xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/dmu.h (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27  * Copyright 2013 DEY Storage Systems, Inc.
28  * Copyright 2014 HybridCluster. All rights reserved.
29  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30  * Copyright 2013 Saso Kiselkov. All rights reserved.
31  * Copyright (c) 2014 Integros [integros.com]
32  */
33 
34 /* Portions Copyright 2010 Robert Milkowski */
35 
36 #ifndef	_SYS_DMU_H
37 #define	_SYS_DMU_H
38 
39 /*
40  * This file describes the interface that the DMU provides for its
41  * consumers.
42  *
43  * The DMU also interacts with the SPA.  That interface is described in
44  * dmu_spa.h.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/inttypes.h>
49 #include <sys/cred.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zio_priority.h>
52 
53 #ifdef	__cplusplus
54 extern "C" {
55 #endif
56 
57 struct uio;
58 struct xuio;
59 struct page;
60 struct vnode;
61 struct spa;
62 struct zilog;
63 struct zio;
64 struct blkptr;
65 struct zap_cursor;
66 struct dsl_dataset;
67 struct dsl_pool;
68 struct dnode;
69 struct drr_begin;
70 struct drr_end;
71 struct zbookmark_phys;
72 struct spa;
73 struct nvlist;
74 struct arc_buf;
75 struct zio_prop;
76 struct sa_handle;
77 
78 typedef struct objset objset_t;
79 typedef struct dmu_tx dmu_tx_t;
80 typedef struct dsl_dir dsl_dir_t;
81 
82 typedef enum dmu_object_byteswap {
83 	DMU_BSWAP_UINT8,
84 	DMU_BSWAP_UINT16,
85 	DMU_BSWAP_UINT32,
86 	DMU_BSWAP_UINT64,
87 	DMU_BSWAP_ZAP,
88 	DMU_BSWAP_DNODE,
89 	DMU_BSWAP_OBJSET,
90 	DMU_BSWAP_ZNODE,
91 	DMU_BSWAP_OLDACL,
92 	DMU_BSWAP_ACL,
93 	/*
94 	 * Allocating a new byteswap type number makes the on-disk format
95 	 * incompatible with any other format that uses the same number.
96 	 *
97 	 * Data can usually be structured to work with one of the
98 	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
99 	 */
100 	DMU_BSWAP_NUMFUNCS
101 } dmu_object_byteswap_t;
102 
103 #define	DMU_OT_NEWTYPE 0x80
104 #define	DMU_OT_METADATA 0x40
105 #define	DMU_OT_BYTESWAP_MASK 0x3f
106 
107 /*
108  * Defines a uint8_t object type. Object types specify if the data
109  * in the object is metadata (boolean) and how to byteswap the data
110  * (dmu_object_byteswap_t).
111  */
112 #define	DMU_OT(byteswap, metadata) \
113 	(DMU_OT_NEWTYPE | \
114 	((metadata) ? DMU_OT_METADATA : 0) | \
115 	((byteswap) & DMU_OT_BYTESWAP_MASK))
116 
117 #define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
118 	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
119 	(ot) < DMU_OT_NUMTYPES)
120 
121 #define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
122 	((ot) & DMU_OT_METADATA) : \
123 	dmu_ot[(ot)].ot_metadata)
124 
125 /*
126  * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
127  * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
128  * is repurposed for embedded BPs.
129  */
130 #define	DMU_OT_HAS_FILL(ot) \
131 	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
132 
133 #define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
134 	((ot) & DMU_OT_BYTESWAP_MASK) : \
135 	dmu_ot[(ot)].ot_byteswap)
136 
137 typedef enum dmu_object_type {
138 	DMU_OT_NONE,
139 	/* general: */
140 	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
141 	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
142 	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
143 	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
144 	DMU_OT_BPOBJ,			/* UINT64 */
145 	DMU_OT_BPOBJ_HDR,		/* UINT64 */
146 	/* spa: */
147 	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
148 	DMU_OT_SPACE_MAP,		/* UINT64 */
149 	/* zil: */
150 	DMU_OT_INTENT_LOG,		/* UINT64 */
151 	/* dmu: */
152 	DMU_OT_DNODE,			/* DNODE */
153 	DMU_OT_OBJSET,			/* OBJSET */
154 	/* dsl: */
155 	DMU_OT_DSL_DIR,			/* UINT64 */
156 	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
157 	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
158 	DMU_OT_DSL_PROPS,		/* ZAP */
159 	DMU_OT_DSL_DATASET,		/* UINT64 */
160 	/* zpl: */
161 	DMU_OT_ZNODE,			/* ZNODE */
162 	DMU_OT_OLDACL,			/* Old ACL */
163 	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
164 	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
165 	DMU_OT_MASTER_NODE,		/* ZAP */
166 	DMU_OT_UNLINKED_SET,		/* ZAP */
167 	/* zvol: */
168 	DMU_OT_ZVOL,			/* UINT8 */
169 	DMU_OT_ZVOL_PROP,		/* ZAP */
170 	/* other; for testing only! */
171 	DMU_OT_PLAIN_OTHER,		/* UINT8 */
172 	DMU_OT_UINT64_OTHER,		/* UINT64 */
173 	DMU_OT_ZAP_OTHER,		/* ZAP */
174 	/* new object types: */
175 	DMU_OT_ERROR_LOG,		/* ZAP */
176 	DMU_OT_SPA_HISTORY,		/* UINT8 */
177 	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
178 	DMU_OT_POOL_PROPS,		/* ZAP */
179 	DMU_OT_DSL_PERMS,		/* ZAP */
180 	DMU_OT_ACL,			/* ACL */
181 	DMU_OT_SYSACL,			/* SYSACL */
182 	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
183 	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
184 	DMU_OT_NEXT_CLONES,		/* ZAP */
185 	DMU_OT_SCAN_QUEUE,		/* ZAP */
186 	DMU_OT_USERGROUP_USED,		/* ZAP */
187 	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
188 	DMU_OT_USERREFS,		/* ZAP */
189 	DMU_OT_DDT_ZAP,			/* ZAP */
190 	DMU_OT_DDT_STATS,		/* ZAP */
191 	DMU_OT_SA,			/* System attr */
192 	DMU_OT_SA_MASTER_NODE,		/* ZAP */
193 	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
194 	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
195 	DMU_OT_SCAN_XLATE,		/* ZAP */
196 	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
197 	DMU_OT_DEADLIST,		/* ZAP */
198 	DMU_OT_DEADLIST_HDR,		/* UINT64 */
199 	DMU_OT_DSL_CLONES,		/* ZAP */
200 	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
201 	/*
202 	 * Do not allocate new object types here. Doing so makes the on-disk
203 	 * format incompatible with any other format that uses the same object
204 	 * type number.
205 	 *
206 	 * When creating an object which does not have one of the above types
207 	 * use the DMU_OTN_* type with the correct byteswap and metadata
208 	 * values.
209 	 *
210 	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
211 	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
212 	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
213 	 * and DMU_OTN_* types).
214 	 */
215 	DMU_OT_NUMTYPES,
216 
217 	/*
218 	 * Names for valid types declared with DMU_OT().
219 	 */
220 	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
221 	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
222 	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
223 	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
224 	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
225 	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
226 	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
227 	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
228 	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
229 	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
230 } dmu_object_type_t;
231 
232 typedef enum txg_how {
233 	TXG_WAIT = 1,
234 	TXG_NOWAIT,
235 	TXG_WAITED,
236 } txg_how_t;
237 
238 void byteswap_uint64_array(void *buf, size_t size);
239 void byteswap_uint32_array(void *buf, size_t size);
240 void byteswap_uint16_array(void *buf, size_t size);
241 void byteswap_uint8_array(void *buf, size_t size);
242 void zap_byteswap(void *buf, size_t size);
243 void zfs_oldacl_byteswap(void *buf, size_t size);
244 void zfs_acl_byteswap(void *buf, size_t size);
245 void zfs_znode_byteswap(void *buf, size_t size);
246 
247 #define	DS_FIND_SNAPSHOTS	(1<<0)
248 #define	DS_FIND_CHILDREN	(1<<1)
249 #define	DS_FIND_SERIALIZE	(1<<2)
250 
251 /*
252  * The maximum number of bytes that can be accessed as part of one
253  * operation, including metadata.
254  */
255 #define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
256 #define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
257 
258 #define	DMU_USERUSED_OBJECT	(-1ULL)
259 #define	DMU_GROUPUSED_OBJECT	(-2ULL)
260 
261 /*
262  * artificial blkids for bonus buffer and spill blocks
263  */
264 #define	DMU_BONUS_BLKID		(-1ULL)
265 #define	DMU_SPILL_BLKID		(-2ULL)
266 /*
267  * Public routines to create, destroy, open, and close objsets.
268  */
269 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
270 int dmu_objset_own(const char *name, dmu_objset_type_t type,
271     boolean_t readonly, void *tag, objset_t **osp);
272 void dmu_objset_rele(objset_t *os, void *tag);
273 void dmu_objset_disown(objset_t *os, void *tag);
274 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
275 
276 void dmu_objset_evict_dbufs(objset_t *os);
277 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
278     void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
279 int dmu_objset_clone(const char *name, const char *origin);
280 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
281     struct nvlist *errlist);
282 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
283 int dmu_objset_snapshot_tmp(const char *, const char *, int);
284 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
285     int flags);
286 void dmu_objset_byteswap(void *buf, size_t size);
287 int dsl_dataset_rename_snapshot(const char *fsname,
288     const char *oldsnapname, const char *newsnapname, boolean_t recursive);
289 
290 typedef struct dmu_buf {
291 	uint64_t db_object;		/* object that this buffer is part of */
292 	uint64_t db_offset;		/* byte offset in this object */
293 	uint64_t db_size;		/* size of buffer in bytes */
294 	void *db_data;			/* data in buffer */
295 } dmu_buf_t;
296 
297 /*
298  * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
299  */
300 #define	DMU_POOL_DIRECTORY_OBJECT	1
301 #define	DMU_POOL_CONFIG			"config"
302 #define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
303 #define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
304 #define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
305 #define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
306 #define	DMU_POOL_ROOT_DATASET		"root_dataset"
307 #define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
308 #define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
309 #define	DMU_POOL_ERRLOG_LAST		"errlog_last"
310 #define	DMU_POOL_SPARES			"spares"
311 #define	DMU_POOL_DEFLATE		"deflate"
312 #define	DMU_POOL_HISTORY		"history"
313 #define	DMU_POOL_PROPS			"pool_props"
314 #define	DMU_POOL_L2CACHE		"l2cache"
315 #define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
316 #define	DMU_POOL_DDT			"DDT-%s-%s-%s"
317 #define	DMU_POOL_DDT_STATS		"DDT-statistics"
318 #define	DMU_POOL_CREATION_VERSION	"creation_version"
319 #define	DMU_POOL_SCAN			"scan"
320 #define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
321 #define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
322 #define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
323 #define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
324 #define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
325 
326 /*
327  * Allocate an object from this objset.  The range of object numbers
328  * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
329  *
330  * The transaction must be assigned to a txg.  The newly allocated
331  * object will be "held" in the transaction (ie. you can modify the
332  * newly allocated object in this transaction).
333  *
334  * dmu_object_alloc() chooses an object and returns it in *objectp.
335  *
336  * dmu_object_claim() allocates a specific object number.  If that
337  * number is already allocated, it fails and returns EEXIST.
338  *
339  * Return 0 on success, or ENOSPC or EEXIST as specified above.
340  */
341 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
342     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
343 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
344     int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
345 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
346     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
347 
348 /*
349  * Free an object from this objset.
350  *
351  * The object's data will be freed as well (ie. you don't need to call
352  * dmu_free(object, 0, -1, tx)).
353  *
354  * The object need not be held in the transaction.
355  *
356  * If there are any holds on this object's buffers (via dmu_buf_hold()),
357  * or tx holds on the object (via dmu_tx_hold_object()), you can not
358  * free it; it fails and returns EBUSY.
359  *
360  * If the object is not allocated, it fails and returns ENOENT.
361  *
362  * Return 0 on success, or EBUSY or ENOENT as specified above.
363  */
364 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
365 
366 /*
367  * Find the next allocated or free object.
368  *
369  * The objectp parameter is in-out.  It will be updated to be the next
370  * object which is allocated.  Ignore objects which have not been
371  * modified since txg.
372  *
373  * XXX Can only be called on a objset with no dirty data.
374  *
375  * Returns 0 on success, or ENOENT if there are no more objects.
376  */
377 int dmu_object_next(objset_t *os, uint64_t *objectp,
378     boolean_t hole, uint64_t txg);
379 
380 /*
381  * Set the data blocksize for an object.
382  *
383  * The object cannot have any blocks allcated beyond the first.  If
384  * the first block is allocated already, the new size must be greater
385  * than the current block size.  If these conditions are not met,
386  * ENOTSUP will be returned.
387  *
388  * Returns 0 on success, or EBUSY if there are any holds on the object
389  * contents, or ENOTSUP as described above.
390  */
391 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
392     int ibs, dmu_tx_t *tx);
393 
394 /*
395  * Set the checksum property on a dnode.  The new checksum algorithm will
396  * apply to all newly written blocks; existing blocks will not be affected.
397  */
398 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
399     dmu_tx_t *tx);
400 
401 /*
402  * Set the compress property on a dnode.  The new compression algorithm will
403  * apply to all newly written blocks; existing blocks will not be affected.
404  */
405 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
406     dmu_tx_t *tx);
407 
408 void
409 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
410     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
411     int compressed_size, int byteorder, dmu_tx_t *tx);
412 
413 /*
414  * Decide how to write a block: checksum, compression, number of copies, etc.
415  */
416 #define	WP_NOFILL	0x1
417 #define	WP_DMU_SYNC	0x2
418 #define	WP_SPILL	0x4
419 
420 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
421     struct zio_prop *zp);
422 /*
423  * The bonus data is accessed more or less like a regular buffer.
424  * You must dmu_bonus_hold() to get the buffer, which will give you a
425  * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
426  * data.  As with any normal buffer, you must call dmu_buf_read() to
427  * read db_data, dmu_buf_will_dirty() before modifying it, and the
428  * object must be held in an assigned transaction before calling
429  * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
430  * buffer as well.  You must release your hold with dmu_buf_rele().
431  *
432  * Returns ENOENT, EIO, or 0.
433  */
434 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
435 int dmu_bonus_max(void);
436 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
437 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
438 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
439 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
440 
441 /*
442  * Special spill buffer support used by "SA" framework
443  */
444 
445 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
446 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
447     void *tag, dmu_buf_t **dbp);
448 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
449 
450 /*
451  * Obtain the DMU buffer from the specified object which contains the
452  * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
453  * that it will remain in memory.  You must release the hold with
454  * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
455  * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
456  *
457  * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
458  * on the returned buffer before reading or writing the buffer's
459  * db_data.  The comments for those routines describe what particular
460  * operations are valid after calling them.
461  *
462  * The object number must be a valid, allocated object number.
463  */
464 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
465     void *tag, dmu_buf_t **, int flags);
466 
467 /*
468  * Add a reference to a dmu buffer that has already been held via
469  * dmu_buf_hold() in the current context.
470  */
471 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
472 
473 /*
474  * Attempt to add a reference to a dmu buffer that is in an unknown state,
475  * using a pointer that may have been invalidated by eviction processing.
476  * The request will succeed if the passed in dbuf still represents the
477  * same os/object/blkid, is ineligible for eviction, and has at least
478  * one hold by a user other than the syncer.
479  */
480 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
481     uint64_t blkid, void *tag);
482 
483 void dmu_buf_rele(dmu_buf_t *db, void *tag);
484 uint64_t dmu_buf_refcount(dmu_buf_t *db);
485 
486 /*
487  * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
488  * range of an object.  A pointer to an array of dmu_buf_t*'s is
489  * returned (in *dbpp).
490  *
491  * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
492  * frees the array.  The hold on the array of buffers MUST be released
493  * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
494  * individually with dmu_buf_rele.
495  */
496 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
497     uint64_t length, boolean_t read, void *tag,
498     int *numbufsp, dmu_buf_t ***dbpp);
499 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
500 
501 typedef void dmu_buf_evict_func_t(void *user_ptr);
502 
503 /*
504  * A DMU buffer user object may be associated with a dbuf for the
505  * duration of its lifetime.  This allows the user of a dbuf (client)
506  * to attach private data to a dbuf (e.g. in-core only data such as a
507  * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
508  * when that dbuf has been evicted.  Clients typically respond to the
509  * eviction notification by freeing their private data, thus ensuring
510  * the same lifetime for both dbuf and private data.
511  *
512  * The mapping from a dmu_buf_user_t to any client private data is the
513  * client's responsibility.  All current consumers of the API with private
514  * data embed a dmu_buf_user_t as the first member of the structure for
515  * their private data.  This allows conversions between the two types
516  * with a simple cast.  Since the DMU buf user API never needs access
517  * to the private data, other strategies can be employed if necessary
518  * or convenient for the client (e.g. using container_of() to do the
519  * conversion for private data that cannot have the dmu_buf_user_t as
520  * its first member).
521  *
522  * Eviction callbacks are executed without the dbuf mutex held or any
523  * other type of mechanism to guarantee that the dbuf is still available.
524  * For this reason, users must assume the dbuf has already been freed
525  * and not reference the dbuf from the callback context.
526  *
527  * Users requesting "immediate eviction" are notified as soon as the dbuf
528  * is only referenced by dirty records (dirties == holds).  Otherwise the
529  * notification occurs after eviction processing for the dbuf begins.
530  */
531 typedef struct dmu_buf_user {
532 	/*
533 	 * Asynchronous user eviction callback state.
534 	 */
535 	taskq_ent_t	dbu_tqent;
536 
537 	/* This instance's eviction function pointer. */
538 	dmu_buf_evict_func_t *dbu_evict_func;
539 #ifdef ZFS_DEBUG
540 	/*
541 	 * Pointer to user's dbuf pointer.  NULL for clients that do
542 	 * not associate a dbuf with their user data.
543 	 *
544 	 * The dbuf pointer is cleared upon eviction so as to catch
545 	 * use-after-evict bugs in clients.
546 	 */
547 	dmu_buf_t **dbu_clear_on_evict_dbufp;
548 #endif
549 } dmu_buf_user_t;
550 
551 /*
552  * Initialize the given dmu_buf_user_t instance with the eviction function
553  * evict_func, to be called when the user is evicted.
554  *
555  * NOTE: This function should only be called once on a given dmu_buf_user_t.
556  *       To allow enforcement of this, dbu must already be zeroed on entry.
557  */
558 #ifdef __lint
559 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
560 extern void
561 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
562     dmu_buf_t **clear_on_evict_dbufp);
563 #else /* __lint */
564 inline void
565 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
566     dmu_buf_t **clear_on_evict_dbufp)
567 {
568 	ASSERT(dbu->dbu_evict_func == NULL);
569 	ASSERT(evict_func != NULL);
570 	dbu->dbu_evict_func = evict_func;
571 #ifdef ZFS_DEBUG
572 	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
573 #endif
574 }
575 #endif /* __lint */
576 
577 /*
578  * Attach user data to a dbuf and mark it for normal (when the dbuf's
579  * data is cleared or its reference count goes to zero) eviction processing.
580  *
581  * Returns NULL on success, or the existing user if another user currently
582  * owns the buffer.
583  */
584 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
585 
586 /*
587  * Attach user data to a dbuf and mark it for immediate (its dirty and
588  * reference counts are equal) eviction processing.
589  *
590  * Returns NULL on success, or the existing user if another user currently
591  * owns the buffer.
592  */
593 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
594 
595 /*
596  * Replace the current user of a dbuf.
597  *
598  * If given the current user of a dbuf, replaces the dbuf's user with
599  * "new_user" and returns the user data pointer that was replaced.
600  * Otherwise returns the current, and unmodified, dbuf user pointer.
601  */
602 void *dmu_buf_replace_user(dmu_buf_t *db,
603     dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
604 
605 /*
606  * Remove the specified user data for a DMU buffer.
607  *
608  * Returns the user that was removed on success, or the current user if
609  * another user currently owns the buffer.
610  */
611 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
612 
613 /*
614  * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
615  */
616 void *dmu_buf_get_user(dmu_buf_t *db);
617 
618 /* Block until any in-progress dmu buf user evictions complete. */
619 void dmu_buf_user_evict_wait(void);
620 
621 /*
622  * Returns the blkptr associated with this dbuf, or NULL if not set.
623  */
624 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
625 
626 /*
627  * Indicate that you are going to modify the buffer's data (db_data).
628  *
629  * The transaction (tx) must be assigned to a txg (ie. you've called
630  * dmu_tx_assign()).  The buffer's object must be held in the tx
631  * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
632  */
633 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
634 
635 /*
636  * Tells if the given dbuf is freeable.
637  */
638 boolean_t dmu_buf_freeable(dmu_buf_t *);
639 
640 /*
641  * You must create a transaction, then hold the objects which you will
642  * (or might) modify as part of this transaction.  Then you must assign
643  * the transaction to a transaction group.  Once the transaction has
644  * been assigned, you can modify buffers which belong to held objects as
645  * part of this transaction.  You can't modify buffers before the
646  * transaction has been assigned; you can't modify buffers which don't
647  * belong to objects which this transaction holds; you can't hold
648  * objects once the transaction has been assigned.  You may hold an
649  * object which you are going to free (with dmu_object_free()), but you
650  * don't have to.
651  *
652  * You can abort the transaction before it has been assigned.
653  *
654  * Note that you may hold buffers (with dmu_buf_hold) at any time,
655  * regardless of transaction state.
656  */
657 
658 #define	DMU_NEW_OBJECT	(-1ULL)
659 #define	DMU_OBJECT_END	(-1ULL)
660 
661 dmu_tx_t *dmu_tx_create(objset_t *os);
662 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
663 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
664     uint64_t len);
665 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
666 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
667 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
668 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
669 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
670 void dmu_tx_abort(dmu_tx_t *tx);
671 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
672 void dmu_tx_wait(dmu_tx_t *tx);
673 void dmu_tx_commit(dmu_tx_t *tx);
674 void dmu_tx_mark_netfree(dmu_tx_t *tx);
675 
676 /*
677  * To register a commit callback, dmu_tx_callback_register() must be called.
678  *
679  * dcb_data is a pointer to caller private data that is passed on as a
680  * callback parameter. The caller is responsible for properly allocating and
681  * freeing it.
682  *
683  * When registering a callback, the transaction must be already created, but
684  * it cannot be committed or aborted. It can be assigned to a txg or not.
685  *
686  * The callback will be called after the transaction has been safely written
687  * to stable storage and will also be called if the dmu_tx is aborted.
688  * If there is any error which prevents the transaction from being committed to
689  * disk, the callback will be called with a value of error != 0.
690  */
691 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
692 
693 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
694     void *dcb_data);
695 
696 /*
697  * Free up the data blocks for a defined range of a file.  If size is
698  * -1, the range from offset to end-of-file is freed.
699  */
700 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
701 	uint64_t size, dmu_tx_t *tx);
702 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
703 	uint64_t size);
704 int dmu_free_long_object(objset_t *os, uint64_t object);
705 
706 /*
707  * Convenience functions.
708  *
709  * Canfail routines will return 0 on success, or an errno if there is a
710  * nonrecoverable I/O error.
711  */
712 #define	DMU_READ_PREFETCH	0 /* prefetch */
713 #define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
714 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
715 	void *buf, uint32_t flags);
716 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
717 	const void *buf, dmu_tx_t *tx);
718 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
719 	dmu_tx_t *tx);
720 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
721 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
722 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
723     dmu_tx_t *tx);
724 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
725     dmu_tx_t *tx);
726 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
727     uint64_t size, struct page *pp, dmu_tx_t *tx);
728 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
729 void dmu_return_arcbuf(struct arc_buf *buf);
730 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
731     dmu_tx_t *tx);
732 int dmu_xuio_init(struct xuio *uio, int niov);
733 void dmu_xuio_fini(struct xuio *uio);
734 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
735     size_t n);
736 int dmu_xuio_cnt(struct xuio *uio);
737 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
738 void dmu_xuio_clear(struct xuio *uio, int i);
739 void xuio_stat_wbuf_copied();
740 void xuio_stat_wbuf_nocopy();
741 
742 extern boolean_t zfs_prefetch_disable;
743 extern int zfs_max_recordsize;
744 
745 /*
746  * Asynchronously try to read in the data.
747  */
748 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
749     uint64_t len, enum zio_priority pri);
750 
751 typedef struct dmu_object_info {
752 	/* All sizes are in bytes unless otherwise indicated. */
753 	uint32_t doi_data_block_size;
754 	uint32_t doi_metadata_block_size;
755 	dmu_object_type_t doi_type;
756 	dmu_object_type_t doi_bonus_type;
757 	uint64_t doi_bonus_size;
758 	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
759 	uint8_t doi_checksum;
760 	uint8_t doi_compress;
761 	uint8_t doi_nblkptr;
762 	uint8_t doi_pad[4];
763 	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
764 	uint64_t doi_max_offset;
765 	uint64_t doi_fill_count;		/* number of non-empty blocks */
766 } dmu_object_info_t;
767 
768 typedef void arc_byteswap_func_t(void *buf, size_t size);
769 
770 typedef struct dmu_object_type_info {
771 	dmu_object_byteswap_t	ot_byteswap;
772 	boolean_t		ot_metadata;
773 	char			*ot_name;
774 } dmu_object_type_info_t;
775 
776 typedef struct dmu_object_byteswap_info {
777 	arc_byteswap_func_t	*ob_func;
778 	char			*ob_name;
779 } dmu_object_byteswap_info_t;
780 
781 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
782 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
783 
784 /*
785  * Get information on a DMU object.
786  *
787  * Return 0 on success or ENOENT if object is not allocated.
788  *
789  * If doi is NULL, just indicates whether the object exists.
790  */
791 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
792 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
793 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
794 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
795 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
796 /*
797  * Like dmu_object_info_from_db, but faster still when you only care about
798  * the size.  This is specifically optimized for zfs_getattr().
799  */
800 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
801     u_longlong_t *nblk512);
802 
803 typedef struct dmu_objset_stats {
804 	uint64_t dds_num_clones; /* number of clones of this */
805 	uint64_t dds_creation_txg;
806 	uint64_t dds_guid;
807 	dmu_objset_type_t dds_type;
808 	uint8_t dds_is_snapshot;
809 	uint8_t dds_inconsistent;
810 	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
811 } dmu_objset_stats_t;
812 
813 /*
814  * Get stats on a dataset.
815  */
816 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
817 
818 /*
819  * Add entries to the nvlist for all the objset's properties.  See
820  * zfs_prop_table[] and zfs(1m) for details on the properties.
821  */
822 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
823 
824 /*
825  * Get the space usage statistics for statvfs().
826  *
827  * refdbytes is the amount of space "referenced" by this objset.
828  * availbytes is the amount of space available to this objset, taking
829  * into account quotas & reservations, assuming that no other objsets
830  * use the space first.  These values correspond to the 'referenced' and
831  * 'available' properties, described in the zfs(1m) manpage.
832  *
833  * usedobjs and availobjs are the number of objects currently allocated,
834  * and available.
835  */
836 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
837     uint64_t *usedobjsp, uint64_t *availobjsp);
838 
839 /*
840  * The fsid_guid is a 56-bit ID that can change to avoid collisions.
841  * (Contrast with the ds_guid which is a 64-bit ID that will never
842  * change, so there is a small probability that it will collide.)
843  */
844 uint64_t dmu_objset_fsid_guid(objset_t *os);
845 
846 /*
847  * Get the [cm]time for an objset's snapshot dir
848  */
849 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
850 
851 int dmu_objset_is_snapshot(objset_t *os);
852 
853 extern struct spa *dmu_objset_spa(objset_t *os);
854 extern struct zilog *dmu_objset_zil(objset_t *os);
855 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
856 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
857 extern void dmu_objset_name(objset_t *os, char *buf);
858 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
859 extern uint64_t dmu_objset_id(objset_t *os);
860 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
861 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
862 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
863     uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
864 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
865     int maxlen, boolean_t *conflict);
866 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
867     uint64_t *idp, uint64_t *offp);
868 
869 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
870     void *bonus, uint64_t *userp, uint64_t *groupp);
871 extern void dmu_objset_register_type(dmu_objset_type_t ost,
872     objset_used_cb_t *cb);
873 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
874 extern void *dmu_objset_get_user(objset_t *os);
875 
876 /*
877  * Return the txg number for the given assigned transaction.
878  */
879 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
880 
881 /*
882  * Synchronous write.
883  * If a parent zio is provided this function initiates a write on the
884  * provided buffer as a child of the parent zio.
885  * In the absence of a parent zio, the write is completed synchronously.
886  * At write completion, blk is filled with the bp of the written block.
887  * Note that while the data covered by this function will be on stable
888  * storage when the write completes this new data does not become a
889  * permanent part of the file until the associated transaction commits.
890  */
891 
892 /*
893  * {zfs,zvol,ztest}_get_done() args
894  */
895 typedef struct zgd {
896 	struct zilog	*zgd_zilog;
897 	struct blkptr	*zgd_bp;
898 	dmu_buf_t	*zgd_db;
899 	struct rl	*zgd_rl;
900 	void		*zgd_private;
901 } zgd_t;
902 
903 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
904 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
905 
906 /*
907  * Find the next hole or data block in file starting at *off
908  * Return found offset in *off. Return ESRCH for end of file.
909  */
910 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
911     uint64_t *off);
912 
913 /*
914  * Check if a DMU object has any dirty blocks. If so, sync out
915  * all pending transaction groups. Otherwise, this function
916  * does not alter DMU state. This could be improved to only sync
917  * out the necessary transaction groups for this particular
918  * object.
919  */
920 int dmu_object_wait_synced(objset_t *os, uint64_t object);
921 
922 /*
923  * Initial setup and final teardown.
924  */
925 extern void dmu_init(void);
926 extern void dmu_fini(void);
927 
928 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
929     uint64_t object, uint64_t offset, int len);
930 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
931     dmu_traverse_cb_t cb, void *arg);
932 
933 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
934     struct vnode *vp, offset_t *offp);
935 
936 /* CRC64 table */
937 #define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
938 extern uint64_t zfs_crc64_table[256];
939 
940 extern int zfs_mdcomp_disable;
941 
942 #ifdef	__cplusplus
943 }
944 #endif
945 
946 #endif	/* _SYS_DMU_H */
947