1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #ifndef _SYS_ZAP_H 26 #define _SYS_ZAP_H 27 28 /* 29 * ZAP - ZFS Attribute Processor 30 * 31 * The ZAP is a module which sits on top of the DMU (Data Management 32 * Unit) and implements a higher-level storage primitive using DMU 33 * objects. Its primary consumer is the ZPL (ZFS Posix Layer). 34 * 35 * A "zapobj" is a DMU object which the ZAP uses to stores attributes. 36 * Users should use only zap routines to access a zapobj - they should 37 * not access the DMU object directly using DMU routines. 38 * 39 * The attributes stored in a zapobj are name-value pairs. The name is 40 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including 41 * terminating NULL). The value is an array of integers, which may be 42 * 1, 2, 4, or 8 bytes long. The total space used by the array (number 43 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes. 44 * Note that an 8-byte integer value can be used to store the location 45 * (object number) of another dmu object (which may be itself a zapobj). 46 * Note that you can use a zero-length attribute to store a single bit 47 * of information - the attribute is present or not. 48 * 49 * The ZAP routines are thread-safe. However, you must observe the 50 * DMU's restriction that a transaction may not be operated on 51 * concurrently. 52 * 53 * Any of the routines that return an int may return an I/O error (EIO 54 * or ECHECKSUM). 55 * 56 * 57 * Implementation / Performance Notes: 58 * 59 * The ZAP is intended to operate most efficiently on attributes with 60 * short (49 bytes or less) names and single 8-byte values, for which 61 * the microzap will be used. The ZAP should be efficient enough so 62 * that the user does not need to cache these attributes. 63 * 64 * The ZAP's locking scheme makes its routines thread-safe. Operations 65 * on different zapobjs will be processed concurrently. Operations on 66 * the same zapobj which only read data will be processed concurrently. 67 * Operations on the same zapobj which modify data will be processed 68 * concurrently when there are many attributes in the zapobj (because 69 * the ZAP uses per-block locking - more than 128 * (number of cpus) 70 * small attributes will suffice). 71 */ 72 73 /* 74 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C 75 * strings) for the names of attributes, rather than a byte string 76 * bounded by an explicit length. If some day we want to support names 77 * in character sets which have embedded zeros (eg. UTF-16, UTF-32), 78 * we'll have to add routines for using length-bounded strings. 79 */ 80 81 #include <sys/dmu.h> 82 83 #ifdef __cplusplus 84 extern "C" { 85 #endif 86 87 /* 88 * The matchtype specifies which entry will be accessed. 89 * MT_EXACT: only find an exact match (non-normalized) 90 * MT_FIRST: find the "first" normalized (case and Unicode 91 * form) match; the designated "first" match will not change as long 92 * as the set of entries with this normalization doesn't change 93 * MT_BEST: if there is an exact match, find that, otherwise find the 94 * first normalized match 95 */ 96 typedef enum matchtype 97 { 98 MT_EXACT, 99 MT_BEST, 100 MT_FIRST 101 } matchtype_t; 102 103 typedef enum zap_flags { 104 /* Use 64-bit hash value (serialized cursors will always use 64-bits) */ 105 ZAP_FLAG_HASH64 = 1 << 0, 106 /* Key is binary, not string (zap_add_uint64() can be used) */ 107 ZAP_FLAG_UINT64_KEY = 1 << 1, 108 /* 109 * First word of key (which must be an array of uint64) is 110 * already randomly distributed. 111 */ 112 ZAP_FLAG_PRE_HASHED_KEY = 1 << 2, 113 } zap_flags_t; 114 115 /* 116 * Create a new zapobj with no attributes and return its object number. 117 * MT_EXACT will cause the zap object to only support MT_EXACT lookups, 118 * otherwise any matchtype can be used for lookups. 119 * 120 * normflags specifies what normalization will be done. values are: 121 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching 122 * only) 123 * U8_TEXTPREP_TOLOWER: case normalization will be performed. 124 * MT_FIRST/MT_BEST matching will find entries that match without 125 * regard to case (eg. looking for "foo" can find an entry "Foo"). 126 * Eventually, other flags will permit unicode normalization as well. 127 */ 128 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot, 129 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 130 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot, 131 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 132 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 133 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 134 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 135 136 /* 137 * Create a new zapobj with no attributes from the given (unallocated) 138 * object number. 139 */ 140 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot, 141 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 142 int zap_create_claim_norm(objset_t *ds, uint64_t obj, 143 int normflags, dmu_object_type_t ot, 144 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 145 146 /* 147 * The zapobj passed in must be a valid ZAP object for all of the 148 * following routines. 149 */ 150 151 /* 152 * Destroy this zapobj and all its attributes. 153 * 154 * Frees the object number using dmu_object_free. 155 */ 156 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx); 157 158 /* 159 * Manipulate attributes. 160 * 161 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8. 162 */ 163 164 /* 165 * Retrieve the contents of the attribute with the given name. 166 * 167 * If the requested attribute does not exist, the call will fail and 168 * return ENOENT. 169 * 170 * If 'integer_size' is smaller than the attribute's integer size, the 171 * call will fail and return EINVAL. 172 * 173 * If 'integer_size' is equal to or larger than the attribute's integer 174 * size, the call will succeed and return 0. * When converting to a 175 * larger integer size, the integers will be treated as unsigned (ie. no 176 * sign-extension will be performed). 177 * 178 * 'num_integers' is the length (in integers) of 'buf'. 179 * 180 * If the attribute is longer than the buffer, as many integers as will 181 * fit will be transferred to 'buf'. If the entire attribute was not 182 * transferred, the call will return EOVERFLOW. 183 * 184 * If rn_len is nonzero, realname will be set to the name of the found 185 * entry (which may be different from the requested name if matchtype is 186 * not MT_EXACT). 187 * 188 * If normalization_conflictp is not NULL, it will be set if there is 189 * another name with the same case/unicode normalized form. 190 */ 191 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name, 192 uint64_t integer_size, uint64_t num_integers, void *buf); 193 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name, 194 uint64_t integer_size, uint64_t num_integers, void *buf, 195 matchtype_t mt, char *realname, int rn_len, 196 boolean_t *normalization_conflictp); 197 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 198 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf); 199 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name); 200 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 201 int key_numints); 202 203 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name, 204 int add, uint64_t *towrite, uint64_t *tooverwrite); 205 206 /* 207 * Create an attribute with the given name and value. 208 * 209 * If an attribute with the given name already exists, the call will 210 * fail and return EEXIST. 211 */ 212 int zap_add(objset_t *ds, uint64_t zapobj, const char *key, 213 int integer_size, uint64_t num_integers, 214 const void *val, dmu_tx_t *tx); 215 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key, 216 int key_numints, int integer_size, uint64_t num_integers, 217 const void *val, dmu_tx_t *tx); 218 219 /* 220 * Set the attribute with the given name to the given value. If an 221 * attribute with the given name does not exist, it will be created. If 222 * an attribute with the given name already exists, the previous value 223 * will be overwritten. The integer_size may be different from the 224 * existing attribute's integer size, in which case the attribute's 225 * integer size will be updated to the new value. 226 */ 227 int zap_update(objset_t *ds, uint64_t zapobj, const char *name, 228 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 229 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 230 int key_numints, 231 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 232 233 /* 234 * Get the length (in integers) and the integer size of the specified 235 * attribute. 236 * 237 * If the requested attribute does not exist, the call will fail and 238 * return ENOENT. 239 */ 240 int zap_length(objset_t *ds, uint64_t zapobj, const char *name, 241 uint64_t *integer_size, uint64_t *num_integers); 242 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 243 int key_numints, uint64_t *integer_size, uint64_t *num_integers); 244 245 /* 246 * Remove the specified attribute. 247 * 248 * If the specified attribute does not exist, the call will fail and 249 * return ENOENT. 250 */ 251 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx); 252 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name, 253 matchtype_t mt, dmu_tx_t *tx); 254 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 255 int key_numints, dmu_tx_t *tx); 256 257 /* 258 * Returns (in *count) the number of attributes in the specified zap 259 * object. 260 */ 261 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count); 262 263 /* 264 * Returns (in name) the name of the entry whose (value & mask) 265 * (za_first_integer) is value, or ENOENT if not found. The string 266 * pointed to by name must be at least 256 bytes long. If mask==0, the 267 * match must be exact (ie, same as mask=-1ULL). 268 */ 269 int zap_value_search(objset_t *os, uint64_t zapobj, 270 uint64_t value, uint64_t mask, char *name); 271 272 /* 273 * Transfer all the entries from fromobj into intoobj. Only works on 274 * int_size=8 num_integers=1 values. Fails if there are any duplicated 275 * entries. 276 */ 277 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx); 278 279 /* Same as zap_join, but set the values to 'value'. */ 280 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 281 uint64_t value, dmu_tx_t *tx); 282 283 /* Same as zap_join, but add together any duplicated entries. */ 284 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 285 dmu_tx_t *tx); 286 287 /* 288 * Manipulate entries where the name + value are the "same" (the name is 289 * a stringified version of the value). 290 */ 291 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 292 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 293 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value); 294 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 295 dmu_tx_t *tx); 296 297 /* Here the key is an int and the value is a different int. */ 298 int zap_add_int_key(objset_t *os, uint64_t obj, 299 uint64_t key, uint64_t value, dmu_tx_t *tx); 300 int zap_lookup_int_key(objset_t *os, uint64_t obj, 301 uint64_t key, uint64_t *valuep); 302 303 /* 304 * They name is a stringified version of key; increment its value by 305 * delta. Zero values will be zap_remove()-ed. 306 */ 307 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 308 dmu_tx_t *tx); 309 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 310 dmu_tx_t *tx); 311 312 struct zap; 313 struct zap_leaf; 314 typedef struct zap_cursor { 315 /* This structure is opaque! */ 316 objset_t *zc_objset; 317 struct zap *zc_zap; 318 struct zap_leaf *zc_leaf; 319 uint64_t zc_zapobj; 320 uint64_t zc_serialized; 321 uint64_t zc_hash; 322 uint32_t zc_cd; 323 } zap_cursor_t; 324 325 typedef struct { 326 int za_integer_length; 327 /* 328 * za_normalization_conflict will be set if there are additional 329 * entries with this normalized form (eg, "foo" and "Foo"). 330 */ 331 boolean_t za_normalization_conflict; 332 uint64_t za_num_integers; 333 uint64_t za_first_integer; /* no sign extension for <8byte ints */ 334 char za_name[MAXNAMELEN]; 335 } zap_attribute_t; 336 337 /* 338 * The interface for listing all the attributes of a zapobj can be 339 * thought of as cursor moving down a list of the attributes one by 340 * one. The cookie returned by the zap_cursor_serialize routine is 341 * persistent across system calls (and across reboot, even). 342 */ 343 344 /* 345 * Initialize a zap cursor, pointing to the "first" attribute of the 346 * zapobj. You must _fini the cursor when you are done with it. 347 */ 348 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj); 349 void zap_cursor_fini(zap_cursor_t *zc); 350 351 /* 352 * Get the attribute currently pointed to by the cursor. Returns 353 * ENOENT if at the end of the attributes. 354 */ 355 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za); 356 357 /* 358 * Advance the cursor to the next attribute. 359 */ 360 void zap_cursor_advance(zap_cursor_t *zc); 361 362 /* 363 * Get a persistent cookie pointing to the current position of the zap 364 * cursor. The low 4 bits in the cookie are always zero, and thus can 365 * be used as to differentiate a serialized cookie from a different type 366 * of value. The cookie will be less than 2^32 as long as there are 367 * fewer than 2^22 (4.2 million) entries in the zap object. 368 */ 369 uint64_t zap_cursor_serialize(zap_cursor_t *zc); 370 371 /* 372 * Advance the cursor to the attribute having the given key. 373 */ 374 int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt); 375 376 /* 377 * Initialize a zap cursor pointing to the position recorded by 378 * zap_cursor_serialize (in the "serialized" argument). You can also 379 * use a "serialized" argument of 0 to start at the beginning of the 380 * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to 381 * zap_cursor_init(...).) 382 */ 383 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds, 384 uint64_t zapobj, uint64_t serialized); 385 386 387 #define ZAP_HISTOGRAM_SIZE 10 388 389 typedef struct zap_stats { 390 /* 391 * Size of the pointer table (in number of entries). 392 * This is always a power of 2, or zero if it's a microzap. 393 * In general, it should be considerably greater than zs_num_leafs. 394 */ 395 uint64_t zs_ptrtbl_len; 396 397 uint64_t zs_blocksize; /* size of zap blocks */ 398 399 /* 400 * The number of blocks used. Note that some blocks may be 401 * wasted because old ptrtbl's and large name/value blocks are 402 * not reused. (Although their space is reclaimed, we don't 403 * reuse those offsets in the object.) 404 */ 405 uint64_t zs_num_blocks; 406 407 /* 408 * Pointer table values from zap_ptrtbl in the zap_phys_t 409 */ 410 uint64_t zs_ptrtbl_nextblk; /* next (larger) copy start block */ 411 uint64_t zs_ptrtbl_blks_copied; /* number source blocks copied */ 412 uint64_t zs_ptrtbl_zt_blk; /* starting block number */ 413 uint64_t zs_ptrtbl_zt_numblks; /* number of blocks */ 414 uint64_t zs_ptrtbl_zt_shift; /* bits to index it */ 415 416 /* 417 * Values of the other members of the zap_phys_t 418 */ 419 uint64_t zs_block_type; /* ZBT_HEADER */ 420 uint64_t zs_magic; /* ZAP_MAGIC */ 421 uint64_t zs_num_leafs; /* The number of leaf blocks */ 422 uint64_t zs_num_entries; /* The number of zap entries */ 423 uint64_t zs_salt; /* salt to stir into hash function */ 424 425 /* 426 * Histograms. For all histograms, the last index 427 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater 428 * than what can be represented. For example 429 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number 430 * of leafs with more than 45 entries. 431 */ 432 433 /* 434 * zs_leafs_with_n_pointers[n] is the number of leafs with 435 * 2^n pointers to it. 436 */ 437 uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE]; 438 439 /* 440 * zs_leafs_with_n_entries[n] is the number of leafs with 441 * [n*5, (n+1)*5) entries. In the current implementation, there 442 * can be at most 55 entries in any block, but there may be 443 * fewer if the name or value is large, or the block is not 444 * completely full. 445 */ 446 uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE]; 447 448 /* 449 * zs_leafs_n_tenths_full[n] is the number of leafs whose 450 * fullness is in the range [n/10, (n+1)/10). 451 */ 452 uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE]; 453 454 /* 455 * zs_entries_using_n_chunks[n] is the number of entries which 456 * consume n 24-byte chunks. (Note, large names/values only use 457 * one chunk, but contribute to zs_num_blocks_large.) 458 */ 459 uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE]; 460 461 /* 462 * zs_buckets_with_n_entries[n] is the number of buckets (each 463 * leaf has 64 buckets) with n entries. 464 * zs_buckets_with_n_entries[1] should be very close to 465 * zs_num_entries. 466 */ 467 uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE]; 468 } zap_stats_t; 469 470 /* 471 * Get statistics about a ZAP object. Note: you need to be aware of the 472 * internal implementation of the ZAP to correctly interpret some of the 473 * statistics. This interface shouldn't be relied on unless you really 474 * know what you're doing. 475 */ 476 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs); 477 478 #ifdef __cplusplus 479 } 480 #endif 481 482 #endif /* _SYS_ZAP_H */ 483