1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 27 * Copyright 2013 DEY Storage Systems, Inc. 28 * Copyright 2014 HybridCluster. All rights reserved. 29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 30 * Copyright 2013 Saso Kiselkov. All rights reserved. 31 * Copyright (c) 2014 Integros [integros.com] 32 */ 33 34 /* Portions Copyright 2010 Robert Milkowski */ 35 36 #ifndef _SYS_DMU_H 37 #define _SYS_DMU_H 38 39 /* 40 * This file describes the interface that the DMU provides for its 41 * consumers. 42 * 43 * The DMU also interacts with the SPA. That interface is described in 44 * dmu_spa.h. 45 */ 46 47 #include <sys/zfs_context.h> 48 #include <sys/inttypes.h> 49 #include <sys/cred.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/zio_compress.h> 52 #include <sys/zio_priority.h> 53 54 #ifdef __cplusplus 55 extern "C" { 56 #endif 57 58 struct uio; 59 struct xuio; 60 struct page; 61 struct vnode; 62 struct spa; 63 struct zilog; 64 struct zio; 65 struct blkptr; 66 struct zap_cursor; 67 struct dsl_dataset; 68 struct dsl_pool; 69 struct dnode; 70 struct drr_begin; 71 struct drr_end; 72 struct zbookmark_phys; 73 struct spa; 74 struct nvlist; 75 struct arc_buf; 76 struct zio_prop; 77 struct sa_handle; 78 struct locked_range; 79 80 typedef struct objset objset_t; 81 typedef struct dmu_tx dmu_tx_t; 82 typedef struct dsl_dir dsl_dir_t; 83 typedef struct dnode dnode_t; 84 85 typedef enum dmu_object_byteswap { 86 DMU_BSWAP_UINT8, 87 DMU_BSWAP_UINT16, 88 DMU_BSWAP_UINT32, 89 DMU_BSWAP_UINT64, 90 DMU_BSWAP_ZAP, 91 DMU_BSWAP_DNODE, 92 DMU_BSWAP_OBJSET, 93 DMU_BSWAP_ZNODE, 94 DMU_BSWAP_OLDACL, 95 DMU_BSWAP_ACL, 96 /* 97 * Allocating a new byteswap type number makes the on-disk format 98 * incompatible with any other format that uses the same number. 99 * 100 * Data can usually be structured to work with one of the 101 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types. 102 */ 103 DMU_BSWAP_NUMFUNCS 104 } dmu_object_byteswap_t; 105 106 #define DMU_OT_NEWTYPE 0x80 107 #define DMU_OT_METADATA 0x40 108 #define DMU_OT_BYTESWAP_MASK 0x3f 109 110 /* 111 * Defines a uint8_t object type. Object types specify if the data 112 * in the object is metadata (boolean) and how to byteswap the data 113 * (dmu_object_byteswap_t). All of the types created by this method 114 * are cached in the dbuf metadata cache. 115 */ 116 #define DMU_OT(byteswap, metadata) \ 117 (DMU_OT_NEWTYPE | \ 118 ((metadata) ? DMU_OT_METADATA : 0) | \ 119 ((byteswap) & DMU_OT_BYTESWAP_MASK)) 120 121 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 122 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \ 123 (ot) < DMU_OT_NUMTYPES) 124 125 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 126 ((ot) & DMU_OT_METADATA) : \ 127 dmu_ot[(ot)].ot_metadata) 128 129 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 130 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache) 131 132 /* 133 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't 134 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill 135 * is repurposed for embedded BPs. 136 */ 137 #define DMU_OT_HAS_FILL(ot) \ 138 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET) 139 140 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \ 141 ((ot) & DMU_OT_BYTESWAP_MASK) : \ 142 dmu_ot[(ot)].ot_byteswap) 143 144 typedef enum dmu_object_type { 145 DMU_OT_NONE, 146 /* general: */ 147 DMU_OT_OBJECT_DIRECTORY, /* ZAP */ 148 DMU_OT_OBJECT_ARRAY, /* UINT64 */ 149 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */ 150 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */ 151 DMU_OT_BPOBJ, /* UINT64 */ 152 DMU_OT_BPOBJ_HDR, /* UINT64 */ 153 /* spa: */ 154 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */ 155 DMU_OT_SPACE_MAP, /* UINT64 */ 156 /* zil: */ 157 DMU_OT_INTENT_LOG, /* UINT64 */ 158 /* dmu: */ 159 DMU_OT_DNODE, /* DNODE */ 160 DMU_OT_OBJSET, /* OBJSET */ 161 /* dsl: */ 162 DMU_OT_DSL_DIR, /* UINT64 */ 163 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */ 164 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */ 165 DMU_OT_DSL_PROPS, /* ZAP */ 166 DMU_OT_DSL_DATASET, /* UINT64 */ 167 /* zpl: */ 168 DMU_OT_ZNODE, /* ZNODE */ 169 DMU_OT_OLDACL, /* Old ACL */ 170 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */ 171 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */ 172 DMU_OT_MASTER_NODE, /* ZAP */ 173 DMU_OT_UNLINKED_SET, /* ZAP */ 174 /* zvol: */ 175 DMU_OT_ZVOL, /* UINT8 */ 176 DMU_OT_ZVOL_PROP, /* ZAP */ 177 /* other; for testing only! */ 178 DMU_OT_PLAIN_OTHER, /* UINT8 */ 179 DMU_OT_UINT64_OTHER, /* UINT64 */ 180 DMU_OT_ZAP_OTHER, /* ZAP */ 181 /* new object types: */ 182 DMU_OT_ERROR_LOG, /* ZAP */ 183 DMU_OT_SPA_HISTORY, /* UINT8 */ 184 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */ 185 DMU_OT_POOL_PROPS, /* ZAP */ 186 DMU_OT_DSL_PERMS, /* ZAP */ 187 DMU_OT_ACL, /* ACL */ 188 DMU_OT_SYSACL, /* SYSACL */ 189 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */ 190 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */ 191 DMU_OT_NEXT_CLONES, /* ZAP */ 192 DMU_OT_SCAN_QUEUE, /* ZAP */ 193 DMU_OT_USERGROUP_USED, /* ZAP */ 194 DMU_OT_USERGROUP_QUOTA, /* ZAP */ 195 DMU_OT_USERREFS, /* ZAP */ 196 DMU_OT_DDT_ZAP, /* ZAP */ 197 DMU_OT_DDT_STATS, /* ZAP */ 198 DMU_OT_SA, /* System attr */ 199 DMU_OT_SA_MASTER_NODE, /* ZAP */ 200 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */ 201 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */ 202 DMU_OT_SCAN_XLATE, /* ZAP */ 203 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */ 204 DMU_OT_DEADLIST, /* ZAP */ 205 DMU_OT_DEADLIST_HDR, /* UINT64 */ 206 DMU_OT_DSL_CLONES, /* ZAP */ 207 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */ 208 /* 209 * Do not allocate new object types here. Doing so makes the on-disk 210 * format incompatible with any other format that uses the same object 211 * type number. 212 * 213 * When creating an object which does not have one of the above types 214 * use the DMU_OTN_* type with the correct byteswap and metadata 215 * values. 216 * 217 * The DMU_OTN_* types do not have entries in the dmu_ot table, 218 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead 219 * of indexing into dmu_ot directly (this works for both DMU_OT_* types 220 * and DMU_OTN_* types). 221 */ 222 DMU_OT_NUMTYPES, 223 224 /* 225 * Names for valid types declared with DMU_OT(). 226 */ 227 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE), 228 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE), 229 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE), 230 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE), 231 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE), 232 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE), 233 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE), 234 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE), 235 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE), 236 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE), 237 } dmu_object_type_t; 238 239 /* 240 * These flags are intended to be used to specify the "txg_how" 241 * parameter when calling the dmu_tx_assign() function. See the comment 242 * above dmu_tx_assign() for more details on the meaning of these flags. 243 */ 244 #define TXG_NOWAIT (0ULL) 245 #define TXG_WAIT (1ULL<<0) 246 #define TXG_NOTHROTTLE (1ULL<<1) 247 248 void byteswap_uint64_array(void *buf, size_t size); 249 void byteswap_uint32_array(void *buf, size_t size); 250 void byteswap_uint16_array(void *buf, size_t size); 251 void byteswap_uint8_array(void *buf, size_t size); 252 void zap_byteswap(void *buf, size_t size); 253 void zfs_oldacl_byteswap(void *buf, size_t size); 254 void zfs_acl_byteswap(void *buf, size_t size); 255 void zfs_znode_byteswap(void *buf, size_t size); 256 257 #define DS_FIND_SNAPSHOTS (1<<0) 258 #define DS_FIND_CHILDREN (1<<1) 259 #define DS_FIND_SERIALIZE (1<<2) 260 261 /* 262 * The maximum number of bytes that can be accessed as part of one 263 * operation, including metadata. 264 */ 265 #define DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */ 266 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */ 267 268 #define DMU_USERUSED_OBJECT (-1ULL) 269 #define DMU_GROUPUSED_OBJECT (-2ULL) 270 271 /* 272 * artificial blkids for bonus buffer and spill blocks 273 */ 274 #define DMU_BONUS_BLKID (-1ULL) 275 #define DMU_SPILL_BLKID (-2ULL) 276 /* 277 * Public routines to create, destroy, open, and close objsets. 278 */ 279 int dmu_objset_hold(const char *name, void *tag, objset_t **osp); 280 int dmu_objset_own(const char *name, dmu_objset_type_t type, 281 boolean_t readonly, void *tag, objset_t **osp); 282 void dmu_objset_rele(objset_t *os, void *tag); 283 void dmu_objset_disown(objset_t *os, void *tag); 284 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp); 285 286 void dmu_objset_evict_dbufs(objset_t *os); 287 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags, 288 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg); 289 int dmu_objset_clone(const char *name, const char *origin); 290 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer, 291 struct nvlist *errlist); 292 int dmu_objset_snapshot_one(const char *fsname, const char *snapname); 293 int dmu_objset_snapshot_tmp(const char *, const char *, int); 294 int dmu_objset_find(char *name, int func(const char *, void *), void *arg, 295 int flags); 296 void dmu_objset_byteswap(void *buf, size_t size); 297 int dsl_dataset_rename_snapshot(const char *fsname, 298 const char *oldsnapname, const char *newsnapname, boolean_t recursive); 299 int dmu_objset_remap_indirects(const char *fsname); 300 301 typedef struct dmu_buf { 302 uint64_t db_object; /* object that this buffer is part of */ 303 uint64_t db_offset; /* byte offset in this object */ 304 uint64_t db_size; /* size of buffer in bytes */ 305 void *db_data; /* data in buffer */ 306 } dmu_buf_t; 307 308 /* 309 * The names of zap entries in the DIRECTORY_OBJECT of the MOS. 310 */ 311 #define DMU_POOL_DIRECTORY_OBJECT 1 312 #define DMU_POOL_CONFIG "config" 313 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write" 314 #define DMU_POOL_FEATURES_FOR_READ "features_for_read" 315 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions" 316 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg" 317 #define DMU_POOL_ROOT_DATASET "root_dataset" 318 #define DMU_POOL_SYNC_BPOBJ "sync_bplist" 319 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub" 320 #define DMU_POOL_ERRLOG_LAST "errlog_last" 321 #define DMU_POOL_SPARES "spares" 322 #define DMU_POOL_DEFLATE "deflate" 323 #define DMU_POOL_HISTORY "history" 324 #define DMU_POOL_PROPS "pool_props" 325 #define DMU_POOL_L2CACHE "l2cache" 326 #define DMU_POOL_TMP_USERREFS "tmp_userrefs" 327 #define DMU_POOL_DDT "DDT-%s-%s-%s" 328 #define DMU_POOL_DDT_STATS "DDT-statistics" 329 #define DMU_POOL_CREATION_VERSION "creation_version" 330 #define DMU_POOL_SCAN "scan" 331 #define DMU_POOL_FREE_BPOBJ "free_bpobj" 332 #define DMU_POOL_BPTREE_OBJ "bptree_obj" 333 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj" 334 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt" 335 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map" 336 #define DMU_POOL_REMOVING "com.delphix:removing" 337 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj" 338 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect" 339 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint" 340 341 /* 342 * Allocate an object from this objset. The range of object numbers 343 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode. 344 * 345 * The transaction must be assigned to a txg. The newly allocated 346 * object will be "held" in the transaction (ie. you can modify the 347 * newly allocated object in this transaction). 348 * 349 * dmu_object_alloc() chooses an object and returns it in *objectp. 350 * 351 * dmu_object_claim() allocates a specific object number. If that 352 * number is already allocated, it fails and returns EEXIST. 353 * 354 * Return 0 on success, or ENOSPC or EEXIST as specified above. 355 */ 356 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot, 357 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 358 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize, 359 int indirect_blockshift, 360 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 361 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, 362 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 363 int dnodesize, dmu_tx_t *tx); 364 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot, 365 int blocksize, dmu_object_type_t bonus_type, int bonus_len, 366 int dnodesize, dmu_tx_t *tx); 367 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, 368 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype, 369 int bonuslen, int dnodesize, dmu_tx_t *txp); 370 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot, 371 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx); 372 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot, 373 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp); 374 375 /* 376 * Free an object from this objset. 377 * 378 * The object's data will be freed as well (ie. you don't need to call 379 * dmu_free(object, 0, -1, tx)). 380 * 381 * The object need not be held in the transaction. 382 * 383 * If there are any holds on this object's buffers (via dmu_buf_hold()), 384 * or tx holds on the object (via dmu_tx_hold_object()), you can not 385 * free it; it fails and returns EBUSY. 386 * 387 * If the object is not allocated, it fails and returns ENOENT. 388 * 389 * Return 0 on success, or EBUSY or ENOENT as specified above. 390 */ 391 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx); 392 393 /* 394 * Find the next allocated or free object. 395 * 396 * The objectp parameter is in-out. It will be updated to be the next 397 * object which is allocated. Ignore objects which have not been 398 * modified since txg. 399 * 400 * XXX Can only be called on a objset with no dirty data. 401 * 402 * Returns 0 on success, or ENOENT if there are no more objects. 403 */ 404 int dmu_object_next(objset_t *os, uint64_t *objectp, 405 boolean_t hole, uint64_t txg); 406 407 /* 408 * Set the data blocksize for an object. 409 * 410 * The object cannot have any blocks allcated beyond the first. If 411 * the first block is allocated already, the new size must be greater 412 * than the current block size. If these conditions are not met, 413 * ENOTSUP will be returned. 414 * 415 * Returns 0 on success, or EBUSY if there are any holds on the object 416 * contents, or ENOTSUP as described above. 417 */ 418 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, 419 int ibs, dmu_tx_t *tx); 420 421 /* 422 * Set the checksum property on a dnode. The new checksum algorithm will 423 * apply to all newly written blocks; existing blocks will not be affected. 424 */ 425 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 426 dmu_tx_t *tx); 427 428 /* 429 * Set the compress property on a dnode. The new compression algorithm will 430 * apply to all newly written blocks; existing blocks will not be affected. 431 */ 432 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 433 dmu_tx_t *tx); 434 435 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg); 436 437 void 438 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 439 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 440 int compressed_size, int byteorder, dmu_tx_t *tx); 441 442 /* 443 * Decide how to write a block: checksum, compression, number of copies, etc. 444 */ 445 #define WP_NOFILL 0x1 446 #define WP_DMU_SYNC 0x2 447 #define WP_SPILL 0x4 448 449 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, 450 struct zio_prop *zp); 451 /* 452 * The bonus data is accessed more or less like a regular buffer. 453 * You must dmu_bonus_hold() to get the buffer, which will give you a 454 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus 455 * data. As with any normal buffer, you must call dmu_buf_will_dirty() 456 * before modifying it, and the 457 * object must be held in an assigned transaction before calling 458 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus 459 * buffer as well. You must release your hold with dmu_buf_rele(). 460 * 461 * Returns ENOENT, EIO, or 0. 462 */ 463 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **); 464 int dmu_bonus_max(void); 465 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *); 466 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *); 467 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *); 468 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *); 469 470 /* 471 * Special spill buffer support used by "SA" framework 472 */ 473 474 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 475 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, 476 void *tag, dmu_buf_t **dbp); 477 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp); 478 479 /* 480 * Obtain the DMU buffer from the specified object which contains the 481 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so 482 * that it will remain in memory. You must release the hold with 483 * dmu_buf_rele(). You musn't access the dmu_buf_t after releasing your 484 * hold. You must have a hold on any dmu_buf_t* you pass to the DMU. 485 * 486 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill 487 * on the returned buffer before reading or writing the buffer's 488 * db_data. The comments for those routines describe what particular 489 * operations are valid after calling them. 490 * 491 * The object number must be a valid, allocated object number. 492 */ 493 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 494 void *tag, dmu_buf_t **, int flags); 495 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 496 void *tag, dmu_buf_t **dbp, int flags); 497 498 /* 499 * Add a reference to a dmu buffer that has already been held via 500 * dmu_buf_hold() in the current context. 501 */ 502 void dmu_buf_add_ref(dmu_buf_t *db, void* tag); 503 504 /* 505 * Attempt to add a reference to a dmu buffer that is in an unknown state, 506 * using a pointer that may have been invalidated by eviction processing. 507 * The request will succeed if the passed in dbuf still represents the 508 * same os/object/blkid, is ineligible for eviction, and has at least 509 * one hold by a user other than the syncer. 510 */ 511 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object, 512 uint64_t blkid, void *tag); 513 514 void dmu_buf_rele(dmu_buf_t *db, void *tag); 515 uint64_t dmu_buf_refcount(dmu_buf_t *db); 516 517 /* 518 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a 519 * range of an object. A pointer to an array of dmu_buf_t*'s is 520 * returned (in *dbpp). 521 * 522 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and 523 * frees the array. The hold on the array of buffers MUST be released 524 * with dmu_buf_rele_array. You can NOT release the hold on each buffer 525 * individually with dmu_buf_rele. 526 */ 527 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 528 uint64_t length, boolean_t read, void *tag, 529 int *numbufsp, dmu_buf_t ***dbpp); 530 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 531 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, 532 uint32_t flags); 533 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag); 534 535 typedef void dmu_buf_evict_func_t(void *user_ptr); 536 537 /* 538 * A DMU buffer user object may be associated with a dbuf for the 539 * duration of its lifetime. This allows the user of a dbuf (client) 540 * to attach private data to a dbuf (e.g. in-core only data such as a 541 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified 542 * when that dbuf has been evicted. Clients typically respond to the 543 * eviction notification by freeing their private data, thus ensuring 544 * the same lifetime for both dbuf and private data. 545 * 546 * The mapping from a dmu_buf_user_t to any client private data is the 547 * client's responsibility. All current consumers of the API with private 548 * data embed a dmu_buf_user_t as the first member of the structure for 549 * their private data. This allows conversions between the two types 550 * with a simple cast. Since the DMU buf user API never needs access 551 * to the private data, other strategies can be employed if necessary 552 * or convenient for the client (e.g. using __containerof() to do the 553 * conversion for private data that cannot have the dmu_buf_user_t as 554 * its first member). 555 * 556 * Eviction callbacks are executed without the dbuf mutex held or any 557 * other type of mechanism to guarantee that the dbuf is still available. 558 * For this reason, users must assume the dbuf has already been freed 559 * and not reference the dbuf from the callback context. 560 * 561 * Users requesting "immediate eviction" are notified as soon as the dbuf 562 * is only referenced by dirty records (dirties == holds). Otherwise the 563 * notification occurs after eviction processing for the dbuf begins. 564 */ 565 typedef struct dmu_buf_user { 566 /* 567 * Asynchronous user eviction callback state. 568 */ 569 taskq_ent_t dbu_tqent; 570 571 /* 572 * This instance's eviction function pointers. 573 * 574 * dbu_evict_func_sync is called synchronously and then 575 * dbu_evict_func_async is executed asynchronously on a taskq. 576 */ 577 dmu_buf_evict_func_t *dbu_evict_func_sync; 578 dmu_buf_evict_func_t *dbu_evict_func_async; 579 #ifdef ZFS_DEBUG 580 /* 581 * Pointer to user's dbuf pointer. NULL for clients that do 582 * not associate a dbuf with their user data. 583 * 584 * The dbuf pointer is cleared upon eviction so as to catch 585 * use-after-evict bugs in clients. 586 */ 587 dmu_buf_t **dbu_clear_on_evict_dbufp; 588 #endif 589 } dmu_buf_user_t; 590 591 /* 592 * Initialize the given dmu_buf_user_t instance with the eviction function 593 * evict_func, to be called when the user is evicted. 594 * 595 * NOTE: This function should only be called once on a given dmu_buf_user_t. 596 * To allow enforcement of this, dbu must already be zeroed on entry. 597 */ 598 /*ARGSUSED*/ 599 inline void 600 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync, 601 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp) 602 { 603 ASSERT(dbu->dbu_evict_func_sync == NULL); 604 ASSERT(dbu->dbu_evict_func_async == NULL); 605 606 /* must have at least one evict func */ 607 IMPLY(evict_func_sync == NULL, evict_func_async != NULL); 608 dbu->dbu_evict_func_sync = evict_func_sync; 609 dbu->dbu_evict_func_async = evict_func_async; 610 #ifdef ZFS_DEBUG 611 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp; 612 #endif 613 } 614 615 /* 616 * Attach user data to a dbuf and mark it for normal (when the dbuf's 617 * data is cleared or its reference count goes to zero) eviction processing. 618 * 619 * Returns NULL on success, or the existing user if another user currently 620 * owns the buffer. 621 */ 622 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user); 623 624 /* 625 * Attach user data to a dbuf and mark it for immediate (its dirty and 626 * reference counts are equal) eviction processing. 627 * 628 * Returns NULL on success, or the existing user if another user currently 629 * owns the buffer. 630 */ 631 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user); 632 633 /* 634 * Replace the current user of a dbuf. 635 * 636 * If given the current user of a dbuf, replaces the dbuf's user with 637 * "new_user" and returns the user data pointer that was replaced. 638 * Otherwise returns the current, and unmodified, dbuf user pointer. 639 */ 640 void *dmu_buf_replace_user(dmu_buf_t *db, 641 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user); 642 643 /* 644 * Remove the specified user data for a DMU buffer. 645 * 646 * Returns the user that was removed on success, or the current user if 647 * another user currently owns the buffer. 648 */ 649 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user); 650 651 /* 652 * Returns the user data (dmu_buf_user_t *) associated with this dbuf. 653 */ 654 void *dmu_buf_get_user(dmu_buf_t *db); 655 656 objset_t *dmu_buf_get_objset(dmu_buf_t *db); 657 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db); 658 void dmu_buf_dnode_exit(dmu_buf_t *db); 659 660 /* Block until any in-progress dmu buf user evictions complete. */ 661 void dmu_buf_user_evict_wait(void); 662 663 /* 664 * Returns the blkptr associated with this dbuf, or NULL if not set. 665 */ 666 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db); 667 668 /* 669 * Indicate that you are going to modify the buffer's data (db_data). 670 * 671 * The transaction (tx) must be assigned to a txg (ie. you've called 672 * dmu_tx_assign()). The buffer's object must be held in the tx 673 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)). 674 */ 675 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx); 676 677 /* 678 * You must create a transaction, then hold the objects which you will 679 * (or might) modify as part of this transaction. Then you must assign 680 * the transaction to a transaction group. Once the transaction has 681 * been assigned, you can modify buffers which belong to held objects as 682 * part of this transaction. You can't modify buffers before the 683 * transaction has been assigned; you can't modify buffers which don't 684 * belong to objects which this transaction holds; you can't hold 685 * objects once the transaction has been assigned. You may hold an 686 * object which you are going to free (with dmu_object_free()), but you 687 * don't have to. 688 * 689 * You can abort the transaction before it has been assigned. 690 * 691 * Note that you may hold buffers (with dmu_buf_hold) at any time, 692 * regardless of transaction state. 693 */ 694 695 #define DMU_NEW_OBJECT (-1ULL) 696 #define DMU_OBJECT_END (-1ULL) 697 698 dmu_tx_t *dmu_tx_create(objset_t *os); 699 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len); 700 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 701 int len); 702 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, 703 uint64_t len); 704 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, 705 uint64_t len); 706 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object); 707 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name); 708 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, 709 const char *name); 710 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object); 711 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn); 712 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object); 713 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow); 714 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size); 715 void dmu_tx_abort(dmu_tx_t *tx); 716 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how); 717 void dmu_tx_wait(dmu_tx_t *tx); 718 void dmu_tx_commit(dmu_tx_t *tx); 719 void dmu_tx_mark_netfree(dmu_tx_t *tx); 720 721 /* 722 * To register a commit callback, dmu_tx_callback_register() must be called. 723 * 724 * dcb_data is a pointer to caller private data that is passed on as a 725 * callback parameter. The caller is responsible for properly allocating and 726 * freeing it. 727 * 728 * When registering a callback, the transaction must be already created, but 729 * it cannot be committed or aborted. It can be assigned to a txg or not. 730 * 731 * The callback will be called after the transaction has been safely written 732 * to stable storage and will also be called if the dmu_tx is aborted. 733 * If there is any error which prevents the transaction from being committed to 734 * disk, the callback will be called with a value of error != 0. 735 */ 736 typedef void dmu_tx_callback_func_t(void *dcb_data, int error); 737 738 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func, 739 void *dcb_data); 740 741 /* 742 * Free up the data blocks for a defined range of a file. If size is 743 * -1, the range from offset to end-of-file is freed. 744 */ 745 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 746 uint64_t size, dmu_tx_t *tx); 747 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset, 748 uint64_t size); 749 int dmu_free_long_object(objset_t *os, uint64_t object); 750 751 /* 752 * Convenience functions. 753 * 754 * Canfail routines will return 0 on success, or an errno if there is a 755 * nonrecoverable I/O error. 756 */ 757 #define DMU_READ_PREFETCH 0 /* prefetch */ 758 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */ 759 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 760 void *buf, uint32_t flags); 761 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 762 uint32_t flags); 763 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 764 const void *buf, dmu_tx_t *tx); 765 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 766 const void *buf, dmu_tx_t *tx); 767 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 768 dmu_tx_t *tx); 769 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size); 770 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size); 771 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size); 772 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size, 773 dmu_tx_t *tx); 774 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size, 775 dmu_tx_t *tx); 776 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size, 777 dmu_tx_t *tx); 778 int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, 779 uint64_t size, struct page *pp, dmu_tx_t *tx); 780 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size); 781 void dmu_return_arcbuf(struct arc_buf *buf); 782 void dmu_assign_arcbuf_dnode(dnode_t *handle, uint64_t offset, 783 struct arc_buf *buf, dmu_tx_t *tx); 784 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf, 785 dmu_tx_t *tx); 786 int dmu_xuio_init(struct xuio *uio, int niov); 787 void dmu_xuio_fini(struct xuio *uio); 788 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off, 789 size_t n); 790 int dmu_xuio_cnt(struct xuio *uio); 791 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i); 792 void dmu_xuio_clear(struct xuio *uio, int i); 793 void xuio_stat_wbuf_copied(void); 794 void xuio_stat_wbuf_nocopy(void); 795 796 extern boolean_t zfs_prefetch_disable; 797 extern int zfs_max_recordsize; 798 799 /* 800 * Asynchronously try to read in the data. 801 */ 802 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 803 uint64_t len, enum zio_priority pri); 804 805 typedef struct dmu_object_info { 806 /* All sizes are in bytes unless otherwise indicated. */ 807 uint32_t doi_data_block_size; 808 uint32_t doi_metadata_block_size; 809 dmu_object_type_t doi_type; 810 dmu_object_type_t doi_bonus_type; 811 uint64_t doi_bonus_size; 812 uint8_t doi_indirection; /* 2 = dnode->indirect->data */ 813 uint8_t doi_checksum; 814 uint8_t doi_compress; 815 uint8_t doi_nblkptr; 816 int8_t doi_pad[4]; 817 uint64_t doi_dnodesize; 818 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */ 819 uint64_t doi_max_offset; 820 uint64_t doi_fill_count; /* number of non-empty blocks */ 821 } dmu_object_info_t; 822 823 typedef void arc_byteswap_func_t(void *buf, size_t size); 824 825 typedef struct dmu_object_type_info { 826 dmu_object_byteswap_t ot_byteswap; 827 boolean_t ot_metadata; 828 boolean_t ot_dbuf_metadata_cache; 829 char *ot_name; 830 } dmu_object_type_info_t; 831 832 typedef struct dmu_object_byteswap_info { 833 arc_byteswap_func_t *ob_func; 834 char *ob_name; 835 } dmu_object_byteswap_info_t; 836 837 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES]; 838 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS]; 839 840 /* 841 * Get information on a DMU object. 842 * 843 * Return 0 on success or ENOENT if object is not allocated. 844 * 845 * If doi is NULL, just indicates whether the object exists. 846 */ 847 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi); 848 /* Like dmu_object_info, but faster if you have a held dnode in hand. */ 849 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi); 850 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */ 851 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi); 852 /* 853 * Like dmu_object_info_from_db, but faster still when you only care about 854 * the size. This is specifically optimized for zfs_getattr(). 855 */ 856 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, 857 u_longlong_t *nblk512); 858 859 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize); 860 861 typedef struct dmu_objset_stats { 862 uint64_t dds_num_clones; /* number of clones of this */ 863 uint64_t dds_creation_txg; 864 uint64_t dds_guid; 865 dmu_objset_type_t dds_type; 866 uint8_t dds_is_snapshot; 867 uint8_t dds_inconsistent; 868 char dds_origin[ZFS_MAX_DATASET_NAME_LEN]; 869 } dmu_objset_stats_t; 870 871 /* 872 * Get stats on a dataset. 873 */ 874 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat); 875 876 /* 877 * Add entries to the nvlist for all the objset's properties. See 878 * zfs_prop_table[] and zfs(1m) for details on the properties. 879 */ 880 void dmu_objset_stats(objset_t *os, struct nvlist *nv); 881 882 /* 883 * Get the space usage statistics for statvfs(). 884 * 885 * refdbytes is the amount of space "referenced" by this objset. 886 * availbytes is the amount of space available to this objset, taking 887 * into account quotas & reservations, assuming that no other objsets 888 * use the space first. These values correspond to the 'referenced' and 889 * 'available' properties, described in the zfs(1m) manpage. 890 * 891 * usedobjs and availobjs are the number of objects currently allocated, 892 * and available. 893 */ 894 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp, 895 uint64_t *usedobjsp, uint64_t *availobjsp); 896 897 /* 898 * The fsid_guid is a 56-bit ID that can change to avoid collisions. 899 * (Contrast with the ds_guid which is a 64-bit ID that will never 900 * change, so there is a small probability that it will collide.) 901 */ 902 uint64_t dmu_objset_fsid_guid(objset_t *os); 903 904 /* 905 * Get the [cm]time for an objset's snapshot dir 906 */ 907 timestruc_t dmu_objset_snap_cmtime(objset_t *os); 908 909 int dmu_objset_is_snapshot(objset_t *os); 910 911 extern struct spa *dmu_objset_spa(objset_t *os); 912 extern struct zilog *dmu_objset_zil(objset_t *os); 913 extern struct dsl_pool *dmu_objset_pool(objset_t *os); 914 extern struct dsl_dataset *dmu_objset_ds(objset_t *os); 915 extern void dmu_objset_name(objset_t *os, char *buf); 916 extern dmu_objset_type_t dmu_objset_type(objset_t *os); 917 extern uint64_t dmu_objset_id(objset_t *os); 918 extern uint64_t dmu_objset_dnodesize(objset_t *os); 919 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os); 920 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os); 921 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name, 922 uint64_t *id, uint64_t *offp, boolean_t *case_conflict); 923 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real, 924 int maxlen, boolean_t *conflict); 925 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name, 926 uint64_t *idp, uint64_t *offp); 927 928 typedef int objset_used_cb_t(dmu_object_type_t bonustype, 929 void *bonus, uint64_t *userp, uint64_t *groupp); 930 extern void dmu_objset_register_type(dmu_objset_type_t ost, 931 objset_used_cb_t *cb); 932 extern void dmu_objset_set_user(objset_t *os, void *user_ptr); 933 extern void *dmu_objset_get_user(objset_t *os); 934 935 /* 936 * Return the txg number for the given assigned transaction. 937 */ 938 uint64_t dmu_tx_get_txg(dmu_tx_t *tx); 939 940 /* 941 * Synchronous write. 942 * If a parent zio is provided this function initiates a write on the 943 * provided buffer as a child of the parent zio. 944 * In the absence of a parent zio, the write is completed synchronously. 945 * At write completion, blk is filled with the bp of the written block. 946 * Note that while the data covered by this function will be on stable 947 * storage when the write completes this new data does not become a 948 * permanent part of the file until the associated transaction commits. 949 */ 950 951 /* 952 * {zfs,zvol,ztest}_get_done() args 953 */ 954 typedef struct zgd { 955 struct lwb *zgd_lwb; 956 struct blkptr *zgd_bp; 957 dmu_buf_t *zgd_db; 958 struct locked_range *zgd_lr; 959 void *zgd_private; 960 } zgd_t; 961 962 typedef void dmu_sync_cb_t(zgd_t *arg, int error); 963 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd); 964 965 /* 966 * Find the next hole or data block in file starting at *off 967 * Return found offset in *off. Return ESRCH for end of file. 968 */ 969 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, 970 uint64_t *off); 971 972 /* 973 * Check if a DMU object has any dirty blocks. If so, sync out 974 * all pending transaction groups. Otherwise, this function 975 * does not alter DMU state. This could be improved to only sync 976 * out the necessary transaction groups for this particular 977 * object. 978 */ 979 int dmu_object_wait_synced(objset_t *os, uint64_t object); 980 981 /* 982 * Initial setup and final teardown. 983 */ 984 extern void dmu_init(void); 985 extern void dmu_fini(void); 986 987 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp, 988 uint64_t object, uint64_t offset, int len); 989 void dmu_traverse_objset(objset_t *os, uint64_t txg_start, 990 dmu_traverse_cb_t cb, void *arg); 991 992 int dmu_diff(const char *tosnap_name, const char *fromsnap_name, 993 struct vnode *vp, offset_t *offp); 994 995 /* CRC64 table */ 996 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ 997 extern uint64_t zfs_crc64_table[256]; 998 999 extern int zfs_mdcomp_disable; 1000 1001 #ifdef __cplusplus 1002 } 1003 #endif 1004 1005 #endif /* _SYS_DMU_H */ 1006