1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 * Copyright 2013 DEY Storage Systems, Inc. 28 * Copyright 2014 HybridCluster. All rights reserved. 29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 30 * Copyright 2013 Saso Kiselkov. All rights reserved. 31 * Copyright (c) 2017, Intel Corporation. 32 * Copyright (c) 2014 Integros [integros.com] 33 */ 34 35 /* Portions Copyright 2010 Robert Milkowski */ 36 37 #ifndef _SYS_DMU_H 38 #define _SYS_DMU_H 39 40 /* 41 * This file describes the interface that the DMU provides for its 42 * consumers. 43 * 44 * The DMU also interacts with the SPA. That interface is described in 45 * dmu_spa.h. 46 */ 47 48 #include <sys/zfs_context.h> 49 #include <sys/inttypes.h> 50 #include <sys/cred.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zio_compress.h> 53 #include <sys/zio_priority.h> 54 55 #ifdef __cplusplus 56 extern "C" { 57 #endif 58 59 struct uio; 60 struct xuio; 61 struct page; 62 struct vnode; 63 struct spa; 64 struct zilog; 65 struct zio; 66 struct blkptr; 67 struct zap_cursor; 68 struct dsl_dataset; 69 struct dsl_pool; 70 struct dnode; 71 struct drr_begin; 72 struct drr_end; 73 struct zbookmark_phys; 74 struct spa; 75 struct nvlist; 76 struct arc_buf; 77 struct zio_prop; 78 struct sa_handle; 79 struct locked_range; 80 81 typedef struct objset objset_t; 82 typedef struct dmu_tx dmu_tx_t; 83 typedef struct dsl_dir dsl_dir_t; 84 typedef struct dnode dnode_t; 85 86 typedef enum dmu_object_byteswap { 87 DMU_BSWAP_UINT8, 88 DMU_BSWAP_UINT16, 89 DMU_BSWAP_UINT32, 90 DMU_BSWAP_UINT64, 91 DMU_BSWAP_ZAP, 92 DMU_BSWAP_DNODE, 93 DMU_BSWAP_OBJSET, 94 DMU_BSWAP_ZNODE, 95 DMU_BSWAP_OLDACL, 96 DMU_BSWAP_ACL, 97 /* 98 * Allocating a new byteswap type number makes the on-disk format 99 * incompatible with any other format that uses the same number. 100 * 101 * Data can usually be structured to work with one of the 102 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 103 */ 104 DMU_BSWAP_NUMFUNCS 105 } dmu_object_byteswap_t; 106 107 #define DMU_OT_NEWTYPE 0x80 108 #define DMU_OT_METADATA 0x40 109 #define DMU_OT_BYTESWAP_MASK 0x3f 110 111 /* 112 * Defines a uint8_t object type. Object types specify if the data 113 * in the object is metadata (boolean) and how to byteswap the data 114 * (dmu_object_byteswap_t). All of the types created by this method 115 * are cached in the dbuf metadata cache. 116 */ 117 #define DMU_OT(byteswap, metadata) \ 118 (DMU_OT_NEWTYPE | \ 119 ((metadata) ? DMU_OT_METADATA : 0) | \ 120 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 121 122 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 123 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 124 (ot) < DMU_OT_NUMTYPES) 125 126 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 127 ((ot) & DMU_OT_METADATA) : \ 128 dmu_ot[(ot)].ot_metadata) 129 130 #define DMU_OT_IS_DDT(ot) \ 131 ((ot) == DMU_OT_DDT_ZAP) 132 133 #define DMU_OT_IS_ZIL(ot) \ 134 ((ot) == DMU_OT_INTENT_LOG) 135 136 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */ 137 #define DMU_OT_IS_FILE(ot) \ 138 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER) 139 140 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 141 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) 142 143 /* 144 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 145 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 146 * is repurposed for embedded BPs. 147 */ 148 #define DMU_OT_HAS_FILL(ot) \ 149 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 150 151 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 152 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 153 dmu_ot[(ot)].ot_byteswap) 154 155 typedef enum dmu_object_type { 156 DMU_OT_NONE, 157 /* general: */ 158 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 159 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 160 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 161 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 162 DMU_OT_BPOBJ, /* UINT64 */ 163 DMU_OT_BPOBJ_HDR, /* UINT64 */ 164 /* spa: */ 165 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 166 DMU_OT_SPACE_MAP, /* UINT64 */ 167 /* zil: */ 168 DMU_OT_INTENT_LOG, /* UINT64 */ 169 /* dmu: */ 170 DMU_OT_DNODE, /* DNODE */ 171 DMU_OT_OBJSET, /* OBJSET */ 172 /* dsl: */ 173 DMU_OT_DSL_DIR, /* UINT64 */ 174 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 175 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 176 DMU_OT_DSL_PROPS, /* ZAP */ 177 DMU_OT_DSL_DATASET, /* UINT64 */ 178 /* zpl: */ 179 DMU_OT_ZNODE, /* ZNODE */ 180 DMU_OT_OLDACL, /* Old ACL */ 181 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 182 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 183 DMU_OT_MASTER_NODE, /* ZAP */ 184 DMU_OT_UNLINKED_SET, /* ZAP */ 185 /* zvol: */ 186 DMU_OT_ZVOL, /* UINT8 */ 187 DMU_OT_ZVOL_PROP, /* ZAP */ 188 /* other; for testing only! */ 189 DMU_OT_PLAIN_OTHER, /* UINT8 */ 190 DMU_OT_UINT64_OTHER, /* UINT64 */ 191 DMU_OT_ZAP_OTHER, /* ZAP */ 192 /* new object types: */ 193 DMU_OT_ERROR_LOG, /* ZAP */ 194 DMU_OT_SPA_HISTORY, /* UINT8 */ 195 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 196 DMU_OT_POOL_PROPS, /* ZAP */ 197 DMU_OT_DSL_PERMS, /* ZAP */ 198 DMU_OT_ACL, /* ACL */ 199 DMU_OT_SYSACL, /* SYSACL */ 200 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 201 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 202 DMU_OT_NEXT_CLONES, /* ZAP */ 203 DMU_OT_SCAN_QUEUE, /* ZAP */ 204 DMU_OT_USERGROUP_USED, /* ZAP */ 205 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 206 DMU_OT_USERREFS, /* ZAP */ 207 DMU_OT_DDT_ZAP, /* ZAP */ 208 DMU_OT_DDT_STATS, /* ZAP */ 209 DMU_OT_SA, /* System attr */ 210 DMU_OT_SA_MASTER_NODE, /* ZAP */ 211 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 212 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 213 DMU_OT_SCAN_XLATE, /* ZAP */ 214 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 215 DMU_OT_DEADLIST, /* ZAP */ 216 DMU_OT_DEADLIST_HDR, /* UINT64 */ 217 DMU_OT_DSL_CLONES, /* ZAP */ 218 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 219 /* 220 * Do not allocate new object types here. Doing so makes the on-disk 221 * format incompatible with any other format that uses the same object 222 * type number. 223 * 224 * When creating an object which does not have one of the above types 225 * use the DMU_OTN_* type with the correct byteswap and metadata 226 * values. 227 * 228 * The DMU_OTN_* types do not have entries in the dmu_ot table, 229 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 230 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead 231 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 232 * and DMU_OTN_* types). 233 */ 234 DMU_OT_NUMTYPES, 235 236 /* 237 * Names for valid types declared with DMU_OT(). 238 */ 239 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 240 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 241 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 242 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 243 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 244 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 245 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 246 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 247 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 248 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), 249 } dmu_object_type_t; 250 251 /* 252 * These flags are intended to be used to specify the "txg_how" 253 * parameter when calling the dmu_tx_assign() function. See the comment 254 * above dmu_tx_assign() for more details on the meaning of these flags. 255 */ 256 #define TXG_NOWAIT (0ULL) 257 #define TXG_WAIT (1ULL<<0) 258 #define TXG_NOTHROTTLE (1ULL<<1) 259 260 void byteswap_uint64_array(void *buf, size_t size); 261 void byteswap_uint32_array(void *buf, size_t size); 262 void byteswap_uint16_array(void *buf, size_t size); 263 void byteswap_uint8_array(void *buf, size_t size); 264 void zap_byteswap(void *buf, size_t size); 265 void zfs_oldacl_byteswap(void *buf, size_t size); 266 void zfs_acl_byteswap(void *buf, size_t size); 267 void zfs_znode_byteswap(void *buf, size_t size); 268 269 #define DS_FIND_SNAPSHOTS (1<<0) 270 #define DS_FIND_CHILDREN (1<<1) 271 #define DS_FIND_SERIALIZE (1<<2) 272 273 /* 274 * The maximum number of bytes that can be accessed as part of one 275 * operation, including metadata. 276 */ 277 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ 278 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 279 280 #define DMU_USERUSED_OBJECT (-1ULL) 281 #define DMU_GROUPUSED_OBJECT (-2ULL) 282 283 /* 284 * artificial blkids for bonus buffer and spill blocks 285 */ 286 #define DMU_BONUS_BLKID (-1ULL) 287 #define DMU_SPILL_BLKID (-2ULL) 288 /* 289 * Public routines to create, destroy, open, and close objsets. 290 */ 291 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 292 int dmu_objset_own(const char *name, dmu_objset_type_t type, 293 boolean_t readonly, void *tag, objset_t **osp); 294 void dmu_objset_rele(objset_t *os, void *tag); 295 void dmu_objset_disown(objset_t *os, void *tag); 296 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 297 298 void dmu_objset_evict_dbufs(objset_t *os); 299 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 300 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); 301 int dmu_objset_clone(const char *name, const char *origin); 302 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 303 struct nvlist *errlist); 304 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 305 int dmu_objset_snapshot_tmp(const char *, const char *, int); 306 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 307 int flags); 308 void dmu_objset_byteswap(void *buf, size_t size); 309 int dsl_dataset_rename_snapshot(const char *fsname, 310 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 311 int dmu_objset_remap_indirects(const char *fsname); 312 313 typedef struct dmu_buf { 314 uint64_t db_object; /* object that this buffer is part of */ 315 uint64_t db_offset; /* byte offset in this object */ 316 uint64_t db_size; /* size of buffer in bytes */ 317 void *db_data; /* data in buffer */ 318 } dmu_buf_t; 319 320 /* 321 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 322 */ 323 #define DMU_POOL_DIRECTORY_OBJECT 1 324 #define DMU_POOL_CONFIG "config" 325 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 326 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 327 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 328 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 329 #define DMU_POOL_ROOT_DATASET "root_dataset" 330 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 331 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 332 #define DMU_POOL_ERRLOG_LAST "errlog_last" 333 #define DMU_POOL_SPARES "spares" 334 #define DMU_POOL_DEFLATE "deflate" 335 #define DMU_POOL_HISTORY "history" 336 #define DMU_POOL_PROPS "pool_props" 337 #define DMU_POOL_L2CACHE "l2cache" 338 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 339 #define DMU_POOL_DDT "DDT-%s-%s-%s" 340 #define DMU_POOL_DDT_STATS "DDT-statistics" 341 #define DMU_POOL_CREATION_VERSION "creation_version" 342 #define DMU_POOL_SCAN "scan" 343 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 344 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 345 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 346 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 347 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 348 #define DMU_POOL_REMOVING "com.delphix:removing" 349 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 350 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 351 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 352 353 /* 354 * Allocate an object from this objset. The range of object numbers 355 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 356 * 357 * The transaction must be assigned to a txg. The newly allocated 358 * object will be "held" in the transaction (ie. you can modify the 359 * newly allocated object in this transaction). 360 * 361 * dmu_object_alloc() chooses an object and returns it in *objectp. 362 * 363 * dmu_object_claim() allocates a specific object number. If that 364 * number is already allocated, it fails and returns EEXIST. 365 * 366 * Return 0 on success, or ENOSPC or EEXIST as specified above. 367 */ 368 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 369 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 370 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, 371 int indirect_blockshift, 372 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 373 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, 374 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 375 int dnodesize, dmu_tx_t *tx); 376 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, 377 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 378 int dnodesize, dmu_tx_t *tx); 379 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, 380 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, 381 int bonuslen, int dnodesize, dmu_tx_t *txp); 382 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 383 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 384 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 385 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 386 387 /* 388 * Free an object from this objset. 389 * 390 * The object's data will be freed as well (ie. you don't need to call 391 * dmu_free(object, 0, -1, tx)). 392 * 393 * The object need not be held in the transaction. 394 * 395 * If there are any holds on this object's buffers (via dmu_buf_hold()), 396 * or tx holds on the object (via dmu_tx_hold_object()), you can not 397 * free it; it fails and returns EBUSY. 398 * 399 * If the object is not allocated, it fails and returns ENOENT. 400 * 401 * Return 0 on success, or EBUSY or ENOENT as specified above. 402 */ 403 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 404 405 /* 406 * Find the next allocated or free object. 407 * 408 * The objectp parameter is in-out. It will be updated to be the next 409 * object which is allocated. Ignore objects which have not been 410 * modified since txg. 411 * 412 * XXX Can only be called on a objset with no dirty data. 413 * 414 * Returns 0 on success, or ENOENT if there are no more objects. 415 */ 416 int dmu_object_next(objset_t *os, uint64_t *objectp, 417 boolean_t hole, uint64_t txg); 418 419 /* 420 * Set the data blocksize for an object. 421 * 422 * The object cannot have any blocks allcated beyond the first. If 423 * the first block is allocated already, the new size must be greater 424 * than the current block size. If these conditions are not met, 425 * ENOTSUP will be returned. 426 * 427 * Returns 0 on success, or EBUSY if there are any holds on the object 428 * contents, or ENOTSUP as described above. 429 */ 430 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 431 int ibs, dmu_tx_t *tx); 432 433 /* 434 * Set the checksum property on a dnode. The new checksum algorithm will 435 * apply to all newly written blocks; existing blocks will not be affected. 436 */ 437 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 438 dmu_tx_t *tx); 439 440 /* 441 * Set the compress property on a dnode. The new compression algorithm will 442 * apply to all newly written blocks; existing blocks will not be affected. 443 */ 444 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 445 dmu_tx_t *tx); 446 447 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg); 448 449 void 450 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 451 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 452 int compressed_size, int byteorder, dmu_tx_t *tx); 453 454 /* 455 * Decide how to write a block: checksum, compression, number of copies, etc. 456 */ 457 #define WP_NOFILL 0x1 458 #define WP_DMU_SYNC 0x2 459 #define WP_SPILL 0x4 460 461 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 462 struct zio_prop *zp); 463 /* 464 * The bonus data is accessed more or less like a regular buffer. 465 * You must dmu_bonus_hold() to get the buffer, which will give you a 466 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 467 * data. As with any normal buffer, you must call dmu_buf_will_dirty() 468 * before modifying it, and the 469 * object must be held in an assigned transaction before calling 470 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 471 * buffer as well. You must release your hold with dmu_buf_rele(). 472 * 473 * Returns ENOENT, EIO, or 0. 474 */ 475 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 476 int dmu_bonus_max(void); 477 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 478 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 479 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 480 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 481 482 /* 483 * Special spill buffer support used by "SA" framework 484 */ 485 486 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 487 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 488 void *tag, dmu_buf_t **dbp); 489 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 490 491 /* 492 * Obtain the DMU buffer from the specified object which contains the 493 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 494 * that it will remain in memory. You must release the hold with 495 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 496 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 497 * 498 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 499 * on the returned buffer before reading or writing the buffer's 500 * db_data. The comments for those routines describe what particular 501 * operations are valid after calling them. 502 * 503 * The object number must be a valid, allocated object number. 504 */ 505 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 506 void *tag, dmu_buf_t **, int flags); 507 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 508 void *tag, dmu_buf_t **dbp, int flags); 509 510 /* 511 * Add a reference to a dmu buffer that has already been held via 512 * dmu_buf_hold() in the current context. 513 */ 514 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 515 516 /* 517 * Attempt to add a reference to a dmu buffer that is in an unknown state, 518 * using a pointer that may have been invalidated by eviction processing. 519 * The request will succeed if the passed in dbuf still represents the 520 * same os/object/blkid, is ineligible for eviction, and has at least 521 * one hold by a user other than the syncer. 522 */ 523 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 524 uint64_t blkid, void *tag); 525 526 void dmu_buf_rele(dmu_buf_t *db, void *tag); 527 uint64_t dmu_buf_refcount(dmu_buf_t *db); 528 529 /* 530 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 531 * range of an object. A pointer to an array of dmu_buf_t*'s is 532 * returned (in *dbpp). 533 * 534 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 535 * frees the array. The hold on the array of buffers MUST be released 536 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 537 * individually with dmu_buf_rele. 538 */ 539 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 540 uint64_t length, boolean_t read, void *tag, 541 int *numbufsp, dmu_buf_t ***dbpp); 542 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 543 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, 544 uint32_t flags); 545 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 546 547 typedef void dmu_buf_evict_func_t(void *user_ptr); 548 549 /* 550 * A DMU buffer user object may be associated with a dbuf for the 551 * duration of its lifetime. This allows the user of a dbuf (client) 552 * to attach private data to a dbuf (e.g. in-core only data such as a 553 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 554 * when that dbuf has been evicted. Clients typically respond to the 555 * eviction notification by freeing their private data, thus ensuring 556 * the same lifetime for both dbuf and private data. 557 * 558 * The mapping from a dmu_buf_user_t to any client private data is the 559 * client's responsibility. All current consumers of the API with private 560 * data embed a dmu_buf_user_t as the first member of the structure for 561 * their private data. This allows conversions between the two types 562 * with a simple cast. Since the DMU buf user API never needs access 563 * to the private data, other strategies can be employed if necessary 564 * or convenient for the client (e.g. using __containerof() to do the 565 * conversion for private data that cannot have the dmu_buf_user_t as 566 * its first member). 567 * 568 * Eviction callbacks are executed without the dbuf mutex held or any 569 * other type of mechanism to guarantee that the dbuf is still available. 570 * For this reason, users must assume the dbuf has already been freed 571 * and not reference the dbuf from the callback context. 572 * 573 * Users requesting "immediate eviction" are notified as soon as the dbuf 574 * is only referenced by dirty records (dirties == holds). Otherwise the 575 * notification occurs after eviction processing for the dbuf begins. 576 */ 577 typedef struct dmu_buf_user { 578 /* 579 * Asynchronous user eviction callback state. 580 */ 581 taskq_ent_t dbu_tqent; 582 583 /* 584 * This instance's eviction function pointers. 585 * 586 * dbu_evict_func_sync is called synchronously and then 587 * dbu_evict_func_async is executed asynchronously on a taskq. 588 */ 589 dmu_buf_evict_func_t *dbu_evict_func_sync; 590 dmu_buf_evict_func_t *dbu_evict_func_async; 591 #ifdef ZFS_DEBUG 592 /* 593 * Pointer to user's dbuf pointer. NULL for clients that do 594 * not associate a dbuf with their user data. 595 * 596 * The dbuf pointer is cleared upon eviction so as to catch 597 * use-after-evict bugs in clients. 598 */ 599 dmu_buf_t **dbu_clear_on_evict_dbufp; 600 #endif 601 } dmu_buf_user_t; 602 603 /* 604 * Initialize the given dmu_buf_user_t instance with the eviction function 605 * evict_func, to be called when the user is evicted. 606 * 607 * NOTE: This function should only be called once on a given dmu_buf_user_t. 608 * To allow enforcement of this, dbu must already be zeroed on entry. 609 */ 610 /*ARGSUSED*/ 611 inline void 612 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 613 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) 614 { 615 ASSERT(dbu->dbu_evict_func_sync == NULL); 616 ASSERT(dbu->dbu_evict_func_async == NULL); 617 618 /* must have at least one evict func */ 619 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 620 dbu->dbu_evict_func_sync = evict_func_sync; 621 dbu->dbu_evict_func_async = evict_func_async; 622 #ifdef ZFS_DEBUG 623 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 624 #endif 625 } 626 627 /* 628 * Attach user data to a dbuf and mark it for normal (when the dbuf's 629 * data is cleared or its reference count goes to zero) eviction processing. 630 * 631 * Returns NULL on success, or the existing user if another user currently 632 * owns the buffer. 633 */ 634 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 635 636 /* 637 * Attach user data to a dbuf and mark it for immediate (its dirty and 638 * reference counts are equal) eviction processing. 639 * 640 * Returns NULL on success, or the existing user if another user currently 641 * owns the buffer. 642 */ 643 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 644 645 /* 646 * Replace the current user of a dbuf. 647 * 648 * If given the current user of a dbuf, replaces the dbuf's user with 649 * "new_user" and returns the user data pointer that was replaced. 650 * Otherwise returns the current, and unmodified, dbuf user pointer. 651 */ 652 void *dmu_buf_replace_user(dmu_buf_t *db, 653 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 654 655 /* 656 * Remove the specified user data for a DMU buffer. 657 * 658 * Returns the user that was removed on success, or the current user if 659 * another user currently owns the buffer. 660 */ 661 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 662 663 /* 664 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 665 */ 666 void *dmu_buf_get_user(dmu_buf_t *db); 667 668 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 669 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); 670 void dmu_buf_dnode_exit(dmu_buf_t *db); 671 672 /* Block until any in-progress dmu buf user evictions complete. */ 673 void dmu_buf_user_evict_wait(void); 674 675 /* 676 * Returns the blkptr associated with this dbuf, or NULL if not set. 677 */ 678 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 679 680 /* 681 * Indicate that you are going to modify the buffer's data (db_data). 682 * 683 * The transaction (tx) must be assigned to a txg (ie. you've called 684 * dmu_tx_assign()). The buffer's object must be held in the tx 685 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 686 */ 687 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 688 689 /* 690 * You must create a transaction, then hold the objects which you will 691 * (or might) modify as part of this transaction. Then you must assign 692 * the transaction to a transaction group. Once the transaction has 693 * been assigned, you can modify buffers which belong to held objects as 694 * part of this transaction. You can't modify buffers before the 695 * transaction has been assigned; you can't modify buffers which don't 696 * belong to objects which this transaction holds; you can't hold 697 * objects once the transaction has been assigned. You may hold an 698 * object which you are going to free (with dmu_object_free()), but you 699 * don't have to. 700 * 701 * You can abort the transaction before it has been assigned. 702 * 703 * Note that you may hold buffers (with dmu_buf_hold) at any time, 704 * regardless of transaction state. 705 */ 706 707 #define DMU_NEW_OBJECT (-1ULL) 708 #define DMU_OBJECT_END (-1ULL) 709 710 dmu_tx_t *dmu_tx_create(objset_t *os); 711 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 712 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 713 int len); 714 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 715 uint64_t len); 716 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 717 uint64_t len); 718 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object); 719 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 720 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 721 const char *name); 722 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 723 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 724 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 725 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 726 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 727 void dmu_tx_abort(dmu_tx_t *tx); 728 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); 729 void dmu_tx_wait(dmu_tx_t *tx); 730 void dmu_tx_commit(dmu_tx_t *tx); 731 void dmu_tx_mark_netfree(dmu_tx_t *tx); 732 733 /* 734 * To register a commit callback, dmu_tx_callback_register() must be called. 735 * 736 * dcb_data is a pointer to caller private data that is passed on as a 737 * callback parameter. The caller is responsible for properly allocating and 738 * freeing it. 739 * 740 * When registering a callback, the transaction must be already created, but 741 * it cannot be committed or aborted. It can be assigned to a txg or not. 742 * 743 * The callback will be called after the transaction has been safely written 744 * to stable storage and will also be called if the dmu_tx is aborted. 745 * If there is any error which prevents the transaction from being committed to 746 * disk, the callback will be called with a value of error != 0. 747 */ 748 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 749 750 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 751 void *dcb_data); 752 753 /* 754 * Free up the data blocks for a defined range of a file. If size is 755 * -1, the range from offset to end-of-file is freed. 756 */ 757 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 758 uint64_t size, dmu_tx_t *tx); 759 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 760 uint64_t size); 761 int dmu_free_long_object(objset_t *os, uint64_t object); 762 763 /* 764 * Convenience functions. 765 * 766 * Canfail routines will return 0 on success, or an errno if there is a 767 * nonrecoverable I/O error. 768 */ 769 #define DMU_READ_PREFETCH 0 /* prefetch */ 770 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 771 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 772 void *buf, uint32_t flags); 773 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 774 uint32_t flags); 775 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 776 const void *buf, dmu_tx_t *tx); 777 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 778 const void *buf, dmu_tx_t *tx); 779 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 780 dmu_tx_t *tx); 781 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 782 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); 783 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size); 784 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 785 dmu_tx_t *tx); 786 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 787 dmu_tx_t *tx); 788 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size, 789 dmu_tx_t *tx); 790 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 791 uint64_t size, struct page *pp, dmu_tx_t *tx); 792 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 793 void dmu_return_arcbuf(struct arc_buf *buf); 794 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset, 795 struct arc_buf *buf, dmu_tx_t *tx); 796 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, 797 dmu_tx_t *tx); 798 int dmu_xuio_init(struct xuio *uio, int niov); 799 void dmu_xuio_fini(struct xuio *uio); 800 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 801 size_t n); 802 int dmu_xuio_cnt(struct xuio *uio); 803 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 804 void dmu_xuio_clear(struct xuio *uio, int i); 805 void xuio_stat_wbuf_copied(void); 806 void xuio_stat_wbuf_nocopy(void); 807 808 extern boolean_t zfs_prefetch_disable; 809 extern int zfs_max_recordsize; 810 811 /* 812 * Asynchronously try to read in the data. 813 */ 814 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 815 uint64_t len, enum zio_priority pri); 816 817 typedef struct dmu_object_info { 818 /* All sizes are in bytes unless otherwise indicated. */ 819 uint32_t doi_data_block_size; 820 uint32_t doi_metadata_block_size; 821 dmu_object_type_t doi_type; 822 dmu_object_type_t doi_bonus_type; 823 uint64_t doi_bonus_size; 824 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 825 uint8_t doi_checksum; 826 uint8_t doi_compress; 827 uint8_t doi_nblkptr; 828 int8_t doi_pad[4]; 829 uint64_t doi_dnodesize; 830 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 831 uint64_t doi_max_offset; 832 uint64_t doi_fill_count; /* number of non-empty blocks */ 833 } dmu_object_info_t; 834 835 typedef void arc_byteswap_func_t(void *buf, size_t size); 836 837 typedef struct dmu_object_type_info { 838 dmu_object_byteswap_t ot_byteswap; 839 boolean_t ot_metadata; 840 boolean_t ot_dbuf_metadata_cache; 841 char *ot_name; 842 } dmu_object_type_info_t; 843 844 typedef struct dmu_object_byteswap_info { 845 arc_byteswap_func_t *ob_func; 846 char *ob_name; 847 } dmu_object_byteswap_info_t; 848 849 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 850 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 851 852 /* 853 * Get information on a DMU object. 854 * 855 * Return 0 on success or ENOENT if object is not allocated. 856 * 857 * If doi is NULL, just indicates whether the object exists. 858 */ 859 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 860 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 861 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 862 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 863 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 864 /* 865 * Like dmu_object_info_from_db, but faster still when you only care about 866 * the size. This is specifically optimized for zfs_getattr(). 867 */ 868 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 869 u_longlong_t *nblk512); 870 871 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); 872 873 typedef struct dmu_objset_stats { 874 uint64_t dds_num_clones; /* number of clones of this */ 875 uint64_t dds_creation_txg; 876 uint64_t dds_guid; 877 dmu_objset_type_t dds_type; 878 uint8_t dds_is_snapshot; 879 uint8_t dds_inconsistent; 880 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 881 } dmu_objset_stats_t; 882 883 /* 884 * Get stats on a dataset. 885 */ 886 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 887 888 /* 889 * Add entries to the nvlist for all the objset's properties. See 890 * zfs_prop_table[] and zfs(1m) for details on the properties. 891 */ 892 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 893 894 /* 895 * Get the space usage statistics for statvfs(). 896 * 897 * refdbytes is the amount of space "referenced" by this objset. 898 * availbytes is the amount of space available to this objset, taking 899 * into account quotas & reservations, assuming that no other objsets 900 * use the space first. These values correspond to the 'referenced' and 901 * 'available' properties, described in the zfs(1m) manpage. 902 * 903 * usedobjs and availobjs are the number of objects currently allocated, 904 * and available. 905 */ 906 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 907 uint64_t *usedobjsp, uint64_t *availobjsp); 908 909 /* 910 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 911 * (Contrast with the ds_guid which is a 64-bit ID that will never 912 * change, so there is a small probability that it will collide.) 913 */ 914 uint64_t dmu_objset_fsid_guid(objset_t *os); 915 916 /* 917 * Get the [cm]time for an objset's snapshot dir 918 */ 919 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 920 921 int dmu_objset_is_snapshot(objset_t *os); 922 923 extern struct spa *dmu_objset_spa(objset_t *os); 924 extern struct zilog *dmu_objset_zil(objset_t *os); 925 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 926 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 927 extern void dmu_objset_name(objset_t *os, char *buf); 928 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 929 extern uint64_t dmu_objset_id(objset_t *os); 930 extern uint64_t dmu_objset_dnodesize(objset_t *os); 931 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 932 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 933 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 934 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 935 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 936 int maxlen, boolean_t *conflict); 937 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 938 uint64_t *idp, uint64_t *offp); 939 940 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 941 void *bonus, uint64_t *userp, uint64_t *groupp); 942 extern void dmu_objset_register_type(dmu_objset_type_t ost, 943 objset_used_cb_t *cb); 944 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 945 extern void *dmu_objset_get_user(objset_t *os); 946 947 /* 948 * Return the txg number for the given assigned transaction. 949 */ 950 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 951 952 /* 953 * Synchronous write. 954 * If a parent zio is provided this function initiates a write on the 955 * provided buffer as a child of the parent zio. 956 * In the absence of a parent zio, the write is completed synchronously. 957 * At write completion, blk is filled with the bp of the written block. 958 * Note that while the data covered by this function will be on stable 959 * storage when the write completes this new data does not become a 960 * permanent part of the file until the associated transaction commits. 961 */ 962 963 /* 964 * {zfs,zvol,ztest}_get_done() args 965 */ 966 typedef struct zgd { 967 struct lwb *zgd_lwb; 968 struct blkptr *zgd_bp; 969 dmu_buf_t *zgd_db; 970 struct locked_range *zgd_lr; 971 void *zgd_private; 972 } zgd_t; 973 974 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 975 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 976 977 /* 978 * Find the next hole or data block in file starting at *off 979 * Return found offset in *off. Return ESRCH for end of file. 980 */ 981 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 982 uint64_t *off); 983 984 /* 985 * Check if a DMU object has any dirty blocks. If so, sync out 986 * all pending transaction groups. Otherwise, this function 987 * does not alter DMU state. This could be improved to only sync 988 * out the necessary transaction groups for this particular 989 * object. 990 */ 991 int dmu_object_wait_synced(objset_t *os, uint64_t object); 992 993 /* 994 * Initial setup and final teardown. 995 */ 996 extern void dmu_init(void); 997 extern void dmu_fini(void); 998 999 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 1000 uint64_t object, uint64_t offset, int len); 1001 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 1002 dmu_traverse_cb_t cb, void *arg); 1003 1004 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 1005 struct vnode *vp, offset_t *offp); 1006 1007 /* CRC64 table */ 1008 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 1009 extern uint64_t zfs_crc64_table[256]; 1010 1011 extern int zfs_mdcomp_disable; 1012 1013 #ifdef __cplusplus 1014 } 1015 #endif 1016 1017 #endif /* _SYS_DMU_H */ 1018