xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/metaslab_impl.h (revision 3299f39fdcbdab4be7a9c70daa3873f2b78a398d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
28  */
29 
30 #ifndef _SYS_METASLAB_IMPL_H
31 #define	_SYS_METASLAB_IMPL_H
32 
33 #include <sys/metaslab.h>
34 #include <sys/space_map.h>
35 #include <sys/range_tree.h>
36 #include <sys/vdev.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 
40 #ifdef	__cplusplus
41 extern "C" {
42 #endif
43 
44 /*
45  * Metaslab allocation tracing record.
46  */
47 typedef struct metaslab_alloc_trace {
48 	list_node_t			mat_list_node;
49 	metaslab_group_t		*mat_mg;
50 	metaslab_t			*mat_msp;
51 	uint64_t			mat_size;
52 	uint64_t			mat_weight;
53 	uint32_t			mat_dva_id;
54 	uint64_t			mat_offset;
55 	int					mat_allocator;
56 } metaslab_alloc_trace_t;
57 
58 /*
59  * Used by the metaslab allocation tracing facility to indicate
60  * error conditions. These errors are stored to the offset member
61  * of the metaslab_alloc_trace_t record and displayed by mdb.
62  */
63 typedef enum trace_alloc_type {
64 	TRACE_ALLOC_FAILURE	= -1ULL,
65 	TRACE_TOO_SMALL		= -2ULL,
66 	TRACE_FORCE_GANG	= -3ULL,
67 	TRACE_NOT_ALLOCATABLE	= -4ULL,
68 	TRACE_GROUP_FAILURE	= -5ULL,
69 	TRACE_ENOSPC		= -6ULL,
70 	TRACE_CONDENSING	= -7ULL,
71 	TRACE_VDEV_ERROR	= -8ULL
72 } trace_alloc_type_t;
73 
74 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
75 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
76 #define	METASLAB_WEIGHT_CLAIM		(1ULL << 61)
77 #define	METASLAB_WEIGHT_TYPE		(1ULL << 60)
78 #define	METASLAB_ACTIVE_MASK		\
79 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY | \
80 	METASLAB_WEIGHT_CLAIM)
81 
82 /*
83  * The metaslab weight is used to encode the amount of free space in a
84  * metaslab, such that the "best" metaslab appears first when sorting the
85  * metaslabs by weight. The weight (and therefore the "best" metaslab) can
86  * be determined in two different ways: by computing a weighted sum of all
87  * the free space in the metaslab (a space based weight) or by counting only
88  * the free segments of the largest size (a segment based weight). We prefer
89  * the segment based weight because it reflects how the free space is
90  * comprised, but we cannot always use it -- legacy pools do not have the
91  * space map histogram information necessary to determine the largest
92  * contiguous regions. Pools that have the space map histogram determine
93  * the segment weight by looking at each bucket in the histogram and
94  * determining the free space whose size in bytes is in the range:
95  *	[2^i, 2^(i+1))
96  * We then encode the largest index, i, that contains regions into the
97  * segment-weighted value.
98  *
99  * Space-based weight:
100  *
101  *      64      56      48      40      32      24      16      8       0
102  *      +-------+-------+-------+-------+-------+-------+-------+-------+
103  *      |PSC1|                  weighted-free space                     |
104  *      +-------+-------+-------+-------+-------+-------+-------+-------+
105  *
106  *	PS - indicates primary and secondary activation
107  *	C - indicates activation for claimed block zio
108  *	space - the fragmentation-weighted space
109  *
110  * Segment-based weight:
111  *
112  *      64      56      48      40      32      24      16      8       0
113  *      +-------+-------+-------+-------+-------+-------+-------+-------+
114  *      |PSC0| idx|            count of segments in region              |
115  *      +-------+-------+-------+-------+-------+-------+-------+-------+
116  *
117  *	PS - indicates primary and secondary activation
118  *	C - indicates activation for claimed block zio
119  *	idx - index for the highest bucket in the histogram
120  *	count - number of segments in the specified bucket
121  */
122 #define	WEIGHT_GET_ACTIVE(weight)		BF64_GET((weight), 61, 3)
123 #define	WEIGHT_SET_ACTIVE(weight, x)		BF64_SET((weight), 61, 3, x)
124 
125 #define	WEIGHT_IS_SPACEBASED(weight)		\
126 	((weight) == 0 || BF64_GET((weight), 60, 1))
127 #define	WEIGHT_SET_SPACEBASED(weight)		BF64_SET((weight), 60, 1, 1)
128 
129 /*
130  * These macros are only applicable to segment-based weighting.
131  */
132 #define	WEIGHT_GET_INDEX(weight)		BF64_GET((weight), 54, 6)
133 #define	WEIGHT_SET_INDEX(weight, x)		BF64_SET((weight), 54, 6, x)
134 #define	WEIGHT_GET_COUNT(weight)		BF64_GET((weight), 0, 54)
135 #define	WEIGHT_SET_COUNT(weight, x)		BF64_SET((weight), 0, 54, x)
136 
137 /*
138  * A metaslab class encompasses a category of allocatable top-level vdevs.
139  * Each top-level vdev is associated with a metaslab group which defines
140  * the allocatable region for that vdev. Examples of these categories include
141  * "normal" for data block allocations (i.e. main pool allocations) or "log"
142  * for allocations designated for intent log devices (i.e. slog devices).
143  * When a block allocation is requested from the SPA it is associated with a
144  * metaslab_class_t, and only top-level vdevs (i.e. metaslab groups) belonging
145  * to the class can be used to satisfy that request. Allocations are done
146  * by traversing the metaslab groups that are linked off of the mc_rotor field.
147  * This rotor points to the next metaslab group where allocations will be
148  * attempted. Allocating a block is a 3 step process -- select the metaslab
149  * group, select the metaslab, and then allocate the block. The metaslab
150  * class defines the low-level block allocator that will be used as the
151  * final step in allocation. These allocators are pluggable allowing each class
152  * to use a block allocator that best suits that class.
153  */
154 struct metaslab_class {
155 	kmutex_t		mc_lock;
156 	spa_t			*mc_spa;
157 	metaslab_group_t	*mc_rotor;
158 	metaslab_ops_t		*mc_ops;
159 	uint64_t		mc_aliquot;
160 
161 	/*
162 	 * Track the number of metaslab groups that have been initialized
163 	 * and can accept allocations. An initialized metaslab group is
164 	 * one has been completely added to the config (i.e. we have
165 	 * updated the MOS config and the space has been added to the pool).
166 	 */
167 	uint64_t		mc_groups;
168 
169 	/*
170 	 * Toggle to enable/disable the allocation throttle.
171 	 */
172 	boolean_t		mc_alloc_throttle_enabled;
173 
174 	/*
175 	 * The allocation throttle works on a reservation system. Whenever
176 	 * an asynchronous zio wants to perform an allocation it must
177 	 * first reserve the number of blocks that it wants to allocate.
178 	 * If there aren't sufficient slots available for the pending zio
179 	 * then that I/O is throttled until more slots free up. The current
180 	 * number of reserved allocations is maintained by the mc_alloc_slots
181 	 * refcount. The mc_alloc_max_slots value determines the maximum
182 	 * number of allocations that the system allows. Gang blocks are
183 	 * allowed to reserve slots even if we've reached the maximum
184 	 * number of allocations allowed.
185 	 */
186 	uint64_t		*mc_alloc_max_slots;
187 	refcount_t		*mc_alloc_slots;
188 
189 	uint64_t		mc_alloc_groups; /* # of allocatable groups */
190 
191 	uint64_t		mc_alloc;	/* total allocated space */
192 	uint64_t		mc_deferred;	/* total deferred frees */
193 	uint64_t		mc_space;	/* total space (alloc + free) */
194 	uint64_t		mc_dspace;	/* total deflated space */
195 	uint64_t		mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
196 };
197 
198 /*
199  * Metaslab groups encapsulate all the allocatable regions (i.e. metaslabs)
200  * of a top-level vdev. They are linked togther to form a circular linked
201  * list and can belong to only one metaslab class. Metaslab groups may become
202  * ineligible for allocations for a number of reasons such as limited free
203  * space, fragmentation, or going offline. When this happens the allocator will
204  * simply find the next metaslab group in the linked list and attempt
205  * to allocate from that group instead.
206  */
207 struct metaslab_group {
208 	kmutex_t		mg_lock;
209 	metaslab_t		**mg_primaries;
210 	metaslab_t		**mg_secondaries;
211 	avl_tree_t		mg_metaslab_tree;
212 	uint64_t		mg_aliquot;
213 	boolean_t		mg_allocatable;		/* can we allocate? */
214 	uint64_t		mg_ms_ready;
215 
216 	/*
217 	 * A metaslab group is considered to be initialized only after
218 	 * we have updated the MOS config and added the space to the pool.
219 	 * We only allow allocation attempts to a metaslab group if it
220 	 * has been initialized.
221 	 */
222 	boolean_t		mg_initialized;
223 
224 	uint64_t		mg_free_capacity;	/* percentage free */
225 	int64_t			mg_bias;
226 	int64_t			mg_activation_count;
227 	metaslab_class_t	*mg_class;
228 	vdev_t			*mg_vd;
229 	taskq_t			*mg_taskq;
230 	metaslab_group_t	*mg_prev;
231 	metaslab_group_t	*mg_next;
232 
233 	/*
234 	 * In order for the allocation throttle to function properly, we cannot
235 	 * have too many IOs going to each disk by default; the throttle
236 	 * operates by allocating more work to disks that finish quickly, so
237 	 * allocating larger chunks to each disk reduces its effectiveness.
238 	 * However, if the number of IOs going to each allocator is too small,
239 	 * we will not perform proper aggregation at the vdev_queue layer,
240 	 * also resulting in decreased performance. Therefore, we will use a
241 	 * ramp-up strategy.
242 	 *
243 	 * Each allocator in each metaslab group has a current queue depth
244 	 * (mg_alloc_queue_depth[allocator]) and a current max queue depth
245 	 * (mg_cur_max_alloc_queue_depth[allocator]), and each metaslab group
246 	 * has an absolute max queue depth (mg_max_alloc_queue_depth).  We
247 	 * add IOs to an allocator until the mg_alloc_queue_depth for that
248 	 * allocator hits the cur_max. Every time an IO completes for a given
249 	 * allocator on a given metaslab group, we increment its cur_max until
250 	 * it reaches mg_max_alloc_queue_depth. The cur_max resets every txg to
251 	 * help protect against disks that decrease in performance over time.
252 	 *
253 	 * It's possible for an allocator to handle more allocations than
254 	 * its max. This can occur when gang blocks are required or when other
255 	 * groups are unable to handle their share of allocations.
256 	 */
257 	uint64_t		mg_max_alloc_queue_depth;
258 	uint64_t		*mg_cur_max_alloc_queue_depth;
259 	refcount_t		*mg_alloc_queue_depth;
260 	int			mg_allocators;
261 	/*
262 	 * A metalab group that can no longer allocate the minimum block
263 	 * size will set mg_no_free_space. Once a metaslab group is out
264 	 * of space then its share of work must be distributed to other
265 	 * groups.
266 	 */
267 	boolean_t		mg_no_free_space;
268 
269 	uint64_t		mg_allocations;
270 	uint64_t		mg_failed_allocations;
271 	uint64_t		mg_fragmentation;
272 	uint64_t		mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
273 };
274 
275 /*
276  * This value defines the number of elements in the ms_lbas array. The value
277  * of 64 was chosen as it covers all power of 2 buckets up to UINT64_MAX.
278  * This is the equivalent of highbit(UINT64_MAX).
279  */
280 #define	MAX_LBAS	64
281 
282 /*
283  * Each metaslab maintains a set of in-core trees to track metaslab
284  * operations.  The in-core free tree (ms_allocatable) contains the list of
285  * free segments which are eligible for allocation.  As blocks are
286  * allocated, the allocated segment are removed from the ms_allocatable and
287  * added to a per txg allocation tree (ms_allocating).  As blocks are
288  * freed, they are added to the free tree (ms_freeing).  These trees
289  * allow us to process all allocations and frees in syncing context
290  * where it is safe to update the on-disk space maps.  An additional set
291  * of in-core trees is maintained to track deferred frees
292  * (ms_defer).  Once a block is freed it will move from the
293  * ms_freed to the ms_defer tree.  A deferred free means that a block
294  * has been freed but cannot be used by the pool until TXG_DEFER_SIZE
295  * transactions groups later.  For example, a block that is freed in txg
296  * 50 will not be available for reallocation until txg 52 (50 +
297  * TXG_DEFER_SIZE).  This provides a safety net for uberblock rollback.
298  * A pool could be safely rolled back TXG_DEFERS_SIZE transactions
299  * groups and ensure that no block has been reallocated.
300  *
301  * The simplified transition diagram looks like this:
302  *
303  *
304  *      ALLOCATE
305  *         |
306  *         V
307  *    free segment (ms_allocatable) -> ms_allocating[4] -> (write to space map)
308  *         ^
309  *         |                        ms_freeing <--- FREE
310  *         |                             |
311  *         |                             v
312  *         |                         ms_freed
313  *         |                             |
314  *         +-------- ms_defer[2] <-------+-------> (write to space map)
315  *
316  *
317  * Each metaslab's space is tracked in a single space map in the MOS,
318  * which is only updated in syncing context.  Each time we sync a txg,
319  * we append the allocs and frees from that txg to the space map.  The
320  * pool space is only updated once all metaslabs have finished syncing.
321  *
322  * To load the in-core free tree we read the space map from disk.  This
323  * object contains a series of alloc and free records that are combined
324  * to make up the list of all free segments in this metaslab.  These
325  * segments are represented in-core by the ms_allocatable and are stored
326  * in an AVL tree.
327  *
328  * As the space map grows (as a result of the appends) it will
329  * eventually become space-inefficient.  When the metaslab's in-core
330  * free tree is zfs_condense_pct/100 times the size of the minimal
331  * on-disk representation, we rewrite it in its minimized form.  If a
332  * metaslab needs to condense then we must set the ms_condensing flag to
333  * ensure that allocations are not performed on the metaslab that is
334  * being written.
335  */
336 struct metaslab {
337 	kmutex_t	ms_lock;
338 	kmutex_t	ms_sync_lock;
339 	kcondvar_t	ms_load_cv;
340 	space_map_t	*ms_sm;
341 	uint64_t	ms_id;
342 	uint64_t	ms_start;
343 	uint64_t	ms_size;
344 	uint64_t	ms_fragmentation;
345 
346 	range_tree_t	*ms_allocating[TXG_SIZE];
347 	range_tree_t	*ms_allocatable;
348 
349 	/*
350 	 * The following range trees are accessed only from syncing context.
351 	 * ms_free*tree only have entries while syncing, and are empty
352 	 * between syncs.
353 	 */
354 	range_tree_t	*ms_freeing;	/* to free this syncing txg */
355 	range_tree_t	*ms_freed;	/* already freed this syncing txg */
356 	range_tree_t	*ms_defer[TXG_DEFER_SIZE];
357 	range_tree_t	*ms_checkpointing; /* to add to the checkpoint */
358 
359 	boolean_t	ms_condensing;	/* condensing? */
360 	boolean_t	ms_condense_wanted;
361 	uint64_t	ms_condense_checked_txg;
362 
363 	/*
364 	 * We must hold both ms_lock and ms_group->mg_lock in order to
365 	 * modify ms_loaded.
366 	 */
367 	boolean_t	ms_loaded;
368 	boolean_t	ms_loading;
369 
370 	int64_t		ms_deferspace;	/* sum of ms_defermap[] space	*/
371 	uint64_t	ms_weight;	/* weight vs. others in group	*/
372 	uint64_t	ms_activation_weight;	/* activation weight	*/
373 
374 	/*
375 	 * Track of whenever a metaslab is selected for loading or allocation.
376 	 * We use this value to determine how long the metaslab should
377 	 * stay cached.
378 	 */
379 	uint64_t	ms_selected_txg;
380 
381 	uint64_t	ms_alloc_txg;	/* last successful alloc (debug only) */
382 	uint64_t	ms_max_size;	/* maximum allocatable size	*/
383 
384 	/*
385 	 * -1 if it's not active in an allocator, otherwise set to the allocator
386 	 * this metaslab is active for.
387 	 */
388 	int		ms_allocator;
389 	boolean_t	ms_primary; /* Only valid if ms_allocator is not -1 */
390 
391 	/*
392 	 * The metaslab block allocators can optionally use a size-ordered
393 	 * range tree and/or an array of LBAs. Not all allocators use
394 	 * this functionality. The ms_allocatable_by_size should always
395 	 * contain the same number of segments as the ms_allocatable. The
396 	 * only difference is that the ms_allocatable_by_size is ordered by
397 	 * segment sizes.
398 	 */
399 	avl_tree_t	ms_allocatable_by_size;
400 	uint64_t	ms_lbas[MAX_LBAS];
401 
402 	metaslab_group_t *ms_group;	/* metaslab group		*/
403 	avl_node_t	ms_group_node;	/* node in metaslab group tree	*/
404 	txg_node_t	ms_txg_node;	/* per-txg dirty metaslab links	*/
405 
406 	boolean_t	ms_new;
407 };
408 
409 #ifdef	__cplusplus
410 }
411 #endif
412 
413 #endif	/* _SYS_METASLAB_IMPL_H */
414