xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 004388ebfdfe2ed7dfd2d153a876dfcc22d2c006)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_disk_ops,
53 	&vdev_file_ops,
54 	&vdev_missing_ops,
55 	NULL
56 };
57 
58 /*
59  * Given a vdev type, return the appropriate ops vector.
60  */
61 static vdev_ops_t *
62 vdev_getops(const char *type)
63 {
64 	vdev_ops_t *ops, **opspp;
65 
66 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
67 		if (strcmp(ops->vdev_op_type, type) == 0)
68 			break;
69 
70 	return (ops);
71 }
72 
73 /*
74  * Default asize function: return the MAX of psize with the asize of
75  * all children.  This is what's used by anything other than RAID-Z.
76  */
77 uint64_t
78 vdev_default_asize(vdev_t *vd, uint64_t psize)
79 {
80 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
81 	uint64_t csize;
82 	uint64_t c;
83 
84 	for (c = 0; c < vd->vdev_children; c++) {
85 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
86 		asize = MAX(asize, csize);
87 	}
88 
89 	return (asize);
90 }
91 
92 /*
93  * Get the replaceable or attachable device size.
94  * If the parent is a mirror or raidz, the replaceable size is the minimum
95  * psize of all its children. For the rest, just return our own psize.
96  *
97  * e.g.
98  *			psize	rsize
99  * root			-	-
100  *	mirror/raidz	-	-
101  *	    disk1	20g	20g
102  *	    disk2 	40g	20g
103  *	disk3 		80g	80g
104  */
105 uint64_t
106 vdev_get_rsize(vdev_t *vd)
107 {
108 	vdev_t *pvd, *cvd;
109 	uint64_t c, rsize;
110 
111 	pvd = vd->vdev_parent;
112 
113 	/*
114 	 * If our parent is NULL or the root, just return our own psize.
115 	 */
116 	if (pvd == NULL || pvd->vdev_parent == NULL)
117 		return (vd->vdev_psize);
118 
119 	rsize = 0;
120 
121 	for (c = 0; c < pvd->vdev_children; c++) {
122 		cvd = pvd->vdev_child[c];
123 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
124 	}
125 
126 	return (rsize);
127 }
128 
129 vdev_t *
130 vdev_lookup_top(spa_t *spa, uint64_t vdev)
131 {
132 	vdev_t *rvd = spa->spa_root_vdev;
133 
134 	if (vdev < rvd->vdev_children)
135 		return (rvd->vdev_child[vdev]);
136 
137 	return (NULL);
138 }
139 
140 vdev_t *
141 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
142 {
143 	int c;
144 	vdev_t *mvd;
145 
146 	if (vd->vdev_guid == guid)
147 		return (vd);
148 
149 	for (c = 0; c < vd->vdev_children; c++)
150 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
151 		    NULL)
152 			return (mvd);
153 
154 	return (NULL);
155 }
156 
157 void
158 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
159 {
160 	size_t oldsize, newsize;
161 	uint64_t id = cvd->vdev_id;
162 	vdev_t **newchild;
163 
164 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
165 	ASSERT(cvd->vdev_parent == NULL);
166 
167 	cvd->vdev_parent = pvd;
168 
169 	if (pvd == NULL)
170 		return;
171 
172 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
173 
174 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
175 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
176 	newsize = pvd->vdev_children * sizeof (vdev_t *);
177 
178 	newchild = kmem_zalloc(newsize, KM_SLEEP);
179 	if (pvd->vdev_child != NULL) {
180 		bcopy(pvd->vdev_child, newchild, oldsize);
181 		kmem_free(pvd->vdev_child, oldsize);
182 	}
183 
184 	pvd->vdev_child = newchild;
185 	pvd->vdev_child[id] = cvd;
186 
187 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
188 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
189 
190 	/*
191 	 * Walk up all ancestors to update guid sum.
192 	 */
193 	for (; pvd != NULL; pvd = pvd->vdev_parent)
194 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
195 }
196 
197 void
198 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
199 {
200 	int c;
201 	uint_t id = cvd->vdev_id;
202 
203 	ASSERT(cvd->vdev_parent == pvd);
204 
205 	if (pvd == NULL)
206 		return;
207 
208 	ASSERT(id < pvd->vdev_children);
209 	ASSERT(pvd->vdev_child[id] == cvd);
210 
211 	pvd->vdev_child[id] = NULL;
212 	cvd->vdev_parent = NULL;
213 
214 	for (c = 0; c < pvd->vdev_children; c++)
215 		if (pvd->vdev_child[c])
216 			break;
217 
218 	if (c == pvd->vdev_children) {
219 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
220 		pvd->vdev_child = NULL;
221 		pvd->vdev_children = 0;
222 	}
223 
224 	/*
225 	 * Walk up all ancestors to update guid sum.
226 	 */
227 	for (; pvd != NULL; pvd = pvd->vdev_parent)
228 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
229 }
230 
231 /*
232  * Remove any holes in the child array.
233  */
234 void
235 vdev_compact_children(vdev_t *pvd)
236 {
237 	vdev_t **newchild, *cvd;
238 	int oldc = pvd->vdev_children;
239 	int newc, c;
240 
241 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
242 
243 	for (c = newc = 0; c < oldc; c++)
244 		if (pvd->vdev_child[c])
245 			newc++;
246 
247 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
248 
249 	for (c = newc = 0; c < oldc; c++) {
250 		if ((cvd = pvd->vdev_child[c]) != NULL) {
251 			newchild[newc] = cvd;
252 			cvd->vdev_id = newc++;
253 		}
254 	}
255 
256 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
257 	pvd->vdev_child = newchild;
258 	pvd->vdev_children = newc;
259 }
260 
261 /*
262  * Allocate and minimally initialize a vdev_t.
263  */
264 static vdev_t *
265 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
266 {
267 	vdev_t *vd;
268 
269 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
270 
271 	if (spa->spa_root_vdev == NULL) {
272 		ASSERT(ops == &vdev_root_ops);
273 		spa->spa_root_vdev = vd;
274 	}
275 
276 	if (guid == 0) {
277 		if (spa->spa_root_vdev == vd) {
278 			/*
279 			 * The root vdev's guid will also be the pool guid,
280 			 * which must be unique among all pools.
281 			 */
282 			while (guid == 0 || spa_guid_exists(guid, 0))
283 				guid = spa_get_random(-1ULL);
284 		} else {
285 			/*
286 			 * Any other vdev's guid must be unique within the pool.
287 			 */
288 			while (guid == 0 ||
289 			    spa_guid_exists(spa_guid(spa), guid))
290 				guid = spa_get_random(-1ULL);
291 		}
292 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
293 	}
294 
295 	vd->vdev_spa = spa;
296 	vd->vdev_id = id;
297 	vd->vdev_guid = guid;
298 	vd->vdev_guid_sum = guid;
299 	vd->vdev_ops = ops;
300 	vd->vdev_state = VDEV_STATE_CLOSED;
301 
302 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
303 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
304 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
305 	txg_list_create(&vd->vdev_ms_list,
306 	    offsetof(struct metaslab, ms_txg_node));
307 	txg_list_create(&vd->vdev_dtl_list,
308 	    offsetof(struct vdev, vdev_dtl_node));
309 	vd->vdev_stat.vs_timestamp = gethrtime();
310 
311 	return (vd);
312 }
313 
314 /*
315  * Free a vdev_t that has been removed from service.
316  */
317 static void
318 vdev_free_common(vdev_t *vd)
319 {
320 	spa_t *spa = vd->vdev_spa;
321 
322 	if (vd->vdev_path)
323 		spa_strfree(vd->vdev_path);
324 	if (vd->vdev_devid)
325 		spa_strfree(vd->vdev_devid);
326 
327 	txg_list_destroy(&vd->vdev_ms_list);
328 	txg_list_destroy(&vd->vdev_dtl_list);
329 	mutex_enter(&vd->vdev_dtl_lock);
330 	space_map_unload(&vd->vdev_dtl_map);
331 	space_map_destroy(&vd->vdev_dtl_map);
332 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
333 	space_map_destroy(&vd->vdev_dtl_scrub);
334 	mutex_exit(&vd->vdev_dtl_lock);
335 	mutex_destroy(&vd->vdev_dtl_lock);
336 
337 	if (vd == spa->spa_root_vdev)
338 		spa->spa_root_vdev = NULL;
339 
340 	kmem_free(vd, sizeof (vdev_t));
341 }
342 
343 /*
344  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
345  * creating a new vdev or loading an existing one - the behavior is slightly
346  * different for each case.
347  */
348 vdev_t *
349 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype)
350 {
351 	vdev_ops_t *ops;
352 	char *type;
353 	uint64_t guid = 0;
354 	vdev_t *vd;
355 
356 	ASSERT(spa_config_held(spa, RW_WRITER));
357 
358 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359 		return (NULL);
360 
361 	if ((ops = vdev_getops(type)) == NULL)
362 		return (NULL);
363 
364 	/*
365 	 * If this is a load, get the vdev guid from the nvlist.
366 	 * Otherwise, vdev_alloc_common() will generate one for us.
367 	 */
368 	if (alloctype == VDEV_ALLOC_LOAD) {
369 		uint64_t label_id;
370 
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372 		    label_id != id)
373 			return (NULL);
374 
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (NULL);
377 	}
378 
379 	vd = vdev_alloc_common(spa, id, guid, ops);
380 
381 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
382 		vd->vdev_path = spa_strdup(vd->vdev_path);
383 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
384 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
385 
386 	/*
387 	 * Set the whole_disk property.  If it's not specified, leave the value
388 	 * as -1.
389 	 */
390 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
391 	    &vd->vdev_wholedisk) != 0)
392 		vd->vdev_wholedisk = -1ULL;
393 
394 	/*
395 	 * Look for the 'not present' flag.  This will only be set if the device
396 	 * was not present at the time of import.
397 	 */
398 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
399 	    &vd->vdev_not_present);
400 
401 	/*
402 	 * Get the alignment requirement.
403 	 */
404 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
405 
406 	/*
407 	 * If we're a top-level vdev, try to load the allocation parameters.
408 	 */
409 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
410 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
411 		    &vd->vdev_ms_array);
412 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
413 		    &vd->vdev_ms_shift);
414 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
415 		    &vd->vdev_asize);
416 	}
417 
418 	/*
419 	 * If we're a leaf vdev, try to load the DTL object and offline state.
420 	 */
421 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
422 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
423 		    &vd->vdev_dtl.smo_object);
424 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
425 		    &vd->vdev_offline);
426 	}
427 
428 	/*
429 	 * Add ourselves to the parent's list of children.
430 	 */
431 	vdev_add_child(parent, vd);
432 
433 	return (vd);
434 }
435 
436 void
437 vdev_free(vdev_t *vd)
438 {
439 	int c;
440 
441 	/*
442 	 * vdev_free() implies closing the vdev first.  This is simpler than
443 	 * trying to ensure complicated semantics for all callers.
444 	 */
445 	vdev_close(vd);
446 
447 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
448 
449 	/*
450 	 * Free all children.
451 	 */
452 	for (c = 0; c < vd->vdev_children; c++)
453 		vdev_free(vd->vdev_child[c]);
454 
455 	ASSERT(vd->vdev_child == NULL);
456 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
457 
458 	/*
459 	 * Discard allocation state.
460 	 */
461 	if (vd == vd->vdev_top)
462 		vdev_metaslab_fini(vd);
463 
464 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
465 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
466 
467 	/*
468 	 * Remove this vdev from its parent's child list.
469 	 */
470 	vdev_remove_child(vd->vdev_parent, vd);
471 
472 	ASSERT(vd->vdev_parent == NULL);
473 
474 	vdev_free_common(vd);
475 }
476 
477 /*
478  * Transfer top-level vdev state from svd to tvd.
479  */
480 static void
481 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
482 {
483 	spa_t *spa = svd->vdev_spa;
484 	metaslab_t *msp;
485 	vdev_t *vd;
486 	int t;
487 
488 	ASSERT(tvd == tvd->vdev_top);
489 
490 	tvd->vdev_ms_array = svd->vdev_ms_array;
491 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
492 	tvd->vdev_ms_count = svd->vdev_ms_count;
493 
494 	svd->vdev_ms_array = 0;
495 	svd->vdev_ms_shift = 0;
496 	svd->vdev_ms_count = 0;
497 
498 	tvd->vdev_mg = svd->vdev_mg;
499 	tvd->vdev_ms = svd->vdev_ms;
500 
501 	svd->vdev_mg = NULL;
502 	svd->vdev_ms = NULL;
503 
504 	if (tvd->vdev_mg != NULL)
505 		tvd->vdev_mg->mg_vd = tvd;
506 
507 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
508 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
509 
510 	svd->vdev_stat.vs_alloc = 0;
511 	svd->vdev_stat.vs_space = 0;
512 
513 	for (t = 0; t < TXG_SIZE; t++) {
514 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
515 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
516 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
517 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
518 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
519 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
520 	}
521 
522 	if (list_link_active(&svd->vdev_dirty_node)) {
523 		vdev_config_clean(svd);
524 		vdev_config_dirty(tvd);
525 	}
526 
527 	tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
528 	svd->vdev_reopen_wanted = 0;
529 }
530 
531 static void
532 vdev_top_update(vdev_t *tvd, vdev_t *vd)
533 {
534 	int c;
535 
536 	if (vd == NULL)
537 		return;
538 
539 	vd->vdev_top = tvd;
540 
541 	for (c = 0; c < vd->vdev_children; c++)
542 		vdev_top_update(tvd, vd->vdev_child[c]);
543 }
544 
545 /*
546  * Add a mirror/replacing vdev above an existing vdev.
547  */
548 vdev_t *
549 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
550 {
551 	spa_t *spa = cvd->vdev_spa;
552 	vdev_t *pvd = cvd->vdev_parent;
553 	vdev_t *mvd;
554 
555 	ASSERT(spa_config_held(spa, RW_WRITER));
556 
557 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
558 
559 	mvd->vdev_asize = cvd->vdev_asize;
560 	mvd->vdev_ashift = cvd->vdev_ashift;
561 	mvd->vdev_state = cvd->vdev_state;
562 
563 	vdev_remove_child(pvd, cvd);
564 	vdev_add_child(pvd, mvd);
565 	cvd->vdev_id = mvd->vdev_children;
566 	vdev_add_child(mvd, cvd);
567 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
568 
569 	if (mvd == mvd->vdev_top)
570 		vdev_top_transfer(cvd, mvd);
571 
572 	return (mvd);
573 }
574 
575 /*
576  * Remove a 1-way mirror/replacing vdev from the tree.
577  */
578 void
579 vdev_remove_parent(vdev_t *cvd)
580 {
581 	vdev_t *mvd = cvd->vdev_parent;
582 	vdev_t *pvd = mvd->vdev_parent;
583 
584 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
585 
586 	ASSERT(mvd->vdev_children == 1);
587 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
588 	    mvd->vdev_ops == &vdev_replacing_ops);
589 	cvd->vdev_ashift = mvd->vdev_ashift;
590 
591 	vdev_remove_child(mvd, cvd);
592 	vdev_remove_child(pvd, mvd);
593 	cvd->vdev_id = mvd->vdev_id;
594 	vdev_add_child(pvd, cvd);
595 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
596 
597 	if (cvd == cvd->vdev_top)
598 		vdev_top_transfer(mvd, cvd);
599 
600 	ASSERT(mvd->vdev_children == 0);
601 	vdev_free(mvd);
602 }
603 
604 int
605 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
606 {
607 	spa_t *spa = vd->vdev_spa;
608 	objset_t *mos = spa->spa_meta_objset;
609 	metaslab_class_t *mc = spa_metaslab_class_select(spa);
610 	uint64_t m;
611 	uint64_t oldc = vd->vdev_ms_count;
612 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
613 	metaslab_t **mspp;
614 	int error;
615 
616 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
617 		return (0);
618 
619 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
620 
621 	ASSERT(oldc <= newc);
622 
623 	if (vd->vdev_mg == NULL)
624 		vd->vdev_mg = metaslab_group_create(mc, vd);
625 
626 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
627 
628 	if (oldc != 0) {
629 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
630 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
631 	}
632 
633 	vd->vdev_ms = mspp;
634 	vd->vdev_ms_count = newc;
635 
636 	for (m = oldc; m < newc; m++) {
637 		space_map_obj_t smo = { 0, 0, 0 };
638 		if (txg == 0) {
639 			uint64_t object = 0;
640 			error = dmu_read(mos, vd->vdev_ms_array,
641 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
642 			if (error)
643 				return (error);
644 			if (object != 0) {
645 				dmu_buf_t *db;
646 				error = dmu_bonus_hold(mos, object, FTAG, &db);
647 				if (error)
648 					return (error);
649 				ASSERT3U(db->db_size, ==, sizeof (smo));
650 				bcopy(db->db_data, &smo, db->db_size);
651 				ASSERT3U(smo.smo_object, ==, object);
652 				dmu_buf_rele(db, FTAG);
653 			}
654 		}
655 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
656 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
657 	}
658 
659 	return (0);
660 }
661 
662 void
663 vdev_metaslab_fini(vdev_t *vd)
664 {
665 	uint64_t m;
666 	uint64_t count = vd->vdev_ms_count;
667 
668 	if (vd->vdev_ms != NULL) {
669 		for (m = 0; m < count; m++)
670 			if (vd->vdev_ms[m] != NULL)
671 				metaslab_fini(vd->vdev_ms[m]);
672 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
673 		vd->vdev_ms = NULL;
674 	}
675 }
676 
677 /*
678  * Prepare a virtual device for access.
679  */
680 int
681 vdev_open(vdev_t *vd)
682 {
683 	int error;
684 	vdev_knob_t *vk;
685 	int c;
686 	uint64_t osize = 0;
687 	uint64_t asize, psize;
688 	uint64_t ashift = 0;
689 
690 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
691 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
692 	    vd->vdev_state == VDEV_STATE_OFFLINE);
693 
694 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
695 		vd->vdev_fault_arg >>= 1;
696 	else
697 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
698 
699 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
700 
701 	for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) {
702 		uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset);
703 
704 		*valp = vk->vk_default;
705 		*valp = MAX(*valp, vk->vk_min);
706 		*valp = MIN(*valp, vk->vk_max);
707 	}
708 
709 	if (vd->vdev_ops->vdev_op_leaf) {
710 		vdev_cache_init(vd);
711 		vdev_queue_init(vd);
712 		vd->vdev_cache_active = B_TRUE;
713 	}
714 
715 	if (vd->vdev_offline) {
716 		ASSERT(vd->vdev_children == 0);
717 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
718 		return (ENXIO);
719 	}
720 
721 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
722 
723 	if (zio_injection_enabled && error == 0)
724 		error = zio_handle_device_injection(vd, ENXIO);
725 
726 	dprintf("%s = %d, osize %llu, state = %d\n",
727 	    vdev_description(vd), error, osize, vd->vdev_state);
728 
729 	if (error) {
730 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
731 		    vd->vdev_stat.vs_aux);
732 		return (error);
733 	}
734 
735 	vd->vdev_state = VDEV_STATE_HEALTHY;
736 
737 	for (c = 0; c < vd->vdev_children; c++)
738 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
739 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
740 			    VDEV_AUX_NONE);
741 			break;
742 		}
743 
744 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
745 
746 	if (vd->vdev_children == 0) {
747 		if (osize < SPA_MINDEVSIZE) {
748 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
749 			    VDEV_AUX_TOO_SMALL);
750 			return (EOVERFLOW);
751 		}
752 		psize = osize;
753 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
754 	} else {
755 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
756 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
757 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
758 			    VDEV_AUX_TOO_SMALL);
759 			return (EOVERFLOW);
760 		}
761 		psize = 0;
762 		asize = osize;
763 	}
764 
765 	vd->vdev_psize = psize;
766 
767 	if (vd->vdev_asize == 0) {
768 		/*
769 		 * This is the first-ever open, so use the computed values.
770 		 * For testing purposes, a higher ashift can be requested.
771 		 */
772 		vd->vdev_asize = asize;
773 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
774 	} else {
775 		/*
776 		 * Make sure the alignment requirement hasn't increased.
777 		 */
778 		if (ashift > vd->vdev_top->vdev_ashift) {
779 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
780 			    VDEV_AUX_BAD_LABEL);
781 			return (EINVAL);
782 		}
783 
784 		/*
785 		 * Make sure the device hasn't shrunk.
786 		 */
787 		if (asize < vd->vdev_asize) {
788 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
789 			    VDEV_AUX_BAD_LABEL);
790 			return (EINVAL);
791 		}
792 
793 		/*
794 		 * If all children are healthy and the asize has increased,
795 		 * then we've experienced dynamic LUN growth.
796 		 */
797 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
798 		    asize > vd->vdev_asize) {
799 			vd->vdev_asize = asize;
800 		}
801 	}
802 
803 	/*
804 	 * If we were able to open a vdev that was marked permanently
805 	 * unavailable, clear that state now.
806 	 */
807 	if (vd->vdev_not_present)
808 		vd->vdev_not_present = 0;
809 
810 	/*
811 	 * This allows the ZFS DE to close cases appropriately.  If a device
812 	 * goes away and later returns, we want to close the associated case.
813 	 * But it's not enough to simply post this only when a device goes from
814 	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
815 	 * back, we also need to close the case (otherwise we will try to replay
816 	 * it).  So we have to post this notifier every time.  Since this only
817 	 * occurs during pool open or error recovery, this should not be an
818 	 * issue.
819 	 */
820 	zfs_post_ok(vd->vdev_spa, vd);
821 
822 	return (0);
823 }
824 
825 /*
826  * Close a virtual device.
827  */
828 void
829 vdev_close(vdev_t *vd)
830 {
831 	vd->vdev_ops->vdev_op_close(vd);
832 
833 	if (vd->vdev_cache_active) {
834 		vdev_cache_fini(vd);
835 		vdev_queue_fini(vd);
836 		vd->vdev_cache_active = B_FALSE;
837 	}
838 
839 	if (vd->vdev_offline)
840 		vd->vdev_state = VDEV_STATE_OFFLINE;
841 	else
842 		vd->vdev_state = VDEV_STATE_CLOSED;
843 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
844 }
845 
846 void
847 vdev_reopen(vdev_t *vd)
848 {
849 	spa_t *spa = vd->vdev_spa;
850 
851 	ASSERT(spa_config_held(spa, RW_WRITER));
852 
853 	vdev_close(vd);
854 	(void) vdev_open(vd);
855 
856 	/*
857 	 * Reassess root vdev's health.
858 	 */
859 	vdev_propagate_state(spa->spa_root_vdev);
860 }
861 
862 int
863 vdev_create(vdev_t *vd, uint64_t txg)
864 {
865 	int error;
866 
867 	/*
868 	 * Normally, partial opens (e.g. of a mirror) are allowed.
869 	 * For a create, however, we want to fail the request if
870 	 * there are any components we can't open.
871 	 */
872 	error = vdev_open(vd);
873 
874 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
875 		vdev_close(vd);
876 		return (error ? error : ENXIO);
877 	}
878 
879 	/*
880 	 * Recursively initialize all labels.
881 	 */
882 	if ((error = vdev_label_init(vd, txg)) != 0) {
883 		vdev_close(vd);
884 		return (error);
885 	}
886 
887 	return (0);
888 }
889 
890 /*
891  * The is the latter half of vdev_create().  It is distinct because it
892  * involves initiating transactions in order to do metaslab creation.
893  * For creation, we want to try to create all vdevs at once and then undo it
894  * if anything fails; this is much harder if we have pending transactions.
895  */
896 void
897 vdev_init(vdev_t *vd, uint64_t txg)
898 {
899 	/*
900 	 * Aim for roughly 200 metaslabs per vdev.
901 	 */
902 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
903 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
904 
905 	/*
906 	 * Initialize the vdev's metaslabs.  This can't fail because
907 	 * there's nothing to read when creating all new metaslabs.
908 	 */
909 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
910 }
911 
912 void
913 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
914 {
915 	ASSERT(vd == vd->vdev_top);
916 	ASSERT(ISP2(flags));
917 
918 	if (flags & VDD_METASLAB)
919 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
920 
921 	if (flags & VDD_DTL)
922 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
923 
924 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
925 }
926 
927 void
928 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
929 {
930 	mutex_enter(sm->sm_lock);
931 	if (!space_map_contains(sm, txg, size))
932 		space_map_add(sm, txg, size);
933 	mutex_exit(sm->sm_lock);
934 }
935 
936 int
937 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
938 {
939 	int dirty;
940 
941 	/*
942 	 * Quick test without the lock -- covers the common case that
943 	 * there are no dirty time segments.
944 	 */
945 	if (sm->sm_space == 0)
946 		return (0);
947 
948 	mutex_enter(sm->sm_lock);
949 	dirty = space_map_contains(sm, txg, size);
950 	mutex_exit(sm->sm_lock);
951 
952 	return (dirty);
953 }
954 
955 /*
956  * Reassess DTLs after a config change or scrub completion.
957  */
958 void
959 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
960 {
961 	spa_t *spa = vd->vdev_spa;
962 	int c;
963 
964 	ASSERT(spa_config_held(spa, RW_WRITER));
965 
966 	if (vd->vdev_children == 0) {
967 		mutex_enter(&vd->vdev_dtl_lock);
968 		/*
969 		 * We're successfully scrubbed everything up to scrub_txg.
970 		 * Therefore, excise all old DTLs up to that point, then
971 		 * fold in the DTLs for everything we couldn't scrub.
972 		 */
973 		if (scrub_txg != 0) {
974 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
975 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
976 		}
977 		if (scrub_done)
978 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
979 		mutex_exit(&vd->vdev_dtl_lock);
980 		if (txg != 0)
981 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
982 		return;
983 	}
984 
985 	/*
986 	 * Make sure the DTLs are always correct under the scrub lock.
987 	 */
988 	if (vd == spa->spa_root_vdev)
989 		mutex_enter(&spa->spa_scrub_lock);
990 
991 	mutex_enter(&vd->vdev_dtl_lock);
992 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
993 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
994 	mutex_exit(&vd->vdev_dtl_lock);
995 
996 	for (c = 0; c < vd->vdev_children; c++) {
997 		vdev_t *cvd = vd->vdev_child[c];
998 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
999 		mutex_enter(&vd->vdev_dtl_lock);
1000 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1001 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1002 		mutex_exit(&vd->vdev_dtl_lock);
1003 	}
1004 
1005 	if (vd == spa->spa_root_vdev)
1006 		mutex_exit(&spa->spa_scrub_lock);
1007 }
1008 
1009 static int
1010 vdev_dtl_load(vdev_t *vd)
1011 {
1012 	spa_t *spa = vd->vdev_spa;
1013 	space_map_obj_t *smo = &vd->vdev_dtl;
1014 	objset_t *mos = spa->spa_meta_objset;
1015 	dmu_buf_t *db;
1016 	int error;
1017 
1018 	ASSERT(vd->vdev_children == 0);
1019 
1020 	if (smo->smo_object == 0)
1021 		return (0);
1022 
1023 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1024 		return (error);
1025 
1026 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1027 	bcopy(db->db_data, smo, db->db_size);
1028 	dmu_buf_rele(db, FTAG);
1029 
1030 	mutex_enter(&vd->vdev_dtl_lock);
1031 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1032 	mutex_exit(&vd->vdev_dtl_lock);
1033 
1034 	return (error);
1035 }
1036 
1037 void
1038 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1039 {
1040 	spa_t *spa = vd->vdev_spa;
1041 	space_map_obj_t *smo = &vd->vdev_dtl;
1042 	space_map_t *sm = &vd->vdev_dtl_map;
1043 	objset_t *mos = spa->spa_meta_objset;
1044 	space_map_t smsync;
1045 	kmutex_t smlock;
1046 	dmu_buf_t *db;
1047 	dmu_tx_t *tx;
1048 
1049 	dprintf("%s in txg %llu pass %d\n",
1050 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1051 
1052 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1053 
1054 	if (vd->vdev_detached) {
1055 		if (smo->smo_object != 0) {
1056 			int err = dmu_object_free(mos, smo->smo_object, tx);
1057 			ASSERT3U(err, ==, 0);
1058 			smo->smo_object = 0;
1059 		}
1060 		dmu_tx_commit(tx);
1061 		dprintf("detach %s committed in txg %llu\n",
1062 		    vdev_description(vd), txg);
1063 		return;
1064 	}
1065 
1066 	if (smo->smo_object == 0) {
1067 		ASSERT(smo->smo_objsize == 0);
1068 		ASSERT(smo->smo_alloc == 0);
1069 		smo->smo_object = dmu_object_alloc(mos,
1070 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1071 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1072 		ASSERT(smo->smo_object != 0);
1073 		vdev_config_dirty(vd->vdev_top);
1074 	}
1075 
1076 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1077 
1078 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1079 	    &smlock);
1080 
1081 	mutex_enter(&smlock);
1082 
1083 	mutex_enter(&vd->vdev_dtl_lock);
1084 	space_map_walk(sm, space_map_add, &smsync);
1085 	mutex_exit(&vd->vdev_dtl_lock);
1086 
1087 	space_map_truncate(smo, mos, tx);
1088 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1089 
1090 	space_map_destroy(&smsync);
1091 
1092 	mutex_exit(&smlock);
1093 	mutex_destroy(&smlock);
1094 
1095 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1096 	dmu_buf_will_dirty(db, tx);
1097 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1098 	bcopy(smo, db->db_data, db->db_size);
1099 	dmu_buf_rele(db, FTAG);
1100 
1101 	dmu_tx_commit(tx);
1102 }
1103 
1104 int
1105 vdev_load(vdev_t *vd)
1106 {
1107 	spa_t *spa = vd->vdev_spa;
1108 	int c, error;
1109 	nvlist_t *label;
1110 	uint64_t guid, state;
1111 
1112 	dprintf("loading %s\n", vdev_description(vd));
1113 
1114 	/*
1115 	 * Recursively load all children.
1116 	 */
1117 	for (c = 0; c < vd->vdev_children; c++)
1118 		if ((error = vdev_load(vd->vdev_child[c])) != 0)
1119 			return (error);
1120 
1121 	/*
1122 	 * If this is a leaf vdev, make sure its agrees with its disk labels.
1123 	 */
1124 	if (vd->vdev_ops->vdev_op_leaf) {
1125 
1126 		if (vdev_is_dead(vd))
1127 			return (0);
1128 
1129 		/*
1130 		 * XXX state transitions don't propagate to parent here.
1131 		 * Also, merely setting the state isn't sufficient because
1132 		 * it's not persistent; a vdev_reopen() would make us
1133 		 * forget all about it.
1134 		 */
1135 		if ((label = vdev_label_read_config(vd)) == NULL) {
1136 			dprintf("can't load label config\n");
1137 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1138 			    VDEV_AUX_CORRUPT_DATA);
1139 			return (0);
1140 		}
1141 
1142 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1143 		    &guid) != 0 || guid != spa_guid(spa)) {
1144 			dprintf("bad or missing pool GUID (%llu)\n", guid);
1145 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1146 			    VDEV_AUX_CORRUPT_DATA);
1147 			nvlist_free(label);
1148 			return (0);
1149 		}
1150 
1151 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) ||
1152 		    guid != vd->vdev_guid) {
1153 			dprintf("bad or missing vdev guid (%llu != %llu)\n",
1154 			    guid, vd->vdev_guid);
1155 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1156 			    VDEV_AUX_CORRUPT_DATA);
1157 			nvlist_free(label);
1158 			return (0);
1159 		}
1160 
1161 		/*
1162 		 * If we find a vdev with a matching pool guid and vdev guid,
1163 		 * but the pool state is not active, it indicates that the user
1164 		 * exported or destroyed the pool without affecting the config
1165 		 * cache (if / was mounted readonly, for example).  In this
1166 		 * case, immediately return EBADF so the caller can remove it
1167 		 * from the config.
1168 		 */
1169 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1170 		    &state)) {
1171 			dprintf("missing pool state\n");
1172 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1173 			    VDEV_AUX_CORRUPT_DATA);
1174 			nvlist_free(label);
1175 			return (0);
1176 		}
1177 
1178 		if (state != POOL_STATE_ACTIVE &&
1179 		    (spa->spa_load_state == SPA_LOAD_OPEN ||
1180 		    (state != POOL_STATE_EXPORTED &&
1181 		    state != POOL_STATE_DESTROYED))) {
1182 			dprintf("pool state not active (%llu)\n", state);
1183 			nvlist_free(label);
1184 			return (EBADF);
1185 		}
1186 
1187 		nvlist_free(label);
1188 	}
1189 
1190 	/*
1191 	 * If this is a top-level vdev, initialize its metaslabs.
1192 	 */
1193 	if (vd == vd->vdev_top) {
1194 
1195 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
1196 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1197 			    VDEV_AUX_CORRUPT_DATA);
1198 			return (0);
1199 		}
1200 
1201 		if ((error = vdev_metaslab_init(vd, 0)) != 0) {
1202 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1203 			    VDEV_AUX_CORRUPT_DATA);
1204 			return (0);
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * If this is a leaf vdev, load its DTL.
1210 	 */
1211 	if (vd->vdev_ops->vdev_op_leaf) {
1212 		error = vdev_dtl_load(vd);
1213 		if (error) {
1214 			dprintf("can't load DTL for %s, error %d\n",
1215 			    vdev_description(vd), error);
1216 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1217 			    VDEV_AUX_CORRUPT_DATA);
1218 			return (0);
1219 		}
1220 	}
1221 
1222 	return (0);
1223 }
1224 
1225 void
1226 vdev_sync_done(vdev_t *vd, uint64_t txg)
1227 {
1228 	metaslab_t *msp;
1229 
1230 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1231 
1232 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1233 		metaslab_sync_done(msp, txg);
1234 }
1235 
1236 void
1237 vdev_sync(vdev_t *vd, uint64_t txg)
1238 {
1239 	spa_t *spa = vd->vdev_spa;
1240 	vdev_t *lvd;
1241 	metaslab_t *msp;
1242 	dmu_tx_t *tx;
1243 
1244 	dprintf("%s txg %llu pass %d\n",
1245 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1246 
1247 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1248 		ASSERT(vd == vd->vdev_top);
1249 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1250 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1251 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1252 		ASSERT(vd->vdev_ms_array != 0);
1253 		vdev_config_dirty(vd);
1254 		dmu_tx_commit(tx);
1255 	}
1256 
1257 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1258 		metaslab_sync(msp, txg);
1259 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1260 	}
1261 
1262 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1263 		vdev_dtl_sync(lvd, txg);
1264 
1265 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1266 }
1267 
1268 uint64_t
1269 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1270 {
1271 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1272 }
1273 
1274 void
1275 vdev_io_start(zio_t *zio)
1276 {
1277 	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1278 }
1279 
1280 void
1281 vdev_io_done(zio_t *zio)
1282 {
1283 	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1284 }
1285 
1286 const char *
1287 vdev_description(vdev_t *vd)
1288 {
1289 	if (vd == NULL || vd->vdev_ops == NULL)
1290 		return ("<unknown>");
1291 
1292 	if (vd->vdev_path != NULL)
1293 		return (vd->vdev_path);
1294 
1295 	if (vd->vdev_parent == NULL)
1296 		return (spa_name(vd->vdev_spa));
1297 
1298 	return (vd->vdev_ops->vdev_op_type);
1299 }
1300 
1301 int
1302 vdev_online(spa_t *spa, uint64_t guid)
1303 {
1304 	vdev_t *rvd, *vd;
1305 	uint64_t txg;
1306 
1307 	txg = spa_vdev_enter(spa);
1308 
1309 	rvd = spa->spa_root_vdev;
1310 
1311 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1312 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1313 
1314 	if (!vd->vdev_ops->vdev_op_leaf)
1315 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1316 
1317 	dprintf("ONLINE: %s\n", vdev_description(vd));
1318 
1319 	vd->vdev_offline = B_FALSE;
1320 	vd->vdev_tmpoffline = B_FALSE;
1321 	vdev_reopen(vd->vdev_top);
1322 
1323 	vdev_config_dirty(vd->vdev_top);
1324 
1325 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1326 
1327 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1328 
1329 	return (0);
1330 }
1331 
1332 int
1333 vdev_offline(spa_t *spa, uint64_t guid, int istmp)
1334 {
1335 	vdev_t *rvd, *vd;
1336 	uint64_t txg;
1337 
1338 	txg = spa_vdev_enter(spa);
1339 
1340 	rvd = spa->spa_root_vdev;
1341 
1342 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1343 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1344 
1345 	if (!vd->vdev_ops->vdev_op_leaf)
1346 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1347 
1348 	dprintf("OFFLINE: %s\n", vdev_description(vd));
1349 
1350 	/*
1351 	 * If the device isn't already offline, try to offline it.
1352 	 */
1353 	if (!vd->vdev_offline) {
1354 		/*
1355 		 * If this device's top-level vdev has a non-empty DTL,
1356 		 * don't allow the device to be offlined.
1357 		 *
1358 		 * XXX -- make this more precise by allowing the offline
1359 		 * as long as the remaining devices don't have any DTL holes.
1360 		 */
1361 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1362 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1363 
1364 		/*
1365 		 * Offline this device and reopen its top-level vdev.
1366 		 * If this action results in the top-level vdev becoming
1367 		 * unusable, undo it and fail the request.
1368 		 */
1369 		vd->vdev_offline = B_TRUE;
1370 		vdev_reopen(vd->vdev_top);
1371 		if (vdev_is_dead(vd->vdev_top)) {
1372 			vd->vdev_offline = B_FALSE;
1373 			vdev_reopen(vd->vdev_top);
1374 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1375 		}
1376 	}
1377 
1378 	vd->vdev_tmpoffline = istmp;
1379 
1380 	vdev_config_dirty(vd->vdev_top);
1381 
1382 	return (spa_vdev_exit(spa, NULL, txg, 0));
1383 }
1384 
1385 /*
1386  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1387  * vdev_offline(), we assume the spa config is locked.  We also clear all
1388  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1389  */
1390 void
1391 vdev_clear(spa_t *spa, vdev_t *vd)
1392 {
1393 	int c;
1394 
1395 	if (vd == NULL)
1396 		vd = spa->spa_root_vdev;
1397 
1398 	vd->vdev_stat.vs_read_errors = 0;
1399 	vd->vdev_stat.vs_write_errors = 0;
1400 	vd->vdev_stat.vs_checksum_errors = 0;
1401 
1402 	for (c = 0; c < vd->vdev_children; c++)
1403 		vdev_clear(spa, vd->vdev_child[c]);
1404 }
1405 
1406 int
1407 vdev_is_dead(vdev_t *vd)
1408 {
1409 	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1410 }
1411 
1412 int
1413 vdev_error_inject(vdev_t *vd, zio_t *zio)
1414 {
1415 	int error = 0;
1416 
1417 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1418 		return (0);
1419 
1420 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1421 		return (0);
1422 
1423 	switch (vd->vdev_fault_mode) {
1424 	case VDEV_FAULT_RANDOM:
1425 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1426 			error = EIO;
1427 		break;
1428 
1429 	case VDEV_FAULT_COUNT:
1430 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1431 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1432 		error = EIO;
1433 		break;
1434 	}
1435 
1436 	if (error != 0) {
1437 		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1438 		    error, zio->io_type, vdev_description(vd),
1439 		    vd->vdev_state, zio->io_offset);
1440 	}
1441 
1442 	return (error);
1443 }
1444 
1445 /*
1446  * Get statistics for the given vdev.
1447  */
1448 void
1449 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1450 {
1451 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1452 	int c, t;
1453 
1454 	mutex_enter(&vd->vdev_stat_lock);
1455 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1456 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1457 	vs->vs_state = vd->vdev_state;
1458 	vs->vs_rsize = vdev_get_rsize(vd);
1459 	mutex_exit(&vd->vdev_stat_lock);
1460 
1461 	/*
1462 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1463 	 * over all top-level vdevs (i.e. the direct children of the root).
1464 	 */
1465 	if (vd == rvd) {
1466 		for (c = 0; c < rvd->vdev_children; c++) {
1467 			vdev_t *cvd = rvd->vdev_child[c];
1468 			vdev_stat_t *cvs = &cvd->vdev_stat;
1469 
1470 			mutex_enter(&vd->vdev_stat_lock);
1471 			for (t = 0; t < ZIO_TYPES; t++) {
1472 				vs->vs_ops[t] += cvs->vs_ops[t];
1473 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1474 			}
1475 			vs->vs_read_errors += cvs->vs_read_errors;
1476 			vs->vs_write_errors += cvs->vs_write_errors;
1477 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1478 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1479 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1480 			mutex_exit(&vd->vdev_stat_lock);
1481 		}
1482 	}
1483 }
1484 
1485 void
1486 vdev_stat_update(zio_t *zio)
1487 {
1488 	vdev_t *vd = zio->io_vd;
1489 	vdev_t *pvd;
1490 	uint64_t txg = zio->io_txg;
1491 	vdev_stat_t *vs = &vd->vdev_stat;
1492 	zio_type_t type = zio->io_type;
1493 	int flags = zio->io_flags;
1494 
1495 	if (zio->io_error == 0) {
1496 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1497 			mutex_enter(&vd->vdev_stat_lock);
1498 			vs->vs_ops[type]++;
1499 			vs->vs_bytes[type] += zio->io_size;
1500 			mutex_exit(&vd->vdev_stat_lock);
1501 		}
1502 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1503 		    zio->io_delegate_list == NULL) {
1504 			mutex_enter(&vd->vdev_stat_lock);
1505 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1506 				vs->vs_scrub_repaired += zio->io_size;
1507 			else
1508 				vs->vs_self_healed += zio->io_size;
1509 			mutex_exit(&vd->vdev_stat_lock);
1510 		}
1511 		return;
1512 	}
1513 
1514 	if (flags & ZIO_FLAG_SPECULATIVE)
1515 		return;
1516 
1517 	if (!vdev_is_dead(vd)) {
1518 		mutex_enter(&vd->vdev_stat_lock);
1519 		if (type == ZIO_TYPE_READ) {
1520 			if (zio->io_error == ECKSUM)
1521 				vs->vs_checksum_errors++;
1522 			else
1523 				vs->vs_read_errors++;
1524 		}
1525 		if (type == ZIO_TYPE_WRITE)
1526 			vs->vs_write_errors++;
1527 		mutex_exit(&vd->vdev_stat_lock);
1528 	}
1529 
1530 	if (type == ZIO_TYPE_WRITE) {
1531 		if (txg == 0 || vd->vdev_children != 0)
1532 			return;
1533 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1534 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1535 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1536 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1537 		}
1538 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1539 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1540 				return;
1541 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1542 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1543 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1544 		}
1545 	}
1546 }
1547 
1548 void
1549 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1550 {
1551 	int c;
1552 	vdev_stat_t *vs = &vd->vdev_stat;
1553 
1554 	for (c = 0; c < vd->vdev_children; c++)
1555 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1556 
1557 	mutex_enter(&vd->vdev_stat_lock);
1558 
1559 	if (type == POOL_SCRUB_NONE) {
1560 		/*
1561 		 * Update completion and end time.  Leave everything else alone
1562 		 * so we can report what happened during the previous scrub.
1563 		 */
1564 		vs->vs_scrub_complete = complete;
1565 		vs->vs_scrub_end = gethrestime_sec();
1566 	} else {
1567 		vs->vs_scrub_type = type;
1568 		vs->vs_scrub_complete = 0;
1569 		vs->vs_scrub_examined = 0;
1570 		vs->vs_scrub_repaired = 0;
1571 		vs->vs_scrub_errors = 0;
1572 		vs->vs_scrub_start = gethrestime_sec();
1573 		vs->vs_scrub_end = 0;
1574 	}
1575 
1576 	mutex_exit(&vd->vdev_stat_lock);
1577 }
1578 
1579 /*
1580  * Update the in-core space usage stats for this vdev and the root vdev.
1581  */
1582 void
1583 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta)
1584 {
1585 	ASSERT(vd == vd->vdev_top);
1586 
1587 	do {
1588 		mutex_enter(&vd->vdev_stat_lock);
1589 		vd->vdev_stat.vs_space += space_delta;
1590 		vd->vdev_stat.vs_alloc += alloc_delta;
1591 		mutex_exit(&vd->vdev_stat_lock);
1592 	} while ((vd = vd->vdev_parent) != NULL);
1593 }
1594 
1595 /*
1596  * Various knobs to tune a vdev.
1597  */
1598 static vdev_knob_t vdev_knob[] = {
1599 	{
1600 		"cache_size",
1601 		"size of the read-ahead cache",
1602 		0,
1603 		1ULL << 30,
1604 		10ULL << 20,
1605 		offsetof(struct vdev, vdev_cache.vc_size)
1606 	},
1607 	{
1608 		"cache_bshift",
1609 		"log2 of cache blocksize",
1610 		SPA_MINBLOCKSHIFT,
1611 		SPA_MAXBLOCKSHIFT,
1612 		16,
1613 		offsetof(struct vdev, vdev_cache.vc_bshift)
1614 	},
1615 	{
1616 		"cache_max",
1617 		"largest block size to cache",
1618 		0,
1619 		SPA_MAXBLOCKSIZE,
1620 		1ULL << 14,
1621 		offsetof(struct vdev, vdev_cache.vc_max)
1622 	},
1623 	{
1624 		"min_pending",
1625 		"minimum pending I/Os to the disk",
1626 		1,
1627 		10000,
1628 		2,
1629 		offsetof(struct vdev, vdev_queue.vq_min_pending)
1630 	},
1631 	{
1632 		"max_pending",
1633 		"maximum pending I/Os to the disk",
1634 		1,
1635 		10000,
1636 		35,
1637 		offsetof(struct vdev, vdev_queue.vq_max_pending)
1638 	},
1639 	{
1640 		"scrub_limit",
1641 		"maximum scrub/resilver I/O queue",
1642 		0,
1643 		10000,
1644 		70,
1645 		offsetof(struct vdev, vdev_queue.vq_scrub_limit)
1646 	},
1647 	{
1648 		"agg_limit",
1649 		"maximum size of aggregated I/Os",
1650 		0,
1651 		SPA_MAXBLOCKSIZE,
1652 		SPA_MAXBLOCKSIZE,
1653 		offsetof(struct vdev, vdev_queue.vq_agg_limit)
1654 	},
1655 	{
1656 		"time_shift",
1657 		"deadline = pri + (lbolt >> time_shift)",
1658 		0,
1659 		63,
1660 		4,
1661 		offsetof(struct vdev, vdev_queue.vq_time_shift)
1662 	},
1663 	{
1664 		"ramp_rate",
1665 		"exponential I/O issue ramp-up rate",
1666 		1,
1667 		10000,
1668 		2,
1669 		offsetof(struct vdev, vdev_queue.vq_ramp_rate)
1670 	},
1671 };
1672 
1673 vdev_knob_t *
1674 vdev_knob_next(vdev_knob_t *vk)
1675 {
1676 	if (vk == NULL)
1677 		return (vdev_knob);
1678 
1679 	if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t))
1680 		return (NULL);
1681 
1682 	return (vk);
1683 }
1684 
1685 /*
1686  * Mark a top-level vdev's config as dirty, placing it on the dirty list
1687  * so that it will be written out next time the vdev configuration is synced.
1688  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1689  */
1690 void
1691 vdev_config_dirty(vdev_t *vd)
1692 {
1693 	spa_t *spa = vd->vdev_spa;
1694 	vdev_t *rvd = spa->spa_root_vdev;
1695 	int c;
1696 
1697 	/*
1698 	 * The dirty list is protected by the config lock.  The caller must
1699 	 * either hold the config lock as writer, or must be the sync thread
1700 	 * (which holds the lock as reader).  There's only one sync thread,
1701 	 * so this is sufficient to ensure mutual exclusion.
1702 	 */
1703 	ASSERT(spa_config_held(spa, RW_WRITER) ||
1704 	    dsl_pool_sync_context(spa_get_dsl(spa)));
1705 
1706 	if (vd == rvd) {
1707 		for (c = 0; c < rvd->vdev_children; c++)
1708 			vdev_config_dirty(rvd->vdev_child[c]);
1709 	} else {
1710 		ASSERT(vd == vd->vdev_top);
1711 
1712 		if (!list_link_active(&vd->vdev_dirty_node))
1713 			list_insert_head(&spa->spa_dirty_list, vd);
1714 	}
1715 }
1716 
1717 void
1718 vdev_config_clean(vdev_t *vd)
1719 {
1720 	spa_t *spa = vd->vdev_spa;
1721 
1722 	ASSERT(spa_config_held(spa, RW_WRITER) ||
1723 	    dsl_pool_sync_context(spa_get_dsl(spa)));
1724 
1725 	ASSERT(list_link_active(&vd->vdev_dirty_node));
1726 	list_remove(&spa->spa_dirty_list, vd);
1727 }
1728 
1729 void
1730 vdev_propagate_state(vdev_t *vd)
1731 {
1732 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1733 	int degraded = 0, faulted = 0;
1734 	int corrupted = 0;
1735 	int c;
1736 	vdev_t *child;
1737 
1738 	for (c = 0; c < vd->vdev_children; c++) {
1739 		child = vd->vdev_child[c];
1740 		if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
1741 			faulted++;
1742 		else if (child->vdev_state == VDEV_STATE_DEGRADED)
1743 			degraded++;
1744 
1745 		if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
1746 			corrupted++;
1747 	}
1748 
1749 	vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
1750 
1751 	/*
1752 	 * Root special: if there is a toplevel vdev that cannot be
1753 	 * opened due to corrupted metadata, then propagate the root
1754 	 * vdev's aux state as 'corrupt' rather than 'insufficient
1755 	 * replicas'.
1756 	 */
1757 	if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
1758 		vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
1759 		    VDEV_AUX_CORRUPT_DATA);
1760 }
1761 
1762 /*
1763  * Set a vdev's state.  If this is during an open, we don't update the parent
1764  * state, because we're in the process of opening children depth-first.
1765  * Otherwise, we propagate the change to the parent.
1766  *
1767  * If this routine places a device in a faulted state, an appropriate ereport is
1768  * generated.
1769  */
1770 void
1771 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1772 {
1773 	uint64_t prev_state;
1774 
1775 	if (state == vd->vdev_state) {
1776 		vd->vdev_stat.vs_aux = aux;
1777 		return;
1778 	}
1779 
1780 	prev_state = vd->vdev_state;
1781 
1782 	vd->vdev_state = state;
1783 	vd->vdev_stat.vs_aux = aux;
1784 
1785 	if (state == VDEV_STATE_CANT_OPEN) {
1786 		/*
1787 		 * If we fail to open a vdev during an import, we mark it as
1788 		 * "not available", which signifies that it was never there to
1789 		 * begin with.  Failure to open such a device is not considered
1790 		 * an error.
1791 		 */
1792 		if (!vd->vdev_not_present &&
1793 		    vd != vd->vdev_spa->spa_root_vdev) {
1794 			const char *class;
1795 
1796 			switch (aux) {
1797 			case VDEV_AUX_OPEN_FAILED:
1798 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
1799 				break;
1800 			case VDEV_AUX_CORRUPT_DATA:
1801 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
1802 				break;
1803 			case VDEV_AUX_NO_REPLICAS:
1804 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
1805 				break;
1806 			case VDEV_AUX_BAD_GUID_SUM:
1807 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
1808 				break;
1809 			case VDEV_AUX_TOO_SMALL:
1810 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
1811 				break;
1812 			case VDEV_AUX_BAD_LABEL:
1813 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
1814 				break;
1815 			default:
1816 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
1817 			}
1818 
1819 			zfs_ereport_post(class, vd->vdev_spa,
1820 			    vd, NULL, prev_state, 0);
1821 		}
1822 
1823 		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
1824 		    vd->vdev_ops->vdev_op_leaf)
1825 			vd->vdev_not_present = 1;
1826 	}
1827 
1828 	if (isopen)
1829 		return;
1830 
1831 	if (vd->vdev_parent != NULL)
1832 		vdev_propagate_state(vd->vdev_parent);
1833 }
1834