xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/zap.h (revision 447b1e1fca22e4de5e04623965fbb1460857930c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  */
25 
26 #ifndef	_SYS_ZAP_H
27 #define	_SYS_ZAP_H
28 
29 /*
30  * ZAP - ZFS Attribute Processor
31  *
32  * The ZAP is a module which sits on top of the DMU (Data Management
33  * Unit) and implements a higher-level storage primitive using DMU
34  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35  *
36  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37  * Users should use only zap routines to access a zapobj - they should
38  * not access the DMU object directly using DMU routines.
39  *
40  * The attributes stored in a zapobj are name-value pairs.  The name is
41  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42  * terminating NULL).  The value is an array of integers, which may be
43  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45  * Note that an 8-byte integer value can be used to store the location
46  * (object number) of another dmu object (which may be itself a zapobj).
47  * Note that you can use a zero-length attribute to store a single bit
48  * of information - the attribute is present or not.
49  *
50  * The ZAP routines are thread-safe.  However, you must observe the
51  * DMU's restriction that a transaction may not be operated on
52  * concurrently.
53  *
54  * Any of the routines that return an int may return an I/O error (EIO
55  * or ECHECKSUM).
56  *
57  *
58  * Implementation / Performance Notes:
59  *
60  * The ZAP is intended to operate most efficiently on attributes with
61  * short (49 bytes or less) names and single 8-byte values, for which
62  * the microzap will be used.  The ZAP should be efficient enough so
63  * that the user does not need to cache these attributes.
64  *
65  * The ZAP's locking scheme makes its routines thread-safe.  Operations
66  * on different zapobjs will be processed concurrently.  Operations on
67  * the same zapobj which only read data will be processed concurrently.
68  * Operations on the same zapobj which modify data will be processed
69  * concurrently when there are many attributes in the zapobj (because
70  * the ZAP uses per-block locking - more than 128 * (number of cpus)
71  * small attributes will suffice).
72  */
73 
74 /*
75  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76  * strings) for the names of attributes, rather than a byte string
77  * bounded by an explicit length.  If some day we want to support names
78  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79  * we'll have to add routines for using length-bounded strings.
80  */
81 
82 #include <sys/dmu.h>
83 #include <sys/refcount.h>
84 
85 #ifdef	__cplusplus
86 extern "C" {
87 #endif
88 
89 /*
90  * Specifies matching criteria for ZAP lookups.
91  */
92 typedef enum matchtype
93 {
94 	/* Only find an exact match (non-normalized) */
95 	MT_EXACT,
96 	/*
97 	 * If there is an exact match, find that, otherwise find the
98 	 * first normalized match.
99 	 */
100 	MT_BEST,
101 	/*
102 	 * Find the "first" normalized (case and Unicode form) match;
103 	 * the designated "first" match will not change as long as the
104 	 * set of entries with this normalization doesn't change.
105 	 */
106 	MT_FIRST
107 } matchtype_t;
108 
109 typedef enum zap_flags {
110 	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
111 	ZAP_FLAG_HASH64 = 1 << 0,
112 	/* Key is binary, not string (zap_add_uint64() can be used) */
113 	ZAP_FLAG_UINT64_KEY = 1 << 1,
114 	/*
115 	 * First word of key (which must be an array of uint64) is
116 	 * already randomly distributed.
117 	 */
118 	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
119 } zap_flags_t;
120 
121 /*
122  * Create a new zapobj with no attributes and return its object number.
123  * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
124  * otherwise any matchtype can be used for lookups.
125  *
126  * normflags specifies what normalization will be done.  values are:
127  * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
128  *     only)
129  * U8_TEXTPREP_TOLOWER: case normalization will be performed.
130  *     MT_FIRST/MT_BEST matching will find entries that match without
131  *     regard to case (eg. looking for "foo" can find an entry "Foo").
132  * Eventually, other flags will permit unicode normalization as well.
133  */
134 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
135     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
137     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
138 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
139     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
140     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
141 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
142     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
143 
144 /*
145  * Initialize an already-allocated object.
146  */
147 void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
148     zap_flags_t flags, dmu_tx_t *tx);
149 
150 /*
151  * Create a new zapobj with no attributes from the given (unallocated)
152  * object number.
153  */
154 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
155     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
156 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
157     int normflags, dmu_object_type_t ot,
158     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
159 
160 /*
161  * The zapobj passed in must be a valid ZAP object for all of the
162  * following routines.
163  */
164 
165 /*
166  * Destroy this zapobj and all its attributes.
167  *
168  * Frees the object number using dmu_object_free.
169  */
170 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
171 
172 /*
173  * Manipulate attributes.
174  *
175  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
176  */
177 
178 /*
179  * Retrieve the contents of the attribute with the given name.
180  *
181  * If the requested attribute does not exist, the call will fail and
182  * return ENOENT.
183  *
184  * If 'integer_size' is smaller than the attribute's integer size, the
185  * call will fail and return EINVAL.
186  *
187  * If 'integer_size' is equal to or larger than the attribute's integer
188  * size, the call will succeed and return 0.
189  *
190  * When converting to a larger integer size, the integers will be treated as
191  * unsigned (ie. no sign-extension will be performed).
192  *
193  * 'num_integers' is the length (in integers) of 'buf'.
194  *
195  * If the attribute is longer than the buffer, as many integers as will
196  * fit will be transferred to 'buf'.  If the entire attribute was not
197  * transferred, the call will return EOVERFLOW.
198  */
199 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
200     uint64_t integer_size, uint64_t num_integers, void *buf);
201 
202 /*
203  * If rn_len is nonzero, realname will be set to the name of the found
204  * entry (which may be different from the requested name if matchtype is
205  * not MT_EXACT).
206  *
207  * If normalization_conflictp is not NULL, it will be set if there is
208  * another name with the same case/unicode normalized form.
209  */
210 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
211     uint64_t integer_size, uint64_t num_integers, void *buf,
212     matchtype_t mt, char *realname, int rn_len,
213     boolean_t *normalization_conflictp);
214 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
215     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
216 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
217 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
218     int key_numints);
219 
220 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
221     int add, refcount_t *towrite, refcount_t *tooverwrite);
222 
223 /*
224  * Create an attribute with the given name and value.
225  *
226  * If an attribute with the given name already exists, the call will
227  * fail and return EEXIST.
228  */
229 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
230     int integer_size, uint64_t num_integers,
231     const void *val, dmu_tx_t *tx);
232 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
233     int key_numints, int integer_size, uint64_t num_integers,
234     const void *val, dmu_tx_t *tx);
235 
236 /*
237  * Set the attribute with the given name to the given value.  If an
238  * attribute with the given name does not exist, it will be created.  If
239  * an attribute with the given name already exists, the previous value
240  * will be overwritten.  The integer_size may be different from the
241  * existing attribute's integer size, in which case the attribute's
242  * integer size will be updated to the new value.
243  */
244 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
245     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
246 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
247     int key_numints,
248     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
249 
250 /*
251  * Get the length (in integers) and the integer size of the specified
252  * attribute.
253  *
254  * If the requested attribute does not exist, the call will fail and
255  * return ENOENT.
256  */
257 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
258     uint64_t *integer_size, uint64_t *num_integers);
259 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
260     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
261 
262 /*
263  * Remove the specified attribute.
264  *
265  * If the specified attribute does not exist, the call will fail and
266  * return ENOENT.
267  */
268 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
269 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
270     matchtype_t mt, dmu_tx_t *tx);
271 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
272     int key_numints, dmu_tx_t *tx);
273 
274 /*
275  * Returns (in *count) the number of attributes in the specified zap
276  * object.
277  */
278 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
279 
280 /*
281  * Returns (in name) the name of the entry whose (value & mask)
282  * (za_first_integer) is value, or ENOENT if not found.  The string
283  * pointed to by name must be at least 256 bytes long.  If mask==0, the
284  * match must be exact (ie, same as mask=-1ULL).
285  */
286 int zap_value_search(objset_t *os, uint64_t zapobj,
287     uint64_t value, uint64_t mask, char *name);
288 
289 /*
290  * Transfer all the entries from fromobj into intoobj.  Only works on
291  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
292  * entries.
293  */
294 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
295 
296 /* Same as zap_join, but set the values to 'value'. */
297 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
298     uint64_t value, dmu_tx_t *tx);
299 
300 /* Same as zap_join, but add together any duplicated entries. */
301 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
302     dmu_tx_t *tx);
303 
304 /*
305  * Manipulate entries where the name + value are the "same" (the name is
306  * a stringified version of the value).
307  */
308 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
309 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
310 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
311 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
312     dmu_tx_t *tx);
313 
314 /* Here the key is an int and the value is a different int. */
315 int zap_add_int_key(objset_t *os, uint64_t obj,
316     uint64_t key, uint64_t value, dmu_tx_t *tx);
317 int zap_update_int_key(objset_t *os, uint64_t obj,
318     uint64_t key, uint64_t value, dmu_tx_t *tx);
319 int zap_lookup_int_key(objset_t *os, uint64_t obj,
320     uint64_t key, uint64_t *valuep);
321 
322 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
323     dmu_tx_t *tx);
324 
325 struct zap;
326 struct zap_leaf;
327 typedef struct zap_cursor {
328 	/* This structure is opaque! */
329 	objset_t *zc_objset;
330 	struct zap *zc_zap;
331 	struct zap_leaf *zc_leaf;
332 	uint64_t zc_zapobj;
333 	uint64_t zc_serialized;
334 	uint64_t zc_hash;
335 	uint32_t zc_cd;
336 } zap_cursor_t;
337 
338 typedef struct {
339 	int za_integer_length;
340 	/*
341 	 * za_normalization_conflict will be set if there are additional
342 	 * entries with this normalized form (eg, "foo" and "Foo").
343 	 */
344 	boolean_t za_normalization_conflict;
345 	uint64_t za_num_integers;
346 	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
347 	char za_name[ZAP_MAXNAMELEN];
348 } zap_attribute_t;
349 
350 /*
351  * The interface for listing all the attributes of a zapobj can be
352  * thought of as cursor moving down a list of the attributes one by
353  * one.  The cookie returned by the zap_cursor_serialize routine is
354  * persistent across system calls (and across reboot, even).
355  */
356 
357 /*
358  * Initialize a zap cursor, pointing to the "first" attribute of the
359  * zapobj.  You must _fini the cursor when you are done with it.
360  */
361 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
362 void zap_cursor_fini(zap_cursor_t *zc);
363 
364 /*
365  * Get the attribute currently pointed to by the cursor.  Returns
366  * ENOENT if at the end of the attributes.
367  */
368 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
369 
370 /*
371  * Advance the cursor to the next attribute.
372  */
373 void zap_cursor_advance(zap_cursor_t *zc);
374 
375 /*
376  * Get a persistent cookie pointing to the current position of the zap
377  * cursor.  The low 4 bits in the cookie are always zero, and thus can
378  * be used as to differentiate a serialized cookie from a different type
379  * of value.  The cookie will be less than 2^32 as long as there are
380  * fewer than 2^22 (4.2 million) entries in the zap object.
381  */
382 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
383 
384 /*
385  * Initialize a zap cursor pointing to the position recorded by
386  * zap_cursor_serialize (in the "serialized" argument).  You can also
387  * use a "serialized" argument of 0 to start at the beginning of the
388  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
389  * zap_cursor_init(...).)
390  */
391 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
392     uint64_t zapobj, uint64_t serialized);
393 
394 
395 #define	ZAP_HISTOGRAM_SIZE 10
396 
397 typedef struct zap_stats {
398 	/*
399 	 * Size of the pointer table (in number of entries).
400 	 * This is always a power of 2, or zero if it's a microzap.
401 	 * In general, it should be considerably greater than zs_num_leafs.
402 	 */
403 	uint64_t zs_ptrtbl_len;
404 
405 	uint64_t zs_blocksize;		/* size of zap blocks */
406 
407 	/*
408 	 * The number of blocks used.  Note that some blocks may be
409 	 * wasted because old ptrtbl's and large name/value blocks are
410 	 * not reused.  (Although their space is reclaimed, we don't
411 	 * reuse those offsets in the object.)
412 	 */
413 	uint64_t zs_num_blocks;
414 
415 	/*
416 	 * Pointer table values from zap_ptrtbl in the zap_phys_t
417 	 */
418 	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
419 	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
420 	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
421 	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
422 	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
423 
424 	/*
425 	 * Values of the other members of the zap_phys_t
426 	 */
427 	uint64_t zs_block_type;		/* ZBT_HEADER */
428 	uint64_t zs_magic;		/* ZAP_MAGIC */
429 	uint64_t zs_num_leafs;		/* The number of leaf blocks */
430 	uint64_t zs_num_entries;	/* The number of zap entries */
431 	uint64_t zs_salt;		/* salt to stir into hash function */
432 
433 	/*
434 	 * Histograms.  For all histograms, the last index
435 	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
436 	 * than what can be represented.  For example
437 	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
438 	 * of leafs with more than 45 entries.
439 	 */
440 
441 	/*
442 	 * zs_leafs_with_n_pointers[n] is the number of leafs with
443 	 * 2^n pointers to it.
444 	 */
445 	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
446 
447 	/*
448 	 * zs_leafs_with_n_entries[n] is the number of leafs with
449 	 * [n*5, (n+1)*5) entries.  In the current implementation, there
450 	 * can be at most 55 entries in any block, but there may be
451 	 * fewer if the name or value is large, or the block is not
452 	 * completely full.
453 	 */
454 	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
455 
456 	/*
457 	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
458 	 * fullness is in the range [n/10, (n+1)/10).
459 	 */
460 	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
461 
462 	/*
463 	 * zs_entries_using_n_chunks[n] is the number of entries which
464 	 * consume n 24-byte chunks.  (Note, large names/values only use
465 	 * one chunk, but contribute to zs_num_blocks_large.)
466 	 */
467 	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
468 
469 	/*
470 	 * zs_buckets_with_n_entries[n] is the number of buckets (each
471 	 * leaf has 64 buckets) with n entries.
472 	 * zs_buckets_with_n_entries[1] should be very close to
473 	 * zs_num_entries.
474 	 */
475 	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
476 } zap_stats_t;
477 
478 /*
479  * Get statistics about a ZAP object.  Note: you need to be aware of the
480  * internal implementation of the ZAP to correctly interpret some of the
481  * statistics.  This interface shouldn't be relied on unless you really
482  * know what you're doing.
483  */
484 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
485 
486 #ifdef	__cplusplus
487 }
488 #endif
489 
490 #endif	/* _SYS_ZAP_H */
491