1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 * Copyright 2013 DEY Storage Systems, Inc. 28 * Copyright 2014 HybridCluster. All rights reserved. 29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 30 * Copyright 2013 Saso Kiselkov. All rights reserved. 31 * Copyright (c) 2014 Integros [integros.com] 32 */ 33 34 /* Portions Copyright 2010 Robert Milkowski */ 35 36 #ifndef _SYS_DMU_H 37 #define _SYS_DMU_H 38 39 /* 40 * This file describes the interface that the DMU provides for its 41 * consumers. 42 * 43 * The DMU also interacts with the SPA. That interface is described in 44 * dmu_spa.h. 45 */ 46 47 #include <sys/zfs_context.h> 48 #include <sys/inttypes.h> 49 #include <sys/cred.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/zio_compress.h> 52 #include <sys/zio_priority.h> 53 54 #ifdef __cplusplus 55 extern "C" { 56 #endif 57 58 struct uio; 59 struct xuio; 60 struct page; 61 struct vnode; 62 struct spa; 63 struct zilog; 64 struct zio; 65 struct blkptr; 66 struct zap_cursor; 67 struct dsl_dataset; 68 struct dsl_pool; 69 struct dnode; 70 struct drr_begin; 71 struct drr_end; 72 struct zbookmark_phys; 73 struct spa; 74 struct nvlist; 75 struct arc_buf; 76 struct zio_prop; 77 struct sa_handle; 78 79 typedef struct objset objset_t; 80 typedef struct dmu_tx dmu_tx_t; 81 typedef struct dsl_dir dsl_dir_t; 82 typedef struct dnode dnode_t; 83 84 typedef enum dmu_object_byteswap { 85 DMU_BSWAP_UINT8, 86 DMU_BSWAP_UINT16, 87 DMU_BSWAP_UINT32, 88 DMU_BSWAP_UINT64, 89 DMU_BSWAP_ZAP, 90 DMU_BSWAP_DNODE, 91 DMU_BSWAP_OBJSET, 92 DMU_BSWAP_ZNODE, 93 DMU_BSWAP_OLDACL, 94 DMU_BSWAP_ACL, 95 /* 96 * Allocating a new byteswap type number makes the on-disk format 97 * incompatible with any other format that uses the same number. 98 * 99 * Data can usually be structured to work with one of the 100 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 101 */ 102 DMU_BSWAP_NUMFUNCS 103 } dmu_object_byteswap_t; 104 105 #define DMU_OT_NEWTYPE 0x80 106 #define DMU_OT_METADATA 0x40 107 #define DMU_OT_BYTESWAP_MASK 0x3f 108 109 /* 110 * Defines a uint8_t object type. Object types specify if the data 111 * in the object is metadata (boolean) and how to byteswap the data 112 * (dmu_object_byteswap_t). 113 */ 114 #define DMU_OT(byteswap, metadata) \ 115 (DMU_OT_NEWTYPE | \ 116 ((metadata) ? DMU_OT_METADATA : 0) | \ 117 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 118 119 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 120 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 121 (ot) < DMU_OT_NUMTYPES) 122 123 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 124 ((ot) & DMU_OT_METADATA) : \ 125 dmu_ot[(ot)].ot_metadata) 126 127 /* 128 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 129 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 130 * is repurposed for embedded BPs. 131 */ 132 #define DMU_OT_HAS_FILL(ot) \ 133 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 134 135 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 136 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 137 dmu_ot[(ot)].ot_byteswap) 138 139 typedef enum dmu_object_type { 140 DMU_OT_NONE, 141 /* general: */ 142 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 143 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 144 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 145 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 146 DMU_OT_BPOBJ, /* UINT64 */ 147 DMU_OT_BPOBJ_HDR, /* UINT64 */ 148 /* spa: */ 149 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 150 DMU_OT_SPACE_MAP, /* UINT64 */ 151 /* zil: */ 152 DMU_OT_INTENT_LOG, /* UINT64 */ 153 /* dmu: */ 154 DMU_OT_DNODE, /* DNODE */ 155 DMU_OT_OBJSET, /* OBJSET */ 156 /* dsl: */ 157 DMU_OT_DSL_DIR, /* UINT64 */ 158 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 159 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 160 DMU_OT_DSL_PROPS, /* ZAP */ 161 DMU_OT_DSL_DATASET, /* UINT64 */ 162 /* zpl: */ 163 DMU_OT_ZNODE, /* ZNODE */ 164 DMU_OT_OLDACL, /* Old ACL */ 165 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 166 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 167 DMU_OT_MASTER_NODE, /* ZAP */ 168 DMU_OT_UNLINKED_SET, /* ZAP */ 169 /* zvol: */ 170 DMU_OT_ZVOL, /* UINT8 */ 171 DMU_OT_ZVOL_PROP, /* ZAP */ 172 /* other; for testing only! */ 173 DMU_OT_PLAIN_OTHER, /* UINT8 */ 174 DMU_OT_UINT64_OTHER, /* UINT64 */ 175 DMU_OT_ZAP_OTHER, /* ZAP */ 176 /* new object types: */ 177 DMU_OT_ERROR_LOG, /* ZAP */ 178 DMU_OT_SPA_HISTORY, /* UINT8 */ 179 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 180 DMU_OT_POOL_PROPS, /* ZAP */ 181 DMU_OT_DSL_PERMS, /* ZAP */ 182 DMU_OT_ACL, /* ACL */ 183 DMU_OT_SYSACL, /* SYSACL */ 184 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 185 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 186 DMU_OT_NEXT_CLONES, /* ZAP */ 187 DMU_OT_SCAN_QUEUE, /* ZAP */ 188 DMU_OT_USERGROUP_USED, /* ZAP */ 189 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 190 DMU_OT_USERREFS, /* ZAP */ 191 DMU_OT_DDT_ZAP, /* ZAP */ 192 DMU_OT_DDT_STATS, /* ZAP */ 193 DMU_OT_SA, /* System attr */ 194 DMU_OT_SA_MASTER_NODE, /* ZAP */ 195 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 196 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 197 DMU_OT_SCAN_XLATE, /* ZAP */ 198 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 199 DMU_OT_DEADLIST, /* ZAP */ 200 DMU_OT_DEADLIST_HDR, /* UINT64 */ 201 DMU_OT_DSL_CLONES, /* ZAP */ 202 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 203 /* 204 * Do not allocate new object types here. Doing so makes the on-disk 205 * format incompatible with any other format that uses the same object 206 * type number. 207 * 208 * When creating an object which does not have one of the above types 209 * use the DMU_OTN_* type with the correct byteswap and metadata 210 * values. 211 * 212 * The DMU_OTN_* types do not have entries in the dmu_ot table, 213 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 214 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 215 * and DMU_OTN_* types). 216 */ 217 DMU_OT_NUMTYPES, 218 219 /* 220 * Names for valid types declared with DMU_OT(). 221 */ 222 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 223 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 224 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 225 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 226 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 227 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 228 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 229 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 230 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 231 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), 232 } dmu_object_type_t; 233 234 typedef enum txg_how { 235 TXG_WAIT = 1, 236 TXG_NOWAIT, 237 TXG_WAITED, 238 } txg_how_t; 239 240 void byteswap_uint64_array(void *buf, size_t size); 241 void byteswap_uint32_array(void *buf, size_t size); 242 void byteswap_uint16_array(void *buf, size_t size); 243 void byteswap_uint8_array(void *buf, size_t size); 244 void zap_byteswap(void *buf, size_t size); 245 void zfs_oldacl_byteswap(void *buf, size_t size); 246 void zfs_acl_byteswap(void *buf, size_t size); 247 void zfs_znode_byteswap(void *buf, size_t size); 248 249 #define DS_FIND_SNAPSHOTS (1<<0) 250 #define DS_FIND_CHILDREN (1<<1) 251 #define DS_FIND_SERIALIZE (1<<2) 252 253 /* 254 * The maximum number of bytes that can be accessed as part of one 255 * operation, including metadata. 256 */ 257 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ 258 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 259 260 #define DMU_USERUSED_OBJECT (-1ULL) 261 #define DMU_GROUPUSED_OBJECT (-2ULL) 262 263 /* 264 * artificial blkids for bonus buffer and spill blocks 265 */ 266 #define DMU_BONUS_BLKID (-1ULL) 267 #define DMU_SPILL_BLKID (-2ULL) 268 /* 269 * Public routines to create, destroy, open, and close objsets. 270 */ 271 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 272 int dmu_objset_own(const char *name, dmu_objset_type_t type, 273 boolean_t readonly, void *tag, objset_t **osp); 274 void dmu_objset_rele(objset_t *os, void *tag); 275 void dmu_objset_disown(objset_t *os, void *tag); 276 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 277 278 void dmu_objset_evict_dbufs(objset_t *os); 279 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 280 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); 281 int dmu_objset_clone(const char *name, const char *origin); 282 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 283 struct nvlist *errlist); 284 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 285 int dmu_objset_snapshot_tmp(const char *, const char *, int); 286 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 287 int flags); 288 void dmu_objset_byteswap(void *buf, size_t size); 289 int dsl_dataset_rename_snapshot(const char *fsname, 290 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 291 292 typedef struct dmu_buf { 293 uint64_t db_object; /* object that this buffer is part of */ 294 uint64_t db_offset; /* byte offset in this object */ 295 uint64_t db_size; /* size of buffer in bytes */ 296 void *db_data; /* data in buffer */ 297 } dmu_buf_t; 298 299 /* 300 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 301 */ 302 #define DMU_POOL_DIRECTORY_OBJECT 1 303 #define DMU_POOL_CONFIG "config" 304 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 305 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 306 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 307 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 308 #define DMU_POOL_ROOT_DATASET "root_dataset" 309 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 310 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 311 #define DMU_POOL_ERRLOG_LAST "errlog_last" 312 #define DMU_POOL_SPARES "spares" 313 #define DMU_POOL_DEFLATE "deflate" 314 #define DMU_POOL_HISTORY "history" 315 #define DMU_POOL_PROPS "pool_props" 316 #define DMU_POOL_L2CACHE "l2cache" 317 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 318 #define DMU_POOL_DDT "DDT-%s-%s-%s" 319 #define DMU_POOL_DDT_STATS "DDT-statistics" 320 #define DMU_POOL_CREATION_VERSION "creation_version" 321 #define DMU_POOL_SCAN "scan" 322 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 323 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 324 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 325 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 326 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 327 328 /* 329 * Allocate an object from this objset. The range of object numbers 330 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 331 * 332 * The transaction must be assigned to a txg. The newly allocated 333 * object will be "held" in the transaction (ie. you can modify the 334 * newly allocated object in this transaction). 335 * 336 * dmu_object_alloc() chooses an object and returns it in *objectp. 337 * 338 * dmu_object_claim() allocates a specific object number. If that 339 * number is already allocated, it fails and returns EEXIST. 340 * 341 * Return 0 on success, or ENOSPC or EEXIST as specified above. 342 */ 343 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 344 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 345 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 346 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 347 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 348 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 349 350 /* 351 * Free an object from this objset. 352 * 353 * The object's data will be freed as well (ie. you don't need to call 354 * dmu_free(object, 0, -1, tx)). 355 * 356 * The object need not be held in the transaction. 357 * 358 * If there are any holds on this object's buffers (via dmu_buf_hold()), 359 * or tx holds on the object (via dmu_tx_hold_object()), you can not 360 * free it; it fails and returns EBUSY. 361 * 362 * If the object is not allocated, it fails and returns ENOENT. 363 * 364 * Return 0 on success, or EBUSY or ENOENT as specified above. 365 */ 366 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 367 368 /* 369 * Find the next allocated or free object. 370 * 371 * The objectp parameter is in-out. It will be updated to be the next 372 * object which is allocated. Ignore objects which have not been 373 * modified since txg. 374 * 375 * XXX Can only be called on a objset with no dirty data. 376 * 377 * Returns 0 on success, or ENOENT if there are no more objects. 378 */ 379 int dmu_object_next(objset_t *os, uint64_t *objectp, 380 boolean_t hole, uint64_t txg); 381 382 /* 383 * Set the data blocksize for an object. 384 * 385 * The object cannot have any blocks allcated beyond the first. If 386 * the first block is allocated already, the new size must be greater 387 * than the current block size. If these conditions are not met, 388 * ENOTSUP will be returned. 389 * 390 * Returns 0 on success, or EBUSY if there are any holds on the object 391 * contents, or ENOTSUP as described above. 392 */ 393 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 394 int ibs, dmu_tx_t *tx); 395 396 /* 397 * Set the checksum property on a dnode. The new checksum algorithm will 398 * apply to all newly written blocks; existing blocks will not be affected. 399 */ 400 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 401 dmu_tx_t *tx); 402 403 /* 404 * Set the compress property on a dnode. The new compression algorithm will 405 * apply to all newly written blocks; existing blocks will not be affected. 406 */ 407 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 408 dmu_tx_t *tx); 409 410 void 411 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 412 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 413 int compressed_size, int byteorder, dmu_tx_t *tx); 414 415 /* 416 * Decide how to write a block: checksum, compression, number of copies, etc. 417 */ 418 #define WP_NOFILL 0x1 419 #define WP_DMU_SYNC 0x2 420 #define WP_SPILL 0x4 421 422 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 423 enum zio_compress compress_override, struct zio_prop *zp); 424 /* 425 * The bonus data is accessed more or less like a regular buffer. 426 * You must dmu_bonus_hold() to get the buffer, which will give you a 427 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 428 * data. As with any normal buffer, you must call dmu_buf_read() to 429 * read db_data, dmu_buf_will_dirty() before modifying it, and the 430 * object must be held in an assigned transaction before calling 431 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 432 * buffer as well. You must release your hold with dmu_buf_rele(). 433 * 434 * Returns ENOENT, EIO, or 0. 435 */ 436 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 437 int dmu_bonus_max(void); 438 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 439 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 440 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 441 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 442 443 /* 444 * Special spill buffer support used by "SA" framework 445 */ 446 447 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 448 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 449 void *tag, dmu_buf_t **dbp); 450 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 451 452 /* 453 * Obtain the DMU buffer from the specified object which contains the 454 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 455 * that it will remain in memory. You must release the hold with 456 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 457 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 458 * 459 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 460 * on the returned buffer before reading or writing the buffer's 461 * db_data. The comments for those routines describe what particular 462 * operations are valid after calling them. 463 * 464 * The object number must be a valid, allocated object number. 465 */ 466 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 467 void *tag, dmu_buf_t **, int flags); 468 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 469 void *tag, dmu_buf_t **dbp, int flags); 470 471 /* 472 * Add a reference to a dmu buffer that has already been held via 473 * dmu_buf_hold() in the current context. 474 */ 475 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 476 477 /* 478 * Attempt to add a reference to a dmu buffer that is in an unknown state, 479 * using a pointer that may have been invalidated by eviction processing. 480 * The request will succeed if the passed in dbuf still represents the 481 * same os/object/blkid, is ineligible for eviction, and has at least 482 * one hold by a user other than the syncer. 483 */ 484 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 485 uint64_t blkid, void *tag); 486 487 void dmu_buf_rele(dmu_buf_t *db, void *tag); 488 uint64_t dmu_buf_refcount(dmu_buf_t *db); 489 490 /* 491 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 492 * range of an object. A pointer to an array of dmu_buf_t*'s is 493 * returned (in *dbpp). 494 * 495 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 496 * frees the array. The hold on the array of buffers MUST be released 497 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 498 * individually with dmu_buf_rele. 499 */ 500 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 501 uint64_t length, boolean_t read, void *tag, 502 int *numbufsp, dmu_buf_t ***dbpp); 503 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 504 505 typedef void dmu_buf_evict_func_t(void *user_ptr); 506 507 /* 508 * A DMU buffer user object may be associated with a dbuf for the 509 * duration of its lifetime. This allows the user of a dbuf (client) 510 * to attach private data to a dbuf (e.g. in-core only data such as a 511 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 512 * when that dbuf has been evicted. Clients typically respond to the 513 * eviction notification by freeing their private data, thus ensuring 514 * the same lifetime for both dbuf and private data. 515 * 516 * The mapping from a dmu_buf_user_t to any client private data is the 517 * client's responsibility. All current consumers of the API with private 518 * data embed a dmu_buf_user_t as the first member of the structure for 519 * their private data. This allows conversions between the two types 520 * with a simple cast. Since the DMU buf user API never needs access 521 * to the private data, other strategies can be employed if necessary 522 * or convenient for the client (e.g. using container_of() to do the 523 * conversion for private data that cannot have the dmu_buf_user_t as 524 * its first member). 525 * 526 * Eviction callbacks are executed without the dbuf mutex held or any 527 * other type of mechanism to guarantee that the dbuf is still available. 528 * For this reason, users must assume the dbuf has already been freed 529 * and not reference the dbuf from the callback context. 530 * 531 * Users requesting "immediate eviction" are notified as soon as the dbuf 532 * is only referenced by dirty records (dirties == holds). Otherwise the 533 * notification occurs after eviction processing for the dbuf begins. 534 */ 535 typedef struct dmu_buf_user { 536 /* 537 * Asynchronous user eviction callback state. 538 */ 539 taskq_ent_t dbu_tqent; 540 541 /* 542 * This instance's eviction function pointers. 543 * 544 * dbu_evict_func_sync is called synchronously and then 545 * dbu_evict_func_async is executed asynchronously on a taskq. 546 */ 547 dmu_buf_evict_func_t *dbu_evict_func_sync; 548 dmu_buf_evict_func_t *dbu_evict_func_async; 549 #ifdef ZFS_DEBUG 550 /* 551 * Pointer to user's dbuf pointer. NULL for clients that do 552 * not associate a dbuf with their user data. 553 * 554 * The dbuf pointer is cleared upon eviction so as to catch 555 * use-after-evict bugs in clients. 556 */ 557 dmu_buf_t **dbu_clear_on_evict_dbufp; 558 #endif 559 } dmu_buf_user_t; 560 561 /* 562 * Initialize the given dmu_buf_user_t instance with the eviction function 563 * evict_func, to be called when the user is evicted. 564 * 565 * NOTE: This function should only be called once on a given dmu_buf_user_t. 566 * To allow enforcement of this, dbu must already be zeroed on entry. 567 */ 568 /*ARGSUSED*/ 569 inline void 570 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 571 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) 572 { 573 ASSERT(dbu->dbu_evict_func_sync == NULL); 574 ASSERT(dbu->dbu_evict_func_async == NULL); 575 576 /* must have at least one evict func */ 577 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 578 dbu->dbu_evict_func_sync = evict_func_sync; 579 dbu->dbu_evict_func_async = evict_func_async; 580 #ifdef ZFS_DEBUG 581 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 582 #endif 583 } 584 585 /* 586 * Attach user data to a dbuf and mark it for normal (when the dbuf's 587 * data is cleared or its reference count goes to zero) eviction processing. 588 * 589 * Returns NULL on success, or the existing user if another user currently 590 * owns the buffer. 591 */ 592 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 593 594 /* 595 * Attach user data to a dbuf and mark it for immediate (its dirty and 596 * reference counts are equal) eviction processing. 597 * 598 * Returns NULL on success, or the existing user if another user currently 599 * owns the buffer. 600 */ 601 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 602 603 /* 604 * Replace the current user of a dbuf. 605 * 606 * If given the current user of a dbuf, replaces the dbuf's user with 607 * "new_user" and returns the user data pointer that was replaced. 608 * Otherwise returns the current, and unmodified, dbuf user pointer. 609 */ 610 void *dmu_buf_replace_user(dmu_buf_t *db, 611 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 612 613 /* 614 * Remove the specified user data for a DMU buffer. 615 * 616 * Returns the user that was removed on success, or the current user if 617 * another user currently owns the buffer. 618 */ 619 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 620 621 /* 622 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 623 */ 624 void *dmu_buf_get_user(dmu_buf_t *db); 625 626 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 627 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); 628 void dmu_buf_dnode_exit(dmu_buf_t *db); 629 630 /* Block until any in-progress dmu buf user evictions complete. */ 631 void dmu_buf_user_evict_wait(void); 632 633 /* 634 * Returns the blkptr associated with this dbuf, or NULL if not set. 635 */ 636 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 637 638 /* 639 * Indicate that you are going to modify the buffer's data (db_data). 640 * 641 * The transaction (tx) must be assigned to a txg (ie. you've called 642 * dmu_tx_assign()). The buffer's object must be held in the tx 643 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 644 */ 645 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 646 647 /* 648 * You must create a transaction, then hold the objects which you will 649 * (or might) modify as part of this transaction. Then you must assign 650 * the transaction to a transaction group. Once the transaction has 651 * been assigned, you can modify buffers which belong to held objects as 652 * part of this transaction. You can't modify buffers before the 653 * transaction has been assigned; you can't modify buffers which don't 654 * belong to objects which this transaction holds; you can't hold 655 * objects once the transaction has been assigned. You may hold an 656 * object which you are going to free (with dmu_object_free()), but you 657 * don't have to. 658 * 659 * You can abort the transaction before it has been assigned. 660 * 661 * Note that you may hold buffers (with dmu_buf_hold) at any time, 662 * regardless of transaction state. 663 */ 664 665 #define DMU_NEW_OBJECT (-1ULL) 666 #define DMU_OBJECT_END (-1ULL) 667 668 dmu_tx_t *dmu_tx_create(objset_t *os); 669 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 670 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 671 int len); 672 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 673 uint64_t len); 674 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 675 uint64_t len); 676 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 677 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 678 const char *name); 679 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 680 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 681 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 682 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 683 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 684 void dmu_tx_abort(dmu_tx_t *tx); 685 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how); 686 void dmu_tx_wait(dmu_tx_t *tx); 687 void dmu_tx_commit(dmu_tx_t *tx); 688 void dmu_tx_mark_netfree(dmu_tx_t *tx); 689 690 /* 691 * To register a commit callback, dmu_tx_callback_register() must be called. 692 * 693 * dcb_data is a pointer to caller private data that is passed on as a 694 * callback parameter. The caller is responsible for properly allocating and 695 * freeing it. 696 * 697 * When registering a callback, the transaction must be already created, but 698 * it cannot be committed or aborted. It can be assigned to a txg or not. 699 * 700 * The callback will be called after the transaction has been safely written 701 * to stable storage and will also be called if the dmu_tx is aborted. 702 * If there is any error which prevents the transaction from being committed to 703 * disk, the callback will be called with a value of error != 0. 704 */ 705 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 706 707 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 708 void *dcb_data); 709 710 /* 711 * Free up the data blocks for a defined range of a file. If size is 712 * -1, the range from offset to end-of-file is freed. 713 */ 714 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 715 uint64_t size, dmu_tx_t *tx); 716 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 717 uint64_t size); 718 int dmu_free_long_object(objset_t *os, uint64_t object); 719 720 /* 721 * Convenience functions. 722 * 723 * Canfail routines will return 0 on success, or an errno if there is a 724 * nonrecoverable I/O error. 725 */ 726 #define DMU_READ_PREFETCH 0 /* prefetch */ 727 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 728 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 729 void *buf, uint32_t flags); 730 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 731 uint32_t flags); 732 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 733 const void *buf, dmu_tx_t *tx); 734 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 735 const void *buf, dmu_tx_t *tx); 736 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 737 dmu_tx_t *tx); 738 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 739 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); 740 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 741 dmu_tx_t *tx); 742 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 743 dmu_tx_t *tx); 744 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 745 uint64_t size, struct page *pp, dmu_tx_t *tx); 746 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 747 void dmu_return_arcbuf(struct arc_buf *buf); 748 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, 749 dmu_tx_t *tx); 750 int dmu_xuio_init(struct xuio *uio, int niov); 751 void dmu_xuio_fini(struct xuio *uio); 752 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 753 size_t n); 754 int dmu_xuio_cnt(struct xuio *uio); 755 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 756 void dmu_xuio_clear(struct xuio *uio, int i); 757 void xuio_stat_wbuf_copied(void); 758 void xuio_stat_wbuf_nocopy(void); 759 760 extern boolean_t zfs_prefetch_disable; 761 extern int zfs_max_recordsize; 762 763 /* 764 * Asynchronously try to read in the data. 765 */ 766 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 767 uint64_t len, enum zio_priority pri); 768 769 typedef struct dmu_object_info { 770 /* All sizes are in bytes unless otherwise indicated. */ 771 uint32_t doi_data_block_size; 772 uint32_t doi_metadata_block_size; 773 dmu_object_type_t doi_type; 774 dmu_object_type_t doi_bonus_type; 775 uint64_t doi_bonus_size; 776 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 777 uint8_t doi_checksum; 778 uint8_t doi_compress; 779 uint8_t doi_nblkptr; 780 uint8_t doi_pad[4]; 781 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 782 uint64_t doi_max_offset; 783 uint64_t doi_fill_count; /* number of non-empty blocks */ 784 } dmu_object_info_t; 785 786 typedef void arc_byteswap_func_t(void *buf, size_t size); 787 788 typedef struct dmu_object_type_info { 789 dmu_object_byteswap_t ot_byteswap; 790 boolean_t ot_metadata; 791 char *ot_name; 792 } dmu_object_type_info_t; 793 794 typedef struct dmu_object_byteswap_info { 795 arc_byteswap_func_t *ob_func; 796 char *ob_name; 797 } dmu_object_byteswap_info_t; 798 799 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 800 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 801 802 /* 803 * Get information on a DMU object. 804 * 805 * Return 0 on success or ENOENT if object is not allocated. 806 * 807 * If doi is NULL, just indicates whether the object exists. 808 */ 809 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 810 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 811 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 812 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 813 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 814 /* 815 * Like dmu_object_info_from_db, but faster still when you only care about 816 * the size. This is specifically optimized for zfs_getattr(). 817 */ 818 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 819 u_longlong_t *nblk512); 820 821 typedef struct dmu_objset_stats { 822 uint64_t dds_num_clones; /* number of clones of this */ 823 uint64_t dds_creation_txg; 824 uint64_t dds_guid; 825 dmu_objset_type_t dds_type; 826 uint8_t dds_is_snapshot; 827 uint8_t dds_inconsistent; 828 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 829 } dmu_objset_stats_t; 830 831 /* 832 * Get stats on a dataset. 833 */ 834 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 835 836 /* 837 * Add entries to the nvlist for all the objset's properties. See 838 * zfs_prop_table[] and zfs(1m) for details on the properties. 839 */ 840 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 841 842 /* 843 * Get the space usage statistics for statvfs(). 844 * 845 * refdbytes is the amount of space "referenced" by this objset. 846 * availbytes is the amount of space available to this objset, taking 847 * into account quotas & reservations, assuming that no other objsets 848 * use the space first. These values correspond to the 'referenced' and 849 * 'available' properties, described in the zfs(1m) manpage. 850 * 851 * usedobjs and availobjs are the number of objects currently allocated, 852 * and available. 853 */ 854 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 855 uint64_t *usedobjsp, uint64_t *availobjsp); 856 857 /* 858 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 859 * (Contrast with the ds_guid which is a 64-bit ID that will never 860 * change, so there is a small probability that it will collide.) 861 */ 862 uint64_t dmu_objset_fsid_guid(objset_t *os); 863 864 /* 865 * Get the [cm]time for an objset's snapshot dir 866 */ 867 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 868 869 int dmu_objset_is_snapshot(objset_t *os); 870 871 extern struct spa *dmu_objset_spa(objset_t *os); 872 extern struct zilog *dmu_objset_zil(objset_t *os); 873 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 874 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 875 extern void dmu_objset_name(objset_t *os, char *buf); 876 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 877 extern uint64_t dmu_objset_id(objset_t *os); 878 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 879 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 880 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 881 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 882 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 883 int maxlen, boolean_t *conflict); 884 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 885 uint64_t *idp, uint64_t *offp); 886 887 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 888 void *bonus, uint64_t *userp, uint64_t *groupp); 889 extern void dmu_objset_register_type(dmu_objset_type_t ost, 890 objset_used_cb_t *cb); 891 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 892 extern void *dmu_objset_get_user(objset_t *os); 893 894 /* 895 * Return the txg number for the given assigned transaction. 896 */ 897 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 898 899 /* 900 * Synchronous write. 901 * If a parent zio is provided this function initiates a write on the 902 * provided buffer as a child of the parent zio. 903 * In the absence of a parent zio, the write is completed synchronously. 904 * At write completion, blk is filled with the bp of the written block. 905 * Note that while the data covered by this function will be on stable 906 * storage when the write completes this new data does not become a 907 * permanent part of the file until the associated transaction commits. 908 */ 909 910 /* 911 * {zfs,zvol,ztest}_get_done() args 912 */ 913 typedef struct zgd { 914 struct zilog *zgd_zilog; 915 struct blkptr *zgd_bp; 916 dmu_buf_t *zgd_db; 917 struct rl *zgd_rl; 918 void *zgd_private; 919 } zgd_t; 920 921 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 922 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 923 924 /* 925 * Find the next hole or data block in file starting at *off 926 * Return found offset in *off. Return ESRCH for end of file. 927 */ 928 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 929 uint64_t *off); 930 931 /* 932 * Check if a DMU object has any dirty blocks. If so, sync out 933 * all pending transaction groups. Otherwise, this function 934 * does not alter DMU state. This could be improved to only sync 935 * out the necessary transaction groups for this particular 936 * object. 937 */ 938 int dmu_object_wait_synced(objset_t *os, uint64_t object); 939 940 /* 941 * Initial setup and final teardown. 942 */ 943 extern void dmu_init(void); 944 extern void dmu_fini(void); 945 946 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 947 uint64_t object, uint64_t offset, int len); 948 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 949 dmu_traverse_cb_t cb, void *arg); 950 951 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 952 struct vnode *vp, offset_t *offp); 953 954 /* CRC64 table */ 955 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 956 extern uint64_t zfs_crc64_table[256]; 957 958 extern int zfs_mdcomp_disable; 959 960 #ifdef __cplusplus 961 } 962 #endif 963 964 #endif /* _SYS_DMU_H */ 965