xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/dmu.h (revision b1e2e3fb17324e9ddf43db264a0c64da7756d9e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2017, Intel Corporation.
32  * Copyright (c) 2014 Integros [integros.com]
33  */
34 
35 /* Portions Copyright 2010 Robert Milkowski */
36 
37 #ifndef	_SYS_DMU_H
38 #define	_SYS_DMU_H
39 
40 /*
41  * This file describes the interface that the DMU provides for its
42  * consumers.
43  *
44  * The DMU also interacts with the SPA.  That interface is described in
45  * dmu_spa.h.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/inttypes.h>
50 #include <sys/cred.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zio_compress.h>
53 #include <sys/zio_priority.h>
54 
55 #ifdef	__cplusplus
56 extern "C" {
57 #endif
58 
59 struct uio;
60 struct xuio;
61 struct page;
62 struct vnode;
63 struct spa;
64 struct zilog;
65 struct zio;
66 struct blkptr;
67 struct zap_cursor;
68 struct dsl_dataset;
69 struct dsl_pool;
70 struct dnode;
71 struct drr_begin;
72 struct drr_end;
73 struct zbookmark_phys;
74 struct spa;
75 struct nvlist;
76 struct arc_buf;
77 struct zio_prop;
78 struct sa_handle;
79 struct locked_range;
80 
81 typedef struct objset objset_t;
82 typedef struct dmu_tx dmu_tx_t;
83 typedef struct dsl_dir dsl_dir_t;
84 typedef struct dnode dnode_t;
85 
86 typedef enum dmu_object_byteswap {
87 	DMU_BSWAP_UINT8,
88 	DMU_BSWAP_UINT16,
89 	DMU_BSWAP_UINT32,
90 	DMU_BSWAP_UINT64,
91 	DMU_BSWAP_ZAP,
92 	DMU_BSWAP_DNODE,
93 	DMU_BSWAP_OBJSET,
94 	DMU_BSWAP_ZNODE,
95 	DMU_BSWAP_OLDACL,
96 	DMU_BSWAP_ACL,
97 	/*
98 	 * Allocating a new byteswap type number makes the on-disk format
99 	 * incompatible with any other format that uses the same number.
100 	 *
101 	 * Data can usually be structured to work with one of the
102 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
103 	 */
104 	DMU_BSWAP_NUMFUNCS
105 } dmu_object_byteswap_t;
106 
107 #define	DMU_OT_NEWTYPE 0x80
108 #define	DMU_OT_METADATA 0x40
109 #define	DMU_OT_BYTESWAP_MASK 0x3f
110 
111 /*
112  * Defines a uint8_t object type. Object types specify if the data
113  * in the object is metadata (boolean) and how to byteswap the data
114  * (dmu_object_byteswap_t). All of the types created by this method
115  * are cached in the dbuf metadata cache.
116  */
117 #define	DMU_OT(byteswap, metadata) \
118 	(DMU_OT_NEWTYPE | \
119 	((metadata) ? DMU_OT_METADATA : 0) | \
120 	((byteswap) & DMU_OT_BYTESWAP_MASK))
121 
122 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
123 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
124 	(ot) < DMU_OT_NUMTYPES)
125 
126 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
127 	((ot) & DMU_OT_METADATA) : \
128 	dmu_ot[(ot)].ot_metadata)
129 
130 #define	DMU_OT_IS_DDT(ot) \
131 	((ot) == DMU_OT_DDT_ZAP)
132 
133 #define	DMU_OT_IS_ZIL(ot) \
134 	((ot) == DMU_OT_INTENT_LOG)
135 
136 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
137 #define	DMU_OT_IS_FILE(ot) \
138 	((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
139 
140 #define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
141 	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
142 
143 /*
144  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
145  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
146  * is repurposed for embedded BPs.
147  */
148 #define	DMU_OT_HAS_FILL(ot) \
149 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
150 
151 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
152 	((ot) & DMU_OT_BYTESWAP_MASK) : \
153 	dmu_ot[(ot)].ot_byteswap)
154 
155 typedef enum dmu_object_type {
156 	DMU_OT_NONE,
157 	/* general: */
158 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
159 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
160 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
161 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
162 	DMU_OT_BPOBJ,			/* UINT64 */
163 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
164 	/* spa: */
165 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
166 	DMU_OT_SPACE_MAP,		/* UINT64 */
167 	/* zil: */
168 	DMU_OT_INTENT_LOG,		/* UINT64 */
169 	/* dmu: */
170 	DMU_OT_DNODE,			/* DNODE */
171 	DMU_OT_OBJSET,			/* OBJSET */
172 	/* dsl: */
173 	DMU_OT_DSL_DIR,			/* UINT64 */
174 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
175 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
176 	DMU_OT_DSL_PROPS,		/* ZAP */
177 	DMU_OT_DSL_DATASET,		/* UINT64 */
178 	/* zpl: */
179 	DMU_OT_ZNODE,			/* ZNODE */
180 	DMU_OT_OLDACL,			/* Old ACL */
181 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
182 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
183 	DMU_OT_MASTER_NODE,		/* ZAP */
184 	DMU_OT_UNLINKED_SET,		/* ZAP */
185 	/* zvol: */
186 	DMU_OT_ZVOL,			/* UINT8 */
187 	DMU_OT_ZVOL_PROP,		/* ZAP */
188 	/* other; for testing only! */
189 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
190 	DMU_OT_UINT64_OTHER,		/* UINT64 */
191 	DMU_OT_ZAP_OTHER,		/* ZAP */
192 	/* new object types: */
193 	DMU_OT_ERROR_LOG,		/* ZAP */
194 	DMU_OT_SPA_HISTORY,		/* UINT8 */
195 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
196 	DMU_OT_POOL_PROPS,		/* ZAP */
197 	DMU_OT_DSL_PERMS,		/* ZAP */
198 	DMU_OT_ACL,			/* ACL */
199 	DMU_OT_SYSACL,			/* SYSACL */
200 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
201 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
202 	DMU_OT_NEXT_CLONES,		/* ZAP */
203 	DMU_OT_SCAN_QUEUE,		/* ZAP */
204 	DMU_OT_USERGROUP_USED,		/* ZAP */
205 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
206 	DMU_OT_USERREFS,		/* ZAP */
207 	DMU_OT_DDT_ZAP,			/* ZAP */
208 	DMU_OT_DDT_STATS,		/* ZAP */
209 	DMU_OT_SA,			/* System attr */
210 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
211 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
212 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
213 	DMU_OT_SCAN_XLATE,		/* ZAP */
214 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
215 	DMU_OT_DEADLIST,		/* ZAP */
216 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
217 	DMU_OT_DSL_CLONES,		/* ZAP */
218 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
219 	/*
220 	 * Do not allocate new object types here. Doing so makes the on-disk
221 	 * format incompatible with any other format that uses the same object
222 	 * type number.
223 	 *
224 	 * When creating an object which does not have one of the above types
225 	 * use the DMU_OTN_* type with the correct byteswap and metadata
226 	 * values.
227 	 *
228 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
229 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
230 	 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
231 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
232 	 * and DMU_OTN_* types).
233 	 */
234 	DMU_OT_NUMTYPES,
235 
236 	/*
237 	 * Names for valid types declared with DMU_OT().
238 	 */
239 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
240 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
241 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
242 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
243 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
244 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
245 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
246 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
247 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
248 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
249 } dmu_object_type_t;
250 
251 /*
252  * These flags are intended to be used to specify the "txg_how"
253  * parameter when calling the dmu_tx_assign() function. See the comment
254  * above dmu_tx_assign() for more details on the meaning of these flags.
255  */
256 #define	TXG_NOWAIT	(0ULL)
257 #define	TXG_WAIT	(1ULL<<0)
258 #define	TXG_NOTHROTTLE	(1ULL<<1)
259 
260 void byteswap_uint64_array(void *buf, size_t size);
261 void byteswap_uint32_array(void *buf, size_t size);
262 void byteswap_uint16_array(void *buf, size_t size);
263 void byteswap_uint8_array(void *buf, size_t size);
264 void zap_byteswap(void *buf, size_t size);
265 void zfs_oldacl_byteswap(void *buf, size_t size);
266 void zfs_acl_byteswap(void *buf, size_t size);
267 void zfs_znode_byteswap(void *buf, size_t size);
268 
269 #define	DS_FIND_SNAPSHOTS	(1<<0)
270 #define	DS_FIND_CHILDREN	(1<<1)
271 #define	DS_FIND_SERIALIZE	(1<<2)
272 
273 /*
274  * The maximum number of bytes that can be accessed as part of one
275  * operation, including metadata.
276  */
277 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
278 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
279 
280 #define	DMU_USERUSED_OBJECT	(-1ULL)
281 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
282 
283 /*
284  * artificial blkids for bonus buffer and spill blocks
285  */
286 #define	DMU_BONUS_BLKID		(-1ULL)
287 #define	DMU_SPILL_BLKID		(-2ULL)
288 /*
289  * Public routines to create, destroy, open, and close objsets.
290  */
291 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
292 int dmu_objset_own(const char *name, dmu_objset_type_t type,
293     boolean_t readonly, void *tag, objset_t **osp);
294 void dmu_objset_rele(objset_t *os, void *tag);
295 void dmu_objset_disown(objset_t *os, void *tag);
296 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
297 
298 void dmu_objset_evict_dbufs(objset_t *os);
299 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
300     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
301 int dmu_objset_clone(const char *name, const char *origin);
302 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
303     struct nvlist *errlist);
304 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
305 int dmu_objset_snapshot_tmp(const char *, const char *, int);
306 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
307     int flags);
308 void dmu_objset_byteswap(void *buf, size_t size);
309 int dsl_dataset_rename_snapshot(const char *fsname,
310     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
311 int dmu_objset_remap_indirects(const char *fsname);
312 
313 typedef struct dmu_buf {
314 	uint64_t db_object;		/* object that this buffer is part of */
315 	uint64_t db_offset;		/* byte offset in this object */
316 	uint64_t db_size;		/* size of buffer in bytes */
317 	void *db_data;			/* data in buffer */
318 } dmu_buf_t;
319 
320 /*
321  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
322  */
323 #define	DMU_POOL_DIRECTORY_OBJECT	1
324 #define	DMU_POOL_CONFIG			"config"
325 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
326 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
327 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
328 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
329 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
330 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
331 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
332 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
333 #define	DMU_POOL_SPARES			"spares"
334 #define	DMU_POOL_DEFLATE		"deflate"
335 #define	DMU_POOL_HISTORY		"history"
336 #define	DMU_POOL_PROPS			"pool_props"
337 #define	DMU_POOL_L2CACHE		"l2cache"
338 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
339 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
340 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
341 #define	DMU_POOL_CREATION_VERSION	"creation_version"
342 #define	DMU_POOL_SCAN			"scan"
343 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
344 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
345 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
346 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
347 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
348 #define	DMU_POOL_REMOVING		"com.delphix:removing"
349 #define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
350 #define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
351 #define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
352 
353 /*
354  * Allocate an object from this objset.  The range of object numbers
355  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
356  *
357  * The transaction must be assigned to a txg.  The newly allocated
358  * object will be "held" in the transaction (ie. you can modify the
359  * newly allocated object in this transaction).
360  *
361  * dmu_object_alloc() chooses an object and returns it in *objectp.
362  *
363  * dmu_object_claim() allocates a specific object number.  If that
364  * number is already allocated, it fails and returns EEXIST.
365  *
366  * Return 0 on success, or ENOSPC or EEXIST as specified above.
367  */
368 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
369     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
370 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
371     int indirect_blockshift,
372     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
373 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
374     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
375     int dnodesize, dmu_tx_t *tx);
376 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
377     int blocksize, dmu_object_type_t bonus_type, int bonus_len,
378     int dnodesize, dmu_tx_t *tx);
379 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
380     dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
381     int bonuslen, int dnodesize, dmu_tx_t *txp);
382 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
383     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
384 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
385     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
386 
387 /*
388  * Free an object from this objset.
389  *
390  * The object's data will be freed as well (ie. you don't need to call
391  * dmu_free(object, 0, -1, tx)).
392  *
393  * The object need not be held in the transaction.
394  *
395  * If there are any holds on this object's buffers (via dmu_buf_hold()),
396  * or tx holds on the object (via dmu_tx_hold_object()), you can not
397  * free it; it fails and returns EBUSY.
398  *
399  * If the object is not allocated, it fails and returns ENOENT.
400  *
401  * Return 0 on success, or EBUSY or ENOENT as specified above.
402  */
403 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
404 
405 /*
406  * Find the next allocated or free object.
407  *
408  * The objectp parameter is in-out.  It will be updated to be the next
409  * object which is allocated.  Ignore objects which have not been
410  * modified since txg.
411  *
412  * XXX Can only be called on a objset with no dirty data.
413  *
414  * Returns 0 on success, or ENOENT if there are no more objects.
415  */
416 int dmu_object_next(objset_t *os, uint64_t *objectp,
417     boolean_t hole, uint64_t txg);
418 
419 /*
420  * Set the data blocksize for an object.
421  *
422  * The object cannot have any blocks allcated beyond the first.  If
423  * the first block is allocated already, the new size must be greater
424  * than the current block size.  If these conditions are not met,
425  * ENOTSUP will be returned.
426  *
427  * Returns 0 on success, or EBUSY if there are any holds on the object
428  * contents, or ENOTSUP as described above.
429  */
430 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
431     int ibs, dmu_tx_t *tx);
432 
433 /*
434  * Set the checksum property on a dnode.  The new checksum algorithm will
435  * apply to all newly written blocks; existing blocks will not be affected.
436  */
437 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
438     dmu_tx_t *tx);
439 
440 /*
441  * Set the compress property on a dnode.  The new compression algorithm will
442  * apply to all newly written blocks; existing blocks will not be affected.
443  */
444 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
445     dmu_tx_t *tx);
446 
447 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
448 
449 void
450 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
451     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
452     int compressed_size, int byteorder, dmu_tx_t *tx);
453 
454 /*
455  * Decide how to write a block: checksum, compression, number of copies, etc.
456  */
457 #define	WP_NOFILL	0x1
458 #define	WP_DMU_SYNC	0x2
459 #define	WP_SPILL	0x4
460 
461 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
462     struct zio_prop *zp);
463 /*
464  * The bonus data is accessed more or less like a regular buffer.
465  * You must dmu_bonus_hold() to get the buffer, which will give you a
466  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
467  * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
468  * before modifying it, and the
469  * object must be held in an assigned transaction before calling
470  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
471  * buffer as well.  You must release your hold with dmu_buf_rele().
472  *
473  * Returns ENOENT, EIO, or 0.
474  */
475 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
476 int dmu_bonus_max(void);
477 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
478 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
479 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
480 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
481 
482 /*
483  * Special spill buffer support used by "SA" framework
484  */
485 
486 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
487 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
488     void *tag, dmu_buf_t **dbp);
489 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
490 
491 /*
492  * Obtain the DMU buffer from the specified object which contains the
493  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
494  * that it will remain in memory.  You must release the hold with
495  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
496  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
497  *
498  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
499  * on the returned buffer before reading or writing the buffer's
500  * db_data.  The comments for those routines describe what particular
501  * operations are valid after calling them.
502  *
503  * The object number must be a valid, allocated object number.
504  */
505 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
506     void *tag, dmu_buf_t **, int flags);
507 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
508     void *tag, dmu_buf_t **dbp, int flags);
509 
510 /*
511  * Add a reference to a dmu buffer that has already been held via
512  * dmu_buf_hold() in the current context.
513  */
514 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
515 
516 /*
517  * Attempt to add a reference to a dmu buffer that is in an unknown state,
518  * using a pointer that may have been invalidated by eviction processing.
519  * The request will succeed if the passed in dbuf still represents the
520  * same os/object/blkid, is ineligible for eviction, and has at least
521  * one hold by a user other than the syncer.
522  */
523 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
524     uint64_t blkid, void *tag);
525 
526 void dmu_buf_rele(dmu_buf_t *db, void *tag);
527 uint64_t dmu_buf_refcount(dmu_buf_t *db);
528 
529 /*
530  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
531  * range of an object.  A pointer to an array of dmu_buf_t*'s is
532  * returned (in *dbpp).
533  *
534  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
535  * frees the array.  The hold on the array of buffers MUST be released
536  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
537  * individually with dmu_buf_rele.
538  */
539 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
540     uint64_t length, boolean_t read, void *tag,
541     int *numbufsp, dmu_buf_t ***dbpp);
542 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
543     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
544     uint32_t flags);
545 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
546 
547 typedef void dmu_buf_evict_func_t(void *user_ptr);
548 
549 /*
550  * A DMU buffer user object may be associated with a dbuf for the
551  * duration of its lifetime.  This allows the user of a dbuf (client)
552  * to attach private data to a dbuf (e.g. in-core only data such as a
553  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
554  * when that dbuf has been evicted.  Clients typically respond to the
555  * eviction notification by freeing their private data, thus ensuring
556  * the same lifetime for both dbuf and private data.
557  *
558  * The mapping from a dmu_buf_user_t to any client private data is the
559  * client's responsibility.  All current consumers of the API with private
560  * data embed a dmu_buf_user_t as the first member of the structure for
561  * their private data.  This allows conversions between the two types
562  * with a simple cast.  Since the DMU buf user API never needs access
563  * to the private data, other strategies can be employed if necessary
564  * or convenient for the client (e.g. using __containerof() to do the
565  * conversion for private data that cannot have the dmu_buf_user_t as
566  * its first member).
567  *
568  * Eviction callbacks are executed without the dbuf mutex held or any
569  * other type of mechanism to guarantee that the dbuf is still available.
570  * For this reason, users must assume the dbuf has already been freed
571  * and not reference the dbuf from the callback context.
572  *
573  * Users requesting "immediate eviction" are notified as soon as the dbuf
574  * is only referenced by dirty records (dirties == holds).  Otherwise the
575  * notification occurs after eviction processing for the dbuf begins.
576  */
577 typedef struct dmu_buf_user {
578 	/*
579 	 * Asynchronous user eviction callback state.
580 	 */
581 	taskq_ent_t	dbu_tqent;
582 
583 	/*
584 	 * This instance's eviction function pointers.
585 	 *
586 	 * dbu_evict_func_sync is called synchronously and then
587 	 * dbu_evict_func_async is executed asynchronously on a taskq.
588 	 */
589 	dmu_buf_evict_func_t *dbu_evict_func_sync;
590 	dmu_buf_evict_func_t *dbu_evict_func_async;
591 #ifdef ZFS_DEBUG
592 	/*
593 	 * Pointer to user's dbuf pointer.  NULL for clients that do
594 	 * not associate a dbuf with their user data.
595 	 *
596 	 * The dbuf pointer is cleared upon eviction so as to catch
597 	 * use-after-evict bugs in clients.
598 	 */
599 	dmu_buf_t **dbu_clear_on_evict_dbufp;
600 #endif
601 } dmu_buf_user_t;
602 
603 /*
604  * Initialize the given dmu_buf_user_t instance with the eviction function
605  * evict_func, to be called when the user is evicted.
606  *
607  * NOTE: This function should only be called once on a given dmu_buf_user_t.
608  *       To allow enforcement of this, dbu must already be zeroed on entry.
609  */
610 /*ARGSUSED*/
611 inline void
612 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
613     dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
614 {
615 	ASSERT(dbu->dbu_evict_func_sync == NULL);
616 	ASSERT(dbu->dbu_evict_func_async == NULL);
617 
618 	/* must have at least one evict func */
619 	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
620 	dbu->dbu_evict_func_sync = evict_func_sync;
621 	dbu->dbu_evict_func_async = evict_func_async;
622 #ifdef ZFS_DEBUG
623 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
624 #endif
625 }
626 
627 /*
628  * Attach user data to a dbuf and mark it for normal (when the dbuf's
629  * data is cleared or its reference count goes to zero) eviction processing.
630  *
631  * Returns NULL on success, or the existing user if another user currently
632  * owns the buffer.
633  */
634 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
635 
636 /*
637  * Attach user data to a dbuf and mark it for immediate (its dirty and
638  * reference counts are equal) eviction processing.
639  *
640  * Returns NULL on success, or the existing user if another user currently
641  * owns the buffer.
642  */
643 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
644 
645 /*
646  * Replace the current user of a dbuf.
647  *
648  * If given the current user of a dbuf, replaces the dbuf's user with
649  * "new_user" and returns the user data pointer that was replaced.
650  * Otherwise returns the current, and unmodified, dbuf user pointer.
651  */
652 void *dmu_buf_replace_user(dmu_buf_t *db,
653     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
654 
655 /*
656  * Remove the specified user data for a DMU buffer.
657  *
658  * Returns the user that was removed on success, or the current user if
659  * another user currently owns the buffer.
660  */
661 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
662 
663 /*
664  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
665  */
666 void *dmu_buf_get_user(dmu_buf_t *db);
667 
668 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
669 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
670 void dmu_buf_dnode_exit(dmu_buf_t *db);
671 
672 /* Block until any in-progress dmu buf user evictions complete. */
673 void dmu_buf_user_evict_wait(void);
674 
675 /*
676  * Returns the blkptr associated with this dbuf, or NULL if not set.
677  */
678 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
679 
680 /*
681  * Indicate that you are going to modify the buffer's data (db_data).
682  *
683  * The transaction (tx) must be assigned to a txg (ie. you've called
684  * dmu_tx_assign()).  The buffer's object must be held in the tx
685  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
686  */
687 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
688 
689 /*
690  * You must create a transaction, then hold the objects which you will
691  * (or might) modify as part of this transaction.  Then you must assign
692  * the transaction to a transaction group.  Once the transaction has
693  * been assigned, you can modify buffers which belong to held objects as
694  * part of this transaction.  You can't modify buffers before the
695  * transaction has been assigned; you can't modify buffers which don't
696  * belong to objects which this transaction holds; you can't hold
697  * objects once the transaction has been assigned.  You may hold an
698  * object which you are going to free (with dmu_object_free()), but you
699  * don't have to.
700  *
701  * You can abort the transaction before it has been assigned.
702  *
703  * Note that you may hold buffers (with dmu_buf_hold) at any time,
704  * regardless of transaction state.
705  */
706 
707 #define	DMU_NEW_OBJECT	(-1ULL)
708 #define	DMU_OBJECT_END	(-1ULL)
709 
710 dmu_tx_t *dmu_tx_create(objset_t *os);
711 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
712 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
713     int len);
714 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
715     uint64_t len);
716 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
717     uint64_t len);
718 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
719 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
720 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
721     const char *name);
722 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
723 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
724 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
725 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
726 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
727 void dmu_tx_abort(dmu_tx_t *tx);
728 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
729 void dmu_tx_wait(dmu_tx_t *tx);
730 void dmu_tx_commit(dmu_tx_t *tx);
731 void dmu_tx_mark_netfree(dmu_tx_t *tx);
732 
733 /*
734  * To register a commit callback, dmu_tx_callback_register() must be called.
735  *
736  * dcb_data is a pointer to caller private data that is passed on as a
737  * callback parameter. The caller is responsible for properly allocating and
738  * freeing it.
739  *
740  * When registering a callback, the transaction must be already created, but
741  * it cannot be committed or aborted. It can be assigned to a txg or not.
742  *
743  * The callback will be called after the transaction has been safely written
744  * to stable storage and will also be called if the dmu_tx is aborted.
745  * If there is any error which prevents the transaction from being committed to
746  * disk, the callback will be called with a value of error != 0.
747  */
748 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
749 
750 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
751     void *dcb_data);
752 
753 /*
754  * Free up the data blocks for a defined range of a file.  If size is
755  * -1, the range from offset to end-of-file is freed.
756  */
757 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
758 	uint64_t size, dmu_tx_t *tx);
759 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
760 	uint64_t size);
761 int dmu_free_long_object(objset_t *os, uint64_t object);
762 
763 /*
764  * Convenience functions.
765  *
766  * Canfail routines will return 0 on success, or an errno if there is a
767  * nonrecoverable I/O error.
768  */
769 #define	DMU_READ_PREFETCH	0 /* prefetch */
770 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
771 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
772 	void *buf, uint32_t flags);
773 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
774     uint32_t flags);
775 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
776 	const void *buf, dmu_tx_t *tx);
777 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
778     const void *buf, dmu_tx_t *tx);
779 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
780 	dmu_tx_t *tx);
781 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
782 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
783 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
784 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
785     dmu_tx_t *tx);
786 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
787     dmu_tx_t *tx);
788 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
789     dmu_tx_t *tx);
790 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
791     uint64_t size, struct page *pp, dmu_tx_t *tx);
792 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
793 void dmu_return_arcbuf(struct arc_buf *buf);
794 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset,
795     struct arc_buf *buf, dmu_tx_t *tx);
796 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
797     dmu_tx_t *tx);
798 int dmu_xuio_init(struct xuio *uio, int niov);
799 void dmu_xuio_fini(struct xuio *uio);
800 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
801     size_t n);
802 int dmu_xuio_cnt(struct xuio *uio);
803 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
804 void dmu_xuio_clear(struct xuio *uio, int i);
805 void xuio_stat_wbuf_copied(void);
806 void xuio_stat_wbuf_nocopy(void);
807 
808 extern boolean_t zfs_prefetch_disable;
809 extern int zfs_max_recordsize;
810 
811 /*
812  * Asynchronously try to read in the data.
813  */
814 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
815     uint64_t len, enum zio_priority pri);
816 
817 typedef struct dmu_object_info {
818 	/* All sizes are in bytes unless otherwise indicated. */
819 	uint32_t doi_data_block_size;
820 	uint32_t doi_metadata_block_size;
821 	dmu_object_type_t doi_type;
822 	dmu_object_type_t doi_bonus_type;
823 	uint64_t doi_bonus_size;
824 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
825 	uint8_t doi_checksum;
826 	uint8_t doi_compress;
827 	uint8_t doi_nblkptr;
828 	int8_t doi_pad[4];
829 	uint64_t doi_dnodesize;
830 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
831 	uint64_t doi_max_offset;
832 	uint64_t doi_fill_count;		/* number of non-empty blocks */
833 } dmu_object_info_t;
834 
835 typedef void arc_byteswap_func_t(void *buf, size_t size);
836 
837 typedef struct dmu_object_type_info {
838 	dmu_object_byteswap_t	ot_byteswap;
839 	boolean_t		ot_metadata;
840 	boolean_t		ot_dbuf_metadata_cache;
841 	char			*ot_name;
842 } dmu_object_type_info_t;
843 
844 typedef struct dmu_object_byteswap_info {
845 	arc_byteswap_func_t	*ob_func;
846 	char			*ob_name;
847 } dmu_object_byteswap_info_t;
848 
849 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
850 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
851 
852 /*
853  * Get information on a DMU object.
854  *
855  * Return 0 on success or ENOENT if object is not allocated.
856  *
857  * If doi is NULL, just indicates whether the object exists.
858  */
859 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
860 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
861 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
862 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
863 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
864 /*
865  * Like dmu_object_info_from_db, but faster still when you only care about
866  * the size.  This is specifically optimized for zfs_getattr().
867  */
868 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
869     u_longlong_t *nblk512);
870 
871 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
872 
873 typedef struct dmu_objset_stats {
874 	uint64_t dds_num_clones; /* number of clones of this */
875 	uint64_t dds_creation_txg;
876 	uint64_t dds_guid;
877 	dmu_objset_type_t dds_type;
878 	uint8_t dds_is_snapshot;
879 	uint8_t dds_inconsistent;
880 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
881 } dmu_objset_stats_t;
882 
883 /*
884  * Get stats on a dataset.
885  */
886 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
887 
888 /*
889  * Add entries to the nvlist for all the objset's properties.  See
890  * zfs_prop_table[] and zfs(1m) for details on the properties.
891  */
892 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
893 
894 /*
895  * Get the space usage statistics for statvfs().
896  *
897  * refdbytes is the amount of space "referenced" by this objset.
898  * availbytes is the amount of space available to this objset, taking
899  * into account quotas & reservations, assuming that no other objsets
900  * use the space first.  These values correspond to the 'referenced' and
901  * 'available' properties, described in the zfs(1m) manpage.
902  *
903  * usedobjs and availobjs are the number of objects currently allocated,
904  * and available.
905  */
906 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
907     uint64_t *usedobjsp, uint64_t *availobjsp);
908 
909 /*
910  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
911  * (Contrast with the ds_guid which is a 64-bit ID that will never
912  * change, so there is a small probability that it will collide.)
913  */
914 uint64_t dmu_objset_fsid_guid(objset_t *os);
915 
916 /*
917  * Get the [cm]time for an objset's snapshot dir
918  */
919 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
920 
921 int dmu_objset_is_snapshot(objset_t *os);
922 
923 extern struct spa *dmu_objset_spa(objset_t *os);
924 extern struct zilog *dmu_objset_zil(objset_t *os);
925 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
926 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
927 extern void dmu_objset_name(objset_t *os, char *buf);
928 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
929 extern uint64_t dmu_objset_id(objset_t *os);
930 extern uint64_t dmu_objset_dnodesize(objset_t *os);
931 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
932 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
933 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
934     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
935 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
936     int maxlen, boolean_t *conflict);
937 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
938     uint64_t *idp, uint64_t *offp);
939 
940 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
941     void *bonus, uint64_t *userp, uint64_t *groupp);
942 extern void dmu_objset_register_type(dmu_objset_type_t ost,
943     objset_used_cb_t *cb);
944 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
945 extern void *dmu_objset_get_user(objset_t *os);
946 
947 /*
948  * Return the txg number for the given assigned transaction.
949  */
950 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
951 
952 /*
953  * Synchronous write.
954  * If a parent zio is provided this function initiates a write on the
955  * provided buffer as a child of the parent zio.
956  * In the absence of a parent zio, the write is completed synchronously.
957  * At write completion, blk is filled with the bp of the written block.
958  * Note that while the data covered by this function will be on stable
959  * storage when the write completes this new data does not become a
960  * permanent part of the file until the associated transaction commits.
961  */
962 
963 /*
964  * {zfs,zvol,ztest}_get_done() args
965  */
966 typedef struct zgd {
967 	struct lwb	*zgd_lwb;
968 	struct blkptr	*zgd_bp;
969 	dmu_buf_t	*zgd_db;
970 	struct locked_range *zgd_lr;
971 	void		*zgd_private;
972 } zgd_t;
973 
974 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
975 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
976 
977 /*
978  * Find the next hole or data block in file starting at *off
979  * Return found offset in *off. Return ESRCH for end of file.
980  */
981 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
982     uint64_t *off);
983 
984 /*
985  * Check if a DMU object has any dirty blocks. If so, sync out
986  * all pending transaction groups. Otherwise, this function
987  * does not alter DMU state. This could be improved to only sync
988  * out the necessary transaction groups for this particular
989  * object.
990  */
991 int dmu_object_wait_synced(objset_t *os, uint64_t object);
992 
993 /*
994  * Initial setup and final teardown.
995  */
996 extern void dmu_init(void);
997 extern void dmu_fini(void);
998 
999 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1000     uint64_t object, uint64_t offset, int len);
1001 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1002     dmu_traverse_cb_t cb, void *arg);
1003 
1004 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1005     struct vnode *vp, offset_t *offp);
1006 
1007 /* CRC64 table */
1008 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
1009 extern uint64_t zfs_crc64_table[256];
1010 
1011 extern int zfs_mdcomp_disable;
1012 
1013 #ifdef	__cplusplus
1014 }
1015 #endif
1016 
1017 #endif	/* _SYS_DMU_H */
1018