1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/zil.h> 34 #include <sys/callb.h> 35 36 /* 37 * ZFS Transaction Groups 38 * ---------------------- 39 * 40 * ZFS transaction groups are, as the name implies, groups of transactions 41 * that act on persistent state. ZFS asserts consistency at the granularity of 42 * these transaction groups. Each successive transaction group (txg) is 43 * assigned a 64-bit consecutive identifier. There are three active 44 * transaction group states: open, quiescing, or syncing. At any given time, 45 * there may be an active txg associated with each state; each active txg may 46 * either be processing, or blocked waiting to enter the next state. There may 47 * be up to three active txgs, and there is always a txg in the open state 48 * (though it may be blocked waiting to enter the quiescing state). In broad 49 * strokes, transactions -- operations that change in-memory structures -- are 50 * accepted into the txg in the open state, and are completed while the txg is 51 * in the open or quiescing states. The accumulated changes are written to 52 * disk in the syncing state. 53 * 54 * Open 55 * 56 * When a new txg becomes active, it first enters the open state. New 57 * transactions -- updates to in-memory structures -- are assigned to the 58 * currently open txg. There is always a txg in the open state so that ZFS can 59 * accept new changes (though the txg may refuse new changes if it has hit 60 * some limit). ZFS advances the open txg to the next state for a variety of 61 * reasons such as it hitting a time or size threshold, or the execution of an 62 * administrative action that must be completed in the syncing state. 63 * 64 * Quiescing 65 * 66 * After a txg exits the open state, it enters the quiescing state. The 67 * quiescing state is intended to provide a buffer between accepting new 68 * transactions in the open state and writing them out to stable storage in 69 * the syncing state. While quiescing, transactions can continue their 70 * operation without delaying either of the other states. Typically, a txg is 71 * in the quiescing state very briefly since the operations are bounded by 72 * software latencies rather than, say, slower I/O latencies. After all 73 * transactions complete, the txg is ready to enter the next state. 74 * 75 * Syncing 76 * 77 * In the syncing state, the in-memory state built up during the open and (to 78 * a lesser degree) the quiescing states is written to stable storage. The 79 * process of writing out modified data can, in turn modify more data. For 80 * example when we write new blocks, we need to allocate space for them; those 81 * allocations modify metadata (space maps)... which themselves must be 82 * written to stable storage. During the sync state, ZFS iterates, writing out 83 * data until it converges and all in-memory changes have been written out. 84 * The first such pass is the largest as it encompasses all the modified user 85 * data (as opposed to filesystem metadata). Subsequent passes typically have 86 * far less data to write as they consist exclusively of filesystem metadata. 87 * 88 * To ensure convergence, after a certain number of passes ZFS begins 89 * overwriting locations on stable storage that had been allocated earlier in 90 * the syncing state (and subsequently freed). ZFS usually allocates new 91 * blocks to optimize for large, continuous, writes. For the syncing state to 92 * converge however it must complete a pass where no new blocks are allocated 93 * since each allocation requires a modification of persistent metadata. 94 * Further, to hasten convergence, after a prescribed number of passes, ZFS 95 * also defers frees, and stops compressing. 96 * 97 * In addition to writing out user data, we must also execute synctasks during 98 * the syncing context. A synctask is the mechanism by which some 99 * administrative activities work such as creating and destroying snapshots or 100 * datasets. Note that when a synctask is initiated it enters the open txg, 101 * and ZFS then pushes that txg as quickly as possible to completion of the 102 * syncing state in order to reduce the latency of the administrative 103 * activity. To complete the syncing state, ZFS writes out a new uberblock, 104 * the root of the tree of blocks that comprise all state stored on the ZFS 105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 106 * now transition to the syncing state. 107 */ 108 109 static void txg_sync_thread(void *arg); 110 static void txg_quiesce_thread(void *arg); 111 112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 113 114 /* 115 * Prepare the txg subsystem. 116 */ 117 void 118 txg_init(dsl_pool_t *dp, uint64_t txg) 119 { 120 tx_state_t *tx = &dp->dp_tx; 121 int c; 122 bzero(tx, sizeof (tx_state_t)); 123 124 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 125 126 for (c = 0; c < max_ncpus; c++) { 127 int i; 128 129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT, 131 NULL); 132 for (i = 0; i < TXG_SIZE; i++) { 133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 134 NULL); 135 list_create(&tx->tx_cpu[c].tc_callbacks[i], 136 sizeof (dmu_tx_callback_t), 137 offsetof(dmu_tx_callback_t, dcb_node)); 138 } 139 } 140 141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 142 143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 148 149 tx->tx_open_txg = txg; 150 } 151 152 /* 153 * Close down the txg subsystem. 154 */ 155 void 156 txg_fini(dsl_pool_t *dp) 157 { 158 tx_state_t *tx = &dp->dp_tx; 159 int c; 160 161 ASSERT0(tx->tx_threads); 162 163 mutex_destroy(&tx->tx_sync_lock); 164 165 cv_destroy(&tx->tx_sync_more_cv); 166 cv_destroy(&tx->tx_sync_done_cv); 167 cv_destroy(&tx->tx_quiesce_more_cv); 168 cv_destroy(&tx->tx_quiesce_done_cv); 169 cv_destroy(&tx->tx_exit_cv); 170 171 for (c = 0; c < max_ncpus; c++) { 172 int i; 173 174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 175 mutex_destroy(&tx->tx_cpu[c].tc_lock); 176 for (i = 0; i < TXG_SIZE; i++) { 177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 179 } 180 } 181 182 if (tx->tx_commit_cb_taskq != NULL) 183 taskq_destroy(tx->tx_commit_cb_taskq); 184 185 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 186 187 bzero(tx, sizeof (tx_state_t)); 188 } 189 190 /* 191 * Start syncing transaction groups. 192 */ 193 void 194 txg_sync_start(dsl_pool_t *dp) 195 { 196 tx_state_t *tx = &dp->dp_tx; 197 198 mutex_enter(&tx->tx_sync_lock); 199 200 dprintf("pool %p\n", dp); 201 202 ASSERT0(tx->tx_threads); 203 204 tx->tx_threads = 2; 205 206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 207 dp, 0, &p0, TS_RUN, minclsyspri); 208 209 /* 210 * The sync thread can need a larger-than-default stack size on 211 * 32-bit x86. This is due in part to nested pools and 212 * scrub_visitbp() recursion. 213 */ 214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 215 dp, 0, &p0, TS_RUN, minclsyspri); 216 217 mutex_exit(&tx->tx_sync_lock); 218 } 219 220 static void 221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 222 { 223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 224 mutex_enter(&tx->tx_sync_lock); 225 } 226 227 static void 228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 229 { 230 ASSERT(*tpp != NULL); 231 *tpp = NULL; 232 tx->tx_threads--; 233 cv_broadcast(&tx->tx_exit_cv); 234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 235 thread_exit(); 236 } 237 238 static void 239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 240 { 241 CALLB_CPR_SAFE_BEGIN(cpr); 242 243 if (time) 244 (void) cv_timedwait(cv, &tx->tx_sync_lock, 245 ddi_get_lbolt() + time); 246 else 247 cv_wait(cv, &tx->tx_sync_lock); 248 249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 250 } 251 252 /* 253 * Stop syncing transaction groups. 254 */ 255 void 256 txg_sync_stop(dsl_pool_t *dp) 257 { 258 tx_state_t *tx = &dp->dp_tx; 259 260 dprintf("pool %p\n", dp); 261 /* 262 * Finish off any work in progress. 263 */ 264 ASSERT3U(tx->tx_threads, ==, 2); 265 266 /* 267 * We need to ensure that we've vacated the deferred space_maps. 268 */ 269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 270 271 /* 272 * Wake all sync threads and wait for them to die. 273 */ 274 mutex_enter(&tx->tx_sync_lock); 275 276 ASSERT3U(tx->tx_threads, ==, 2); 277 278 tx->tx_exiting = 1; 279 280 cv_broadcast(&tx->tx_quiesce_more_cv); 281 cv_broadcast(&tx->tx_quiesce_done_cv); 282 cv_broadcast(&tx->tx_sync_more_cv); 283 284 while (tx->tx_threads != 0) 285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 286 287 tx->tx_exiting = 0; 288 289 mutex_exit(&tx->tx_sync_lock); 290 } 291 292 uint64_t 293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 294 { 295 tx_state_t *tx = &dp->dp_tx; 296 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 297 uint64_t txg; 298 299 mutex_enter(&tc->tc_open_lock); 300 txg = tx->tx_open_txg; 301 302 mutex_enter(&tc->tc_lock); 303 tc->tc_count[txg & TXG_MASK]++; 304 mutex_exit(&tc->tc_lock); 305 306 th->th_cpu = tc; 307 th->th_txg = txg; 308 309 return (txg); 310 } 311 312 void 313 txg_rele_to_quiesce(txg_handle_t *th) 314 { 315 tx_cpu_t *tc = th->th_cpu; 316 317 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 318 mutex_exit(&tc->tc_open_lock); 319 } 320 321 void 322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 323 { 324 tx_cpu_t *tc = th->th_cpu; 325 int g = th->th_txg & TXG_MASK; 326 327 mutex_enter(&tc->tc_lock); 328 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 329 mutex_exit(&tc->tc_lock); 330 } 331 332 void 333 txg_rele_to_sync(txg_handle_t *th) 334 { 335 tx_cpu_t *tc = th->th_cpu; 336 int g = th->th_txg & TXG_MASK; 337 338 mutex_enter(&tc->tc_lock); 339 ASSERT(tc->tc_count[g] != 0); 340 if (--tc->tc_count[g] == 0) 341 cv_broadcast(&tc->tc_cv[g]); 342 mutex_exit(&tc->tc_lock); 343 344 th->th_cpu = NULL; /* defensive */ 345 } 346 347 /* 348 * Blocks until all transactions in the group are committed. 349 * 350 * On return, the transaction group has reached a stable state in which it can 351 * then be passed off to the syncing context. 352 */ 353 static void 354 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 355 { 356 tx_state_t *tx = &dp->dp_tx; 357 int g = txg & TXG_MASK; 358 int c; 359 360 /* 361 * Grab all tc_open_locks so nobody else can get into this txg. 362 */ 363 for (c = 0; c < max_ncpus; c++) 364 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 365 366 ASSERT(txg == tx->tx_open_txg); 367 tx->tx_open_txg++; 368 tx->tx_open_time = gethrtime(); 369 370 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 371 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 372 373 /* 374 * Now that we've incremented tx_open_txg, we can let threads 375 * enter the next transaction group. 376 */ 377 for (c = 0; c < max_ncpus; c++) 378 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 379 380 /* 381 * Quiesce the transaction group by waiting for everyone to txg_exit(). 382 */ 383 for (c = 0; c < max_ncpus; c++) { 384 tx_cpu_t *tc = &tx->tx_cpu[c]; 385 mutex_enter(&tc->tc_lock); 386 while (tc->tc_count[g] != 0) 387 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 388 mutex_exit(&tc->tc_lock); 389 } 390 } 391 392 static void 393 txg_do_callbacks(list_t *cb_list) 394 { 395 dmu_tx_do_callbacks(cb_list, 0); 396 397 list_destroy(cb_list); 398 399 kmem_free(cb_list, sizeof (list_t)); 400 } 401 402 /* 403 * Dispatch the commit callbacks registered on this txg to worker threads. 404 * 405 * If no callbacks are registered for a given TXG, nothing happens. 406 * This function creates a taskq for the associated pool, if needed. 407 */ 408 static void 409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 410 { 411 int c; 412 tx_state_t *tx = &dp->dp_tx; 413 list_t *cb_list; 414 415 for (c = 0; c < max_ncpus; c++) { 416 tx_cpu_t *tc = &tx->tx_cpu[c]; 417 /* 418 * No need to lock tx_cpu_t at this point, since this can 419 * only be called once a txg has been synced. 420 */ 421 422 int g = txg & TXG_MASK; 423 424 if (list_is_empty(&tc->tc_callbacks[g])) 425 continue; 426 427 if (tx->tx_commit_cb_taskq == NULL) { 428 /* 429 * Commit callback taskq hasn't been created yet. 430 */ 431 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 432 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 433 TASKQ_PREPOPULATE); 434 } 435 436 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 437 list_create(cb_list, sizeof (dmu_tx_callback_t), 438 offsetof(dmu_tx_callback_t, dcb_node)); 439 440 list_move_tail(cb_list, &tc->tc_callbacks[g]); 441 442 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 443 txg_do_callbacks, cb_list, TQ_SLEEP); 444 } 445 } 446 447 static boolean_t 448 txg_is_syncing(dsl_pool_t *dp) 449 { 450 tx_state_t *tx = &dp->dp_tx; 451 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 452 return (tx->tx_syncing_txg != 0); 453 } 454 455 static boolean_t 456 txg_is_quiescing(dsl_pool_t *dp) 457 { 458 tx_state_t *tx = &dp->dp_tx; 459 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 460 return (tx->tx_quiescing_txg != 0); 461 } 462 463 static boolean_t 464 txg_has_quiesced_to_sync(dsl_pool_t *dp) 465 { 466 tx_state_t *tx = &dp->dp_tx; 467 ASSERT(MUTEX_HELD(&tx->tx_sync_lock)); 468 return (tx->tx_quiesced_txg != 0); 469 } 470 471 static void 472 txg_sync_thread(void *arg) 473 { 474 dsl_pool_t *dp = arg; 475 spa_t *spa = dp->dp_spa; 476 tx_state_t *tx = &dp->dp_tx; 477 callb_cpr_t cpr; 478 uint64_t start, delta; 479 480 txg_thread_enter(tx, &cpr); 481 482 start = delta = 0; 483 for (;;) { 484 uint64_t timeout = zfs_txg_timeout * hz; 485 uint64_t timer; 486 uint64_t txg; 487 uint64_t dirty_min_bytes = 488 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100; 489 490 /* 491 * We sync when we're scanning, there's someone waiting 492 * on us, or the quiesce thread has handed off a txg to 493 * us, or we have reached our timeout. 494 */ 495 timer = (delta >= timeout ? 0 : timeout - delta); 496 while (!dsl_scan_active(dp->dp_scan) && 497 !tx->tx_exiting && timer > 0 && 498 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 499 !txg_has_quiesced_to_sync(dp) && 500 dp->dp_dirty_total < dirty_min_bytes) { 501 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 502 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 503 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 504 delta = ddi_get_lbolt() - start; 505 timer = (delta > timeout ? 0 : timeout - delta); 506 } 507 508 /* 509 * Wait until the quiesce thread hands off a txg to us, 510 * prompting it to do so if necessary. 511 */ 512 while (!tx->tx_exiting && !txg_has_quiesced_to_sync(dp)) { 513 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 514 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 515 cv_broadcast(&tx->tx_quiesce_more_cv); 516 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 517 } 518 519 if (tx->tx_exiting) 520 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 521 522 /* 523 * Consume the quiesced txg which has been handed off to 524 * us. This may cause the quiescing thread to now be 525 * able to quiesce another txg, so we must signal it. 526 */ 527 ASSERT(tx->tx_quiesced_txg != 0); 528 txg = tx->tx_quiesced_txg; 529 tx->tx_quiesced_txg = 0; 530 tx->tx_syncing_txg = txg; 531 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 532 cv_broadcast(&tx->tx_quiesce_more_cv); 533 534 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 535 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 536 mutex_exit(&tx->tx_sync_lock); 537 538 start = ddi_get_lbolt(); 539 spa_sync(spa, txg); 540 delta = ddi_get_lbolt() - start; 541 542 mutex_enter(&tx->tx_sync_lock); 543 tx->tx_synced_txg = txg; 544 tx->tx_syncing_txg = 0; 545 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 546 cv_broadcast(&tx->tx_sync_done_cv); 547 548 /* 549 * Dispatch commit callbacks to worker threads. 550 */ 551 txg_dispatch_callbacks(dp, txg); 552 } 553 } 554 555 static void 556 txg_quiesce_thread(void *arg) 557 { 558 dsl_pool_t *dp = arg; 559 tx_state_t *tx = &dp->dp_tx; 560 callb_cpr_t cpr; 561 562 txg_thread_enter(tx, &cpr); 563 564 for (;;) { 565 uint64_t txg; 566 567 /* 568 * We quiesce when there's someone waiting on us. 569 * However, we can only have one txg in "quiescing" or 570 * "quiesced, waiting to sync" state. So we wait until 571 * the "quiesced, waiting to sync" txg has been consumed 572 * by the sync thread. 573 */ 574 while (!tx->tx_exiting && 575 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 576 txg_has_quiesced_to_sync(dp))) 577 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 578 579 if (tx->tx_exiting) 580 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 581 582 txg = tx->tx_open_txg; 583 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 584 txg, tx->tx_quiesce_txg_waiting, 585 tx->tx_sync_txg_waiting); 586 tx->tx_quiescing_txg = txg; 587 588 mutex_exit(&tx->tx_sync_lock); 589 txg_quiesce(dp, txg); 590 mutex_enter(&tx->tx_sync_lock); 591 592 /* 593 * Hand this txg off to the sync thread. 594 */ 595 dprintf("quiesce done, handing off txg %llu\n", txg); 596 tx->tx_quiescing_txg = 0; 597 tx->tx_quiesced_txg = txg; 598 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 599 cv_broadcast(&tx->tx_sync_more_cv); 600 cv_broadcast(&tx->tx_quiesce_done_cv); 601 } 602 } 603 604 /* 605 * Delay this thread by delay nanoseconds if we are still in the open 606 * transaction group and there is already a waiting txg quiescing or quiesced. 607 * Abort the delay if this txg stalls or enters the quiescing state. 608 */ 609 void 610 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 611 { 612 tx_state_t *tx = &dp->dp_tx; 613 hrtime_t start = gethrtime(); 614 615 /* don't delay if this txg could transition to quiescing immediately */ 616 if (tx->tx_open_txg > txg || 617 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 618 return; 619 620 mutex_enter(&tx->tx_sync_lock); 621 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 622 mutex_exit(&tx->tx_sync_lock); 623 return; 624 } 625 626 while (gethrtime() - start < delay && 627 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 628 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 629 &tx->tx_sync_lock, delay, resolution, 0); 630 } 631 632 mutex_exit(&tx->tx_sync_lock); 633 } 634 635 static boolean_t 636 txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig) 637 { 638 tx_state_t *tx = &dp->dp_tx; 639 640 ASSERT(!dsl_pool_config_held(dp)); 641 642 mutex_enter(&tx->tx_sync_lock); 643 ASSERT3U(tx->tx_threads, ==, 2); 644 if (txg == 0) 645 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 646 if (tx->tx_sync_txg_waiting < txg) 647 tx->tx_sync_txg_waiting = txg; 648 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 649 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 650 while (tx->tx_synced_txg < txg) { 651 dprintf("broadcasting sync more " 652 "tx_synced=%llu waiting=%llu dp=%p\n", 653 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 654 cv_broadcast(&tx->tx_sync_more_cv); 655 if (wait_sig) { 656 /* 657 * Condition wait here but stop if the thread receives a 658 * signal. The caller may call txg_wait_synced*() again 659 * to resume waiting for this txg. 660 */ 661 if (cv_wait_sig(&tx->tx_sync_done_cv, 662 &tx->tx_sync_lock) == 0) { 663 mutex_exit(&tx->tx_sync_lock); 664 return (B_TRUE); 665 } 666 } else { 667 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 668 } 669 } 670 mutex_exit(&tx->tx_sync_lock); 671 return (B_FALSE); 672 } 673 674 void 675 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 676 { 677 VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE)); 678 } 679 680 /* 681 * Similar to a txg_wait_synced but it can be interrupted from a signal. 682 * Returns B_TRUE if the thread was signaled while waiting. 683 */ 684 boolean_t 685 txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg) 686 { 687 return (txg_wait_synced_impl(dp, txg, B_TRUE)); 688 } 689 690 void 691 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 692 { 693 tx_state_t *tx = &dp->dp_tx; 694 695 ASSERT(!dsl_pool_config_held(dp)); 696 697 mutex_enter(&tx->tx_sync_lock); 698 ASSERT3U(tx->tx_threads, ==, 2); 699 if (txg == 0) 700 txg = tx->tx_open_txg + 1; 701 if (tx->tx_quiesce_txg_waiting < txg) 702 tx->tx_quiesce_txg_waiting = txg; 703 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 704 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 705 while (tx->tx_open_txg < txg) { 706 cv_broadcast(&tx->tx_quiesce_more_cv); 707 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 708 } 709 mutex_exit(&tx->tx_sync_lock); 710 } 711 712 /* 713 * If there isn't a txg syncing or in the pipeline, push another txg through 714 * the pipeline by queiscing the open txg. 715 */ 716 void 717 txg_kick(dsl_pool_t *dp) 718 { 719 tx_state_t *tx = &dp->dp_tx; 720 721 ASSERT(!dsl_pool_config_held(dp)); 722 723 mutex_enter(&tx->tx_sync_lock); 724 if (!txg_is_syncing(dp) && 725 !txg_is_quiescing(dp) && 726 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 727 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 728 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 729 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 730 cv_broadcast(&tx->tx_quiesce_more_cv); 731 } 732 mutex_exit(&tx->tx_sync_lock); 733 } 734 735 boolean_t 736 txg_stalled(dsl_pool_t *dp) 737 { 738 tx_state_t *tx = &dp->dp_tx; 739 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 740 } 741 742 boolean_t 743 txg_sync_waiting(dsl_pool_t *dp) 744 { 745 tx_state_t *tx = &dp->dp_tx; 746 747 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 748 tx->tx_quiesced_txg != 0); 749 } 750 751 /* 752 * Verify that this txg is active (open, quiescing, syncing). Non-active 753 * txg's should not be manipulated. 754 */ 755 void 756 txg_verify(spa_t *spa, uint64_t txg) 757 { 758 dsl_pool_t *dp = spa_get_dsl(spa); 759 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 760 return; 761 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 762 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 763 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 764 } 765 766 /* 767 * Per-txg object lists. 768 */ 769 void 770 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 771 { 772 int t; 773 774 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 775 776 tl->tl_offset = offset; 777 tl->tl_spa = spa; 778 779 for (t = 0; t < TXG_SIZE; t++) 780 tl->tl_head[t] = NULL; 781 } 782 783 void 784 txg_list_destroy(txg_list_t *tl) 785 { 786 int t; 787 788 for (t = 0; t < TXG_SIZE; t++) 789 ASSERT(txg_list_empty(tl, t)); 790 791 mutex_destroy(&tl->tl_lock); 792 } 793 794 boolean_t 795 txg_list_empty(txg_list_t *tl, uint64_t txg) 796 { 797 txg_verify(tl->tl_spa, txg); 798 return (tl->tl_head[txg & TXG_MASK] == NULL); 799 } 800 801 /* 802 * Returns true if all txg lists are empty. 803 * 804 * Warning: this is inherently racy (an item could be added immediately 805 * after this function returns). We don't bother with the lock because 806 * it wouldn't change the semantics. 807 */ 808 boolean_t 809 txg_all_lists_empty(txg_list_t *tl) 810 { 811 for (int i = 0; i < TXG_SIZE; i++) { 812 if (!txg_list_empty(tl, i)) { 813 return (B_FALSE); 814 } 815 } 816 return (B_TRUE); 817 } 818 819 /* 820 * Add an entry to the list (unless it's already on the list). 821 * Returns B_TRUE if it was actually added. 822 */ 823 boolean_t 824 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 825 { 826 int t = txg & TXG_MASK; 827 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 828 boolean_t add; 829 830 txg_verify(tl->tl_spa, txg); 831 mutex_enter(&tl->tl_lock); 832 add = (tn->tn_member[t] == 0); 833 if (add) { 834 tn->tn_member[t] = 1; 835 tn->tn_next[t] = tl->tl_head[t]; 836 tl->tl_head[t] = tn; 837 } 838 mutex_exit(&tl->tl_lock); 839 840 return (add); 841 } 842 843 /* 844 * Add an entry to the end of the list, unless it's already on the list. 845 * (walks list to find end) 846 * Returns B_TRUE if it was actually added. 847 */ 848 boolean_t 849 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 850 { 851 int t = txg & TXG_MASK; 852 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 853 boolean_t add; 854 855 txg_verify(tl->tl_spa, txg); 856 mutex_enter(&tl->tl_lock); 857 add = (tn->tn_member[t] == 0); 858 if (add) { 859 txg_node_t **tp; 860 861 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 862 continue; 863 864 tn->tn_member[t] = 1; 865 tn->tn_next[t] = NULL; 866 *tp = tn; 867 } 868 mutex_exit(&tl->tl_lock); 869 870 return (add); 871 } 872 873 /* 874 * Remove the head of the list and return it. 875 */ 876 void * 877 txg_list_remove(txg_list_t *tl, uint64_t txg) 878 { 879 int t = txg & TXG_MASK; 880 txg_node_t *tn; 881 void *p = NULL; 882 883 txg_verify(tl->tl_spa, txg); 884 mutex_enter(&tl->tl_lock); 885 if ((tn = tl->tl_head[t]) != NULL) { 886 ASSERT(tn->tn_member[t]); 887 ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]); 888 p = (char *)tn - tl->tl_offset; 889 tl->tl_head[t] = tn->tn_next[t]; 890 tn->tn_next[t] = NULL; 891 tn->tn_member[t] = 0; 892 } 893 mutex_exit(&tl->tl_lock); 894 895 return (p); 896 } 897 898 /* 899 * Remove a specific item from the list and return it. 900 */ 901 void * 902 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 903 { 904 int t = txg & TXG_MASK; 905 txg_node_t *tn, **tp; 906 907 txg_verify(tl->tl_spa, txg); 908 mutex_enter(&tl->tl_lock); 909 910 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 911 if ((char *)tn - tl->tl_offset == p) { 912 *tp = tn->tn_next[t]; 913 tn->tn_next[t] = NULL; 914 tn->tn_member[t] = 0; 915 mutex_exit(&tl->tl_lock); 916 return (p); 917 } 918 } 919 920 mutex_exit(&tl->tl_lock); 921 922 return (NULL); 923 } 924 925 boolean_t 926 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 927 { 928 int t = txg & TXG_MASK; 929 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 930 931 txg_verify(tl->tl_spa, txg); 932 return (tn->tn_member[t] != 0); 933 } 934 935 /* 936 * Walk a txg list -- only safe if you know it's not changing. 937 */ 938 void * 939 txg_list_head(txg_list_t *tl, uint64_t txg) 940 { 941 int t = txg & TXG_MASK; 942 txg_node_t *tn = tl->tl_head[t]; 943 944 txg_verify(tl->tl_spa, txg); 945 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 946 } 947 948 void * 949 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 950 { 951 int t = txg & TXG_MASK; 952 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 953 954 txg_verify(tl->tl_spa, txg); 955 tn = tn->tn_next[t]; 956 957 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 958 } 959