1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 #ifndef _SYS_ZAP_H 29 #define _SYS_ZAP_H 30 31 /* 32 * ZAP - ZFS Attribute Processor 33 * 34 * The ZAP is a module which sits on top of the DMU (Data Management 35 * Unit) and implements a higher-level storage primitive using DMU 36 * objects. Its primary consumer is the ZPL (ZFS Posix Layer). 37 * 38 * A "zapobj" is a DMU object which the ZAP uses to stores attributes. 39 * Users should use only zap routines to access a zapobj - they should 40 * not access the DMU object directly using DMU routines. 41 * 42 * The attributes stored in a zapobj are name-value pairs. The name is 43 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including 44 * terminating NULL). The value is an array of integers, which may be 45 * 1, 2, 4, or 8 bytes long. The total space used by the array (number 46 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes. 47 * Note that an 8-byte integer value can be used to store the location 48 * (object number) of another dmu object (which may be itself a zapobj). 49 * Note that you can use a zero-length attribute to store a single bit 50 * of information - the attribute is present or not. 51 * 52 * The ZAP routines are thread-safe. However, you must observe the 53 * DMU's restriction that a transaction may not be operated on 54 * concurrently. 55 * 56 * Any of the routines that return an int may return an I/O error (EIO 57 * or ECHECKSUM). 58 * 59 * 60 * Implementation / Performance Notes: 61 * 62 * The ZAP is intended to operate most efficiently on attributes with 63 * short (49 bytes or less) names and single 8-byte values, for which 64 * the microzap will be used. The ZAP should be efficient enough so 65 * that the user does not need to cache these attributes. 66 * 67 * The ZAP's locking scheme makes its routines thread-safe. Operations 68 * on different zapobjs will be processed concurrently. Operations on 69 * the same zapobj which only read data will be processed concurrently. 70 * Operations on the same zapobj which modify data will be processed 71 * concurrently when there are many attributes in the zapobj (because 72 * the ZAP uses per-block locking - more than 128 * (number of cpus) 73 * small attributes will suffice). 74 */ 75 76 /* 77 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C 78 * strings) for the names of attributes, rather than a byte string 79 * bounded by an explicit length. If some day we want to support names 80 * in character sets which have embedded zeros (eg. UTF-16, UTF-32), 81 * we'll have to add routines for using length-bounded strings. 82 */ 83 84 #include <sys/dmu.h> 85 #include <sys/refcount.h> 86 87 #ifdef __cplusplus 88 extern "C" { 89 #endif 90 91 /* 92 * Specifies matching criteria for ZAP lookups. 93 * MT_NORMALIZE Use ZAP normalization flags, which can include both 94 * unicode normalization and case-insensitivity. 95 * MT_MATCH_CASE Do case-sensitive lookups even if MT_NORMALIZE is 96 * specified and ZAP normalization flags include 97 * U8_TEXTPREP_TOUPPER. 98 */ 99 typedef enum matchtype { 100 MT_NORMALIZE = 1 << 0, 101 MT_MATCH_CASE = 1 << 1, 102 } matchtype_t; 103 104 typedef enum zap_flags { 105 /* Use 64-bit hash value (serialized cursors will always use 64-bits) */ 106 ZAP_FLAG_HASH64 = 1 << 0, 107 /* Key is binary, not string (zap_add_uint64() can be used) */ 108 ZAP_FLAG_UINT64_KEY = 1 << 1, 109 /* 110 * First word of key (which must be an array of uint64) is 111 * already randomly distributed. 112 */ 113 ZAP_FLAG_PRE_HASHED_KEY = 1 << 2, 114 } zap_flags_t; 115 116 /* 117 * Create a new zapobj with no attributes and return its object number. 118 */ 119 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot, 120 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 121 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot, 122 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 123 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 124 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 125 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 126 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot, 127 uint64_t parent_obj, const char *name, dmu_tx_t *tx); 128 129 /* 130 * Initialize an already-allocated object. 131 */ 132 void mzap_create_impl(objset_t *os, uint64_t obj, int normflags, 133 zap_flags_t flags, dmu_tx_t *tx); 134 135 /* 136 * Create a new zapobj with no attributes from the given (unallocated) 137 * object number. 138 */ 139 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot, 140 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 141 int zap_create_claim_norm(objset_t *ds, uint64_t obj, 142 int normflags, dmu_object_type_t ot, 143 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 144 145 /* 146 * The zapobj passed in must be a valid ZAP object for all of the 147 * following routines. 148 */ 149 150 /* 151 * Destroy this zapobj and all its attributes. 152 * 153 * Frees the object number using dmu_object_free. 154 */ 155 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx); 156 157 /* 158 * Manipulate attributes. 159 * 160 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8. 161 */ 162 163 /* 164 * Retrieve the contents of the attribute with the given name. 165 * 166 * If the requested attribute does not exist, the call will fail and 167 * return ENOENT. 168 * 169 * If 'integer_size' is smaller than the attribute's integer size, the 170 * call will fail and return EINVAL. 171 * 172 * If 'integer_size' is equal to or larger than the attribute's integer 173 * size, the call will succeed and return 0. 174 * 175 * When converting to a larger integer size, the integers will be treated as 176 * unsigned (ie. no sign-extension will be performed). 177 * 178 * 'num_integers' is the length (in integers) of 'buf'. 179 * 180 * If the attribute is longer than the buffer, as many integers as will 181 * fit will be transferred to 'buf'. If the entire attribute was not 182 * transferred, the call will return EOVERFLOW. 183 */ 184 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name, 185 uint64_t integer_size, uint64_t num_integers, void *buf); 186 187 /* 188 * If rn_len is nonzero, realname will be set to the name of the found 189 * entry (which may be different from the requested name if matchtype is 190 * not MT_EXACT). 191 * 192 * If normalization_conflictp is not NULL, it will be set if there is 193 * another name with the same case/unicode normalized form. 194 */ 195 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name, 196 uint64_t integer_size, uint64_t num_integers, void *buf, 197 matchtype_t mt, char *realname, int rn_len, 198 boolean_t *normalization_conflictp); 199 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 200 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf); 201 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name); 202 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 203 int key_numints); 204 int zap_lookup_by_dnode(dnode_t *dn, const char *name, 205 uint64_t integer_size, uint64_t num_integers, void *buf); 206 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 207 uint64_t integer_size, uint64_t num_integers, void *buf, 208 matchtype_t mt, char *realname, int rn_len, 209 boolean_t *ncp); 210 211 int zap_count_write_by_dnode(dnode_t *dn, const char *name, 212 int add, refcount_t *towrite, refcount_t *tooverwrite); 213 214 /* 215 * Create an attribute with the given name and value. 216 * 217 * If an attribute with the given name already exists, the call will 218 * fail and return EEXIST. 219 */ 220 int zap_add(objset_t *ds, uint64_t zapobj, const char *key, 221 int integer_size, uint64_t num_integers, 222 const void *val, dmu_tx_t *tx); 223 int zap_add_by_dnode(dnode_t *dn, const char *key, 224 int integer_size, uint64_t num_integers, 225 const void *val, dmu_tx_t *tx); 226 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key, 227 int key_numints, int integer_size, uint64_t num_integers, 228 const void *val, dmu_tx_t *tx); 229 230 /* 231 * Set the attribute with the given name to the given value. If an 232 * attribute with the given name does not exist, it will be created. If 233 * an attribute with the given name already exists, the previous value 234 * will be overwritten. The integer_size may be different from the 235 * existing attribute's integer size, in which case the attribute's 236 * integer size will be updated to the new value. 237 */ 238 int zap_update(objset_t *ds, uint64_t zapobj, const char *name, 239 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 240 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 241 int key_numints, 242 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 243 244 /* 245 * Get the length (in integers) and the integer size of the specified 246 * attribute. 247 * 248 * If the requested attribute does not exist, the call will fail and 249 * return ENOENT. 250 */ 251 int zap_length(objset_t *ds, uint64_t zapobj, const char *name, 252 uint64_t *integer_size, uint64_t *num_integers); 253 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 254 int key_numints, uint64_t *integer_size, uint64_t *num_integers); 255 256 /* 257 * Remove the specified attribute. 258 * 259 * If the specified attribute does not exist, the call will fail and 260 * return ENOENT. 261 */ 262 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx); 263 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name, 264 matchtype_t mt, dmu_tx_t *tx); 265 int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx); 266 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 267 int key_numints, dmu_tx_t *tx); 268 269 /* 270 * Returns (in *count) the number of attributes in the specified zap 271 * object. 272 */ 273 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count); 274 275 /* 276 * Returns (in name) the name of the entry whose (value & mask) 277 * (za_first_integer) is value, or ENOENT if not found. The string 278 * pointed to by name must be at least 256 bytes long. If mask==0, the 279 * match must be exact (ie, same as mask=-1ULL). 280 */ 281 int zap_value_search(objset_t *os, uint64_t zapobj, 282 uint64_t value, uint64_t mask, char *name); 283 284 /* 285 * Transfer all the entries from fromobj into intoobj. Only works on 286 * int_size=8 num_integers=1 values. Fails if there are any duplicated 287 * entries. 288 */ 289 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx); 290 291 /* Same as zap_join, but set the values to 'value'. */ 292 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 293 uint64_t value, dmu_tx_t *tx); 294 295 /* Same as zap_join, but add together any duplicated entries. */ 296 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 297 dmu_tx_t *tx); 298 299 /* 300 * Manipulate entries where the name + value are the "same" (the name is 301 * a stringified version of the value). 302 */ 303 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 304 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 305 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value); 306 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 307 dmu_tx_t *tx); 308 309 /* Here the key is an int and the value is a different int. */ 310 int zap_add_int_key(objset_t *os, uint64_t obj, 311 uint64_t key, uint64_t value, dmu_tx_t *tx); 312 int zap_update_int_key(objset_t *os, uint64_t obj, 313 uint64_t key, uint64_t value, dmu_tx_t *tx); 314 int zap_lookup_int_key(objset_t *os, uint64_t obj, 315 uint64_t key, uint64_t *valuep); 316 317 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 318 dmu_tx_t *tx); 319 320 struct zap; 321 struct zap_leaf; 322 typedef struct zap_cursor { 323 /* This structure is opaque! */ 324 objset_t *zc_objset; 325 struct zap *zc_zap; 326 struct zap_leaf *zc_leaf; 327 uint64_t zc_zapobj; 328 uint64_t zc_serialized; 329 uint64_t zc_hash; 330 uint32_t zc_cd; 331 } zap_cursor_t; 332 333 typedef struct { 334 int za_integer_length; 335 /* 336 * za_normalization_conflict will be set if there are additional 337 * entries with this normalized form (eg, "foo" and "Foo"). 338 */ 339 boolean_t za_normalization_conflict; 340 uint64_t za_num_integers; 341 uint64_t za_first_integer; /* no sign extension for <8byte ints */ 342 char za_name[ZAP_MAXNAMELEN]; 343 } zap_attribute_t; 344 345 /* 346 * The interface for listing all the attributes of a zapobj can be 347 * thought of as cursor moving down a list of the attributes one by 348 * one. The cookie returned by the zap_cursor_serialize routine is 349 * persistent across system calls (and across reboot, even). 350 */ 351 352 /* 353 * Initialize a zap cursor, pointing to the "first" attribute of the 354 * zapobj. You must _fini the cursor when you are done with it. 355 */ 356 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj); 357 void zap_cursor_fini(zap_cursor_t *zc); 358 359 /* 360 * Get the attribute currently pointed to by the cursor. Returns 361 * ENOENT if at the end of the attributes. 362 */ 363 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za); 364 365 /* 366 * Advance the cursor to the next attribute. 367 */ 368 void zap_cursor_advance(zap_cursor_t *zc); 369 370 /* 371 * Get a persistent cookie pointing to the current position of the zap 372 * cursor. The low 4 bits in the cookie are always zero, and thus can 373 * be used as to differentiate a serialized cookie from a different type 374 * of value. The cookie will be less than 2^32 as long as there are 375 * fewer than 2^22 (4.2 million) entries in the zap object. 376 */ 377 uint64_t zap_cursor_serialize(zap_cursor_t *zc); 378 379 /* 380 * Initialize a zap cursor pointing to the position recorded by 381 * zap_cursor_serialize (in the "serialized" argument). You can also 382 * use a "serialized" argument of 0 to start at the beginning of the 383 * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to 384 * zap_cursor_init(...).) 385 */ 386 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds, 387 uint64_t zapobj, uint64_t serialized); 388 389 390 #define ZAP_HISTOGRAM_SIZE 10 391 392 typedef struct zap_stats { 393 /* 394 * Size of the pointer table (in number of entries). 395 * This is always a power of 2, or zero if it's a microzap. 396 * In general, it should be considerably greater than zs_num_leafs. 397 */ 398 uint64_t zs_ptrtbl_len; 399 400 uint64_t zs_blocksize; /* size of zap blocks */ 401 402 /* 403 * The number of blocks used. Note that some blocks may be 404 * wasted because old ptrtbl's and large name/value blocks are 405 * not reused. (Although their space is reclaimed, we don't 406 * reuse those offsets in the object.) 407 */ 408 uint64_t zs_num_blocks; 409 410 /* 411 * Pointer table values from zap_ptrtbl in the zap_phys_t 412 */ 413 uint64_t zs_ptrtbl_nextblk; /* next (larger) copy start block */ 414 uint64_t zs_ptrtbl_blks_copied; /* number source blocks copied */ 415 uint64_t zs_ptrtbl_zt_blk; /* starting block number */ 416 uint64_t zs_ptrtbl_zt_numblks; /* number of blocks */ 417 uint64_t zs_ptrtbl_zt_shift; /* bits to index it */ 418 419 /* 420 * Values of the other members of the zap_phys_t 421 */ 422 uint64_t zs_block_type; /* ZBT_HEADER */ 423 uint64_t zs_magic; /* ZAP_MAGIC */ 424 uint64_t zs_num_leafs; /* The number of leaf blocks */ 425 uint64_t zs_num_entries; /* The number of zap entries */ 426 uint64_t zs_salt; /* salt to stir into hash function */ 427 428 /* 429 * Histograms. For all histograms, the last index 430 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater 431 * than what can be represented. For example 432 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number 433 * of leafs with more than 45 entries. 434 */ 435 436 /* 437 * zs_leafs_with_n_pointers[n] is the number of leafs with 438 * 2^n pointers to it. 439 */ 440 uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE]; 441 442 /* 443 * zs_leafs_with_n_entries[n] is the number of leafs with 444 * [n*5, (n+1)*5) entries. In the current implementation, there 445 * can be at most 55 entries in any block, but there may be 446 * fewer if the name or value is large, or the block is not 447 * completely full. 448 */ 449 uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE]; 450 451 /* 452 * zs_leafs_n_tenths_full[n] is the number of leafs whose 453 * fullness is in the range [n/10, (n+1)/10). 454 */ 455 uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE]; 456 457 /* 458 * zs_entries_using_n_chunks[n] is the number of entries which 459 * consume n 24-byte chunks. (Note, large names/values only use 460 * one chunk, but contribute to zs_num_blocks_large.) 461 */ 462 uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE]; 463 464 /* 465 * zs_buckets_with_n_entries[n] is the number of buckets (each 466 * leaf has 64 buckets) with n entries. 467 * zs_buckets_with_n_entries[1] should be very close to 468 * zs_num_entries. 469 */ 470 uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE]; 471 } zap_stats_t; 472 473 /* 474 * Get statistics about a ZAP object. Note: you need to be aware of the 475 * internal implementation of the ZAP to correctly interpret some of the 476 * statistics. This interface shouldn't be relied on unless you really 477 * know what you're doing. 478 */ 479 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs); 480 481 #ifdef __cplusplus 482 } 483 #endif 484 485 #endif /* _SYS_ZAP_H */ 486