1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017 Datto Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 */ 32 33 #ifndef _SYS_SPA_H 34 #define _SYS_SPA_H 35 36 #include <sys/avl.h> 37 #include <sys/zfs_context.h> 38 #include <sys/nvpair.h> 39 #include <sys/sysevent.h> 40 #include <sys/sysmacros.h> 41 #include <sys/types.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 45 #ifdef __cplusplus 46 extern "C" { 47 #endif 48 49 /* 50 * Forward references that lots of things need. 51 */ 52 typedef struct spa spa_t; 53 typedef struct vdev vdev_t; 54 typedef struct metaslab metaslab_t; 55 typedef struct metaslab_group metaslab_group_t; 56 typedef struct metaslab_class metaslab_class_t; 57 typedef struct zio zio_t; 58 typedef struct zilog zilog_t; 59 typedef struct spa_aux_vdev spa_aux_vdev_t; 60 typedef struct ddt ddt_t; 61 typedef struct ddt_entry ddt_entry_t; 62 struct dsl_pool; 63 struct dsl_dataset; 64 struct dsl_crypto_params; 65 66 /* 67 * General-purpose 32-bit and 64-bit bitfield encodings. 68 */ 69 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len)) 70 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len)) 71 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low)) 72 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low)) 73 74 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len) 75 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len) 76 77 #define BF32_SET(x, low, len, val) do { \ 78 ASSERT3U(val, <, 1U << (len)); \ 79 ASSERT3U(low + len, <=, 32); \ 80 (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \ 81 _NOTE(CONSTCOND) } while (0) 82 83 #define BF64_SET(x, low, len, val) do { \ 84 ASSERT3U(val, <, 1ULL << (len)); \ 85 ASSERT3U(low + len, <=, 64); \ 86 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \ 87 _NOTE(CONSTCOND) } while (0) 88 89 #define BF32_GET_SB(x, low, len, shift, bias) \ 90 ((BF32_GET(x, low, len) + (bias)) << (shift)) 91 #define BF64_GET_SB(x, low, len, shift, bias) \ 92 ((BF64_GET(x, low, len) + (bias)) << (shift)) 93 94 #define BF32_SET_SB(x, low, len, shift, bias, val) do { \ 95 ASSERT(IS_P2ALIGNED(val, 1U << shift)); \ 96 ASSERT3S((val) >> (shift), >=, bias); \ 97 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \ 98 _NOTE(CONSTCOND) } while (0) 99 #define BF64_SET_SB(x, low, len, shift, bias, val) do { \ 100 ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \ 101 ASSERT3S((val) >> (shift), >=, bias); \ 102 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \ 103 _NOTE(CONSTCOND) } while (0) 104 105 /* 106 * We currently support block sizes from 512 bytes to 16MB. 107 * The benefits of larger blocks, and thus larger IO, need to be weighed 108 * against the cost of COWing a giant block to modify one byte, and the 109 * large latency of reading or writing a large block. 110 * 111 * Note that although blocks up to 16MB are supported, the recordsize 112 * property can not be set larger than zfs_max_recordsize (default 1MB). 113 * See the comment near zfs_max_recordsize in dsl_dataset.c for details. 114 * 115 * Note that although the LSIZE field of the blkptr_t can store sizes up 116 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to 117 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB. 118 */ 119 #define SPA_MINBLOCKSHIFT 9 120 #define SPA_OLD_MAXBLOCKSHIFT 17 121 #define SPA_MAXBLOCKSHIFT 24 122 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT) 123 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) 124 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT) 125 126 /* 127 * Size of block to hold the configuration data (a packed nvlist) 128 */ 129 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14) 130 131 /* 132 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB. 133 * The ASIZE encoding should be at least 64 times larger (6 more bits) 134 * to support up to 4-way RAID-Z mirror mode with worst-case gang block 135 * overhead, three DVAs per bp, plus one more bit in case we do anything 136 * else that expands the ASIZE. 137 */ 138 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */ 139 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */ 140 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */ 141 142 #define SPA_COMPRESSBITS 7 143 #define SPA_VDEVBITS 24 144 145 /* 146 * All SPA data is represented by 128-bit data virtual addresses (DVAs). 147 * The members of the dva_t should be considered opaque outside the SPA. 148 */ 149 typedef struct dva { 150 uint64_t dva_word[2]; 151 } dva_t; 152 153 /* 154 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes. 155 */ 156 typedef struct zio_cksum { 157 uint64_t zc_word[4]; 158 } zio_cksum_t; 159 160 /* 161 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept 162 * secret and is suitable for use in MAC algorithms as the key. 163 */ 164 typedef struct zio_cksum_salt { 165 uint8_t zcs_bytes[32]; 166 } zio_cksum_salt_t; 167 168 /* 169 * Each block is described by its DVAs, time of birth, checksum, etc. 170 * The word-by-word, bit-by-bit layout of the blkptr is as follows: 171 * 172 * 64 56 48 40 32 24 16 8 0 173 * +-------+-------+-------+-------+-------+-------+-------+-------+ 174 * 0 | pad | vdev1 | GRID | ASIZE | 175 * +-------+-------+-------+-------+-------+-------+-------+-------+ 176 * 1 |G| offset1 | 177 * +-------+-------+-------+-------+-------+-------+-------+-------+ 178 * 2 | pad | vdev2 | GRID | ASIZE | 179 * +-------+-------+-------+-------+-------+-------+-------+-------+ 180 * 3 |G| offset2 | 181 * +-------+-------+-------+-------+-------+-------+-------+-------+ 182 * 4 | pad | vdev3 | GRID | ASIZE | 183 * +-------+-------+-------+-------+-------+-------+-------+-------+ 184 * 5 |G| offset3 | 185 * +-------+-------+-------+-------+-------+-------+-------+-------+ 186 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 187 * +-------+-------+-------+-------+-------+-------+-------+-------+ 188 * 7 | padding | 189 * +-------+-------+-------+-------+-------+-------+-------+-------+ 190 * 8 | padding | 191 * +-------+-------+-------+-------+-------+-------+-------+-------+ 192 * 9 | physical birth txg | 193 * +-------+-------+-------+-------+-------+-------+-------+-------+ 194 * a | logical birth txg | 195 * +-------+-------+-------+-------+-------+-------+-------+-------+ 196 * b | fill count | 197 * +-------+-------+-------+-------+-------+-------+-------+-------+ 198 * c | checksum[0] | 199 * +-------+-------+-------+-------+-------+-------+-------+-------+ 200 * d | checksum[1] | 201 * +-------+-------+-------+-------+-------+-------+-------+-------+ 202 * e | checksum[2] | 203 * +-------+-------+-------+-------+-------+-------+-------+-------+ 204 * f | checksum[3] | 205 * +-------+-------+-------+-------+-------+-------+-------+-------+ 206 * 207 * Legend: 208 * 209 * vdev virtual device ID 210 * offset offset into virtual device 211 * LSIZE logical size 212 * PSIZE physical size (after compression) 213 * ASIZE allocated size (including RAID-Z parity and gang block headers) 214 * GRID RAID-Z layout information (reserved for future use) 215 * cksum checksum function 216 * comp compression function 217 * G gang block indicator 218 * B byteorder (endianness) 219 * D dedup 220 * X encryption 221 * E blkptr_t contains embedded data (see below) 222 * lvl level of indirection 223 * type DMU object type 224 * phys birth txg when dva[0] was written; zero if same as logical birth txg 225 * note that typically all the dva's would be written in this 226 * txg, but they could be different if they were moved by 227 * device removal. 228 * log. birth transaction group in which the block was logically born 229 * fill count number of non-zero blocks under this bp 230 * checksum[4] 256-bit checksum of the data this bp describes 231 */ 232 233 /* 234 * The blkptr_t's of encrypted blocks also need to store the encryption 235 * parameters so that the block can be decrypted. This layout is as follows: 236 * 237 * 64 56 48 40 32 24 16 8 0 238 * +-------+-------+-------+-------+-------+-------+-------+-------+ 239 * 0 | vdev1 | GRID | ASIZE | 240 * +-------+-------+-------+-------+-------+-------+-------+-------+ 241 * 1 |G| offset1 | 242 * +-------+-------+-------+-------+-------+-------+-------+-------+ 243 * 2 | vdev2 | GRID | ASIZE | 244 * +-------+-------+-------+-------+-------+-------+-------+-------+ 245 * 3 |G| offset2 | 246 * +-------+-------+-------+-------+-------+-------+-------+-------+ 247 * 4 | salt | 248 * +-------+-------+-------+-------+-------+-------+-------+-------+ 249 * 5 | IV1 | 250 * +-------+-------+-------+-------+-------+-------+-------+-------+ 251 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE | 252 * +-------+-------+-------+-------+-------+-------+-------+-------+ 253 * 7 | padding | 254 * +-------+-------+-------+-------+-------+-------+-------+-------+ 255 * 8 | padding | 256 * +-------+-------+-------+-------+-------+-------+-------+-------+ 257 * 9 | physical birth txg | 258 * +-------+-------+-------+-------+-------+-------+-------+-------+ 259 * a | logical birth txg | 260 * +-------+-------+-------+-------+-------+-------+-------+-------+ 261 * b | IV2 | fill count | 262 * +-------+-------+-------+-------+-------+-------+-------+-------+ 263 * c | checksum[0] | 264 * +-------+-------+-------+-------+-------+-------+-------+-------+ 265 * d | checksum[1] | 266 * +-------+-------+-------+-------+-------+-------+-------+-------+ 267 * e | MAC[0] | 268 * +-------+-------+-------+-------+-------+-------+-------+-------+ 269 * f | MAC[1] | 270 * +-------+-------+-------+-------+-------+-------+-------+-------+ 271 * 272 * Legend: 273 * 274 * salt Salt for generating encryption keys 275 * IV1 First 64 bits of encryption IV 276 * X Block requires encryption handling (set to 1) 277 * E blkptr_t contains embedded data (set to 0, see below) 278 * fill count number of non-zero blocks under this bp (truncated to 32 bits) 279 * IV2 Last 32 bits of encryption IV 280 * checksum[2] 128-bit checksum of the data this bp describes 281 * MAC[2] 128-bit message authentication code for this data 282 * 283 * The X bit being set indicates that this block is one of 3 types. If this is 284 * a level 0 block with an encrypted object type, the block is encrypted 285 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted 286 * object type, this block is authenticated with an HMAC (see 287 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC 288 * words to store a checksum-of-MACs from the level below (see 289 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED() 290 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT() 291 * refers to any of these 3 kinds of blocks. 292 * 293 * The additional encryption parameters are the salt, IV, and MAC which are 294 * explained in greater detail in the block comment at the top of zio_crypt.c. 295 * The MAC occupies half of the checksum space since it serves a very similar 296 * purpose: to prevent data corruption on disk. The only functional difference 297 * is that the checksum is used to detect on-disk corruption whether or not the 298 * encryption key is loaded and the MAC provides additional protection against 299 * malicious disk tampering. We use the 3rd DVA to store the salt and first 300 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies 301 * maximum instead of the normal 3. The last 32 bits of the IV are stored in 302 * the upper bits of what is usually the fill count. Note that only blocks at 303 * level 0 or -2 are ever encrypted, which allows us to guarantee that these 304 * 32 bits are not trampled over by other code (see zio_crypt.c for details). 305 * The salt and IV are not used for authenticated bps or bps with an indirect 306 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits 307 * for the fill count. 308 */ 309 310 /* 311 * "Embedded" blkptr_t's don't actually point to a block, instead they 312 * have a data payload embedded in the blkptr_t itself. See the comment 313 * in blkptr.c for more details. 314 * 315 * The blkptr_t is laid out as follows: 316 * 317 * 64 56 48 40 32 24 16 8 0 318 * +-------+-------+-------+-------+-------+-------+-------+-------+ 319 * 0 | payload | 320 * 1 | payload | 321 * 2 | payload | 322 * 3 | payload | 323 * 4 | payload | 324 * 5 | payload | 325 * +-------+-------+-------+-------+-------+-------+-------+-------+ 326 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE | 327 * +-------+-------+-------+-------+-------+-------+-------+-------+ 328 * 7 | payload | 329 * 8 | payload | 330 * 9 | payload | 331 * +-------+-------+-------+-------+-------+-------+-------+-------+ 332 * a | logical birth txg | 333 * +-------+-------+-------+-------+-------+-------+-------+-------+ 334 * b | payload | 335 * c | payload | 336 * d | payload | 337 * e | payload | 338 * f | payload | 339 * +-------+-------+-------+-------+-------+-------+-------+-------+ 340 * 341 * Legend: 342 * 343 * payload contains the embedded data 344 * B (byteorder) byteorder (endianness) 345 * D (dedup) padding (set to zero) 346 * X encryption (set to zero; see above) 347 * E (embedded) set to one 348 * lvl indirection level 349 * type DMU object type 350 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*) 351 * comp compression function of payload 352 * PSIZE size of payload after compression, in bytes 353 * LSIZE logical size of payload, in bytes 354 * note that 25 bits is enough to store the largest 355 * "normal" BP's LSIZE (2^16 * 2^9) in bytes 356 * log. birth transaction group in which the block was logically born 357 * 358 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded 359 * bp's they are stored in units of SPA_MINBLOCKSHIFT. 360 * Generally, the generic BP_GET_*() macros can be used on embedded BP's. 361 * The B, D, X, lvl, type, and comp fields are stored the same as with normal 362 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must 363 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before 364 * other macros, as they assert that they are only used on BP's of the correct 365 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use 366 * the payload space for encryption parameters (see the comment above on 367 * how encryption parameters are stored). 368 */ 369 370 #define BPE_GET_ETYPE(bp) \ 371 (ASSERT(BP_IS_EMBEDDED(bp)), \ 372 BF64_GET((bp)->blk_prop, 40, 8)) 373 #define BPE_SET_ETYPE(bp, t) do { \ 374 ASSERT(BP_IS_EMBEDDED(bp)); \ 375 BF64_SET((bp)->blk_prop, 40, 8, t); \ 376 _NOTE(CONSTCOND) } while (0) 377 378 #define BPE_GET_LSIZE(bp) \ 379 (ASSERT(BP_IS_EMBEDDED(bp)), \ 380 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1)) 381 #define BPE_SET_LSIZE(bp, x) do { \ 382 ASSERT(BP_IS_EMBEDDED(bp)); \ 383 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \ 384 _NOTE(CONSTCOND) } while (0) 385 386 #define BPE_GET_PSIZE(bp) \ 387 (ASSERT(BP_IS_EMBEDDED(bp)), \ 388 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1)) 389 #define BPE_SET_PSIZE(bp, x) do { \ 390 ASSERT(BP_IS_EMBEDDED(bp)); \ 391 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \ 392 _NOTE(CONSTCOND) } while (0) 393 394 typedef enum bp_embedded_type { 395 BP_EMBEDDED_TYPE_DATA, 396 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */ 397 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED 398 } bp_embedded_type_t; 399 400 #define BPE_NUM_WORDS 14 401 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t)) 402 #define BPE_IS_PAYLOADWORD(bp, wp) \ 403 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth) 404 405 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */ 406 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */ 407 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */ 408 409 /* 410 * A block is a hole when it has either 1) never been written to, or 411 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads 412 * without physically allocating disk space. Holes are represented in the 413 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is 414 * done through the BP_IS_HOLE macro. For holes, the logical size, level, 415 * DMU object type, and birth times are all also stored for holes that 416 * were written to at some point (i.e. were punched after having been filled). 417 */ 418 typedef struct blkptr { 419 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */ 420 uint64_t blk_prop; /* size, compression, type, etc */ 421 uint64_t blk_pad[2]; /* Extra space for the future */ 422 uint64_t blk_phys_birth; /* txg when block was allocated */ 423 uint64_t blk_birth; /* transaction group at birth */ 424 uint64_t blk_fill; /* fill count */ 425 zio_cksum_t blk_cksum; /* 256-bit checksum */ 426 } blkptr_t; 427 428 /* 429 * Macros to get and set fields in a bp or DVA. 430 */ 431 #define DVA_GET_ASIZE(dva) \ 432 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0) 433 #define DVA_SET_ASIZE(dva, x) \ 434 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \ 435 SPA_MINBLOCKSHIFT, 0, x) 436 437 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8) 438 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x) 439 440 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS) 441 #define DVA_SET_VDEV(dva, x) \ 442 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x) 443 444 #define DVA_GET_OFFSET(dva) \ 445 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0) 446 #define DVA_SET_OFFSET(dva, x) \ 447 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x) 448 449 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1) 450 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x) 451 452 #define BP_GET_LSIZE(bp) \ 453 (BP_IS_EMBEDDED(bp) ? \ 454 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \ 455 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 456 #define BP_SET_LSIZE(bp, x) do { \ 457 ASSERT(!BP_IS_EMBEDDED(bp)); \ 458 BF64_SET_SB((bp)->blk_prop, \ 459 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 460 _NOTE(CONSTCOND) } while (0) 461 462 #define BP_GET_PSIZE(bp) \ 463 (BP_IS_EMBEDDED(bp) ? 0 : \ 464 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1)) 465 #define BP_SET_PSIZE(bp, x) do { \ 466 ASSERT(!BP_IS_EMBEDDED(bp)); \ 467 BF64_SET_SB((bp)->blk_prop, \ 468 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \ 469 _NOTE(CONSTCOND) } while (0) 470 471 #define BP_GET_COMPRESS(bp) \ 472 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS) 473 #define BP_SET_COMPRESS(bp, x) \ 474 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x) 475 476 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1) 477 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x) 478 479 #define BP_GET_CHECKSUM(bp) \ 480 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \ 481 BF64_GET((bp)->blk_prop, 40, 8)) 482 #define BP_SET_CHECKSUM(bp, x) do { \ 483 ASSERT(!BP_IS_EMBEDDED(bp)); \ 484 BF64_SET((bp)->blk_prop, 40, 8, x); \ 485 _NOTE(CONSTCOND) } while (0) 486 487 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8) 488 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x) 489 490 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5) 491 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x) 492 493 /* encrypted, authenticated, and MAC cksum bps use the same bit */ 494 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1) 495 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x) 496 497 #define BP_IS_ENCRYPTED(bp) \ 498 (BP_USES_CRYPT(bp) && \ 499 BP_GET_LEVEL(bp) == 0 && \ 500 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) 501 502 #define BP_IS_AUTHENTICATED(bp) \ 503 (BP_USES_CRYPT(bp) && \ 504 BP_GET_LEVEL(bp) == 0 && \ 505 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp))) 506 507 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \ 508 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0) 509 510 #define BP_IS_PROTECTED(bp) \ 511 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp)) 512 513 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1) 514 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x) 515 516 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1) 517 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x) 518 519 #define BP_PHYSICAL_BIRTH(bp) \ 520 (BP_IS_EMBEDDED(bp) ? 0 : \ 521 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth) 522 523 #define BP_SET_BIRTH(bp, logical, physical) \ 524 { \ 525 ASSERT(!BP_IS_EMBEDDED(bp)); \ 526 (bp)->blk_birth = (logical); \ 527 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \ 528 } 529 530 #define BP_GET_FILL(bp) \ 531 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \ 532 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill)) 533 534 #define BP_SET_FILL(bp, fill) \ 535 { \ 536 if (BP_IS_ENCRYPTED(bp)) \ 537 BF64_SET((bp)->blk_fill, 0, 32, fill); \ 538 else \ 539 (bp)->blk_fill = fill; \ 540 } 541 542 #define BP_GET_IV2(bp) \ 543 (ASSERT(BP_IS_ENCRYPTED(bp)), \ 544 BF64_GET((bp)->blk_fill, 32, 32)) 545 #define BP_SET_IV2(bp, iv2) \ 546 { \ 547 ASSERT(BP_IS_ENCRYPTED(bp)); \ 548 BF64_SET((bp)->blk_fill, 32, 32, iv2); \ 549 } 550 551 #define BP_IS_METADATA(bp) \ 552 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 553 554 #define BP_GET_ASIZE(bp) \ 555 (BP_IS_EMBEDDED(bp) ? 0 : \ 556 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 557 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 558 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) 559 560 #define BP_GET_UCSIZE(bp) \ 561 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp)) 562 563 #define BP_GET_NDVAS(bp) \ 564 (BP_IS_EMBEDDED(bp) ? 0 : \ 565 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \ 566 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \ 567 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))) 568 569 #define BP_COUNT_GANG(bp) \ 570 (BP_IS_EMBEDDED(bp) ? 0 : \ 571 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \ 572 DVA_GET_GANG(&(bp)->blk_dva[1]) + \ 573 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))) 574 575 #define DVA_EQUAL(dva1, dva2) \ 576 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \ 577 (dva1)->dva_word[0] == (dva2)->dva_word[0]) 578 579 #define BP_EQUAL(bp1, bp2) \ 580 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \ 581 (bp1)->blk_birth == (bp2)->blk_birth && \ 582 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \ 583 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \ 584 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2])) 585 586 #define ZIO_CHECKSUM_EQUAL(zc1, zc2) \ 587 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 588 ((zc1).zc_word[1] - (zc2).zc_word[1]) | \ 589 ((zc1).zc_word[2] - (zc2).zc_word[2]) | \ 590 ((zc1).zc_word[3] - (zc2).zc_word[3]))) 591 592 #define ZIO_CHECKSUM_MAC_EQUAL(zc1, zc2) \ 593 (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \ 594 ((zc1).zc_word[1] - (zc2).zc_word[1]))) 595 596 #define ZIO_CHECKSUM_IS_ZERO(zc) \ 597 (0 == ((zc)->zc_word[0] | (zc)->zc_word[1] | \ 598 (zc)->zc_word[2] | (zc)->zc_word[3])) 599 600 #define ZIO_CHECKSUM_BSWAP(zcp) \ 601 { \ 602 (zcp)->zc_word[0] = BSWAP_64((zcp)->zc_word[0]); \ 603 (zcp)->zc_word[1] = BSWAP_64((zcp)->zc_word[1]); \ 604 (zcp)->zc_word[2] = BSWAP_64((zcp)->zc_word[2]); \ 605 (zcp)->zc_word[3] = BSWAP_64((zcp)->zc_word[3]); \ 606 } 607 608 609 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0) 610 611 #define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \ 612 { \ 613 (zcp)->zc_word[0] = w0; \ 614 (zcp)->zc_word[1] = w1; \ 615 (zcp)->zc_word[2] = w2; \ 616 (zcp)->zc_word[3] = w3; \ 617 } 618 619 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0]) 620 #define BP_IS_GANG(bp) \ 621 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp))) 622 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \ 623 (dva)->dva_word[1] == 0ULL) 624 #define BP_IS_HOLE(bp) \ 625 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp))) 626 627 /* BP_IS_RAIDZ(bp) assumes no block compression */ 628 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \ 629 BP_GET_PSIZE(bp)) 630 631 #define BP_ZERO(bp) \ 632 { \ 633 (bp)->blk_dva[0].dva_word[0] = 0; \ 634 (bp)->blk_dva[0].dva_word[1] = 0; \ 635 (bp)->blk_dva[1].dva_word[0] = 0; \ 636 (bp)->blk_dva[1].dva_word[1] = 0; \ 637 (bp)->blk_dva[2].dva_word[0] = 0; \ 638 (bp)->blk_dva[2].dva_word[1] = 0; \ 639 (bp)->blk_prop = 0; \ 640 (bp)->blk_pad[0] = 0; \ 641 (bp)->blk_pad[1] = 0; \ 642 (bp)->blk_phys_birth = 0; \ 643 (bp)->blk_birth = 0; \ 644 (bp)->blk_fill = 0; \ 645 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \ 646 } 647 648 #ifdef _BIG_ENDIAN 649 #define ZFS_HOST_BYTEORDER (0ULL) 650 #else 651 #define ZFS_HOST_BYTEORDER (1ULL) 652 #endif 653 654 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER) 655 656 #define BP_SPRINTF_LEN 400 657 658 /* 659 * This macro allows code sharing between zfs, libzpool, and mdb. 660 * 'func' is either snprintf() or mdb_snprintf(). 661 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line. 662 */ 663 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \ 664 { \ 665 static const char *copyname[] = \ 666 { "zero", "single", "double", "triple" }; \ 667 int len = 0; \ 668 int copies = 0; \ 669 const char *crypt_type; \ 670 if (bp != NULL) { \ 671 if (BP_IS_ENCRYPTED(bp)) { \ 672 crypt_type = "encrypted"; \ 673 } else if (BP_IS_AUTHENTICATED(bp)) { \ 674 crypt_type = "authenticated"; \ 675 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \ 676 crypt_type = "indirect-MAC"; \ 677 } else { \ 678 crypt_type = "unencrypted"; \ 679 } \ 680 } \ 681 if (bp == NULL) { \ 682 len += func(buf + len, size - len, "<NULL>"); \ 683 } else if (BP_IS_HOLE(bp)) { \ 684 len += func(buf + len, size - len, \ 685 "HOLE [L%llu %s] " \ 686 "size=%llxL birth=%lluL", \ 687 (u_longlong_t)BP_GET_LEVEL(bp), \ 688 type, \ 689 (u_longlong_t)BP_GET_LSIZE(bp), \ 690 (u_longlong_t)bp->blk_birth); \ 691 } else if (BP_IS_EMBEDDED(bp)) { \ 692 len = func(buf + len, size - len, \ 693 "EMBEDDED [L%llu %s] et=%u %s " \ 694 "size=%llxL/%llxP birth=%lluL", \ 695 (u_longlong_t)BP_GET_LEVEL(bp), \ 696 type, \ 697 (int)BPE_GET_ETYPE(bp), \ 698 compress, \ 699 (u_longlong_t)BPE_GET_LSIZE(bp), \ 700 (u_longlong_t)BPE_GET_PSIZE(bp), \ 701 (u_longlong_t)bp->blk_birth); \ 702 } else { \ 703 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \ 704 const dva_t *dva = &bp->blk_dva[d]; \ 705 if (DVA_IS_VALID(dva)) \ 706 copies++; \ 707 len += func(buf + len, size - len, \ 708 "DVA[%d]=<%llu:%llx:%llx>%c", d, \ 709 (u_longlong_t)DVA_GET_VDEV(dva), \ 710 (u_longlong_t)DVA_GET_OFFSET(dva), \ 711 (u_longlong_t)DVA_GET_ASIZE(dva), \ 712 ws); \ 713 } \ 714 if (BP_IS_ENCRYPTED(bp)) { \ 715 len += func(buf + len, size - len, \ 716 "salt=%llx iv=%llx:%llx%c", \ 717 (u_longlong_t)bp->blk_dva[2].dva_word[0], \ 718 (u_longlong_t)bp->blk_dva[2].dva_word[1], \ 719 (u_longlong_t)BP_GET_IV2(bp), \ 720 ws); \ 721 } \ 722 if (BP_IS_GANG(bp) && \ 723 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \ 724 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \ 725 copies--; \ 726 len += func(buf + len, size - len, \ 727 "[L%llu %s] %s %s %s %s %s %s %s%c" \ 728 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \ 729 "cksum=%llx:%llx:%llx:%llx", \ 730 (u_longlong_t)BP_GET_LEVEL(bp), \ 731 type, \ 732 checksum, \ 733 compress, \ 734 crypt_type, \ 735 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \ 736 BP_IS_GANG(bp) ? "gang" : "contiguous", \ 737 BP_GET_DEDUP(bp) ? "dedup" : "unique", \ 738 copyname[copies], \ 739 ws, \ 740 (u_longlong_t)BP_GET_LSIZE(bp), \ 741 (u_longlong_t)BP_GET_PSIZE(bp), \ 742 (u_longlong_t)bp->blk_birth, \ 743 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \ 744 (u_longlong_t)BP_GET_FILL(bp), \ 745 ws, \ 746 (u_longlong_t)bp->blk_cksum.zc_word[0], \ 747 (u_longlong_t)bp->blk_cksum.zc_word[1], \ 748 (u_longlong_t)bp->blk_cksum.zc_word[2], \ 749 (u_longlong_t)bp->blk_cksum.zc_word[3]); \ 750 } \ 751 ASSERT(len < size); \ 752 } 753 754 #define BP_GET_BUFC_TYPE(bp) \ 755 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA) 756 757 typedef enum spa_import_type { 758 SPA_IMPORT_EXISTING, 759 SPA_IMPORT_ASSEMBLE 760 } spa_import_type_t; 761 762 /* state manipulation functions */ 763 extern int spa_open(const char *pool, spa_t **, void *tag); 764 extern int spa_open_rewind(const char *pool, spa_t **, void *tag, 765 nvlist_t *policy, nvlist_t **config); 766 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot, 767 size_t buflen); 768 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 769 nvlist_t *zplprops, struct dsl_crypto_params *dcp); 770 extern int spa_import_rootpool(char *devpath, char *devid); 771 extern int spa_import(const char *pool, nvlist_t *config, nvlist_t *props, 772 uint64_t flags); 773 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig); 774 extern int spa_destroy(char *pool); 775 extern int spa_checkpoint(const char *pool); 776 extern int spa_checkpoint_discard(const char *pool); 777 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 778 boolean_t hardforce); 779 extern int spa_reset(char *pool); 780 extern void spa_async_request(spa_t *spa, int flag); 781 extern void spa_async_unrequest(spa_t *spa, int flag); 782 extern void spa_async_suspend(spa_t *spa); 783 extern void spa_async_resume(spa_t *spa); 784 extern spa_t *spa_inject_addref(char *pool); 785 extern void spa_inject_delref(spa_t *spa); 786 extern void spa_scan_stat_init(spa_t *spa); 787 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps); 788 789 #define SPA_ASYNC_CONFIG_UPDATE 0x01 790 #define SPA_ASYNC_REMOVE 0x02 791 #define SPA_ASYNC_PROBE 0x04 792 #define SPA_ASYNC_RESILVER_DONE 0x08 793 #define SPA_ASYNC_RESILVER 0x10 794 #define SPA_ASYNC_AUTOEXPAND 0x20 795 #define SPA_ASYNC_REMOVE_DONE 0x40 796 #define SPA_ASYNC_REMOVE_STOP 0x80 797 #define SPA_ASYNC_INITIALIZE_RESTART 0x100 798 799 /* 800 * Controls the behavior of spa_vdev_remove(). 801 */ 802 #define SPA_REMOVE_UNSPARE 0x01 803 #define SPA_REMOVE_DONE 0x02 804 805 /* device manipulation */ 806 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot); 807 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, 808 int replacing); 809 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, 810 int replace_done); 811 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare); 812 extern boolean_t spa_vdev_remove_active(spa_t *spa); 813 extern int spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type); 814 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath); 815 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru); 816 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 817 nvlist_t *props, boolean_t exp); 818 819 /* spare state (which is global across all pools) */ 820 extern void spa_spare_add(vdev_t *vd); 821 extern void spa_spare_remove(vdev_t *vd); 822 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt); 823 extern void spa_spare_activate(vdev_t *vd); 824 825 /* L2ARC state (which is global across all pools) */ 826 extern void spa_l2cache_add(vdev_t *vd); 827 extern void spa_l2cache_remove(vdev_t *vd); 828 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool); 829 extern void spa_l2cache_activate(vdev_t *vd); 830 extern void spa_l2cache_drop(spa_t *spa); 831 832 /* scanning */ 833 extern int spa_scan(spa_t *spa, pool_scan_func_t func); 834 extern int spa_scan_stop(spa_t *spa); 835 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag); 836 837 /* spa syncing */ 838 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */ 839 extern void spa_sync_allpools(void); 840 841 /* spa namespace global mutex */ 842 extern kmutex_t spa_namespace_lock; 843 844 /* 845 * SPA configuration functions in spa_config.c 846 */ 847 848 #define SPA_CONFIG_UPDATE_POOL 0 849 #define SPA_CONFIG_UPDATE_VDEVS 1 850 851 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t); 852 extern void spa_config_load(void); 853 extern nvlist_t *spa_all_configs(uint64_t *); 854 extern void spa_config_set(spa_t *spa, nvlist_t *config); 855 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, 856 int getstats); 857 extern void spa_config_update(spa_t *spa, int what); 858 859 /* 860 * Miscellaneous SPA routines in spa_misc.c 861 */ 862 863 /* Namespace manipulation */ 864 extern spa_t *spa_lookup(const char *name); 865 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot); 866 extern void spa_remove(spa_t *spa); 867 extern spa_t *spa_next(spa_t *prev); 868 869 /* Refcount functions */ 870 extern void spa_open_ref(spa_t *spa, void *tag); 871 extern void spa_close(spa_t *spa, void *tag); 872 extern void spa_async_close(spa_t *spa, void *tag); 873 extern boolean_t spa_refcount_zero(spa_t *spa); 874 875 #define SCL_NONE 0x00 876 #define SCL_CONFIG 0x01 877 #define SCL_STATE 0x02 878 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */ 879 #define SCL_ALLOC 0x08 880 #define SCL_ZIO 0x10 881 #define SCL_FREE 0x20 882 #define SCL_VDEV 0x40 883 #define SCL_LOCKS 7 884 #define SCL_ALL ((1 << SCL_LOCKS) - 1) 885 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO) 886 887 /* Pool configuration locks */ 888 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw); 889 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw); 890 extern void spa_config_exit(spa_t *spa, int locks, void *tag); 891 extern int spa_config_held(spa_t *spa, int locks, krw_t rw); 892 893 /* Pool vdev add/remove lock */ 894 extern uint64_t spa_vdev_enter(spa_t *spa); 895 extern uint64_t spa_vdev_config_enter(spa_t *spa); 896 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, 897 int error, char *tag); 898 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error); 899 900 /* Pool vdev state change lock */ 901 extern void spa_vdev_state_enter(spa_t *spa, int oplock); 902 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error); 903 904 /* Log state */ 905 typedef enum spa_log_state { 906 SPA_LOG_UNKNOWN = 0, /* unknown log state */ 907 SPA_LOG_MISSING, /* missing log(s) */ 908 SPA_LOG_CLEAR, /* clear the log(s) */ 909 SPA_LOG_GOOD, /* log(s) are good */ 910 } spa_log_state_t; 911 912 extern spa_log_state_t spa_get_log_state(spa_t *spa); 913 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state); 914 extern int spa_reset_logs(spa_t *spa); 915 916 /* Log claim callback */ 917 extern void spa_claim_notify(zio_t *zio); 918 919 /* Accessor functions */ 920 extern boolean_t spa_shutting_down(spa_t *spa); 921 extern struct dsl_pool *spa_get_dsl(spa_t *spa); 922 extern boolean_t spa_is_initializing(spa_t *spa); 923 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa); 924 extern blkptr_t *spa_get_rootblkptr(spa_t *spa); 925 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp); 926 extern void spa_altroot(spa_t *, char *, size_t); 927 extern int spa_sync_pass(spa_t *spa); 928 extern char *spa_name(spa_t *spa); 929 extern uint64_t spa_guid(spa_t *spa); 930 extern uint64_t spa_load_guid(spa_t *spa); 931 extern uint64_t spa_last_synced_txg(spa_t *spa); 932 extern uint64_t spa_first_txg(spa_t *spa); 933 extern uint64_t spa_syncing_txg(spa_t *spa); 934 extern uint64_t spa_final_dirty_txg(spa_t *spa); 935 extern uint64_t spa_version(spa_t *spa); 936 extern pool_state_t spa_state(spa_t *spa); 937 extern spa_load_state_t spa_load_state(spa_t *spa); 938 extern uint64_t spa_freeze_txg(spa_t *spa); 939 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize); 940 extern uint64_t spa_get_dspace(spa_t *spa); 941 extern uint64_t spa_get_checkpoint_space(spa_t *spa); 942 extern uint64_t spa_get_slop_space(spa_t *spa); 943 extern void spa_update_dspace(spa_t *spa); 944 extern uint64_t spa_version(spa_t *spa); 945 extern boolean_t spa_deflate(spa_t *spa); 946 extern metaslab_class_t *spa_normal_class(spa_t *spa); 947 extern metaslab_class_t *spa_log_class(spa_t *spa); 948 extern metaslab_class_t *spa_special_class(spa_t *spa); 949 extern metaslab_class_t *spa_dedup_class(spa_t *spa); 950 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size, 951 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk); 952 953 extern void spa_evicting_os_register(spa_t *, objset_t *os); 954 extern void spa_evicting_os_deregister(spa_t *, objset_t *os); 955 extern void spa_evicting_os_wait(spa_t *spa); 956 extern int spa_max_replication(spa_t *spa); 957 extern int spa_prev_software_version(spa_t *spa); 958 extern int spa_busy(void); 959 extern uint8_t spa_get_failmode(spa_t *spa); 960 extern boolean_t spa_suspended(spa_t *spa); 961 extern uint64_t spa_bootfs(spa_t *spa); 962 extern uint64_t spa_delegation(spa_t *spa); 963 extern objset_t *spa_meta_objset(spa_t *spa); 964 extern uint64_t spa_deadman_synctime(spa_t *spa); 965 extern uint64_t spa_dirty_data(spa_t *spa); 966 967 /* Miscellaneous support routines */ 968 extern void spa_load_failed(spa_t *spa, const char *fmt, ...); 969 extern void spa_load_note(spa_t *spa, const char *fmt, ...); 970 extern void spa_activate_mos_feature(spa_t *spa, const char *feature, 971 dmu_tx_t *tx); 972 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature); 973 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid); 974 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid); 975 extern char *spa_strdup(const char *); 976 extern void spa_strfree(char *); 977 extern uint64_t spa_get_random(uint64_t range); 978 extern uint64_t spa_generate_guid(spa_t *spa); 979 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp); 980 extern void spa_freeze(spa_t *spa); 981 extern int spa_change_guid(spa_t *spa); 982 extern void spa_upgrade(spa_t *spa, uint64_t version); 983 extern void spa_evict_all(void); 984 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid, 985 boolean_t l2cache); 986 extern boolean_t spa_has_spare(spa_t *, uint64_t guid); 987 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva); 988 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp); 989 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp); 990 extern boolean_t spa_has_slogs(spa_t *spa); 991 extern boolean_t spa_is_root(spa_t *spa); 992 extern boolean_t spa_writeable(spa_t *spa); 993 extern boolean_t spa_has_pending_synctask(spa_t *spa); 994 extern int spa_maxblocksize(spa_t *spa); 995 extern int spa_maxdnodesize(spa_t *spa); 996 extern boolean_t spa_multihost(spa_t *spa); 997 extern unsigned long spa_get_hostid(void); 998 extern boolean_t spa_has_checkpoint(spa_t *spa); 999 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa); 1000 extern boolean_t spa_suspend_async_destroy(spa_t *spa); 1001 extern uint64_t spa_min_claim_txg(spa_t *spa); 1002 extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp); 1003 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva, 1004 const blkptr_t *bp); 1005 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size, 1006 void *arg); 1007 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp, 1008 spa_remap_cb_t callback, void *arg); 1009 extern uint64_t spa_get_last_removal_txg(spa_t *spa); 1010 extern boolean_t spa_trust_config(spa_t *spa); 1011 extern uint64_t spa_missing_tvds_allowed(spa_t *spa); 1012 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing); 1013 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa); 1014 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *); 1015 1016 extern int spa_mode(spa_t *spa); 1017 extern uint64_t zfs_strtonum(const char *str, char **nptr); 1018 1019 extern char *spa_his_ievent_table[]; 1020 1021 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx); 1022 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read, 1023 char *his_buf); 1024 extern int spa_history_log(spa_t *spa, const char *his_buf); 1025 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl); 1026 extern void spa_history_log_version(spa_t *spa, const char *operation); 1027 extern void spa_history_log_internal(spa_t *spa, const char *operation, 1028 dmu_tx_t *tx, const char *fmt, ...); 1029 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op, 1030 dmu_tx_t *tx, const char *fmt, ...); 1031 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation, 1032 dmu_tx_t *tx, const char *fmt, ...); 1033 1034 /* error handling */ 1035 struct zbookmark_phys; 1036 extern void spa_log_error(spa_t *spa, const struct zbookmark_phys *zb); 1037 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd, 1038 const struct zbookmark_phys *zb, struct zio *zio, uint64_t stateoroffset, 1039 uint64_t length); 1040 extern void zfs_post_remove(spa_t *spa, vdev_t *vd); 1041 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd); 1042 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd); 1043 extern uint64_t spa_get_errlog_size(spa_t *spa); 1044 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count); 1045 extern void spa_errlog_rotate(spa_t *spa); 1046 extern void spa_errlog_drain(spa_t *spa); 1047 extern void spa_errlog_sync(spa_t *spa, uint64_t txg); 1048 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub); 1049 1050 /* vdev cache */ 1051 extern void vdev_cache_stat_init(void); 1052 extern void vdev_cache_stat_fini(void); 1053 1054 /* vdev mirror */ 1055 extern void vdev_mirror_stat_init(void); 1056 extern void vdev_mirror_stat_fini(void); 1057 1058 /* Initialization and termination */ 1059 extern void spa_init(int flags); 1060 extern void spa_fini(void); 1061 extern void spa_boot_init(void); 1062 1063 /* properties */ 1064 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp); 1065 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp); 1066 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx); 1067 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t); 1068 1069 /* asynchronous event notification */ 1070 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl, 1071 const char *name); 1072 extern sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, 1073 const char *name); 1074 extern void spa_event_post(sysevent_t *ev); 1075 extern void spa_event_discard(sysevent_t *ev); 1076 1077 #ifdef ZFS_DEBUG 1078 #define dprintf_bp(bp, fmt, ...) do { \ 1079 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \ 1080 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \ 1081 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \ 1082 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \ 1083 kmem_free(__blkbuf, BP_SPRINTF_LEN); \ 1084 } \ 1085 _NOTE(CONSTCOND) } while (0) 1086 #else 1087 #define dprintf_bp(bp, fmt, ...) 1088 #endif 1089 1090 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */ 1091 1092 #ifdef __cplusplus 1093 } 1094 #endif 1095 1096 #endif /* _SYS_SPA_H */ 1097