1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 * Copyright 2013 DEY Storage Systems, Inc. 28 * Copyright 2014 HybridCluster. All rights reserved. 29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 30 * Copyright 2013 Saso Kiselkov. All rights reserved. 31 * Copyright (c) 2017, Intel Corporation. 32 * Copyright (c) 2014 Integros [integros.com] 33 */ 34 35 /* Portions Copyright 2010 Robert Milkowski */ 36 37 #ifndef _SYS_DMU_H 38 #define _SYS_DMU_H 39 40 /* 41 * This file describes the interface that the DMU provides for its 42 * consumers. 43 * 44 * The DMU also interacts with the SPA. That interface is described in 45 * dmu_spa.h. 46 */ 47 48 #include <sys/zfs_context.h> 49 #include <sys/inttypes.h> 50 #include <sys/cred.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zio_compress.h> 53 #include <sys/zio_priority.h> 54 55 #ifdef __cplusplus 56 extern "C" { 57 #endif 58 59 struct uio; 60 struct xuio; 61 struct page; 62 struct vnode; 63 struct spa; 64 struct zilog; 65 struct zio; 66 struct blkptr; 67 struct zap_cursor; 68 struct dsl_dataset; 69 struct dsl_pool; 70 struct dnode; 71 struct drr_begin; 72 struct drr_end; 73 struct zbookmark_phys; 74 struct spa; 75 struct nvlist; 76 struct arc_buf; 77 struct zio_prop; 78 struct sa_handle; 79 struct locked_range; 80 struct dsl_crypto_params; 81 82 typedef struct objset objset_t; 83 typedef struct dmu_tx dmu_tx_t; 84 typedef struct dsl_dir dsl_dir_t; 85 typedef struct dnode dnode_t; 86 87 typedef enum dmu_object_byteswap { 88 DMU_BSWAP_UINT8, 89 DMU_BSWAP_UINT16, 90 DMU_BSWAP_UINT32, 91 DMU_BSWAP_UINT64, 92 DMU_BSWAP_ZAP, 93 DMU_BSWAP_DNODE, 94 DMU_BSWAP_OBJSET, 95 DMU_BSWAP_ZNODE, 96 DMU_BSWAP_OLDACL, 97 DMU_BSWAP_ACL, 98 /* 99 * Allocating a new byteswap type number makes the on-disk format 100 * incompatible with any other format that uses the same number. 101 * 102 * Data can usually be structured to work with one of the 103 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 104 */ 105 DMU_BSWAP_NUMFUNCS 106 } dmu_object_byteswap_t; 107 108 #define DMU_OT_NEWTYPE 0x80 109 #define DMU_OT_METADATA 0x40 110 #define DMU_OT_ENCRYPTED 0x20 111 #define DMU_OT_BYTESWAP_MASK 0x1f 112 113 /* 114 * Defines a uint8_t object type. Object types specify if the data 115 * in the object is metadata (boolean) and how to byteswap the data 116 * (dmu_object_byteswap_t). All of the types created by this method 117 * are cached in the dbuf metadata cache. 118 */ 119 #define DMU_OT(byteswap, metadata, encrypted) \ 120 (DMU_OT_NEWTYPE | \ 121 ((metadata) ? DMU_OT_METADATA : 0) | \ 122 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \ 123 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 124 125 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 126 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 127 (ot) < DMU_OT_NUMTYPES) 128 129 /* 130 * MDB doesn't have dmu_ot; it defines these macros itself. 131 */ 132 #ifndef ZFS_MDB 133 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata) 134 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt) 135 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap) 136 #endif 137 138 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 139 ((ot) & DMU_OT_METADATA) : \ 140 DMU_OT_IS_METADATA_IMPL(ot)) 141 142 #define DMU_OT_IS_DDT(ot) \ 143 ((ot) == DMU_OT_DDT_ZAP) 144 145 #define DMU_OT_IS_ZIL(ot) \ 146 ((ot) == DMU_OT_INTENT_LOG) 147 148 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */ 149 #define DMU_OT_IS_FILE(ot) \ 150 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER) 151 152 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 153 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) 154 155 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 156 ((ot) & DMU_OT_ENCRYPTED) : \ 157 DMU_OT_IS_ENCRYPTED_IMPL(ot)) 158 159 /* 160 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 161 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 162 * is repurposed for embedded BPs. 163 */ 164 #define DMU_OT_HAS_FILL(ot) \ 165 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 166 167 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 168 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 169 DMU_OT_BYTESWAP_IMPL(ot)) 170 171 typedef enum dmu_object_type { 172 DMU_OT_NONE, 173 /* general: */ 174 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 175 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 176 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 177 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 178 DMU_OT_BPOBJ, /* UINT64 */ 179 DMU_OT_BPOBJ_HDR, /* UINT64 */ 180 /* spa: */ 181 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 182 DMU_OT_SPACE_MAP, /* UINT64 */ 183 /* zil: */ 184 DMU_OT_INTENT_LOG, /* UINT64 */ 185 /* dmu: */ 186 DMU_OT_DNODE, /* DNODE */ 187 DMU_OT_OBJSET, /* OBJSET */ 188 /* dsl: */ 189 DMU_OT_DSL_DIR, /* UINT64 */ 190 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 191 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 192 DMU_OT_DSL_PROPS, /* ZAP */ 193 DMU_OT_DSL_DATASET, /* UINT64 */ 194 /* zpl: */ 195 DMU_OT_ZNODE, /* ZNODE */ 196 DMU_OT_OLDACL, /* Old ACL */ 197 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 198 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 199 DMU_OT_MASTER_NODE, /* ZAP */ 200 DMU_OT_UNLINKED_SET, /* ZAP */ 201 /* zvol: */ 202 DMU_OT_ZVOL, /* UINT8 */ 203 DMU_OT_ZVOL_PROP, /* ZAP */ 204 /* other; for testing only! */ 205 DMU_OT_PLAIN_OTHER, /* UINT8 */ 206 DMU_OT_UINT64_OTHER, /* UINT64 */ 207 DMU_OT_ZAP_OTHER, /* ZAP */ 208 /* new object types: */ 209 DMU_OT_ERROR_LOG, /* ZAP */ 210 DMU_OT_SPA_HISTORY, /* UINT8 */ 211 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 212 DMU_OT_POOL_PROPS, /* ZAP */ 213 DMU_OT_DSL_PERMS, /* ZAP */ 214 DMU_OT_ACL, /* ACL */ 215 DMU_OT_SYSACL, /* SYSACL */ 216 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 217 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 218 DMU_OT_NEXT_CLONES, /* ZAP */ 219 DMU_OT_SCAN_QUEUE, /* ZAP */ 220 DMU_OT_USERGROUP_USED, /* ZAP */ 221 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 222 DMU_OT_USERREFS, /* ZAP */ 223 DMU_OT_DDT_ZAP, /* ZAP */ 224 DMU_OT_DDT_STATS, /* ZAP */ 225 DMU_OT_SA, /* System attr */ 226 DMU_OT_SA_MASTER_NODE, /* ZAP */ 227 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 228 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 229 DMU_OT_SCAN_XLATE, /* ZAP */ 230 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 231 DMU_OT_DEADLIST, /* ZAP */ 232 DMU_OT_DEADLIST_HDR, /* UINT64 */ 233 DMU_OT_DSL_CLONES, /* ZAP */ 234 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 235 /* 236 * Do not allocate new object types here. Doing so makes the on-disk 237 * format incompatible with any other format that uses the same object 238 * type number. 239 * 240 * When creating an object which does not have one of the above types 241 * use the DMU_OTN_* type with the correct byteswap and metadata 242 * values. 243 * 244 * The DMU_OTN_* types do not have entries in the dmu_ot table, 245 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead 247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 248 * and DMU_OTN_* types). 249 */ 250 DMU_OT_NUMTYPES, 251 252 /* 253 * Names for valid types declared with DMU_OT(). 254 */ 255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE), 256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE), 257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE), 258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE), 259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE), 260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE), 261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE), 262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE), 263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE), 264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE), 265 266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE), 267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE), 268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE), 269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE), 270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE), 271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE), 272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE), 273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE), 274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE), 275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE), 276 } dmu_object_type_t; 277 278 /* 279 * These flags are intended to be used to specify the "txg_how" 280 * parameter when calling the dmu_tx_assign() function. See the comment 281 * above dmu_tx_assign() for more details on the meaning of these flags. 282 */ 283 #define TXG_NOWAIT (0ULL) 284 #define TXG_WAIT (1ULL<<0) 285 #define TXG_NOTHROTTLE (1ULL<<1) 286 287 void byteswap_uint64_array(void *buf, size_t size); 288 void byteswap_uint32_array(void *buf, size_t size); 289 void byteswap_uint16_array(void *buf, size_t size); 290 void byteswap_uint8_array(void *buf, size_t size); 291 void zap_byteswap(void *buf, size_t size); 292 void zfs_oldacl_byteswap(void *buf, size_t size); 293 void zfs_acl_byteswap(void *buf, size_t size); 294 void zfs_znode_byteswap(void *buf, size_t size); 295 296 #define DS_FIND_SNAPSHOTS (1<<0) 297 #define DS_FIND_CHILDREN (1<<1) 298 #define DS_FIND_SERIALIZE (1<<2) 299 300 /* 301 * The maximum number of bytes that can be accessed as part of one 302 * operation, including metadata. 303 */ 304 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ 305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 306 307 #define DMU_USERUSED_OBJECT (-1ULL) 308 #define DMU_GROUPUSED_OBJECT (-2ULL) 309 #define DMU_PROJECTUSED_OBJECT (-3ULL) 310 311 /* 312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT. 313 */ 314 #define DMU_OBJACCT_PREFIX "obj-" 315 #define DMU_OBJACCT_PREFIX_LEN 4 316 317 /* 318 * artificial blkids for bonus buffer and spill blocks 319 */ 320 #define DMU_BONUS_BLKID (-1ULL) 321 #define DMU_SPILL_BLKID (-2ULL) 322 323 /* 324 * Public routines to create, destroy, open, and close objsets. 325 */ 326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg, 327 cred_t *cr, dmu_tx_t *tx); 328 329 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 330 int dmu_objset_own(const char *name, dmu_objset_type_t type, 331 boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp); 332 void dmu_objset_rele(objset_t *os, void *tag); 333 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag); 334 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 335 336 void dmu_objset_evict_dbufs(objset_t *os); 337 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 338 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func, 339 void *arg); 340 int dmu_objset_clone(const char *name, const char *origin); 341 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 342 struct nvlist *errlist); 343 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 344 int dmu_objset_snapshot_tmp(const char *, const char *, int); 345 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 346 int flags); 347 void dmu_objset_byteswap(void *buf, size_t size); 348 int dsl_dataset_rename_snapshot(const char *fsname, 349 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 350 int dmu_objset_remap_indirects(const char *fsname); 351 352 typedef struct dmu_buf { 353 uint64_t db_object; /* object that this buffer is part of */ 354 uint64_t db_offset; /* byte offset in this object */ 355 uint64_t db_size; /* size of buffer in bytes */ 356 void *db_data; /* data in buffer */ 357 } dmu_buf_t; 358 359 /* 360 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 361 */ 362 #define DMU_POOL_DIRECTORY_OBJECT 1 363 #define DMU_POOL_CONFIG "config" 364 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 365 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 366 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 367 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 368 #define DMU_POOL_ROOT_DATASET "root_dataset" 369 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 370 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 371 #define DMU_POOL_ERRLOG_LAST "errlog_last" 372 #define DMU_POOL_SPARES "spares" 373 #define DMU_POOL_DEFLATE "deflate" 374 #define DMU_POOL_HISTORY "history" 375 #define DMU_POOL_PROPS "pool_props" 376 #define DMU_POOL_L2CACHE "l2cache" 377 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 378 #define DMU_POOL_DDT "DDT-%s-%s-%s" 379 #define DMU_POOL_DDT_STATS "DDT-statistics" 380 #define DMU_POOL_CREATION_VERSION "creation_version" 381 #define DMU_POOL_SCAN "scan" 382 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 383 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 384 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 385 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 386 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 387 #define DMU_POOL_REMOVING "com.delphix:removing" 388 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 389 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 390 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 391 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap" 392 393 /* 394 * Allocate an object from this objset. The range of object numbers 395 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 396 * 397 * The transaction must be assigned to a txg. The newly allocated 398 * object will be "held" in the transaction (ie. you can modify the 399 * newly allocated object in this transaction). 400 * 401 * dmu_object_alloc() chooses an object and returns it in *objectp. 402 * 403 * dmu_object_claim() allocates a specific object number. If that 404 * number is already allocated, it fails and returns EEXIST. 405 * 406 * Return 0 on success, or ENOSPC or EEXIST as specified above. 407 */ 408 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 409 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 410 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, 411 int indirect_blockshift, 412 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 413 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, 414 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 415 int dnodesize, dmu_tx_t *tx); 416 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, 417 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 418 int dnodesize, dmu_tx_t *tx); 419 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, 420 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, 421 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *txp); 422 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 423 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 424 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 425 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 426 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx); 427 428 /* 429 * Free an object from this objset. 430 * 431 * The object's data will be freed as well (ie. you don't need to call 432 * dmu_free(object, 0, -1, tx)). 433 * 434 * The object need not be held in the transaction. 435 * 436 * If there are any holds on this object's buffers (via dmu_buf_hold()), 437 * or tx holds on the object (via dmu_tx_hold_object()), you can not 438 * free it; it fails and returns EBUSY. 439 * 440 * If the object is not allocated, it fails and returns ENOENT. 441 * 442 * Return 0 on success, or EBUSY or ENOENT as specified above. 443 */ 444 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 445 446 /* 447 * Find the next allocated or free object. 448 * 449 * The objectp parameter is in-out. It will be updated to be the next 450 * object which is allocated. Ignore objects which have not been 451 * modified since txg. 452 * 453 * XXX Can only be called on a objset with no dirty data. 454 * 455 * Returns 0 on success, or ENOENT if there are no more objects. 456 */ 457 int dmu_object_next(objset_t *os, uint64_t *objectp, 458 boolean_t hole, uint64_t txg); 459 460 /* 461 * Set the number of levels on a dnode. nlevels must be greater than the 462 * current number of levels or an EINVAL will be returned. 463 */ 464 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, 465 dmu_tx_t *tx); 466 467 /* 468 * Set the data blocksize for an object. 469 * 470 * The object cannot have any blocks allcated beyond the first. If 471 * the first block is allocated already, the new size must be greater 472 * than the current block size. If these conditions are not met, 473 * ENOTSUP will be returned. 474 * 475 * Returns 0 on success, or EBUSY if there are any holds on the object 476 * contents, or ENOTSUP as described above. 477 */ 478 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 479 int ibs, dmu_tx_t *tx); 480 481 /* 482 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly 483 * to accommodate the change. When calling this function, the caller must 484 * ensure that the object's nlevels can sufficiently support the new maxblkid. 485 */ 486 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 487 dmu_tx_t *tx); 488 489 /* 490 * Set the checksum property on a dnode. The new checksum algorithm will 491 * apply to all newly written blocks; existing blocks will not be affected. 492 */ 493 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 494 dmu_tx_t *tx); 495 496 /* 497 * Set the compress property on a dnode. The new compression algorithm will 498 * apply to all newly written blocks; existing blocks will not be affected. 499 */ 500 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 501 dmu_tx_t *tx); 502 503 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg); 504 505 void 506 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 507 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 508 int compressed_size, int byteorder, dmu_tx_t *tx); 509 510 /* 511 * Decide how to write a block: checksum, compression, number of copies, etc. 512 */ 513 #define WP_NOFILL 0x1 514 #define WP_DMU_SYNC 0x2 515 #define WP_SPILL 0x4 516 517 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 518 struct zio_prop *zp); 519 void dmu_write_policy_override_compress(struct zio_prop *zp, 520 enum zio_compress compress); 521 void dmu_write_policy_override_encrypt(struct zio_prop *zp, 522 dmu_object_type_t ot, boolean_t byteorder, enum zio_compress compress, 523 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac); 524 /* 525 * The bonus data is accessed more or less like a regular buffer. 526 * You must dmu_bonus_hold() to get the buffer, which will give you a 527 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 528 * data. As with any normal buffer, you must call dmu_buf_will_dirty() 529 * before modifying it, and the 530 * object must be held in an assigned transaction before calling 531 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 532 * buffer as well. You must release your hold with dmu_buf_rele(). 533 * 534 * Returns ENOENT, EIO, or 0. 535 */ 536 int dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, 537 uint32_t flags, dmu_buf_t **dbp); 538 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 539 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 540 uint32_t flags); 541 int dmu_bonus_max(void); 542 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 543 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 544 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 545 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 546 547 /* 548 * Special spill buffer support used by "SA" framework 549 */ 550 551 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 552 dmu_buf_t **dbp); 553 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 554 void *tag, dmu_buf_t **dbp); 555 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 556 557 /* 558 * Obtain the DMU buffer from the specified object which contains the 559 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 560 * that it will remain in memory. You must release the hold with 561 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 562 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 563 * 564 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 565 * on the returned buffer before reading or writing the buffer's 566 * db_data. The comments for those routines describe what particular 567 * operations are valid after calling them. 568 * 569 * The object number must be a valid, allocated object number. 570 */ 571 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 572 void *tag, dmu_buf_t **, int flags); 573 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 574 void *tag, dmu_buf_t **dbp, int flags); 575 576 /* 577 * Add a reference to a dmu buffer that has already been held via 578 * dmu_buf_hold() in the current context. 579 */ 580 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 581 582 /* 583 * Attempt to add a reference to a dmu buffer that is in an unknown state, 584 * using a pointer that may have been invalidated by eviction processing. 585 * The request will succeed if the passed in dbuf still represents the 586 * same os/object/blkid, is ineligible for eviction, and has at least 587 * one hold by a user other than the syncer. 588 */ 589 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 590 uint64_t blkid, void *tag); 591 592 void dmu_buf_rele(dmu_buf_t *db, void *tag); 593 uint64_t dmu_buf_refcount(dmu_buf_t *db); 594 uint64_t dmu_buf_user_refcount(dmu_buf_t *db); 595 596 /* 597 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 598 * range of an object. A pointer to an array of dmu_buf_t*'s is 599 * returned (in *dbpp). 600 * 601 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 602 * frees the array. The hold on the array of buffers MUST be released 603 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 604 * individually with dmu_buf_rele. 605 */ 606 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 607 uint64_t length, boolean_t read, void *tag, 608 int *numbufsp, dmu_buf_t ***dbpp); 609 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 610 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, 611 uint32_t flags); 612 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 613 614 typedef void dmu_buf_evict_func_t(void *user_ptr); 615 616 /* 617 * A DMU buffer user object may be associated with a dbuf for the 618 * duration of its lifetime. This allows the user of a dbuf (client) 619 * to attach private data to a dbuf (e.g. in-core only data such as a 620 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 621 * when that dbuf has been evicted. Clients typically respond to the 622 * eviction notification by freeing their private data, thus ensuring 623 * the same lifetime for both dbuf and private data. 624 * 625 * The mapping from a dmu_buf_user_t to any client private data is the 626 * client's responsibility. All current consumers of the API with private 627 * data embed a dmu_buf_user_t as the first member of the structure for 628 * their private data. This allows conversions between the two types 629 * with a simple cast. Since the DMU buf user API never needs access 630 * to the private data, other strategies can be employed if necessary 631 * or convenient for the client (e.g. using __containerof() to do the 632 * conversion for private data that cannot have the dmu_buf_user_t as 633 * its first member). 634 * 635 * Eviction callbacks are executed without the dbuf mutex held or any 636 * other type of mechanism to guarantee that the dbuf is still available. 637 * For this reason, users must assume the dbuf has already been freed 638 * and not reference the dbuf from the callback context. 639 * 640 * Users requesting "immediate eviction" are notified as soon as the dbuf 641 * is only referenced by dirty records (dirties == holds). Otherwise the 642 * notification occurs after eviction processing for the dbuf begins. 643 */ 644 typedef struct dmu_buf_user { 645 /* 646 * Asynchronous user eviction callback state. 647 */ 648 taskq_ent_t dbu_tqent; 649 650 /* 651 * This instance's eviction function pointers. 652 * 653 * dbu_evict_func_sync is called synchronously and then 654 * dbu_evict_func_async is executed asynchronously on a taskq. 655 */ 656 dmu_buf_evict_func_t *dbu_evict_func_sync; 657 dmu_buf_evict_func_t *dbu_evict_func_async; 658 #ifdef ZFS_DEBUG 659 /* 660 * Pointer to user's dbuf pointer. NULL for clients that do 661 * not associate a dbuf with their user data. 662 * 663 * The dbuf pointer is cleared upon eviction so as to catch 664 * use-after-evict bugs in clients. 665 */ 666 dmu_buf_t **dbu_clear_on_evict_dbufp; 667 #endif 668 } dmu_buf_user_t; 669 670 /* 671 * Initialize the given dmu_buf_user_t instance with the eviction function 672 * evict_func, to be called when the user is evicted. 673 * 674 * NOTE: This function should only be called once on a given dmu_buf_user_t. 675 * To allow enforcement of this, dbu must already be zeroed on entry. 676 */ 677 /*ARGSUSED*/ 678 inline void 679 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 680 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) 681 { 682 ASSERT(dbu->dbu_evict_func_sync == NULL); 683 ASSERT(dbu->dbu_evict_func_async == NULL); 684 685 /* must have at least one evict func */ 686 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 687 dbu->dbu_evict_func_sync = evict_func_sync; 688 dbu->dbu_evict_func_async = evict_func_async; 689 #ifdef ZFS_DEBUG 690 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 691 #endif 692 } 693 694 /* 695 * Attach user data to a dbuf and mark it for normal (when the dbuf's 696 * data is cleared or its reference count goes to zero) eviction processing. 697 * 698 * Returns NULL on success, or the existing user if another user currently 699 * owns the buffer. 700 */ 701 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 702 703 /* 704 * Attach user data to a dbuf and mark it for immediate (its dirty and 705 * reference counts are equal) eviction processing. 706 * 707 * Returns NULL on success, or the existing user if another user currently 708 * owns the buffer. 709 */ 710 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 711 712 /* 713 * Replace the current user of a dbuf. 714 * 715 * If given the current user of a dbuf, replaces the dbuf's user with 716 * "new_user" and returns the user data pointer that was replaced. 717 * Otherwise returns the current, and unmodified, dbuf user pointer. 718 */ 719 void *dmu_buf_replace_user(dmu_buf_t *db, 720 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 721 722 /* 723 * Remove the specified user data for a DMU buffer. 724 * 725 * Returns the user that was removed on success, or the current user if 726 * another user currently owns the buffer. 727 */ 728 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 729 730 /* 731 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 732 */ 733 void *dmu_buf_get_user(dmu_buf_t *db); 734 735 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 736 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); 737 void dmu_buf_dnode_exit(dmu_buf_t *db); 738 739 /* Block until any in-progress dmu buf user evictions complete. */ 740 void dmu_buf_user_evict_wait(void); 741 742 /* 743 * Returns the blkptr associated with this dbuf, or NULL if not set. 744 */ 745 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 746 747 /* 748 * Indicate that you are going to modify the buffer's data (db_data). 749 * 750 * The transaction (tx) must be assigned to a txg (ie. you've called 751 * dmu_tx_assign()). The buffer's object must be held in the tx 752 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 753 */ 754 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 755 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 756 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); 757 758 /* 759 * You must create a transaction, then hold the objects which you will 760 * (or might) modify as part of this transaction. Then you must assign 761 * the transaction to a transaction group. Once the transaction has 762 * been assigned, you can modify buffers which belong to held objects as 763 * part of this transaction. You can't modify buffers before the 764 * transaction has been assigned; you can't modify buffers which don't 765 * belong to objects which this transaction holds; you can't hold 766 * objects once the transaction has been assigned. You may hold an 767 * object which you are going to free (with dmu_object_free()), but you 768 * don't have to. 769 * 770 * You can abort the transaction before it has been assigned. 771 * 772 * Note that you may hold buffers (with dmu_buf_hold) at any time, 773 * regardless of transaction state. 774 */ 775 776 #define DMU_NEW_OBJECT (-1ULL) 777 #define DMU_OBJECT_END (-1ULL) 778 779 dmu_tx_t *dmu_tx_create(objset_t *os); 780 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 781 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 782 int len); 783 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 784 uint64_t len); 785 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 786 uint64_t len); 787 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object); 788 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 789 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 790 const char *name); 791 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 792 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 793 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 794 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 795 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 796 void dmu_tx_abort(dmu_tx_t *tx); 797 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); 798 void dmu_tx_wait(dmu_tx_t *tx); 799 void dmu_tx_commit(dmu_tx_t *tx); 800 void dmu_tx_mark_netfree(dmu_tx_t *tx); 801 802 /* 803 * To register a commit callback, dmu_tx_callback_register() must be called. 804 * 805 * dcb_data is a pointer to caller private data that is passed on as a 806 * callback parameter. The caller is responsible for properly allocating and 807 * freeing it. 808 * 809 * When registering a callback, the transaction must be already created, but 810 * it cannot be committed or aborted. It can be assigned to a txg or not. 811 * 812 * The callback will be called after the transaction has been safely written 813 * to stable storage and will also be called if the dmu_tx is aborted. 814 * If there is any error which prevents the transaction from being committed to 815 * disk, the callback will be called with a value of error != 0. 816 */ 817 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 818 819 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 820 void *dcb_data); 821 822 /* 823 * Free up the data blocks for a defined range of a file. If size is 824 * -1, the range from offset to end-of-file is freed. 825 */ 826 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 827 uint64_t size, dmu_tx_t *tx); 828 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 829 uint64_t size); 830 int dmu_free_long_object(objset_t *os, uint64_t object); 831 832 /* 833 * Convenience functions. 834 * 835 * Canfail routines will return 0 on success, or an errno if there is a 836 * nonrecoverable I/O error. 837 */ 838 #define DMU_READ_PREFETCH 0 /* prefetch */ 839 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 840 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */ 841 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 842 void *buf, uint32_t flags); 843 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 844 uint32_t flags); 845 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 846 const void *buf, dmu_tx_t *tx); 847 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 848 const void *buf, dmu_tx_t *tx); 849 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 850 dmu_tx_t *tx); 851 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 852 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); 853 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size); 854 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 855 dmu_tx_t *tx); 856 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 857 dmu_tx_t *tx); 858 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size, 859 dmu_tx_t *tx); 860 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 861 uint64_t size, struct page *pp, dmu_tx_t *tx); 862 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 863 void dmu_return_arcbuf(struct arc_buf *buf); 864 int dmu_assign_arcbuf_by_dnode(dnode_t *handle, uint64_t offset, 865 struct arc_buf *buf, dmu_tx_t *tx); 866 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, 867 struct arc_buf *buf, dmu_tx_t *tx); 868 void dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder, 869 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx); 870 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf 871 void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset, 872 dmu_buf_t *handle, dmu_tx_t *tx); 873 int dmu_xuio_init(struct xuio *uio, int niov); 874 void dmu_xuio_fini(struct xuio *uio); 875 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 876 size_t n); 877 int dmu_xuio_cnt(struct xuio *uio); 878 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 879 void dmu_xuio_clear(struct xuio *uio, int i); 880 void xuio_stat_wbuf_copied(void); 881 void xuio_stat_wbuf_nocopy(void); 882 883 extern boolean_t zfs_prefetch_disable; 884 extern int zfs_max_recordsize; 885 886 /* 887 * Asynchronously try to read in the data. 888 */ 889 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 890 uint64_t len, enum zio_priority pri); 891 892 typedef struct dmu_object_info { 893 /* All sizes are in bytes unless otherwise indicated. */ 894 uint32_t doi_data_block_size; 895 uint32_t doi_metadata_block_size; 896 dmu_object_type_t doi_type; 897 dmu_object_type_t doi_bonus_type; 898 uint64_t doi_bonus_size; 899 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 900 uint8_t doi_checksum; 901 uint8_t doi_compress; 902 uint8_t doi_nblkptr; 903 int8_t doi_pad[4]; 904 uint64_t doi_dnodesize; 905 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 906 uint64_t doi_max_offset; 907 uint64_t doi_fill_count; /* number of non-empty blocks */ 908 } dmu_object_info_t; 909 910 typedef void arc_byteswap_func_t(void *buf, size_t size); 911 912 typedef struct dmu_object_type_info { 913 dmu_object_byteswap_t ot_byteswap; 914 boolean_t ot_metadata; 915 boolean_t ot_dbuf_metadata_cache; 916 boolean_t ot_encrypt; 917 char *ot_name; 918 } dmu_object_type_info_t; 919 920 typedef struct dmu_object_byteswap_info { 921 arc_byteswap_func_t *ob_func; 922 char *ob_name; 923 } dmu_object_byteswap_info_t; 924 925 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 926 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 927 928 /* 929 * Get information on a DMU object. 930 * 931 * Return 0 on success or ENOENT if object is not allocated. 932 * 933 * If doi is NULL, just indicates whether the object exists. 934 */ 935 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 936 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 937 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 938 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 939 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 940 /* 941 * Like dmu_object_info_from_db, but faster still when you only care about 942 * the size. This is specifically optimized for zfs_getattr(). 943 */ 944 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 945 u_longlong_t *nblk512); 946 947 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); 948 949 typedef struct dmu_objset_stats { 950 uint64_t dds_num_clones; /* number of clones of this */ 951 uint64_t dds_creation_txg; 952 uint64_t dds_guid; 953 dmu_objset_type_t dds_type; 954 uint8_t dds_is_snapshot; 955 uint8_t dds_inconsistent; 956 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 957 } dmu_objset_stats_t; 958 959 /* 960 * Get stats on a dataset. 961 */ 962 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 963 964 /* 965 * Add entries to the nvlist for all the objset's properties. See 966 * zfs_prop_table[] and zfs(8) for details on the properties. 967 */ 968 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 969 970 /* 971 * Get the space usage statistics for statvfs(). 972 * 973 * refdbytes is the amount of space "referenced" by this objset. 974 * availbytes is the amount of space available to this objset, taking 975 * into account quotas & reservations, assuming that no other objsets 976 * use the space first. These values correspond to the 'referenced' and 977 * 'available' properties, described in the zfs(8) manpage. 978 * 979 * usedobjs and availobjs are the number of objects currently allocated, 980 * and available. 981 */ 982 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 983 uint64_t *usedobjsp, uint64_t *availobjsp); 984 985 /* 986 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 987 * (Contrast with the ds_guid which is a 64-bit ID that will never 988 * change, so there is a small probability that it will collide.) 989 */ 990 uint64_t dmu_objset_fsid_guid(objset_t *os); 991 992 /* 993 * Get the [cm]time for an objset's snapshot dir 994 */ 995 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 996 997 int dmu_objset_is_snapshot(objset_t *os); 998 999 extern struct spa *dmu_objset_spa(objset_t *os); 1000 extern struct zilog *dmu_objset_zil(objset_t *os); 1001 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 1002 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 1003 extern void dmu_objset_name(objset_t *os, char *buf); 1004 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 1005 extern uint64_t dmu_objset_id(objset_t *os); 1006 extern uint64_t dmu_objset_dnodesize(objset_t *os); 1007 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 1008 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 1009 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 1010 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 1011 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 1012 int maxlen, boolean_t *conflict); 1013 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 1014 uint64_t *idp, uint64_t *offp); 1015 1016 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 1017 void *bonus, uint64_t *userp, uint64_t *groupp, uint64_t *projectp); 1018 extern void dmu_objset_register_type(dmu_objset_type_t ost, 1019 objset_used_cb_t *cb); 1020 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 1021 extern void *dmu_objset_get_user(objset_t *os); 1022 1023 /* 1024 * Return the txg number for the given assigned transaction. 1025 */ 1026 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 1027 1028 /* 1029 * Synchronous write. 1030 * If a parent zio is provided this function initiates a write on the 1031 * provided buffer as a child of the parent zio. 1032 * In the absence of a parent zio, the write is completed synchronously. 1033 * At write completion, blk is filled with the bp of the written block. 1034 * Note that while the data covered by this function will be on stable 1035 * storage when the write completes this new data does not become a 1036 * permanent part of the file until the associated transaction commits. 1037 */ 1038 1039 /* 1040 * {zfs,zvol,ztest}_get_done() args 1041 */ 1042 typedef struct zgd { 1043 struct lwb *zgd_lwb; 1044 struct blkptr *zgd_bp; 1045 dmu_buf_t *zgd_db; 1046 struct locked_range *zgd_lr; 1047 void *zgd_private; 1048 } zgd_t; 1049 1050 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 1051 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 1052 1053 /* 1054 * Find the next hole or data block in file starting at *off 1055 * Return found offset in *off. Return ESRCH for end of file. 1056 */ 1057 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 1058 uint64_t *off); 1059 1060 /* 1061 * Check if a DMU object has any dirty blocks. If so, sync out 1062 * all pending transaction groups. Otherwise, this function 1063 * does not alter DMU state. This could be improved to only sync 1064 * out the necessary transaction groups for this particular 1065 * object. 1066 */ 1067 int dmu_object_wait_synced(objset_t *os, uint64_t object); 1068 1069 /* 1070 * Initial setup and final teardown. 1071 */ 1072 extern void dmu_init(void); 1073 extern void dmu_fini(void); 1074 1075 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 1076 uint64_t object, uint64_t offset, int len); 1077 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 1078 dmu_traverse_cb_t cb, void *arg); 1079 1080 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 1081 struct vnode *vp, offset_t *offp); 1082 1083 /* CRC64 table */ 1084 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 1085 extern uint64_t zfs_crc64_table[256]; 1086 1087 #ifdef __cplusplus 1088 } 1089 #endif 1090 1091 #endif /* _SYS_DMU_H */ 1092