1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/zil.h> 34 #include <sys/callb.h> 35 36 /* 37 * ZFS Transaction Groups 38 * ---------------------- 39 * 40 * ZFS transaction groups are, as the name implies, groups of transactions 41 * that act on persistent state. ZFS asserts consistency at the granularity of 42 * these transaction groups. Each successive transaction group (txg) is 43 * assigned a 64-bit consecutive identifier. There are three active 44 * transaction group states: open, quiescing, or syncing. At any given time, 45 * there may be an active txg associated with each state; each active txg may 46 * either be processing, or blocked waiting to enter the next state. There may 47 * be up to three active txgs, and there is always a txg in the open state 48 * (though it may be blocked waiting to enter the quiescing state). In broad 49 * strokes, transactions -- operations that change in-memory structures -- are 50 * accepted into the txg in the open state, and are completed while the txg is 51 * in the open or quiescing states. The accumulated changes are written to 52 * disk in the syncing state. 53 * 54 * Open 55 * 56 * When a new txg becomes active, it first enters the open state. New 57 * transactions -- updates to in-memory structures -- are assigned to the 58 * currently open txg. There is always a txg in the open state so that ZFS can 59 * accept new changes (though the txg may refuse new changes if it has hit 60 * some limit). ZFS advances the open txg to the next state for a variety of 61 * reasons such as it hitting a time or size threshold, or the execution of an 62 * administrative action that must be completed in the syncing state. 63 * 64 * Quiescing 65 * 66 * After a txg exits the open state, it enters the quiescing state. The 67 * quiescing state is intended to provide a buffer between accepting new 68 * transactions in the open state and writing them out to stable storage in 69 * the syncing state. While quiescing, transactions can continue their 70 * operation without delaying either of the other states. Typically, a txg is 71 * in the quiescing state very briefly since the operations are bounded by 72 * software latencies rather than, say, slower I/O latencies. After all 73 * transactions complete, the txg is ready to enter the next state. 74 * 75 * Syncing 76 * 77 * In the syncing state, the in-memory state built up during the open and (to 78 * a lesser degree) the quiescing states is written to stable storage. The 79 * process of writing out modified data can, in turn modify more data. For 80 * example when we write new blocks, we need to allocate space for them; those 81 * allocations modify metadata (space maps)... which themselves must be 82 * written to stable storage. During the sync state, ZFS iterates, writing out 83 * data until it converges and all in-memory changes have been written out. 84 * The first such pass is the largest as it encompasses all the modified user 85 * data (as opposed to filesystem metadata). Subsequent passes typically have 86 * far less data to write as they consist exclusively of filesystem metadata. 87 * 88 * To ensure convergence, after a certain number of passes ZFS begins 89 * overwriting locations on stable storage that had been allocated earlier in 90 * the syncing state (and subsequently freed). ZFS usually allocates new 91 * blocks to optimize for large, continuous, writes. For the syncing state to 92 * converge however it must complete a pass where no new blocks are allocated 93 * since each allocation requires a modification of persistent metadata. 94 * Further, to hasten convergence, after a prescribed number of passes, ZFS 95 * also defers frees, and stops compressing. 96 * 97 * In addition to writing out user data, we must also execute synctasks during 98 * the syncing context. A synctask is the mechanism by which some 99 * administrative activities work such as creating and destroying snapshots or 100 * datasets. Note that when a synctask is initiated it enters the open txg, 101 * and ZFS then pushes that txg as quickly as possible to completion of the 102 * syncing state in order to reduce the latency of the administrative 103 * activity. To complete the syncing state, ZFS writes out a new uberblock, 104 * the root of the tree of blocks that comprise all state stored on the ZFS 105 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 106 * now transition to the syncing state. 107 */ 108 109 static void txg_sync_thread(dsl_pool_t *dp); 110 static void txg_quiesce_thread(dsl_pool_t *dp); 111 112 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 113 114 /* 115 * Prepare the txg subsystem. 116 */ 117 void 118 txg_init(dsl_pool_t *dp, uint64_t txg) 119 { 120 tx_state_t *tx = &dp->dp_tx; 121 int c; 122 bzero(tx, sizeof (tx_state_t)); 123 124 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 125 126 for (c = 0; c < max_ncpus; c++) { 127 int i; 128 129 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 130 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT, 131 NULL); 132 for (i = 0; i < TXG_SIZE; i++) { 133 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 134 NULL); 135 list_create(&tx->tx_cpu[c].tc_callbacks[i], 136 sizeof (dmu_tx_callback_t), 137 offsetof(dmu_tx_callback_t, dcb_node)); 138 } 139 } 140 141 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 142 143 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 145 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 147 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 148 149 tx->tx_open_txg = txg; 150 } 151 152 /* 153 * Close down the txg subsystem. 154 */ 155 void 156 txg_fini(dsl_pool_t *dp) 157 { 158 tx_state_t *tx = &dp->dp_tx; 159 int c; 160 161 ASSERT(tx->tx_threads == 0); 162 163 mutex_destroy(&tx->tx_sync_lock); 164 165 cv_destroy(&tx->tx_sync_more_cv); 166 cv_destroy(&tx->tx_sync_done_cv); 167 cv_destroy(&tx->tx_quiesce_more_cv); 168 cv_destroy(&tx->tx_quiesce_done_cv); 169 cv_destroy(&tx->tx_exit_cv); 170 171 for (c = 0; c < max_ncpus; c++) { 172 int i; 173 174 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 175 mutex_destroy(&tx->tx_cpu[c].tc_lock); 176 for (i = 0; i < TXG_SIZE; i++) { 177 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 178 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 179 } 180 } 181 182 if (tx->tx_commit_cb_taskq != NULL) 183 taskq_destroy(tx->tx_commit_cb_taskq); 184 185 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 186 187 bzero(tx, sizeof (tx_state_t)); 188 } 189 190 /* 191 * Start syncing transaction groups. 192 */ 193 void 194 txg_sync_start(dsl_pool_t *dp) 195 { 196 tx_state_t *tx = &dp->dp_tx; 197 198 mutex_enter(&tx->tx_sync_lock); 199 200 dprintf("pool %p\n", dp); 201 202 ASSERT(tx->tx_threads == 0); 203 204 tx->tx_threads = 2; 205 206 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 207 dp, 0, &p0, TS_RUN, minclsyspri); 208 209 /* 210 * The sync thread can need a larger-than-default stack size on 211 * 32-bit x86. This is due in part to nested pools and 212 * scrub_visitbp() recursion. 213 */ 214 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 215 dp, 0, &p0, TS_RUN, minclsyspri); 216 217 mutex_exit(&tx->tx_sync_lock); 218 } 219 220 static void 221 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 222 { 223 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 224 mutex_enter(&tx->tx_sync_lock); 225 } 226 227 static void 228 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 229 { 230 ASSERT(*tpp != NULL); 231 *tpp = NULL; 232 tx->tx_threads--; 233 cv_broadcast(&tx->tx_exit_cv); 234 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 235 thread_exit(); 236 } 237 238 static void 239 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 240 { 241 CALLB_CPR_SAFE_BEGIN(cpr); 242 243 if (time) 244 (void) cv_timedwait(cv, &tx->tx_sync_lock, 245 ddi_get_lbolt() + time); 246 else 247 cv_wait(cv, &tx->tx_sync_lock); 248 249 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 250 } 251 252 /* 253 * Stop syncing transaction groups. 254 */ 255 void 256 txg_sync_stop(dsl_pool_t *dp) 257 { 258 tx_state_t *tx = &dp->dp_tx; 259 260 dprintf("pool %p\n", dp); 261 /* 262 * Finish off any work in progress. 263 */ 264 ASSERT(tx->tx_threads == 2); 265 266 /* 267 * We need to ensure that we've vacated the deferred space_maps. 268 */ 269 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 270 271 /* 272 * Wake all sync threads and wait for them to die. 273 */ 274 mutex_enter(&tx->tx_sync_lock); 275 276 ASSERT(tx->tx_threads == 2); 277 278 tx->tx_exiting = 1; 279 280 cv_broadcast(&tx->tx_quiesce_more_cv); 281 cv_broadcast(&tx->tx_quiesce_done_cv); 282 cv_broadcast(&tx->tx_sync_more_cv); 283 284 while (tx->tx_threads != 0) 285 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 286 287 tx->tx_exiting = 0; 288 289 mutex_exit(&tx->tx_sync_lock); 290 } 291 292 uint64_t 293 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 294 { 295 tx_state_t *tx = &dp->dp_tx; 296 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 297 uint64_t txg; 298 299 mutex_enter(&tc->tc_open_lock); 300 txg = tx->tx_open_txg; 301 302 mutex_enter(&tc->tc_lock); 303 tc->tc_count[txg & TXG_MASK]++; 304 mutex_exit(&tc->tc_lock); 305 306 th->th_cpu = tc; 307 th->th_txg = txg; 308 309 return (txg); 310 } 311 312 void 313 txg_rele_to_quiesce(txg_handle_t *th) 314 { 315 tx_cpu_t *tc = th->th_cpu; 316 317 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 318 mutex_exit(&tc->tc_open_lock); 319 } 320 321 void 322 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 323 { 324 tx_cpu_t *tc = th->th_cpu; 325 int g = th->th_txg & TXG_MASK; 326 327 mutex_enter(&tc->tc_lock); 328 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 329 mutex_exit(&tc->tc_lock); 330 } 331 332 void 333 txg_rele_to_sync(txg_handle_t *th) 334 { 335 tx_cpu_t *tc = th->th_cpu; 336 int g = th->th_txg & TXG_MASK; 337 338 mutex_enter(&tc->tc_lock); 339 ASSERT(tc->tc_count[g] != 0); 340 if (--tc->tc_count[g] == 0) 341 cv_broadcast(&tc->tc_cv[g]); 342 mutex_exit(&tc->tc_lock); 343 344 th->th_cpu = NULL; /* defensive */ 345 } 346 347 /* 348 * Blocks until all transactions in the group are committed. 349 * 350 * On return, the transaction group has reached a stable state in which it can 351 * then be passed off to the syncing context. 352 */ 353 static void 354 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 355 { 356 tx_state_t *tx = &dp->dp_tx; 357 int g = txg & TXG_MASK; 358 int c; 359 360 /* 361 * Grab all tc_open_locks so nobody else can get into this txg. 362 */ 363 for (c = 0; c < max_ncpus; c++) 364 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 365 366 ASSERT(txg == tx->tx_open_txg); 367 tx->tx_open_txg++; 368 tx->tx_open_time = gethrtime(); 369 370 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 371 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 372 373 /* 374 * Now that we've incremented tx_open_txg, we can let threads 375 * enter the next transaction group. 376 */ 377 for (c = 0; c < max_ncpus; c++) 378 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 379 380 /* 381 * Quiesce the transaction group by waiting for everyone to txg_exit(). 382 */ 383 for (c = 0; c < max_ncpus; c++) { 384 tx_cpu_t *tc = &tx->tx_cpu[c]; 385 mutex_enter(&tc->tc_lock); 386 while (tc->tc_count[g] != 0) 387 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 388 mutex_exit(&tc->tc_lock); 389 } 390 } 391 392 static void 393 txg_do_callbacks(list_t *cb_list) 394 { 395 dmu_tx_do_callbacks(cb_list, 0); 396 397 list_destroy(cb_list); 398 399 kmem_free(cb_list, sizeof (list_t)); 400 } 401 402 /* 403 * Dispatch the commit callbacks registered on this txg to worker threads. 404 * 405 * If no callbacks are registered for a given TXG, nothing happens. 406 * This function creates a taskq for the associated pool, if needed. 407 */ 408 static void 409 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 410 { 411 int c; 412 tx_state_t *tx = &dp->dp_tx; 413 list_t *cb_list; 414 415 for (c = 0; c < max_ncpus; c++) { 416 tx_cpu_t *tc = &tx->tx_cpu[c]; 417 /* 418 * No need to lock tx_cpu_t at this point, since this can 419 * only be called once a txg has been synced. 420 */ 421 422 int g = txg & TXG_MASK; 423 424 if (list_is_empty(&tc->tc_callbacks[g])) 425 continue; 426 427 if (tx->tx_commit_cb_taskq == NULL) { 428 /* 429 * Commit callback taskq hasn't been created yet. 430 */ 431 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 432 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 433 TASKQ_PREPOPULATE); 434 } 435 436 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 437 list_create(cb_list, sizeof (dmu_tx_callback_t), 438 offsetof(dmu_tx_callback_t, dcb_node)); 439 440 list_move_tail(cb_list, &tc->tc_callbacks[g]); 441 442 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 443 txg_do_callbacks, cb_list, TQ_SLEEP); 444 } 445 } 446 447 static void 448 txg_sync_thread(dsl_pool_t *dp) 449 { 450 spa_t *spa = dp->dp_spa; 451 tx_state_t *tx = &dp->dp_tx; 452 callb_cpr_t cpr; 453 uint64_t start, delta; 454 455 txg_thread_enter(tx, &cpr); 456 457 start = delta = 0; 458 for (;;) { 459 uint64_t timeout = zfs_txg_timeout * hz; 460 uint64_t timer; 461 uint64_t txg; 462 463 /* 464 * We sync when we're scanning, there's someone waiting 465 * on us, or the quiesce thread has handed off a txg to 466 * us, or we have reached our timeout. 467 */ 468 timer = (delta >= timeout ? 0 : timeout - delta); 469 while (!dsl_scan_active(dp->dp_scan) && 470 !tx->tx_exiting && timer > 0 && 471 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 472 tx->tx_quiesced_txg == 0 && 473 dp->dp_dirty_total < zfs_dirty_data_sync) { 474 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 475 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 476 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 477 delta = ddi_get_lbolt() - start; 478 timer = (delta > timeout ? 0 : timeout - delta); 479 } 480 481 /* 482 * Wait until the quiesce thread hands off a txg to us, 483 * prompting it to do so if necessary. 484 */ 485 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 486 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 487 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 488 cv_broadcast(&tx->tx_quiesce_more_cv); 489 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 490 } 491 492 if (tx->tx_exiting) 493 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 494 495 /* 496 * Consume the quiesced txg which has been handed off to 497 * us. This may cause the quiescing thread to now be 498 * able to quiesce another txg, so we must signal it. 499 */ 500 txg = tx->tx_quiesced_txg; 501 tx->tx_quiesced_txg = 0; 502 tx->tx_syncing_txg = txg; 503 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 504 cv_broadcast(&tx->tx_quiesce_more_cv); 505 506 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 507 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 508 mutex_exit(&tx->tx_sync_lock); 509 510 start = ddi_get_lbolt(); 511 spa_sync(spa, txg); 512 delta = ddi_get_lbolt() - start; 513 514 mutex_enter(&tx->tx_sync_lock); 515 tx->tx_synced_txg = txg; 516 tx->tx_syncing_txg = 0; 517 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 518 cv_broadcast(&tx->tx_sync_done_cv); 519 520 /* 521 * Dispatch commit callbacks to worker threads. 522 */ 523 txg_dispatch_callbacks(dp, txg); 524 } 525 } 526 527 static void 528 txg_quiesce_thread(dsl_pool_t *dp) 529 { 530 tx_state_t *tx = &dp->dp_tx; 531 callb_cpr_t cpr; 532 533 txg_thread_enter(tx, &cpr); 534 535 for (;;) { 536 uint64_t txg; 537 538 /* 539 * We quiesce when there's someone waiting on us. 540 * However, we can only have one txg in "quiescing" or 541 * "quiesced, waiting to sync" state. So we wait until 542 * the "quiesced, waiting to sync" txg has been consumed 543 * by the sync thread. 544 */ 545 while (!tx->tx_exiting && 546 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 547 tx->tx_quiesced_txg != 0)) 548 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 549 550 if (tx->tx_exiting) 551 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 552 553 txg = tx->tx_open_txg; 554 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 555 txg, tx->tx_quiesce_txg_waiting, 556 tx->tx_sync_txg_waiting); 557 mutex_exit(&tx->tx_sync_lock); 558 txg_quiesce(dp, txg); 559 mutex_enter(&tx->tx_sync_lock); 560 561 /* 562 * Hand this txg off to the sync thread. 563 */ 564 dprintf("quiesce done, handing off txg %llu\n", txg); 565 tx->tx_quiesced_txg = txg; 566 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 567 cv_broadcast(&tx->tx_sync_more_cv); 568 cv_broadcast(&tx->tx_quiesce_done_cv); 569 } 570 } 571 572 /* 573 * Delay this thread by delay nanoseconds if we are still in the open 574 * transaction group and there is already a waiting txg quiescing or quiesced. 575 * Abort the delay if this txg stalls or enters the quiescing state. 576 */ 577 void 578 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 579 { 580 tx_state_t *tx = &dp->dp_tx; 581 hrtime_t start = gethrtime(); 582 583 /* don't delay if this txg could transition to quiescing immediately */ 584 if (tx->tx_open_txg > txg || 585 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 586 return; 587 588 mutex_enter(&tx->tx_sync_lock); 589 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 590 mutex_exit(&tx->tx_sync_lock); 591 return; 592 } 593 594 while (gethrtime() - start < delay && 595 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 596 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 597 &tx->tx_sync_lock, delay, resolution, 0); 598 } 599 600 mutex_exit(&tx->tx_sync_lock); 601 } 602 603 void 604 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 605 { 606 tx_state_t *tx = &dp->dp_tx; 607 608 ASSERT(!dsl_pool_config_held(dp)); 609 610 mutex_enter(&tx->tx_sync_lock); 611 ASSERT(tx->tx_threads == 2); 612 if (txg == 0) 613 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 614 if (tx->tx_sync_txg_waiting < txg) 615 tx->tx_sync_txg_waiting = txg; 616 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 617 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 618 while (tx->tx_synced_txg < txg) { 619 dprintf("broadcasting sync more " 620 "tx_synced=%llu waiting=%llu dp=%p\n", 621 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 622 cv_broadcast(&tx->tx_sync_more_cv); 623 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 624 } 625 mutex_exit(&tx->tx_sync_lock); 626 } 627 628 void 629 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 630 { 631 tx_state_t *tx = &dp->dp_tx; 632 633 ASSERT(!dsl_pool_config_held(dp)); 634 635 mutex_enter(&tx->tx_sync_lock); 636 ASSERT(tx->tx_threads == 2); 637 if (txg == 0) 638 txg = tx->tx_open_txg + 1; 639 if (tx->tx_quiesce_txg_waiting < txg) 640 tx->tx_quiesce_txg_waiting = txg; 641 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 642 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 643 while (tx->tx_open_txg < txg) { 644 cv_broadcast(&tx->tx_quiesce_more_cv); 645 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 646 } 647 mutex_exit(&tx->tx_sync_lock); 648 } 649 650 /* 651 * If there isn't a txg syncing or in the pipeline, push another txg through 652 * the pipeline by queiscing the open txg. 653 */ 654 void 655 txg_kick(dsl_pool_t *dp) 656 { 657 tx_state_t *tx = &dp->dp_tx; 658 659 ASSERT(!dsl_pool_config_held(dp)); 660 661 mutex_enter(&tx->tx_sync_lock); 662 if (tx->tx_syncing_txg == 0 && 663 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 664 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 665 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 666 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 667 cv_broadcast(&tx->tx_quiesce_more_cv); 668 } 669 mutex_exit(&tx->tx_sync_lock); 670 } 671 672 boolean_t 673 txg_stalled(dsl_pool_t *dp) 674 { 675 tx_state_t *tx = &dp->dp_tx; 676 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 677 } 678 679 boolean_t 680 txg_sync_waiting(dsl_pool_t *dp) 681 { 682 tx_state_t *tx = &dp->dp_tx; 683 684 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 685 tx->tx_quiesced_txg != 0); 686 } 687 688 /* 689 * Verify that this txg is active (open, quiescing, syncing). Non-active 690 * txg's should not be manipulated. 691 */ 692 void 693 txg_verify(spa_t *spa, uint64_t txg) 694 { 695 dsl_pool_t *dp = spa_get_dsl(spa); 696 if (txg <= TXG_INITIAL || txg == ZILTEST_TXG) 697 return; 698 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 699 ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg); 700 ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES); 701 } 702 703 /* 704 * Per-txg object lists. 705 */ 706 void 707 txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset) 708 { 709 int t; 710 711 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 712 713 tl->tl_offset = offset; 714 tl->tl_spa = spa; 715 716 for (t = 0; t < TXG_SIZE; t++) 717 tl->tl_head[t] = NULL; 718 } 719 720 void 721 txg_list_destroy(txg_list_t *tl) 722 { 723 int t; 724 725 for (t = 0; t < TXG_SIZE; t++) 726 ASSERT(txg_list_empty(tl, t)); 727 728 mutex_destroy(&tl->tl_lock); 729 } 730 731 boolean_t 732 txg_list_empty(txg_list_t *tl, uint64_t txg) 733 { 734 txg_verify(tl->tl_spa, txg); 735 return (tl->tl_head[txg & TXG_MASK] == NULL); 736 } 737 738 /* 739 * Returns true if all txg lists are empty. 740 * 741 * Warning: this is inherently racy (an item could be added immediately 742 * after this function returns). We don't bother with the lock because 743 * it wouldn't change the semantics. 744 */ 745 boolean_t 746 txg_all_lists_empty(txg_list_t *tl) 747 { 748 for (int i = 0; i < TXG_SIZE; i++) { 749 if (!txg_list_empty(tl, i)) { 750 return (B_FALSE); 751 } 752 } 753 return (B_TRUE); 754 } 755 756 /* 757 * Add an entry to the list (unless it's already on the list). 758 * Returns B_TRUE if it was actually added. 759 */ 760 boolean_t 761 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 762 { 763 int t = txg & TXG_MASK; 764 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 765 boolean_t add; 766 767 txg_verify(tl->tl_spa, txg); 768 mutex_enter(&tl->tl_lock); 769 add = (tn->tn_member[t] == 0); 770 if (add) { 771 tn->tn_member[t] = 1; 772 tn->tn_next[t] = tl->tl_head[t]; 773 tl->tl_head[t] = tn; 774 } 775 mutex_exit(&tl->tl_lock); 776 777 return (add); 778 } 779 780 /* 781 * Add an entry to the end of the list, unless it's already on the list. 782 * (walks list to find end) 783 * Returns B_TRUE if it was actually added. 784 */ 785 boolean_t 786 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 787 { 788 int t = txg & TXG_MASK; 789 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 790 boolean_t add; 791 792 txg_verify(tl->tl_spa, txg); 793 mutex_enter(&tl->tl_lock); 794 add = (tn->tn_member[t] == 0); 795 if (add) { 796 txg_node_t **tp; 797 798 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 799 continue; 800 801 tn->tn_member[t] = 1; 802 tn->tn_next[t] = NULL; 803 *tp = tn; 804 } 805 mutex_exit(&tl->tl_lock); 806 807 return (add); 808 } 809 810 /* 811 * Remove the head of the list and return it. 812 */ 813 void * 814 txg_list_remove(txg_list_t *tl, uint64_t txg) 815 { 816 int t = txg & TXG_MASK; 817 txg_node_t *tn; 818 void *p = NULL; 819 820 txg_verify(tl->tl_spa, txg); 821 mutex_enter(&tl->tl_lock); 822 if ((tn = tl->tl_head[t]) != NULL) { 823 p = (char *)tn - tl->tl_offset; 824 tl->tl_head[t] = tn->tn_next[t]; 825 tn->tn_next[t] = NULL; 826 tn->tn_member[t] = 0; 827 } 828 mutex_exit(&tl->tl_lock); 829 830 return (p); 831 } 832 833 /* 834 * Remove a specific item from the list and return it. 835 */ 836 void * 837 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 838 { 839 int t = txg & TXG_MASK; 840 txg_node_t *tn, **tp; 841 842 txg_verify(tl->tl_spa, txg); 843 mutex_enter(&tl->tl_lock); 844 845 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 846 if ((char *)tn - tl->tl_offset == p) { 847 *tp = tn->tn_next[t]; 848 tn->tn_next[t] = NULL; 849 tn->tn_member[t] = 0; 850 mutex_exit(&tl->tl_lock); 851 return (p); 852 } 853 } 854 855 mutex_exit(&tl->tl_lock); 856 857 return (NULL); 858 } 859 860 boolean_t 861 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 862 { 863 int t = txg & TXG_MASK; 864 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 865 866 txg_verify(tl->tl_spa, txg); 867 return (tn->tn_member[t] != 0); 868 } 869 870 /* 871 * Walk a txg list -- only safe if you know it's not changing. 872 */ 873 void * 874 txg_list_head(txg_list_t *tl, uint64_t txg) 875 { 876 int t = txg & TXG_MASK; 877 txg_node_t *tn = tl->tl_head[t]; 878 879 txg_verify(tl->tl_spa, txg); 880 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 881 } 882 883 void * 884 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 885 { 886 int t = txg & TXG_MASK; 887 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 888 889 txg_verify(tl->tl_spa, txg); 890 tn = tn->tn_next[t]; 891 892 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 893 } 894