xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/zap.h (revision 55a13001fbd9772352bc050632ef966a249dc73b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24  */
25 
26 #ifndef	_SYS_ZAP_H
27 #define	_SYS_ZAP_H
28 
29 /*
30  * ZAP - ZFS Attribute Processor
31  *
32  * The ZAP is a module which sits on top of the DMU (Data Management
33  * Unit) and implements a higher-level storage primitive using DMU
34  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35  *
36  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37  * Users should use only zap routines to access a zapobj - they should
38  * not access the DMU object directly using DMU routines.
39  *
40  * The attributes stored in a zapobj are name-value pairs.  The name is
41  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42  * terminating NULL).  The value is an array of integers, which may be
43  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45  * Note that an 8-byte integer value can be used to store the location
46  * (object number) of another dmu object (which may be itself a zapobj).
47  * Note that you can use a zero-length attribute to store a single bit
48  * of information - the attribute is present or not.
49  *
50  * The ZAP routines are thread-safe.  However, you must observe the
51  * DMU's restriction that a transaction may not be operated on
52  * concurrently.
53  *
54  * Any of the routines that return an int may return an I/O error (EIO
55  * or ECHECKSUM).
56  *
57  *
58  * Implementation / Performance Notes:
59  *
60  * The ZAP is intended to operate most efficiently on attributes with
61  * short (49 bytes or less) names and single 8-byte values, for which
62  * the microzap will be used.  The ZAP should be efficient enough so
63  * that the user does not need to cache these attributes.
64  *
65  * The ZAP's locking scheme makes its routines thread-safe.  Operations
66  * on different zapobjs will be processed concurrently.  Operations on
67  * the same zapobj which only read data will be processed concurrently.
68  * Operations on the same zapobj which modify data will be processed
69  * concurrently when there are many attributes in the zapobj (because
70  * the ZAP uses per-block locking - more than 128 * (number of cpus)
71  * small attributes will suffice).
72  */
73 
74 /*
75  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76  * strings) for the names of attributes, rather than a byte string
77  * bounded by an explicit length.  If some day we want to support names
78  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79  * we'll have to add routines for using length-bounded strings.
80  */
81 
82 #include <sys/dmu.h>
83 #include <sys/refcount.h>
84 
85 #ifdef	__cplusplus
86 extern "C" {
87 #endif
88 
89 /*
90  * Specifies matching criteria for ZAP lookups.
91  */
92 typedef enum matchtype
93 {
94 	/* Only find an exact match (non-normalized) */
95 	MT_EXACT,
96 	/*
97 	 * If there is an exact match, find that, otherwise find the
98 	 * first normalized match.
99 	 */
100 	MT_BEST,
101 	/*
102 	 * Find the "first" normalized (case and Unicode form) match;
103 	 * the designated "first" match will not change as long as the
104 	 * set of entries with this normalization doesn't change.
105 	 */
106 	MT_FIRST
107 } matchtype_t;
108 
109 typedef enum zap_flags {
110 	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
111 	ZAP_FLAG_HASH64 = 1 << 0,
112 	/* Key is binary, not string (zap_add_uint64() can be used) */
113 	ZAP_FLAG_UINT64_KEY = 1 << 1,
114 	/*
115 	 * First word of key (which must be an array of uint64) is
116 	 * already randomly distributed.
117 	 */
118 	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
119 } zap_flags_t;
120 
121 /*
122  * Create a new zapobj with no attributes and return its object number.
123  * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
124  * otherwise any matchtype can be used for lookups.
125  *
126  * normflags specifies what normalization will be done.  values are:
127  * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
128  *     only)
129  * U8_TEXTPREP_TOLOWER: case normalization will be performed.
130  *     MT_FIRST/MT_BEST matching will find entries that match without
131  *     regard to case (eg. looking for "foo" can find an entry "Foo").
132  * Eventually, other flags will permit unicode normalization as well.
133  */
134 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
135     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
137     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
138 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
139     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
140     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
141 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
142     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
143 
144 /*
145  * Initialize an already-allocated object.
146  */
147 void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
148     zap_flags_t flags, dmu_tx_t *tx);
149 
150 /*
151  * Create a new zapobj with no attributes from the given (unallocated)
152  * object number.
153  */
154 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
155     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
156 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
157     int normflags, dmu_object_type_t ot,
158     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
159 
160 /*
161  * The zapobj passed in must be a valid ZAP object for all of the
162  * following routines.
163  */
164 
165 /*
166  * Destroy this zapobj and all its attributes.
167  *
168  * Frees the object number using dmu_object_free.
169  */
170 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
171 
172 /*
173  * Manipulate attributes.
174  *
175  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
176  */
177 
178 /*
179  * Retrieve the contents of the attribute with the given name.
180  *
181  * If the requested attribute does not exist, the call will fail and
182  * return ENOENT.
183  *
184  * If 'integer_size' is smaller than the attribute's integer size, the
185  * call will fail and return EINVAL.
186  *
187  * If 'integer_size' is equal to or larger than the attribute's integer
188  * size, the call will succeed and return 0.
189  *
190  * When converting to a larger integer size, the integers will be treated as
191  * unsigned (ie. no sign-extension will be performed).
192  *
193  * 'num_integers' is the length (in integers) of 'buf'.
194  *
195  * If the attribute is longer than the buffer, as many integers as will
196  * fit will be transferred to 'buf'.  If the entire attribute was not
197  * transferred, the call will return EOVERFLOW.
198  */
199 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
200     uint64_t integer_size, uint64_t num_integers, void *buf);
201 
202 /*
203  * If rn_len is nonzero, realname will be set to the name of the found
204  * entry (which may be different from the requested name if matchtype is
205  * not MT_EXACT).
206  *
207  * If normalization_conflictp is not NULL, it will be set if there is
208  * another name with the same case/unicode normalized form.
209  */
210 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
211     uint64_t integer_size, uint64_t num_integers, void *buf,
212     matchtype_t mt, char *realname, int rn_len,
213     boolean_t *normalization_conflictp);
214 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
215     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
216 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
217 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
218     int key_numints);
219 int zap_lookup_by_dnode(dnode_t *dn, const char *name,
220     uint64_t integer_size, uint64_t num_integers, void *buf);
221 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
222     uint64_t integer_size, uint64_t num_integers, void *buf,
223     matchtype_t mt, char *realname, int rn_len,
224     boolean_t *ncp);
225 
226 int zap_count_write_by_dnode(dnode_t *dn, const char *name,
227     int add, refcount_t *towrite, refcount_t *tooverwrite);
228 
229 /*
230  * Create an attribute with the given name and value.
231  *
232  * If an attribute with the given name already exists, the call will
233  * fail and return EEXIST.
234  */
235 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
236     int integer_size, uint64_t num_integers,
237     const void *val, dmu_tx_t *tx);
238 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
239     int key_numints, int integer_size, uint64_t num_integers,
240     const void *val, dmu_tx_t *tx);
241 
242 /*
243  * Set the attribute with the given name to the given value.  If an
244  * attribute with the given name does not exist, it will be created.  If
245  * an attribute with the given name already exists, the previous value
246  * will be overwritten.  The integer_size may be different from the
247  * existing attribute's integer size, in which case the attribute's
248  * integer size will be updated to the new value.
249  */
250 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
251     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
252 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
253     int key_numints,
254     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
255 
256 /*
257  * Get the length (in integers) and the integer size of the specified
258  * attribute.
259  *
260  * If the requested attribute does not exist, the call will fail and
261  * return ENOENT.
262  */
263 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
264     uint64_t *integer_size, uint64_t *num_integers);
265 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
266     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
267 
268 /*
269  * Remove the specified attribute.
270  *
271  * If the specified attribute does not exist, the call will fail and
272  * return ENOENT.
273  */
274 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
275 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
276     matchtype_t mt, dmu_tx_t *tx);
277 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
278     int key_numints, dmu_tx_t *tx);
279 
280 /*
281  * Returns (in *count) the number of attributes in the specified zap
282  * object.
283  */
284 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
285 
286 /*
287  * Returns (in name) the name of the entry whose (value & mask)
288  * (za_first_integer) is value, or ENOENT if not found.  The string
289  * pointed to by name must be at least 256 bytes long.  If mask==0, the
290  * match must be exact (ie, same as mask=-1ULL).
291  */
292 int zap_value_search(objset_t *os, uint64_t zapobj,
293     uint64_t value, uint64_t mask, char *name);
294 
295 /*
296  * Transfer all the entries from fromobj into intoobj.  Only works on
297  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
298  * entries.
299  */
300 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
301 
302 /* Same as zap_join, but set the values to 'value'. */
303 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
304     uint64_t value, dmu_tx_t *tx);
305 
306 /* Same as zap_join, but add together any duplicated entries. */
307 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
308     dmu_tx_t *tx);
309 
310 /*
311  * Manipulate entries where the name + value are the "same" (the name is
312  * a stringified version of the value).
313  */
314 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
315 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
316 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
317 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
318     dmu_tx_t *tx);
319 
320 /* Here the key is an int and the value is a different int. */
321 int zap_add_int_key(objset_t *os, uint64_t obj,
322     uint64_t key, uint64_t value, dmu_tx_t *tx);
323 int zap_update_int_key(objset_t *os, uint64_t obj,
324     uint64_t key, uint64_t value, dmu_tx_t *tx);
325 int zap_lookup_int_key(objset_t *os, uint64_t obj,
326     uint64_t key, uint64_t *valuep);
327 
328 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
329     dmu_tx_t *tx);
330 
331 struct zap;
332 struct zap_leaf;
333 typedef struct zap_cursor {
334 	/* This structure is opaque! */
335 	objset_t *zc_objset;
336 	struct zap *zc_zap;
337 	struct zap_leaf *zc_leaf;
338 	uint64_t zc_zapobj;
339 	uint64_t zc_serialized;
340 	uint64_t zc_hash;
341 	uint32_t zc_cd;
342 } zap_cursor_t;
343 
344 typedef struct {
345 	int za_integer_length;
346 	/*
347 	 * za_normalization_conflict will be set if there are additional
348 	 * entries with this normalized form (eg, "foo" and "Foo").
349 	 */
350 	boolean_t za_normalization_conflict;
351 	uint64_t za_num_integers;
352 	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
353 	char za_name[ZAP_MAXNAMELEN];
354 } zap_attribute_t;
355 
356 /*
357  * The interface for listing all the attributes of a zapobj can be
358  * thought of as cursor moving down a list of the attributes one by
359  * one.  The cookie returned by the zap_cursor_serialize routine is
360  * persistent across system calls (and across reboot, even).
361  */
362 
363 /*
364  * Initialize a zap cursor, pointing to the "first" attribute of the
365  * zapobj.  You must _fini the cursor when you are done with it.
366  */
367 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
368 void zap_cursor_fini(zap_cursor_t *zc);
369 
370 /*
371  * Get the attribute currently pointed to by the cursor.  Returns
372  * ENOENT if at the end of the attributes.
373  */
374 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
375 
376 /*
377  * Advance the cursor to the next attribute.
378  */
379 void zap_cursor_advance(zap_cursor_t *zc);
380 
381 /*
382  * Get a persistent cookie pointing to the current position of the zap
383  * cursor.  The low 4 bits in the cookie are always zero, and thus can
384  * be used as to differentiate a serialized cookie from a different type
385  * of value.  The cookie will be less than 2^32 as long as there are
386  * fewer than 2^22 (4.2 million) entries in the zap object.
387  */
388 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
389 
390 /*
391  * Initialize a zap cursor pointing to the position recorded by
392  * zap_cursor_serialize (in the "serialized" argument).  You can also
393  * use a "serialized" argument of 0 to start at the beginning of the
394  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
395  * zap_cursor_init(...).)
396  */
397 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
398     uint64_t zapobj, uint64_t serialized);
399 
400 
401 #define	ZAP_HISTOGRAM_SIZE 10
402 
403 typedef struct zap_stats {
404 	/*
405 	 * Size of the pointer table (in number of entries).
406 	 * This is always a power of 2, or zero if it's a microzap.
407 	 * In general, it should be considerably greater than zs_num_leafs.
408 	 */
409 	uint64_t zs_ptrtbl_len;
410 
411 	uint64_t zs_blocksize;		/* size of zap blocks */
412 
413 	/*
414 	 * The number of blocks used.  Note that some blocks may be
415 	 * wasted because old ptrtbl's and large name/value blocks are
416 	 * not reused.  (Although their space is reclaimed, we don't
417 	 * reuse those offsets in the object.)
418 	 */
419 	uint64_t zs_num_blocks;
420 
421 	/*
422 	 * Pointer table values from zap_ptrtbl in the zap_phys_t
423 	 */
424 	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
425 	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
426 	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
427 	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
428 	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
429 
430 	/*
431 	 * Values of the other members of the zap_phys_t
432 	 */
433 	uint64_t zs_block_type;		/* ZBT_HEADER */
434 	uint64_t zs_magic;		/* ZAP_MAGIC */
435 	uint64_t zs_num_leafs;		/* The number of leaf blocks */
436 	uint64_t zs_num_entries;	/* The number of zap entries */
437 	uint64_t zs_salt;		/* salt to stir into hash function */
438 
439 	/*
440 	 * Histograms.  For all histograms, the last index
441 	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
442 	 * than what can be represented.  For example
443 	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
444 	 * of leafs with more than 45 entries.
445 	 */
446 
447 	/*
448 	 * zs_leafs_with_n_pointers[n] is the number of leafs with
449 	 * 2^n pointers to it.
450 	 */
451 	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
452 
453 	/*
454 	 * zs_leafs_with_n_entries[n] is the number of leafs with
455 	 * [n*5, (n+1)*5) entries.  In the current implementation, there
456 	 * can be at most 55 entries in any block, but there may be
457 	 * fewer if the name or value is large, or the block is not
458 	 * completely full.
459 	 */
460 	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
461 
462 	/*
463 	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
464 	 * fullness is in the range [n/10, (n+1)/10).
465 	 */
466 	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
467 
468 	/*
469 	 * zs_entries_using_n_chunks[n] is the number of entries which
470 	 * consume n 24-byte chunks.  (Note, large names/values only use
471 	 * one chunk, but contribute to zs_num_blocks_large.)
472 	 */
473 	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
474 
475 	/*
476 	 * zs_buckets_with_n_entries[n] is the number of buckets (each
477 	 * leaf has 64 buckets) with n entries.
478 	 * zs_buckets_with_n_entries[1] should be very close to
479 	 * zs_num_entries.
480 	 */
481 	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
482 } zap_stats_t;
483 
484 /*
485  * Get statistics about a ZAP object.  Note: you need to be aware of the
486  * internal implementation of the ZAP to correctly interpret some of the
487  * statistics.  This interface shouldn't be relied on unless you really
488  * know what you're doing.
489  */
490 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
491 
492 #ifdef	__cplusplus
493 }
494 #endif
495 
496 #endif	/* _SYS_ZAP_H */
497