = vd->vdev_spa; 2804 2805 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2806 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2807 spa_config_held(spa, SCL_STATE, RW_READER))); 2808 2809 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2810 list_remove(&spa->spa_state_dirty_list, vd); 2811 } 2812 2813 /* 2814 * Propagate vdev state up from children to parent. 2815 */ 2816 void 2817 vdev_propagate_state(vdev_t *vd) 2818 { 2819 spa_t *spa = vd->vdev_spa; 2820 vdev_t *rvd = spa->spa_root_vdev; 2821 int degraded = 0, faulted = 0; 2822 int corrupted = 0; 2823 vdev_t *child; 2824 2825 if (vd->vdev_children > 0) { 2826 for (int c = 0; c < vd->vdev_children; c++) { 2827 child = vd->vdev_child[c]; 2828 2829 /* 2830 * Don't factor holes into the decision. 2831 */ 2832 if (child->vdev_ishole) 2833 continue; 2834 2835 if (!vdev_readable(child) || 2836 (!vdev_writeable(child) && spa_writeable(spa))) { 2837 /* 2838 * Root special: if there is a top-level log 2839 * device, treat the root vdev as if it were 2840 * degraded. 2841 */ 2842 if (child->vdev_islog && vd == rvd) 2843 degraded++; 2844 else 2845 faulted++; 2846 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2847 degraded++; 2848 } 2849 2850 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2851 corrupted++; 2852 } 2853 2854 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2855 2856 /* 2857 * Root special: if there is a top-level vdev that cannot be 2858 * opened due to corrupted metadata, then propagate the root 2859 * vdev's aux state as 'corrupt' rather than 'insufficient 2860 * replicas'. 2861 */ 2862 if (corrupted && vd == rvd && 2863 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2864 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2865 VDEV_AUX_CORRUPT_DATA); 2866 } 2867 2868 if (vd->vdev_parent) 2869 vdev_propagate_state(vd->vdev_parent); 2870 } 2871 2872 /* 2873 * Set a vdev's state. If this is during an open, we don't update the parent 2874 * state, because we're in the process of opening children depth-first. 2875 * Otherwise, we propagate the change to the parent. 2876 * 2877 * If this routine places a device in a faulted state, an appropriate ereport is 2878 * generated. 2879 */ 2880 void 2881 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2882 { 2883 uint64_t save_state; 2884 spa_t *spa = vd->vdev_spa; 2885 2886 if (state == vd->vdev_state) { 2887 vd->vdev_stat.vs_aux = aux; 2888 return; 2889 } 2890 2891 save_state = vd->vdev_state; 2892 2893 vd->vdev_state = state; 2894 vd->vdev_stat.vs_aux = aux; 2895 2896 /* 2897 * If we are setting the vdev state to anything but an open state, then 2898 * always close the underlying device unless the device has requested 2899 * a delayed close (i.e. we're about to remove or fault the device). 2900 * Otherwise, we keep accessible but invalid devices open forever. 2901 * We don't call vdev_close() itself, because that implies some extra 2902 * checks (offline, etc) that we don't want here. This is limited to 2903 * leaf devices, because otherwise closing the device will affect other 2904 * children. 2905 */ 2906 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2907 vd->vdev_ops->vdev_op_leaf) 2908 vd->vdev_ops->vdev_op_close(vd); 2909 2910 /* 2911 * If we have brought this vdev back into service, we need 2912 * to notify fmd so that it can gracefully repair any outstanding 2913 * cases due to a missing device. We do this in all cases, even those 2914 * that probably don't correlate to a repaired fault. This is sure to 2915 * catch all cases, and we let the zfs-retire agent sort it out. If 2916 * this is a transient state it's OK, as the retire agent will 2917 * double-check the state of the vdev before repairing it. 2918 */ 2919 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2920 vd->vdev_prevstate != state) 2921 zfs_post_state_change(spa, vd); 2922 2923 if (vd->vdev_removed && 2924 state == VDEV_STATE_CANT_OPEN && 2925 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2926 /* 2927 * If the previous state is set to VDEV_STATE_REMOVED, then this 2928 * device was previously marked removed and someone attempted to 2929 * reopen it. If this failed due to a nonexistent device, then 2930 * keep the device in the REMOVED state. We also let this be if 2931 * it is one of our special test online cases, which is only 2932 * attempting to online the device and shouldn't generate an FMA 2933 * fault. 2934 */ 2935 vd->vdev_state = VDEV_STATE_REMOVED; 2936 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2937 } else if (state == VDEV_STATE_REMOVED) { 2938 vd->vdev_removed = B_TRUE; 2939 } else if (state == VDEV_STATE_CANT_OPEN) { 2940 /* 2941 * If we fail to open a vdev during an import, we mark it as 2942 * "not available", which signifies that it was never there to 2943 * begin with. Failure to open such a device is not considered 2944 * an error. 2945 */ 2946 if (spa_load_state(spa) == SPA_LOAD_IMPORT && 2947 vd->vdev_ops->vdev_op_leaf) 2948 vd->vdev_not_present = 1; 2949 2950 /* 2951 * Post the appropriate ereport. If the 'prevstate' field is 2952 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2953 * that this is part of a vdev_reopen(). In this case, we don't 2954 * want to post the ereport if the device was already in the 2955 * CANT_OPEN state beforehand. 2956 * 2957 * If the 'checkremove' flag is set, then this is an attempt to 2958 * online the device in response to an insertion event. If we 2959 * hit this case, then we have detected an insertion event for a 2960 * faulted or offline device that wasn't in the removed state. 2961 * In this scenario, we don't post an ereport because we are 2962 * about to replace the device, or attempt an online with 2963 * vdev_forcefault, which will generate the fault for us. 2964 */ 2965 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2966 !vd->vdev_not_present && !vd->vdev_checkremove && 2967 vd != spa->spa_root_vdev) { 2968 const char *class; 2969 2970 switch (aux) { 2971 case VDEV_AUX_OPEN_FAILED: 2972 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2973 break; 2974 case VDEV_AUX_CORRUPT_DATA: 2975 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2976 break; 2977 case VDEV_AUX_NO_REPLICAS: 2978 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2979 break; 2980 case VDEV_AUX_BAD_GUID_SUM: 2981 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2982 break; 2983 case VDEV_AUX_TOO_SMALL: 2984 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2985 break; 2986 case VDEV_AUX_BAD_LABEL: 2987 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2988 break; 2989 default: 2990 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2991 } 2992 2993 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2994 } 2995 2996 /* Erase any notion of persistent removed state */ 2997 vd->vdev_removed = B_FALSE; 2998 } else { 2999 vd->vdev_removed = B_FALSE; 3000 } 3001 3002 if (!isopen && vd->vdev_parent) 3003 vdev_propagate_state(vd->vdev_parent); 3004 } 3005 3006 /* 3007 * Check the vdev configuration to ensure that it's capable of supporting 3008 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3009 * In addition, only a single top-level vdev is allowed and none of the leaves 3010 * can be wholedisks. 3011 */ 3012 boolean_t 3013 vdev_is_bootable(vdev_t *vd) 3014 { 3015 if (!vd->vdev_ops->vdev_op_leaf) { 3016 char *vdev_type = vd->vdev_ops->vdev_op_type; 3017 3018 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3019 vd->vdev_children > 1) { 3020 return (B_FALSE); 3021 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3022 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3023 return (B_FALSE); 3024 } 3025 } else if (vd->vdev_wholedisk == 1) { 3026 return (B_FALSE); 3027 } 3028 3029 for (int c = 0; c < vd->vdev_children; c++) { 3030 if (!vdev_is_bootable(vd->vdev_child[c])) 3031 return (B_FALSE); 3032 } 3033 return (B_TRUE); 3034 } 3035 3036 /* 3037 * Load the state from the original vdev tree (ovd) which 3038 * we've retrieved from the MOS config object. If the original 3039 * vdev was offline then we transfer that state to the device 3040 * in the current vdev tree (nvd). 3041 */ 3042 void 3043 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3044 { 3045 spa_t *spa = nvd->vdev_spa; 3046 3047 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3048 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3049 3050 for (int c = 0; c < nvd->vdev_children; c++) 3051 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3052 3053 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 3054 /* 3055 * It would be nice to call vdev_offline() 3056 * directly but the pool isn't fully loaded and 3057 * the txg threads have not been started yet. 3058 */ 3059 nvd->vdev_offline = ovd->vdev_offline; 3060 vdev_reopen(nvd->vdev_top); 3061 } 3062 } 3063 3064 /* 3065 * Expand a vdev if possible. 3066 */ 3067 void 3068 vdev_expand(vdev_t *vd, uint64_t txg) 3069 { 3070 ASSERT(vd->vdev_top == vd); 3071 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3072 3073 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3074 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3075 vdev_config_dirty(vd); 3076 } 3077 } 3078 3079 /* 3080 * Split a vdev. 3081 */ 3082 void 3083 vdev_split(vdev_t *vd) 3084 { 3085 vdev_t *cvd, *pvd = vd->vdev_parent; 3086 3087 vdev_remove_child(pvd, vd); 3088 vdev_compact_children(pvd); 3089 3090 cvd = pvd->vdev_child[0]; 3091 if (pvd->vdev_children == 1) { 3092 vdev_remove_parent(cvd); 3093 cvd->vdev_splitting = B_TRUE; 3094 } 3095 vdev_propagate_state(cvd); 3096 } 3097