xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/dmu.h (revision c5749750a3e052f1194f65a303456224c51dea63)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2014 Integros [integros.com]
32  */
33 
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #ifndef	_SYS_DMU_H
37 #define	_SYS_DMU_H
38 
39 /*
40  * This file describes the interface that the DMU provides for its
41  * consumers.
42  *
43  * The DMU also interacts with the SPA.  That interface is described in
44  * dmu_spa.h.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_compress.h>
52 #include <sys/zio_priority.h>
53 
54 #ifdef	__cplusplus
55 extern "C" {
56 #endif
57 
58 struct uio;
59 struct xuio;
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
78 struct locked_range;
79 
80 typedef struct objset objset_t;
81 typedef struct dmu_tx dmu_tx_t;
82 typedef struct dsl_dir dsl_dir_t;
83 typedef struct dnode dnode_t;
84 
85 typedef enum dmu_object_byteswap {
86 	DMU_BSWAP_UINT8,
87 	DMU_BSWAP_UINT16,
88 	DMU_BSWAP_UINT32,
89 	DMU_BSWAP_UINT64,
90 	DMU_BSWAP_ZAP,
91 	DMU_BSWAP_DNODE,
92 	DMU_BSWAP_OBJSET,
93 	DMU_BSWAP_ZNODE,
94 	DMU_BSWAP_OLDACL,
95 	DMU_BSWAP_ACL,
96 	/*
97 	 * Allocating a new byteswap type number makes the on-disk format
98 	 * incompatible with any other format that uses the same number.
99 	 *
100 	 * Data can usually be structured to work with one of the
101 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
102 	 */
103 	DMU_BSWAP_NUMFUNCS
104 } dmu_object_byteswap_t;
105 
106 #define	DMU_OT_NEWTYPE 0x80
107 #define	DMU_OT_METADATA 0x40
108 #define	DMU_OT_BYTESWAP_MASK 0x3f
109 
110 /*
111  * Defines a uint8_t object type. Object types specify if the data
112  * in the object is metadata (boolean) and how to byteswap the data
113  * (dmu_object_byteswap_t). All of the types created by this method
114  * are cached in the dbuf metadata cache.
115  */
116 #define	DMU_OT(byteswap, metadata) \
117 	(DMU_OT_NEWTYPE | \
118 	((metadata) ? DMU_OT_METADATA : 0) | \
119 	((byteswap) & DMU_OT_BYTESWAP_MASK))
120 
121 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
122 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
123 	(ot) < DMU_OT_NUMTYPES)
124 
125 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
126 	((ot) & DMU_OT_METADATA) : \
127 	dmu_ot[(ot)].ot_metadata)
128 
129 #define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
130 	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
131 
132 /*
133  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
134  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
135  * is repurposed for embedded BPs.
136  */
137 #define	DMU_OT_HAS_FILL(ot) \
138 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
139 
140 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
141 	((ot) & DMU_OT_BYTESWAP_MASK) : \
142 	dmu_ot[(ot)].ot_byteswap)
143 
144 typedef enum dmu_object_type {
145 	DMU_OT_NONE,
146 	/* general: */
147 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
148 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
149 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
150 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
151 	DMU_OT_BPOBJ,			/* UINT64 */
152 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
153 	/* spa: */
154 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
155 	DMU_OT_SPACE_MAP,		/* UINT64 */
156 	/* zil: */
157 	DMU_OT_INTENT_LOG,		/* UINT64 */
158 	/* dmu: */
159 	DMU_OT_DNODE,			/* DNODE */
160 	DMU_OT_OBJSET,			/* OBJSET */
161 	/* dsl: */
162 	DMU_OT_DSL_DIR,			/* UINT64 */
163 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
164 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
165 	DMU_OT_DSL_PROPS,		/* ZAP */
166 	DMU_OT_DSL_DATASET,		/* UINT64 */
167 	/* zpl: */
168 	DMU_OT_ZNODE,			/* ZNODE */
169 	DMU_OT_OLDACL,			/* Old ACL */
170 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
171 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
172 	DMU_OT_MASTER_NODE,		/* ZAP */
173 	DMU_OT_UNLINKED_SET,		/* ZAP */
174 	/* zvol: */
175 	DMU_OT_ZVOL,			/* UINT8 */
176 	DMU_OT_ZVOL_PROP,		/* ZAP */
177 	/* other; for testing only! */
178 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
179 	DMU_OT_UINT64_OTHER,		/* UINT64 */
180 	DMU_OT_ZAP_OTHER,		/* ZAP */
181 	/* new object types: */
182 	DMU_OT_ERROR_LOG,		/* ZAP */
183 	DMU_OT_SPA_HISTORY,		/* UINT8 */
184 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
185 	DMU_OT_POOL_PROPS,		/* ZAP */
186 	DMU_OT_DSL_PERMS,		/* ZAP */
187 	DMU_OT_ACL,			/* ACL */
188 	DMU_OT_SYSACL,			/* SYSACL */
189 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
190 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
191 	DMU_OT_NEXT_CLONES,		/* ZAP */
192 	DMU_OT_SCAN_QUEUE,		/* ZAP */
193 	DMU_OT_USERGROUP_USED,		/* ZAP */
194 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
195 	DMU_OT_USERREFS,		/* ZAP */
196 	DMU_OT_DDT_ZAP,			/* ZAP */
197 	DMU_OT_DDT_STATS,		/* ZAP */
198 	DMU_OT_SA,			/* System attr */
199 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
200 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
201 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
202 	DMU_OT_SCAN_XLATE,		/* ZAP */
203 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
204 	DMU_OT_DEADLIST,		/* ZAP */
205 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
206 	DMU_OT_DSL_CLONES,		/* ZAP */
207 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
208 	/*
209 	 * Do not allocate new object types here. Doing so makes the on-disk
210 	 * format incompatible with any other format that uses the same object
211 	 * type number.
212 	 *
213 	 * When creating an object which does not have one of the above types
214 	 * use the DMU_OTN_* type with the correct byteswap and metadata
215 	 * values.
216 	 *
217 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
218 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
219 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
220 	 * and DMU_OTN_* types).
221 	 */
222 	DMU_OT_NUMTYPES,
223 
224 	/*
225 	 * Names for valid types declared with DMU_OT().
226 	 */
227 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
228 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
229 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
230 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
231 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
232 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
233 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
234 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
235 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
236 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
237 } dmu_object_type_t;
238 
239 /*
240  * These flags are intended to be used to specify the "txg_how"
241  * parameter when calling the dmu_tx_assign() function. See the comment
242  * above dmu_tx_assign() for more details on the meaning of these flags.
243  */
244 #define	TXG_NOWAIT	(0ULL)
245 #define	TXG_WAIT	(1ULL<<0)
246 #define	TXG_NOTHROTTLE	(1ULL<<1)
247 
248 void byteswap_uint64_array(void *buf, size_t size);
249 void byteswap_uint32_array(void *buf, size_t size);
250 void byteswap_uint16_array(void *buf, size_t size);
251 void byteswap_uint8_array(void *buf, size_t size);
252 void zap_byteswap(void *buf, size_t size);
253 void zfs_oldacl_byteswap(void *buf, size_t size);
254 void zfs_acl_byteswap(void *buf, size_t size);
255 void zfs_znode_byteswap(void *buf, size_t size);
256 
257 #define	DS_FIND_SNAPSHOTS	(1<<0)
258 #define	DS_FIND_CHILDREN	(1<<1)
259 #define	DS_FIND_SERIALIZE	(1<<2)
260 
261 /*
262  * The maximum number of bytes that can be accessed as part of one
263  * operation, including metadata.
264  */
265 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
266 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
267 
268 #define	DMU_USERUSED_OBJECT	(-1ULL)
269 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
270 
271 /*
272  * artificial blkids for bonus buffer and spill blocks
273  */
274 #define	DMU_BONUS_BLKID		(-1ULL)
275 #define	DMU_SPILL_BLKID		(-2ULL)
276 /*
277  * Public routines to create, destroy, open, and close objsets.
278  */
279 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
280 int dmu_objset_own(const char *name, dmu_objset_type_t type,
281     boolean_t readonly, void *tag, objset_t **osp);
282 void dmu_objset_rele(objset_t *os, void *tag);
283 void dmu_objset_disown(objset_t *os, void *tag);
284 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
285 
286 void dmu_objset_evict_dbufs(objset_t *os);
287 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
288     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
289 int dmu_objset_clone(const char *name, const char *origin);
290 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
291     struct nvlist *errlist);
292 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
293 int dmu_objset_snapshot_tmp(const char *, const char *, int);
294 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
295     int flags);
296 void dmu_objset_byteswap(void *buf, size_t size);
297 int dsl_dataset_rename_snapshot(const char *fsname,
298     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
299 int dmu_objset_remap_indirects(const char *fsname);
300 
301 typedef struct dmu_buf {
302 	uint64_t db_object;		/* object that this buffer is part of */
303 	uint64_t db_offset;		/* byte offset in this object */
304 	uint64_t db_size;		/* size of buffer in bytes */
305 	void *db_data;			/* data in buffer */
306 } dmu_buf_t;
307 
308 /*
309  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
310  */
311 #define	DMU_POOL_DIRECTORY_OBJECT	1
312 #define	DMU_POOL_CONFIG			"config"
313 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
314 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
315 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
316 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
317 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
318 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
319 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
320 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
321 #define	DMU_POOL_SPARES			"spares"
322 #define	DMU_POOL_DEFLATE		"deflate"
323 #define	DMU_POOL_HISTORY		"history"
324 #define	DMU_POOL_PROPS			"pool_props"
325 #define	DMU_POOL_L2CACHE		"l2cache"
326 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
327 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
328 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
329 #define	DMU_POOL_CREATION_VERSION	"creation_version"
330 #define	DMU_POOL_SCAN			"scan"
331 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
332 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
333 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
334 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
335 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
336 #define	DMU_POOL_REMOVING		"com.delphix:removing"
337 #define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
338 #define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
339 #define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
340 
341 /*
342  * Allocate an object from this objset.  The range of object numbers
343  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
344  *
345  * The transaction must be assigned to a txg.  The newly allocated
346  * object will be "held" in the transaction (ie. you can modify the
347  * newly allocated object in this transaction).
348  *
349  * dmu_object_alloc() chooses an object and returns it in *objectp.
350  *
351  * dmu_object_claim() allocates a specific object number.  If that
352  * number is already allocated, it fails and returns EEXIST.
353  *
354  * Return 0 on success, or ENOSPC or EEXIST as specified above.
355  */
356 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
357     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
358 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
359     int indirect_blockshift,
360     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
361 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
362     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
363 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
364     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
365 
366 /*
367  * Free an object from this objset.
368  *
369  * The object's data will be freed as well (ie. you don't need to call
370  * dmu_free(object, 0, -1, tx)).
371  *
372  * The object need not be held in the transaction.
373  *
374  * If there are any holds on this object's buffers (via dmu_buf_hold()),
375  * or tx holds on the object (via dmu_tx_hold_object()), you can not
376  * free it; it fails and returns EBUSY.
377  *
378  * If the object is not allocated, it fails and returns ENOENT.
379  *
380  * Return 0 on success, or EBUSY or ENOENT as specified above.
381  */
382 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
383 
384 /*
385  * Find the next allocated or free object.
386  *
387  * The objectp parameter is in-out.  It will be updated to be the next
388  * object which is allocated.  Ignore objects which have not been
389  * modified since txg.
390  *
391  * XXX Can only be called on a objset with no dirty data.
392  *
393  * Returns 0 on success, or ENOENT if there are no more objects.
394  */
395 int dmu_object_next(objset_t *os, uint64_t *objectp,
396     boolean_t hole, uint64_t txg);
397 
398 /*
399  * Set the data blocksize for an object.
400  *
401  * The object cannot have any blocks allcated beyond the first.  If
402  * the first block is allocated already, the new size must be greater
403  * than the current block size.  If these conditions are not met,
404  * ENOTSUP will be returned.
405  *
406  * Returns 0 on success, or EBUSY if there are any holds on the object
407  * contents, or ENOTSUP as described above.
408  */
409 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
410     int ibs, dmu_tx_t *tx);
411 
412 /*
413  * Set the checksum property on a dnode.  The new checksum algorithm will
414  * apply to all newly written blocks; existing blocks will not be affected.
415  */
416 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
417     dmu_tx_t *tx);
418 
419 /*
420  * Set the compress property on a dnode.  The new compression algorithm will
421  * apply to all newly written blocks; existing blocks will not be affected.
422  */
423 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
424     dmu_tx_t *tx);
425 
426 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
427 
428 void
429 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
430     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
431     int compressed_size, int byteorder, dmu_tx_t *tx);
432 
433 /*
434  * Decide how to write a block: checksum, compression, number of copies, etc.
435  */
436 #define	WP_NOFILL	0x1
437 #define	WP_DMU_SYNC	0x2
438 #define	WP_SPILL	0x4
439 
440 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
441     struct zio_prop *zp);
442 /*
443  * The bonus data is accessed more or less like a regular buffer.
444  * You must dmu_bonus_hold() to get the buffer, which will give you a
445  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
446  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
447  * before modifying it, and the
448  * object must be held in an assigned transaction before calling
449  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
450  * buffer as well.  You must release your hold with dmu_buf_rele().
451  *
452  * Returns ENOENT, EIO, or 0.
453  */
454 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
455 int dmu_bonus_max(void);
456 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
457 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
458 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
459 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
460 
461 /*
462  * Special spill buffer support used by "SA" framework
463  */
464 
465 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
466 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
467     void *tag, dmu_buf_t **dbp);
468 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
469 
470 /*
471  * Obtain the DMU buffer from the specified object which contains the
472  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
473  * that it will remain in memory.  You must release the hold with
474  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
475  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
476  *
477  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
478  * on the returned buffer before reading or writing the buffer's
479  * db_data.  The comments for those routines describe what particular
480  * operations are valid after calling them.
481  *
482  * The object number must be a valid, allocated object number.
483  */
484 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
485     void *tag, dmu_buf_t **, int flags);
486 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
487     void *tag, dmu_buf_t **dbp, int flags);
488 
489 /*
490  * Add a reference to a dmu buffer that has already been held via
491  * dmu_buf_hold() in the current context.
492  */
493 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
494 
495 /*
496  * Attempt to add a reference to a dmu buffer that is in an unknown state,
497  * using a pointer that may have been invalidated by eviction processing.
498  * The request will succeed if the passed in dbuf still represents the
499  * same os/object/blkid, is ineligible for eviction, and has at least
500  * one hold by a user other than the syncer.
501  */
502 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
503     uint64_t blkid, void *tag);
504 
505 void dmu_buf_rele(dmu_buf_t *db, void *tag);
506 uint64_t dmu_buf_refcount(dmu_buf_t *db);
507 
508 /*
509  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
510  * range of an object.  A pointer to an array of dmu_buf_t*'s is
511  * returned (in *dbpp).
512  *
513  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
514  * frees the array.  The hold on the array of buffers MUST be released
515  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
516  * individually with dmu_buf_rele.
517  */
518 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
519     uint64_t length, boolean_t read, void *tag,
520     int *numbufsp, dmu_buf_t ***dbpp);
521 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
522     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
523     uint32_t flags);
524 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
525 
526 typedef void dmu_buf_evict_func_t(void *user_ptr);
527 
528 /*
529  * A DMU buffer user object may be associated with a dbuf for the
530  * duration of its lifetime.  This allows the user of a dbuf (client)
531  * to attach private data to a dbuf (e.g. in-core only data such as a
532  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
533  * when that dbuf has been evicted.  Clients typically respond to the
534  * eviction notification by freeing their private data, thus ensuring
535  * the same lifetime for both dbuf and private data.
536  *
537  * The mapping from a dmu_buf_user_t to any client private data is the
538  * client's responsibility.  All current consumers of the API with private
539  * data embed a dmu_buf_user_t as the first member of the structure for
540  * their private data.  This allows conversions between the two types
541  * with a simple cast.  Since the DMU buf user API never needs access
542  * to the private data, other strategies can be employed if necessary
543  * or convenient for the client (e.g. using __containerof() to do the
544  * conversion for private data that cannot have the dmu_buf_user_t as
545  * its first member).
546  *
547  * Eviction callbacks are executed without the dbuf mutex held or any
548  * other type of mechanism to guarantee that the dbuf is still available.
549  * For this reason, users must assume the dbuf has already been freed
550  * and not reference the dbuf from the callback context.
551  *
552  * Users requesting "immediate eviction" are notified as soon as the dbuf
553  * is only referenced by dirty records (dirties == holds).  Otherwise the
554  * notification occurs after eviction processing for the dbuf begins.
555  */
556 typedef struct dmu_buf_user {
557 	/*
558 	 * Asynchronous user eviction callback state.
559 	 */
560 	taskq_ent_t	dbu_tqent;
561 
562 	/*
563 	 * This instance's eviction function pointers.
564 	 *
565 	 * dbu_evict_func_sync is called synchronously and then
566 	 * dbu_evict_func_async is executed asynchronously on a taskq.
567 	 */
568 	dmu_buf_evict_func_t *dbu_evict_func_sync;
569 	dmu_buf_evict_func_t *dbu_evict_func_async;
570 #ifdef ZFS_DEBUG
571 	/*
572 	 * Pointer to user's dbuf pointer.  NULL for clients that do
573 	 * not associate a dbuf with their user data.
574 	 *
575 	 * The dbuf pointer is cleared upon eviction so as to catch
576 	 * use-after-evict bugs in clients.
577 	 */
578 	dmu_buf_t **dbu_clear_on_evict_dbufp;
579 #endif
580 } dmu_buf_user_t;
581 
582 /*
583  * Initialize the given dmu_buf_user_t instance with the eviction function
584  * evict_func, to be called when the user is evicted.
585  *
586  * NOTE: This function should only be called once on a given dmu_buf_user_t.
587  *       To allow enforcement of this, dbu must already be zeroed on entry.
588  */
589 /*ARGSUSED*/
590 inline void
591 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
592     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
593 {
594 	ASSERT(dbu->dbu_evict_func_sync == NULL);
595 	ASSERT(dbu->dbu_evict_func_async == NULL);
596 
597 	/* must have at least one evict func */
598 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
599 	dbu->dbu_evict_func_sync = evict_func_sync;
600 	dbu->dbu_evict_func_async = evict_func_async;
601 #ifdef ZFS_DEBUG
602 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
603 #endif
604 }
605 
606 /*
607  * Attach user data to a dbuf and mark it for normal (when the dbuf's
608  * data is cleared or its reference count goes to zero) eviction processing.
609  *
610  * Returns NULL on success, or the existing user if another user currently
611  * owns the buffer.
612  */
613 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
614 
615 /*
616  * Attach user data to a dbuf and mark it for immediate (its dirty and
617  * reference counts are equal) eviction processing.
618  *
619  * Returns NULL on success, or the existing user if another user currently
620  * owns the buffer.
621  */
622 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
623 
624 /*
625  * Replace the current user of a dbuf.
626  *
627  * If given the current user of a dbuf, replaces the dbuf's user with
628  * "new_user" and returns the user data pointer that was replaced.
629  * Otherwise returns the current, and unmodified, dbuf user pointer.
630  */
631 void *dmu_buf_replace_user(dmu_buf_t *db,
632     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
633 
634 /*
635  * Remove the specified user data for a DMU buffer.
636  *
637  * Returns the user that was removed on success, or the current user if
638  * another user currently owns the buffer.
639  */
640 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
641 
642 /*
643  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
644  */
645 void *dmu_buf_get_user(dmu_buf_t *db);
646 
647 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
648 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
649 void dmu_buf_dnode_exit(dmu_buf_t *db);
650 
651 /* Block until any in-progress dmu buf user evictions complete. */
652 void dmu_buf_user_evict_wait(void);
653 
654 /*
655  * Returns the blkptr associated with this dbuf, or NULL if not set.
656  */
657 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
658 
659 /*
660  * Indicate that you are going to modify the buffer's data (db_data).
661  *
662  * The transaction (tx) must be assigned to a txg (ie. you've called
663  * dmu_tx_assign()).  The buffer's object must be held in the tx
664  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
665  */
666 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
667 
668 /*
669  * You must create a transaction, then hold the objects which you will
670  * (or might) modify as part of this transaction.  Then you must assign
671  * the transaction to a transaction group.  Once the transaction has
672  * been assigned, you can modify buffers which belong to held objects as
673  * part of this transaction.  You can't modify buffers before the
674  * transaction has been assigned; you can't modify buffers which don't
675  * belong to objects which this transaction holds; you can't hold
676  * objects once the transaction has been assigned.  You may hold an
677  * object which you are going to free (with dmu_object_free()), but you
678  * don't have to.
679  *
680  * You can abort the transaction before it has been assigned.
681  *
682  * Note that you may hold buffers (with dmu_buf_hold) at any time,
683  * regardless of transaction state.
684  */
685 
686 #define	DMU_NEW_OBJECT	(-1ULL)
687 #define	DMU_OBJECT_END	(-1ULL)
688 
689 dmu_tx_t *dmu_tx_create(objset_t *os);
690 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
691 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
692     int len);
693 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
694     uint64_t len);
695 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
696     uint64_t len);
697 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
698 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
699 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
700     const char *name);
701 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
702 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
703 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
704 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
705 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
706 void dmu_tx_abort(dmu_tx_t *tx);
707 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
708 void dmu_tx_wait(dmu_tx_t *tx);
709 void dmu_tx_commit(dmu_tx_t *tx);
710 void dmu_tx_mark_netfree(dmu_tx_t *tx);
711 
712 /*
713  * To register a commit callback, dmu_tx_callback_register() must be called.
714  *
715  * dcb_data is a pointer to caller private data that is passed on as a
716  * callback parameter. The caller is responsible for properly allocating and
717  * freeing it.
718  *
719  * When registering a callback, the transaction must be already created, but
720  * it cannot be committed or aborted. It can be assigned to a txg or not.
721  *
722  * The callback will be called after the transaction has been safely written
723  * to stable storage and will also be called if the dmu_tx is aborted.
724  * If there is any error which prevents the transaction from being committed to
725  * disk, the callback will be called with a value of error != 0.
726  */
727 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
728 
729 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
730     void *dcb_data);
731 
732 /*
733  * Free up the data blocks for a defined range of a file.  If size is
734  * -1, the range from offset to end-of-file is freed.
735  */
736 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
737 	uint64_t size, dmu_tx_t *tx);
738 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
739 	uint64_t size);
740 int dmu_free_long_object(objset_t *os, uint64_t object);
741 
742 /*
743  * Convenience functions.
744  *
745  * Canfail routines will return 0 on success, or an errno if there is a
746  * nonrecoverable I/O error.
747  */
748 #define	DMU_READ_PREFETCH	0 /* prefetch */
749 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
750 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
751 	void *buf, uint32_t flags);
752 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
753     uint32_t flags);
754 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
755 	const void *buf, dmu_tx_t *tx);
756 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
757     const void *buf, dmu_tx_t *tx);
758 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
759 	dmu_tx_t *tx);
760 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
761 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
762 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
763 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
764     dmu_tx_t *tx);
765 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
766     dmu_tx_t *tx);
767 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
768     dmu_tx_t *tx);
769 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
770     uint64_t size, struct page *pp, dmu_tx_t *tx);
771 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
772 void dmu_return_arcbuf(struct arc_buf *buf);
773 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset,
774     struct arc_buf *buf, dmu_tx_t *tx);
775 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
776     dmu_tx_t *tx);
777 int dmu_xuio_init(struct xuio *uio, int niov);
778 void dmu_xuio_fini(struct xuio *uio);
779 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
780     size_t n);
781 int dmu_xuio_cnt(struct xuio *uio);
782 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
783 void dmu_xuio_clear(struct xuio *uio, int i);
784 void xuio_stat_wbuf_copied(void);
785 void xuio_stat_wbuf_nocopy(void);
786 
787 extern boolean_t zfs_prefetch_disable;
788 extern int zfs_max_recordsize;
789 
790 /*
791  * Asynchronously try to read in the data.
792  */
793 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
794     uint64_t len, enum zio_priority pri);
795 
796 typedef struct dmu_object_info {
797 	/* All sizes are in bytes unless otherwise indicated. */
798 	uint32_t doi_data_block_size;
799 	uint32_t doi_metadata_block_size;
800 	dmu_object_type_t doi_type;
801 	dmu_object_type_t doi_bonus_type;
802 	uint64_t doi_bonus_size;
803 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
804 	uint8_t doi_checksum;
805 	uint8_t doi_compress;
806 	uint8_t doi_nblkptr;
807 	uint8_t doi_pad[4];
808 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
809 	uint64_t doi_max_offset;
810 	uint64_t doi_fill_count;		/* number of non-empty blocks */
811 } dmu_object_info_t;
812 
813 typedef void arc_byteswap_func_t(void *buf, size_t size);
814 
815 typedef struct dmu_object_type_info {
816 	dmu_object_byteswap_t	ot_byteswap;
817 	boolean_t		ot_metadata;
818 	boolean_t		ot_dbuf_metadata_cache;
819 	char			*ot_name;
820 } dmu_object_type_info_t;
821 
822 typedef struct dmu_object_byteswap_info {
823 	arc_byteswap_func_t	*ob_func;
824 	char			*ob_name;
825 } dmu_object_byteswap_info_t;
826 
827 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
828 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
829 
830 /*
831  * Get information on a DMU object.
832  *
833  * Return 0 on success or ENOENT if object is not allocated.
834  *
835  * If doi is NULL, just indicates whether the object exists.
836  */
837 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
838 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
839 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
840 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
841 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
842 /*
843  * Like dmu_object_info_from_db, but faster still when you only care about
844  * the size.  This is specifically optimized for zfs_getattr().
845  */
846 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
847     u_longlong_t *nblk512);
848 
849 typedef struct dmu_objset_stats {
850 	uint64_t dds_num_clones; /* number of clones of this */
851 	uint64_t dds_creation_txg;
852 	uint64_t dds_guid;
853 	dmu_objset_type_t dds_type;
854 	uint8_t dds_is_snapshot;
855 	uint8_t dds_inconsistent;
856 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
857 } dmu_objset_stats_t;
858 
859 /*
860  * Get stats on a dataset.
861  */
862 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
863 
864 /*
865  * Add entries to the nvlist for all the objset's properties.  See
866  * zfs_prop_table[] and zfs(1m) for details on the properties.
867  */
868 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
869 
870 /*
871  * Get the space usage statistics for statvfs().
872  *
873  * refdbytes is the amount of space "referenced" by this objset.
874  * availbytes is the amount of space available to this objset, taking
875  * into account quotas & reservations, assuming that no other objsets
876  * use the space first.  These values correspond to the 'referenced' and
877  * 'available' properties, described in the zfs(1m) manpage.
878  *
879  * usedobjs and availobjs are the number of objects currently allocated,
880  * and available.
881  */
882 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
883     uint64_t *usedobjsp, uint64_t *availobjsp);
884 
885 /*
886  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
887  * (Contrast with the ds_guid which is a 64-bit ID that will never
888  * change, so there is a small probability that it will collide.)
889  */
890 uint64_t dmu_objset_fsid_guid(objset_t *os);
891 
892 /*
893  * Get the [cm]time for an objset's snapshot dir
894  */
895 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
896 
897 int dmu_objset_is_snapshot(objset_t *os);
898 
899 extern struct spa *dmu_objset_spa(objset_t *os);
900 extern struct zilog *dmu_objset_zil(objset_t *os);
901 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
902 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
903 extern void dmu_objset_name(objset_t *os, char *buf);
904 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
905 extern uint64_t dmu_objset_id(objset_t *os);
906 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
907 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
908 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
909     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
910 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
911     int maxlen, boolean_t *conflict);
912 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
913     uint64_t *idp, uint64_t *offp);
914 
915 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
916     void *bonus, uint64_t *userp, uint64_t *groupp);
917 extern void dmu_objset_register_type(dmu_objset_type_t ost,
918     objset_used_cb_t *cb);
919 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
920 extern void *dmu_objset_get_user(objset_t *os);
921 
922 /*
923  * Return the txg number for the given assigned transaction.
924  */
925 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
926 
927 /*
928  * Synchronous write.
929  * If a parent zio is provided this function initiates a write on the
930  * provided buffer as a child of the parent zio.
931  * In the absence of a parent zio, the write is completed synchronously.
932  * At write completion, blk is filled with the bp of the written block.
933  * Note that while the data covered by this function will be on stable
934  * storage when the write completes this new data does not become a
935  * permanent part of the file until the associated transaction commits.
936  */
937 
938 /*
939  * {zfs,zvol,ztest}_get_done() args
940  */
941 typedef struct zgd {
942 	struct lwb	*zgd_lwb;
943 	struct blkptr	*zgd_bp;
944 	dmu_buf_t	*zgd_db;
945 	struct locked_range *zgd_lr;
946 	void		*zgd_private;
947 } zgd_t;
948 
949 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
950 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
951 
952 /*
953  * Find the next hole or data block in file starting at *off
954  * Return found offset in *off. Return ESRCH for end of file.
955  */
956 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
957     uint64_t *off);
958 
959 /*
960  * Check if a DMU object has any dirty blocks. If so, sync out
961  * all pending transaction groups. Otherwise, this function
962  * does not alter DMU state. This could be improved to only sync
963  * out the necessary transaction groups for this particular
964  * object.
965  */
966 int dmu_object_wait_synced(objset_t *os, uint64_t object);
967 
968 /*
969  * Initial setup and final teardown.
970  */
971 extern void dmu_init(void);
972 extern void dmu_fini(void);
973 
974 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
975     uint64_t object, uint64_t offset, int len);
976 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
977     dmu_traverse_cb_t cb, void *arg);
978 
979 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
980     struct vnode *vp, offset_t *offp);
981 
982 /* CRC64 table */
983 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
984 extern uint64_t zfs_crc64_table[256];
985 
986 extern int zfs_mdcomp_disable;
987 
988 #ifdef	__cplusplus
989 }
990 #endif
991 
992 #endif	/* _SYS_DMU_H */
993