1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dnode.h> 34 #include <sys/dsl_pool.h> 35 #include <sys/zio.h> 36 #include <sys/space_map.h> 37 #include <sys/refcount.h> 38 #include <sys/zfeature.h> 39 40 /* 41 * Note on space map block size: 42 * 43 * The data for a given space map can be kept on blocks of any size. 44 * Larger blocks entail fewer I/O operations, but they also cause the 45 * DMU to keep more data in-core, and also to waste more I/O bandwidth 46 * when only a few blocks have changed since the last transaction group. 47 */ 48 49 /* 50 * Enabled whenever we want to stress test the use of double-word 51 * space map entries. 52 */ 53 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE; 54 55 /* 56 * Override the default indirect block size of 128K, instead using 16K for 57 * spacemaps (2^14 bytes). This dramatically reduces write inflation since 58 * appending to a spacemap typically has to write one data block (4KB) and one 59 * or two indirect blocks (16K-32K, rather than 128K). 60 */ 61 int space_map_ibs = 14; 62 63 boolean_t 64 sm_entry_is_debug(uint64_t e) 65 { 66 return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX); 67 } 68 69 boolean_t 70 sm_entry_is_single_word(uint64_t e) 71 { 72 uint8_t prefix = SM_PREFIX_DECODE(e); 73 return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX); 74 } 75 76 boolean_t 77 sm_entry_is_double_word(uint64_t e) 78 { 79 return (SM_PREFIX_DECODE(e) == SM2_PREFIX); 80 } 81 82 /* 83 * Iterate through the space map, invoking the callback on each (non-debug) 84 * space map entry. 85 */ 86 int 87 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg) 88 { 89 uint64_t sm_len = space_map_length(sm); 90 ASSERT3U(sm->sm_blksz, !=, 0); 91 92 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, sm_len, 93 ZIO_PRIORITY_SYNC_READ); 94 95 uint64_t blksz = sm->sm_blksz; 96 int error = 0; 97 for (uint64_t block_base = 0; block_base < sm_len && error == 0; 98 block_base += blksz) { 99 dmu_buf_t *db; 100 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), 101 block_base, FTAG, &db, DMU_READ_PREFETCH); 102 if (error != 0) 103 return (error); 104 105 uint64_t *block_start = db->db_data; 106 uint64_t block_length = MIN(sm_len - block_base, blksz); 107 uint64_t *block_end = block_start + 108 (block_length / sizeof (uint64_t)); 109 110 VERIFY0(P2PHASE(block_length, sizeof (uint64_t))); 111 VERIFY3U(block_length, !=, 0); 112 ASSERT3U(blksz, ==, db->db_size); 113 114 for (uint64_t *block_cursor = block_start; 115 block_cursor < block_end && error == 0; block_cursor++) { 116 uint64_t e = *block_cursor; 117 118 if (sm_entry_is_debug(e)) /* Skip debug entries */ 119 continue; 120 121 uint64_t raw_offset, raw_run, vdev_id; 122 maptype_t type; 123 if (sm_entry_is_single_word(e)) { 124 type = SM_TYPE_DECODE(e); 125 vdev_id = SM_NO_VDEVID; 126 raw_offset = SM_OFFSET_DECODE(e); 127 raw_run = SM_RUN_DECODE(e); 128 } else { 129 /* it is a two-word entry */ 130 ASSERT(sm_entry_is_double_word(e)); 131 raw_run = SM2_RUN_DECODE(e); 132 vdev_id = SM2_VDEV_DECODE(e); 133 134 /* move on to the second word */ 135 block_cursor++; 136 e = *block_cursor; 137 VERIFY3P(block_cursor, <=, block_end); 138 139 type = SM2_TYPE_DECODE(e); 140 raw_offset = SM2_OFFSET_DECODE(e); 141 } 142 143 uint64_t entry_offset = (raw_offset << sm->sm_shift) + 144 sm->sm_start; 145 uint64_t entry_run = raw_run << sm->sm_shift; 146 147 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); 148 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); 149 ASSERT3U(entry_offset, >=, sm->sm_start); 150 ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size); 151 ASSERT3U(entry_run, <=, sm->sm_size); 152 ASSERT3U(entry_offset + entry_run, <=, 153 sm->sm_start + sm->sm_size); 154 155 space_map_entry_t sme = { 156 .sme_type = type, 157 .sme_vdev = vdev_id, 158 .sme_offset = entry_offset, 159 .sme_run = entry_run 160 }; 161 error = callback(&sme, arg); 162 } 163 dmu_buf_rele(db, FTAG); 164 } 165 return (error); 166 } 167 168 /* 169 * Reads the entries from the last block of the space map into 170 * buf in reverse order. Populates nwords with number of words 171 * in the last block. 172 * 173 * Refer to block comment within space_map_incremental_destroy() 174 * to understand why this function is needed. 175 */ 176 static int 177 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf, 178 uint64_t bufsz, uint64_t *nwords) 179 { 180 int error = 0; 181 dmu_buf_t *db; 182 183 /* 184 * Find the offset of the last word in the space map and use 185 * that to read the last block of the space map with 186 * dmu_buf_hold(). 187 */ 188 uint64_t last_word_offset = 189 sm->sm_phys->smp_objsize - sizeof (uint64_t); 190 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset, 191 FTAG, &db, DMU_READ_NO_PREFETCH); 192 if (error != 0) 193 return (error); 194 195 ASSERT3U(sm->sm_object, ==, db->db_object); 196 ASSERT3U(sm->sm_blksz, ==, db->db_size); 197 ASSERT3U(bufsz, >=, db->db_size); 198 ASSERT(nwords != NULL); 199 200 uint64_t *words = db->db_data; 201 *nwords = 202 (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t); 203 204 ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t)); 205 206 uint64_t n = *nwords; 207 uint64_t j = n - 1; 208 for (uint64_t i = 0; i < n; i++) { 209 uint64_t entry = words[i]; 210 if (sm_entry_is_double_word(entry)) { 211 /* 212 * Since we are populating the buffer backwards 213 * we have to be extra careful and add the two 214 * words of the double-word entry in the right 215 * order. 216 */ 217 ASSERT3U(j, >, 0); 218 buf[j - 1] = entry; 219 220 i++; 221 ASSERT3U(i, <, n); 222 entry = words[i]; 223 buf[j] = entry; 224 j -= 2; 225 } else { 226 ASSERT(sm_entry_is_debug(entry) || 227 sm_entry_is_single_word(entry)); 228 buf[j] = entry; 229 j--; 230 } 231 } 232 233 /* 234 * Assert that we wrote backwards all the 235 * way to the beginning of the buffer. 236 */ 237 ASSERT3S(j, ==, -1); 238 239 dmu_buf_rele(db, FTAG); 240 return (error); 241 } 242 243 /* 244 * Note: This function performs destructive actions - specifically 245 * it deletes entries from the end of the space map. Thus, callers 246 * should ensure that they are holding the appropriate locks for 247 * the space map that they provide. 248 */ 249 int 250 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg, 251 dmu_tx_t *tx) 252 { 253 uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE); 254 uint64_t *buf = zio_buf_alloc(bufsz); 255 256 dmu_buf_will_dirty(sm->sm_dbuf, tx); 257 258 /* 259 * Ideally we would want to iterate from the beginning of the 260 * space map to the end in incremental steps. The issue with this 261 * approach is that we don't have any field on-disk that points 262 * us where to start between each step. We could try zeroing out 263 * entries that we've destroyed, but this doesn't work either as 264 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]). 265 * 266 * As a result, we destroy its entries incrementally starting from 267 * the end after applying the callback to each of them. 268 * 269 * The problem with this approach is that we cannot literally 270 * iterate through the words in the space map backwards as we 271 * can't distinguish two-word space map entries from their second 272 * word. Thus we do the following: 273 * 274 * 1] We get all the entries from the last block of the space map 275 * and put them into a buffer in reverse order. This way the 276 * last entry comes first in the buffer, the second to last is 277 * second, etc. 278 * 2] We iterate through the entries in the buffer and we apply 279 * the callback to each one. As we move from entry to entry we 280 * we decrease the size of the space map, deleting effectively 281 * each entry. 282 * 3] If there are no more entries in the space map or the callback 283 * returns a value other than 0, we stop iterating over the 284 * space map. If there are entries remaining and the callback 285 * returned 0, we go back to step [1]. 286 */ 287 int error = 0; 288 while (space_map_length(sm) > 0 && error == 0) { 289 uint64_t nwords = 0; 290 error = space_map_reversed_last_block_entries(sm, buf, bufsz, 291 &nwords); 292 if (error != 0) 293 break; 294 295 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t)); 296 297 for (uint64_t i = 0; i < nwords; i++) { 298 uint64_t e = buf[i]; 299 300 if (sm_entry_is_debug(e)) { 301 sm->sm_phys->smp_objsize -= sizeof (uint64_t); 302 space_map_update(sm); 303 continue; 304 } 305 306 int words = 1; 307 uint64_t raw_offset, raw_run, vdev_id; 308 maptype_t type; 309 if (sm_entry_is_single_word(e)) { 310 type = SM_TYPE_DECODE(e); 311 vdev_id = SM_NO_VDEVID; 312 raw_offset = SM_OFFSET_DECODE(e); 313 raw_run = SM_RUN_DECODE(e); 314 } else { 315 ASSERT(sm_entry_is_double_word(e)); 316 words = 2; 317 318 raw_run = SM2_RUN_DECODE(e); 319 vdev_id = SM2_VDEV_DECODE(e); 320 321 /* move to the second word */ 322 i++; 323 e = buf[i]; 324 325 ASSERT3P(i, <=, nwords); 326 327 type = SM2_TYPE_DECODE(e); 328 raw_offset = SM2_OFFSET_DECODE(e); 329 } 330 331 uint64_t entry_offset = 332 (raw_offset << sm->sm_shift) + sm->sm_start; 333 uint64_t entry_run = raw_run << sm->sm_shift; 334 335 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift)); 336 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift)); 337 VERIFY3U(entry_offset, >=, sm->sm_start); 338 VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size); 339 VERIFY3U(entry_run, <=, sm->sm_size); 340 VERIFY3U(entry_offset + entry_run, <=, 341 sm->sm_start + sm->sm_size); 342 343 space_map_entry_t sme = { 344 .sme_type = type, 345 .sme_vdev = vdev_id, 346 .sme_offset = entry_offset, 347 .sme_run = entry_run 348 }; 349 error = callback(&sme, arg); 350 if (error != 0) 351 break; 352 353 if (type == SM_ALLOC) 354 sm->sm_phys->smp_alloc -= entry_run; 355 else 356 sm->sm_phys->smp_alloc += entry_run; 357 sm->sm_phys->smp_objsize -= words * sizeof (uint64_t); 358 space_map_update(sm); 359 } 360 } 361 362 if (space_map_length(sm) == 0) { 363 ASSERT0(error); 364 ASSERT0(sm->sm_phys->smp_objsize); 365 ASSERT0(sm->sm_alloc); 366 } 367 368 zio_buf_free(buf, bufsz); 369 return (error); 370 } 371 372 typedef struct space_map_load_arg { 373 space_map_t *smla_sm; 374 range_tree_t *smla_rt; 375 maptype_t smla_type; 376 } space_map_load_arg_t; 377 378 static int 379 space_map_load_callback(space_map_entry_t *sme, void *arg) 380 { 381 space_map_load_arg_t *smla = arg; 382 if (sme->sme_type == smla->smla_type) { 383 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=, 384 smla->smla_sm->sm_size); 385 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run); 386 } else { 387 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run); 388 } 389 390 return (0); 391 } 392 393 /* 394 * Load the space map disk into the specified range tree. Segments of maptype 395 * are added to the range tree, other segment types are removed. 396 */ 397 int 398 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype) 399 { 400 uint64_t space; 401 int err; 402 space_map_load_arg_t smla; 403 404 VERIFY0(range_tree_space(rt)); 405 space = space_map_allocated(sm); 406 407 if (maptype == SM_FREE) { 408 range_tree_add(rt, sm->sm_start, sm->sm_size); 409 space = sm->sm_size - space; 410 } 411 412 smla.smla_rt = rt; 413 smla.smla_sm = sm; 414 smla.smla_type = maptype; 415 err = space_map_iterate(sm, space_map_load_callback, &smla); 416 417 if (err == 0) { 418 VERIFY3U(range_tree_space(rt), ==, space); 419 } else { 420 range_tree_vacate(rt, NULL, NULL); 421 } 422 423 return (err); 424 } 425 426 void 427 space_map_histogram_clear(space_map_t *sm) 428 { 429 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 430 return; 431 432 bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram)); 433 } 434 435 boolean_t 436 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt) 437 { 438 /* 439 * Verify that the in-core range tree does not have any 440 * ranges smaller than our sm_shift size. 441 */ 442 for (int i = 0; i < sm->sm_shift; i++) { 443 if (rt->rt_histogram[i] != 0) 444 return (B_FALSE); 445 } 446 return (B_TRUE); 447 } 448 449 void 450 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx) 451 { 452 int idx = 0; 453 454 ASSERT(dmu_tx_is_syncing(tx)); 455 VERIFY3U(space_map_object(sm), !=, 0); 456 457 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) 458 return; 459 460 dmu_buf_will_dirty(sm->sm_dbuf, tx); 461 462 ASSERT(space_map_histogram_verify(sm, rt)); 463 /* 464 * Transfer the content of the range tree histogram to the space 465 * map histogram. The space map histogram contains 32 buckets ranging 466 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree, 467 * however, can represent ranges from 2^0 to 2^63. Since the space 468 * map only cares about allocatable blocks (minimum of sm_shift) we 469 * can safely ignore all ranges in the range tree smaller than sm_shift. 470 */ 471 for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 472 473 /* 474 * Since the largest histogram bucket in the space map is 475 * 2^(32+sm_shift-1), we need to normalize the values in 476 * the range tree for any bucket larger than that size. For 477 * example given an sm_shift of 9, ranges larger than 2^40 478 * would get normalized as if they were 1TB ranges. Assume 479 * the range tree had a count of 5 in the 2^44 (16TB) bucket, 480 * the calculation below would normalize this to 5 * 2^4 (16). 481 */ 482 ASSERT3U(i, >=, idx + sm->sm_shift); 483 sm->sm_phys->smp_histogram[idx] += 484 rt->rt_histogram[i] << (i - idx - sm->sm_shift); 485 486 /* 487 * Increment the space map's index as long as we haven't 488 * reached the maximum bucket size. Accumulate all ranges 489 * larger than the max bucket size into the last bucket. 490 */ 491 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 492 ASSERT3U(idx + sm->sm_shift, ==, i); 493 idx++; 494 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 495 } 496 } 497 } 498 499 static void 500 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx) 501 { 502 dmu_buf_will_dirty(sm->sm_dbuf, tx); 503 504 uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | 505 SM_DEBUG_ACTION_ENCODE(maptype) | 506 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) | 507 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); 508 509 dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_objsize, 510 sizeof (dentry), &dentry, tx); 511 512 sm->sm_phys->smp_objsize += sizeof (dentry); 513 } 514 515 /* 516 * Writes one or more entries given a segment. 517 * 518 * Note: The function may release the dbuf from the pointer initially 519 * passed to it, and return a different dbuf. Also, the space map's 520 * dbuf must be dirty for the changes in sm_phys to take effect. 521 */ 522 static void 523 space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype, 524 uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx) 525 { 526 ASSERT3U(words, !=, 0); 527 ASSERT3U(words, <=, 2); 528 529 /* ensure the vdev_id can be represented by the space map */ 530 ASSERT3U(vdev_id, <=, SM_NO_VDEVID); 531 532 /* 533 * if this is a single word entry, ensure that no vdev was 534 * specified. 535 */ 536 IMPLY(words == 1, vdev_id == SM_NO_VDEVID); 537 538 dmu_buf_t *db = *dbp; 539 ASSERT3U(db->db_size, ==, sm->sm_blksz); 540 541 uint64_t *block_base = db->db_data; 542 uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t)); 543 uint64_t *block_cursor = block_base + 544 (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t); 545 546 ASSERT3P(block_cursor, <=, block_end); 547 548 uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 549 uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift; 550 uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX; 551 552 ASSERT3U(rs->rs_start, >=, sm->sm_start); 553 ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size); 554 ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size); 555 ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size); 556 557 while (size != 0) { 558 ASSERT3P(block_cursor, <=, block_end); 559 560 /* 561 * If we are at the end of this block, flush it and start 562 * writing again from the beginning. 563 */ 564 if (block_cursor == block_end) { 565 dmu_buf_rele(db, tag); 566 567 uint64_t next_word_offset = sm->sm_phys->smp_objsize; 568 VERIFY0(dmu_buf_hold(sm->sm_os, 569 space_map_object(sm), next_word_offset, 570 tag, &db, DMU_READ_PREFETCH)); 571 dmu_buf_will_dirty(db, tx); 572 573 /* update caller's dbuf */ 574 *dbp = db; 575 576 ASSERT3U(db->db_size, ==, sm->sm_blksz); 577 578 block_base = db->db_data; 579 block_cursor = block_base; 580 block_end = block_base + 581 (db->db_size / sizeof (uint64_t)); 582 } 583 584 /* 585 * If we are writing a two-word entry and we only have one 586 * word left on this block, just pad it with an empty debug 587 * entry and write the two-word entry in the next block. 588 */ 589 uint64_t *next_entry = block_cursor + 1; 590 if (next_entry == block_end && words > 1) { 591 ASSERT3U(words, ==, 2); 592 *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) | 593 SM_DEBUG_ACTION_ENCODE(0) | 594 SM_DEBUG_SYNCPASS_ENCODE(0) | 595 SM_DEBUG_TXG_ENCODE(0); 596 block_cursor++; 597 sm->sm_phys->smp_objsize += sizeof (uint64_t); 598 ASSERT3P(block_cursor, ==, block_end); 599 continue; 600 } 601 602 uint64_t run_len = MIN(size, run_max); 603 switch (words) { 604 case 1: 605 *block_cursor = SM_OFFSET_ENCODE(start) | 606 SM_TYPE_ENCODE(maptype) | 607 SM_RUN_ENCODE(run_len); 608 block_cursor++; 609 break; 610 case 2: 611 /* write the first word of the entry */ 612 *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) | 613 SM2_RUN_ENCODE(run_len) | 614 SM2_VDEV_ENCODE(vdev_id); 615 block_cursor++; 616 617 /* move on to the second word of the entry */ 618 ASSERT3P(block_cursor, <, block_end); 619 *block_cursor = SM2_TYPE_ENCODE(maptype) | 620 SM2_OFFSET_ENCODE(start); 621 block_cursor++; 622 break; 623 default: 624 panic("%d-word space map entries are not supported", 625 words); 626 break; 627 } 628 sm->sm_phys->smp_objsize += words * sizeof (uint64_t); 629 630 start += run_len; 631 size -= run_len; 632 } 633 ASSERT0(size); 634 635 } 636 637 /* 638 * Note: The space map's dbuf must be dirty for the changes in sm_phys to 639 * take effect. 640 */ 641 static void 642 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 643 uint64_t vdev_id, dmu_tx_t *tx) 644 { 645 spa_t *spa = tx->tx_pool->dp_spa; 646 dmu_buf_t *db; 647 648 space_map_write_intro_debug(sm, maptype, tx); 649 650 #ifdef DEBUG 651 /* 652 * We do this right after we write the intro debug entry 653 * because the estimate does not take it into account. 654 */ 655 uint64_t initial_objsize = sm->sm_phys->smp_objsize; 656 uint64_t estimated_growth = 657 space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID); 658 uint64_t estimated_final_objsize = initial_objsize + estimated_growth; 659 #endif 660 661 /* 662 * Find the offset right after the last word in the space map 663 * and use that to get a hold of the last block, so we can 664 * start appending to it. 665 */ 666 uint64_t next_word_offset = sm->sm_phys->smp_objsize; 667 VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm), 668 next_word_offset, FTAG, &db, DMU_READ_PREFETCH)); 669 ASSERT3U(db->db_size, ==, sm->sm_blksz); 670 671 dmu_buf_will_dirty(db, tx); 672 673 avl_tree_t *t = &rt->rt_root; 674 for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) { 675 uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift; 676 uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift; 677 uint8_t words = 1; 678 679 /* 680 * We only write two-word entries when both of the following 681 * are true: 682 * 683 * [1] The feature is enabled. 684 * [2] The offset or run is too big for a single-word entry, 685 * or the vdev_id is set (meaning not equal to 686 * SM_NO_VDEVID). 687 * 688 * Note that for purposes of testing we've added the case that 689 * we write two-word entries occasionally when the feature is 690 * enabled and zfs_force_some_double_word_sm_entries has been 691 * set. 692 */ 693 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) && 694 (offset >= (1ULL << SM_OFFSET_BITS) || 695 length > SM_RUN_MAX || 696 vdev_id != SM_NO_VDEVID || 697 (zfs_force_some_double_word_sm_entries && 698 spa_get_random(100) == 0))) 699 words = 2; 700 701 space_map_write_seg(sm, rs, maptype, vdev_id, words, 702 &db, FTAG, tx); 703 } 704 705 dmu_buf_rele(db, FTAG); 706 707 #ifdef DEBUG 708 /* 709 * We expect our estimation to be based on the worst case 710 * scenario [see comment in space_map_estimate_optimal_size()]. 711 * Therefore we expect the actual objsize to be equal or less 712 * than whatever we estimated it to be. 713 */ 714 ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_objsize); 715 #endif 716 } 717 718 /* 719 * Note: This function manipulates the state of the given space map but 720 * does not hold any locks implicitly. Thus the caller is responsible 721 * for synchronizing writes to the space map. 722 */ 723 void 724 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype, 725 uint64_t vdev_id, dmu_tx_t *tx) 726 { 727 objset_t *os = sm->sm_os; 728 729 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 730 VERIFY3U(space_map_object(sm), !=, 0); 731 732 dmu_buf_will_dirty(sm->sm_dbuf, tx); 733 734 /* 735 * This field is no longer necessary since the in-core space map 736 * now contains the object number but is maintained for backwards 737 * compatibility. 738 */ 739 sm->sm_phys->smp_object = sm->sm_object; 740 741 if (range_tree_is_empty(rt)) { 742 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object); 743 return; 744 } 745 746 if (maptype == SM_ALLOC) 747 sm->sm_phys->smp_alloc += range_tree_space(rt); 748 else 749 sm->sm_phys->smp_alloc -= range_tree_space(rt); 750 751 uint64_t nodes = avl_numnodes(&rt->rt_root); 752 uint64_t rt_space = range_tree_space(rt); 753 754 space_map_write_impl(sm, rt, maptype, vdev_id, tx); 755 756 /* 757 * Ensure that the space_map's accounting wasn't changed 758 * while we were in the middle of writing it out. 759 */ 760 VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root)); 761 VERIFY3U(range_tree_space(rt), ==, rt_space); 762 } 763 764 static int 765 space_map_open_impl(space_map_t *sm) 766 { 767 int error; 768 u_longlong_t blocks; 769 770 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf); 771 if (error) 772 return (error); 773 774 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks); 775 sm->sm_phys = sm->sm_dbuf->db_data; 776 return (0); 777 } 778 779 int 780 space_map_open(space_map_t **smp, objset_t *os, uint64_t object, 781 uint64_t start, uint64_t size, uint8_t shift) 782 { 783 space_map_t *sm; 784 int error; 785 786 ASSERT(*smp == NULL); 787 ASSERT(os != NULL); 788 ASSERT(object != 0); 789 790 sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP); 791 792 sm->sm_start = start; 793 sm->sm_size = size; 794 sm->sm_shift = shift; 795 sm->sm_os = os; 796 sm->sm_object = object; 797 798 error = space_map_open_impl(sm); 799 if (error != 0) { 800 space_map_close(sm); 801 return (error); 802 } 803 *smp = sm; 804 805 return (0); 806 } 807 808 void 809 space_map_close(space_map_t *sm) 810 { 811 if (sm == NULL) 812 return; 813 814 if (sm->sm_dbuf != NULL) 815 dmu_buf_rele(sm->sm_dbuf, sm); 816 sm->sm_dbuf = NULL; 817 sm->sm_phys = NULL; 818 819 kmem_free(sm, sizeof (*sm)); 820 } 821 822 void 823 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx) 824 { 825 objset_t *os = sm->sm_os; 826 spa_t *spa = dmu_objset_spa(os); 827 dmu_object_info_t doi; 828 829 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 830 ASSERT(dmu_tx_is_syncing(tx)); 831 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa)); 832 833 dmu_object_info_from_db(sm->sm_dbuf, &doi); 834 835 /* 836 * If the space map has the wrong bonus size (because 837 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or 838 * the wrong block size (because space_map_blksz has changed), 839 * free and re-allocate its object with the updated sizes. 840 * 841 * Otherwise, just truncate the current object. 842 */ 843 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 844 doi.doi_bonus_size != sizeof (space_map_phys_t)) || 845 doi.doi_data_block_size != blocksize || 846 doi.doi_metadata_block_size != 1 << space_map_ibs) { 847 zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating " 848 "object[%llu]: old bonus %u, old blocksz %u", 849 dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object, 850 doi.doi_bonus_size, doi.doi_data_block_size); 851 852 space_map_free(sm, tx); 853 dmu_buf_rele(sm->sm_dbuf, sm); 854 855 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx); 856 VERIFY0(space_map_open_impl(sm)); 857 } else { 858 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx)); 859 860 /* 861 * If the spacemap is reallocated, its histogram 862 * will be reset. Do the same in the common case so that 863 * bugs related to the uncommon case do not go unnoticed. 864 */ 865 bzero(sm->sm_phys->smp_histogram, 866 sizeof (sm->sm_phys->smp_histogram)); 867 } 868 869 dmu_buf_will_dirty(sm->sm_dbuf, tx); 870 sm->sm_phys->smp_objsize = 0; 871 sm->sm_phys->smp_alloc = 0; 872 } 873 874 /* 875 * Update the in-core space_map allocation and length values. 876 */ 877 void 878 space_map_update(space_map_t *sm) 879 { 880 if (sm == NULL) 881 return; 882 883 sm->sm_alloc = sm->sm_phys->smp_alloc; 884 sm->sm_length = sm->sm_phys->smp_objsize; 885 } 886 887 uint64_t 888 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx) 889 { 890 spa_t *spa = dmu_objset_spa(os); 891 uint64_t object; 892 int bonuslen; 893 894 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 895 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 896 bonuslen = sizeof (space_map_phys_t); 897 ASSERT3U(bonuslen, <=, dmu_bonus_max()); 898 } else { 899 bonuslen = SPACE_MAP_SIZE_V0; 900 } 901 902 object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize, 903 space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx); 904 905 return (object); 906 } 907 908 void 909 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx) 910 { 911 spa_t *spa = dmu_objset_spa(os); 912 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 913 dmu_object_info_t doi; 914 915 VERIFY0(dmu_object_info(os, smobj, &doi)); 916 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) { 917 spa_feature_decr(spa, 918 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx); 919 } 920 } 921 922 VERIFY0(dmu_object_free(os, smobj, tx)); 923 } 924 925 void 926 space_map_free(space_map_t *sm, dmu_tx_t *tx) 927 { 928 if (sm == NULL) 929 return; 930 931 space_map_free_obj(sm->sm_os, space_map_object(sm), tx); 932 sm->sm_object = 0; 933 } 934 935 /* 936 * Given a range tree, it makes a worst-case estimate of how much 937 * space would the tree's segments take if they were written to 938 * the given space map. 939 */ 940 uint64_t 941 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt, 942 uint64_t vdev_id) 943 { 944 spa_t *spa = dmu_objset_spa(sm->sm_os); 945 uint64_t shift = sm->sm_shift; 946 uint64_t *histogram = rt->rt_histogram; 947 uint64_t entries_for_seg = 0; 948 949 /* 950 * In order to get a quick estimate of the optimal size that this 951 * range tree would have on-disk as a space map, we iterate through 952 * its histogram buckets instead of iterating through its nodes. 953 * 954 * Note that this is a highest-bound/worst-case estimate for the 955 * following reasons: 956 * 957 * 1] We assume that we always add a debug padding for each block 958 * we write and we also assume that we start at the last word 959 * of a block attempting to write a two-word entry. 960 * 2] Rounding up errors due to the way segments are distributed 961 * in the buckets of the range tree's histogram. 962 * 3] The activation of zfs_force_some_double_word_sm_entries 963 * (tunable) when testing. 964 * 965 * = Math and Rounding Errors = 966 * 967 * rt_histogram[i] bucket of a range tree represents the number 968 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given 969 * that, we want to divide the buckets into groups: Buckets that 970 * can be represented using a single-word entry, ones that can 971 * be represented with a double-word entry, and ones that can 972 * only be represented with multiple two-word entries. 973 * 974 * [Note that if the new encoding feature is not enabled there 975 * are only two groups: single-word entry buckets and multiple 976 * single-word entry buckets. The information below assumes 977 * two-word entries enabled, but it can easily applied when 978 * the feature is not enabled] 979 * 980 * To find the highest bucket that can be represented with a 981 * single-word entry we look at the maximum run that such entry 982 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that 983 * the run of a space map entry is shifted by sm_shift, thus we 984 * add it to the exponent]. This way, excluding the value of the 985 * maximum run that can be represented by a single-word entry, 986 * all runs that are smaller exist in buckets 0 to 987 * SM_RUN_BITS + shift - 1. 988 * 989 * To find the highest bucket that can be represented with a 990 * double-word entry, we follow the same approach. Finally, any 991 * bucket higher than that are represented with multiple two-word 992 * entries. To be more specific, if the highest bucket whose 993 * segments can be represented with a single two-word entry is X, 994 * then bucket X+1 will need 2 two-word entries for each of its 995 * segments, X+2 will need 4, X+3 will need 8, ...etc. 996 * 997 * With all of the above we make our estimation based on bucket 998 * groups. There is a rounding error though. As we mentioned in 999 * the example with the one-word entry, the maximum run that can 1000 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is 1001 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of 1002 * that length fall into the next bucket (and bucket group) where 1003 * we start counting two-word entries and this is one more reason 1004 * why the estimated size may end up being bigger than the actual 1005 * size written. 1006 */ 1007 uint64_t size = 0; 1008 uint64_t idx = 0; 1009 1010 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) || 1011 (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) { 1012 1013 /* 1014 * If we are trying to force some double word entries just 1015 * assume the worst-case of every single word entry being 1016 * written as a double word entry. 1017 */ 1018 uint64_t entry_size = 1019 (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) && 1020 zfs_force_some_double_word_sm_entries) ? 1021 (2 * sizeof (uint64_t)) : sizeof (uint64_t); 1022 1023 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1; 1024 for (; idx <= single_entry_max_bucket; idx++) 1025 size += histogram[idx] * entry_size; 1026 1027 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) { 1028 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { 1029 ASSERT3U(idx, >=, single_entry_max_bucket); 1030 entries_for_seg = 1031 1ULL << (idx - single_entry_max_bucket); 1032 size += histogram[idx] * 1033 entries_for_seg * entry_size; 1034 } 1035 return (size); 1036 } 1037 } 1038 1039 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)); 1040 1041 uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1; 1042 for (; idx <= double_entry_max_bucket; idx++) 1043 size += histogram[idx] * 2 * sizeof (uint64_t); 1044 1045 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) { 1046 ASSERT3U(idx, >=, double_entry_max_bucket); 1047 entries_for_seg = 1ULL << (idx - double_entry_max_bucket); 1048 size += histogram[idx] * 1049 entries_for_seg * 2 * sizeof (uint64_t); 1050 } 1051 1052 /* 1053 * Assume the worst case where we start with the padding at the end 1054 * of the current block and we add an extra padding entry at the end 1055 * of all subsequent blocks. 1056 */ 1057 size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t); 1058 1059 return (size); 1060 } 1061 1062 uint64_t 1063 space_map_object(space_map_t *sm) 1064 { 1065 return (sm != NULL ? sm->sm_object : 0); 1066 } 1067 1068 /* 1069 * Returns the already synced, on-disk allocated space. 1070 */ 1071 uint64_t 1072 space_map_allocated(space_map_t *sm) 1073 { 1074 return (sm != NULL ? sm->sm_alloc : 0); 1075 } 1076 1077 /* 1078 * Returns the already synced, on-disk length; 1079 */ 1080 uint64_t 1081 space_map_length(space_map_t *sm) 1082 { 1083 return (sm != NULL ? sm->sm_length : 0); 1084 } 1085 1086 /* 1087 * Returns the allocated space that is currently syncing. 1088 */ 1089 int64_t 1090 space_map_alloc_delta(space_map_t *sm) 1091 { 1092 if (sm == NULL) 1093 return (0); 1094 ASSERT(sm->sm_dbuf != NULL); 1095 return (sm->sm_phys->smp_alloc - space_map_allocated(sm)); 1096 } 1097