xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/dmu.h (revision cc581a18c90036f3cc09e518f22af9b2f11b2a8d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2014 Integros [integros.com]
32  */
33 
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #ifndef	_SYS_DMU_H
37 #define	_SYS_DMU_H
38 
39 /*
40  * This file describes the interface that the DMU provides for its
41  * consumers.
42  *
43  * The DMU also interacts with the SPA.  That interface is described in
44  * dmu_spa.h.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_compress.h>
52 #include <sys/zio_priority.h>
53 
54 #ifdef	__cplusplus
55 extern "C" {
56 #endif
57 
58 struct uio;
59 struct xuio;
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
78 
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
83 
84 typedef enum dmu_object_byteswap {
85 	DMU_BSWAP_UINT8,
86 	DMU_BSWAP_UINT16,
87 	DMU_BSWAP_UINT32,
88 	DMU_BSWAP_UINT64,
89 	DMU_BSWAP_ZAP,
90 	DMU_BSWAP_DNODE,
91 	DMU_BSWAP_OBJSET,
92 	DMU_BSWAP_ZNODE,
93 	DMU_BSWAP_OLDACL,
94 	DMU_BSWAP_ACL,
95 	/*
96 	 * Allocating a new byteswap type number makes the on-disk format
97 	 * incompatible with any other format that uses the same number.
98 	 *
99 	 * Data can usually be structured to work with one of the
100 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
101 	 */
102 	DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
104 
105 #define	DMU_OT_NEWTYPE 0x80
106 #define	DMU_OT_METADATA 0x40
107 #define	DMU_OT_BYTESWAP_MASK 0x3f
108 
109 /*
110  * Defines a uint8_t object type. Object types specify if the data
111  * in the object is metadata (boolean) and how to byteswap the data
112  * (dmu_object_byteswap_t). All of the types created by this method
113  * are cached in the dbuf metadata cache.
114  */
115 #define	DMU_OT(byteswap, metadata) \
116 	(DMU_OT_NEWTYPE | \
117 	((metadata) ? DMU_OT_METADATA : 0) | \
118 	((byteswap) & DMU_OT_BYTESWAP_MASK))
119 
120 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
121 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
122 	(ot) < DMU_OT_NUMTYPES)
123 
124 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
125 	((ot) & DMU_OT_METADATA) : \
126 	dmu_ot[(ot)].ot_metadata)
127 
128 #define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
129 	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
130 
131 /*
132  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
133  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
134  * is repurposed for embedded BPs.
135  */
136 #define	DMU_OT_HAS_FILL(ot) \
137 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
138 
139 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
140 	((ot) & DMU_OT_BYTESWAP_MASK) : \
141 	dmu_ot[(ot)].ot_byteswap)
142 
143 typedef enum dmu_object_type {
144 	DMU_OT_NONE,
145 	/* general: */
146 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
147 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
148 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
149 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
150 	DMU_OT_BPOBJ,			/* UINT64 */
151 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
152 	/* spa: */
153 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
154 	DMU_OT_SPACE_MAP,		/* UINT64 */
155 	/* zil: */
156 	DMU_OT_INTENT_LOG,		/* UINT64 */
157 	/* dmu: */
158 	DMU_OT_DNODE,			/* DNODE */
159 	DMU_OT_OBJSET,			/* OBJSET */
160 	/* dsl: */
161 	DMU_OT_DSL_DIR,			/* UINT64 */
162 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
163 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
164 	DMU_OT_DSL_PROPS,		/* ZAP */
165 	DMU_OT_DSL_DATASET,		/* UINT64 */
166 	/* zpl: */
167 	DMU_OT_ZNODE,			/* ZNODE */
168 	DMU_OT_OLDACL,			/* Old ACL */
169 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
170 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
171 	DMU_OT_MASTER_NODE,		/* ZAP */
172 	DMU_OT_UNLINKED_SET,		/* ZAP */
173 	/* zvol: */
174 	DMU_OT_ZVOL,			/* UINT8 */
175 	DMU_OT_ZVOL_PROP,		/* ZAP */
176 	/* other; for testing only! */
177 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
178 	DMU_OT_UINT64_OTHER,		/* UINT64 */
179 	DMU_OT_ZAP_OTHER,		/* ZAP */
180 	/* new object types: */
181 	DMU_OT_ERROR_LOG,		/* ZAP */
182 	DMU_OT_SPA_HISTORY,		/* UINT8 */
183 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
184 	DMU_OT_POOL_PROPS,		/* ZAP */
185 	DMU_OT_DSL_PERMS,		/* ZAP */
186 	DMU_OT_ACL,			/* ACL */
187 	DMU_OT_SYSACL,			/* SYSACL */
188 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
189 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
190 	DMU_OT_NEXT_CLONES,		/* ZAP */
191 	DMU_OT_SCAN_QUEUE,		/* ZAP */
192 	DMU_OT_USERGROUP_USED,		/* ZAP */
193 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
194 	DMU_OT_USERREFS,		/* ZAP */
195 	DMU_OT_DDT_ZAP,			/* ZAP */
196 	DMU_OT_DDT_STATS,		/* ZAP */
197 	DMU_OT_SA,			/* System attr */
198 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
199 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
200 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
201 	DMU_OT_SCAN_XLATE,		/* ZAP */
202 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
203 	DMU_OT_DEADLIST,		/* ZAP */
204 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
205 	DMU_OT_DSL_CLONES,		/* ZAP */
206 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
207 	/*
208 	 * Do not allocate new object types here. Doing so makes the on-disk
209 	 * format incompatible with any other format that uses the same object
210 	 * type number.
211 	 *
212 	 * When creating an object which does not have one of the above types
213 	 * use the DMU_OTN_* type with the correct byteswap and metadata
214 	 * values.
215 	 *
216 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
217 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
218 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
219 	 * and DMU_OTN_* types).
220 	 */
221 	DMU_OT_NUMTYPES,
222 
223 	/*
224 	 * Names for valid types declared with DMU_OT().
225 	 */
226 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
227 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
228 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
229 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
230 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
231 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
232 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
233 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
234 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
235 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
236 } dmu_object_type_t;
237 
238 /*
239  * These flags are intended to be used to specify the "txg_how"
240  * parameter when calling the dmu_tx_assign() function. See the comment
241  * above dmu_tx_assign() for more details on the meaning of these flags.
242  */
243 #define	TXG_NOWAIT	(0ULL)
244 #define	TXG_WAIT	(1ULL<<0)
245 #define	TXG_NOTHROTTLE	(1ULL<<1)
246 
247 void byteswap_uint64_array(void *buf, size_t size);
248 void byteswap_uint32_array(void *buf, size_t size);
249 void byteswap_uint16_array(void *buf, size_t size);
250 void byteswap_uint8_array(void *buf, size_t size);
251 void zap_byteswap(void *buf, size_t size);
252 void zfs_oldacl_byteswap(void *buf, size_t size);
253 void zfs_acl_byteswap(void *buf, size_t size);
254 void zfs_znode_byteswap(void *buf, size_t size);
255 
256 #define	DS_FIND_SNAPSHOTS	(1<<0)
257 #define	DS_FIND_CHILDREN	(1<<1)
258 #define	DS_FIND_SERIALIZE	(1<<2)
259 
260 /*
261  * The maximum number of bytes that can be accessed as part of one
262  * operation, including metadata.
263  */
264 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
265 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
266 
267 #define	DMU_USERUSED_OBJECT	(-1ULL)
268 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
269 
270 /*
271  * artificial blkids for bonus buffer and spill blocks
272  */
273 #define	DMU_BONUS_BLKID		(-1ULL)
274 #define	DMU_SPILL_BLKID		(-2ULL)
275 /*
276  * Public routines to create, destroy, open, and close objsets.
277  */
278 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
279 int dmu_objset_own(const char *name, dmu_objset_type_t type,
280     boolean_t readonly, void *tag, objset_t **osp);
281 void dmu_objset_rele(objset_t *os, void *tag);
282 void dmu_objset_disown(objset_t *os, void *tag);
283 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
284 
285 void dmu_objset_evict_dbufs(objset_t *os);
286 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
287     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
288 int dmu_objset_clone(const char *name, const char *origin);
289 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
290     struct nvlist *errlist);
291 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
292 int dmu_objset_snapshot_tmp(const char *, const char *, int);
293 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
294     int flags);
295 void dmu_objset_byteswap(void *buf, size_t size);
296 int dsl_dataset_rename_snapshot(const char *fsname,
297     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
298 int dmu_objset_remap_indirects(const char *fsname);
299 
300 typedef struct dmu_buf {
301 	uint64_t db_object;		/* object that this buffer is part of */
302 	uint64_t db_offset;		/* byte offset in this object */
303 	uint64_t db_size;		/* size of buffer in bytes */
304 	void *db_data;			/* data in buffer */
305 } dmu_buf_t;
306 
307 /*
308  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
309  */
310 #define	DMU_POOL_DIRECTORY_OBJECT	1
311 #define	DMU_POOL_CONFIG			"config"
312 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
313 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
314 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
315 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
316 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
317 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
318 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
319 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
320 #define	DMU_POOL_SPARES			"spares"
321 #define	DMU_POOL_DEFLATE		"deflate"
322 #define	DMU_POOL_HISTORY		"history"
323 #define	DMU_POOL_PROPS			"pool_props"
324 #define	DMU_POOL_L2CACHE		"l2cache"
325 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
326 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
327 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
328 #define	DMU_POOL_CREATION_VERSION	"creation_version"
329 #define	DMU_POOL_SCAN			"scan"
330 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
331 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
332 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
333 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
334 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
335 #define	DMU_POOL_REMOVING		"com.delphix:removing"
336 #define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
337 #define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
338 #define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
339 
340 /*
341  * Allocate an object from this objset.  The range of object numbers
342  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
343  *
344  * The transaction must be assigned to a txg.  The newly allocated
345  * object will be "held" in the transaction (ie. you can modify the
346  * newly allocated object in this transaction).
347  *
348  * dmu_object_alloc() chooses an object and returns it in *objectp.
349  *
350  * dmu_object_claim() allocates a specific object number.  If that
351  * number is already allocated, it fails and returns EEXIST.
352  *
353  * Return 0 on success, or ENOSPC or EEXIST as specified above.
354  */
355 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
356     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
357 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
358     int indirect_blockshift,
359     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
360 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
361     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
362 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
363     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
364 
365 /*
366  * Free an object from this objset.
367  *
368  * The object's data will be freed as well (ie. you don't need to call
369  * dmu_free(object, 0, -1, tx)).
370  *
371  * The object need not be held in the transaction.
372  *
373  * If there are any holds on this object's buffers (via dmu_buf_hold()),
374  * or tx holds on the object (via dmu_tx_hold_object()), you can not
375  * free it; it fails and returns EBUSY.
376  *
377  * If the object is not allocated, it fails and returns ENOENT.
378  *
379  * Return 0 on success, or EBUSY or ENOENT as specified above.
380  */
381 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
382 
383 /*
384  * Find the next allocated or free object.
385  *
386  * The objectp parameter is in-out.  It will be updated to be the next
387  * object which is allocated.  Ignore objects which have not been
388  * modified since txg.
389  *
390  * XXX Can only be called on a objset with no dirty data.
391  *
392  * Returns 0 on success, or ENOENT if there are no more objects.
393  */
394 int dmu_object_next(objset_t *os, uint64_t *objectp,
395     boolean_t hole, uint64_t txg);
396 
397 /*
398  * Set the data blocksize for an object.
399  *
400  * The object cannot have any blocks allcated beyond the first.  If
401  * the first block is allocated already, the new size must be greater
402  * than the current block size.  If these conditions are not met,
403  * ENOTSUP will be returned.
404  *
405  * Returns 0 on success, or EBUSY if there are any holds on the object
406  * contents, or ENOTSUP as described above.
407  */
408 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
409     int ibs, dmu_tx_t *tx);
410 
411 /*
412  * Set the checksum property on a dnode.  The new checksum algorithm will
413  * apply to all newly written blocks; existing blocks will not be affected.
414  */
415 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
416     dmu_tx_t *tx);
417 
418 /*
419  * Set the compress property on a dnode.  The new compression algorithm will
420  * apply to all newly written blocks; existing blocks will not be affected.
421  */
422 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
423     dmu_tx_t *tx);
424 
425 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
426 
427 void
428 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
429     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
430     int compressed_size, int byteorder, dmu_tx_t *tx);
431 
432 /*
433  * Decide how to write a block: checksum, compression, number of copies, etc.
434  */
435 #define	WP_NOFILL	0x1
436 #define	WP_DMU_SYNC	0x2
437 #define	WP_SPILL	0x4
438 
439 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
440     struct zio_prop *zp);
441 /*
442  * The bonus data is accessed more or less like a regular buffer.
443  * You must dmu_bonus_hold() to get the buffer, which will give you a
444  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
445  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
446  * before modifying it, and the
447  * object must be held in an assigned transaction before calling
448  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
449  * buffer as well.  You must release your hold with dmu_buf_rele().
450  *
451  * Returns ENOENT, EIO, or 0.
452  */
453 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
454 int dmu_bonus_max(void);
455 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
456 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
457 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
458 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
459 
460 /*
461  * Special spill buffer support used by "SA" framework
462  */
463 
464 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
465 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
466     void *tag, dmu_buf_t **dbp);
467 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
468 
469 /*
470  * Obtain the DMU buffer from the specified object which contains the
471  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
472  * that it will remain in memory.  You must release the hold with
473  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
474  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
475  *
476  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
477  * on the returned buffer before reading or writing the buffer's
478  * db_data.  The comments for those routines describe what particular
479  * operations are valid after calling them.
480  *
481  * The object number must be a valid, allocated object number.
482  */
483 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
484     void *tag, dmu_buf_t **, int flags);
485 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
486     void *tag, dmu_buf_t **dbp, int flags);
487 
488 /*
489  * Add a reference to a dmu buffer that has already been held via
490  * dmu_buf_hold() in the current context.
491  */
492 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
493 
494 /*
495  * Attempt to add a reference to a dmu buffer that is in an unknown state,
496  * using a pointer that may have been invalidated by eviction processing.
497  * The request will succeed if the passed in dbuf still represents the
498  * same os/object/blkid, is ineligible for eviction, and has at least
499  * one hold by a user other than the syncer.
500  */
501 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
502     uint64_t blkid, void *tag);
503 
504 void dmu_buf_rele(dmu_buf_t *db, void *tag);
505 uint64_t dmu_buf_refcount(dmu_buf_t *db);
506 
507 /*
508  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
509  * range of an object.  A pointer to an array of dmu_buf_t*'s is
510  * returned (in *dbpp).
511  *
512  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
513  * frees the array.  The hold on the array of buffers MUST be released
514  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
515  * individually with dmu_buf_rele.
516  */
517 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
518     uint64_t length, boolean_t read, void *tag,
519     int *numbufsp, dmu_buf_t ***dbpp);
520 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
521     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
522     uint32_t flags);
523 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
524 
525 typedef void dmu_buf_evict_func_t(void *user_ptr);
526 
527 /*
528  * A DMU buffer user object may be associated with a dbuf for the
529  * duration of its lifetime.  This allows the user of a dbuf (client)
530  * to attach private data to a dbuf (e.g. in-core only data such as a
531  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
532  * when that dbuf has been evicted.  Clients typically respond to the
533  * eviction notification by freeing their private data, thus ensuring
534  * the same lifetime for both dbuf and private data.
535  *
536  * The mapping from a dmu_buf_user_t to any client private data is the
537  * client's responsibility.  All current consumers of the API with private
538  * data embed a dmu_buf_user_t as the first member of the structure for
539  * their private data.  This allows conversions between the two types
540  * with a simple cast.  Since the DMU buf user API never needs access
541  * to the private data, other strategies can be employed if necessary
542  * or convenient for the client (e.g. using container_of() to do the
543  * conversion for private data that cannot have the dmu_buf_user_t as
544  * its first member).
545  *
546  * Eviction callbacks are executed without the dbuf mutex held or any
547  * other type of mechanism to guarantee that the dbuf is still available.
548  * For this reason, users must assume the dbuf has already been freed
549  * and not reference the dbuf from the callback context.
550  *
551  * Users requesting "immediate eviction" are notified as soon as the dbuf
552  * is only referenced by dirty records (dirties == holds).  Otherwise the
553  * notification occurs after eviction processing for the dbuf begins.
554  */
555 typedef struct dmu_buf_user {
556 	/*
557 	 * Asynchronous user eviction callback state.
558 	 */
559 	taskq_ent_t	dbu_tqent;
560 
561 	/*
562 	 * This instance's eviction function pointers.
563 	 *
564 	 * dbu_evict_func_sync is called synchronously and then
565 	 * dbu_evict_func_async is executed asynchronously on a taskq.
566 	 */
567 	dmu_buf_evict_func_t *dbu_evict_func_sync;
568 	dmu_buf_evict_func_t *dbu_evict_func_async;
569 #ifdef ZFS_DEBUG
570 	/*
571 	 * Pointer to user's dbuf pointer.  NULL for clients that do
572 	 * not associate a dbuf with their user data.
573 	 *
574 	 * The dbuf pointer is cleared upon eviction so as to catch
575 	 * use-after-evict bugs in clients.
576 	 */
577 	dmu_buf_t **dbu_clear_on_evict_dbufp;
578 #endif
579 } dmu_buf_user_t;
580 
581 /*
582  * Initialize the given dmu_buf_user_t instance with the eviction function
583  * evict_func, to be called when the user is evicted.
584  *
585  * NOTE: This function should only be called once on a given dmu_buf_user_t.
586  *       To allow enforcement of this, dbu must already be zeroed on entry.
587  */
588 /*ARGSUSED*/
589 inline void
590 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
591     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
592 {
593 	ASSERT(dbu->dbu_evict_func_sync == NULL);
594 	ASSERT(dbu->dbu_evict_func_async == NULL);
595 
596 	/* must have at least one evict func */
597 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
598 	dbu->dbu_evict_func_sync = evict_func_sync;
599 	dbu->dbu_evict_func_async = evict_func_async;
600 #ifdef ZFS_DEBUG
601 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
602 #endif
603 }
604 
605 /*
606  * Attach user data to a dbuf and mark it for normal (when the dbuf's
607  * data is cleared or its reference count goes to zero) eviction processing.
608  *
609  * Returns NULL on success, or the existing user if another user currently
610  * owns the buffer.
611  */
612 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
613 
614 /*
615  * Attach user data to a dbuf and mark it for immediate (its dirty and
616  * reference counts are equal) eviction processing.
617  *
618  * Returns NULL on success, or the existing user if another user currently
619  * owns the buffer.
620  */
621 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
622 
623 /*
624  * Replace the current user of a dbuf.
625  *
626  * If given the current user of a dbuf, replaces the dbuf's user with
627  * "new_user" and returns the user data pointer that was replaced.
628  * Otherwise returns the current, and unmodified, dbuf user pointer.
629  */
630 void *dmu_buf_replace_user(dmu_buf_t *db,
631     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
632 
633 /*
634  * Remove the specified user data for a DMU buffer.
635  *
636  * Returns the user that was removed on success, or the current user if
637  * another user currently owns the buffer.
638  */
639 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
640 
641 /*
642  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
643  */
644 void *dmu_buf_get_user(dmu_buf_t *db);
645 
646 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
647 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
648 void dmu_buf_dnode_exit(dmu_buf_t *db);
649 
650 /* Block until any in-progress dmu buf user evictions complete. */
651 void dmu_buf_user_evict_wait(void);
652 
653 /*
654  * Returns the blkptr associated with this dbuf, or NULL if not set.
655  */
656 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
657 
658 /*
659  * Indicate that you are going to modify the buffer's data (db_data).
660  *
661  * The transaction (tx) must be assigned to a txg (ie. you've called
662  * dmu_tx_assign()).  The buffer's object must be held in the tx
663  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
664  */
665 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
666 
667 /*
668  * You must create a transaction, then hold the objects which you will
669  * (or might) modify as part of this transaction.  Then you must assign
670  * the transaction to a transaction group.  Once the transaction has
671  * been assigned, you can modify buffers which belong to held objects as
672  * part of this transaction.  You can't modify buffers before the
673  * transaction has been assigned; you can't modify buffers which don't
674  * belong to objects which this transaction holds; you can't hold
675  * objects once the transaction has been assigned.  You may hold an
676  * object which you are going to free (with dmu_object_free()), but you
677  * don't have to.
678  *
679  * You can abort the transaction before it has been assigned.
680  *
681  * Note that you may hold buffers (with dmu_buf_hold) at any time,
682  * regardless of transaction state.
683  */
684 
685 #define	DMU_NEW_OBJECT	(-1ULL)
686 #define	DMU_OBJECT_END	(-1ULL)
687 
688 dmu_tx_t *dmu_tx_create(objset_t *os);
689 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
690 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
691     int len);
692 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
693     uint64_t len);
694 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
695     uint64_t len);
696 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
697 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
698 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
699     const char *name);
700 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
701 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
702 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
703 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
704 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
705 void dmu_tx_abort(dmu_tx_t *tx);
706 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
707 void dmu_tx_wait(dmu_tx_t *tx);
708 void dmu_tx_commit(dmu_tx_t *tx);
709 void dmu_tx_mark_netfree(dmu_tx_t *tx);
710 
711 /*
712  * To register a commit callback, dmu_tx_callback_register() must be called.
713  *
714  * dcb_data is a pointer to caller private data that is passed on as a
715  * callback parameter. The caller is responsible for properly allocating and
716  * freeing it.
717  *
718  * When registering a callback, the transaction must be already created, but
719  * it cannot be committed or aborted. It can be assigned to a txg or not.
720  *
721  * The callback will be called after the transaction has been safely written
722  * to stable storage and will also be called if the dmu_tx is aborted.
723  * If there is any error which prevents the transaction from being committed to
724  * disk, the callback will be called with a value of error != 0.
725  */
726 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
727 
728 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
729     void *dcb_data);
730 
731 /*
732  * Free up the data blocks for a defined range of a file.  If size is
733  * -1, the range from offset to end-of-file is freed.
734  */
735 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
736 	uint64_t size, dmu_tx_t *tx);
737 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
738 	uint64_t size);
739 int dmu_free_long_object(objset_t *os, uint64_t object);
740 
741 /*
742  * Convenience functions.
743  *
744  * Canfail routines will return 0 on success, or an errno if there is a
745  * nonrecoverable I/O error.
746  */
747 #define	DMU_READ_PREFETCH	0 /* prefetch */
748 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
749 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
750 	void *buf, uint32_t flags);
751 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
752     uint32_t flags);
753 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
754 	const void *buf, dmu_tx_t *tx);
755 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
756     const void *buf, dmu_tx_t *tx);
757 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
758 	dmu_tx_t *tx);
759 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
760 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
761 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
762 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
763     dmu_tx_t *tx);
764 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
765     dmu_tx_t *tx);
766 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
767     dmu_tx_t *tx);
768 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
769     uint64_t size, struct page *pp, dmu_tx_t *tx);
770 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
771 void dmu_return_arcbuf(struct arc_buf *buf);
772 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset,
773     struct arc_buf *buf, dmu_tx_t *tx);
774 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
775     dmu_tx_t *tx);
776 int dmu_xuio_init(struct xuio *uio, int niov);
777 void dmu_xuio_fini(struct xuio *uio);
778 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
779     size_t n);
780 int dmu_xuio_cnt(struct xuio *uio);
781 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
782 void dmu_xuio_clear(struct xuio *uio, int i);
783 void xuio_stat_wbuf_copied(void);
784 void xuio_stat_wbuf_nocopy(void);
785 
786 extern boolean_t zfs_prefetch_disable;
787 extern int zfs_max_recordsize;
788 
789 /*
790  * Asynchronously try to read in the data.
791  */
792 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
793     uint64_t len, enum zio_priority pri);
794 
795 typedef struct dmu_object_info {
796 	/* All sizes are in bytes unless otherwise indicated. */
797 	uint32_t doi_data_block_size;
798 	uint32_t doi_metadata_block_size;
799 	dmu_object_type_t doi_type;
800 	dmu_object_type_t doi_bonus_type;
801 	uint64_t doi_bonus_size;
802 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
803 	uint8_t doi_checksum;
804 	uint8_t doi_compress;
805 	uint8_t doi_nblkptr;
806 	uint8_t doi_pad[4];
807 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
808 	uint64_t doi_max_offset;
809 	uint64_t doi_fill_count;		/* number of non-empty blocks */
810 } dmu_object_info_t;
811 
812 typedef void arc_byteswap_func_t(void *buf, size_t size);
813 
814 typedef struct dmu_object_type_info {
815 	dmu_object_byteswap_t	ot_byteswap;
816 	boolean_t		ot_metadata;
817 	boolean_t		ot_dbuf_metadata_cache;
818 	char			*ot_name;
819 } dmu_object_type_info_t;
820 
821 typedef struct dmu_object_byteswap_info {
822 	arc_byteswap_func_t	*ob_func;
823 	char			*ob_name;
824 } dmu_object_byteswap_info_t;
825 
826 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
827 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
828 
829 /*
830  * Get information on a DMU object.
831  *
832  * Return 0 on success or ENOENT if object is not allocated.
833  *
834  * If doi is NULL, just indicates whether the object exists.
835  */
836 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
837 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
838 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
839 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
840 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
841 /*
842  * Like dmu_object_info_from_db, but faster still when you only care about
843  * the size.  This is specifically optimized for zfs_getattr().
844  */
845 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
846     u_longlong_t *nblk512);
847 
848 typedef struct dmu_objset_stats {
849 	uint64_t dds_num_clones; /* number of clones of this */
850 	uint64_t dds_creation_txg;
851 	uint64_t dds_guid;
852 	dmu_objset_type_t dds_type;
853 	uint8_t dds_is_snapshot;
854 	uint8_t dds_inconsistent;
855 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
856 } dmu_objset_stats_t;
857 
858 /*
859  * Get stats on a dataset.
860  */
861 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
862 
863 /*
864  * Add entries to the nvlist for all the objset's properties.  See
865  * zfs_prop_table[] and zfs(1m) for details on the properties.
866  */
867 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
868 
869 /*
870  * Get the space usage statistics for statvfs().
871  *
872  * refdbytes is the amount of space "referenced" by this objset.
873  * availbytes is the amount of space available to this objset, taking
874  * into account quotas & reservations, assuming that no other objsets
875  * use the space first.  These values correspond to the 'referenced' and
876  * 'available' properties, described in the zfs(1m) manpage.
877  *
878  * usedobjs and availobjs are the number of objects currently allocated,
879  * and available.
880  */
881 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
882     uint64_t *usedobjsp, uint64_t *availobjsp);
883 
884 /*
885  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
886  * (Contrast with the ds_guid which is a 64-bit ID that will never
887  * change, so there is a small probability that it will collide.)
888  */
889 uint64_t dmu_objset_fsid_guid(objset_t *os);
890 
891 /*
892  * Get the [cm]time for an objset's snapshot dir
893  */
894 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
895 
896 int dmu_objset_is_snapshot(objset_t *os);
897 
898 extern struct spa *dmu_objset_spa(objset_t *os);
899 extern struct zilog *dmu_objset_zil(objset_t *os);
900 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
901 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
902 extern void dmu_objset_name(objset_t *os, char *buf);
903 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
904 extern uint64_t dmu_objset_id(objset_t *os);
905 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
906 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
907 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
908     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
909 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
910     int maxlen, boolean_t *conflict);
911 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
912     uint64_t *idp, uint64_t *offp);
913 
914 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
915     void *bonus, uint64_t *userp, uint64_t *groupp);
916 extern void dmu_objset_register_type(dmu_objset_type_t ost,
917     objset_used_cb_t *cb);
918 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
919 extern void *dmu_objset_get_user(objset_t *os);
920 
921 /*
922  * Return the txg number for the given assigned transaction.
923  */
924 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
925 
926 /*
927  * Synchronous write.
928  * If a parent zio is provided this function initiates a write on the
929  * provided buffer as a child of the parent zio.
930  * In the absence of a parent zio, the write is completed synchronously.
931  * At write completion, blk is filled with the bp of the written block.
932  * Note that while the data covered by this function will be on stable
933  * storage when the write completes this new data does not become a
934  * permanent part of the file until the associated transaction commits.
935  */
936 
937 /*
938  * {zfs,zvol,ztest}_get_done() args
939  */
940 typedef struct zgd {
941 	struct lwb	*zgd_lwb;
942 	struct blkptr	*zgd_bp;
943 	dmu_buf_t	*zgd_db;
944 	struct rl	*zgd_rl;
945 	void		*zgd_private;
946 } zgd_t;
947 
948 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
949 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
950 
951 /*
952  * Find the next hole or data block in file starting at *off
953  * Return found offset in *off. Return ESRCH for end of file.
954  */
955 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
956     uint64_t *off);
957 
958 /*
959  * Check if a DMU object has any dirty blocks. If so, sync out
960  * all pending transaction groups. Otherwise, this function
961  * does not alter DMU state. This could be improved to only sync
962  * out the necessary transaction groups for this particular
963  * object.
964  */
965 int dmu_object_wait_synced(objset_t *os, uint64_t object);
966 
967 /*
968  * Initial setup and final teardown.
969  */
970 extern void dmu_init(void);
971 extern void dmu_fini(void);
972 
973 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
974     uint64_t object, uint64_t offset, int len);
975 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
976     dmu_traverse_cb_t cb, void *arg);
977 
978 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
979     struct vnode *vp, offset_t *offp);
980 
981 /* CRC64 table */
982 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
983 extern uint64_t zfs_crc64_table[256];
984 
985 extern int zfs_mdcomp_disable;
986 
987 #ifdef	__cplusplus
988 }
989 #endif
990 
991 #endif	/* _SYS_DMU_H */
992